
Algorithmica (2011) 61:227–251
DOI 10.1007/s00453-010-9419-8

Reoptimization of the Shortest Common Superstring
Problem

Davide Bilò · Hans-Joachim Böckenhauer ·
Dennis Komm · Richard Královič ·
Tobias Mömke · Sebastian Seibert · Anna Zych

Received: 4 August 2009 / Accepted: 31 May 2010 / Published online: 15 June 2010
© Springer Science+Business Media, LLC 2010

Abstract A reoptimization problem describes the following scenario: given an in-
stance of an optimization problem together with an optimal solution for it, we want
to find a good solution for a locally modified instance.

In this paper, we deal with reoptimization variants of the shortest common super-
string problem (SCS) where the local modifications consist of adding or removing a
single string. We show the NP-hardness of these reoptimization problems and design

This work was partially supported by SNF grant 200021-121745/1 and SBF grant C 06.0108 as part
of the COST 293 (GRAAL) project funded by the European Union. An extended abstract of this
paper appeared at CPM 2009 [D. Bilò, H.-J. Böckenhauer, D. Komm, R. Královič, T. Mömke,
S. Seibert, A. Zych, Reoptimization of the shortest common superstring problem. In: Proc. of the
20th Annual Symposium on Combinatorial Pattern Matching (CPM 2009). LNCS, vol. 5577,
pp. 78–91. Springer, Berlin (2009) (extended abstract)].

D. Bilò
Department of Computer Science, University of L’Aquila, L’Aquila, Italy
e-mail: davide.bilo@univaq.it

H.-J. Böckenhauer · D. Komm (�) · R. Královič · T. Mömke · A. Zych
Department of Computer Science, ETH Zurich, Zurich, Switzerland
e-mail: dennis.komm@inf.ethz.ch

H.-J. Böckenhauer
e-mail: hjb@inf.ethz.ch

R. Královič
e-mail: richard.kralovic@inf.ethz.ch

T. Mömke
e-mail: tobias.moemke@inf.ethz.ch

A. Zych
e-mail: anna.zych@inf.ethz.ch

S. Seibert
Department of Computer Science, RWTH Aachen University, Aachen, Germany
e-mail: seibert@cs.rwth-aachen.de

mailto:davide.bilo@univaq.it
mailto:dennis.komm@inf.ethz.ch
mailto:hjb@inf.ethz.ch
mailto:richard.kralovic@inf.ethz.ch
mailto:tobias.moemke@inf.ethz.ch
mailto:anna.zych@inf.ethz.ch
mailto:seibert@cs.rwth-aachen.de

228 Algorithmica (2011) 61:227–251

several approximation algorithms for them. First, we use a technique of iteratively us-
ing any SCS algorithm to design an approximation algorithm for the reoptimization
variant of adding a string whose approximation ratio is arbitrarily close to 8/5 and
another algorithm for deleting a string with a ratio tending to 13/7. Both algorithms
significantly improve over the best currently known SCS approximation ratio of 2.5.
Additionally, this iteration technique can be used to design an improved SCS approxi-
mation algorithm (without reoptimization) if the input instance contains a long string,
which might be of independent interest. However, these iterative algorithms are rela-
tively slow. Thus, we present another, faster approximation algorithm for inserting a
string which is based on cutting the given optimal solution and achieves an approx-
imation ratio of 11/6. Moreover, we give some lower bounds on the approximation
ratio which can be achieved by algorithms that use such cutting strategies.

Keywords Reoptimization · Shortest Common Superstring · Approximation
algorithms

1 Introduction

In classical algorithmics, one is interested in finding good feasible solutions to input
instances about which nothing is known in advance. Unfortunately, many practically
relevant problems are computationally hard, and so different approaches such as ap-
proximation algorithms or heuristics are used for computing good approximations
for optimal solutions. In the real world, however, some extra knowledge about the
instance at hand might be already known. The concept of reoptimization employs a
special kind of additional knowledge: under the assumption that we are given an in-
stance of an optimization problem together with an optimal solution for it, we want
to efficiently compute a good solution for a locally modified input instance.

This concept of reoptimization was mentioned for the first time in [15] in the con-
text of postoptimality analysis for some scheduling problem. Postoptimality analy-
sis deals with the related question of how much an instance may be altered without
changing the set of optimal solutions, see, e.g., [19]. Since then, the concept of reop-
timization has been successfully applied to various problems like the traveling sales-
man problem [1, 3, 7, 8], the Steiner tree problem [4, 10, 11], the knapsack problem
[2], and various covering problems [5]. A survey of reoptimization problems can be
found in [9].

In this paper, we investigate some reoptimization variants of the shortest common
superstring problem, SCS for short. Given a substring-free set of strings, the SCS
asks for a shortest common superstring of S, i.e., for a minimum-length string con-
taining all strings from S as substrings. The SCS is one of the most prominent hard
problems in stringology with many applications, e.g., in computational biology where
it is used for modeling certain aspects of the DNA fragment assembly problem (see,
for instance, [6, 16] for more details). The SCS is known to be NP-hard [12] and even
APX-hard [20]. Many approximation algorithms have been devised for the SCS, the
most popular being a greedy algorithm proposed by Tarhio and Ukkonen [18] which
can be proven to achieve an approximation ratio of 3.5 [13], but is conjectured to be

Algorithmica (2011) 61:227–251 229

2-approximative. The currently best known approximation algorithms achieve a ratio
of 2.5 [14, 17].

In this paper, we deal with reoptimizing the SCS under the local modifications
of adding or removing a single string. Our main results are the following. We show
that both reoptimization versions of the SCS are NP-hard and propose some approx-
imation algorithms for them. First, we devise an iteration technique for improving
the approximation ratio of any SCS algorithm in the presence of a long string in the
input which might be of independent interest. Then, we use this iteration technique
to design an algorithm for SCS reoptimization which gives an approximation ratio
arbitrarily close to 1.6 for adding a string and a ratio arbitrarily close to 13/7 for
removing a string. This algorithm uses some known approximation algorithm for the
original SCS (without reoptimization), and its approximation ratio depends on the
ratio of this SCS algorithm. Thus, any improvement over the best known ratio of 2.5
for the SCS immediately yields also an improvement of these reoptimization results.
Since the running time of this iterative algorithm is rather high, we also analyze a
simple and fast reoptimization algorithm, called ONECUT, for adding a string and
prove an approximation ratio of 11/6 for it.

The paper is organized as follows. In Sect. 2, we formally define the reoptimization
variants of the SCS and fix our notation. Section 3 is devoted to the hardness results,
in Sect. 4, we present the iterative reoptimization algorithms, and Sect. 5 contains the
analysis of the fast approximation algorithm for adding a string. Finally, in Sect. 6 we
give lower bounds for generalizations of the algorithm ONECUT and prove that 11/6
is a tight bound on the approximation ratio of ONECUT, and conclude the paper with
some open problems in Sect. 7.

2 Preliminaries

We start with defining some notations for dealing with strings that we will use
throughout the paper. By λ we denote the empty string. The concatenation of two
strings s and t will be written as s · t , or as st for short. Let s, t , x, and y be some
(possibly empty) strings such that t = xsy. Then s is a substring of t (we write s � t)
and t is a superstring of s. If x is empty, we say that s is a prefix of t , if y is empty,
then s is a suffix of t . We say that a set S of strings is substring-free if s �� t , for all
s, t ∈ S.

For two strings s1 and s2, the overlap ov(s1, s2) of s1 and s2 is the maximum-
length proper suffix of s1 that is also a proper prefix of s2. A prefix [suffix] of s is
proper if and only if it is not empty and not equal to s. If no such string exists, we
define ov(s1, s2) to be the empty string λ. The corresponding prefix of s1, i.e., the
string p such that s1 = p · ov(s1, s2), is denoted by pref(s1, s2). The merge of s1 and
s2 is defined as merge(s1, s2) := pref(s1, s2) · s2. We inductively extend this notion of
merge to more than two strings by defining

merge(s1, . . . , sm) = merge(merge(s1, . . . , sm−1), sm).

We call a string s periodic with period π , if there exist a suffix π and a prefix π

of the string π and some k ∈ N such that s = π ·πk · π . In this case, we also write
s � π∞.

230 Algorithmica (2011) 61:227–251

The problem we are investigating in this paper is to find the shortest common
superstring for a given set S = {s1, . . . , sm} of strings. If S is substring-free, then
the shortest common superstring can be unambiguously described by the order in
which the strings appear in it: if si1, . . . , sim is the order of appearance in a shortest
superstring t , then t = merge(si1, . . . , sim). This observation leads to the following
formal definition of the problem.

Definition 1 The shortest common superstring problem, SCS for short, is the fol-
lowing optimization problem: Given a substring-free set of strings S = {s1, . . . , sm},
the feasible solutions are all permutations (si1 , . . . , sim) of S. For any feasible solu-
tion Sol = (si1 , . . . , sim), the cost is |Sol| = |merge(si1 , . . . , sim)|, i.e., the length of
the shortest superstring for S containing the strings from S in the order as given by
Sol. The goal is to find a permutation minimizing the length of the corresponding
superstring.

In this paper, we deal with two reoptimization variants of the SCS. The local mod-
ifications we consider here are adding a string to our set of input strings or deleting
one string from it. The corresponding reoptimization problems can be formally de-
fined as follows.

Definition 2 The input for the SCS reoptimization problem with adding a string,
SCS+ for short, consists of a substring-free set SO = {s1, . . . , sm} of strings, an opti-
mal SCS -solution OptO for it, and a string snew /∈ SO such that also SN = SO ∪{snew}
is substring-free.

Analogously, the input for the SCS reoptimization problem with removing a string,
SCS– for short, consists of a substring-free set of strings SO = {s1, . . . , sm}, an opti-
mal SCS-solution OptO for it, and a string sold ∈ SO . In this case, SN = SO \ {sold}.

For both problems, the goal is to find an optimal SCS-solution OptN for SN .

In addition to the maximum overlap and merge as defined above, we also consider
the overlap and merge inside a given solution. Let Sol be some solution for an SCS
instance given by a set of strings S and let s and t be two strings from S which are not
necessarily overlapping in Sol. Then ovSol(s, t) denotes the overlap of s and t in Sol,
and we use mergeSol(s, t) = merge(s, . . . , t) as an abbreviation for the merge of s

and t together with all input strings lying between them in Sol. By prefMSol(s, t), we
denote the prefix of mergeSol(s, t) such that prefMSol(s, t) · t = mergeSol(s, t). Note
that s may be a proper prefix of prefMSol(s, t). For Sol = OptO , we use the nota-
tions ovO , mergeO , and prefMO for ovOptO , mergeOptO

, and prefMOptO
, respectively.

Analogously, we use ovN , mergeN , and prefMN for Sol = OptN . Note that, for two
consecutive strings s and t inside some solution Sol, mergeSol(s, t) = merge(s, t),
but this equality does not necessarily hold for non-consecutive strings.

3 Hardness Results

In this section, we show that the considered reoptimization problems are NP-hard.
Similarly to [9], we use a polynomial-time Turing reduction since we rely on repeat-
edly applying reoptimizations.

Algorithmica (2011) 61:227–251 231

Fig. 1 An optimal solution for the easily solvable instance I ′

Theorem 1 The problems SCS+ and SCS– are NP-hard.

Proof We split the reduction into several steps. Given an input instance I for SCS,
we define a corresponding easily solvable instance I ′. Then we show that I ′ is in-
deed solvable in polynomial time. Finally, we show how to use polynomially many
reoptimization steps in order to transform the optimal solution for I ′ into an optimal
solution for I .

At first, we consider the local modification of adding strings. For any SCS instance
I , the easy instance I ′ consists of no strings. Obviously, the empty string is an optimal
solution for I ′. Now, I ′ can be transformed into any instance I by adding all strings
from I one after the other. Thus, SCS+ is NP-hard.

Now, let us consider the local modification of removing strings. Let I be an in-
stance for SCS that consists of m strings s1, . . . , sm. For any i, let s

p
i be si without

the last symbol.
We construct I ′ as follows. Let #1, . . . ,#m be m different special symbols that

do not appear in I . Then, we introduce the set of strings S′ := {s′
1, . . . , s

′
m}, where

s′
i := #i s

p
i , for each i ∈ {1, . . . ,m}. Let the instance I ′ be the set of the strings from I

together with the strings from S′. It is clear that m local modifications, each removing
one of the new strings, transform I ′ into I . Thus, it only remains to show that I ′
is efficiently solvable. To this end, we claim that no algorithm can do better than
alternating the new and the old strings as depicted in Fig. 1.

We now formally prove the correctness of the construction above. First, observe
that the constructed instance is substring-free. The solution obtained by alternating
the new and old strings as in Fig. 1 has length m + ∑m

i=1 |si |. We need to show that
this is optimal, i.e., no superstring of S′ can be shorter.

Let us consider any common superstring t for I ′. We decompose t into

w0w
′
1w1w

′
2w2 . . .w′

mwm

such that each w′
i consists of exactly one special symbol. Hence, we can write that

w′
i = #φi

for some permutation φ of integers from 1 to m. Since no string from I

contains any special symbols, it is contained in at least one of the strings wi between
the special symbols. Let ki be the number of strings from I that are contained in wi ;
it holds that

∑m
i=0 ki = m. For any i ≥ 1, w′

iwi is a superstring of some ki words
from I and the word from I ′ that contains w′

i , i.e., s′
φi

= #φi
s
p
φi

. Equivalently, wi is a

superstring of s
p
φi

and some ki words from I such that wi starts with s
p
φi

.
Note that any common superstring t1 of a substring-free set P of p strings has

length at least |w| + (p − 1), where w ∈ P is the first string in t1 and therefore

|t1| ≥ |w| + p − 1. (1)

232 Algorithmica (2011) 61:227–251

Applying (1), we have a lower bound on the length of wi for any i ≥ 1:

|wi | ≥ |sp
φi

| + ki = |sφi
| − 1 + ki . (2)

Obviously, the length of w0 cannot be less than the number of strings it contains, i.e.,
|w0| ≥ k0.

Hence, we have a lower bound on the length of t :

|t | = m +
m∑

i=0

|wi | ≥ m +
m∑

i=0

ki +
m∑

i=1

(|sφi
| − 1) ≥ m + m − m +

m∑

i=1

|si |. (3)

The lower bound of (3) matches exactly the upper bound of the solution in Fig. 1.
Therefore, we conclude that SCS– is NP-hard. �

4 Iterative Algorithms for Adding or Removing a String

Consider any polynomial approximation algorithm A for SCS with approximation
ratio γ . We show how to construct a polynomial reoptimization algorithm for SCS+
with approximation ratio arbitrarily close to (2γ − 1)/γ . Furthermore, we show a
similar result for SCS– with approximation ratio (3γ − 1)/(γ + 1). Since the best
known polynomial approximation algorithm for SCS gives γ = 2.5, see [17], we
obtain an approximation ratio arbitrarily close to 8/5 = 1.6 for SCS+ and an approx-
imation ratio arbitrarily close to 13/7 < 1.86 for SCS–.

The core part of our reoptimization algorithms is an approximation algorithm for
SCS that works well if the input instance contains at least one long string. More
precisely, let S = {s1, . . . , sm} be an instance of SCS such that μ0 ∈ S is a longest
string in S, and let |μ0| = α0|Opt|, for some α0 > 0, where Opt is an optimal solution
of S.

Algorithm A1 guesses the leftmost string l1 and the rightmost string r1 which over-
lap with μ0 in the string corresponding to Opt, together with the respective overlap
lengths. Afterwards, it computes a new instance S1 by eliminating all substrings of
mergeOpt(l1,μ0, r1) from the instance S, calls the algorithm A on S1 and appends
merge(l1,μ0, r1) to the approximate solution returned by A.

Now we generalize A1 by iterating this procedure k times. For an arbitrary con-
stant k, we construct a polynomial-time approximation algorithm Ak for SCS that
computes a solution of length at most

(

1 + γ k(γ − 1)

γ k − 1
(1 − α0)

)

|Opt|.

For every i ∈ {1, . . . , k}, we define strings li , ri , and μi as follows: Let li be the
leftmost string that overlaps with μi−1 in Opt. If there is no such string, li := μi−1.
Similarly, let ri be the rightmost string that overlaps with μi−1 in Opt; if no such
string exists, ri := μi−1. We define μi as mergeOpt(li ,μi−1, ri).

Algorithm Ak uses exhaustive search to find strings li , ri and μi for every i ∈
{1, . . . , k}. This can be done by assigning every possible string of S to li and ri , and

Algorithmica (2011) 61:227–251 233

trying every possible overlap between li , μi−1 and ri . For every feasible candidate
set of strings and for every i, the algorithm computes the candidate solution Soli
corresponding to the string merge(ui,μi), where ui is the string corresponding to the
result of algorithm A on the input instance Si obtained by removing all substrings of
μi from S. Algorithm Ak then outputs the best solution among all candidate solutions.

Theorem 2 Let n be the total length of all strings in S, i.e., n = ∑m
j=1 |sj |. Algorithm

Ak works in time O(m2kn2k(kmn+kT (m,n))), where T (m,n) is the time complexity
of algorithm A on an input instance with at most m strings of total length at most n.

Proof Algorithm Ak needs to test all O(m2k) possibilities for choosing 2k strings
l1, r1, . . . , lk, rk from the m strings of S. For every such possibility, it must test all
possible overlaps between the strings in order to obtain strings μ1, . . . ,μk . Hence,
the lengths of 2k overlaps must be tested. As the length of each overlap can be in the
range from 0 to n, there are O(n2k) possibilities. For each of the O(m2kn2k) possi-
bilities, Ak tests if it is feasible (this can be done in time O(n)) and computes the
corresponding k candidate solutions. To compute one candidate solution Soli , the in-
stance Si is prepared in time O(mn) and algorithm A is executed in time T (m,n). �

Theorem 3 Algorithm Ak finds a solution of S of length at most

(

1 + γ k(γ − 1)

γ k − 1
(1 − α0)

)

|Opt|.

Proof Assume that Ak outputs a solution of length greater than (1 + β)|Opt|, for
some β > 0. In the analysis, we focus on the part of the computation of Ak where
the correct assignment of strings li , ri , and μi is analyzed. By our assumption, every
candidate solution Soli has length greater than (1 +β)|Opt|. The solution Soli corre-
sponds to the string merge(ui,μi), where |μi | = αi |Opt|, for some αi > 0, and ui is
the result of algorithm A on the input instance Si . Hence, |Soli | ≤ |ui | + |μi |.

It is not difficult to check that, if we remove all substrings of μi from Opt, we
obtain a feasible solution for Si of length at most |Opt| − |μi−1| = (1 − αi−1)|Opt|:
by the definition of μi , we have removed every string that overlapped with μi−1.
Hence, |ui | ≤ γ (1 − αi−1)|Opt|, and due to

(1 + β)|Opt| < |Soli | ≤ (γ (1 − αi−1) + αi)|Opt|,

we conclude that

αi > 1 + β − γ + γ αi−1. (4)

Solving the system of recurrent equations (4) yields

αk > (1 + β − γ)
γ k − 1

γ − 1
+ γ kα0. (5)

234 Algorithmica (2011) 61:227–251

Table 1 Ratios of Ak for different combinations of |μ0|, k, and γ

LENGTH OF μ0

1/2 · |Opt| 1/4 · |Opt| 1/5 · |Opt|
RATIO γ RATIO γ RATIO γ

k 2.0 2.5 3.5 2.0 2.5 3.5 2.0 2.5 3.5

1 2.0 2.25 2.75 2.5 2.86 ≈3.63 2.6 3.0 3.8

2 ≈1.67 ≈1.89 ≈2.36 2.0 ≈2.34 ≈3.04 ≈2.07 ≈2.43 ≈3.18

3 ≈1.57 ≈1.80 ≈2.28 ≈1.86 ≈2.2 ≈2.92 ≈1.91 ≈2.28 ≈3.05

5 ≈1.52 ≈1.76 ≈2.26 ≈1.77 ≈2.14 ≈2.89 ≈1.83 ≈2.21 ≈3.00

10 ≈1.5 ≈1.75 ≈2.25 ≈1.75 ≈2.13 ≈2.88 ≈1.80 ≈2.20 ≈3.00

Since μi is a substring of Opt for every i, it holds that αk ≤ 1. Putting this together
with (5) yields

β ≤ γ k(γ − 1)

γ k − 1
(1 − α0). �

In Table 1, we give some examplary ratios of Ak when using up to 10 iterations
and the length of the longest string is either 1/2, 1/4, or 1/5 of the length of the
optimal solution. It is clear that the resulting approximation ratio highly depends on
A’s approximation ratio. As already mentioned, the best provable ratio is 2.5 using
the algorithm of [17]. However, [18] introduces a much faster greedy algorithm which
is conjectured to be a 2-approximation, although only a ratio of 3.5 is proven [13].
Due to this fact, we calculated the resulting ratios for both of them.

4.1 Reoptimization of SCS+

We now employ the iterative SCS algorithm described above for designing an ap-
proximation algorithm for SCS+. For every k, we define the algorithm A+

k for SCS+
as follows. Given an input instance SO , its optimal solution OptO , and a new string
snew , the algorithm A+

k returns the solution Sol1 corresponding to merge(OptO, snew)

or the solution Sol2 computed by Ak for the input instance SN := SO ∪ {snew},
whichever is better.

Theorem 4 Algorithm A+
k yields a solution of length at most

2γ k+1 − γ k − 1

γ k+1 − 1
|OptN |.

Proof Let |snew| = α|OptN |. Then |Sol1| ≤ (1+α)|OptN |. Since SN contains a string
of length at least α|OptN |, Theorem 3 ensures that

|Sol2| ≤
(

1 + γ k(γ − 1)

γ k − 1
(1 − α)

)

|OptN |.

Algorithmica (2011) 61:227–251 235

Hence, the minimum of |Sol1| and |Sol2| is maximal if

(1 + α)|OptN | =
(

1 + γ k(γ − 1)

γ k − 1
(1 − α)

)

|OptN |,

which happens if

α = γ k+1 − γ k

γ k+1 − 1
.

In this case, A+
k yields a solution of length at most

(1 + α)|OptN | = 2γ k+1 − γ k − 1

γ k+1 − 1
|OptN |. �

By choosing k sufficiently large, the approximation ratio of A+
k can be made arbi-

trarily close to (2γ − 1)/γ . Algorithm A+
k is polynomial for every k, but the degree

of the polynomial grows with k.

4.2 Reoptimization of SCS–

Similarly as for the case of SCS+, we define algorithm A−
k for SCS– as follows.

Given an input instance SO , its optimal solution OptO and a string sold ∈ SO to be
removed, A−

k returns the solution Sol1 obtained from OptO by leaving out sold , or
the solution Sol2 computed by Ak for input instance SN := SO \ {sold}, whichever is
better.

Theorem 5 Algorithm A−
k yields a solution of length at most

3γ k+1 − γ k − 2

γ k+1 + γ k − 2
|OptN |.

Proof Let l ∈ SO (r ∈ SO) be the string that immediately precedes [follows] sold in
OptO , respectively. We focus on the case where both l and r exist, the other cases are
analogous. It is easy to see that

|Sol1| ≤ |OptO | − |sold | + |ov(l, sold)| + |ov(sold , r)|.

Since augmenting OptN with sold yields a feasible solution for SO , we have |OptO | ≤
|OptN | + |sold |.

Without loss of generality, assume that |ov(sold , r)| ≤ |ov(l, sold)| = α|OptN | for
some α < 1. Hence, |Sol1| ≤ (1 + 2α)|OptN |. Furthermore, SN contains the string l

of length at least α|OptN |, so Theorem 3 ensures that

|Sol2| ≤
(

1 + γ k(γ − 1)

γ k − 1
(1 − α)

)

|OptN |.

236 Algorithmica (2011) 61:227–251

The minimum of |Sol1| and |Sol2| is maximal if

(1 + 2α)|OptN | =
(

1 + γ k(γ − 1)

γ k − 1
(1 − α)

)

|OptN |,

which happens if

α = γ k+1 − γ k

γ k+1 + γ k − 2
.

In this case, A−
k yields a solution of length at most

3γ k+1 − γ k − 2

γ k+1 + γ k − 2
|OptN |. �

Similarly as in the case of SCS+, the approximation ratio of A−
k can be made

arbitrarily close to (3γ − 1)/(γ + 1) by choosing k sufficiently large.

5 One-Cut Algorithm for Adding a String

In this section, we present a simple and fast algorithm ONECUT for SCS+ which
cuts the given solution at the best position possible and inserts the new string at this
position. We prove that this algorithm achieves an 11/6-approximation ratio. As a
first step, ONECUT preprocesses the old optimal solution in such a way that it moves
every string as much to the left as possible. After that, no string can be moved farther
to the left; we call such a solution maximally compressed. The algorithm cuts OptO at
all positions one by one. Recall that the given optimal solution OptO is represented by
an ordering of the input strings, thus cutting OptO at some position yields a partition
of the input strings into two sub-orderings. The two corresponding strings are then
merged with snew in between. The algorithm returns a shortest of the strings obtained
in this manner, see Algorithm 1.

Algorithm 1: ONECUT

Input: A set of strings S = {s1, . . . , sm}, an optimal solution
OptO = (s1, . . . , sm) for S, and a string snew

Preprocess(OptO);
for i ∈ {0, . . . ,m} do

Let Solutioni := (s1, . . . , si , snew, si+1, . . . , sm);
end
Output: A best of the obtained solutions Solutioni , for 0 ≤ i ≤ m

Note that the preprocessing step of ONECUT is necessary only for the analysis of
the approximation ratio.

Algorithmica (2011) 61:227–251 237

(a) The new optimal solution OptN (in the case that L1 precedes l).

(b) The old optimal solution OptO (in the case that Li �= λ).

Fig. 2 The new and old optimal solution

Theorem 6 The algorithm ONECUT is an 11/6-approximation algorithm for SCS+
running in time O(n · m) for inputs consisting of m strings of total length n over a
constant-size alphabet.

Proof We first analyze the running time of ONECUT. The preprocessing can be done
by successively finding the maximum overlap of merge(s1, . . . , si) and si+1. This is
possible in O(n · m) time using standard pattern matching techniques. Then, using
suffix trees, we can compute all pairwise overlaps of {snew, s1, . . . , sm} in time O(n ·
m), see e.g. [6]. Using these precomputed overlaps, each of the m + 1 iterations
of ONECUT can be performed in constant time. Thus, the overall running time of
ONECUT is also in O(n · m).

We now show that ONECUT provides an approximation ratio of 11/6 for SCS+.
The proof is constructed in the following manner. One by one, we eliminate cases in
which we can prove a ratio of 11/6 for ONECUT, until all cases are covered. Each
time we prove a ratio of 11/6 under some condition, we can deal in the following
with the remaining cases under the assumption that this condition does not hold. In
this way, we construct a list of assumptions which eventually lead to some final case.

Lemma 1 If the added string snew has a length of |snew| ≤ 5
6 |OptN |, then the algo-

rithm ONECUT provides an 11/6-approximation ratio.

Proof Consider the trivial solution of appending snew at the end of OptO . This solu-
tion is taken into account by ONECUT. Note that if |snew| ≤ (5/6) · |OptN | then this
trivial solution is already an 11/6-approximation. �

Lemma 1 shows that the desired approximation ratio can be reached whenever the
string snew is relatively short. This leads to the first assumption.

Assumption 1 The length of the new string is |snew| > 5
6 |OptN |.

238 Algorithmica (2011) 61:227–251

Under Assumption 1, we now look at the strings surrounding snew in an arbitrary,
but fixed optimal solution OptN of the modified instance. For this, let l be the string
directly preceding snew in OptN and let r be the direct successor of snew in OptN (see
Fig. 2(a), the additional strings L1, . . . ,Lm−1 in Fig. 2 will be considered in a later
stage of the analysis). If there is no predecessor [successor] of snew in OptN , then l

[r] is defined to be the empty string. Lemma 2 proves that we may assume, without
loss of generality, that l and r almost completely cover the string snew .

Lemma 2 If ONECUT returns an 11/6-approximation for all instances where there
is at most one letter from snew not covered in OptN by either l or r , then it returns an
11/6-approximation in general.

Proof Assume that ONECUT returns an 11/6-approximation for any instance where
there is at most one letter in snew not covered in OptN by either l or r , and let us
analyze the case when snew = ovN(l, snew) · μ · ovN(snew, r) for some string μ such
that |μ| > 1. Consider an input instance for ONECUT given by OptO and s′

new , where
s′
new is snew with μ replaced by a new symbol #. Let Opt′N be a solution for OptO and

s′
new , obtained by substituting snew with s′

new in OptN . Note that Opt′N is optimal: If
there was a better solution, substitution of s′

new with snew would give an improvement
of OptN for the initial instance. Moreover, |Opt′N | = |OptN | − |μ| + 1. Let Sol′ be
a solution found by ONECUT applied to OptO and s′

new . The solution Sol′ is by
assumption of the lemma an 11/6-approximation of Opt′N . We can obtain a feasible
solution Sol for the initial instance (OptO , snew) by substituting s′

new with snew . Then
the following holds:

|Sol| ≤ |Sol′| + |μ| − 1 ≤ 11

6
|Opt′N | + |μ| − 1

≤ 11

6
|OptN | − 11

6
(|μ| − 1) + |μ| − 1

≤ 11

6
|OptN |.

Now it remains to observe that ONECUT applied to (OptO, snew) considers Sol
among other solutions. �

In what follows, we can therefore make a second assumption stating that the two
strings l and r as defined above cover snew almost completely.

Assumption 2 In OptN , at most one letter of the string snew is not covered by either
l or r .

Under this assumption, we show the following lemma which bounds the maximal
length of the inserted string snew .

Lemma 3 Assumption 2 implies that either |snew| ≤ 1
2 |OptN | + |ov(l, snew)| or

|snew| ≤ 1
2 |OptN | + |ov(snew, r)|.

Algorithmica (2011) 61:227–251 239

Proof Assume to the contrary that

|snew| > 1

2
|OptN | + |ov(l, snew)| and |snew| > 1

2
|OptN | + |ov(snew, r)|.

Summing up these two inequalities gives

2|snew| > |OptN | + |ov(l, snew)| + |ov(snew, r)|.
According to Assumption 2, this implies |snew| > |OptN | − 1, contradicting the
substring-freeness of the new instance. �

By Lemma 3 and Assumption 2, without loss of generality, we may assume the
following for the rest of the proof.

Assumption 3 The added string snew has a length of |snew| ≤ 1
2 |OptN | +

|ov(l, snew)|.
From Assumption 3 and the fact that |l| ≥ |ov(l, snew)|, we obtain |snew| ≤

1
2 |OptN | + |l|. Together with Assumption 1 this implies the following:

Assumption 4 The length of l can be bounded from below by |l| ≥ 1
3 |OptN |.

We now enumerate the strings in OptO according to the position of l as shown in
Fig. 2(b), i.e., OptO has the following composition

OptO = (Lj+1, . . . ,Lm−1, l,L1, . . . ,Lj)

for some j ∈ {0, . . . ,m− 1}. In particular, let L1 be the direct successor of l in OptO .
If l has no successor in OptO , let L1 = λ be the empty string. In this case, the strings
preceding l in OptO are L2, . . . ,Lm, and L1 is located at the end of OptO .1

In Lemma 4, we resolve the case where L1 follows snew in OptN .

Lemma 4 Under Assumptions 1, 3, and 4, if L1 is located after snew in OptN , then
ONECUT returns an 11/6-approximation.

Proof Consider the solution Sol1 = merge(Lj+1, . . . ,Lm−1, l, snew,L1, . . . ,Lj),
where snew is inserted between l and L1, as presented in Fig. 3. Since L1 is located
after snew in OptN , the size of merge(l, snew,L1) is bounded from above by the size
of OptN . By Assumption 4 it follows that

|Sol1| ≤ |OptO | − |mergeO(l,L1)| + |merge(l, snew,L1)|
≤ |OptO | − |mergeO(l,L1)| + |OptN |

≤ 2|OptN | − |l| ≤
(

2 − 1

3

)

|OptN | ≤ 11

6
|OptN |

1Note that if L1 = λ, there are m − 1 strings preceding l in OptO , and we label them L2, . . . ,Lm.

240 Algorithmica (2011) 61:227–251

Fig. 3 The solution Sol1

Fig. 4 Periodicity of l and L1

which gives an 11/6-approximation ratio. �

If L1 = λ, we may assume that it follows snew in OptN . Thus, we can add the
following assumption.

Assumption 5 L1 is non-empty and it precedes snew in OptN .

For the remainder of the proof, we need to analyze the periodic structure of
the strings l and L1. To this end, we introduce the following notation. We define
πL = AB , where A = prefMN(L1, l) and B = prefMO(l,L1) = pref(l,L1). Note
that L1 = (AB)gp1 and l = (BA)hp2 for some natural numbers g,h, where p1 and
p2 denote some prefixes of AB and BA, respectively (see Fig. 4). Note that g and h

might well be 0. Thus, L1, l � π∞
L and

mergeN(L1, l) � π∞
L . (6)

Let γL denote the prefix of the superstring corresponding to OptN which precedes L1
(see Fig. 2(a)).

We now distinguish two cases according to the length of πL. The next lemma
shows that we can guarantee our desired approximation ratio in case πL is long.

Lemma 5 Assumption 5 and |πL| ≥ 1
6 |OptN |− |γL| imply an approximation ratio of

11/6 for the algorithm ONECUT.

Proof Again, let us consider solution Sol1 = merge(Lj+1, . . . ,Lm−1, l, snew,L1, . . . ,

Lj). The following three equalities (see Fig. 2)

Algorithmica (2011) 61:227–251 241

1. |mergeO(l,L1)| = |l| + |L1| − |ovO(l,L1)|,
2. |pref(l, snew)| = |prefMN(l, snew)| ≤ |OptN | − |γL| − |prefMN(L1, l)| − |snew|,

and
3. |l| − |ovO(l,L1)| = |prefMO(l,L1)|
give the following bound on the cost of Sol1:

|Sol1| ≤ |OptO | − |mergeO(l,L1)| + |snew| + |pref(l, snew)| + |L1| − |ov(snew,L1)|
≤ 2|OptN | − |l| − |L1| + |ovO(l,L1)| + |snew| − |γL|

− |prefMN(L1, l)| − |snew| + |L1|
≤ 2|OptN | − (|prefMO(l,L1)| + |prefMN(L1, l)|

︸ ︷︷ ︸
|πL|

) − |γL|.

If |πL| ≥ 1
6 |OptN | − |γL|, then |Sol1| ≤ 11

6 |OptN |. �

In Lemma 5, we have handled the case that the period πL is relatively long, yield-
ing the following assumption for the rest of the proof.

Assumption 6 The length of the period πL is |πL| < 1
6 |OptN | − |γL|.

To proceed with the proof, we now need to look at the first string Li after L1 in
OptO which is not periodic with period πL, i.e., which satisfies Li �� π∞

L . If there is
no such string, let Li = λ be the empty string. Furthermore, let L = mergeO(l,Li−1).

We now prove an approximation ratio of 11/6 for ONECUT for the case in which
Li follows snew in OptN . Note that this also holds if Li is empty. To this end, we first
need the following lemma (which does not depend on the position of Li in OptN).

Lemma 6 Under Assumptions 4, 5, and 6,

|merge(L, snew,Li)| ≤ |merge(l, snew,Li)| + |πL|.

Proof Note that, due to Assumptions 4 and 6, we have |l| > 2|πL|. We first prove
that

|merge(L,q)| ≤ |merge(l, q)| + |πL|, (7)

for an arbitrary string q .
Since both L and l are periodic with period πL, to prove the claim it suffices

to show that stretching merge(l, q) by one period length yields a superstring of
merge(L,q). More precisely, since Li−1 � π∞

L = (BA)∞, we can represent it as
Li−1 = si−1(BA)f pi−1, for some f ∈ N, si−1 being a suffix and pi−1 being a prefix
of BA. Since L is maximally compressed in OptO , si−1 falls into the first period
BA of l in OptO (see Fig. 5). Consider string l′ obtained from string merge(l, q) by
shifting q to the right by one period BA, as shown in Fig. 5. If |ov(l, q)| < |πL|, then
l′ is constructed as the concatenation of a string l′′ � (πL)∞ and q , such that l is a
prefix of l′′ and |l′| = |merge(l, q)| + |πL|.

242 Algorithmica (2011) 61:227–251

Fig. 5 The situation in the
proof of Lemma 6

Fig. 6 The solution Sol2

The string L must be a prefix of l′. Otherwise, in OptO , string Li−1 ends more
than |BA| away from the end of l, and this implies l being a substring of Li−1 (note
that si−1 falls into the first period BA of l in OptO). Therefore |merge(L,q)| ≤ |l′| =
|merge(l, q)| + |πL|.

Choosing q = merge(snew,Li), the claim of the lemma follows immediately
from (7). �

We are now ready to prove the claimed approximation ratio of 11/6 for the case
when Li follows snew in OptN .

Lemma 7 Under Assumptions 1, 2, 3, 4, 5, and 6, and if Li follows snew in OptN ,
ONECUT is an 11/6-approximation algorithm for SCS+.

Proof We consider the solution obtained by inserting snew before Li in OptO , that is,

Sol2 = merge(Lj+1, . . . ,Li−1, snew,Li, . . . ,Lj)

(see Fig. 6). By Lemma 6, we can bound the length of the middle part of Sol2 in the
following way:

|merge(L, snew,Li)| ≤ |merge(l, snew,Li)| + |πL| ≤ |OptN | + |πL|. (8)

The bound for Sol2 follows from Assumptions 4, 6, and (8):

|Sol2| ≤ |OptO | − |mergeO(L,Li)| + |merge(L, snew,Li)|

Algorithmica (2011) 61:227–251 243

≤ |OptN | − |l| + |OptN | + |πL|

≤ 2|OptN | + 1

6
|OptN | − |γL| − 1

3
|OptN | ≤ 11

6
|OptN |. �

Thus, we can make the following assumption for our final case. (In the case where
Li = λ, we may assume that Li follows snew in OptN .)

Assumption 7 Li is non-empty and it precedes snew in OptN .

For dealing with the remaining case, we first need to bound the length of the
overlap of Li−1 with Li .

Lemma 8 Under Assumptions 1, 2, 3, 5, 6, and 7,

|ovO(Li−1,Li)| ≤ |πL| + |γL|.

Proof According to Assumptions 5 and 7, the case we are analyzing here is that both
L1 and Li are placed before l in OptN . Recall that, by definition, Li �� π∞

L . Since
mergeN(L1, l) � π∞

L (see (6)), string Li cannot be placed between L1 and l in OptN .
Hence, Li is the first of these three strings to appear in OptN . Since l,L1, . . . ,Li−1 �
π∞

L , also L � π∞
L .

If |ovO(Li−1,Li)| < |prefN(Li,L1)|, the claim follows immediately since
prefN(Li,L1) � γL. Thus, we may assume in the following that |ovO(Li−1,Li)| ≥
|prefN(Li,L1)|. Let Q := prefN(Li,L1) and let P and R be such that QP :=
ovO(Li−1,Li) and QPR := Li (see Fig. 7).

For the sake of contradiction, assume |QP | > |γL| + |πL|. Note that |Q| ≤ |γL|,
and thus |P | > |πL|. Since QP � Li−1 � π∞

L , it must hold that QP � π∞
L . Let α

be the suffix of πL which is a prefix of P . Let β be a prefix of πL which starts in P

where α ends, such that |αβ| = |πL|. This implies βα = πL, and αβ is a prefix of P .

It follows that Q ends with β or with a suffix β of β . Thus, Q = β or Q = βα(βα)qβ

for some suffix βα of βα and some q ∈ N.
Now note that, since Q = prefN(Li,L1) and QPR = Li , PR has to be a prefix of

L1. Thus, because αβ is a prefix of P , it is also a prefix of L1. But πL is a prefix of
L1, and |αβ| = |πL|, which implies αβ = πL.

Moreover, L1 = πk
Lπ1 for some k ∈ N and some prefix π1 of πL. Since PR is a

prefix of L1, we can write PR = π
p
Lπ2 for some p ∈ N and some prefix π2 of πL.

Thus, Li = QPR can take one of the following two forms: either Li = β π
p
Lπ2 or

Li = βα(βα)qβπ
p
Lπ2 = βα β(αβ)qπ

p
Lπ2, where βα is a suffix of βα. In both cases,

Li � π∞
L , contradicting the definition of Li . �

In the final case of the proof, as presented in Lemma 9, we use Assumptions 1 to
7 and Lemma 8 to prove our claim for all remaining situations not previously dealt
with.

Lemma 9 Under Assumptions 1, 2, 3, 5, 6, and 7, ONECUT provides an 11/6-
approximation ratio for SCS+.

244 Algorithmica (2011) 61:227–251

Fig. 7 Illustration of the proof of Lemma 8

Proof Again, consider solution Sol2. Since L = mergeO(l,Li−1), it follows that

|mergeO(l,Li)| = |mergeO(mergeO(l,Li−1),Li)|
= |mergeO(L,Li)|
= |L| + |Li | − |ovO(L,Li)|
= |L| + |Li | − |ovO(Li−1,Li)| (by substring-freeness).

Due to Lemma 6, we obtain the following bound for Sol2 (see Fig. 6):

Sol2 ≤ |OptO | − |mergeO(l,Li)| + |merge(L, snew,Li)|
≤

Lemma 6
|OptN | − |mergeO(l,Li)| + |merge(l, snew,Li)| + |πL|

≤ |OptN | − |L| − |Li | + |ovO(Li−1,Li)| + |l| + |snew|
− |ov(l, snew)| + |Li | − |ov(snew,Li)| + |πL|

≤ |OptN | − |l| − |Li | + |ovO(Li−1,Li)| + |l| + |snew|
− |ov(l, snew)| + |Li | − |ov(snew,Li)| + |πL|

≤ |OptN | − |ov(l, snew)| + |πL| + |snew| + |ovO(Li−1,Li)|.
By applying Lemma 8 and using Assumption 6, we obtain the following bound:

|Sol2| ≤ |OptN | + |snew| − |ov(l, snew)| + 2|πL| + |γL|

≤ 4

3
|OptN | + |snew| − |γL| − |ov(l, snew)|

≤ 4

3
|OptN | + |snew| − |ov(l, snew)|.

Now, Assumption 3 gives the bound |Sol2| ≤ 11
6 |OptN |. �

The lemmata above directly imply that indeed, in any case, Algorithm 1
(ONECUT) provides an 11/6 approximation. This completes the proof of Theo-
rem 6. �

Algorithmica (2011) 61:227–251 245

6 Lower Bounds for Cutting Algorithms

This section deals with lower bounds for Algorithm 1 and more general strategies
which are obtained by increasing the number of cuts allowed.

6.1 Lower Bounds for Algorithm 1

First, we now show that the analysis in the proof of Theorem 6 is tight, i.e., there
exist instances of SCS+ for which ONECUT cannot achieve an approximation ratio
strictly better than 11/6.

Theorem 7 Algorithm ONECUT cannot achieve an (11
6 − ε)-approximation, for any

ε > 0.

Proof For any n ∈ N, we construct an input instance that consists of the following
strings:

SO = {�, xan+2x, an+1xan+1, anxan+1xan, bnybn+1ybn, bn+1ybn+1, ybn+2y,�}.
Obviously, arranging the strings in the order as presented forms an optimal solution
OptO of length 6n + O(1):

an x an+1 x an bn y bn+1 y bn

an+1 x an+1 bn+1 y bn+1

x an+2 x y bn+2 y

� �

The corresponding superstring is �xan+2xan+1xanbnybn+1ybn+2y�. Let

snew := bn−1ybn+1ybn#anxan+1xan−1.

It is easy to see that there is a solution for SN = SO ∪{snew} which has asymptotically
the same length as OptO :

bn−1 y bn+1 y bn # an x an+1 x an−1

bn y bn+1 y bn an x an+1 x an

bn+1 y bn+1 an+1 x an+1

y bn+2 y x an+2 x

� �

Applying algorithm ONECUT for inserting snew into the instance when OptO is
given, however, does not find a common superstring that is shorter than 11n + O(1)

symbols.
Here, the crucial observation is that all strings in SO need to be rearranged to con-

struct OptN (which then means that no information is gained by the given additional
knowledge). Therefore, 7 cuts are necessary to be optimal. Finally, we easily verify
that |OptN | = 6n + O(1). �

246 Algorithmica (2011) 61:227–251

6.2 Lower Bounds for k-CUT Algorithms

It seems natural to consider an algorithm k-CUT that is allowed to cut the given in-
stance OptO at most k times and, after the cutting, rearranges the k + 1 parts together
with snew in an optimal way. In terms of running time, we make the following ob-
servations. Following the same strategy as ONECUT, k-CUT computes all pairwise
overlaps of the m strings and stores them in a suffix tree which can be done in time
O(n · m), where n is the total length of all strings of the input. Note that there are
exactly

(
m−1

k

)
possibilities to cut OptO at k places. The resulting k + 1 strings and

snew can be arranged in (k + 2)! different ways. Measuring the length of each com-
mon superstring obtained in this way can be done in O(k) time. We conclude that the
running time of k-CUT is

O(n · m) +
(

m − 1

k

)

· (k + 2)! · O(k)

and therefore in

O(n · m + mk · (k + 3)!).
Although the approximation ratio can be expected to improve with an increasing
number of cuts, a formal analysis of the k-CUT algorithm appears to be technically
very complex, thus we leave it as an open problem here.

We are, however, able to bound the approximation ratio of this k-CUT algorithm
from below.

To begin with, note that the algorithm 1-CUT that (like ONECUT) cuts exactly one
place, but is allowed to rearrange the two resulting strings together with snew arbi-
trarily, as well as the algorithm 2-CUT do not improve over ONECUT, when dealing
with an input instance as constructed in Sect. 6.1: a simple analysis shows that cut-
ting the old instance at least three times is necessary to improve over 11n+ O(1). We
easily verify that there are exactly 7 different ways to cut the given instance and thus(7

2

) = 21 different cut possibilities all of which do not give something strictly better
than 11n + O(1).

As a next step, we now consider the general case of an algorithm k-CUT. The
hard examples we are going to build all follow the same idea as the instances used
in Sect. 6.1. The set SO consists of k + 3 strings. While snew does not fit into OptO
at any position, merging the given strings from SO in reverse order compared to the
given optimal solution OptO , gives another optimal solution for SO that can easily be
extended to the unique optimal solution for SN . This complete rearrangement of the
strings requires at least k cuts.

For k = 3, consider the following instance (again, every line contains one string of
the input).

�
x an x a2

an x an+1 x an

an+1 x an+2 x an+1

an+2 x an+2 xa

�

Algorithmica (2011) 61:227–251 247

The strings of this instance form the set SO and the given order specifies a shortest
common superstring OptO for SO .

Let snew = #an+2xan+2x be the added string. Then, a new optimal solution OptN
for SN = SO ∪ {snew} is

�
an+2 x an+2 x

an+2 x an+2 x a

an+1 x an+2 x an+1

an x an+1 x an

x an x a2

� .

It is clear that any solution has to contain the substrings xanx and xan+1x. Further-
more, due to snew , there have to be two disjoint substrings an+2. Therefore, all pos-
sible solutions have a length of more than 4n. By distinguishing all cases, it is clear
that the only possibility to achieve an optimal solution (which has length 4n + 14)
requires all five possible cuts in OptO . Four cuts are sufficient for getting a solution
of length 5n + 15 by omitting the cut between � and xanxa2. All solutions with at
most three cuts have a length of at least 6n + 17.

For the general case, we show the following lower bound.

Theorem 8 For any k ≥ 3 and any arbitrarily small ε > 0, there exists an input
instance of SCS+ for which the algorithm k-CUT is no better than (1 + 2

k+1 − ε)-
approximative.

Proof Let snew = #an+k−1xan+k−1x. Let wi = an+ixan+i+1xan+i , for 0 ≤ i ≤ k −
2, and wk−1 = snew . Then we define

SO := {wi | 0 ≤ i ≤ k − 2} ∪ {xanxa2, an+k−1xan+k−1xa,�,�}

and

S′
N := {wi | 0 ≤ i ≤ k − 2} ∪ {snew}.

We denote the length of a shortest common superstring for S′
N by |OptS′

N
|.

Observe that the unique shortest common superstring for S′
N is merge(wk−1,wk−2,

. . . ,w0). The following lemma shows that this order of strings is preserved even by
all not too long suboptimal superstrings.

Lemma 10 For k ≥ 3, any common superstring for S′
N with length less than

|OptS′
N
| + 2n contains the strings from S′

N in the order wk−1,wk−2, . . . ,w0.

Proof We prove by induction on i that the strings wi and wi−1 have to appear con-
secutively in any common superstring obeying the given length bound in the order
(wi,wi−1). For this, we need the following auxiliary claim:

248 Algorithmica (2011) 61:227–251

The partial substring si of the common superstring containing wk−1,wk−2,

. . . ,wi is

si := #an+k−1xan+k−1zk−1xan+k−2zk−2xan+k−3zk−3x . . . xan+i+1zi+1xan+i , (9)

where zl ∈ {λ} ∪ {xaj | j ≥ 0}, for i < l ≤ k − 1.

Intuitively speaking, the substring zl+1 models the possibility of having a non-
maximal overlap between two consecutive strings wl+1 and wl .

We are now ready to prove the claimed order of the strings and the validity of (9)
by induction on i from k − 2 downwards. For the induction basis, consider the case
where i = k − 2. We now distinguish the two cases whether the strings wk−2 and
snew are consecutive or are not. If they are consecutive, suppose on the contrary that
snew is on the right-hand side of wk−2. But then, due to the special symbol # at the
beginning of snew , the left-hand side of snew does not overlap with the right-hand side
of wk−2.

In any solution where wk−2 is on the left-hand side of snew , there are at least 5
disjoint occurrences of the infix an+k−2, and thus each such solution is at least 2n

symbols too long. Therefore, we can conclude that wk−2 is on the right-hand side of
snew , which satisfies the invariant.

If, however, snew and wk−2 are not consecutive, then the infixes xan+lx of the
remaining strings prevent that snew and wk−2 overlap. Therefore, any resulting com-
mon superstring contains at least five disjoint substrings an+k−2, two from snew and
three from wk−2. Any common superstring has to contain all substrings xan+lx for
l ∈ {0,1, . . . , k − 3}. Easily, these substrings are pairwise disjoint and none of them
overlaps with any of the five substrings an+k−2. Hence, the minimal length of a com-
mon superstring containing these infixes is at least |OptS′

N
| + 2n.

We continue with the induction step. To this end, we show that, if the claimed
invariant (9) holds for all values greater than i, it also holds for i.

The overlapping strings wj for j > i form the superstring

si+1 := #an+k−1xan+k−1zk−1xan+k−2zk−2xan+k−3zk−3x . . . xan+i+2zi+2xan+i+1

according to the induction hypothesis. Similar as in the proof of the induction basis,
we distinguish two cases according to whether wi and si+1 are consecutive or not.

In the first case, the same arguments as above show that wi has to be on the right-
hand side of si+1. If the two strings are not consecutive, again we can exclude that
they overlap. Therefore, since si+1 contains 1 + (n+ k − 1 − (n+ i + 1 − 1)) = k − i

disjoint substrings an+i , there are k − i + 3 disjoint substrings an+i in any com-
mon superstring that is formed this way. Since the remaining i substrings xan+i−lx

for i ≥ l ≥ 1 also have to be in any superstring that is formed this way, the
minimal length of a common superstring containing these infixes is more than
|OptS′

N
| + 2n. �

Algorithmica (2011) 61:227–251 249

We now consider the following given optimal solution for the SCS+ instance SO

as defined above:

�
x an x a2

an x an+1 x an

an+1 x an+2 x an+1

an+2 x an+3 x an+2

an+3 x an+4 x an+3

. . .

an+k−3 x an+k−2 x an+k−3

an+k−2 x an+k−1 x an+k−2

an+k−1 x an+k−1 xa
�

where, as above, each line presents one string from SO and the corresponding shortest
common superstring is

OptO =� xanxan+1xan+2x . . . xan+k−1xan+k−1xa � .

Let snew = #an+k−1xan+k−1x be the inserted string such that SN = SO ∪ {snew}. It
is easy to see that

OptN =� #an+k−1xan+k−1xan+k−2xan+k−3x . . . xan+1xanxa2 �
is a shortest common superstring for SN . Note that, in OptN , the ordering of
w0,w1, . . . ,wk−2 has been reversed compared to OptO .

Since SN contains S′
N , because of Lemma 10, any solution that does not contain

the strings w0,w1, . . . ,wk−2 in the order as in OptN has a length of at least |OptS′
N
|+

2n. The rearrangement cannot be done without separating the strings w0 to wk−2 with
k − 2 cuts. Additionally, a cut between xanxa2 and w0 is necessary since otherwise
there are at least 2n excessive symbols between w1 and w0.

Similarly, we need a cut between wk−1 and an+k−1xan+k−1xa. Moreover, with-
out a cut between an+k−1xan+k−1xa and �, any solution contains at least 5 infixes
an+k−2, whereas only 3 such infixes are necessary.

Thus, any solution obtained with at most k cuts has a length of at least |OptS′
N
| +

2n ≥ (k + 3)n, whereas OptN is composed of three special markers, k + 1 symbols x

and

(k + 1)n + (k − 1) +
k−1∑

i=0

i + 2

symbols a, which sums up to the length (k + 1)n + 5 + 3k/2 + k2/2 < (k + 1)n +
(k + 1)2 (remember that k ≥ 3).

Therefore, we obtain

(k + 3)n

(k + 1)n + (k + 1)2
= 1 + 2

k + 1
− k + 3

n + k + 1

as a lower bound on the approximation ratio achieved by k-CUT, and thus, when
choosing n ≥ ε−1(k+3)−k−1, the lower bound satisfies the claim of the theorem. �

250 Algorithmica (2011) 61:227–251

7 Conclusion

In this paper, we considered the shortest common superstring reoptimization prob-
lem, addressing the insertion and the deletion of strings as reoptimization variants. We
showed both variants to be NP-hard and we presented an iterative polynomial-time
algorithm that achieves an approximation ratio arbitrarily close to 1.6 for SCS+ and
arbitrarily close to 13/7 for SCS–. The interest in the algorithm is twofold, because
besides achieving a good approximation ratio for the two reoptimization problems,
its core is to exploit the existence of a long string within the modified input instance.
This concept is applicable universally, i.e., for any SCS instance that contains a long
string, we are able to improve the ratio of any SCS approximation algorithm.

The drawback of the algorithm, however, is its runtime. Consequently, we pre-
sented a second strategy for SCS+, the ONECUT algorithm, which achieves an ap-
proximation ratio of 11/6 and runs in quadratic time. We showed that our analysis of
the ONECUT algorithm is tight.

Furthermore, we introduced a straightforward generalization of ONECUT and
gave lower bounds on its approximation ratio. It also seems worthwhile investigating
different types of local modifications for SCS reoptimization.

References

1. Archetti, C., Bertazzi, L., Speranza, M.G.: Reoptimizing the traveling salesman problem. Networks
42(3), 154–159 (2003)

2. Archetti, C., Bertazzi, L., Speranza, M.G.: Reoptimizing the 0-1 knapsack problem. Technical Report
267, University of Brescia (2006)

3. Ausiello, G., Escoffier, B., Monnot, J., Paschos, V.T.: Reoptimization of minimum and maximum trav-
eling salesman’s tours. In: Arge, L., Freivalds, R.V. (eds.) Proc. of the 10th Scandinavian Workshop
on Algorithm Theory (SWAT 2006). Lecture Notes in Computer Science, vol. 4059, pp. 196–207.
Springer, Berlin (2006)

4. Bilò, D., Böckenhauer, H.-J., Hromkovič, J., Královič, R., Mömke, T., Widmayer, P., Zych, A.: Re-
optimization of Steiner trees. In: Gudmundsson, J. (ed.) Proc. of the 11th Scandinavian Workshop
on Algorithm Theory (SWAT 2008). Lecture Notes in Computer Science, vol. 5124, pp. 258–269.
Springer, Berlin (2008)

5. Bilò, D., Widmayer, P., Zych, A.: Reoptimization of weighted graph and covering problems. In:
Bampis, E., Skutella, M. (eds.) Proc. of the 6th International Workshop on Approximation and Online
Algorithms (WAOA 2008). Lecture Notes in Computer Science, vol. 5426, pp. 201–213. Springer,
Berlin (2009)

6. Böckenhauer, H.-J., Bongartz, D.: Algorithmic Aspects of Bioinformatics. Natural Computing Series,
Springer, Berlin (2007)

7. Böckenhauer, H.-J., Komm, D.: Reoptimization of the metric deadline TSP. In: Ochmanski, E.,
Tyszkiewicz, J. (eds.) Proc. of the 33th International Symposium on Mathematical Foundations of
Computer Science (MFCS 2008). Lecture Notes in Computer Science, vol. 5162, pp. 156–167.
Springer, Berlin (2008)

8. Böckenhauer, H.-J., Forlizzi, L., Hromkovič, J., Kneis, J., Kupke, J., Proietti, G., Widmayer,
P.: Reusing optimal TSP solutions for locally modified input instances (extended abstract). In:
Navarro, G., Bertossi, L.E., Kohayakawa, Y. (eds.) Proc. of the 4th IFIP International Conference on
Theoretical Computer Science (TCS 2006). IFIP, vol. 209, pp. 251–270. Springer, New York (2006)

9. Böckenhauer, H.-J., Hromkovič, J., Mömke, T., Widmayer, P.: On the hardness of reoptimization. In:
Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) Proc. of the 34th
International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM
2008). Lecture Notes in Computer Science, vol. 4910, pp. 50–65. Springer, Berlin (2008)

Algorithmica (2011) 61:227–251 251

10. Böckenhauer, H.-J., Hromkovič, J., Královič, R., Mömke, T., Rossmanith, P.: Reoptimization of
Steiner trees: Changing the terminal set. Theor. Comput. Sci. 410(36), 3428–3435 (2009)

11. Escoffier, B., Milanič, M., Paschos, V.T.: Simple and fast reoptimizations for the Steiner tree problem.
Algorithmic Oper. Res. 4(2), 86–94 (2009)

12. Gallant, J., Maier, D., Storer, J.A.: On finding minimal length superstrings. J. Comput. Syst. Sci.
20(1), 50–58 (1980)

13. Kaplan, H., Shafrir, N.: The greedy algorithm for shortest superstrings. Inf. Process. Lett. 93(1), 13–
17 (2005)

14. Kaplan, H., Lewenstein, M., Shafrir, N., Sviridenko, M.: Approximation algorithms for asymmetric
TSP by decomposing directed regular multigraphs. J. ACM 52(4), 602–626 (2005)

15. Schäffter, M.W.: Scheduling with forbidden sets. Discrete Appl. Math. 72(1–2), 155–166 (1997)
16. Setubal, C., Meidanis, J.: Introduction to Computational Molecular Biology. Natural Computing Se-

ries, PWS Publishing Company, Boston (1997)
17. Sweedyk, Z.: A 2 1

2 -approximation algorithm for shortest superstring. SIAM J. Comput. 29(3), 954–
986 (2000)

18. Tarhio, J., Ukkonen, E.: A greedy approximation algorithm for constructing shortest common super-
strings. Theor. Comput. Sci. 57(1), 131–145 (1988)

19. van Hoesel, S., Wagelmans, A.: On the complexity of postoptimality analysis of 0/1 programs. Dis-
crete Appl. Math. 91(1–3), 251–263 (1999)

20. Vassilevska, V.: Explicit inapproximability bounds for the shortest superstring problem. In: Jedrze-
jowicz, J., Szepietowski, A. (eds.) Proc. of the 30th International Symposium on Mathematical Foun-
dations of Computer Science (MFCS 2005). Lecture Notes in Computer Science, vol. 3618, pp. 793–
800. Springer, Berlin (2005)

	Reoptimization of the Shortest Common Superstring Problem
	Abstract
	Introduction
	Preliminaries
	Hardness Results
	Iterative Algorithms for Adding or Removing a String
	Reoptimization of SCS+
	Reoptimization of SCS-

	One-Cut Algorithm for Adding a String
	Lower Bounds for Cutting Algorithms
	Lower Bounds for Algorithm 1
	Lower Bounds for k-Cut Algorithms

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

