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Abstract. The reoptimization issue studied in this paper can be de-
scribed as follows: given an instance I of some problem Π , an optimal
solution OPT for Π in I and an instance I ′ resulting from a local pertur-
bation of I that consists of insertions or removals of a small number of
data, we wish to use OPT in order to solve Π in I ′, either optimally or
by guaranteeing an approximation ratio better than that guaranteed by
an ex nihilo computation and with running time better than that needed
for such a computation. In this setting we study the weighted version of
max weighted Pk-free subgraph. We then show, how the technique
we use allows us to handle also bin packing.

1 Introduction

Hereditary problems in graphs, also known as maximal subgraph problems, in-
clude a wide range of classical combinatorial optimization problems, such as max

weighted independent set or max weighted H-free subgraph. Most of
these problems are known to be NP-hard, and even inapproximable within any
constant approximation ratio unless P = NP [16, 17].

In what follows, we study approximation of such a problem, namely the
maximum weight Pk-free subgraph, denoted by max weighted Pk-free

subgraph, in the reoptimization setting, which can be described as follows:
considering an instance I of a given problem Π with a known optimum OPT, and
an instance I ′ which results from a local perturbation of I, can the information
provided by OPT be used to solve I ′ in a more efficient way (i.e., with a lower
complexity and/or with a better approximation ratio) than if this information
wasn’t available?

The reoptimization setting was introduced in [1] for metric tsp. Since
then, many other optimization problems were discussed in this setting, including
Steiner tree [5, 9, 10, 15], minimum spanning tree [14], as well as various
versions of tsp [4, 8, 12]. In all cases, the goal is to propose reoptimization algo-
rithm that outperform their deterministic counterparts in terms of complexity

∗Research supported by the French Agency for Research under the DEFIS program
TODO, ANR-09-EMER-010



2 Nicolas Boria, Jérôme Monnot, and Vangelis Th. Paschos

and/or approximation ratio. In [7], the max weighted independent set prob-
lem, as well as min weighted vertex cover and min weighted set cover

problems, are discussed in a similar setting up to the fact that perturbations
there concerned the edge-set of the initial graph. The authors of [7] manage to
provide optimal approximation results (i.e., upper and lower bounds matching
ones the others) under the basic assumption that the initial solution is not neces-
sarily optimal but ρ-approximate. Finally, let us note that in [6] reoptimization
variants of the shortest common superstring problem are considered, where the
local modifications consist of adding or removing a single string.

When one deals with hereditary problems, and I ′ results from a perturbation
of the vertex set (insertion or deletion), solutions of I remain feasible in I ′.
This property is very interesting when reoptimizing hereditary problems, and
makes most of them APX in the reoptimization setting. For exemple, a very
simple algorithm provides a (1/2)-approximation for a whole class of hereditary
problems, including max weighted independent set when a single vertex is
inserted [3]. Let us note that the unweighted versions of all these problems in
this setting admit polynomial time approximation schemata. In what follows,
we improve on this result by presenting algorithms designed for two specific
hereditary problems, and also provide inapproximability bounds.

The paper is organized as follows: general properties regarding reoptimization
and the max weighted Pk-free subgraph are presented in what follows in
this section, while in Section 2 we present approximation and inapproximability
results under vertex insertion for max weighted Pk-free subgraph. Our
results are optimal (in the sense given two paragraphs above). To the best of our
knowledge no such results exist in the reoptimization literature for the vertex
insertion setting. In Section 3, the bin packing problem is handled.

This paper is part of a larger work [13] devoted to the study of five max-
imum weight induced hereditary subgraph problems, namely, max weighted

independent set, max weighted k-colorable subgraph, max weighted

Pk-free subgraph, max weighted split subgraph and max planar sub-

graph. For reasons of length limits some of the results are given without detailed
proofs, the interested reader is referred to [13] where all proofs can be found.

Before presenting properties and results regarding reoptimization problems,
we will first give formal definitions of what are reoptimization problems, reopti-
mization instances, and approximate reoptimization algorithms:

Definition 1. An optimization problem Π is defined by a quadruple:

(IΠ , SolΠ ,mΠ , goal(Π))

where IΠ is the set of instances of Π; given I ∈ IΠ , SolΠ(I) is the set of feasible
solutions of I; given I ∈ IΠ , and S ∈ SolΠ(I), mΠ(I, S) denotes the value of
the solution S of the instance I; goal(Π) ∈ {min,max}.

A reoptimization problem RΠ is given by a pair (Π,RRΠ) where: Π is an
optimization problem as defined in Definition 1; RRΠ is a rule of modification on
instances of Π , such as addition, deletion or alteration of a given amount of data;
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given I ∈ IΠ and RRΠ , modifRΠ(I, RRΠ) denotes the set of instances resulting
from applying modification RRΠ to I; notice that modifRΠ(I, RRΠ) ⊂ IΠ .

For a given reoptimization problem RΠ(Π,RRΠ), a reoptimization instance
IRΠ of RΠ is given by a triple (I, S, I ′), where: I denotes an instance of Π ,
referred to as the initial instance; S denotes a feasible solution for Π on the
initial instance I; I ′ denotes an instance of Π in modifRΠ(I, RRΠ); I ′ is referred
to as the perturbed instance. For a given instance IRΠ(I, S, I ′) of RΠ , the set of
feasible solutions is SolΠ(I ′).

Definition 2. For a given reoptimization problem RΠ(Π,RRΠ), a reoptimiza-
tion algorithm A is said to be a ρ-approximation reoptimization algorithm for RΠ
if and only if: (i) A returns a feasible solution on all instances IRΠ(I, S, I ′); (ii) A
returns a ρ-approximate solution on all reoptimization instances IRΠ(I, S, I ′)
where S is an optimal solution for I.

Note that Definition 2 is the most classical definition found in the literature, as
well as the one used in this paper. However, an alternate (and more general)
definition exists (used for example in [5, 7, 9, 10]), where a ρ1-approximation
reoptimization algorithm for RΠ is supposed to ensure a ρ1ρ2-approximation on
any reoptimization instance IRΠ(I, S, I ′) where S is a ρ2-approximate solution
in the initial instance I.

A property P on a graph is hereditary if the following holds: if the graph
satisfies P , then P is also satisfied by all its induced subgraphs. Following this
definition, independence, planarity, bipartiteness are three examples of heredi-
tary properties: in a given graph, any subset of an independent set is an inde-
pendent set itself, and the same holds for planar and bipartite subgraphs. On
the opposite hand, connectivity is no hereditary property since there might exist
some subsets of G whose removal disconnect the graph.

We denote by hereditary problem any problem that consists of finding the
maximum set of vertices (in terms of cardinality or weight) that induces a sub-
graph verifying a given hereditary property.

A graph is said to be Pk-free if it does not contain a path on k edges. Here,
Pk-free means that the graph does not admit a Pk as minor (and not as induced
subgraph). A graph H is a minor of a graph G, if H can be obtained by a sequence
of edge contractions and vertex or edge deletions. For example, a Ck+1 admits
a Pk as minor, so, although it does not admit a Pk as induced subgraph, we
consider that a Ck+1 is not Pk-free.

Let G(V,E,w) be a vertex-weighted graph with w(v) > 0, for any v ∈ V . The
max weighted Pk-free subgraph problem is the problem consisting, given a
graph G(V,E,w), of finding a subset S of vertices such that G[S] is Pk-free and
maximizes w(S) =

∑

v∈S w(v). For instance, max weighted independent

set is exactly the max weighted P2-free subgraph problem, while max

weighted P3-free subgraph consists of finding an independent set and an
induced matching of maximum total weight.

As it is proved in [16] (see Theorem 1 just below) most hereditary problems
(hence max weighted Pk-free subgraph also) are highly inapproximable
unless P = NP.
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Theorem 1. ([16]) There exists an ε ∈ (0, 1) such that max weighted Pk-

free subgraph cannot be approximated with ratio n−ε in polynomial time un-
less P = NP.

In the sequel, Gp and G′
p will denote initial and perturbed instances, while OPTp

and OPT′
p will denote optimal solutions in Gp and G′

p, respectively. For simplic-
ity and when no confusion arises, we will omit subscript p. The function w refers
to the weight function, taking a vertex, a vertex set, or a graph as input (the
weight of a graph is defined as the sum of weights of its vertices). Finally, note
that throughout the whole paper, the term “subgraph” will always implicitly
refer to “induced subgraph”.

Under vertex insertion, the inapproximability bounds of Theorem 1 is easily
broken. In [3], a very simple strategy, denoted by R1 in what follows, provides a
(1/2)-approximation for any hereditary problem. This strategy consists of out-
putting the best solution among the newly inserted vertex and the initial opti-
mum. Moreover, this strategy can also be applied when a constant number h of
vertices is inserted: it suffices to output the best solution between an optimum
in the h newly inserted vertices (that can be found in O(2h) through exhaustive
search) and the initial optimum. The 1/2 approximation ratio is also ensured in
this case [3].

Note that an algorithm similar to R1 was proposed for knapsack in [2]. In-
deed, this problem, although not being a graph problem, it is hereditary in the
sense defined above, so that returning the best solution between a newly inserted
item and the initial optimum ensures a (1/2)-approximation ratio. The authors
also show that any reoptimization algorithm that does not consider objects dis-
carded by the initial optimal solution cannot have ratio better than 1/2.

2 max weighted Pk-free subgraph

The max weighted Pk-free subgraph problem discussed in this subsection
refers to max weighted Pk-free subgraph (with Pk as forbidden minor),
and not to max weighted induced Pk-free subgraph (with Pk as forbidden
induced subgraph). Formally, given a graph G(V,E,w) and a constant k 6 n, the
max weighted Pk-free subgraph problem handled in this section consists of
finding a maximum-total weight set of vertices that induces a subgraph of G that
is Pk-free. The approximability analysis of max weighted Pk-free subgraph

uses the following lemma whose proof can be found in [13].

Lemma 1. A Pk-free graph can be colored with k colors in polynomial time.

Proposition 1. Under one vertex insertion, max weighted Pk-free sub-

graph is inapproximable within ratio 2k
3k+1 + ε in polynomial time if k is odd,

and inapproximable within ratio 2k
3k+2 + ε if k is even, unless P = NP.

Proof (Sketch). The technique used for the proof can be sketched as follows.
Considering an unweighted graph H(V,E) on which one wants to solve a given
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hereditary problem Π , known to be inapproximable within any constant ratio,
we build a reoptimization instance Ip, where p denotes a vector of fixed size (i.e.,
independent of the size n of G; so, |p| is a fixed constant) that contains integer
parameters between 1 and n. This instance is characterized by an initial graph Gp

(that contains H), with a known solution, and a perturbed instance G′
p.

Then, we prove that, for some specific (yet unknown) value p′ of the parame-
ter vector p (that is, when the value of p coincides with some unknown structural
parameters of the graph, like independence number for example), an optimal so-
lution can be easily determined in the initial graph Gp′ , and a ρ-approximate
solution Sp′ in G′

p′ necessarily induces a solution Sp′ [V ] in H , that is a con-
stant approximation for the initial problem. Considering that the vector p can
take at most n|p| possible values, it is possible in polynomial time to build all
instances Ip, to run the polynomial ρ-approximation algorithm on all of them,
and to return the best set Sp∗ [V ] as solution for Π in H . The whole procedure
is polynomial and ensures a constant-approximation for Π , which is impossi-
ble unless P = NP, so that a ρ-approximation algorithm cannot exist for the
considered reoptimization version of Π , unless P = NP.

Consider now a connected graph H that has independence number α, on
which one wishes to solve (or approximate) max weighted independent set

problem. Transform H into a graph Hk(V,E) in the following way: each vertex vi
of H is turned into a clique Vi of k vertices in Hk; if (vi, vj) belongs to H , then all
edges between vertices of cliques Vi and Vj are in E. Note that Hk is connected
as H itself is also connected. Considering that the biggest independent set in H
has size α, then the same holds in Hk: an independent set in G can only take
one vertex in each clique Vi, and it cannot take two vertices from cliques that
corresponds to neighbors in H .

Following Lemma 1, any Pk-free subgraph in Hk can be partitioned in k
independent sets, so that, denoting by OPT an optimal Pk-free subgraph in Hk,
|OPT| 6 kα. Moreover, denoting by IS an optimal independent set in H (that
has exactly α vertices), then, in Hk, the union of all cliques corresponding to
vertices of IS induces a Pk-free subgraph with value exactly kα, so that |OPT| =
kα.

Remark 1. Following the same arguments, it holds that for any i 6 k a Pi-free
subgraph in Hk cannot have weight more than iα (and an optimal one has weight
exactly iα).

First, suppose that k is odd. We build a weighted reoptimization instance Iα,k
of max weighted Pk-free subgraph as follows (Figure 1 provides a repre-
sentation of the general structure).

– The initial graph Gα,k is obtained by adding to the graph Hk a set X of
vertices which consists of two cliques X1, and X2 to G. Both these cliques have k
vertices, each with weight kα. Clique X1, is divided into two subcliques X1C

and X1NC ; X1C has (k+1)/2 vertices that are all connected to all vertices in V ,
while the other (k−1)/2 vertices of X1NC are not connected to any vertex in V .
Clique X2 is divided in the same manner. Finally, each vertex in V receives
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X1CX1NC

X2CX2NC

k−1

2

k+1

2

k−1

2

k+1

2

y Hk

Fig. 1. Reoptimization instance Iα,k

weight k+ 1, hence, for any 1 6 i 6 k an optimal Pi-free subgraph inside V has
weight exactly i(k + 1)α.

– The perturbed graph G′
α,k is obtained by adding a single vertex y to Gα,

with weight k(k + 1)α, that is connected to all vertices of X .

We first prove that X defines an optimum on the initial graph Gα,k, so that
the reoptimization instance Iα,k is well defined. Then, we show that {y}∪X1NC∪
X2NC ∪ F ∗ (where F ∗ is an optimum in Hk) is feasible in the graph G′

α,k, so

that w(OPT′) > w({y}∪X1NC∪X2NC∪F ∗) = k(3k+1)α. This lower bound on
the weight of the optimum, naturally induces a lower bound on the weight of a
(

2k
3k+1 + ε

)

-approximate solution, say Sα,k: w (Sα,k) >
(

2k
3k+1 + ε

)

w(OPT′) >

(1 + ε)2k2α.

We then show that any feasible solution on the subgraph induced by {y}∪X
cannot have weight more than 2k2α, and this holds a fortiori for the restriction
of Sα,k to this subgraph, denoted by Sα,k[{y} ∪ X ]. Combining this fact with
the expression for w(Sα,k) above, and taking into account that {{y} ∪ X,V }
defines a partition of the final graph, we derive that w(Sα,k[V ]) = w(Sα,k) −

w(Sα,k[{y} ∪ X ]) > 2εk2α. Hence, a
(

2k
3k+1 + ε

)

-approximation algorithm for

the reoptimization version of max weighted Pk-free subgraph can be used
to derive a polynomial ε-approximation algorithm for the static version of max

weighted independent set, which is impossible unless P = NP.

In the same way, we present a
(

2k
3k+2 + ε

)

inapproximability bound for the

case where k is even. The structure of the instance is somewhat more complex,
but the structure of the proof itself is similar. A full proof of both inapproxima-
bility bounds can be found in [13].

Remark 2. The proof of Proposition 1 works also even if we assume that a ρ-
approximate solution is given instead of an optimal one. In this case, the bounds
claimed in Proposition 1 are simply multiplied by ρ.
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We now prove that ratio of Proposition 1 is tight for small values of k, namely
when k 6 6. Consider the following hypothesis.

Hypothesis 1. In polynomial time, a Pk-free subgraph S can be partitioned in 3
sets S1, S2 and S3, such that both S1 and S2 are P⌈k/2⌉−1-free, and w(S3) 6

w(S)/k if k is odd and w(S3) 6 2w(S)/k if k is even.

Proposition 2. For values of k for which Hypothesis 1 is true, max weighted

Pk-free subgraph problem is approximable within ratio 2k
3k+1 for odd values

of k, and 2k
3k+2 for even values of k in the reoptimization setting, under one

vertex insertion.

Proof. Consider a reoptimization instance I of max weighted Pk-free sub-

graph, given by two graphs G (initial) and G′ (perturbed) and an optimal
solution OPT on the initial graph G. Graphs G and G′ differ only by vertex y
(and its incident edges) which belongs to G′ but not to G. Classically, denoting
by OPT′ an optimal solution on G′, it holds that w(OPT) > w(OPT′) − w(y).
Suppose that Hypothesis 1 is verified, and consider the following algorithm:
partition OPT in 3 sets S1, S2 and S3 as defined in Hypothesis 1, and without loss

of generality, suppose w(S1) > w(S2); set SOL1 = S1 ∪ {y} and SOL2 = OPT;

return the best solution SOL between SOL1 and SOL2.

First, let us prove that this algorithm returns a feasible solution: SOL2 is
trivially feasible in G′, and consider a path P in SOL1. If this path does not go
through y then it cannot go through more than ⌈k/2⌉ − 1 vertices (by hypoth-
esis, S1 is P⌈k/2⌉−1-free). If it does go through y, then denote by P1 the set of
vertices visited before y in P and P2 the set of vertices visited after. Considering
that both P1 and P2 are included in S1, which is supposed to be P⌈k/2⌉−1-free,
then both |P1|, |P2| 6 ⌈k/2⌉ − 1, so that |P | = |P1| + |P2| + 1 6 k, and thus
SOL1 is also Pk-free.

Let rk be an integer that is equal to 1 if k is odd, and to 2 if k is even. Regard-

ing the partitioning induced by Hypothesis 1, it holds that w(S3) 6
rkw(OPT)

k ,

and thus w(S1) > (w(OPT) − w(S3))/2 >
k−rk
2k w(OPT), thus w(SOL1) >

k−rk
2k w(OPT) + w(y) = k−rk

2k w(OPT′) + k+rk
2k w(y).

On the other hand, w(SOL2) > w(OPT′) − w(y). Summing expressions
for w(SOL1) and w(SOL2) with coefficients 1 and k+rk

2k respectively, one finally

proves that 3k+rk
2k w(SOL) > w(SOL2) +

k+rk
2k w(SOL1) > w(OPT′).

Note once more that, as it can be seen from the proof of Proposition 2,
Remark 2 always holds.

Proposition 3. Hypothesis 1 holds for k 6 6.

Proof (Sketch). In what follows, we suppose that the Pk-free graph S to be
partitioned is connected (if it is not so, then proving that the hypothesis is true
for each of its connected components amounts to proving it for the whole graph).

k = 1,2. Simply set S3 = S and S1, S2 = ∅.
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k = 3. Split the graph in three independent sets S′
1, S

′
2,and S′

3 in polynomial
time (that is possible according to Lemma 1), and w.l.o.g., suppose w(S′

1) >

w(S′
2) > w(S′

3). Finally, set S1 = S′
1, S2 = S′

2, and S3 = S′
3.

k = 4. Split the graph in four independent sets from S′
1 to S′

4 in polynomial
time, and w.l.o.g., suppose w(S′

1) > w(S′
2) > w(S′

3) > w(S′
4). Finally, set S1 =

S′
1, S2 = S′

2, and S3 = S′
3 ∪ S′

4.

k = 5. This case requires a rather long and involved analysis, which could
not be included in the paper due to length limits. A full proof can be found
in [13].

k = 6. In this case, Hypothesis 1 is verified if S can be partitioned in 3 P2-
free subgraphs (the lightest of which will be S3, and the other two S1 and S2).
Here, we distinguish the following four cases.

Case 1. S contains a C6. It is clear that S contains exactly 6 vertices, which
can easily be partitioned in three P2-free subgraphs (2 vertices in each set of the
partition).

Case 2. S contains a C5 and no C6. Let S′ denote the set of vertices that
are not in C5. It holds that S′ is an independent set, and that a pair of vertices
that are neighbors in the C5 cannot both have neighbors in S′ (if one of these
two properties is not verified, then there exists a P6 in S. Thus, without making
assumption on the number of chords in C5, the general structure of S is as
described in Figure 2, with a partitioning in three P2-free subgraphs (represented
in the figure as white, grey, and black vertices).

Fig. 2. Partition of P6-free graph in 3 P2-free subgraphs in Case 2

Case 3. S contains a C4. We distinguish here the following two subcases.

Case 3-a. S contains a C4 but no C5 and no C6, and denoting by S′ the set of
vertices that are not in the C4, S

′ contains at least an edge (v1, v2). Obviously,
these two vertices v1 and v2 cannot be connected to two different vertices of
the C4, otherwise, S would contain a C5 or a C6.

Moreover, at least one of these two vertices must be connected to a vertex of
the C4. Indeed, taking into account that S is supposed to be connected, if none
of these vertices is connected to a vertex of the C4, then there exists a P6 in S.
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Finally, supposing w.l.o.g that v1 is the vertex connected to a vertex x in
the C4, then no neighbor of x in the C4 can be connected to any vertex of S′

(otherwise there would exist a P6 in S).

Hence, denoting vertices of the C4 by x, y, z and t as in Figure 3, only
vertices x and z might have neighbors in S′. Moreover, denoting by N({x}∪{z})
the neighborhood of these two vertices, it holds that this set is P2 free, otherwise
a path on 7 vertices would exist in S (the 3 vertices of the P2 in N({x} ∪ {z}),
and the 4 vertices of the C4). Thus, coloring in white the vertices of N({x}∪{z})
as well as y and t, and in black all the other vertices of S, one gets a partition
of S into two P2 free colors.

x

y

z

t

Fig. 3. Partition of P6-free graph in 2 P2-free subgraphs in Case 3-a

Case 3-b. S contains a C4 but no C5 and no C6, and let S′ denote the set of
vertices that are not in the C4, S

′ contains no edge. This case is much simpler
than the previous one, considering that S′ forms an independent set. To get a
partition of S into three P2-free subgraphs, it suffices to consider S′ itself as the
first subset of the partition, {x} ∪ {z} as the second, and {y}∪ {t} as the third.

Case 4. S contains no C4, no C5 and no C6. In this case, it holds that
the neighborhood N(x) of any vertex x is P2-free, since a P2 (on 2 edges,
and 3 vertices) in N(x) amounts to a C4 in x ∪ N(x). Moreover, denoting
by N(N(x))) = N2(x)) the set of neighbors of vertices in N(x), it holds that
N(N(x)) is also P2-free, since the neighborhood of each vertex in N(x) is P2-free
(considering what we stated above), and disjoint from one another (otherwise
there would exist a C4 in S). Naturally, the same holds for any N i(x).

Hence, in this case, the graph can be easily partitioned in 2 P2-free subgraphs:
starting from a arbitrary vertex that is colored black, one colors its neighborhood
white, then the neighborhood of its neighborhood black, etc. Considering what
we proved earlier, each color defines a P2-free subgraph.

Finally, Hypothesis 1 is also verified when k = 6.
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3 Reoptimization and bin packing

Given a constant B, a list L of n items L = (1, 2, . . . , n), such that, for any
i = 1, . . . , n, its size ai 6 B, and n bins each of capacity B, the bin packing

problem consists of arranging the items of L in the bins without exceeding their
capacity (i.e., the sum of the sizes of the items placed in every bin must not
exceed B) and in such a way that a minimum number of bins is used.

We show in this section that the basic technique used before in order to
get inapproximability results can be also applied on hereditary problems not
necessarily defined on graphs. This is, for instance the case of bin packing.
We will prove that this problem is inapproximable within approximation ratio
3/2 − ε, for any ε > 0, in the reoptimization setting studied in this paper. For
simplicity we consider a non-normalized instance of bin packing where item i,
i 6 n has integer size ai and bins have capacity B. We also assume that, for
every i, ai < B.

Suppose, ad contrario, that bin packing is approximable within approxima-
tion ratio 3/2 under items insertion and consider an instance I of the partition

problem, where n + 1 items 0, 1, . . . , n with sizes a0, a1, . . . , an are given such
that, for i = 0, 1, . . . , n, ai < B and

∑n
i=0 ai = 2B, and the objective is to find

a partition of the items (if any) into two subsets such that the sum of the sizes
of their items is equal to B. partition is known to be NP-complete.

Assume now that items are ordered in decreasing size order (i.e., a0 > a1 >

. . . > an) and consider the list of items L = (a1, . . . , an) as instance of bin

packing. Obviously, since a0 < B and
∑n

i=0 ai = 2B, it holds that
∑n

i=1 ai > B.
Thus, an optimal bin packing-solution for L has value greater than 1. We claim
that L has a solution using 2 bins. Indeed, such a solution places the first k
items in one bin, where k is the largest index such that

∑k
i=1 ai 6 B, and the

rest of the items from k + 1 to n in a second bin. Let us prove that such a
solution is feasible, or equivalently, that

∑n
i=k+1 6 B. Assume, ad contrario,

that
∑n

i=k+1 ai > B, recall that, by the definition of k,
∑k+1

i=1 ai > B and

observe that
∑k

i=0 ai >
∑k+1

i=1 ai > B. In other words, on the hypothesis that
∑n

i=k+1 ai > B, we derive that
∑n

i=0 ai =
∑k

i=0 ai +
∑n

i=k+1 ai > B +B = 2B,
a contradiction. So, the bin packing-instance L has a solution of 2 bins. In
all, we can assume that the initial bin packing-instance is L and the optimal
solution provided with is as just described.

Assume now that item 0 with size a0 > a1 arrives. On the hypothesis of
the existence of a polynomial reoptimization algorithm achieving approximation
ratio 3/2− ε for bin packing, if the instance I of partition is a “yes”-instance,
then this algorithm would provide a solution with 2 bins, while if I is a “no”-
instance, the algorithm would provide a solution with at least 3 bins, deciding
so in polynomial time partition.

On the other hand, bin packing is immediately approximable within 3/2
in the reoptimization setting under consideration. Given an instance L and a
solution with k bins, when an element arrives, one can open a new bin in order
to place it (after, eventually, a quick check that all the items cannot be placed in
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the same bin) guaranteeing so an approximation ratio (k+1)/k 6 3/2, for k > 2,
while the case k = 1 is trivially polynomial (just check whether

∑n
i=1 ai 6 B, or

not).

4 Conclusion

We have discussed the approximability of max weighted Pk-free subgraph

in the reoptimization setting under vertex insertion. It appears that the initial
optimum (or a good initial solution) provides a very useful information when ap-
proximating the modified instances, and we presented reoptimization algorithms
which take advantage of this information in the best possible way, since the ap-
proximation ratio provided is the best constant ratio achievable in polynomial
time (unless P = NP). In this paper, we have proved optimal results for max

weighted Pk-free subgraph even if there exist 2 different weights 1 and M
in the instance. We can easily prove that max weighted Pk-free subgraph

has a PTAS for any fixed k. Moreover, we can adapt the proofs given in the
paper to produce results depending on parameter M as done in [7]. Finally,
in [11], the authors prove that the knowledge of all optimal solutions for free
doesn’t help TSP reoptimization. It is interesting to handle this question for
max weighted Pk-free subgraph.
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