
Reordering Columns for Smaller Indexes

Daniel Lemirea,∗, Owen Kaserb

aLICEF, Université du Québec à Montréal (UQAM), 100 Sherbrooke West, Montreal, QC,
H2X 3P2 Canada

bDept. of CSAS, University of New Brunswick, 100 Tucker Park Road, Saint John, NB,
Canada

Abstract

Column-oriented indexes—such as projection or bitmap indexes—are compressed
by run-length encoding to reduce storage and increase speed. Sorting the tables
improves compression. On realistic data sets, permuting the columns in the
right order before sorting can reduce the number of runs by a factor of two or
more. Unfortunately, determining the best column order is NP-hard. For many
cases, we prove that the number of runs in table columns is minimized if we
sort columns by increasing cardinality. Experimentally, sorting based on Hilbert
space-filling curves is poor at minimizing the number of runs.

Key words: Data Warehousing, Indexing, Compression, Gray codes

1. Introduction

Many database queries have low selectivity. In these instances, we may need
to load the content of entire columns. To improve performance and reduce
memory usage, we compress columns with lightweight techniques such as run-
length encoding (RLE). Yet RLE compression is better if there are long runs of
identical values within columns.

Meanwhile, sorting reduces the number of these column runs. In fact, sorting
the table before indexing can improve the speed of an index by nearly a factor
of ten [39], while reducing the memory usage in a comparable manner.

Yet there are many ways to sort a table, and we are motivated to sort the
table in the best possible manner. Adabi et al. recommend lexicographic sorting
with “low cardinality columns serv[ing] as the leftmost sort orders” [1]. We want
to justify this empirical recommendation.

For uniformly distributed tables, we show that sorting lexicographically with
the columns in increasing cardinality is asymptotically optimal—for large col-
umn cardinalities. Furthermore, we show how to extend this result to all col-
umn cardinalities. As an additional contribution, we bound the suboptimality

∗Corresponding author. Tel.: 00+1+514 987-3000 ext. 2835; fax: 00+1+514 843-2160.
Email addresses: lemire@acm.org (Daniel Lemire), o.kaser@computer.org (Owen

Kaser)

ar
X

iv
:0

90
9.

13
46

v8
 [

cs
.D

B
]

 2
2

Fe
b

20
11

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by R-libre

https://core.ac.uk/display/35146138?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of sorting lexicographically for the problem of minimizing the number of runs.
With this analytical bound, we show that for several realistic tables, sorting is
3-optimal or better as long as the columns are ordered in increasing cardinality.

We present our results in four steps: modeling (§ 2), a priori bounds (§ 3
and § 4), analysis of synthetic cases (§ 5) and experiments (§ 6). Specifically,
the paper is organized as follows:

• There are many possible RLE implementations. In § 2, we propose to
count column runs as a simplified cost model.

• In § 3, we prove that minimizing the number of runs by row reordering is
NP-hard.

• In § 4, we review several orders used to sort tables in databases : the lex-
icographical order, the reflected Gray-code order, and so on. We regroup
many of these orders into a family: the recursive orders. In § 4.1, we
bound the suboptimality of sorting as a heuristic to minimize the number
of runs. In § 4.2, we prove that determining the best column order is
NP-hard.

• In § 5, we analytically determine the best column order for some synthetic
cases. Specifically, in § 5.1, we analyze tables where all possible tuples
are present. In § 5.2, we consider the more difficult problem of uniformly
distributed tables. We first prove that for high cardinality columns, or-
ganizing the columns in increasing cardinality is best at minimizing the
number of runs (see Theorem 2). In § 5.2.1 and § 5.2.2, we show how to
extend this result to low cardinality columns for the lexicographical and
reflected Gray-code orders.

• Finally, we experimentally verify the importance of column ordering in
§ 6, and assess other factors such as column dependencies. We show that
an order based on Hilbert space-filling curves [26] is not competitive to
minimize the number of runs.

2. Modeling RLE compression by the number of column runs

RLE compresses long runs of identical values: it replaces any run by the
number of repetitions followed by the value being repeated. For example, the
sequence 11111000 becomes 5–1, 3–0. In column-oriented databases, RLE makes
many queries faster: sum, average, median, percentile, and arithmetic opera-
tions over several columns [46].

There are many variations on RLE:

• Counter values can be stored using fixed-length counters. In this case,
any run whose length exceeds the capacity of the counter is stored as
multiple runs. For example, Adabi et al. [1] use a fixed number of bits
for the tuple’s value, start position, and run length. We can also use
variable-length counters [4, 9, 41, 55, 60, 62–64] or quantized codes [31].

2

• When values are represented using fewer bits than the counter values, we
may add the following convention: a counter is only present after the same
value is repeated twice.

• In the same spirit, we may use a single bit to indicate whether a counter
follows the current value. This is convenient if we are transmitting 7-bit
ASCII characters using 8-bit words [8, 32].

• It might be inefficient to store short runs using value-counter pair. Hence,
we may leave short runs uncompressed (BBC [5], WAH [61] or EWAH [39]).

• Both the values and the counters have some statistical distributions. If
we know these distributions, more efficient encodings are possible by com-
bining statistical compression with RLE—such as Golomb coding [24],
Lempel-Ziv, Huffman, or arithmetic encoding. Moreover, if we expect the
values to appear in some specific order, we can store a delta instead of
the value [30]. For example, the list of values 00011122, can be coded
as the (diffed-values,counter) pairs (1, 3)(1, 3), (1, 2). This can be used to
enhance compression further.

• To support binary search within an RLE array, we may store not only the
value and the repetition count, but also the location of the run [8, 11, 42],
or we may use a B-tree [17].

• Instead of compressing the values themselves, we may compress their bits.
In bitmap indexes, for any given column, several bitmaps can be individ-
ually compressed by RLE.

It would be futile to attempt to analyze mathematically all possible appli-
cations of RLE to database indexes. Instead, we count runs of identical values.
That is, if ri is the number of runs in column i and there are c columns, we
compute

∑c
i=1 ri

1 (henceforth RunCount).

3. Minimizing the number of runs by row reordering is NP-hard

We want to minimize RunCount by row reordering. Consider a related
problem over Boolean matrices [34]: minimizing the number of runs of ones in
rows by column reordering. This “Consecutive Block Minimization” problem
(CBMP) is NP-hard [23, SR17],[25]2. Yet, even if we transpose the matrix,
CBMP is not equivalent to the RunCount minimization problem. Indeed,
both sequences 001100 and 000011 have a single run of ones. Yet the sequence
001100 has three runs whereas the second sequence (000011) has only two runs.
Moreover, the RunCount minimization problem is not limited to binary data.
To our knowledge, there is no published proof that minimizing RunCount by
row reordering is NP-hard. Hence, we provide the following result.

1A table of notation can be found in Appendix A.
2Another NP-hardness proof was later given by Pinar and Heath [48].

3

m columns︷ ︸︸ ︷ 5m columns︷ ︸︸ ︷ 5m columns︷ ︸︸ ︷
s→ · · · 11 . . . 11 00 . . . 00

n rows

· · · 00 . . . 00 00 . . . 00

· · ·
...

...
incidence matrix 00 . . . 00 00 . . . 00

· · ·
...

...
· · · 00 . . . 00 00 . . . 00

t→ · · · 00 . . . 00 11 . . . 11

Figure 1: Matrix described in the proof of Lemma 1

Lemma 1. Minimizing RunCount by row reordering is NP-hard.

Proof. We prove the result by reduction from the Hamiltonian path prob-
lem, which remains NP-hard even if a starting and ending vertex are speci-
fied [GT39][23]. Consider any connected graph G having n vertices and m edges,
and let s and t be respectively the beginning and end of the required Hamilto-
nian path.

Consider the incidence matrix of such a graph. There is a row for each
vertex, and a column for each edge. The value of the matrix is one if the edge
connects with the vertex, and zero otherwise. Each column has only two ones;
thus it has either

1. two runs (if the ones are consecutive, and either at the top or bottom of
the column)

2. three runs (if the ones are consecutive but not at the top or bottom of the
column, or if there are ones at the top and bottom)

3. four runs (if the ones are not consecutive, but a one is at the top or at the
bottom), or

4. five runs (in all other cases).

Thus, the number of column runs in this incidence matrix is less than 5m.
We modify the incidence matrix by adding 10m new columns. These columns

contain only zeros, except that 5m columns have the value one on the row
corresponding to vertex s, and 5m other columns have the value one on the row
corresponding to vertex t (see Fig. 1). These new columns have either 2 runs or
3 runs depending on whether the rows corresponding to s and t are first, last or
neither.

Suppose that the row corresponding to s is not first or last. Then the number
of runs in the newly added 10m columns is at least 3× 5m+ 2× 5m = 25m (or
30m if both s and t are neither first nor last). Meanwhile, the number of runs in
the original incidence matrix is less than 5m. Thus, any row order minimizing
the number of runs will have the rows corresponding to s and t first and last.
Without loss of generality, we assume s is first.

4

A minimum-run solution is obtained from a Hamiltonian path from s to t
by putting rows into the order they appear along the path. Such a solution has
two columns with two runs, n − 3 columns with three runs (or n − 2 columns
with three runs, if (s, t) were an edge of G), and the columns for the other edges
in G each have five runs. Finally, the 10m added columns have two runs each.
Yet having so few runs implies that an s–t Hamiltonian path exists. Hence, we
have reduced the s–t Hamiltonian path problem to minimizing the RunCount
by row reordering. �

4. Lexicographic and Gray-code sorting

While the row reordering problem is NP-hard, sorting is an effective heuristic
to enhance column-oriented indexes [39, 56]. Yet there are many ways to sort
rows.

A total order over a set is such that it is transitive (a ≤ b and b ≤ c implies
a ≤ c), antisymmetric (a ≤ b and b ≤ a implies a = b) and total (a ≤ b or b ≤ a).
A list of tuples is discriminating [12] if all duplicates are listed consecutively.
Orders are discriminating.

We consider sorting functions over tuples. We say that an order over c-tuples
generates an order over c−1-tuples if and only if the projection of all sorted lists
of c-tuples on the first c− 1 components is discriminating. When this property
applies recursively, we say that we have a recursive order:

Definition 1. A recursive order over c-tuples is such that it generates a recur-
sive order over c− 1-tuples. All orders over 1-tuples are recursive.

An example of an order that is not recursive is (1,0,0), (0,1,1), (1,0,1), since
its projection on the first two components is not discriminating: (1,0), (0,1),
(1,0). We consider several recursive orders, including lexicographic order and
two Gray-code orders.

Lexicographic order. The lexicographic order is also commonly known as the
dictionary order. When comparing two tuples a and b, we use the first compo-
nent where they differ (aj 6= bj but ai = bi for i < j) to decide which tuple is
smaller (see Fig. 3a).

Let Ni be the cardinality of column i and n be the number of rows. Given
all possible N1,c ≡

∏c
i=1Ni tuples, we have N1,c runs in the last column,

N1,c−1 runs in the second last column and so on. Hence, we have a total of∑c
j=1N1,j runs. If the Ni’s have the same value Ni = N for all i’s, then we

have N c +N c−1 + · · ·+N = Nc+1−1
N−1 − 1 runs.

Gray-code orders. We are also interested in the more efficient Gray-code orders.
A Gray code is a list of tuples such that the Hamming distance—alternatively
the Lee metric [3]—between successive tuples is one [14, 20]. Knuth [37, pp. 18–
20] describes two types of decimal Gray codes.

5

0 0 0
0 0 1
0 1 1
0 1 0
1 1 0
1 1 1
1 0 1
1 0 0
2 0 0
2 0 1
2 1 1
2 1 0

Figure 2: A table sorted in a (reflected) Gray-code order. Except for the first
row, there is exactly one new run initiated in each of the N1,c rows (in bold).
Thus, the table has c− 1 +N1,c = 3− 1 + 3× 2× 2 = 14 column runs.

• Reflected Gray decimal ordering is such that each digit goes from 0 to 9,
up and down alternatively: 000, 001, . . . , 009, 019, 018, . . . , 017, 018, 028,
029, . . . , 099, 090, . . .

• Modular Gray decimal is such that digits always increase from 1 modulo
10: 000, 001, . . . , 009, 019, 010,. . . , 017, 018, 028, 029, 020, . . .

The extension to the mixed-radix case [3, 52] from the decimal codes is straight-
forward [51] (see Figs. 3b and 3c).

Because the Hamming distance between successive codes is one, if all possible
N1,c tuples are represented, there are exactly c − 1 + N1,c runs. If Ni = N for
all i, then we have c− 1 +N c runs (see Fig. 2). All recursive Gray-code orders
have N1 runs in the first column, N1N2 − N1 + 1 runs in the second column,
and the number of runs in column j is given by

rj = 1 + (Nj − 1)N1,j−1. (1)

(Being a recursive order, the values from the first j − 1 columns form N1,j−1

blocks, where rows in each block agree on their first j − 1 components. Being a
Gray-code order, at any transition from one block to the next, values in column
j must match.) If we assume Ni > 1 for all i ∈ {1, . . . , c}, then later columns
always have more runs.

From a software-implementation point of view, the lexicographic order is
more convenient than the reflected and modular Gray codes. A common ap-
proach to sorting large files in external memory is divide the file into smaller
files, sort them, and then merge the result. Yet, with these Gray codes, it is
not possible to sort the smaller files independently: a complete pass through
the entire data set may be required before sorting. Indeed, consider the these
two lists sorted in reflected Gray-code order:

6

• Anna Awkland, Anna Bibeau, Greg Bibeau, Greg Awkland;

• Bob Awkland, Bob Bibeau.

Because we sorted the first list without knowing about the first name “Bob” a
simple merging algorithm fails. For this reason, it may be faster to sort data by
the lexicographic order.

Similarly, while a binary search through a lexicographically sorted list only
requires comparing individual values (such as Bob and Anna), binary searches
through a reflected or modular Gray-code ordered list may require the complete
list of values in each column.

Non-recursive orders. There are balanced and nearly balanced Gray codes [21,
22, 37]. Unlike the other types of Gray codes, the number of runs in all columns
is nearly the same when sorting all possible tuples for N1 = N2 = . . . = Nc.
However, they cannot be recursive.

Some authors have used Hilbert space-filling curves to order data points [26,
28, 35] (see Fig. 3d). This order is not recursive. Indeed, the following 2-tuples
are sorted in Hilbert order: (1,1), (2,1),(2,2), (1,2). Yet their projection on the
first component is not discriminating: 1, 2, 2, 1. It is a balanced Gray code when
all column cardinalities are the same power of two [26]. Beyond two dimensions,
there are many possible orders based on Hilbert curves [2]. There are also many
other alternatives such as Sierpiński-Knopp order, Peano order [47], the Gray-
coded curve [19], Z-order [38] and H-index [45]. They are often selected for their
locality properties [27].

If not balanced, non-recursive orders can be column-oblivious if the number
of runs per column is independent of the order of the columns. As a trivial
example, if you reorder the columns before sorting the table lexicographically,
then the initial order of the columns is irrelevant.

4.1. Significance of column order

Recursive orders depend on the column order. For lexicographic or reflected
Gray-code orders, permuting the columns generates a new row ordering. The
next proposition shows that the effect of the column ordering grows linearly
with the number of columns.

Proposition 1. For tables with c columns, the number of column runs after
the application of any recursive-order function can vary by a factor arbitrarily
close to c under the permutation of the columns.

Proof. The proof is by construction. Given a recursive-order function, we find
a c-column table that has many runs when processed by that function. However,
swapping any column with the first yields a table that—recursively sorted in
any way—has few runs.

Consider a column made of n distinct values, given in sorted order: A, B, C,
D, . . . This column is the first column of a c-column table. For every odd row,

7

(a) Lexicographic (b) Reflected Gray-code

(c) Modular Gray-code (d) Compact Hilbert Index

Figure 3: Various orderings of the points in a two-dimensional array

fill all remaining columns with the value 0, and every even row with the value
1:

A 0 · · · 0
B 1 · · · 1
C 0 · · · 0
D 1 · · · 1
...

... · · ·
...

This table has nc runs and is already sorted. But putting any other column
first, any recursive order reduces the number of runs to n+2(c−1). For n large,

cn
n+2(c−1) → c which proves the result. �

The construction in the proof uses a high cardinality column. However, we
could replace this single high cardinality column by dlogN ne columns having a
cardinality of at most N , and the result would still hold.

Hence, recursive orders can generate almost c times more runs than an opti-
mal order. Yet no row-reordering heuristic can generate more than c times the
number of column runs than the optimal ordering solution: there are at least
n column runs given n distinct rows, and no more than cn column runs in total.
Hence—as row-reordering heuristics—recursive orders have no useful worst-case
guarantee over arbitrary tables. We shall show that the situation differs when
column reordering is permitted.

8

K Y
A Y
A D
Z D
Z B
A B
A C
W C
W E
F E
F C
H C
H J

Figure 4: A table such that no recursive ordering is optimal.

Suppose we consider a sorting algorithm that first applies a known reorder-
ing to columns, then applies some recursive-order function. The proposition’s
bound still applies, because we can make an obvious modification to the con-
struction, placing the non-binary column in a possibly different position. The
next refinement might be to consider a sorting algorithm that—for a given
table—tries out several different column orders. For the construction we have
used in the proof, it always finds an optimal ordering.

Unfortunately, even allowing the enumeration of all possible column reorder-
ings is insufficient to make recursive ordering optimal. Indeed, consider the table
in Fig. 4. The Hamming distance between any two consecutive tuples is one.
Thus each new row initiates exactly one new run, except for the first row. Yet,
because all tuples are distinct, this is a minimum: a Hamming distance of zero
is impossible. Thus, this row ordering has a minimal number of column runs.
We prove that no recursive ordering can be similarly optimal.

We begin by analyzing the neighbors of a tuple, where two tuples are neigh-
bors if they have a Hamming distance of one:

• The tuple (K,Y) has only one neighbor: (A,Y).

• The tuple (H,J) has only one neighbor: (H,C).

• The tuples of the form (Z,·) only have neighbors of the form (A,·).

• The tuples of the form (·, E) only have neighbors of the form (·,C).

In effect, we must consider all Hamiltonian paths in the graph of neighbors.
The ordered list must begin and end with (K,Y) and (H,J), if it is optimal.
A recursive order must be discriminating on the first column. Without loss of
generality, suppose that the list begins by (K,Y). Thus, all tuples of the form
(A,·) must follow by recursivity. Then tuples of the form (Z,·) must follow. At
this point, we cannot continue the list by jumping from neighbor to neighbor.

9

Hence, no recursive ordering is optimal. A similar argument shows that flipping
the two columns leads to the same result: no recursive ordering can be optimal.

Lemma 2. There are tables where no recursive order minimizes the number of
runs—even after reordering the columns.

Determining a tight bound on the suboptimality of recursive ordering re-
mains open. Recursive orders applied to the example of Fig. 4 generate at least
15 runs whereas 14 runs is possible, for a suboptimality ratio of 15

14 . If we al-
low arbitrarily long two-dimensional tables, we can generalize our construction
to obtain ratios arbitrarily close to 13

12 . Thus, the suboptimality ratio of re-
cursive orders ranges between 13

12 and c. However, a computer search through
100,000 uniformly distributed tridimensional tables with 10 rows and six distinct
column values failed to produce a single case where recursive ordering is sub-
optimal. That is, among the row orderings minimizing the number of runs, at
least one is recursive after some reordering of the columns. Hence, it is possible
that recursive ordering is rarely suboptimal.

The next proposition gives a simple suboptimality bound on any recursive
order. This result implies that recursive ordering is 3-optimal or better for
several realistic tables (see Table 1).

Proposition 2. Consider a table with n distinct rows and column cardinali-
ties Ni for i = 1, . . . , c. Recursive ordering is µ-optimal for the problem of
minimizing the runs where

µ =

∑c
j=1 min(n,N1,j)

n+ c− 1
.

The bound µ can be made stronger if the recursive order is a Gray code:

µGC =

∑c
j=1 min(n, 1 + (Nj − 1)N1,j−1)

n+ c− 1
.

but µGC > mini(Ni−1)
mini(Ni)

µ

Proof. Given a table in any recursive order, the number of runs in the
ith column is bounded by N1,i and by n. Thus the number of runs in the ta-
ble is no more than min(N1, n) + min(N1,2, n) + · · · + min(N1,c, n). Yet there
are at least n + c − 1 runs in the optimally-ordered table. Hence, the result
follows. The tighter bound for Gray-code orders follows similarly, and the
relationship between µGC and µ follows by straightforward algebra (µGC >∑c
j=1 min(βn, βN1,j) where β = mini(Ni)−1

mini(Ni)
). �

As an example, consider the list of all dates (month, day, year) for a cen-
tury (N1 = 12, N2 = 31, N3 = 100, n = 12 × 31 × 100): then µ ≈ 1.01 so that
lexicographic sorting is within 1% of minimizing the number of runs. The op-
timality bound given by Proposition 2 is tighter when the columns are ordered
in non-decreasing cardinality (N1 ≤ N2 ≤ · · · ≤ Nc). This fact alone can be an
argument for ordering the columns in increasing cardinality.

10

v v

v

v v

1 2

3

4

5

e

e

e

e

e

1

2

3

4

5

e
6

(a) Graph

e5 e1 e2 e3 e4 e6

1 · · · 1 1 · · · 1 0 0 0 0 0 0
0 · · · 0 1 · · · 1 0 1 0 1 0 0 v1
0 · · · 0 0 · · · 0 0 0 1 0 0 1 v2
0 · · · 0 0 · · · 0 1 0 1 1 1 0 v3
0 · · · 0 0 · · · 0 0 1 0 0 1 0 v4
0 · · · 0 0 · · · 0 1 0 0 0 0 1 v5
0 · · · 0︸ ︷︷ ︸
h

0 · · · 0︸ ︷︷ ︸
h

0 0 0 0 0 0

(b) Constructed table, incidence matrix shaded.

Figure 5: Table built from graph on the left. There are h copies of the column
that begins 10 . . . and the column that begins with 11

4.2. Determining the optimal column order is NP-hard

For lexicographic sorting, it is NP-hard to determine which column ordering
will result in least cost under the RunCount model, even when the tables have
only two values. We consider the following decision problem:

Column-Ordering-for-Lex-Runcount (COLR). Given table T with binary values
and given integer K, is there a column ordering such that the lexicographically
sorted T has at most K runs?

Theorem 1. COLR is NP-complete.

Proof. Clearly the problem is in NP. Its NP-hardness is shown by reduction
from the variant of Hamiltonian Path where the starting vertex is given [23,
GT39]. Given an instance (V,E) of Hamiltonian Path, without loss of generality
let v1 ∈ V be the specified starting vertex. We construct a table T as follows:
first, start with the incidence matrix. Let V = {v1, v2, . . . , v|V |} and E =
{e1, e2, . . . , . . . , em}. Recall that this matrix has a column for each edge and
a row for each vertex; ai,j = 1 if edge ej has vertex vi as an endpoint and
otherwise ai,j = 0. Vertex v1 corresponds to the first row. We prepend and
append a row of zeros to the incidence matrix. Next we prepend h columns
with values 10|V |+1 (i.e., 100 . . . 0) and h columns with 110|V |; see Fig. 5 for an
example. The value of h is “large”; we compute the exact value later.

We show the resulting instance, with table T and bound K = 4h+ 3(|V | −
1) + 5(m− |V |+ 1)), satisfies the requirements for COLR if and only if (V,E)
contains a Hamiltonian path starting at v1.

First, suppose that we have a suitable Hamiltonian path in (V,E). Let
εi ∈ E be the ith edge along this path. Edge ε1 is incident upon v1.

Reorder the columns of T : leave the first 2h columns in their current order.
Next, place the columns corresponding to εi in order ε1, ε2, . . . , ε|V |−1. The
remaining columns follow in an arbitrary order. See Fig. 6, where it is apparent

11

e1 e4 e2 e6 e3 e5
1 · · · 1 1 · · · 1 0 0 0 0 0 0
0 · · · 0 1 · · · 1 1 0 0 0 1 0 v1
0 · · · 0 0 · · · 0 1 1 0 0 0 0 v4
0 · · · 0 0 · · · 0 0 1 1 0 1 1 v3
0 · · · 0 0 · · · 0 0 0 1 1 0 0 v2
0 · · · 0 0 · · · 0 0 0 0 1 0 1 v5
0 · · · 0 0 · · · 0 0 0 0 0 0 0

Figure 6: A lexicographically sorted table with the required RunCount bound
is obtained from the Hamiltonian path consisting of edges e1, e4, e2, e6.

that the constructed table is already lexicographically sorted3 Also, the first 2h
columns have 2 runs each, and the |V | − 1 columns for εi have three runs each
(each has the value 0i110|V |−i). The remaining m − |V | + 1 columns have five
runs each: all patterns with adjacent ones have been used (and there are no
duplicates); hence, all remaining patterns are of the form 0+10+10+. Thus the
bound is met.

Next, suppose T satisfies the requirements of COLR with the given bound
K = 4h + 3(|V | − 1) + 5(m − |V | + 1). We show this implies (V,E) has a
Hamiltonian path starting with v1.

If h is large enough, we can guarantee that the first two rows have not
changed their initial order. This is enforced by the 2h columns that were initially
placed leftmost. Their column values must end with 0 (the row of zeros is
always last after lexicographic sorting). If we analyze the RunCount cost of
these columns, they cost 4h when the first two rows remain in their initial order,
otherwise they cost 5h or 6h. If h is large enough, this penalty will outweigh
any possible gain from having a column order that, when sorted, moves the first
two rows.

Knowing the first row, we deduce that every column begins with a one if it
is one of the 2h columns, but it begins with a zero in every remaining column.
We now focus on these remaining columns, which correspond to edges in E.
Since each column value begins and ends with zero and has exactly two ones,
its pattern is either 0+110+ (3 runs) or 0+10+10+ (5 runs). The specified
RunCount bound implies that we must have |V |−1 columns with 3 runs. The
edges for these columns form the desired Hamiltonian path that starts at v1.

To finish, we must choose h such that the penalty (for choosing a column
ordering that disrupts the order of the first two rows after lexicographic sorting)
exceeds any possible gain. The increased cost from 4h is at least 5h, a penalty
of at least h. An upper bound on the gain from the other columns is 3m because
the RunCount is no more than 5m and cannot be decreased below 2m. Choose
h = 3m+ 1. �

3We sort with 1 ordered before 0.

12

This result can be extended to the reflected Gray-code order and, we conjec-
ture, to all recursive orders. A related problem tries to minimize the maximum
number of runs in any table column. This problem is also NP-hard (see Ap-
pendix D).

Moreover, given a very large number of rows, it might impractical to try more
than one column order. Indeed, evaluating each new solution implies sorting
the table, a potentially expensive step. Thus, heuristics which only consider a
few easily computed statistics, such as cardinality, are preferable.

5. Increasing-cardinality-order minimizes runs

Consider a sorted table. The table might be sorted in lexicographic order
or in reflected Gray-code order. Can we prove that sorting the columns in
increasing cardinality is a sensible heuristic to minimize the number of runs?
We consider analytically two cases: (1) complete tables and (2) uniformly dis-
tributed tables.

5.1. Complete tables

Consider a c-column table with column cardinalities N1, N2, . . . , Nc. A com-
plete table is one where all N1,c possible tuples are present. In practice, even
if a table is not complete, the projection on the first few columns might be
complete.

Using a lexicographic order, a complete table has
∑c
j=1N1,j runs, hence

the RunCount is minimized when the columns are ordered in non-decreasing
cardinality: Ni ≤ Ni+1 for i = 1, . . . , c − 1. Using Gray-code ordering, a
complete table has only c − 1 + N1,c runs (the minimum possible) no matter
how the columns are ordered. Hence, for Gray-code, the RunCount of complete
tables is not sensitive to the column order.

Somewhat artificially, we can create a family of recursive orders for which
the RunCount is not minimized over complete tables when the columns are
ordered in increasing cardinality. Consider the following family: “when N1 is
odd, use reflected Gray code order. Otherwise, use lexicographic order.” For
N1 = 2 and N2 = 3, we have 8 runs using lexicographic order. With N1 = 3
and N2 = 2, we have 7 runs using any recursive Gray-code order. Hence, we
cannot extend our analysis to all families of recursive orders from Gray-code and
lexicographic orders. Nevertheless, if we assume that all column cardinalities
are large, then the number of runs tends to N1,c and all column orders become
equivalent.

The benefits of Gray-code orders—all Gray-code orders, not just recursive
Gray-code orders—over lexicographic orders are small for complete tables having
high cardinalities as the next proposition shows (see Fig. 7).

Proposition 3. Consider the number of runs in complete tables with columns
having cardinality N . The relative benefit of Gray-code orders over lexicographic
orders grows monotonically with c and is at most 1/N .

13

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 2 3 4 5 6 7 8 9 10R
el

at
iv

e
be

ne
fit

s
of

 G
ra

y-
co

de
 s

or
tin

g
(%

)

Number of columns (c)

N=2
N=10

N=100

Figure 7: Relative benefits of Gray-code sorting against lexicographic orders for
complete c-column table where all column cardinalities are N

Proof. The relative benefits of Gray-code sorting for complete tables with all

columns having cardinality N is
Nc+1−1

N−1 −1−(Nc+c−1)

Nc+1−1
N−1 −1

. As c grows, this quantity

converges to 1/N from below. �

5.2. Uniformly distributed case

We consider tables with column cardinalities N1, N2, . . . Nc. Each of the
N1,c possible tuples is present with probability p. When p = 1, we have complete
tables.

For recursive orders over uniformly distributed tables, knowing how to com-
pute the expected number of runs in the second column of a two-column table
is almost sufficient to analyze the general case. Indeed, given a 3-column table,
the second column behaves just like the second column in 2-column table with
p ← 1 − (1 − p)N3 . Similarly, the third column behaves just like the second
column in a 2-column table with N1 ← N1N2 and N2 ← N3.

This second column is divided into N1 blocks of N2 tuples, each tuple having
a probability p of being present. The expected number of tuples present in the
table is N1N2p. However, N1N2p is an overestimate of the number of runs in
the second column. We need to subtract the expected number of seamless joins
between blocks: two blocks have a seamless join if the first one terminates with
the first value of the second block. The expected number of seamless joins is
no larger than the expected number of non-empty blocks minus one: N1ρN2 − 1
where ρN2

≡ 1 − (1 − p)N2 . While for complete tables, all recursive Gray-code
orders agree on the number of runs and seamless joins per column, the same is
not true for uniformly distributed tables. Different recursive Gray-code orders
have different expected numbers of seamless joins.

14

Nevertheless, we wish to prove a generic result for tables having large column
cardinalities (Ni � 1 for all i’s). Consider a two-column table having uniform
column cardinality N . For any recursive order, the expected number of seamless
joins is less than NρN . However, the expected sum of the number of runs and
seamless joins is NρN in the first column and N2p in the second, for a total of
NρN + N2p. For a fixed table density, the ratio NρN/(NρN + N2p) goes to
zero as 1/N since ρN → 1 exponentially. Hence, for tables having large column
cardinalities, the expected number of seamless joins is negligible compared to
the expected number of runs. The following lemma makes this result precise.

Lemma 3. Let Si and Ri be the expected number of seamless joins and runs in
column i. For all recursive orders, we have∑c

i=1 Si∑c
i=1 Si +

∑c
i=1Ri

≤ 1

mink∈{1,2,...,c}Nk

over uniformly distributed tables.

Proof. Column i + 1 has an expected total of runs and seamless joins of
Si+1 + Ri+1 = N1,i+1ρNi+2...Nc

. It has less than N1,iρNi+1...Nc
seamless joins.

We can verify that ρNi+1...Nc ≤ ρNi+2...Nc for all p ∈ [0, 1]. Thus Si+1/(Si+1 +
Ri+1) ≤ 1/Ni+1.

Hence, we have NiSi ≤ Si + Ri. This implies that mink∈{1,2,...,c}NkSi ≤
Si + Ri. Therefore, we have mink∈{1,2,...,c}Nk

∑c
i=1 Si ≤

∑c
i=1 Si +

∑c
i=1Ri

which proves the result. �
Therefore, for large column cardinalities, we can either consider the number

of runs, or the sum of the runs and seamless joins. In this context, the next
proposition shows that it is best to order columns in increasing cardinality.

Proposition 4. The expected sum of runs and seamless joins is the same for
all recursive orders. Moreover, it is minimized over uniformly distributed tables
if the columns are sorted by increasing cardinality.

Proof. For all recursive orders, the expected number of runs and seamless joins
for columns i and i+ 1 is N1,iρNi+1···Nc

+N1,i+1ρNi+2···Nc
. The second term—

corresponding to column i + 1—is invariant under a permutation of columns
i and i + 1. We focus our attention on the first term: N1,iρNi+1···Nc . After
permuting i and i+ 1, it becomes N1,i−1Ni+1ρNiNi+2···Nc

.
To simplify the notation, rewrite ρNi+1···Nc

and ρNiNi+2···Nc
as ρNi+1

and
ρNi

by substituting ρNi+2···Nc
for p and let i = 1. Thus, we compare N1ρN2

and
N2ρN1

.
To prove the result, it is enough to show that N1ρN2 < N2ρN1 implies

N1 < N2 for p ∈ (0, 1]. Suppose that it is not the case: it is possible to
have N1ρN2

< N2ρN1
and N1 > N2. Pick such N1, N2. Let x = 1 − p, then

N1ρN2
− N2ρN1

is N1(1 − xN2) − N2(1 − xN1). The polynomial is positive
for x = 0 since N1 > N2. Because N1ρN2

< N2ρN1
is possible (for some

value of x), the polynomial must be negative at some point in (0, 1), hence it

15

must have a root in (0, 1). However, the polynomial has only 3 terms so that
it cannot have more than 2 positive roots (e.g., by Descartes’ rule of signs).
Yet it has a root of multiplicity two at x = 1: after dividing by x − 1, we
get N1(1 + x + · · · + xN2−1) − N2(1 + x + · · · + xN1−1) which is again zero at
x = 1. Thus, it has no such root and, by contradiction, N1ρN2

≤ N2ρN1
implies

N1 ≤ N2 for p ∈ (0, 1]. The proof is concluded. �

Theorem 2. Given

1. the expected number of runs R↑ in a table sorted using any recursive order
with an ordering of the column in increasing cardinality and

2. Roptimal, the smallest possible expected number of runs out of all possible
recursive orders on the table (with the columns ordered in any way),

then

R↑ −Roptimal

R↑
≤ 1

mink∈{1,2,...,c}Nk

over uniformly distributed tables. That is, for large column cardinalities—
mink∈{1,2,...,c}Nk is large—sorting a table recursively with the columns ordered
in increasing cardinality is asymptotically optimal.

Proof. Whenever a ≥ b, then 1−a ≤ 1−b. Applying this idea to the statement
of Lemma 3, we have

1−
∑c
i=1 Si∑c

i=1 Si +
∑c
i=1Ri

≥ 1− 1

mink∈{1,2,...,c}Nk

or

c∑
i=1

Ri ≥
mink∈{1,2,...,c}Nk − 1

mink∈{1,2,...,c}Nk

(
c∑
i=1

Si +

c∑
i=1

Ri

)
.

Let S↑ and Soptimal be the expected number of seamless joins corresponding to
R↑ and Roptimal. We have

Roptimal ≥
mink∈{1,2,...,c}Nk − 1

mink∈{1,2,...,c}Nk
(Roptimal + Soptimal)

≥
mink∈{1,2,...,c}Nk − 1

mink∈{1,2,...,c}Nk
(R↑ + S↑) by Prop. 4

≥
mink∈{1,2,...,c}Nk − 1

mink∈{1,2,...,c}Nk
R↑

from which the result follows. �
From this theorem, we can conclude that—over uniformly distributed tables

having large column cardinalities—sorting lexicographically with the column
ordered in increasing cardinality is as good as any other recursive sorting.

16

[1 2 · · · k · · ·N2︸ ︷︷ ︸
N2−k

][1 2 · · ·︸ ︷︷ ︸
k−1

k · · ·N2]

(a) Lexicographic

[1 2 · · · k · · ·N2︸ ︷︷ ︸
N2−k

][N2 N2 − 1 · · ·︸ ︷︷ ︸
N2−k

k · · · 1]

(b) Reflected GC (successive blocks)

[1 2 · · · k · · ·N2︸ ︷︷ ︸
N2−k

][N2 1 2 · · ·︸ ︷︷ ︸
k mod N2

k · · ·N2 − 1]

(c) Modular GC (successive blocks)

[1 2 · · · k · · ·N2︸ ︷︷ ︸
N2−k

][s s+ 1 · · ·︸ ︷︷ ︸
(k−1+y) mod N2

k · · · s− 1]

(d) Modular GC (separated by y − 1 blocks)

Figure 8: Two consecutive non-empty blocks and the number of missing tuples
needed to form a seamless join. The last figure shows the pattern where y − 1
empty blocks separate the two non-empty blocks, and the count sequence in the
second block starts at s = 1 + (−y mod N2).

The expected benefits of seamless joins are small, at least for uniformly
distributed tables. Yet they cause runs from different columns to partially
overlap. Such partial overlaps might prevent some computational optimizations.
For this reason, Bruno [10] avoids seamless joins in RLE-compressed columns:
each seamless join becomes the start of a new run. In this model, Proposition 4
already shows that ordering the columns in increasing cardinality minimizes the
expected number of runs—for uniformly distributed tables.

5.2.1. Best column order for lexicographic sorting

While Theorem 2 states that the best column ordering—for all recursive
orders—is by increasing cardinality, the result is only valid asymptotically (for
large column cardinalities). For the lexicographic order, we want to prove that
the best column ordering is by increasing cardinality, irrespective of the column
cardinalities.

The N1 blocks in the second column of a lexicographically ordered are or-
dered from 1 to N2. Let P�N2

be the probability that any two non-empty such
blocks have a seamless join. The probability that the first x tuples in a block
are not present whereas the x+ 1th tuple is present is (1− p)xp/(1− (1− p)N2).
To obtain a seamless join, we need a run of precisely N2 − 1 missing tuples,
and it can begin anywhere between the second possible tuple in the first block
and the first possible tuple in the second block. (See Fig. 8a.) Hence, we have

P�N2
= N2p

2(1−p)N2−1

(1−(1−p)N2)2
=

N2p
2(1−ρN2

)

(1−p)ρ2N2

. Let P�N2,p′ and ρN2,p′ be P�N2
and ρN2

with p′ substituted in place of p.

17

To prove that ordering the columns by increasing cardinality minimizes the
number of runs, it is enough to prove that permuting the columns two-by-two,
so as to put the column with lesser cardinality first, never increases the number
of runs. To prove this result, we need the following technical lemma.

Lemma 4. For 1 ≤ N2 < N3 ≤ 30 and 0 < p ≤ 1, we have

(1− P�N3)ρN3N2 − P�N2,ρN3
ρN2,ρN3

< (1− P�N2)ρN2N3 − P�N3,ρN2
ρN3,ρN2

.

Proof. Observe that 1−ρN3
= (1−p)N3 and ρN2,ρN3

= 1−(1−p)N2N3 = ρN2N3
.

To prove the result, we show that:

• For p sufficiently close to 1, the result holds.

• We can turn the inequality into a polynomial in p with no root in (0, 1).

The first item is easy: taking the limit as p → 1 on both sides of the
inequality, we get N2 < N3. To conclude the proof, we have to show that
(1− P�N3)ρN3N2 − P�N2,ρN3

ρN2,ρN3
− (1− P�N2)ρN2N3 + P�N3,ρN2

ρN3,ρN2
is

never zero for p ∈ (0, 1). We multiply this quantity by ρN2N3 . We proceed to
show that the result is a polynomial.

Since 1 − zN = (1 − z)(1 + z + · · · + zN−1), we have that the polynomial
ρN2N3

is divisible by both ρN2
and ρN3

by respectively setting z = (1 − p)N2

and z = (1 − p)N3 . Hence, (1 − P�N3)ρN3ρN2N3 and (1 − P�N2)ρN2ρN2N3 are
polynomials.

We also have that P�N2,ρN3
ρN2,ρN3

=
N2ρ

2
N3

(1−ρN3
)N2−1

ρN2N3
and similarly for

P�N3,ρN2
ρN3,ρN2

so that (P�N2,ρN3
ρN2,ρN3

− P�N3,ρN2
ρN3,ρN2

)ρN2N3 is a poly-
nomial.

Hence, for any given N2 and N3, we can check that the result holds by
applying Sturm’s method [7] to the polynomial over the interval (0, 1]. Because
there is no root at p = 1, we have to check that the total root count over (0, 1]
is always zero. We proved this result using a computer algebra system (see
Appendix B) for values of N2 and N3 up to 30. This concludes the proof. �

There are N1−1 pairs of blocks immediately adjacent, N1−2 pairs of blocks
separated by a single block, and so on. Hence, the expected number of seamless
joins in the second column is4 Slexico

N1,N2
= P�N2

ρ2
N2

∑N1−2
k=0 (N1− 1−k)(1−ρN2

)k

or Slexico
N1,N2

= P�N2(ρN2N1 + (1− ρN2)N1 − 1) = P�N2ρN2N1 + ε for |ε| ≤ 1.

Proposition 5. Consider a table with c independent and uniformly distributed
columns having cardinalities N1, N2, . . . , Nc (let 2 ≤ Ni ≤ Ni+1 ≤ 30 for
i = 1, . . . , c − 1). We can sort the table by lexicographic order according to
various column orders. The column order N1, N2, . . . , Nc minimizes the number
of column runs—up to a term no larger than c in absolute value.

4We use the identity
∑N−2

k=0 (N − 1 − k)xk =
(1−x)N+xN−1

(1−x)2
.

18

Proof. Define T lexico
N1,N2,ρN3

= N1N2ρN3 − P�N2,ρN3
ρN2,ρN3

N1 as the number of

expected number of runs—up to a constant term no larger than one in absolute
value—in the second column of a 3-column table with cardinalities N1, N2, N3

and uniform distribution. Define T lexico
N1N2,N3,p

, T lexico
N1,N3,ρN2

and T lexico
N1N3,N2,p

sim-

ilarly. It is sufficient to prove that T lexico
N1,N2,ρN3

+ T lexico
N1N2,N3,p

≤ T lexico
N1,N3,ρN2

+

T lexico
N1N3,N2,p

whenever N2 ≤ N3, irrespective of the value of N1 (allowing N1 >
N3). We have

T lexico
N1,N2,ρN3

+ T lexico
N1N2,N3,p = N1N2ρN3 − P�N2,ρN3

ρN2,ρN3
N1

+N1N2N3p− P�N3ρN3N1N2

= (1− P�N3)ρN3N1N2

−P�N2,ρN3
ρN2,ρN3

N1

+N1N2N3p

≤ (1− P�N2)ρN2N1N3

−P�N3,ρN2
ρN3,ρN2

N1

+N1N2N3p (by Lemma 4)

= N1N3ρN2 − P�N3,ρN2
ρN3,ρN2

N1

+N1N2N3p− P�N2ρN2N1N3

= T lexico
N1,N3,ρN2

+ T lexico
N1N3,N2,p.

This proves the result. �
We conjecture that a similar result would hold for all values of Ni larger than

30. Given arbitrary values of N1, N2, . . . , Nc, we can quickly check whether the
result holds using a computer algebra system.

5.2.2. Best column order for reflected Gray-code sorting

For the reflected Gray-code order, we want to prove that the best column
ordering is by increasing cardinality, irrespective of the column cardinalities.
Blocks in reflected Gray-code sort are either ordered from 1 to N2, or from N2 to
1. When two non-empty blocks of the same type are separated by empty blocks,
the probability of having a seamless join is P�N2 . Otherwise, the probability of

seamless join is PlN2
= p2+(1−p)2p2+···+(1−p)2N2−2p2

(1−(1−p)N2)2
= p2(1−(1−p)2N2)

(1−(1−p)N2)2(1−(1−p)2)
for

p ∈ (0, 1).
There are N1 − 1 pairs of blocks immediately adjacent and with opposite

orientations (e.g., from 1 to N2 and then from N2 to 1; see Fig. 8b), N1−2 pairs
of blocks separated by a single block and having identical orientations, and so

on. Hence, the expected number of seamless joins is PlN2
ρ2
N2

∑b(N1−1)/2c
k=0 (N1−

1− 2k)(1− ρN2)2k + P�N2ρ
2
N2

∑b(N1−3)/2c
k=0 (N1 − 2− 2k)(1− ρN2

)2k+1.
We want a simpler formula for the number of runs, at the expense of intro-

ducing an error of plus or minus one run. So consider the scenario where we have
an infinitely long column, instead of just N1 blocks. However, we count only
the number of seamless joins between a block in the first N1 blocks and a block

19

following it. Clearly, there can be at most one extra seamless join, compared to
the number of seamless joins within the N1 blocks.

We have the formula x
∑∞
k=0(1 − x)2k = x

1−(1−x)2 = 1
2−x . Hence, this

new number of seamless joins is Sreflected
N1,N2

= PlN2
ρ2
N2

∑∞
k=0N1(1 − ρN2)2k +

P�N2
ρ2
N2

∑∞
k=0N1(1− ρN2

)2k+1 =
PlN2

ρN2
N1

2−ρN2
+

P�N2
ρN2

(1−ρN2
)N1

2−ρN2
.

Let λreflected
N2

=
PlN2

+(1−ρN2
)P�N2

2−ρN2
, then Sreflected

N1,N2
= λreflected

N2
ρN2

N1.

Lemma 5. We have that 1−xN2N3

1−xN3
= 1 + xN3 + x2N3 + · · ·+ xN3(N2−1), for all

positive integers N2, N3.

Lemma 6. If 2 ≤ N2 < N3 ≤ 30, then

(1− λreflected
N3

)ρN3
N2 − λreflected

N2,ρN3
ρN2,ρN3

< (1− λreflected
N2

)ρN2
N3 − λreflected

N3,ρN2
ρN3,ρN2

.

Proof. The proof is similar to the proof of Lemma 4. We want to show that:

• For some value of p in (0,1), the result holds.

• We can turn the inequality into a polynomial in p with no root in (0, 1).

The first item follows by evaluating the derivative of both sides of the in-
equality at p = 1. (Formally, our formula is defined for p ∈ (0, 1), so we let the
values and derivatives of our functions at 1 be implicitly defined as their limit

as p tends to 1.) For all N ≥ 2 and at p = 1, we have that
dPlN
dp = 2,

dP�N

dp = 0,

dρN
dp = 0, and

dλreflected
N

dp = 2; moreover, we have ρN = 1 and λreflected
N = 1 at

p = 1. The derivatives of PlN,ρN ′ , P�N,ρN ′ and λreflected
N,ρN ′ are also zero for all

N,N ′ ≥ 2 at p = 1. Hence, the derivative of the left-hand-side of the inequality
at p = 1 is −2N2 whereas the derivative of the right-hand-side is −2N3. Because
N3 > N2 and equality holds at p = 1, we have that the left-hand-side must be
smaller than the right-hand-side at p = 1− ξ for some sufficiently small ξ > 0.

To conclude the proof, we have to show that the value (1−λreflected
N3

)ρN3
N2−

λreflected
N2,ρN3

ρN2,ρN3
− (1 − λreflected

N2
)ρN2N3 + λreflected

N3,ρN2
ρN3,ρN2

is never zero for p ∈
(0, 1). We multiply this quantity by (2−ρN2N3

)ρN2N3
and call the result Υ. We

first show that Υ is a polynomial.
Because PlN3

ρ2
N3

and P�N3ρ
2
N3

are polynomials (respectively p2+(1−p)2p2+

· · ·+(1−p)2N2−2p2 and N2p
2(1−p)N2−1), we have that λreflected

N3
can be written

as a polynomial divided by (2− ρN3)ρ2
N3

. Hence, λreflected
N3

ρN3(2− ρN2N3)ρN2N3

is a polynomial times
(2−ρN2N3

)ρN2N3

(2−ρN3
)ρN3

. In turn, this fraction is 1−(1−p)2N2N3

1−(1−p)2N3

which is a polynomial by Lemma 5. Hence, λreflected
N3

ρN3
(2 − ρN2N3

)ρN2N3
is a

polynomial. By symmetrical arguments, λreflected
N2

ρN2
(2− ρN2N3

)ρN2N3
is also a

polynomial.
Recall that ρN2,ρN3

= ρN2N3 . We have that λreflected
N2,ρN3

is a polynomial divided

by (2−ρN2N3
)ρ2
N2N3

. Hence, it is immediate that λreflected
N2,ρN3

ρN2,ρN3
multiplied by

20

(2− ρN2N3)ρN2N3 is polynomial, merely by canceling the terms in the denomi-
nator. A symmetrical argument applies to λreflected

N3,ρN2
ρN3,ρN2

.

Hence, Υ is a polynomial. As in Lemma 4, for any given N2 and N3, we can
check that there are no roots by applying Sturm’s method to the polynomial
over the interval (0, 1]. Because there is a root at p = 1, it is sufficient to check
that the total root count over (0, 1] is always one. (Alternatively, we could first
divide the polynomial by x−1 and check that there is no root.) We proved this
result using a computer algebra system (see Appendix B). This concludes the
proof. �

Proposition 6. Consider a table with c independent and uniformly distributed
columns having cardinalities N1, N2, . . . , Nc (let 2 ≤ Ni ≤ Ni+1 ≤ 30 for i =
1, . . . , c − 1). We can sort the table by reflected Gray-code order according to
various column orders. The column order N1, N2, . . . , Nc minimizes the number
of column runs—up to a term no larger than c in absolute value.

Proof. The proof is similar to Proposition 5, see Appendix C. �

6. EXPERIMENTS

To complete the mathematical analysis, we ran experiments on realistic data
sets. We are motivated by the following questions:

• For columns with few columns, is recursive sorting nearly optimal? (§ 6.3)

• How likely is it that alternative column order are preferable to the increasing-
cardinality order? (§ 6.4)

• How significant can the effect of the column order be? Are reflected Gray-
code orders better than lexicographical orders? (§ 6.5)

• How does an Hilbert order compare to lexicographical orders? (§ 6.6)

• How large is the effect of skew and column dependency? (§ 6.8)

• Do our results extend to other column-compression techniques? (§ 6.9)

6.1. Software

We implemented the various sorting techniques using Java and the Unix
command sort. For all but lexicographic ordering, hexadecimal values were
prepended to each line in a preliminary pass over the data, before the com-
mand sort was called. (This approach is recommended by Richards [51].) Be-
side recursive orders, we also implemented sorting by Compact Hilbert Indexes
(henceforth Hilbert) [26]—also by prepending hexadecimal values. By default,
we order values within columns alphabetically.

21

Table 1: Characteristics of data sets used

rows distinct rows cols
∑

i ni size µ

Census-Income 199 523 178 867 4 102 609 2.96MB 2.63
Census1881 4 277 807 4 262 238 7 343 422 305MB 5.09
DBGEN 13 977 980 11 996 774 4 402 544 297MB 1.02
Netflix 100 480 507 100 480 507 4 500 146 2.61GB 2.00
KJV-4grams 877 020 839 363 412 308 4 33 553 21.6GB 2.19

6.2. Realistic data sets

We used five data sets (see Table 1) representative of tables found in applica-
tions: Census-Income [29], Census1881 [50], DBGEN [57], Netflix [43] and KJV-
4grams [39]. The Census-Income table has 4 columns: age, wage per hour, divi-
dends from stocks and a numerical value5 found in the 25th position of the orig-
inal data set. The respective cardinalities are 91, 1 240, 1 478 and 99 800. The
Census1881 came from a publicly available SPSS file 1881 sept2008 SPSS.rar [50]
that we converted to a flat file. In the process, we replaced the special values
“ditto” and “do.” by the repeated value, and we deleted all commas within
values. The column cardinalities are 183, 2 127, 2 795, 8 837, 24 278, 152 365,
152 882. For DBGEN, we selected dimensions of cardinality 7, 11, 2 526 and
400 000. The Netflix table has 4 dimensions: UserID, MovieID, Date and Rat-
ing, with cardinalities 480 189, 17 770, 2 182, and 5. Each of the four columns of
KJV-4grams contains roughly 8 thousand distinct stemmed words: 8 246, 8 387,
8 416, and 8 504.

Table 1 also gives the suboptimality factor µ from Proposition 2. For DB-
GEN, any recursive order minimizes the number of runs optimally—up to a
factor of 1%. For Netflix and KJV-4-grams, recursive ordering is 2-optimal.
Only for Census1881 is the bound on optimality significantly weaker: in this
instance, recursive ordering is 5-optimal.

6.3. Recursive sorting is “safe” for low dimensionality

Since our 7-dimensional data set yields a much looser bound than the 4-
dimensional data sets, we investigate the relationship between µ and the number
of dimensions. Rather than use our arbitrarily chosen low-dimensional projec-
tions, we randomly generated many projections (typically 1000) of each original
data set, computed µ for each projection, then showed the µ values for each
dimensionality (i.e., all µ values for 3-dimensional projections were averaged
and reported; likewise all µ values for 4-dimensional projects were averaged
and reported). One difficulty arose: computing µ for a projection required the
number of distinct rows, and we projected from data sets that are at least a
large fraction of our main-memory size. Gathering this data exactly appears
too expensive. Instead, we computed the projection sizes in a few passes over

5The associated metadata says this column should be a 10-valued migration code.

22

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30 35 40

µ

number of columns (c)

TWEED
Census1881

Census-Income
DBGEN

c-optimality

 1

 2

 3

 4

 5

 1 2 3 4 5

(a) Realistic data sets

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7 8 9 10

µ

number of columns (c)

p = 10-7

p = 10-6

p = 10-5

(b) Synthetic data sets

Figure 9: Approximate µ versus columns, when sampling projections of realistic
data sets and synthetic data sets (10-dimensional uniformly distributed table
with N1 = N2 = · · · = N10 = 10)

our full data sets, using a probabilistic counting technique due to Cai et al. [13]
that was shown by Aouiche and Lemire [6] to have a good performance. As an
extra step, we corrected the distinct-row estimates so that they never exceeded
the product of column cardinalities. To validate our estimates, we computed
exact µ values for two smaller data sets (TWEED [18, 59] with 52 dimensions
and 11k rows, and another with 13 dimensions and 581k rows) and observed
our average µ estimates changed by less than 2%. KJV-4grams and Netflix only
had 4 dimensions, and thus we used TWEED to get another high-dimensional
data set.

Figure 9a shows that, after about 3 dimensions, µ grew roughly linearly with
the number of dimensions: the µ formula’s min(n,N1,i)/(n+ c−1) terms would
typically approximate 1 for all but the first few dimensions. To illustrate this,
we computed the expected value of µ for projections of uniformly distributed
tables with various densities p (see Fig. 9b).

This does not mean that any particular recursive sorting algorithm will be
this far from optimal. Our µ is an upper bound on suboptimality, so it merely
means that we have not given evidence that recursive sorting is necessarily good
for higher-dimension data sets. For high-dimensional data sets, there could
still be a significant advantage in going beyond lexicographic sorting or other
recursive sorting approaches. However, for 2 or 3 dimensions, our µ values show
that lexicographic sorting cannot be improved much. Of course, such projections
may be nearly complete tables (cf. § 5.1).

6.4. The column-reordering heuristic is reliable

We showed in § 5 that reordering the columns in increasing cardinality min-
imized the expected number of runs. To assess the reliability of this heuristic,
consider a two-dimensional table model where the first column’s values are se-
lected uniformly at random from 1 to N1, and the second column’s values are
selected uniformly from 1 to N1 + 1: we want the second column to have just

23

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0.05 0.1 0.15 0.2 0.25 0.3

pe
rc

en
ta

ge
 o

f f
ai

lu
re

cardinality / total number of rows

Uniform
Zipfian

Figure 10: Percentage of failure of the increasing-cardinality column-reordering
heuristic

barely a higher cardinality than the first. Using this model, we generated 100 000
100-row tables for each column cardinality N1 from 5 to 30. Of course, we can
expect a few missing values when selecting 100 items (with replacement) from
N1. Some tables had more missing values in the second column, so we kept
only the randomly generated tables where the second column had the higher
actual cardinality. We then determined the percentage of tables where the
increasing-cardinality column-reordering heuristic failed to be at least as good
as the alternative column order (see Fig. 10). The expected relative difference
between the cardinalities ranges from ≈ 1/5 to ≈ 1/30. We see that the rate of
failure increases as the relative difference between the column cardinalities goes
to zero. Even so, the rate of failure is relatively low in this test (less than 3%)
despite the small relative difference in cardinality.

Although our theoretical results assume uniformity, we have observed that
ordering columns in ascending order also tends to improve results with skewed
data. To assess reliability, we repeated the same test for Zipfian-distributed
columns and found the rate of failure was larger. However, it still remained
moderate (less than 9%). Moreover, even with Zipfian distributions, the rate of
failure is close to zero when the relative difference between the column cardi-
nalities is large (0.05).

6.5. Column order matters, Gray codes do not

Results for realistic data sets are given in Table 2. For these data sets, there
is no noticeable benefit (within 1%) to Gray codes as opposed to lexicographic
orders. The only data set showing some benefit (≈ 1%) is KJV-4grams.

Relative to the shuffled case, ordering the columns in increasing cardinality
reduced the number of runs by a factor of two (Census and Census1881), three
(DBGEN and Netflix) or nine (KJV-4grams). Except for Netflix and KJV-
4grams, these gains drop to ≈ 50% when using the wrong column order (by

24

Table 2: RunCount after sorting various tables using different orderings. The
up and down arrows indicate whether the columns where ordered in increasing
or decreasing cardinality before sorting. Best results for each data set are in
bold.

table shuffled order lexico. Gray Hilbert

Census-Income 4.6×105 ↓ 3.2×105 3.2×105 3.4×105

↑ 1.9 × 105 1.9 × 105 3.4×105

Census1881 2.7×107 ↓ 1.8×107 1.8×107 2.0×107

↑ 1.3 × 107 1.3 × 107 2.0×107

DBGEN 4.5×107 ↓ 3.3×107 3.3×107 4.3×107

↑ 1.2 × 107 1.2 × 107 4.3×107

Netflix 3.8×108 ↓ 2.5×108 2.5×108 3.3×108

↑ 1.2 × 108 1.2 × 108 3.3×108

KJV-4grams 3.4×109 ↓ 3.9×108 3.8 × 108 8.2×108

↑ 3.9×108 3.8 × 108 8.2×108

decreasing cardinality). On Netflix, the difference between the two column
orders is a factor of two (2.5×108 versus 1.2×108).

The data set KJV-4grams appears oblivious to column reordering. We are
not surprised given that columns have similar cardinalities and distributions.

6.6. Compact Hilbert Indexes are not competitive

Hilbert is effective at improving the compression of database tables [15, 16]
using tuple difference coding techniques [44]. Moreover, for complete tables
where the cardinality of all columns is the same power of two, sorting by Hilbert
minimizes the number of runs (being a Gray code § 4). However, we are unaware
of any application of Hilbert to column-oriented indexes.

To test Hilbert, we generated a small random table (see Table 3) with moder-
ately low density (p = 0.01). The RunCount result is far worse than recursive
ordering, even when all column cardinalities are the same power of 2. In this
test, Hilbert is column-order oblivious. We have similar results over realistic
data sets (see Table 2). In some instances, Hilbert is nearly as bad as a random
shuffle of the table, and always inferior to a mere lexicographic sort. For KJV-
4grams, Hilbert is relatively effective—reducing the number of runs by a factor
of 4—but it is still half as effective as lexicographically sorting the data.

6.7. The order of values is irrelevant

For several recursive orders (lexicographic and Gray codes), we reordered the
attribute values by their frequency—putting the most frequent values first [36].
While the number of runs in sorted uniformly distributed tables is oblivious
to the order of attribute values, we may see some benefits with tables having

25

Table 3: Comparison of Compact Hilbert Indexes with other orderings for a
uniformly distributed table (p = 0.01, c = 5) and various column cardinalities.
The number of runs is given in thousands.

cardinalities shuffled lexico. reflected Gray modular Gray Hilbert
4,8,16,32,64 47.8 18.9 18.7 18.7 35.3
64,32,16,8,4 47.8 28.5 28.1 28.2 35.3

16,16,16,16,16 49.7 23.7 23.3 23.4 35.3

Figure 11: Number of runs for the Census-Income data set, including the ex-
pected number assuming that the table is uniformly distributed. The columns
are indexed from 1 to 4 in increasing cardinality. Hence, the label 1234 means
that the columns are in increasing cardinality.

 150000
 200000
 250000
 300000
 350000
 400000
 450000
 500000
 550000
 600000
 650000
 700000

12
34

12
43

13
24

13
42

14
23

14
32

21
34

21
43

23
14

23
41

24
13

24
31

31
24

31
42

32
14

32
41

34
12

34
21

41
23

41
32

42
13

42
31

43
12

43
21

N
um

be
r o

f r
un

s

actual
theory

skewed distributions. However, on the realistic data sets, the differences were
small—less than 1% on all metrics for recursive ordering.

For Hilbert, reordering the attribute values had small and inconsistent ef-
fects. For Census, the number of runs went up from 3.4×105 to 3.6×105 (+6%),
whereas for Netflix, it went down from 3.3×108 to 3.2×108 (-3%). The strongest
effect was observed with KJV-4grams where the number of runs went down from
8.2×108 to 7.6×108 (-7%). These differences are never sufficient to make Hilbert
competitive.

6.8. Skew and column dependencies reduce the number of runs

We can compute the expected number of runs for uniformly distributed ta-
bles sorted lexicographically by the proof of Proposition 5. For Census-Income,
we compared this value with the number of runs for all possible column orders
(see Fig. 11). Distribution skew and dependencies between columns make a
substantial difference: the number of runs would be twice as high were Census-
Income uniformly distributed with independent columns.

26

6.9. Effect of column order on alternative column-compression techniques

For some implementations of RLE, the compressed size of the columns is
proportional to the RunCount. Thus, the RunCount reduction translate di-
rectly into proportionally smaller tables and faster decompression. But what
about other compression techniques? To answer this question, we implemented
three column-compression schemes from the SAP NetWeaver platform [40]: Pre-
fix, Sparse and Indirect Coding. We found that for a given compression scheme,
the decompression time is roughly proportional to the compressed size. Thus,
we only report the compressed sizes (see Table 4). The benefits of ordering the
columns in increasing cardinality can be large (up to a factor of two). However,
there are also instances where ordering the columns in decreasing cardinality
is slightly better (by up to 5%). Overall, our recommendation to order the
columns in increasing cardinality remains valid.

CONCLUSION

Unsurprisingly, an effective heuristic to minimize the number of runs and
column-oriented index sizes is to sort lexicographically after reordering the
columns in increasing cardinality. This heuristic is often recommended [1, 39].
However, our results stress the importance of reordering the columns. Picking
the wrong column order can result in a moderate reduction of the number of
runs (50%) whereas a large reduction is possible (2–3×) when using the right
column order.

The benefit of recursive Gray-code orders over lexicographic orders is small.
Sorting the values within columns has also small effects (≤ 1%) for several
recursive orders.

FUTURE WORK

The first step toward the estimation of the size of column indexes under
sorting is to assume that columns are statistically independent. However, it
might possible to lift this assumption by modeling the dependency between
columns [49, 58].

From a practical point of view, we found that sorting tables lexicographically
is effective, especially when the columns are ordered in increasing cardinality.
Nevertheless, we might sometimes want to spend more time reordering rows,
even for modest gains. Thus, we are currently investigating more expensive row
reordering techniques [33, 53].

Acknowledgments

This work is supported by NSERC grants 155967 and 261437.

27

Table 4: Compressed sizes under different compression schemes (in MB). The
up and down arrows indicate whether the columns were ordered in increasing
or decreasing cardinality before sorting.

(a) Sparse Coding

table shuffled order lexico.

Census-Income 0.18
↓ 0.17
↑ 0.14

Census1881 11.2
↓ 8.3
↑ 8.8

DBGEN 14.6
↓ 12.9
↑ 10.3

(b) Indirect Coding

table shuffled order lexico.

Census-Income 0.26
↓ 0.20
↑ 0.15

Census1881 12.6
↓ 8.3
↑ 7.9

DBGEN 18.9
↓ 10.9
↑ 10.3

(c) Prefix Coding

table shuffled order lexico.

Census-Income 0.27
↓ 0.26
↑ 0.12

Census1881 12.6
↓ 10.1
↑ 10.3

DBGEN 13.9
↓ 13.1
↑ 10.1

References

[1] D. Abadi, S. Madden, M. Ferreira, Integrating compression and execution
in column-oriented database systems, in: Proceedings of the 2006 ACM
SIGMOD international conference on Management of data, ACM, New
York, NY, USA, 2006, pp. 671–682.

[2] J. Alber, R. Niedermeier, On multidimensional curves with Hilbert prop-
erty, Theory of Computing Systems 33 (4) (2000) 295–312.

28

[3] M. Anantha, B. Bose, B. AlBdaiwi, Mixed-radix Gray codes in Lee metric,
IEEE Transactions on Computers 56 (10) (2007) 1297–1307.

[4] V. N. Anh, A. Moffat, Inverted index compression using word-aligned bi-
nary codes, Information Retrieval 8 (1) (2005) 151–166.

[5] G. Antoshenkov, Byte-aligned bitmap compression, in: Proceedings of the
Conference on Data Compression, IEEE Computer Society, Washington,
DC, USA, 1995, p. 476.

[6] K. Aouiche, D. Lemire, A comparison of five probabilistic view-size estima-
tion techniques in OLAP, in: Proceedings of the ACM tenth international
workshop on Data warehousing and OLAP, ACM, New York, NY, USA,
2007, pp. 17–24.

[7] S. Barnard, Higher algebra, Barnard Press, 2008.

[8] M. Bassiouni, Data compression in scientific and statistical databases,
IEEE Transactions on Software Engineering 11 (10) (1985) 1047–1058.

[9] B. Bhattacharjee, L. Lim, T. Malkemus, G. Mihaila, K. Ross, S. Lau,
C. McArthur, Z. Toth, R. Sherkat, Efficient index compression in DB2
LUW, Proceedings of the VLDB Endowment 2 (2009) 1462–1473.

[10] N. Bruno, Teaching an old elephant new tricks, in: Conference on Innova-
tive Data Systems Research, 2009.

[11] S. Büttcher, C. L. A. Clarke, Index compression is good, especially for
random access, in: Proceedings of the sixteenth ACM conference on Con-
ference on information and knowledge management, 2007, pp. 761–770.

[12] J. Cai, R. Paige, Using multiset discrimination to solve language processing
problems without hashing, Theoretical Computer Science 145 (1-2) (1995)
189–228.

[13] M. Cai, J. Pan, Y.-K. Kwok, K. Hwang, Fast and accurate traffic matrix
measurement using adaptive cardinality counting, in: Proceedings of the
2005 ACM SIGCOMM workshop on Mining network data, 2005, pp. 205–
206.

[14] J.-C. Chen, C.-H. Tsai, Conditional edge-fault-tolerant hamiltonicity of
dual-cubes, Information Sciences 181 (3) (2011) 620 – 627.

[15] F. Dehne, T. Eavis, B. Liang, Compressing data cube in parallel OLAP
systems, Data Science Journal 6 (0) (2007) 184–197.

[16] T. Eavis, D. Cueva, A Hilbert space compression architecture for data
warehouse environments, Lecture Notes in Computer Science 4654 (2007)
1–12.

29

[17] M. Y. Eltabakh, W.-K. Hon, R. Shah, W. G. Aref, J. S. Vitter, The SBC-
tree: an index for run-length compressed sequences, in: Proceedings of the
11th international conference on Extending database technology: Advances
in database technology, 2008, pp. 523–534.

[18] J. O. Engene, Five decades of terrorism in Europe: The TWEED dataset,
Journal of Peace Research 44 (1) (2007) 109–121.

[19] C. Faloutsos, Multiattribute hashing using Gray codes, SIGMOD Record
15 (2) (1986) 227–238.

[20] J.-F. Fang, The bipancycle-connectivity of the hypercube, Information Sci-
ences 178 (24) (2008) 4679 – 4687.

[21] M. Flahive, Balancing cyclic R-ary Gray codes II, Electronic Journal of
Combinatorics 15 (R128) (2008) 1.

[22] M. Flahive, B. Bose, Balancing cyclic R-ary Gray codes, Electronic Journal
of Combinatorics 14 (R31) (2007) 1.

[23] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman, New York, 1979.

[24] S. W. Golomb, Run-length encodings, IEEE Transactions on Information
Theory 12 (1966) 399–401.

[25] S. Haddadi, A note on the NP-hardness of the consecutive block minimiza-
tion problem, International Transactions in Operational Research 9 (6)
(2002) 775–777.

[26] C. H. Hamilton, A. Rau-Chaplin, Compact Hilbert indices: Space-filling
curves for domains with unequal side lengths, Information Processing Let-
ters 105 (5) (2007) 155–163.

[27] H. Haverkort, F. van Walderveen, Locality and bounding-box quality of
two-dimensional space-filling curves, Computational Geometry: Theory
and Applications 43 (2010) 131–147.

[28] H. J. Haverkort, F. van Walderveen, Four-dimensional Hilbert curves for R-
trees, in: Proceedings of the Eleventh Workshop on Algorithm Engineering
and Experiments, 2009, pp. 63–73.

[29] S. Hettich, S. D. Bay, The UCI KDD archive, http://kdd.ics.uci.edu
(Last checked 01-04-2011) (2000).

[30] A. L. Holloway, D. J. DeWitt, Read-optimized databases, in depth, Pro-
ceedings of the VLDB Endowment 1 (1) (2008) 502–513.

[31] A. L. Holloway, V. Raman, G. Swart, D. J. DeWitt, How to barter bits
for chronons: Compression and bandwidth trade offs for database scans,
in: Proceedings of the 2007 ACM SIGMOD international conference on
Management of data, ACM, New York, NY, USA, 2007, pp. 389–400.

30

http://kdd.ics.uci.edu

[32] B. R. Iyer, D. Wilhite, Data compression support in databases, in: Pro-
ceedings of the 20th International Conference on Very Large Data Bases,
1994, pp. 695–704.

[33] D. Johnson, S. Krishnan, J. Chhugani, S. Kumar, S. Venkatasubramanian,
Compressing large boolean matrices using reordering techniques, in: Pro-
ceedings of the Thirtieth international conference on Very large data bases,
VLDB Endowment, 2004, pp. 13–23.

[34] D. S. Johnson, S. Krishnan, J. Chhugani, S. Kumar, S. Venkatasubrama-
nian, Compressing large boolean matrices using reordering techniques, in:
Proceedings of the Thirtieth international conference on Very large data
bases, VLDB Endowment, San Jose, CA, USA, 2004, pp. 13–23.

[35] I. Kamel, C. Faloutsos, Hilbert R-tree: An improved R-tree using fractals,
in: Proceedings of the 20th International Conference on Very Large Data
Bases, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1994,
pp. 500–509.

[36] O. Kaser, D. Lemire, Attribute value reordering for efficient hybrid OLAP,
Information Sciences 176 (16) (2006) 2304–2336.

[37] D. E. Knuth, The Art of Computer Programming, vol. 4, chap. fascicle 2,
Addison Wesley, Reading, MA, USA, 2005.

[38] H. Lebesgue, Leçons sur l’intégration et la recherche des fonctions primi-
tives: professées au Collège de France, Gauthier-Villars, 1904.

[39] D. Lemire, O. Kaser, K. Aouiche, Sorting improves word-aligned bitmap
indexes, Data & Knowledge Engineering 69 (1) (2010) 3–28.

[40] C. Lemke, K.-U. Sattler, F. Faerber, A. Zeier, Speeding up queries in col-
umn stores, in: Data Warehousing and Knowledge Discovery, vol. 6263 of
Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2010,
pp. 117–129.

[41] A. Moffat, L. Stuiver, Binary interpolative coding for effective index com-
pression, Information Retrieval 3 (1) (2000) 25–47.

[42] A. Moffat, J. Zobel, Self-indexing inverted files for fast text retrieval, ACM
Transactions on Information Systems 14 (4) (1996) 349–379.

[43] Netflix, Inc., Nexflix Prize, http://www.netflixprize.com (Last checked
01-04-2011) (2007).

[44] W. Ng, C. Ravishankar, Block-oriented compression techniques for large
statistical databases, IEEE Transactions on Knowledge and Data Engi-
neering 9 (2) (1997) 314–328.

[45] R. Niedermeier, K. Reinhardt, P. Sanders, Towards optimal locality in
mesh-indexings, Discrete Applied Mathematics 117 (1-3) (2002) 211–237.

31

http://www.netflixprize.com

[46] P. O’Neil, D. Quass, Improved query performance with variant indexes,
in: Proceedings of the 1997 ACM SIGMOD international conference on
Management of data, 1997, pp. 38–49.

[47] G. Peano, Sur une courbe, qui remplit toute une aire plane, Mathematische
Annalen 36 (1) (1890) 157–160.

[48] A. Pinar, M. T. Heath, Improving performance of sparse matrix-vector
multiplication, in: Proceedings of the 1999 ACM/IEEE conference on Su-
percomputing, ACM, New York, NY, USA, 1999, Article No. 30.

[49] V. Poosala, Y. E. Ioannidis, Selectivity estimation without the attribute
value independence assumption, in: Proceedings of the 23rd International
Conference on Very Large Data Bases, 1997, pp. 486–495.

[50] Programme de recherche en démographie historique, PRDH 1881, http://
www.prdh.umontreal.ca/census/en/main.aspx, last checked 01-04-2011
(2009).

[51] D. Richards, Data compression and Gray-code sorting, Information Pro-
cessing Letters 22 (4) (1986) 201–205.

[52] C. Savage, A survey of combinatorial Gray codes, SIAM Review 39 (1997)
605–629.

[53] M. Schaller, Reclustering of high energy physics data, in: Proceedings of
the 11th International Conference on Scientific and Statistical Database
Management, IEEE Computer Society, Washington, DC, USA, 1999, pp.
194–203.

[54] W. Schelter, et al., Maxima, a computer algebra system, http://maxima.
sourceforge.net/ (Last checked 01-04-2011) (1998).

[55] F. Scholer, H. Williams, J. Yiannis, J. Zobel, Compression of inverted in-
dexes for fast query evaluation, in: Proceedings of the 25th annual interna-
tional ACM SIGIR conference on Research and development in information
retrieval, ACM, New York, NY, USA, 2002, pp. 222–229.

[56] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Fer-
reira, E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran,
S. Zdonik, C-Store: a column-oriented DBMS, in: Proceedings of the 31st
international conference on Very large data bases, VLDB Endowment, San
Jose, CA, USA, 2005, pp. 553–564.

[57] Transaction Processing Performance Council, DBGEN 2.4.0, http://www.
tpc.org/tpch/ (Last checked 01-04-2011) (2006).

[58] B. D. Vo, K.-P. Vo, Compressing table data with column dependency, The-
oretical Computer Science 387 (3) (2007) 273–283.

32

http://www.prdh.umontreal.ca/census/en/main.aspx
http://www.prdh.umontreal.ca/census/en/main.aspx
http://maxima.sourceforge.net/
http://maxima.sourceforge.net/
http://www.tpc.org/tpch/
http://www.tpc.org/tpch/

[59] H. Webb, O. Kaser, D. Lemire, Pruning attribute values from data cubes
with diamond dicing, in: Proceedings of the 2008 international symposium
on Database engineering & applications, 2008, pp. 121–129.

[60] I. H. Witten, A. Moffat, T. C. Bell, Managing gigabytes (2nd ed.): com-
pressing and indexing documents and images, Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 1999.

[61] K. Wu, E. J. Otoo, A. Shoshani, Optimizing bitmap indices with efficient
compression, ACM Transactions on Database Systems 31 (1) (2006) 1–38.

[62] H. Yan, S. Ding, T. Suel, Inverted index compression and query processing
with optimized document ordering, in: Proceedings of the 18th interna-
tional conference on World wide web, 2009, pp. 401–410.

[63] J. Zhang, X. Long, T. Suel, Performance of compressed inverted list caching
in search engines, in: Proceeding of the 17th international conference on
World Wide Web, 2008, pp. 387–396.

[64] J. Zobel, A. Moffat, Inverted files for text search engines, ACM Computing
Surveys 38 (2) (2006) 6.

33

A. Table of Notation

Notation explanation defined used in
ri runs in column i p. 3 § 1

c number of columns p. 3 throughout

n number of rows p. 5 throughout

Ni cardinality of column i p. 5 throughout

Ni,j
∏j
k=iNk p. 5 throughout

µ
recursive sorting is µ-optimal
for the run minimization prob-
lem

p. 10 throughout

ρNi

probability that a block of
Ni tuples is nonempty

p. 14 § 5.2

ρNi,p′

same except individual tuples
present with probability p′

rather than default p
§ 5.2

P�N2

with lexicographic sorting,
probability that two nonempty
blocks in column 2 seamlessly
join

p. 17 § 5.2

P�N2,p′
same except individual tuples
present with probability p′

§ 5.2

PlN2

with reflected Gray sorting,
probability that two nonempty
blocks in column 2 seamlessly
join

p. 19 § 5.2

PlN2,p′
same except individual tuples
present with probability p′

§ 5.2

B. Maxima Computer Algebra System code

For completing some of the proofs, we used Maxima version 5.12.0 [54].
Scripts ran during about 49 hours on a Mac Pro with two double-core Intel
Xeon processors (2.66 GHz) and 2 GiB of RAM.

The proof of Lemma 4 uses the following code which ran for 185 minutes:

34

r(N2,p):=1-(1-p)**N2;

Pdd(N2,p):=N2*p**2*(1-r(N2,p))/((1-p)*r(N2,p)**2);

P:(1-Pdd(N3,p))*r(N3,p)*N2- (1-Pdd(N2,p))*r(N2,p)*N3

-Pdd(N2,r(N3,p))*r(N2*N3,p)+Pdd(N3,r(N2,p))*r(N2*N3,p);

P2:P*r(N2*N3,p);

for n2:2 unless n2>30 do

(display(n2),

for n3:n2+1 unless n3>100 do

(nr: nroots(factor(subst([N2=n2,N3=n3],P2)),0,1),

if(not(nr=0)) then display("ERROR",n2,n3,nr)));

The proof of Lemma 6 uses this code which ran for 46 hours:

r(N2,p):=1-(1-p)**N2;

Pdd(N2,p):=N2*p**2*(1-r(N2,p))/((1-p)*r(N2,p)**2);

Pud(N2,p):=p**2*(2-r(N2,p))/(r(N2,p)*(1-(1-p)**2));

Lambda(N2,p):=(Pud(N2,p)+(1-r(N2,p))*Pdd(N2,p))/(2-r(N2,p));

P:(1-Lambda(N3,p))*r(N3,p)*N2- (1-Lambda(N2,p))*r(N2,p)*N3

-Lambda(N2,r(N3,p))*r(N2*N3,p)+Lambda(N3,r(N2,p))*r(N2*N3,p);

P2:P*(2-r(N2*N3,p))*r(N2*N3,p);

for n2:2 unless n2>30 do

(display(n2),

for n3:n2+1 unless n3>100 do

(nr: nroots(factor(subst([N2=n2,N3=n3],P2)),0,1),

if(not(nr=1)) then display("ERROR",n2,n3,nr)));

C. Proof of Proposition 6

Proof. Define T reflected
N1,N2,ρN3

= N1N2ρN3 − Sreflected
N1,N2,ρN3

where Sreflected
N1,N2,ρN3

is

defined as Sreflected
N1,N2

after substituting ρN3 for p. Define λreflected
N2,ρN3

, T reflected
N1N2,N3,p

,

T reflected
N1,N3,ρN2

and T reflected
N1N3,N2,p

similarly. As in the proof of Proposition 5, it is suffi-

cient to prove that T reflected
N1,N2,ρN3

+T reflected
N1N2,N3,p

≤ T reflected
N1,N3,ρN2

+T reflected
N1N3,N2,p

whenever

N2 ≤ N3, irrespective of the value of N1 (allowing N1 > N3).

35

We have

T reflected
N1,N2,ρN3

+ T reflected
N1N2,N3,p = N1N2ρN3

− λreflected
N2,ρN3

ρN2,ρN3
N1

+N1N2N3p− λreflected
N3

ρN3
N1N2

= (1− λreflected
N3

)ρN3N1N2

−λreflected
N2,ρN3

ρN2,ρN3
N1

+N1N2N3p

≤ (1− λreflected
N2

)ρN2
N1N3

−λreflected
N3,ρN2

ρN3,ρN2
N1

+N1N2N3p+ λreflected
N2

(by Lemma 6)

= N1N3ρN2
− λreflected

N3,ρN2
ρN3,ρN2

N1

+N1N2N3p− λreflected
N2

ρN2
N1N3

= T reflected
N1,N3,ρN2

+ T reflected
N1N3,N2,p.

This proves the result. �

D. A Related NP-Completeness Result

In § 4.2 we showed it is NP-hard to order columns so as to minimize the
RunCount value after lexicographic sorting. We now show a related problem
is NP-complete.

Column-Ordering-for-Minimax Lexicographic Runcount (COMLR). Given a ta-
ble T , an ordering on the values found in each column, and an integer K, is it
possible to reorder the columns of the table, such that when the reordered table
is lexicographically sorted, no column has more than K runs?

Proposition 7. COMLR is NP-complete.

Proof. Membership in NP is obvious. We show COMLR is NP-hard by reduc-
tion from 3SAT [23, LO2]. Suppose our 3SAT instance has variables v1 to v|V |
and clauses C1 to Cm. We assume that no clause contains both a variable and its
negation because such a clause can be removed without affecting satisfiability.

For every variable vi, the COMLR instance has three values that can appear
in tables: wi, w̄i and 0wi

. They are ordered: wi < w̄i < 0wi
. Moreover, for

a ∈ {wi, w̄i, 0wi
}, b ∈ {wj , w̄j , 0wj

} and i 6= j, we have a < b if and only if i < j.
Two other values are used in the table, +∞ and −∞ whose orderings with

respect to the other values are as expected.
We construct a table T , with 3|V | + 2 rows, and with a column for each

possible literal and a column for each clause. Hence T has 2|V | + m columns.
We describe the columns from left to right, beginning with the columns for v̄1

and v1. See Fig. 12.

36

Consider the literal column associated with v̄1. It begins with a run of length
3 × 1 − 2 with the −∞ value. It then contains w̄1, w̄1, 0w1 . The remainder of
the column is composed of +∞. The next column is for v1. It begins and ends
similarly, but in the middle it has w1, 0w1

, w1. The pairs of columns for the
remaining variables then follow. The column for v̄i begins with a run containing
3i − 2 copies of the −∞ value, then has w̄i, w̄i0wi , whereas the column for vi
has wi, 0wi , wi between the run of −∞ and the run of +∞. Thus, the left part
of the table has blocks of size 3 × 2 arranged diagonally . Above the diagonal,
we have −∞; below the diagonal, we have +∞. (Except that there is a row of
−∞ above everything and a row of +∞ below everything.)

To complete the construction, we have one column per clause. Consider a
clause {li, lj , lk} where li = vi or li = v̄i and similarly for lj and lk. Each
column begins with −∞ and ends with +∞. Otherwise, the column copies the
column for li within the zone of vi, where the zone of variable vi consists of
rows 3i − 2, 3i − 1, 3i in the table. The construction is such that no matter
how columns are reordered, a lexicographic sort can rearrange rows only within
their zones. Similarly, the column copies the columns for lj and lk within the
zones of vj and vk, respectively. Otherwise, the part of the column that is in the
zone of wl (l 6∈ {i, j, k}), contains 0wl

. See Fig. 12 for the table constructed for
{{v1, v̄2, v3}, {v̄1, v̄2, v3}, {v̄1, v̄3, v4}, {v1, v3, v4}}. Finally, we set the maximum-
runs-per-column bound K = |V |+ 7.

The construction creates literal columns that cannot have many runs no
matter how we reorder columns and lexicographically sort the rows. Conse-
quently these columns always meet the |V | + 7 bound. For clause columns:
after any column permutation and lexicographic sorting, a clause column can
have at most |V |+ 8 runs:

• 2 for the −∞ and the +∞,

• (|V | − 3) for the variables that are not in the clause,

• and at most 3 for each of the 3 variables that are in the clause.

Table T can have its columns reordered to have at most |V | + 7 runs per
column (after lexicographic sorting), if and only if the given instance of 3SAT
is satisfiable.

Suppose we have a satisfying truth assignment. If vi is true, permute the
columns for v̄i and vi. (Otherwise, leave them alone.) After permuting these
columns, lexicographic sorting would swap the bottom two rows in the zone for
vi. Any clause containing vi would find that this swap merges two runs of wi in
its column, and thus we would meet the |V |+ 7 bound for that clause’s column.
Likewise, if vi is false, leave the two columns in their original relationship. The
table as constructed was lexicographically sorted, and any clause containing v̄i
would continue to have a run of w̄i’s and meet the run bound. Since we have a
satisfying truth assignment, every clause column will contain at least one such
run.

Conversely, suppose we have permuted table columns such that the lexico-
graphically sorted table has no column with more than |V | + 7 runs. Because

37

v̄1 v1 v̄2 v2 v̄3 v3 v̄4 v4 c1 c2 c3 c4

−∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
w̄1 w1 −∞ −∞ −∞ −∞ −∞ −∞ w1 w̄1 w̄1 w1

w̄1 0w1
−∞ −∞ −∞ −∞ −∞ −∞ 0w1

w̄1 w̄1 0w1

0w1
w1 −∞ −∞ −∞ −∞ −∞ −∞ w1 0w1

0w1
w1

+∞ +∞ w̄2 w2 −∞ −∞ −∞ −∞ w̄2 w̄2 0w2 0w2

+∞ +∞ w̄2 0w2 −∞ −∞ −∞ −∞ w̄2 w̄2 0w2 0w2

+∞ +∞ 0w2
w2 −∞ −∞ −∞ −∞ 0w2

0w2
0w2

0w2

+∞ +∞ +∞ +∞ w̄3 w3 −∞ −∞ w3 w3 w̄3 w3

+∞ +∞ +∞ +∞ w̄3 0w3
−∞ −∞ 0w3

0w3
w̄3 0w3

+∞ +∞ +∞ +∞ 0w3 w3 −∞ −∞ w3 w3 0w3 w3

+∞ +∞ +∞ +∞ +∞ +∞ w̄4 w4 0w4 0w4 w4 w4

+∞ +∞ +∞ +∞ +∞ +∞ w̄4 0w4
0w4

0w4
0w4

0w4

+∞ +∞ +∞ +∞ +∞ +∞ 0w4
w4 0w4

0w4
w4 w4

+∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞

Figure 12: Example construction for {c1, c2, c3, c4}, where c1 = {v1, v̄2, v3},
c2 = {v̄1, v̄2, v3}, c3 = {v̄1, v̄3, v4}, and c4 = {v1, v3, v4}.

lexicographic sorting is restricted to rearranging rows only within their zones, a
clause’s column must contain a length-two run of wi or w̄i, for some 1 ≤ i ≤ |V |.
The construction guarantees that if any clause column contains a length-two run
of wi, then no column contains a length-two run of w̄i. Similarly, a length-two
run of w̄i precludes a length-two run of wi. Moreover, by construction we see
that a column containing the length-two run of wi must contain vi. Hence, we
set vi to true. Likewise, for any run of w̄i we set vi to false. Clearly, this truth
setting satisfies the original 3SAT instance. �

38

	1 Introduction
	2 Modeling RLE compression by the number of column runs
	3 Minimizing the number of runs by row reordering is NP-hard
	4 Lexicographic and Gray-code sorting
	4.1 Significance of column order
	4.2 Determining the optimal column order is NP-hard

	5 Increasing-cardinality-order minimizes runs
	5.1 Complete tables
	5.2 Uniformly distributed case
	5.2.1 Best column order for lexicographic sorting
	5.2.2 Best column order for reflected Gray-code sorting

	6 Experiments
	6.1 Software
	6.2 Realistic data sets
	6.3 Recursive sorting is ``safe'' for low dimensionality
	6.4 The column-reordering heuristic is reliable
	6.5 Column order matters, Gray codes do not
	6.6 Compact Hilbert Indexes are not competitive
	6.7 The order of values is irrelevant
	6.8 Skew and column dependencies reduce the number of runs
	6.9 Effect of column order on alternative column-compression techniques

	A Table of Notation
	B Maxima Computer Algebra System code
	C Proof of Proposition ??
	D A Related NP-Completeness Result

