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Abstract

Bitmap indexes must be compressed to reduce input/output costs and minimize
CPU usage. To accelerate logical operations (AND, OR, XOR) over bitmaps,
we use techniques based on run-length encoding (RLE), such as Word-Aligned
Hybrid (WAH) compression. These techniques are sensitive to the order of the
rows: a simple lexicographical sort can divide the index size by 9 and make
indexes several times faster. We investigate row-reordering heuristics. Simply
permuting the columns of the table can increase the sorting efficiency by 40%.
Secondary contributions include efficient algorithms to construct and aggregate
bitmaps. The effect of word length is also reviewed by constructing 16-bit,
32-bit and 64-bit indexes. Using 64-bit CPUs, we find that 64-bit indexes are
slightly faster than 32-bit indexes despite being nearly twice as large.

Keywords: Multidimensional Databases, Indexing, Compression, Gray codes

1. Introduction

Bitmap indexes are among the most commonly used indexes in data ware-
houses [1, 2]. Without compression, bitmap indexes can be impractically large
and slow. Word-Aligned Hybrid (WAH) [3] is a competitive compression tech-
nique: compared to LZ77 [4] and Byte-Aligned Bitmap Compression (BBC) [5],
WAH indexes can be ten times faster [6].

Run-length encoding (RLE) and similar encoding schemes (BBC and WAH)
make it possible to compute logical operations between bitmaps in time propor-
tional to the compressed size of the bitmaps. However, their efficiency depends
on the order of the rows. While we show that computing the best order is
NP-hard, simple heuristics such as lexicographical sort are effective.

Table 1 compares the current paper to related work. Pinar et al. [9], Sharma
and Goyal [7], and Canahuate et al. [10] used row sorting to improve RLE and
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Table 1: Comparison between the current paper and related work

reference largest index reordering heuristics metrics
(uncompressed)

Sharma & Goyal [7] 6× 107 bits Gray-code index size

Apaydin et al. [8] — na — Lexicographical,
Gray-code

runs

Pinar et al. [9],
Canahuate et al[10]

2× 109 bits Gray-code, näıve
2-switch, bitmaps
sorted by set bits or
compressibility

index size,
query speed

current paper 5× 1013 bits Lexicographical,
Gray-code, Gray-
Frequency, Frequent-
Component, partial
(block-wise) sort,
column and bitmap
reorderings

index size,
construction
time, query
speed

WAH compression. However, their largest bitmap index could fit uncompressed
in RAM on a PC. Our data sets are 1 million times larger.

Our main contribution is an evaluation of heuristics for the row ordering
problem over large data sets. Except for the näıve 2-switch heuristic, we re-
view all previously known heuristics, and we consider several novel heuristics
including lexicographical ordering, Gray-Frequency, partial sorting, and column
reorderings. Because we consider large data sets, we can meaningfully address
the index construction time. Secondary contributions include

• guidelines about when “unary” bitmap encoding is preferred (§ 8);

• an improvement over the näıve bitmap construction algorithm—it is now
practical to construct bitmap indexes over tables with hundreds of millions
of rows and millions of attribute values (see Algorithm 1);

• an algorithm to compute important Boolean operations over many bitmaps
in timeO((

∑L
i=1 |Bi|) logL) where

∑L
i=1 |Bi| is the total size of the bitmaps

(see Algorithm 3);

• the observation that 64-bit indexes can be slightly faster than 32-bit in-
dexes on a 64-bit CPU, despite file sizes nearly twice as large (see § 7.12).

The last two contributions are extensions of the conference version of this pa-
per [11].

The remainder of this paper is organized as follows. We define bitmap in-
dexes in § 2, where we also explain how to map attribute values to bitmaps using
encodings such as k-of-N . We present compression techniques in § 3. In § 4, we
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consider the complexity of the row-reordering problem. Its NP-hardness moti-
vates use of fast heuristics, and in § 5, we review sorting-based heuristics. In § 6,
we analyze k-of-N encodings further to determine the best possible encoding.
Finally, § 7 reports on several experiments.

2. Bitmap indexes

We find bitmap indexes in several database systems, apparently beginning
with the MODEL 204 engine, commercialized for the IBM 370 in 1972 [12].
Whereas it is commonly reported [13] that bitmap indexes are suited to small
dimensions such as gender or marital status, they also work over large dimen-
sions [3, 14]. And as the number of dimensions increases, bitmap indexes be-
come competitive against specialized multidimensional index structures such as
R-trees [15].

The simplest and most common method of bitmap indexing associates a
bitmap with every attribute value v of every attribute a; the bitmap represents
the predicate a = v. Hence, the list cat,dog,cat,cat,bird,bird becomes the
three bitmaps 1,0,1,1,0,0, 0,1,0,0,0,0, and 0,0,0,0,1,1. For a table with n rows
(facts) and c columns (attributes/dimensions), each bitmap has length n; ini-
tially, all bitmap values are set to 0. Then, for row j, we set the jth compo-
nent of c bitmaps to 1. If the ith attribute has ni possible values, we have
L =

∑c
i=1 ni bitmaps.

We expect the number of bitmaps in an index to be smaller than the number
of rows. They are equal if we index a row identifier using a unary bitmap in-
dex. However, we typically find frequent attribute values [16]. For instance,
in a Zipfian collection of n items with N distinct values, the item of rank

k ∈ {1, . . . , N} occurs with frequency n/ks∑N
j=1 1/js

. The least frequent item has

frequency n/Ns∑N
j=1 1/js

and we have that
∑N
j=1 1/js ≥ 1. Setting n/Ns∑N

j=1 1/js
≥ 1

and assuming N large, we have Ns ≤ n, so that N ≤ s
√
n. Hence, for highly

skewed distributions (s ≥ 2), the number of distinct attribute values N is much
smaller than the number of rows n.

Bitmap indexes are fast, because we find rows having a given value v for
attribute a by reading only the bitmap corresponding to value v (omitting the
other bitmaps for attribute a), and there is only one bit (or less, with compres-
sion) to process for each row. More complex queries are achieved with logical
operations (AND, OR, XOR, NOT) over bitmaps and current microprocessors
can do 32 or 64 bitwise operations in a single machine instruction.

Bitmap indexes can be highly compressible: for row j, exactly one bitmap
per column will have its jth entry set to 1. Although the entire index has nL bits,
there are only nc 1’s; for many tables, L� c and thus the average table is very
sparse. Long (hence compressible) runs of 0’s are expected.

Another approach to achieving small indexes is to reduce the number of
bitmaps for large dimensions. Given L bitmaps, there are L(L − 1)/2 pairs of
bitmaps. So, instead of mapping an attribute value to a single bitmap, we map

3



Table 2: Example of 1-of-N and 2-of-N encoding

Montreal 100000000000000 110000
Paris 010000000000000 101000
Toronto 001000000000000 100100
New York 000100000000000 100010
Berlin 000010000000000 100001

them to pairs of bitmaps (see Table 2). We refer to this technique as 2-of-N
encoding [17]; with it, we can use far fewer bitmaps for large dimensions. For
instance, with only 2 000 bitmaps, we can represent an attribute with 2 million
distinct values. Yet the average bitmap density is much higher with 2-of-N
encoding, and thus compression may be less effective. More generally, k-of-N
encoding allows L bitmaps to represent

(
L
k

)
distinct values; conversely, using

L = dkn1/ki e bitmaps is sufficient to represent ni distinct values. However,
searching for a specified value v no longer involves scanning a single bitmap.
Instead, the corresponding k bitmaps must be combined with a bitwise AND.
There is a tradeoff between index size and the index speed.

For small dimensions, using k-of-N encoding may fail to reduce the number
of bitmaps, but still reduce the performance. For example, we have that N >(
N
2

)
>
(
N
3

)
>
(
N
4

)
for N ≤ 4, so that 1-of-N is preferable when N ≤ 4. We

choose to limit 3-of-N encoding for when N ≥ 6 and 4-of-N for when N ≥ 8.
Hence, we apply the following heuristic. Any column with less than 5 distinct
values is limited to 1-of-N encoding (simple or unary bitmap). Any column
with less than 21 distinct values, is limited to k ∈ {1, 2}, and any column with
less than 85 distinct values is limited to k ∈ {1, 2, 3}.

Multi-component encoding [4] works similarly to k-of-N encoding in reduc-
ing the number of bitmaps: we factor the number of attribute values n—or a
number slightly exceeding it— as n = n1n2 . . . nκ, with ni > 1 for all i. Any
number i ∈ {0, 1, . . . , n − 1} can be written uniquely in a mixed-radix form
as i = r1 + q1r2 + q1q2r3 + · · · + rkq1q2 . . . qκ−1 where ri ∈ {0, 1, . . . , qi − 1}.
We use a particular encoding scheme (typically 1-of-N) for each of the κ val-
ues r1, r2, . . . , rκ representing the ith value. Hence, using

∑κ
i=1 qi bitmaps we

can code n different values. Compared to k-of-N encoding, multi-component
encoding may generate more bitmaps.

Lemma 1. Given the same number of attribute values n, k-of-N encoding never
uses more bitmaps than multi-component indexing.

Proof. Consider a q1, q2, . . . , qκ-component index. It supports up to n =∏κ
i=1 qi distinct attribute values using

∑κ
i=1 qi bitmaps. For n =

∏κ
i=1 qi fixed,

we have that
∑κ
i=1 qi is minimized when qi = κ

√
n for all i, hence

∑κ
i=1 qi ≥

dκ κ
√
ne. Meanwhile,

(
N
κ

)
≥ (N/κ)κ; hence, by picking N = dκ κ

√
ne, we have(

N
κ

)
≥ n. Thus, with at most

∑κ
i=1 qi bitmaps we can represent at least n

distinct values using k-of-N encoding (k = κ, N = dκ κ
√
ne), which shows the

result.
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To further reduce the size of bitmap indexes, we can bin the attribute val-
ues [18–21]. For range queries, Sinha and Winslett use hierarchical binning [22].

3. Compression

RLE compresses long runs of identical values: it replaces any repetition by
the number of repetitions followed by the value being repeated. For example,
the sequence 11110000 becomes 4140. The counter values (e.g., 4) can be stored
using variable-length counters such as gamma [23] or delta codes. With these
codes, any number x can be written using O(log x) bits. Alternatively, we
can used fixed-length counters such as 32-bit integers. It is common to omit
the counter for single values, and repeat the value twice whenever a counter is
upcoming: e.g., 1011110000 becomes 10114004.

Current microprocessors perform operations over words of 32 or 64 bits and
not individual bits. Hence, the CPU cost of RLE might be large [24]. By trad-
ing some compression for more speed, Antoshenkov [5] defined a RLE variant
working over bytes instead of bits (BBC). Trading even more compression for
even more speed, Wu et al. [3] proposed WAH. Their scheme is made of two
different types of words1. The first bit of every word is true (1) for a running
sequence of 31-bit clean words (0x00 or 1x11), and false (0) for a verbatim (or
dirty) 31-bit word. Running sequences are stored using 1 bit to distinguish be-
tween the type of word (0 for 0x00 and 1 for 1x11) and 30 bits to represent the
number of consecutive clean words. Hence, a bitmap of length 62 containing
a single 1-bit at position 32 would be coded as the words 100x01 and 010x00.
Because dirty words are stored in units of 31 bits using 32 bits, WAH compres-
sion can expand the data by 3%. We studied a WAH variant that we called
Enhanced Word-Aligned Hybrid (EWAH): in a technical report, Wu et al. [25]
called the same scheme Word-Aligned Bitmap Code (WBC). Contrary to WAH
compression, EWAH may never (within 0.1%) generate a compressed bitmap
larger than the uncompressed bitmap. It also uses only two types of words (see
Fig. 1), where the first type is a 32-bit verbatim word. The second type of word
is a marker word: the first bit indicates which clean word will follow, half the
bits (16 bits) are used to store the number of clean words, and the rest of the
bits (15 bits) are used to store the number of dirty words following the clean
words. EWAH bitmaps begin with a marker word.

3.1. Comparing WAH and EWAH

Because EWAH uses only 16 bits to store the number of clean words, it
may be less efficient than WAH when there are many consecutive sequences of
216 identical clean words. The seriousness of this problem is limited because
tables are indexed in blocks of rows which fit in RAM: the length of runs does
not grow without bounds even if the table does. In § 7.3, we show that this

1For simplicity, we limit our exposition to 32 bit words.
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00000000000000000000000000000001
10000000011100000110000111000011

10000000011100000110000111000011

00001010100010000000000000000001 
00111111111100000000000001110001

00111111111100000000000001110001

a) an example bitmap being compressed   (5456 bits)

b) dividing the bitmap into 32-bit groups

c) EWAH encoding

0000000000000....00000000000000000

10000000011100000110000111000011

00111111111100000000000001110001
0000000000000....00000000000000000

group 1: 32 bits
group 2-175: 174*32 bits
group 176: 32 bits

32 bits
5392 bits
32 bits

marker-word

marker-word
dirty word

dirty word

type of the clean words: 1 bit
number of clean words: 16 bits

number of dirty words following clean words: 15 bits

Figure 1: Enhanced Word-Aligned Hybrid (EWAH)

overhead on compressing clean words is at most 14% on our sorted data sets—
and this percentage is much lower (3%) when considering only unsorted tables.
Furthermore, about half of the compressed bitmaps are made of dirty words, on
which EWAH is 3% more efficient than WAH.

We can alleviate this compression overhead over clean words in several ways.
On the one hand, we can allocate more than half of the bits to encode the runs
of clean words [25]. On the other hand, when a marker word indicates a run
of 216 clean words, we could use the convention that the next word indicates
the number of remaining clean words. Finally, this compression penalty is less
relevant when using 64-bit words instead of 32-bit words.

When there are long runs of dirty words in some of the bitmaps, EWAH
might be preferable—it will access each dirty word at most once, whereas a WAH
decoder checks the first bit of each dirty word to ascertain it is a dirty word.
An EWAH decoder can skip a sequence of dirty words whereas a WAH decoder
must access them all. For example, if we compute a logical AND between a
bitmap containing only dirty words, and another containing very few non-zero
words, the running time of the operation with EWAH compression will only
depend on the small compressed size of the second bitmap.

When there are few dirty words in all bitmaps, WAH might be preferable.
Even considering EWAH and WAH indexes of similar sizes, each EWAH marker
word needs to be accessed three times to determine the running bits and two
running lengths, whereas no word needs to be accessed more than twice with
WAH.

3.2. Constructing a bitmap index

Given L bitmaps and a table having n rows and c columns, we can näıvely
construct a bitmap index in time O(nL) by appending a word to each com-
pressed bitmap every 32 or 64 rows. We found this approach impractically slow
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when L was large—typically, with k = 1. Instead, we construct bitmap indexes
in time proportional to the size of the index (see Algorithm 1): within each
block of w rows (e.g., w = 32), we store the values of the bitmaps in a set—
omitting any unsolicited bitmap, whose values are all false (0x00). We use the
fact we can add several clean words of the same type to a compressed bitmap
in constant time.

Our implementation is able to generate the index efficiently on disk, even
with extremely large tables and millions of (possibly small) compressed bitmaps,
using horizontal partitioning: we divide the table’s rows into large blocks, such
that each block’s compressed index fits in a fixed memory budget (256 MiB).
Each block of bitmaps is written sequentially [26] and preceded by an array of
4-byte integers containing the location of each bitmap within the block.

Algorithm 1 Constructing bitmaps. For simplicity, we assume the number of
rows is a multiple of the word size.

Construct: B1, . . . , BL, L compressed bitmaps
length(Bi) is current (uncompressed) length (in bits) of bitmap Bi

w is word length in bits, a power of 2 (e.g., w = 32)
ωi ← 0 for 1 ≤ i ≤ L.
c← 1 {row counter}
N ← ∅ {N records the dirtied bitmaps}
for each table row do

for each attribute in the row do
for each bitmap i corresponding to the attribute value do

set to true the (c mod w)th bit of word ωi

N ← N ∪ {i}
if c is a multiple of w then

for i in N do
add c/w − length(Bi)− 1 clean words (0x00) to Bi

add the word ωi to bitmap Bi

ωi ← 0
N ← ∅

c← c+ 1
for i in {1,2,. . . ,L} do

add c/w − |Bi| − 1 clean words (0x00) to Bi

3.3. Faster operations over compressed bitmaps

Beside compression, there is another reason to use RLE: it makes operations
faster [3]. Given (potentially many) compressed bitmaps B1, . . . , BL of sizes
|Bi|, Algorithm 2 computes ∧Li=1Bi and ∨Li=1Bi in time2 O(L

∑
i |Bi|). For

BBC, WAH, EWAH and all similar RLE variants, similar algorithms exists: we
only present the results for traditional RLE to simplify the exposition.

2Unless otherwise stated, we use RLE compression with w-bit counters. In the complexity
analysis, we do not bound the number of rows n.
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Indeed, within a given pass through the main loop of Algorithm 2, we need to
compute the minimum and the maximum between L w-bit counter values which
requires O(L) time. Hence, the running time is determined by the number of
iterations, which is bounded by the sum of the compressed sizes of the bitmaps
(
∑
i |Bi|).
For RLE with variable-length counters, the runs are encoded using log n bits

and so each pass through the main loop of Algorithm 2 will be in O(L log n),
and a weaker result is true: the computation is in time O(L

∑
i |Bi| log n). We

should avoid concluding that the complexity is worse due to the log n factor:
variable-length RLE can generate smaller bitmaps than fixed-length RLE.

Algorithm 2 Generic O(L
∑
i |Bi|) algorithm to compute any bitwise opera-

tions between L bitmaps. We assume the L-ary bitwise operation, γ, itself is in
O(L).

INPUT: L bitmaps B1, . . . BL

Ii ← iterator over the runs of identical bits of Bi

Γ← representing the aggregate of B1, . . . BL (initially empty)
while some iterator has not reached the end do

let a′ be the maximum of all starting values for the runs of I1, . . . , IL
let a be the minimum of all ending values for the runs of I1, . . . , IL
append run [a′, a] to Γ with value determined by γ(I1, . . . , IL)
increment all iterators whose current run ends at a.

A stronger result is possible if the bitwise operation is updatable in O(logL)
time. That is, given the result of an updatable L-ary operation γ(b1, b2, . . . , bL),
we can compute the updated value when a single bit is modified (b′i),

γ(b1, b2, . . . , bi−1, b
′
i, bi+1, . . . , bL),

in O(logL) time. All symmetric Boolean functions are so updatable: we merely
maintain a count of the number of ones, which (for a symmetric function) de-
termines its value. Symmetric functions include AND, OR, NAND, NOR, XOR
and so forth. For example, given the number of 1-bits in a set of L bits, we
can update their logical AND or logical OR aggregation ( ∧Li=1bi, ∨Li=1bi) in
constant time given that one of the bits changes its value. Fast updates also
exist for functions that are symmetric except that specified inputs are inverted
(e.g., Horn clauses).

From Algorithm 3, we have the following lemma. (The result is presented for
fixed-length counters; when using variable-length counters, multiply the com-
plexity by log n.)

Lemma 2. Given L RLE-compressed bitmaps of sizes |B1|, |B2|, . . . , |BL| and
any bitwise logical operation computable in O(L) time, the aggregation of the

bitmaps is in time O(
∑L
i=1 |Bi|L). If the bitwise operation is updatable in

O(logL) time, the aggregation is in time O(
∑L
i=1 |Bi| logL).
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Algorithm 3 Generic O(
∑
i |Bi| logL) algorithm to compute any bitwise op-

erations between L bitmaps updatable in O(logL) time.

INPUT: L bitmaps B1, . . . BL

Ii ← iterator over the runs of identical bits of Bi

Γ← representing the aggregate of B1, . . . BL (initially empty)
γ be the bit value determined by γ(Ii, . . . , IL)
H ′ is an L-element max-heap storing starting values of the runs (one per bitmap)
H is an L-element min-heap storing ending values of the runs and an indicator of
which bitmap
a table T mapping each bitmap to its entry in H ′

while some iterator has not reached the end do
let a′ be the maximum of all starting values for the runs of I1, . . . , IL, determined
from H ′

let a be the minimum of all ending values for the runs of I1, . . . , IL, determined
from H
append run [a′, a] to Γ with value γ
for iterator Ii with a run ending at a (selected from H) do

increment Ii while updating γ in O(logL) time
pop a value from H, insert new ending run value to H
from hash table, find old starting value in H ′, and increase it to the new starting
value

HT

xor(1,1,1,...,0)=1γ=

Γ

B

Ha

B

3

BL

I

I

2I

IL

1

3

1

2

B

B

B

B

L

1

2

3

a a
(a, B )

2

B

a

a

Figure 2: Algorithm 3 in action.

Corollary 1. This result is also true for word-aligned (BBC, WAH or EWAH)
compression.

See Fig. 2, where we show the XOR of L bitmaps. This situation depicted
has just had I2 incremented, and γ is about to be updated to reflect the change
of B2 from ones to zeros. The value of a will then be popped from H, whose
minimum value will then be the end of the I1 run. Table T will then allow us
to find and increase the key of B2’s entry in H ′, where it will become a+ 1 and
likely be promoted toward the top of H ′.
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In the rest of this section, we assume an RLE encoding such that the merger
of two running lengths reduces the total size (0 repeated x times and 0 repeated
y times, becomes 0 repeated x+ y times). These encodings include BBC, WAH
and EWAH. We also consider only fixed-length counters; for variable-length
counters, the running time complexity should have the bitmap index size mul-
tiplied by log n.

From Algorithm 3, we have that | ∧i∈S Bi| ≤ |
∑
i∈S Bi|, | ∨i∈S Bi| ≤

|
∑
i∈S Bi|, and so on for other binary bitwise operation such as ⊕. This bound

is practically optimal: e.g., the logical AND of the bitmaps 10. . . 10 (n runs)
and 11. . . 11 (1 run) is 10. . . 10 (n runs).

Hence, for example, when computing B1 ∧ B2 ∧ B3 ∧ + · · · ∧ BL we may
start with the computation of B1 ∧ B2 = B1,2 in O(|B1| + |B2|) time. The
bitmap B1,2 is of size at most |B1|+ |B2|, hence B1,2 ∧B3 can be done in time

O(|B1|+|B2|+|B3|). Hence, the total running time is in O(
∑L
i=1(L−i+1)|Bi|).

Hence, there are at least three different generic algorithms to aggregate a
set of L bitmaps for these most common bitwise operations:

• We use Algorithm 3, which runs in time O((
∑L
i=1 |Bi|) logL). It generates

a single output bitmap, but it uses two L-element heaps. It works for a
wide range of queries, not only simple queries such as ∨Li=1Bi.

• We aggregate two bitmaps at a time starting with B1 and B2, then ag-
gregating the result with B3, and so on. This requires time O(

∑L
i=1(L−

i + 1)|Bi|). While only a single temporary compressed bitmap is held in
memory, L − 1 temporary bitmaps are created. To minimize processing
time, the input bitmaps can be sorted in increasing size.

• We can store the bitmaps in a priority queue [27]. We repeatedly pop
the two smallest bitmaps, and insert the aggregate of the two bitmaps.
This approach runs in time O((

∑L
i=1 |Bi|) logL), and it generates L −

1 intermediate bitmaps.

• Another approach is to use in-place computation [27]: (1) an uncom-
pressed bitmap is created in time O(n) (2) we aggregate the uncompressed
bitmap with the each one of the compressed bitmaps (3) the row IDs are
extracted from the uncompressed bitmap in time O(n). For logical OR
(resp. AND) aggregates, the uncompressed bitmap is initialized with ze-
roes (resp. ones). The total cost is in O(Ln): L passes over the uncom-
pressed bitmap will be required. However, when processing each com-
pressed bitmap, we can skip over portions of the uncompressed bitmaps
e.g., when we compute a logical OR, we can omit runs of zeroes. If the
table has been horizontally partitioned, it will be possible to place the
uncompressed bitmap in main memory.

We can minimize the complexity by choosing the algorithm after loading the
bitmaps. For example, to compute logical OR over many bitmaps with long
runs of zeroes—or logical AND over many bitmaps with long runs of ones—
an in-place computation might be preferable. When there are few bitmaps,
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computing the operation two bitmaps at a time is probably efficient. Otherwise,
using Algorithm 3 or a priority queue [27] might be advantageous. Unlike the
alternatives, Algorithm 3 is not limited to simple queries such as ∨Li=1Bi.

4. Finding the best reordering is NP-Hard

Let d(r, s) be the number of bits differing between rows r and s. Our problem
is to find the best ordering of the rows ri so as to minimize

∑
i d(ri, ri+1).

Pinar et al. have reduced the row-reordering problem to the Traveling Salesman
Problem (TSP) [9, Theorem 1] using d as the distance measure. Because d
satisfies the triangle inequality, the row-reordering problem can be approximated
with 1.5-optimal cubic-time algorithms [28]. Pinar and Heath [29] proved that
the row-reordering problem is NP-Hard by reduction from the Hamiltonian path
problem.

However, the hardness of the problem depends on L being variable. If the
number L of bitmaps were a constant, the next lemma shows that the problem
would not be NP-hard3: an (impractical) linear-time solution is possible.

Lemma 3. For any constant number of bitmaps L, the row-reordering problem
requires only O(n) time.

Proof. Suppose that an optimal row ordering is such that identical rows do
not appear consecutively. Pick any row value—any sequence of L bits appearing
in the bitmap index—and call it a. Consider two occurrences of a, where one
occurrence of the row value a appears between the row values b and c: we may
have b = a and/or c = a. Because the Hamming distance satisfies the triangle
inequality, we have d(b, c) ≥ d(b, a)+d(a, c). Hence, we can move the occurrence
of a from between b and c, placing it instead with any other occurrence of a—
without increasing total cost,

∑
i d(ri, ri+1). Therefore, there is an optimal

solution with all identical rows clustered.
In a bitmap index with L bitmaps, there are only 2L different possible dis-

tinct rows, irrespective of the total number of rows n. Hence, there are at
most (2L)! solutions to enumerate where all identical rows are clustered, which
concludes the proof.

If we generalize the row-reordering problem to the word-aligned case, the
problem is still NP-hard. We can formalize the problem as such: order the
rows in a bitmap index such that the storage cost of any sequence of identical
clean words (0x00 or 1x11) costs w bits whereas the cost of any other word is
w bits.

Theorem 1. The word-aligned row-reordering problem is NP-hard if the num-
ber of bits per word (w) is a constant.

3Assuming P 6= NP.
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Proof. Consider the case where each row of the bitmap is repeated w times.
It is possible to reorder these identical rows so that they form only clean words
(1x11 and 0x00). There exists an optimal solution to the word-aligned row-
reordering problem obtained by reordering these blocks of w identical rows.
The problem of reordering these clean words is equivalent to the row-ordering
problem, which is known to be NP-hard.

5. Sorting to improve compression

Sorting can benefit bitmap indexes at several levels. We can sort the rows
of the table. The sorting order depends itself on the order of the table columns.
And finally, we can allocate the bitmaps to the attribute values in sorted order.

5.1. Sorting rows

Reordering the rows of a compressed bitmap index can improve compression.
Whether using RLE, BBC, WAH or EWAH, the problem is NP-hard (see § 4).
A simple heuristic begins with an uncompressed index. Rows (binary vectors)
are then rearranged to promote runs. In the process, we may also reorder
the bitmaps. This is the approach of Pinar et al. [9], Sharma and Goyal [7],
Canahuate et al. [10], and Apaydin et al. [8], but it uses Ω(nL) time. For the
large dimensions and number of rows we have considered, it is infeasible. A more
practical approach is to reorder the table, then construct the compressed index
directly (see § 5.2.2); we can also reorder the table columns prior to sorting (see
§ 5.3).

Sorting lexicographically large files in external memory is not excessively
expensive [30, 31]. With a memory buffer of M elements, we can sort almost
M2 elements in two passes.

Several types of ordering can be used for ordering rows.

• In lexicographic order, a sequence a1, a2, . . . is smaller than another se-
quence b1, b2, . . . if and only if there is a j such that aj < bj and ai = bi
for i < j. The Unix sort command provides an efficient means of sorting
flat files into lexicographic order; in under 10 s our test computer (see § 7)
sorted a 5-million-line, 120 MB file. SQL supports lexicographic sort via
ORDER BY.

• We may cluster runs of identical rows. This problem can be solved with
hashing algorithms, by multiset discrimination algorithms [32], or by a lex-
icographic sort. While sorting requires Ω(n log n) time, clustering identical
facts requires only linear time (O(n)). However, the relative efficiency of
clustering decreases drastically with the number of dimensions. The rea-
son is best illustrated with an example. Consider lexicographically-sorted
tuples (a, a), (a, b), (b, c), (b, d). Even though all these tuples are distinct,
the lexicographical order is beneficial to the first dimension. Random
multidimensional row clustering fails to cluster the values within columns.

12



• Instead of fully ordering all of the rows, we may reorder rows only within
disjoint blocks (see § 7.4). Block-wise sorting is not competitive.

• Gray-code (GC) sorting, examined next.

GC sorting is defined over bit vectors [9]. The list of 2-of-4 codes in increasing
order is 0011, 0110, 0101, 1100, 1010, 1001. Intuitively, the further right the
first bit is, the smaller the code is, just as in the lexicographic order. However,
contrary to the lexicographic order, the further left the second bit is, the smaller
the code is. Similarly, for a smaller code, the third bit should be further right,
the fourth bit should be further left and so on. Formally, we define the Gray-
code order as follows.

Definition 1. The sequence a1, a2, . . . is smaller than b1, b2, . . . if and only if
there exists j such that4 aj = a1 ⊕ a2 ⊕ . . . ⊕ aj−1, bj 6= aj, and ai = bi for
i < j.

We denote this ordering by <gc, as opposed to the normal lexicographic
ordering, <lex. The reflexive versions of these are ≤gc and ≤lex, respectively.

Algorithm 4, an adaptation of Ernvall’s procedure [33, 34] to sparse data,
shows how to compare sparse GC bit vectors v1 and v2 in time O(min(|v1|, |v2|)
where |vi| is the number of true value in bit vector vi. Sorting the rows of a
bitmap index without materializing the uncompressed bitmap index is possi-
ble: we implemented an O(nck log n)-time solution for k-of-N indexes using an
external-memory B-tree [35] (c is the number of columns). As values, we used
the rows of the table, and as keys, we used the position of the ones in the bitmap
row as 32-bit integers—some of our indexes have half a million bitmaps. Hence,
we used 4ck bytes per row for storing the keys alone. Both keys and values were
compressed using LZ77 to minimize I/O costs—compression improved perfor-
mance noticeably in our informal tests. We expected that this implementation
would be significantly slower than lexicographic sorting, but the degree of dif-
ference surprised us: our implementation proved to be two orders of magnitude
slower than lexicographic sort using the Unix sort command.

For some of our tests (see § 7.9), we wish to rearrange the order of the
bitmaps prior to GC sorting. We get this result by applying the appropriate
permutation to the positions that form the B-tree keys, during the B-tree’s
construction.

For RLE, the best ordering of the rows of a bitmap index minimizes the sum
of the Hamming distances:

∑
i h(ri, ri+1) where ri is the ith row, for h(x, y) =∣∣∣{i|xi 6= yi}

∣∣∣. If all 2L different rows are present, the GC sort would be an

optimal solution to this problem [9]. The following proposition shows that GC
sort is also optimal if all

(
N
k

)
k-of-N codes are present. The same is false of

lexicographic order when k > 1: 0110 immediately follows 1001 among 2-of-4
codes, but their Hamming distance is 4.

4The symbol ⊕ is the XOR operator.
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Algorithm 4 Gray-code less comparator between sparse bit vectors

INPUT: arrays a and b representing the position of the ones in two bit
vectors, a′ and b′

OUTPUT: whether a′ <gc b
′

f ← true

m← min(length(a), length(b))
for p in 1, 2, . . . ,m do

return f if ap > bp and ¬f if ap < bp
f ← ¬f

return ¬f if length(a) > length(b), f if length(b) > length(a), and false

otherwise

Proposition 1. We can enumerate, in GC order, all k-of-N codes in time
O(k

(
N
k

)
) (optimal complexity). Moreover, the Hamming distance between suc-

cessive codes is minimal (=2).

Proof. Let a be an array of size k indicating the positions of the ones in k-of-N
codes. As the external loop, vary the value a1 from 1 to N − k+ 1. Within this
loop, vary the value a2 from N − k+ 2 down to a1 + 1. Inside this second loop,
vary the value of a3 from a2 + 1 up to N − k + 3, and so on. By inspection, we
see that all possible codes are generated in decreasing GC order. To see that
the Hamming distance between successive codes is 2, consider what happens
when ai completes a loop. Suppose that i is odd and greater than 1, then ai
had value N −k+ i and it will take value ai−1 + 1. Meanwhile, by construction,
ai+1 (if it exists) remains at value N − k + i+ 1 whereas ai+2 remains at value
N − k + i+ 2 and so on. The argument is similar if i is even.

For encodings like BBC, WAH or EWAH, GC sorting is suboptimal, even
when all k-of-N codes are present. For example consider the sequence of rows
1001, 1010, 1100, 0101, 0101, 0110, 0110, 0011. Using 4-bit words, we see that
a single bitmap contains a clean word (0000) whereas by exchanging the fifth
and second row, we get two clean words (0000 and 1111).

5.2. Sorting bitmap codes

For a simple index, the map from attribute values to bitmaps is inconse-
quential; for k-of-N encodings, some bitmap allocations are more compressible:
consider an attribute with two overwhelmingly frequent values and many other
values that occur once each. If the table rows are given in random order, the
two frequent values should have codes that differ in Hamming distance as little
as possible to maximize compression (see Fig. 3 for an example). However, it
is also important to allocate bitmaps well when the table is sorted, rather than
randomly ordered.

There are several ways to allocate the bitmaps. Firstly, the attribute val-
ues can be visited in alphabetical or numerical order, or—for histogram-aware
schemes—in order of frequency. Secondly, the bitmap codes can be used in
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1 0 0 1
0 1 1 0
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

1 0 0 1
1 1 0 0
1 0 0 1
1 1 0 0
1 1 0 0
1 0 0 1

Figure 3: Two bitmaps representing the sequence of values a,b,a,b,b,a using different codes.
If codes have a Hamming distance of two (right), the result is more compressible than if the
Hamming distance is four (left).

different orders. We consider lexicographical ordering (1100, 1010, 1001, 0110,
. . . ) and GC order (1001, 1010, 1100, 0101, . . . ) ordering (see proof of Propo-
sition 1).

Binary-Lex denotes sorting the table lexicographically and allocating bitmap
codes so that the ith attribute gets the ith numerically smallest bitmap code,
when codes are viewed as binary numbers. Gray-Lex is similar, except that the
ith attribute gets the rank-i bitmap code in GC order. (Binary-Lex and Gray-
Lex coincide when k = 1.) These two approaches are histogram oblivious—they
ignore the frequencies of attribute values.

Knowing the frequency of each attribute value can improve code assignment
when k > 1. Within a column, Binary-Lex and Gray-Lex order runs of iden-
tical values irrespective of the frequency: the sequence afcccadeaceabe may
become aaaabccccdeeef. For better compression, we should order the attribute
values—within a column—by their frequency (e.g., aaaacccceeebdf). Allocat-
ing the bitmap codes in GC order to the frequency-sorted attribute values, our
Gray-Frequency sorts the table rows as follows. Let f(ai) be the frequency of
attribute ai. Instead of sorting the table rows a1, a2, . . . , ad, we lexicograph-
ically sort the extended rows f(a1), a1, f(a2), a2, . . . , f(ad), ad (comparing the
frequencies numerically.) The frequencies f(ai) are discarded prior to indexing.

5.2.1. No optimal ordering when k > 1

No allocation scheme is optimal for all tables, even if we consider only lexi-
cographically sorted tables.

Proposition 2. For any allocation C of attribute values to k-of-N codes, there
is a table where C leads to a suboptimal index.

Proof. Consider a lexicographically sorted table, where we encode the second
column with C. We construct a table where C is worse than some other ordering
C′. The first column of the table is for attribute A1, which is the primary sort
key, and the second column is for attribute A2. Choose any two attribute values
v1 and v2 from A2, where C assigns codes of maximum Hamming distance (say
d) from one another. If A2 is large enough, d > 2. Our bad input table has
unique ascending values in the first column, and the second column alternates
between v1 and v2. Let this continue for w rows. On this input, there will be
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d bitmaps that are entirely dirty for the second column5. Other bitmaps in the
second column are made entirely of identical clean words.

Now consider C′, some allocation that assigns v1 and v2 codewords at Ham-
ming distance 2. On this input, C′ produces only 2 dirty words in the bitmaps
for A2. This is fewer dirty words than C produced.

Because bitmaps containing only identical clean words use less storage than
bitmaps made entirely of dirty words, we have that allocation C′ will compress
the second column better. This concludes the proof.

5.2.2. Gray-Lex allocation and GC-ordered indexes

Despite the pessimistic result of Proposition 2, we can focus in choosing good
allocations for special cases, such as dense indexes (including those where most
of the possible rows appear), or for typical sets of data.

For dense indexes, GC sorting is better [9] at minimizing the number of
runs, a helpful effect even with word-aligned schemes. However, as we already
pointed out, the approach used by Pinar et al. [9] requires Ω(nL) time. For
technical reasons, even our more economical B-tree approach is much slower
than lexicographic sorting. As an alternative, we propose a low-cost way to GC
sort k-of-N indexes, using only lexicographic sorting and Gray-Lex allocation.

We now examine Gray-Lex allocation more carefully, to prove that its re-
sults are equivalent to building the uncompressed index, GC sorting, and then
compressing the index.

Let γi be the invertible mapping from attribute i to the ki-of-Ni code—
written as an Ni-bit vector. Gray-Lex implies a form of monotonicity: for a
and a′ belonging to the ith attribute, Ai, a ≤ a′ ⇒ γi(a) ≤gc γi(a

′). The overall
encoding of a table row r = (a1, a2, . . . , ac) is obtained by applying each γi to
ai, and concatenating the c results. I.e., r is encoded into

Γ(r) = (

γ1(a1)︷ ︸︸ ︷
α1, α2, . . . αN1

,

γ2(a2)︷ ︸︸ ︷
αN1+1, . . . αN1+N2

, . . .

γc(ac)︷ ︸︸ ︷
αL−Nc+1, . . . αL)

where αi ∈ {0, 1} for all i.
First, let us assume that we use only k-of-N codes, for k even. Then, the

following proposition holds.

Proposition 3. Given two table rows r and r′, using Gray-Lex k-of-N codes
for k even, we have r ≤lex r

′ ⇐⇒ Γ(r) ≤gc Γ(r′). The values of k and N can
vary from column to column.

Proof. We write r = (a1, . . . , ac) and r′ = (a′1, . . . , a
′
c). We note (α1, . . . , αL) =

Γ(r) and (α′1, . . . , α
′
L) = Γ(r′). Without loss of generality, we assume Γ(r) ≤gc

Γ(r′). First, if Γ(r) = Γ(r′), then r = r′ since each γi is invertible.

5 There are other values in A2 and if we must use them, let them occur once each, at the
end of the table, and make a table whose length is a large multiple of w.
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We now proceed to the case where Γ(r) <gc Γ(r′). Since they are not equal,
Definition 1 implies there is a bit position t where they first differ; at position
t, we have that αt = α1 ⊕ α2 ⊕ · · · ⊕ αt−1. Let t̂ denote the index of the
attribute associated with bitmap t. In other words, N1 +N2 + · · ·+Nt̂−1 < t ≤
N1 +N2 + · · ·+Nt̂. Let t′ be the first bitmap of the block for attribute t̂; i.e.,
t′ = N1 +N2 + · · ·+Nt̂−1 + 1.

Γ(r) <gc Γ(r′)

⇐⇒ αt =
⊕t−1

i=1 αi ∧ αt 6= α′t ∧
∧t−1
i=1(αi = α′i) Def. 1

⇐⇒ αt =
⊕t′−1

i=1 αi ⊕
⊕t−1

i=t′ αi ∧ αt 6= α′t
∧
∧t′−1
i=1 (αi = α′i) ∧

∧t−1
i=t′(αi = α′i) associativity

⇐⇒ αt = 0⊕
⊕t−1

i=t′ αi ∧ αt 6= α′t all codes are k-of-N

∧
∧t′−1
i=1 (αi = α′i) ∧

∧t−1
i=t′(αi = α′i) and k is even

⇐⇒ αt =
⊕t−1

i=t′ αi ∧ αt 6= α′t
∧
∧t̂−1
i=1(ai = a′i) ∧

∧t−1
i=t′(αi = α′i) γi is invertible

⇐⇒ γt̂(at̂) <gc γt̂(a
′
t̂
) ∧

∧t̂−1
i=1(ai = a′i) Def. 1

⇐⇒ at̂ <lex a
′
t̂
∧
∧t̂−1
i=1(ai = a′i) γs are monotone

⇐⇒ r <lex r
′ Def. of lex. order

�

If some columns have ki-of-Ni codes with ki odd, then we have to reverse
the order of the Gray-Lex allocation for some columns. Define the alternating
Gray-Lex allocation to be such that it has the Gray-Lex monotonicity (a ≤ a′ ⇒
γi(a) ≤gc γi(a

′)) when
∑i−1
j=1 kj is even, and is reversed (a ≤ a′ ⇒ γi(a) ≥gc

γi(a
′)) otherwise. Then we have the following lemma.

Lemma 4. Given a table to be indexed with alternating Gray-Lex k-of-N en-
coding, the following algorithms have the same output:

• Construct the bitmap index and sort bit vector rows using GC order.

• Sort the table lexicographically and then construct the index.

The values of k and N can vary from column to column.

This result applies to any encoding where there is a fixed number of 1-bits
per column. Indeed, in these cases, we are merely using a subset of the k-of-N
codes. For example, it also works with multi-component encoding where each
component is indexed using a unary encoding.

5.2.3. Other Gray codes

In addition to the usual Gray code, many other binary codes have the prop-
erty that any codeword is at Hamming distance 1 from its successor. Thus, they
can be considered “Gray codes” as well, although we shall qualify them to avoid
confusion from our standard (“reflected”) Gray code.
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0 0 0
0 0 1
0 1 1
0 1 0
1 1 0
1 1 1
1 0 1
1 0 0

(a) 3-bit reflected GC

0 0 0
1 0 0
1 1 0
0 1 0
0 1 1
1 1 1
1 0 1
0 0 1

(b) swap columns 1&3

0 0 1
1 0 1
1 1 1
0 1 1
0 1 0
1 1 0
1 0 0
0 0 0

(c) then invert column 3

Figure 4: The 3-bit reflected GC and two other Gray codes obtained from it, first by ex-
changing the outermost columns, then by inverting the bits in the third column.

Trivially, we could permute columns in the Gray code table, or invert the bit
values in particular columns (see Fig. 4). However, there are other codes that
cannot be trivially derived from the standard Gray code. Knuth [36, § 7.2.1.1]
presents many results for such codes.

For us, three properties are important:

1. Whether successive k-of-N codewords have a Hamming distance of 2.

2. Whether the final codeword is at Hamming distance 1 from the initial
codeword. Similarly, whether the initial and final k-of-N codewords are
at Hamming distance 2.

3. Whether a collection of more than 2 successive codes (or more than 2 suc-
cessive k-of-N codes) has a small expected “collective Hamming distance”.
(Count 1 for every bit position where at least two codes disagree. )

The first property is important if we are assigning k-of-N codes to attribute
values.

The second property distinguishes, in Knuth’s terminology, “Gray paths”
from “Gray cycles.” It is important unless an attribute is the primary sort key.
E.g., the second column of a sorted table will have its values cycle from the
smallest to the largest, again and again.

The third property is related to the “long runs” property [36, 37] of some
Gray codes. Ideally, we would want to have long runs of identical values when
enumerating all codes. However, for any L-bit Gray cycle, every code word
terminates precisely one run, hence the number of runs is always 2L. Therefore,
the average run length is always L. The distribution of run lengths varies by
code, however. When L is large, Goddyn and Grozdjak show there are codes
where no run is shorter than L− 3 log2 L; in particular, for L = 1024, there is a
code with no run shorter than 1000 [36, 37]. In our context, this property may
be unhelpful: with k-of-N encodings, we are interested in only those codewords
of Hamming weight k. Also, rather than have all runs of approximately length
L, we might prefer a few very long runs (at the cost of many short ones).

One notable Gray code is constructed by Savage and Winkler [38], henceforth
Savage-Winkler (see also Knuth[36, p. 89]). It has all k-of-N codes appearing
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(b) Probability within a long run, 2-of-8
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(c) Probability within a long run, 3-of-20
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(d) Probability within a long run, 4-of-14

Figure 5: Effect of various orderings of the k-of-N codes. Top left: Number of runs of length
x, 2-of-8 codes. For legibility, we omit counts above 30. Goddyn-Grozdjak GC had 42 runs
of length 1, binary had 32, and random had 56. Binary, reflected GC and Savage-Winkler
had a run of length 15, and reflected GC and binary had a run of length 22. Remainder:
Probability that a randomly-chosen bit from an uncompressed index falls in a run of length
x or more. Goddyn-Grozdjak and the random ordering were significantly worse and omitted
for legibility. In 5(c), when the techniques differed, reflected GC was best, then binary, then
Savage-Winkler GC.

nearly together—interleaved with codes of Hamming weight k − 1 or k + 1.
Consequently, successive k-of-N codes have Hamming distance 2—just like the
common/reflected Gray codes.

The run-length distributions of the various codes are heavily affected when
we limit ourselves to k-of-N codes. This is illustrated by Fig. 5, where we
examine the run lengths of the 2-of-8 codewords, as ordered by various Gray
codes. The code noted as Goddyn-Grozdjak was obtained by inspecting a figure
of Knuth [36, Fig. 14d]; some discussion in the exercises may indicate the code
is due to Goddyn and Grozdjak [37].

From Fig. 5(a), we see that run-length distributions vary considerably be-
tween codes. (These numbers are for lists of k-of-N codes without repetition; in
an actual table, attribute values are repeated and long runs are more frequent.)
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(a) 1000 3-of-20 codes
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Figure 6: Probabilities that a bitmap will contain a dirty word, when several consecutive (how
many: x-axis) of 1000 possible distinct k-of-N codes are found in a 32-row chunk. Effects are
shown for values with k-of-N codes that are adjacent in reflected GC, Savage-Winkler GC,
binary or random order.

Both Goddyn-Grozdjak GC and the random listing stand out as having many
short runs. However, the important issue is whether the codes support many
sufficiently long runs to get compression benefits.

Suppose we list all k-of-N codes. Then, we randomly select a single bit
position (in one of the N bitmaps). Is there a good chance that this bit position
lies within a long run of identical bits? For 2-of-8, 3-of-20 and 4-of-14, we
computed these probabilities (see Fig. 5(b), 5(c) and 5(d)). Random ordering
and the Goddyn-Grozdjak GC ordering were significantly worse and they have
been omitted. From these figure, we see that standard reflected Gray-code
ordering is usually best, but ordinary lexicographic ordering is often able to
provide long runs. Thus, we might expect that binary allocation will lead to
few dirty words when we index a table.

Minimizing the number of dirty words. For a given column, suppose that in a
block of 32 rows, we have j distinct attribute values. We computed the average
number of bitmaps whose word would be dirty (see Fig. 6, where we divide by
the number of bitmaps). Comparing k-of-N codes that were adjacent in GC or-
dering against k-of-N codes that were lexicographically adjacent, the difference
was insignificant for k = 2. However, GC ordering is substantially better for
k > 2, where bitmaps are denser. The difference between codes becomes more
apparent when many attribute values share the same word. Savage-Winkler
does poorly, eventually being outperformed even by lexicographic ordering. Se-
lecting the codes randomly is disastrous. Hence, sorting part of a column—even
one without long runs of identical values—improves compression for k > 1.

5.3. Choosing the column order

Lexicographic table sorting uses the ith column as the ith sort key: it uses
the first column as the main key, the second column to break ties when two
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rows have the same first component, and so on. Some column orderings may
lead to smaller indexes than others.

We model the storage cost of a bitmap index as the sum of the number of
dirty words and the number of sequences of identical clean words (1x11 or 0x00).
If a set of L bitmaps has x dirty words, then there are at most L+ x sequences
of clean words; the storage cost is at most 2x + L. This bound is tighter for
sparser bitmaps. Because the simple index of a column has at most n 1-bits, it
has at most n dirty words, and thus, the storage cost is at most 3n. The next
proposition shows that the storage cost of a sorted column is bounded by 5ni.

Proposition 4. Using GC-sorted consecutive k-of-L codes, a sorted column
with ni distinct values has no more than 2ni dirty words, and the storage cost

is no more than 4ni + dkn1/k
i e.

Proof. Using dkn1/ki e bitmaps is sufficient to represent ni values. Because
the column is sorted, we know that the Hamming distance of the bitmap rows
corresponding to two successive and different attribute values is 2. Thus every
transition creates at most two dirty words. There are ni transitions, and thus
at most 2ni dirty words. This proves the result.

For k = 1, Proposition 4 is true irrespective of the order of the values,
as long as identical values appear sequentially. Another extreme is to assume
that all 1-bits are randomly distributed. Then sparse bitmap indexes have
≈ δ(r, L, n) = (1− (1− r

Ln )w)Lnw dirty words where r is the number of 1-bits, L
is the number of bitmaps and w is the word length (w = 32). Hence, we have an

approximate storage cost of 2δ(r, L, n) + dkn1/k
i e. The gain of column C is the

difference between the expected storage cost of a randomly row-shuffled C, minus

the storage cost of a sorted C. We estimate the gain by 2δ(kn, dkn1/k
i e, n)− 4ni

(see Fig. 7) for columns with uniform histograms. The gain is modal: it increases
until a maximum is reached and then it decreases. The maximum gain is reached

at ≈ (n(w − 1)/2)
k/(k+1)

: for n = 100, 000 and w = 32, the maximum is reached
at ≈ 1 200 for k = 1 and at ≈ 13 400 for k = 2. Skewed histograms have a lesser
gain for a fixed cardinality ni.

Lexicographic sort divides the ith column into at most n1n2 · · ·ni−1 sorted
blocks. Hence, it has at most 2n1 · · ·ni dirty words. When the distributions are
skewed, the ith column will have blocks of different lengths and their ordering
depends on how the columns are ordered. For example, if the first dimension
is skewed and the second uniform, the short blocks will be clustered, whereas
the reverse is true if columns are exchanged. Clustering the short blocks, and
thus the dirty words, increases compressibility. Thus, it may be preferable to
put skewed columns in the first positions even though they have lesser sorting
gain. To assess these effects, we generated data with 4 independent columns:
using uniformly distributed dimensions of different sizes (see Fig. 8(a)) and using
same-size dimensions of different skew (see Fig. 8(b)). We then determined the
Gray-Lex index size—as measured by the sum of bitmap sizes—for each of the
4! different dimension orderings. Based on these results, for sparse indexes
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(k = 1), dimensions should be ordered from least to most skewed, and from
smallest to largest; whereas the opposite is true for k > 1.

A sensible heuristic might be to sort columns by increasing density (≈
n
−1/k
i ). However, a very sparse column (n

1/k
i � w) will not benefit from sort-

ing (see Fig. 7) and should be put last. Hence, we use the following heuris-

tic: columns are sorted in decreasing order with respect to min(n
−1/k
i , (1 −

n
−1/k
i )/(4w − 1)): this function is maximum at density n

−1/k
i = 1/(4w) and it

goes down to zero as the density goes to 1. In Fig. 8(a), this heuristic makes
the best choice for all values of k. We consider this heuristic further in § 7.7.

5.4. Avoiding column order

Canahuate et al. [10] propose to permute bitmaps individually prior to sort-
ing, instead of permuting table columns. We compare these two strategies ex-
perimentally in § 7.9.
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As a practical alternative to lexicographic sort and column (or bitmap)
reordering, we introduce Frequent-Component (FC) sorting, which uses his-
tograms to help sort without bias from a fixed dimension ordering. In sorting,
we compare the frequency of the ith most frequent attribute values in each of
two rows without regard (except for possible tie-breaking) to which columns
they come from. For example, consider the following table:

cat blue
cat red
dog green
cat green

We have the following (frequency, value) pairs: (1,blue), (1,red), (1,dog), (2,green),
and (3,cat). For two rows r1 and r2, <FC first compares (f(a1), a1) with
(f(a2), a2), where a1 is the least frequent component in r1 and a2 is the least
frequent component in r2—f(ai) is the frequency of the component ai. Values
a1 and a2 can be from different columns. Ties are broken by the second-least-
frequent components in r1 and r2, and so forth. Hence, the sorted table in our
example is

dog green
cat blue
cat red
cat green.

With appropriate pre- and post-processing, it is possible to implement FC
using a standard sorting utility such as Unix sort. First, we sort the compo-
nents of each row of the table into ascending frequency. In this process, each
component is replaced by three consecutive components, f(a), a, and pos(a).
The third component records the column where a was originally found. In our
example, the table becomes

(1,dog,1) (2,green,2)
(1,blue,2) (3,cat,1)
(1,red,2) (3,cat,1)
(2,green,2) (3,cat,1).

Lexicographic sorting (via sort or a similar utility) of rows follows, after which
each row is put back to its original value (by removing f(a) and storing a as
component pos(a)).

6. Picking the right k-of-N

Choosing k and N are important decisions. We choose a single k value
for all dimensions6, leaving the possibility of varying k by dimension as future

6Except that for columns with small ni, we automatically adjust k downward when it
exceeds the limits noted at the end of § 2.
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work. Larger values of k typically lead to a smaller index and a faster con-
struction time—although we have observed cases where k = 2 makes a larger
index. However, query times increase with k: there is a construction time/speed
tradeoff.

6.1. Larger k makes queries slower

We can bound the additional cost of queries. Write
(
Li
k

)
= ni. A given k-of-

Li bitmap is the result of an OR operation over at most kni/Li unary bitmaps
by the following proposition.

Proposition 5. In k-of-N encoding, each attribute value is linked to k bitmaps,
and each bitmap is linked to at most k

N

(
N
k

)
attribute values.

Proof. There are
(
N
k

)
attribute values. Each attribute value is included in

k bitmaps. The bipartite graph from attribute values to bitmaps has k
(
N
k

)
edges.

There are N bitmaps, hence k
N

(
N
k

)
edges per bitmap. This concludes the proof.

Moreover, ni =
(
Li
k

)
≤ (e · Li/k)k by a standard inequality, so that Li/k ≥

n
1/k
i /e or k/Li ≤ e · n−1/ki < 3n

−1/k
i . Hence, kni/Li < 3n

(k−1)/k
i .

Because |
∨
iBi| ≤

∑
i |Bi|, the expected size of such a k-of-Li bitmap is

no larger than 3n
(k−1)/k
i times the expected size of a unary bitmap. A query

looking for one attribute value will have to AND together k of these denser
bitmaps. The entire ANDing operation can be done (see the end of § 3) by
k − 1 pairwise ANDs that produce intermediate results whose EWAH sizes are
increasingly small: 2k − 1 bitmaps are thus processed. Hence, the expected
time complexity of an equality query on a dimension of size ni is no more than

3(2k−1)n
k−1
k

i times higher than the expected cost of the same query on a k = 1
index. (For k large, we may use see Algorithm 3 to substitute log k for the 2k−1
factor.)

For a less pessimistic estimate of this dependence, observe that indexes sel-
dom increase in size when k grows. We may conservatively assume that index
size is unchanged when k changes. Therefore, the expected size of one bitmap

grows as the reciprocal of the number of bitmaps (≈ n
−1/k
i /k), leading to

queries whose cost is proportional to ≈ (2k − 1)n
−1/k
i /k = (2 − 1/k)n

−1/k
i .

Relative to the cost for k = 1, which is proportional to 1/ni, we can say that

increasing k leads to queries that are (2 − 1/k)n
(k−1)/k
i times more expensive

than on a simple bitmap index.
For example, suppose ni = 100. Then going from k = 1 to k = 2 should

increase query cost about 15 fold but no more than 90 fold. In summary, the
move from k = 1 to anything larger can have a dramatic negative effect on query
speeds. Once we are at k = 2, the incremental cost of going to k = 3 or k = 4
is low: whereas the ratio k = 2 : k = 1 goes as

√
ni, the ratio k = 3 : k = 2 goes

as n
1/6
i . We investigate this issue experimentally in § 7.10.
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6.2. When does a larger k make the index smaller?

Consider the effect of a length 100 run of values v1, followed by 100 rep-
etitions of v2, then 100 of v3, etc. Regardless of k, whenever we switch from
v1 to vi+1 at least two bitmaps will have to make transitions between 0 and
1. Thus, unless the transition appears at a word boundary, we create at least
2 dirty words whenever an attribute changes from row to row. The best case,
where only 2 dirty words are created, is achieved when k = 1 for any assignment
of bitmap codes to attribute values. For k > 1 and N as small as possible, it
may be impossible to achieve so few dirty words, or it may require a particular
assignment of bitmap codes to values.

Encodings with k > 1 find their use when many (e.g. 15) attribute values
fall within a word-length boundary. In that case, a k = 1 index will have at least
15 bitmaps with transitions (and we can anticipate 15 dirty words). However,
if there were only 45 possible values in the dimension, 10 bitmaps would suffice
with k = 2. Hence, there would be at most 10 dirty words and maybe less if we
have sorted the data (see Fig. 6).

6.3. Choosing N

It seems intuitive, having chosen k, to choose N to be as small as possible.
Yet, we have observed cases where the resulting 2-of-N indexes are much bigger
than 1-of-N indexes. Theoretically, this could be avoided if we allowed larger
N , because one could aways append an additional 1 to every attribute’s 1-of-N
code. Since this would create one more (clean) bitmap than the 1-of-N index
has, this 2-of-N index would never be much larger than the 1-of-N index. So, if
N is unconstrained, we can see that there is never a significant space advantage
to choosing k small.

Nevertheless, the main advantage of k > 1 is fewer bitmaps. We choose N
as small as possible.

7. Experimental results

We present experiments to assess the effects of various factors (choices of k,
sorting approaches, dimension orderings) in terms of EWAH index sizes. These
factors also affect index creation and query times. We report real wall-clock
times.

7.1. Platform

Our test programs7 were written in C++ and compiled by GNU GCC 4.0.2
on an Apple Mac Pro with two double-core Intel Xeon processors (2.66 GHz)
and 2 GiB of RAM. Experiments used a 500 GB SATA Hitachi disk (model
HDP725050GLA360 [39, 40]), with average seek time (to read) of 14 ms , average
rotational latency of 4.2 ms, and capability for sustained transfers at 300 MB/s.

7http://code.google.com/p/lemurbitmapindex/.
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Table 3: Characteristics of data sets used.

rows cols
∑
i ni size

Census-Income 199 523 42 103 419 99.1 MB
4-d projection 199 523 4 102 609 2.96 MB

DBGEN 13 977 980 16 4 411 936 1.5 GB
4-d projection 13 977 980 4 402 544 297 MB

Netflix 100 480 507 4 500 146 2.61 GB
KJV-4grams 877 020 839 4 33 553 21.6 GB

This disk also has an on-board cache size of 16 MB, and is formatted for the
Mac OS Extended filesystem (journaled). Unless otherwise stated, we use 32-bit
binaries. Lexicographic sorts of flat files were done using GNU coreutils sort
version 6.9. For constructing all indexes, we used Algorithm 1 because without
it, the index creation times were 20–100 times larger, depending on the data
set.

7.2. Data sets used

We primarily used four data sets, whose details are summarized in Table 3:
Census-Income [41], DBGEN [42], KJV-4grams, and Netflix [43]. DBGEN is a
synthetic data set, whereas KJV-4grams is a large list (including duplicates) of 4-
tuples of words obtained from the verses in the King James Bible [44], after stem-
ming with the Porter algorithm [45] and removal of stemmed words with three or
fewer letters. Occurrence of row w1, w2, w3, w4 indicates that the first paragraph
of a verse contains words w1 through w4, in this order. KJV-4grams is motivated
by research on Data Warehousing applied to text analysis [46]. Each of column
of KJV-4grams contains roughly 8 thousand distinct stemmed words. The Net-
flix table has 4 dimensions: UserID, MovieID, Date and Rating, having cardi-
nalities 480 189, 17 770, 2 182, and 5. Since the data was originally supplied in
17 700 small files (one file per film), we concatenated them into a flat file with an
additional column for the film and randomized the order of its rows using Unix
commands such as cat -n file.csv | sort --random-sort | cut -f 2-.
All files were initially randomly shuffled.

For some of our tests, we chose four dimensions with a wide range of sizes.
For Census-Income, we chose age (d1), wage per hour (d2), dividends from stocks
(d3) and a numerical value8 found in the 25th position (d4). Their respective car-
dinalities were 91, 1 240, 1 478 and 99 800. For DBGEN, we selected dimensions
of cardinality 7, 11, 2 526 and 400 000. Dimensions are numbered by increasing
size: column 1 has fewest distinct values.

7.3. Overview of experiments

Using our test environment, our experiments assessed

8The associated metadata says this column should be a 10-valued migration code.
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• whether a partial (block-wise) sort could save enough time to justify lower
quality indexes (§ 7.4);

• the effect that sorting has on index construction time (§ 7.5)

• the merits of various code assignments (§ 7.6);

• whether column ordering (as discussed in § 5.3) has a significant effect on
index size (§ 7.7);

• whether the index size grows linearly as the data set grows (§ 7.8);

• whether bitmap reordering is preferable to our column reordering (§ 7.9);

• whether larger k actually gives a dramatic slowdown in query speeds,
which § 6.1 predicted was possible (§ 7.10);

• whether word length has a significant effect on the performance of EWAH
(§ 7.11);

• whether 64-bit indexes are faster than 32-bit index when aggregating many
bitmaps (§ 7.12).

In all of our experiment involving 32-bit words (our usual case), we choose
to implement EWAH with 16-bit counters to compress clean words. When
there are runs with many more than 216 clean words, 32-bit EWAH might be
inefficient. However, on our data sets, no more than 14% of all counters had the
maximal value on sorted indexes, and no more than 3% on unsorted indexes(see
Table 4). Hence, EWAH is less efficient than WAH by a factor of no more than
14% at storing the clean words. However, EWAH is more efficient than WAH by
a constant factor of 3% at storing the dirty words. The last column in Table 4
shows runs of clean words make up only about half the storage; the rest is made
of dirty words. For 64-bit indexes, we have not seen any overrun.

7.4. Sorting disjoint blocks

Instead of sorting the entire table, we may partition the table horizontally
into disjoint blocks. Each block can then be sorted lexicographically and the ta-
ble reconstructed. Given B blocks, the sorting complexity goes from O(n log n)
to O(n log n/B). Furthermore, if blocks are small enough, we can sort in main
memory. Unfortunately, the indexing time and bitmap sizes both substantially
increase, even with only 5 blocks. (See Table 5.) Altogether, sorting by blocks
does not seem useful.

Hence, competitive row-reordering alternatives should be scalable to a large
number of rows. For example, any heuristic in Ω(n2) is probably irrelevant.
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Table 4: Percentage of overruns in clean word compression using 32-bit EWAH with unary
bitmaps and lexicographically sorted tables

(a) lexicographically sorted

overruns clean runs
total size

Census-Income (4-d) 0% 60%
DBGEN (4-d) 13% 44%
Netflix 14% 49%
KJV-4grams 4.3% 43%

(b) unsorted

overruns clean runs
total size

Census-Income (4-d) 0% 52%
DBGEN (4-d) 0.2% 45%
Netflix 2.4% 49%
KJV-4grams 0.1% 47%

Table 5: Time required to sort and index, and sum of the compressed sizes of the bitmaps,
for k = 1 (time in seconds and size in MB). Only three columns of each data sets are used
with cardinalities of 7, 11, 400 000 for DBGEN and of 5, 2 182 and 17 770 for Netflix.

DBGEN (3d)
# of blocks sort fusion indexing total size

1 (complete sort) 31 - 65 96 39
5 28 2 68 98 51
10 24 3 70 99 58
500 17 3 87 107 116

no sorting - - 100 100 119
Netflix (3d)

1 (complete sort) 487 - 558 1 045 129
5 360 85 572 1 017 264
10 326 87 575 986 318
500 230 86 601 917 806

no sorting - - 689 689 1 552

7.5. Index construction time

Table 5 shows that sorting may increase the overall index-construction time
(by 35% for Netflix). While Netflix and DBGEN nearly fit in the machine’s
main memory (2 GiB), KJV-4grams is much larger (21.6 GB). Constructing a
simple bitmap index (using Gray-Lex) over KJV-4grams took approximately
14 000 s or less than four hours. Nearly half (6 000 s) of the time was due to the
sort utility, since the data set exceeds the machine’s main memory (21.6 GB
vs. 2 GiB). Constructing an unsorted index is faster (approximately 10 000 s or
30% less), but the index is about 9 times larger (see Table 6).

For DBGEN, Netflix and KJV-4grams, the construction of the bitmap index
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Figure 9: Relative performance, as a function of the number of dimensions, on a Zipfian data
set.

itself over the sorted table is faster by at least 20%. This effect is so significant
over DBGEN that it is faster to first sort prior to indexing.

7.6. Sorting

On some synthetic Zipfian data sets, we found a small improvement (less
than 4% for 2 dimensions) by using Gray-Lex in preference to Binary-Lex. Our
data sets have 100 attribute values per dimension, and the frequency of the
attribute values is Zipfian (proportional to 1/r, where r is the rank of an item).
Dimensions were independent of one another. See Fig. 9, where we compare
Binary-Lex to an unsorted table, and then Gray-Lex to Binary-Lex. For the
latter, the advantage drops quickly with the number of dimensions. For one
dimension, the performance improvement is 9% for k = 2, but for more than
2 dimensions, it is less than 2%. On other data sets, Gray-Lex either had no
effect or a small positive effect.

Table 6 shows the sum of bitmap sizes using Gray-Lex orderings and Gray-
Frequency. For comparison, we also used an unsorted table (the code allocation
should not matter; we used the same code allocation as Binary-Lex), and we used
a random code assignment with a lexicographically sorted table (Rand-Lex).
Dimensions were ordered from the largest to the smallest (“4321”) except for
Census-Income where we used the ordering “3214”.

KJV-4grams had a larger index for k = 2 than k = 1. This data set has
many very long runs of identical attribute values in the first two dimensions,
and the number of attribute values is modest, compared with the number of
rows. This is ideal for 1-of-N .

For k = 1, as expected, encoding is irrelevant: Rand-Lex, Binary-Lex, Gray-
Lex, and Gray-Freq have identical results. However, sorting the table lexico-
graphically is important: the reduction in size of the bitmaps is about 40% for
3 data sets (Census-Income, DBGEN, Netflix), and goes up to 90% for KJV-
4grams.

For k > 1, Gray-Frequency yields the smallest indexes in Table 6. The differ-
ence with the second-best, Gray-Lex, can be substantial (25%) but is typically
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Table 6: Total sizes (words) of 32-bit EWAH bitmaps for various sorting methods.

k Unsorted Rand-Lex Binary-Lex Gray-Lex Gray-Freq.

Census- 1 8.49× 105 4.87× 105 4.87× 105 4.87× 105 4.87× 105

Income 2 9.12× 105 6.53× 105 4.53× 105 4.52× 105 4.36× 105

(4d) 3 6.90× 105 4.85× 105 3.77× 105 3.73× 105 3.28× 105

4 4.58× 105 2.74× 105 2.23× 105 2.17× 105 1.98× 105

DBGEN 1 5.48× 107 3.38× 107 3.38× 107 3.38× 107 3.38× 107

(4d) 2 7.13× 107 2.90× 107 2.76× 107 2.76× 107 2.74× 107

3 5.25× 107 1.73× 107 1.51× 107 1.50× 107 1.50× 107

4 3.24× 107 1.52× 107 1.21× 107 1.21× 107 1.19× 107

Netflix 1 6.20× 108 3.22× 108 3.22× 108 3.22× 108 3.19× 108

2 8.27× 108 4.18× 108 3.17× 108 3.17× 108 2.43× 108

3 5.73× 108 2.40× 108 1.98× 108 1.97× 108 1.49× 108

4 3.42× 108 1.60× 108 1.39× 108 1.37× 108 1.14× 108

KJV- 1 6.08× 109 6.68× 108 6.68× 108 6.68× 108 6.68× 108

4grams 2 8.02× 109 1.09× 109 1.01× 109 9.93× 108 7.29× 108

3 4.13× 109 9.20× 108 8.34× 108 8.31× 108 5.77× 108

4 2.52× 109 7.23× 108 6.49× 108 6.39× 108 5.01× 108

small. However, Gray-Frequency is histogram-aware and thus, more complex
to implement. The difference between Gray-Lex and Binary-Lex is small even
though Gray-Lex is sometimes slightly better (≈2%) especially for denser in-
dexes (k = 4). However, Rand-Lex is noticeably worse (up to ≈25%) than
both of them: this means that encoding is a significant issue. All three schemes
(Binary-Lex, Gray-Lex, Rand-Lex) have about the same complexity—all three
are histogram-oblivious—and therefore Gray-Lex is recommended.

We omit Frequent-Component from the table. On Netflix, for k = 1, it
outperformed the other approaches by 1%, and for DBGEN it was only slightly
worse than the others. But in all other case on DBGEN, Census-Income and
Netflix, it lead to indexes 5–50% larger. (For instance, on Netflix (k = 4) the
index size was 1.52× 108 words, barely better than Rand-Lex and substantially
worse than Gray-Frequency.) Because it interleaves attribute values and it is
histogram-aware, it may be the most difficult scheme to implement efficiently
among our candidates. Hence, we recommend against Frequent-Component.

7.7. Column effects

We experimentally evaluated how lexicographic sorting affects the EWAH
compression of individual columns. Whereas sorting tends to create runs of
identical values in the first columns, the benefits of sorting are far less apparent
in later columns, except those strongly correlated with the first few columns.
For Table 7, we have sorted projections of Census-Income and DBGEN onto
10 dimensions d1 . . . d10 with n1 < . . . < n10. (The dimensions d1 . . . d4 in this
group are different from the dimensions d1 . . . d4 discussed earlier.) We see that
if we sort from the largest column (d10 . . . d1), at most 3 columns benefit from
the sort, whereas 5 or more columns benefit when sorting from the smallest
column (d1 . . . d10).
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Table 7: Number of 32-bit words used for different unary indexes when the table was sorted
lexicographically (dimensions ordered by descending cardinality, d10 . . . d1, or by ascending
cardinality, d1 . . . d10).

(a) Census-Income

cardinality unsorted d1 . . . d10 d10 . . . d1
d1 7 42 427 32 42 309
d2 8 36 980 200 36 521
d3 10 34 257 1 215 28 975
d4 47 0.13×106 12 118 0.13×106

d5 51 35 203 17 789 28 803
d6 91 0.27×106 75 065 0.25×106

d7 113 12 199 9 217 12 178
d8 132 20 028 14 062 19 917
d9 1 240 29 223 24 313 28 673
d10 99 800 0.50×106 0.48×106 0.30×106

total - 1.11×106 0.64×106 0.87×106

(b) DBGEN

cardinality unsorted d1 . . . d10 d10 . . . d1
d1 2 0.75×106 24 0.75×106

d2 3 1.11×106 38 1.11×106

d3 7 2.58×106 150 2.78×106

d4 9 0.37×106 1 006 3.37×106

d5 11 4.11×106 10 824 4.11×106

d6 50 13.60×106 0.44×106 1.42×106

d7 2 526 23.69×106 22.41×106 23.69×106

d8 200́00 24.00×106 24.00×106 22.12×106

d9 400 000 24.84×106 24.84×106 19.14×106

d10 984 297 27.36×106 27.31×106 0.88×106

total - 0.122×109 0.099×109 0.079× 109

We also assessed how the total size of the index was affected by various
column orderings; we show the Gray-Lex index sizes for each column ordering
in Fig. 10. The dimensions of KJV-4grams are too similar for ordering to be
interesting, and we have omitted them. For small dimensions, the value of
k was lowered using the heuristic presented in § 2. Our results suggest that
table-column reordering has a significant effect (40%).

The value of k affects which ordering leads to the smallest index: good
orderings for k = 1 are frequently bad orderings for k > 1, and vice versa.
This is consistent with our earlier analysis (see Figs. 7 and 8). For Netflix and
DBGEN, we have omitted k = 2 for legibility.

Census-Income’s largest dimension is very large (n4 ≈ n/2); DBGEN also
has a large dimension (n4 ≈ n/35). Sorting columns in decreasing order with

respect to min(n
−1/k
i , (1 − n−1/ki )/(4w − 1)) for k = 1, we have that only for
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Figure 10: Sum of EWAH bitmap sizes (words, y axis) on 4-d data sets for all dimension
orderings (x axis).

DBGEN the ordering “2134” is suggested, otherwise, “1234” (from smallest to
largest) is recommended. Thus the heuristic provides nearly optimal recom-
mendations. For k = 3 and k = 4, the ordering “1234” is recommended for all
data sets: for k = 4 and Census-Income, this recommendation is wrong. For
k = 2 and Census-Income, the ordering “3214” is recommended, another wrong
recommendation for this data set. Hence, a better column reordering heuristic
is needed for k > 1. Our greedy approach may be too simple, and it may be
necessary to know the histogram skews.

7.8. Index size growth

To study scaling, we built indexes from prefixes of the full KJV-4grams data
set. We found that the sum of the EWAH bitmap sizes (see Fig. 11) increased
linearly. Yet with sorting, the bitmap sizes increased sublinearly. As new data
arrives, it is increasingly likely to fit into existing runs, once sorted. Hence—
everything else being equal—sorting becomes more beneficial as the data sets
grow.
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Figure 11: Sum of the EWAH bitmap sizes for various prefixes of the KJV-4grams table
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7.9. Bitmap reordering

Sharma and Goyal [7] consider encoding a table into a bitmap index using
a multi-component code (similar to k-of-N), then GC sorting the rows of the
index, and finally applying WAH compression. Canahuate et al. [10] propose a
similar approach, with the additional step of permuting the columns—meaning
the individual bitmaps—in the index prior to GC sorting. For example, whereas
the list of 2-of-4 codes in increasing GC order is 0011, 0110, 0101, 1100, 1010,
1001, by permuting the first and the last bit, we obtain the following (non-
standard) Gray code: 1010, 0110, 1100, 0101, 0011, 1001. In effect, reordering
bitmaps is equivalent to sorting the (unpermuted) index rows according to a
non-standard Gray code. They chose to use bitmap density to determine which
index columns should come first, but reported that the different orders had little
effect on the final index sizes.

In contrast, our approach has been to permute the columns of the table—not
the individual bitmaps, then sort the table lexicographically, and finally gener-
ate the compressed index. Permuting the attributes corresponds to permuting
blocks of bitmaps: our bitmap permutations are a special case of Canahaute’s.
We do not know a sufficiently efficient method to sort our largest data sets with
arbitrary bitmap reordering. We cannot construct the uncompressed index: for
KJV-4grams, we would require at least 3.7 TB. Instead, we used the compressed
B-tree approach mentioned in § 5.1 and applied the bitmap permutation to its
keys. This was about 100 times slower than our normal Gray-Lex method, and
implementation restrictions prevented our processing the full Netflix or KJV-
4grams data sets. Hence, we took the first 20 million records from each of these
two data sets, forming Netflix20M and KJV20M.

Our experiments showed that little compression was lost by restricting our-
selves to the special case of permuting table columns, rather than individual
bitmaps. While we indexed all the 4! = 24 tables generated by all column
permutations in our 4-column data sets, it is infeasible to consider all bitmap
permutations. Even if there were only 100 bitmaps, the number of permuta-
tions would be prohibitively large (100! ≈ 10158). We considered three heuristics
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Table 8: Sum of the EWAH bitmap sizes (in words), GC sorting and various bitmap orders

Best column Per-bitmap reordering
order IF MSF SF

Census-Income k = 1 4.87× 105 4.91× 105 4.91× 105 6.18× 105

(4d) 2 3.74× 105 4.69× 105 4.10× 105 3.97× 105

3 2.99× 105 3.83× 105 3.00× 105 3.77× 105

4 1.96× 105 3.02× 105 1.91× 105 1.91× 105

DBGEN 1 2.51× 107 2.51× 107 2.51× 107 3.39× 107

(4d) 2 2.76× 107 4.50× 107 4.35× 107 2.76× 107

3 1.50× 107 3.80× 107 1.50× 107 1.50× 107

4 1.21× 107 2.18× 107 1.21× 107 1.21× 107

Netflix20M 1 5.48× 107 5.87× 107 5.87× 107 6.63× 107

2 7.62× 107 9.05× 107 8.61× 107 7.64× 107

3 4.43× 107 7.99× 107 4.39× 107 4.39× 107

4 2.99× 107 4.82× 107 3.00× 107 3.00× 107

KJV20M 1 4.06× 107 4.85× 107 4.83× 107 3.85× 107

2 5.77× 107 6.46× 107 5.73× 107 5.73× 107

3 3.95× 107 4.47× 107 4.24× 107 4.24× 107

4 2.72× 107 3.42× 107 3.38× 107 3.38× 107

based on bitmap density D—the number of 1-bits over the total number of bits
(n) :

1. “Incompressible first” (IF), which orders bitmaps by increasing | D−0.5 |.
In other words, bitmaps with density near 0.5 are first [10].

2. “Moderately sparse first” (MSF), ordering by the value min(D, 1−D
4×32−1 )

as discussed at the end of § 5.3. This is a per-bitmap variant of the
column-reordering heuristic we evaluate experimentally in § 7.7.

3. “Sparse first” (SF): order by increasing D.

Results are shown in Table 8. In only one case (KJV20M, k = 1), was a
per-bitmap result significantly better (by 5%) than our default method of rear-
ranging table columns instead of individual bitmaps. In most other cases, all
per-bitmap reorderings were worse, sometimes by large factors (30%).

IF ordering performs poorly when there are some dense bitmaps (i.e., when
k > 1.) Likewise, SF performs poorly for sparse bitmaps (k = 1). We do not
confirm prior reports [10] that index column order has relatively little effect
on the index size: on our data, it makes a substantial difference. Perhaps the
characteristics of their scientific data sets account for this difference.

7.10. Queries

We implemented queries over the bitmap indexes by processing the logical
operations two bitmaps at a time: we did not use Algorithm 3. Bitmaps are
processed in sequential order, without sorting by size, for example. The query
processing costs includes the extraction of the row IDs—the location of the
1-bits—from the bitmap form of the result.
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We timed equality queries against our 4-d bitmap indexes. Recall that di-
mensions were ordered from the largest to the smallest (4321) except for Census-
Income where we used the ordering “3214.” Gray-Lex encoding is used for k > 1.
Queries were generated by choosing attribute values uniformly at random and
the figures report average wall-clock times for such queries. We made 100 ran-
dom choices per column for KJV-4grams when k > 1. For DBGEN and Netflix,
we had 1 000 random choices per column and 10 000 random choices were used
for Census-Income and KJV-4grams (k = 1). For each data set, we give the
results per column (leftmost tick is the column used as the primary sort key,
next tick is for the secondary sort key, etc.). The results are shown in Fig. 12.

From Fig. 12(b), we see that simple bitmap indexes almost always yield the
fastest queries. The difference caused by k is highly dependent upon the data
set and the particular column in the data set. However, for a given data set
and column, with only a few small exceptions, query times increase with k,
especially from k = 1 to k = 2. For DBGEN, the last two dimensions have size
7 and 11, whereas for Netflix, the last dimension has size 5, and therefore, they
will never use a k-value larger than 2: their speed is mostly oblivious to k.

An exception occurs for the first dimension of Netflix, and it illustrates the
importance of benchmarking with large data sets. Note that using k = 1 is much
slower than using k > 1. However, these tests were done using a disk whose
access typically9 requires at least 18 ms. In other words, any query answered
substantially faster than 20 ms was answered without retrieving data from the
disk platter (presumably, it came from the operating system’s cache, or perhaps
the disk’s cache). For k > 1, it appears that the portion of the index for the
first attribute (which is ≈ 7 MB10) could be cached successfully, whereas for
k = 1, the portion of the index was 100 MB11 and could not be cached.

In § 6, we predicted that the query time would grow with k as ≈ (2 −
1/k)n

−1/k
i : for the large dimensions such as the largest ones for DBGEN (400k)

and Netflix (480k), query times are indeed significantly slower for k = 2 as
opposed to k = 1. However, our model exaggerates the differences by an order
of magnitude. The most plausible explanation is that query times are not
proportional to the sizes of the bitmap loaded, but also include a constant
factor. This may correspond to disk access times.

Fig. 12(a) and 12(b) also show the equality query times per column before
and after sorting the tables. Sorting improves query times most for larger values
of k: for Netflix, sorting improved the query times by

• at most 2 for k = 1,

• at most 50 for k = 2,

9 This is perhaps pessimistic, as an operating system may be able to cluster portions of
the index for a given dimension onto a small number of adjacent tracks, thereby reducing seek
times.

10For k = 2 we have 981 bitmaps and (see Figure 13) about 7 kB per bitmap.
11 The half-million bitmaps had an average size of about 200 bytes.
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(b) Sorted table and Gray-Lex encoding

Figure 12: Query times are affected by dimension, table sorting and k.

• and at most 120 for k = 3.

This is consistent with our earlier observation that indexes with k > 1 benefit
from sorting even when there are no long runs of identical values (see § 5.1).
(On the first columns, k = 3 usually gets the best improvements from sorting.)
The synthetic data set DBGEN showed no significant speedup from sorting,
beyond its large first column. Although Netflix, like DBGEN, has a many-
valued column first, it shows a benefit from sorting even in its third column: in
fact, the third column benefits more from sorting than the second column. The
largest table, KJV-4grams, benefited most from the sort: while queries on the
last column are up to 10 times faster, the gain on the first two columns ranges
from 125 times faster (k = 1) to almost 3 300 times faster (k = 3).

We can compare these times with the expected amount of data scanned
per query. This is shown in Fig. 13, and we observe some agreement between
most query times and the expected sizes of the bitmaps being scanned. The
most notable exceptions are for k = 1; in many such cases we must make an
expensive seek far into a file for a very small compressed bitmap. Moreover,
a small compressed bitmap may, via long runs of 1x11 clean words, represent
many row IDs. To answer the query, we must still produce the set of row IDs.

7.11. Effect of the word length

Our experiments so far use 32-bit EWAH. To investigate the effect of word
length, we recompiled our executables as 64-bit binaries and implemented 16-
bit and 64-bit EWAH. The index sizes are reported in Table 9—the index size
excludes a B-Tree storing maps from attribute values to bitmaps. We make the
following observations:

• 16-bit indexes can be 10 times larger than 32-bit indexes.

• 64-bit indexes are nearly twice as large as 32-bit indexes.

• Sorting benefits 32-bit and 64-bit indexes equally; 16-bit indexes do not
benefit from sorting.
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Figure 13: Bitmap data examined per equality query.

Table 9: Index size (file size in MB) for unary bitmap indexes (k = 1) under various word
lengths. For Census-Income and DBGEN, the 4-d projection is used.

(a) Unsorted

index size (MB)
word length Census-Income DBGEN Netflix KJV-4grams

16 12.0 2.5×103 2.6×104 2.6×104

32 3.8 221 2.5×103 2.4×104

64 6.5 416 4.8×103 4.4×104

(b) Lexicographically sorted

index size (MB)
word length Census-Income DBGEN Netflix KJV-4grams

16 11.1 2.4×103 2.5×104 1.6×104

32 2.9 137 1.3×103 2.6×103

64 4.8 227 2.2×103 4.3×103

Despite the large variations in file sizes, the difference between index construc-
tion times (omitted) in 32-bit and 64-bit indexes is within 5%. Hence, index
construction is not bound by disk I/O performance.

7.12. Range queries

Unary bitmap indexes may not be ideally suited for all ranges queries [22].
However, range queries are good stress tests: they require loading and comput-
ing numerous bitmaps. Our goal is to survey the effect of sorting and word
length on the aggregation of many bitmaps.

We implemented range queries using the following simple algorithm:

1. For each dimension, we compute the logical OR of all matching bitmaps.
We aggregate the bitmaps two at time: ((B1 ∨B2) ∨B3) ∨B4) . . . When
there are many bitmaps, Algorithm 3 or an in-place algorithm might be
faster. (See Wu et al. [3, 27] for a detailed comparison of pair-at-a-time
versus in-place processing.)
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2. We compute the logical AND of all the dimensional bitmaps—resulting
from the previous step.

We implemented a flag to disable the aggregation of the bitmaps to measure
solely the cost of loading the bitmaps in memory. (Our implementation does
not write its temporary results to disk.) We omitted 16-bit EWAH from our
tests due to its poor compression rate.

As a basis for comparison, we also implemented range queries using uncom-
pressed external-memory B-tree [35] indexes over each column: the index maps
values to corresponding row IDs. The computation is implemented as with the
bitmaps, using the STL functions set intersection and set union. We required
row IDs to be provided in sorted order. All query times were at least an order of
magnitude larger than with 32-bit or 64-bit bitmap indexes. We failed to index
the columns with uncompressed B-trees in a reasonable time (a week) over the
KJV-4grams data set due to the large file size (21.6 GB).

We generated a set of uniformly randomly distributed 4-d range queries using
no more than 100 bitmaps per dimension. We used the same set of queries for
all indexes. The results are presented in Table 10. Our implementation of range
queries using uncompressed B-tree indexes is an order of magnitude slower than
the bitmap indexes over Netflix, hence we omit the results.

The disk I/O can be nearly twice as slow with 64-bit indexes and KJV-
4grams. However, disk I/O is negligible, accounting for about 1% of the total
time.

The 64-bit indexes are nearly twice as large. We expect that 64-bit indexes
also generate larger intermediate bitmaps during the computation. Yet, the 64-
bit indexes have faster overall performance: 40% for DBGEN and 5% for other
cases, except for sorted KJV-4grams where the gain was 18%. Moreover, the
benefits of 64-bit indexes are present in both sorted and unsorted indexes.

8. Guidelines for k

Our experiments indicate that simple (k = 1) bitmap encoding is preferable
when storage space and index-creation time are less important than fast equality
queries. The storage and index-creation penalties are kept modest by table
sorting and Algorithm 1.

Space requirements can be reduced by choosing k > 1, although Table 6
shows that this approach has risks (see KJV-4grams). For k > 1, we can gain
additional index size reduction at the cost of longer index construction by using
Gray-Frequency rather than Gray-Lex.

If the total number of attribute values is small relative to the number of
rows, then we should first try the k = 1 index. Perhaps the data set resembles
KJV-4grams. Besides yielding faster queries, the k = 1 index may be smaller.

9. Conclusion and future work

We showed that while sorting improves bitmap indexes, we can improve them
even more (30–40%) if we know the number of distinct values in each column.
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Table 10: Average 4-d range query processing time over the Netflix data set for unary bitmap
indexes (k = 1) under various word lengths and dimensional B-tree indexes.

(a) Average wall-clock query time (s)

DBGEN unsorted lexicographically sorted
32-bit EWAH 0.382 0.378
64-bit EWAH 0.273 0.265

Netflix
32-bit EWAH 2.87 1.50
64-bit EWAH 2.67 1.42
KJV-4grams
32-bit EWAH 44.8 5.2
64-bit EWAH 42.4 4.4

(b) Average disk I/O time (s)

DBGEN unsorted lexicographically sorted
32-bit EWAH 0.023 0.023
64-bit EWAH 0.027 0.026

Netflix
32-bit EWAH 0.11 0.078
64-bit EWAH 0.16 0.097
KJV-4grams
32-bit EWAH 0.57 0.06
64-bit EWAH 1.11 0.1

For k-of-N encodings with k > 1, even further gains (10–30%) are possible using
the frequency of each value. Regarding future work, the accurate mathematical
modelling of compressed bitmap indexes remains an open problem. While we
only investigated bitmap indexes, we can generalize this work in the context of
column-oriented databases [47, 48] by allowing various types of indexes.
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