5 research outputs found

    Robust Reoptimization of Steiner Trees

    Get PDF
    In reoptimization, one is given an optimal solution to a problem instance and a (locally) modified instance. The goal is to obtain a solution for the modified instance. We aim to use information obtained from the given solution in order to obtain a better solution for the new instance than we are able to compute from scratch. In this paper, we consider Steiner tree reoptimization and address the optimality requirement of the provided solution. Instead of assuming that we are provided an optimal solution, we relax the assumption to the more realistic scenario where we are given an approximate solution with an upper bound on its performance guarantee. We show that for Steiner tree reoptimization there is a clear separation between local modifications where optimality is crucial for obtaining improved approximations and those instances where approximate solutions are acceptable starting points. For some of the local modifications that have been considered in previous research, we show that for every fixed ε>0, approximating the reoptimization problem with respect to a given (1+ε)-approximation is as hard as approximating the Steiner tree problem itself. In contrast, with a given optimal solution to the original problem it is known that one can obtain considerably improved results. Furthermore, we provide a new algorithmic technique that, with some further insights, allows us to obtain improved performance guarantees for Steiner tree reoptimization with respect to all remaining local modifications that have been considered in the literature: a required node of degree more than one becomes a Steiner node; a Steiner node becomes a required node; the cost of one edge is increased

    Reoptimization of the Shortest Common Superstring Problem

    Get PDF
    A reoptimization problem describes the following scenario: given an instance of an optimization problem together with an optimal solution for it, we want to find a good solution for a locally modified instance. In this paper, we deal with reoptimization variants of the shortest common superstring problem (SCS) where the local modifications consist of adding or removing a single string. We show the NP-hardness of these reoptimization problems and design several approximation algorithms for them. First, we use a technique of iteratively using any SCS algorithm to design an approximation algorithm for the reoptimization variant of adding a string whose approximation ratio is arbitrarily close to 8/5 and another algorithm for deleting a string with a ratio tending to 13/7. Both algorithms significantly improve over the best currently known SCS approximation ratio of 2.5. Additionally, this iteration technique can be used to design an improved SCS approximation algorithm (without reoptimization) if the input instance contains a long string, which might be of independent interest. However, these iterative algorithms are relatively slow. Thus, we present another, faster approximation algorithm for inserting a string which is based on cutting the given optimal solution and achieves an approximation ratio of 11/6. Moreover, we give some lower bounds on the approximation ratio which can be achieved by algorithms that use such cutting strategie
    corecore