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Abstract
In reoptimization, one is given an optimal solution to a problem instance and a 
(locally) modified instance. The goal is to obtain a solution for the modified instance. 
We aim to use information obtained from the given solution in order to obtain a bet-
ter solution for the new instance than we are able to compute from scratch. In this 
paper, we consider Steiner tree reoptimization and address the optimality require-
ment of the provided solution. Instead of assuming that we are provided an opti-
mal solution, we relax the assumption to the more realistic scenario where we are 
given an approximate solution with an upper bound on its performance guarantee. 
We show that for Steiner tree reoptimization there is a clear separation between local 
modifications where optimality is crucial for obtaining improved approximations 
and those instances where approximate solutions are acceptable starting points. For 
some of the local modifications that have been considered in previous research, we 
show that for every fixed 𝜀 > 0 , approximating the reoptimization problem with 
respect to a given (1 + �)-approximation is as hard as approximating the Steiner tree 
problem itself. In contrast, with a given optimal solution to the original problem it is 
known that one can obtain considerably improved results. Furthermore, we provide 
a new algorithmic technique that, with some further insights, allows us to obtain 
improved performance guarantees for Steiner tree reoptimization with respect to all 
remaining local modifications that have been considered in the literature: a required 
node of degree more than one becomes a Steiner node; a Steiner node becomes a 
required node; the cost of one edge is increased.
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1 Introduction

The Steiner tree problem (STP) is one of the most studied problems in the area 
of network design. We are given a graph G with nodes V(G), edges E(G), and a 
cost function c ∶ E(G) → ℝ≥0 , as well as a set R ⊆ V(G) of required nodes (also 
called regular nodes or terminals). The objective is to find a minimum-cost tree T 
within G such that R ⊆ V(T) . The Steiner tree problem is known to be APX-hard 
[8], and the currently best approximation algorithm has a performance guarantee 
of ln 4 + � ≈ 1.387 [25].

We consider the Steiner tree problem with respect to reoptimization, a frame-
work for dynamic algorithms in the context of NP-hard problems. We are given 
two related instances I and I′ of an algorithmic problem together with a solution 
SOL to the instance I, and our goal is to compute a solution to I′ . The relation 
between I and I′ is determined by an operation that we call local modification.

The concept of reoptimization is motivated by the observation that instead of 
computing new solutions from scratch, oftentimes we can reuse the effort spent 
to solve problems similar to the one at hand. For instance, let us consider a large 
circuit where certain components have to be connected. The components are the 
required nodes and there are points that may be used by several connections, the 
Steiner nodes. Now suppose that a long and costly computation has led to an 
almost optimal solution. Afterwards the requirements change: either an additional 
component has to be placed to a point that previously was a Steiner node or a 
component is removed, which turns a required node into a Steiner node. In such a 
situation it would seem wasteful to discard the entire previous effort.

Classically, when considering reoptimization problems one assumes that SOL 
is an optimal solution. The reason for this assumption is that assuming optimality 
considerably reduces the formal overhead and therefore facilitates to concentrate 
on the main underlying properties of the reoptimization problem. We show, how-
ever, that assuming optimality is not without loss of generality. Let us assume 
that c(SOL) is a (1 + �) factor larger than the cost of an optimal solution. Then we 
say that a Steiner tree reoptimization algorithm is robust, if it is an approximation 
algorithm and its performance guarantee is � ⋅ (1 + O(�)) , where � is its perfor-
mance guarantee when � = 0 . Intuitively, this definition ensures that for � → 0 , 
the performance guarantee converges smoothly towards � , independent of the 
given instance. We consider robustness of reoptimization algorithms to be a cru-
cial feature, since in real-world applications close-to-optimal solutions are much 
more frequent than optimal solutions.

We address all local modifications that have previously been considered for 
Steiner tree reoptimization. We classify these modifications into two groups, 
according to their robustness. The first group contains those problems where 
obtaining a robust reoptimization algorithm implies to provide an approximation 
algorithm for the (non-reoptimization) Steiner tree problem with matching per-
formance guarantee. The second group of problems allows for improved robust 
reoptimization algorithms compared to STP approximation algorithms.



1968 Algorithmica (2020) 82:1966–1988

1 3

For all reoptimization problems of the second group that have previously been 
considered (and that are known to be NP-hard [17]), we provide robust reoptimiza-
tion algorithms that, for � → 0 , obtain better performance guarantees than the previ-
ous results with optimality assumption [13, 14].

After the journal submission of our manuscript, Bilò  [9] published polynomial 
time approximation schemes for Steiner tree reoptimization with respect to four of 
the most important local modifications (see Table 1). The algorithms use some of 
our techniques as a building block.

1.1  Local Modifications and Our Contribution

There are ten local modifications that previously have been considered for the 
Steiner tree problem. The two most studied modifications address the set of required 
nodes: we either declare a required node to be a Steiner node, or a Steiner node 
to be a required node. Here, STPR− resp. STPR+ denote the corresponding reopti-
mization problems. We show, in Sect. 4, that finding a robust reoptimization algo-
rithm for STPR− is as hard as finding a Steiner tree approximation algorithm with 
matching approximation ratio. If one, however, excludes that the node t declared 
to be a Steiner node is a leaf in the given instance, we provide a robust reoptimiza-
tion algorithm with improved performance ratio (see Table 1 for an overview of the 
achieved improvements). We show that in contrast to STPR− , STPR+ always allows 
for improved robust reoptimization algorithms. The next interesting type of local 
modification is to modify the cost of a single edge. We do not require the cost func-
tion to be metric. In particular, in the shortest path metric induced by the modified 
edge cost, the cost of several edges may be changed. We call the modification where 

Table 1  Comparison of approximation ratios of the Steiner Tree Reoptimization problem for the different 
types of local modifications

To increase the readability, all values �, � in the approximation ratios are omitted. The numerical val-
ues are rounded up at the third digit and we assume � = 1.387 , the approximation ratio ln(4) + � of the 
Steiner tree approximation algorithm of Byrka et al. [25] with small enough � . The subsequent results of 
Bilò [9] assume Sol to be an optimal solution but translate to robust reoptimization results for all local 
modifications except those that we show to be not permit robust reoptimization

Local modification Our results solution sol: 
(1 + �)-approx

Previous results solution sol: optimal 
solution

Subse-
quent 
results [9]

Expression Value Expression Value

STP
R− (internal node) 10�−7

7�−4
1.204 3�−2

2�−1
 [14] 1.219 1 + �

STP
R− (leaf node) Not robust 1.204 if � = 0 3�−2

2�−1
 [14] 1.219 1 + �

STP
R+ 10�−7

7�−4
1.204 3�−2

2�−1
 [13] 1.219 1 + �

STP
E+ 7�−4

4�−1
1.256 2�−1

�
 [14] 1.29 1 + �

STP
E− Not robust 1.387 5�−3

3�−1
 [11] Assuming metricity 1.246 1 + �

Add node Not robust 1.387 Without [25]: 1.5 [28] 1.387
Remove node Not robust 1.387 As hard as STP approx [17] 1.387
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the cost of one edge is increased STPE+ , and the converse local modification where 
the cost of one edge is decreased is STPE− . We provide an improved robust reoptimi-
zation algorithm for STPE+ and show that robust reoptimization for STPE− is as hard 
as approximating the Steiner tree problem itself (analogous to general STPR− ). The 
two local modifications to remove an edge from the graph and to add an edge to the 
graph reduce to STPE+ resp. STPE− in a straightforward manner.

The remaining four local modifications are the removal or addition of a 
required node or a Steiner node. It is known that the local modification where 
required or Steiner nodes are removed is as hard as Steiner tree approximation, 
even if we are given an optimal solution to the old problem [17]. We show that 
adding a required node or a Steiner node to the graph causes robust reoptimiza-
tion to be as hard as STP approximation.

One of the key insights that leads to our improved algorithms is that for all 
local modifications that allow for robust reoptimization algorithms, we can 
replace the given Steiner tree by a k-restricted Steiner tree of about the same cost. 
A k-restricted Steiner tree has a limited size of the subgraphs where all required 
nodes are leaves (see Sect. 2 for a precise definition). At the same time, we have 
the promise that there is an almost optimal Steiner tree for the modified instance 
that is k-restricted. This property allows us to handle certain subgraphs of Steiner 
trees called full components. (i) We remove entire full components from the 
given Steiner tree and perform optimal computations to obtain a feasible solution 
to the modified instance, and (ii) we guess entire full components of the Steiner 
tree that we aim to compute. The new insights simplify and generalize the previ-
ous approaches to Steiner tree reoptimization and therefore give raise to more 
sophisticated analyses than before.1

1.2  Related Work

The concept of reoptimization was first mentioned by Schäffter [31] in the con-
text of postoptimality analysis for a scheduling problem. Since then, the concept 
of reoptimization has been investigated for several different problems, including 
the traveling salesman problem [1, 5, 7, 15, 16, 30], the minimum latency prob-
lem [4, 26], the rural postman problem [3], fast reoptimization of the spanning 
tree problem [23], the knapsack problem [2], covering problems [12], the shortest 
common superstring problem [10], maximum-weight induced hereditary prob-
lems [22], and scheduling [6, 21, 31]. There are several overviews on reoptimiza-
tion [4, 19, 24, 33].

The Steiner tree reoptimization problem in general weighted graphs was previ-
ously investigated in [11, 13, 14, 17, 18, 28], see Table 1.

1 We note that with some additional effort, it would also be possible to adapt the technique of Bilò and 
Zych [14] and use them for our results.
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2  Preliminaries

We denote a Steiner tree instance by (G, R, c), where G is an undirected graph, 
R ⊆ V(G) is the set of required nodes, and c ∶ E(G) → ℝ≥0 is a cost function. The 
Steiner nodes of (G, R, c) are the nodes S = V(G)⧵R.

Since c is symmetric, we sometimes use the simplified notation c(u, v) = c(v, u) 
instead of c({u, v}).

For two graphs G,G′ , we define G ∪ G� to be the graph with node set 
V(G) ∪ V(G�) and edge set E(G) ∪ E(G�) (i.e., we do not keep multiple edges). For 
an edge e, G − e is G with e removed from E(G). We define G − G� to be the graph 
with node set V(G)⧵(V(G�) ∩ S) and edge set E(G)⧵E(G�) . We emphasize that we 
do not remove required vertices.

In Steiner tree algorithms, it is standard to consider the edge-costs to be met-
ric. The reason is that forming the metric closure (i.e., using the shortest path 
metric) does not change the cost of an optimal solution: if we replace an edge of 
a Steiner tree by the shortest path between the two ends, we obtain a valid Steiner 
tree again.

In the context of reoptimization, however, we cannot assume the cost function 
to be metric without loss of generality, because the triangle inequality restricts 
the effect of local changes. Therefore in the following we have to carefully distin-
guish between metric and general cost functions.

For a given Steiner tree, its full components are exactly those maximal subtrees 
that have all leaves are in R and all internal nodes are in S. Note that for a given 
Steiner tree T, we may remove leaves if they are not in R; we still have a Steiner 
tree, and its cost did not increase. Therefore we may assume that T is composed 
of full components. A k-restricted Steiner tree is a Steiner tree where each full 
component has at most k nodes from R.

Lemma 1 (Borchers and Du [20]) For an arbitrary 𝜀 > 0 , let k ≥ 21∕� . Then for all 
Steiner tree instances (G, R, c) with optimal solution OPT of cost opt , there is a k-
restricted Steiner tree T of cost at most (1 + �)opt which can be obtained from OPT 
in polynomial time.

Let T be a k-restricted Steiner tree in graph G. We replace the edge costs c 
by the shortest-path metric of G. In particular, since G is connected, it is a com-
plete graph with respect to the changed cost function c. We assume that within T, 
the Steiner nodes v ∈ V(T) ∩ S have a degree of deg(v) ≥ 3 . This is without loss 
of generality, since deg(v) ≥ 2 by the definition of k-restricted Steiner trees; if 
deg(v) = 2 and u, w are the neighbors of v, c(u, v) + c(v,w) ≥ c(u,w) . We replace 
{u, v}, {v,w} by {u,w} without increasing the cost of T and without changing the 
property that T is k-restricted.

Within the entire text, OPT denotes an optimal solution and opt denotes the 
cost of an optimal solution. We will often add sub- and superscripts to OPT and 
opt in order to distinguish between various types of (close to) optimal solutions.
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3  Connecting Forests and Guessing Components

We state two algorithms that we will use repeatedly within the subsequent sections. 
The first algorithm, ConneCt, was introduced by Böckenhauer  et  al.  [18] and has 
been used in all previous Steiner tree reoptimization results. The algorithm connects 
components of a Forest F of G in order to obtain a feasible Steiner tree T. The idea 
is that we start from a partial solution with few components that together contain 
all required vertices, and we use an exact computation to complete the solution. In 
ConneCt we use the following notation. Denote by G∕V � for V �

⊆ V(G) the contrac-
tion of V ′ in G. We write G/F instead of G/V(F), if F is a subgraph of G. Note that 
after contracting a component there may be multiedges. Here, we treat multigraphs 
as simple graphs, where we only consider the cheapest edge of each multiedge. For 
ease of presentation, we slightly abuse notation and use the cost function c for both 
the graph before and the graph after the contraction. 

Clearly, the graph T computed by ConneCt is a Steiner tree. If the number of 
components � of the forest F given as input is a constant and we use the Drey-
fus–Wagner algorithm [27]2 to compute T ′ , ConneCt runs in polynomial time. The 
graph T computed by ConneCt is the minimum-cost Steiner tree that contains F, 
since all Steiner trees that contain F determine feasible solutions T ′.

The second algorithm of this section is called Guess. It is motivated by the 
CONNECT algorithm of [14] and we present it here in a different manner. The 
algorithm Guess provides a mechanism to profit from guessing full components 
of an optimal k-restricted Steiner tree: we contract the guessed full components 
Si to single vertices ri and this way we obtain a new instance to which we apply 
known approximation algorithms. We call GUESS by simply writing GUESS(�) , if 
the instance and k are clear from the context and A  is a �-approximation algo-
rithm. For example GUESS(3k) means that � = 3k . 

2 We refer to Hougardy et al. [29] for an overview of further exact Steiner tree algorithms that, depend-
ing on the given parameters, may be faster than Dreyfus–Wagner.



1972 Algorithmica (2020) 82:1966–1988

1 3

Lemma 2 For an arbitrary 𝜀 > 0 , let k be the parameter obtained from Lemma 1. 
Let A  be a polynomial-time �-approximation algorithm for the Steiner tree problem. 
Furthermore, let OPTk be an optimal k-restricted solution of cost optk to the Steiner 
tree instance (G, R, c) where c is a metric. Then, for � ∈ O

�
(1) , Guess runs in poly-

nomial time and computes a Steiner tree T of cost at most (1 + �)(� − �� + �)opt , 
where �optk is the total cost of the � maximum-weight full components of OPTk and 
opt is the cost of an optimal solution.

The index � in the notation O
�
(⋅) means that � is a constant.3

Proof We first analyze the running time of the algorithm. Since A  runs in poly-
nomial time, we only have to consider the number of families S  that we have to 

test. This number is bounded from above by 
�
∑2k

i=2

�

n

i

�

�� , since we only choose 

sets of size at most 2k. Since both k and � are constants, this number is polyno-
mial in n.

Next we analyze the cost of T. Since we assume that for each Steiner node 
v ∈ S ∩ V(OPTk) , deg(v) ≥ 3 , we conclude that all full components of OPTk have 
at most 2k nodes. Therefore there is a family S  considered by Guess such that the 
classes of S  are exactly the node sets of the � maximum-weight full components 
of OPTk . Contracting a minimum spanning tree Ti is equivalent to contracting the 
full component with required nodes R ∩ Si in OPTk . We finish the proof by apply-
ing a standard argument that was used, for instance, by Böckenhauer et al. [16]. 
The cost of an optimal Steiner tree before expanding the full components is 
bounded from above by optk − �optk , and expanding the full components adds 
�optk . Therefore we obtain c(T) ≤ �(optk − �optk) + �optk = (� − �� + �)optk . 

3 Therefore k ∈ O
�
(1) means that there is a computable function f ∶ ℝ → ℝ such that k ≤ f (�).
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By our choice of k and Lemma  1, optk ≤ (1 + �)opt and therefore 
c(T) ≤ (1 + �)(� − �� + �)opt .   ◻

In the subsequent proofs, we will repeatedly obtain a value � such that 
� ≥ (� − 1 − �)� , where � is the actual performance ratio of the considered approxi-
mation algorithm. By simple arithmetics and assuming that (1 + �)(� − �� + �) 
tends to (� − �� + �) for � chosen sufficiently small, Lemma 2 implies

The reason for our assumption is that we can choose k in Lemma 1 and therefore the 
additional error is arbitrarily small.4 We avoid complicated formalisms and instead 
slightly relax the approximation ratios in theorem statements by adding a value 
O

�,�(�) for a 𝛿 > 0 that can be chosen arbitrarily small whenever the proofs use (1).

4  A Required Node Becomes a Steiner Node

The variant of the minimum Steiner tree reoptimization problem where a node is 
declared to be a Steiner node ( STPR−

�
 ) is defined as follows. 

Given:  A parameter 𝜀 > 0 , a Steiner tree instance (G, R, c), a solution OPT
old
�

 
to (G, R, c) such that optold

�
≤ (1 + �)optold , and a node t ∈ R.

Solution:  A Steiner tree solution to (G,R⧵{t}, c).

An instance of STPR−
�

 is a tuple 
(

G,R, c, OPT
old
�
, t
)

 . If � = 0 , we skip the index 
and write STPR− . Without loss of generality we assume that c is a metric: we may 
use the metric closure since the local modification does not change G or c.

The algorithm DeClaresteiner starts with reducing the instance to one where 
the changed required node has a degree of at least two, using a known technique. 
Afterwards it transforms the given solution to a k-restricted Steiner tree (note that 
the order of these two steps is important). The remaining algorithm outputs the 
best of three solutions that intuitively can be described as follows: we either keep 
the old solution; or we remove up to three full components incident to t to obtain 
a partial solution that we complete again using ConneCt; or we guess a partial 
solution that is at least as large as the 3k largest full-components of an optimal 
solution and complete these components to a solution using the best available 
approximation algorithm. 

(1)� ≤
� + �� − � + �(�� − �)

1 + �� − �

.

4 Note that in contrast to the error from Lemma 1, we cannot control the error of the given solutions.
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The following theorem indicates that in general we have to require � = 0 for 
instances of STPR−

�
 with deg(t) = 1.

Theorem 1 For an arbitrary 𝜀 > 0 , let A  be a polynomial-time �-approximation 
algorithm for STPR−

�
 . Then there is a polynomial-time �-approximation algorithm 

for the Steiner tree problem.

Proof Given a Steiner tree instance (G, R, c), let optnew be the cost of an optimal 
solution. We construct a STPR−

�
 instance 

(

G′,R′, c′, OPT
old
�
, t
)

 from (G, R, c). We first 
compute a minimum spanning tree T̃  of G[R]. Note that G[R] is a complete graph 
since we assume c to be metric, and c(T̃) ≤ 2optnew , as shown by Takahashi and 
Matsuyama [32]; we assume w.l.o.g. that 𝛼 < 2 . We obtain G′ by combining G and a 
new node t as follows. We set V(G�) ∶= V(G) ∪ {t} and E(G�) = E(G) ∪ {t, t�} for a 
node t� ∈ R . Then we obtain c′ from c by setting c�(t, t�) = c(T̃) ⋅max{1, (1 − 𝜀)∕𝜀} 
and forming the metric closure.5 We set R� = R ∪ {t} and obtain a solution to 
(G�,R�, c�) by adding {t, t�} to T̃  . We show later that the computed solution is OPT

old
�

 . 
Finally, we obtain the Steiner tree T by applying A  to 

(

G′,R′, c′, OPT
old
�
, t
)

.
Observe that T cannot contain an edge incident to t, since all of those edges 

have at least the cost of T̃  . Therefore T is a Steiner tree of (G, R, c). Conversely, all 
Steiner trees of (G, R, c) are feasible solutions to 

(

G′,R′, c′, OPT
old
�
, t
)

 . We conclude 
that T provides an � approximation, i.e., T is a feasible solution to (G,  R,  c) and 
c(T) ≤ �optnew.

To finish the proof, we have to show that OPT
old
�

 was a valid solution given to A  , 
i.e., its cost optold

�
 is at most a factor (1 + �) larger than optimum. Clearly, OPT

old
�

 

5 Taking the maximum of the two values ensures that c�(t, t�) ≥ c(T̃) , even if � ≥ 1∕2.
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is a Steiner tree of (G�,R�, c�) . Let optold be the cost of an optimal Steiner trees for 
(G�,R�, c�).

  ◻

For all remaining cases, DeClaresteiner profits from knowing OPT
old
�

.

Theorem 2 Let 
(

G,R, c, OPT
old
�
, t
)

 be an instance of STPR−
�

 with degOPT
old
�

(t) ≥ 2 or 
� = 0 . Then, for an arbitrary 𝛿 > 0 , DeClaresteiner is an approximation algorithm 
for STPR−

�
 with performance guarantee

For the approximation ratio � = ln(4) + �
�� from [25] with �′′ and � chosen suf-

ficiently small, we obtain an approximation ratio of less than 1.204 ⋅ (1 + �).

4.1  Proof of Theorem 2

Since k is a constant, all steps of DeClaresteiner except for the call of ConneCt 
clearly run in polynomial time. To see that also the call of ConneCt does, observe 
that removing the edges and Steiner nodes of a full component increases the num-
ber of connected components by at most k − 1.

We continue with showing the claimed upper bound on the performance guar-
antee. Before we show the main result, we introduce two simplification steps. 
First, we show that we can restrict our attention to the case deg(t) = 2 in OPT

old
�,k

 . 
Our analysis simultaneously gives a new proof for the previous best reoptimi-
zation result [14]. Subsequently we reduce the class of considered instances to 
those where all optimal solution to (G,R⧵{t}, c) have a special structure.

We start with analyzing the case where deg(t) = 1 . If this case appears in the 
while loop, by our assumption we have � = 0 and thus OPT

old
�

 is an optimal solu-
tion. The transformation of DeClaresteiner within the while loop reduces the 
instance to one where deg(t) ≥ 2 [18]. When transforming the resulting solution 
OPT

old
�

 to OPT
old
�,k

 , generally t could become a degree-one vertex. We use, however, 
that this is not the case when applying the algorithm of Borchers and Du  [20]: 
The algorithm considers the full components separately, which implies that ini-
tially the degrees of all required vertices are one. Each full component is replaced 
by a graph where each required vertex has a degree of at least one. Consequently, 
the degree of no required vertex is decreased.

For the remaining proof, we assume degOPT
old
�,k
(t) ≥ 2 . We prove the following 

technical lemma, which is needed for our subsequent argumentation.

optold
𝜀

optold
=

c(T̃) + c(t, t�)

optnew + c(t, t�)
≤

2optnew + c(t, t�)

optnew + c(t, t�)
≤ 1 +

optnew

optnew + optnew ⋅
1−𝜀

𝜀

= 1 + 𝜀.

(10� − 7 + 2� − 2��)(1 + �)

7� − 4 + 5� − 2��
+ O

�,�(�).
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Lemma 3 There is a collection C  of at most 3k full components of OPT
new
k

 such that 
F ∪ C  is a connected graph.

Proof Observe that F has less than 3k connected components, and each of them con-
tains nodes from R. We use that the full components of OPT

new
k

 only intersect in R. 
Since OPT

new
k

 is connected, by the pigeonhole principle it has a full component C 
that contains required nodes from two distinct components of F. Thus adding C to F 
reduces the number of components. Now the claim follows inductively.   ◻

Let � = c(T)∕optnew ≥ 1 be the performance ratio of DeClaresteiner. Thus, in 
the following we want to determine an upper bound on � . We may assume

since otherwise, T1 already gives an approximation ratio better than �.
We define � = c(CONNECT(F)) − c(F) , the cost to connect F. Let d be the num-

ber of full components removed from OPT
old
�,k

 to obtain F, i.e., d ∈ {2, 3}.

Lemma 4 For an arbitrary 𝛿 > 0 , the performance ratio � of DeClaresteiner is 
bounded from above by 1 + �−1+�(�−1)(d+1)

1+(�−1)d+�
+ O

�,�(�).

Proof We have c(Ct
1
) + c(Ct

2
) + c(Ct

3
) ≥ d ⋅ c(Ct

1
) assuming c(Ct

1
) ≤ c(Ct

i
) for i ≤ d.

We determine the following constraints. Since Ct
1
+ OPT

new contains a feasible 
solution to (G, R, c),

Furthermore,

since c(T2) is at most as large as the left hand side of (4).
We use (3) to replace optold

�,k
 in (2) to obtain

By applying (3) and (5) to (4), we obtain

Finally, � ≥ �∕optnew
k

 , by Lemma 3. Therefore, due to Lemma 2,

Now the claim follows if we replace � in (7) by the right hand side of (6), where we 
used that � ≥ 1 .   ◻

(2)optold
�,k

≥ �optnew

(3)optnew + c(Ct
1
) ≥ optold.

(4)optold
�,k

− c(Ct
1
) − c(Ct

2
) − c(Ct

3
) + � ≥ �optnew

(5)c(Ct
1
) ≥

� − 1 − �

(1 + �)(1 + �)
optnew.

(6)� ≥
d

(1 + �)(1 + �)
⋅ (� − 1 − �)optnew.

(7)(1 + �)
(

� − ��∕optnew
k

+ �∕optnew
k

)

≥ �.
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We note that for d = 2 and � = 0 , the upper bound on the performance guaran-
tee due to Lemma 4 matches the previously best performance guarantee [14]. For 
d = 3 , the value is better than the aimed-for value from Theorem 2. Observe that 
a straightforward extension of DeClaresteiner would allow us to consider values 
of d larger than three.

Due to Lemma  4, in the following we may assume that deg(t) = 2 . Next, 
we analyze the structure of OPT

old
�,k

 and OPT
new . Let R1 = (R ∩ V(Ct

1
))⧵{t} and 

R2 = (R ∩ V(Ct
2
))⧵{t} . We partition F into forests F1 and F2 such that F1 contains 

exactly the trees T of F with V(T) ∩ R1 ≠ � and F2 contains the remaining trees T ′ , 
with V(T �) ∩ R2 ≠ � (see Fig. 1).

Let v1 ∈ V(Ct
1
) and v2 ∈ V(Ct

2
) such that e1 = {t, v1} ∈ E(Ct

1
) and 

e2 = {t, v2} ∈ E(Ct
2
) . Let P1 be a minimum-cost path in OPT

old
�,k

 from t to R1 and let 
P2 be a minimum-cost path in OPT

old
�,k

 from t to R2 . Observe that P1 contains e1 and 
that P2 contains e2 . We define �1 ∶= c(P1) , ��

1
∶= c(e1) , and ���

1
= c(P1) − c(e1) . 

Analogously, �2 ∶= c(P2) , ��
2
∶= c(e2) , and ���

2
= c(P2) − c(e2) . Note that we do 

not exclude that v1 ∈ R1 or v2 ∈ R2 . In this case �′′
1

 resp. �′′
2

 are zero.
To simplify the presentation, we define �

� ∶= (��
1
+ �

�
2
)∕2 and 

�
�� ∶= (���

1
+ �

��
2
)∕2 . Since P1,P2 are minimum-cost paths, c(Ct

1
) ≥ �

�
1
+ 2���

1
 and 

c(Ct
2
) ≥ �

�
2
+ 2���

2
 , which implies

We have optnew + �
�
1
+ �

��
1
≥ optold and optnew + �

�
2
+ �

��
2
≥ optold . Therefore,

Lemma 5 Suppose there are at least two edge-disjoint paths in OPT
new
k

 between 
V(F1) and V(F2) . Then, for an arbitrary 𝛿 > 0 , the performance guarantee of 
DeClaresteiner is bounded from above by (11�−8)(1+�)

8�−5+3�
+ O

�,�(�).

Proof Let P′ and P′′ be two edge-disjoint paths within OPT
new
k

 between V(F1) and 
V(F2) such that none of their internal nodes are in V(OPT

old
�,k
) . Without loss of 

(8)c(Ct
1
) + c(Ct

2
) ≥ 2�� + 4���.

(9)optnew + �
� + �

�� ≥ optold.

t

v1 v2

e1 e2

F1 F2

Fig. 1  Structure of OPT
old

�,k
 . The paths P1 and P2 are drawn with thick lines
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generality, we assume that c(P�) ≤ c(P��) . Then, additionally to the previous con-
straints, we obtain the following.

From (9) and (10), we obtain

and thus, due to (11) and (2),(9),

Furthermore, by using (8) and (9) in (4), we obtain

and thus, due to (2) and (9) and the fact that �optnew
k

≥ �,

A linear combination of (13) and (14) with coefficients one and two gives 
(1 + O(�))� ≥

8(�−1−�)

3(1+�)
 . Using (1) we obtain

  ◻

Since the value obtained by Lemma 5 is better than the aimed-for ratio, from 
now on we can restrict our focus to instances where in OPT

new
k

 , there are no 
two edge-disjoint paths between F1 and F2 . In particular, this means that there 
is exactly one full component L in OPT

new
k

 that connects F1 and F2 . Since we 
assumed that there are no Steiner nodes of degree two in OPT

new
k

 , there is exactly 
one edge eL in L such that removing eL leaves two connected components of 
OPT

new
k

 , one containing R1 and the other one containing R2 . Let PL be a minimum-
cost path between V(F1) and V(F2) in L (and thus PL clearly contains eL ). Let P1

L
 

be the subpath of PL between F1 and eL and let P2
L
 be the subpath of PL between 

F2 and eL . We define � ∶= c(PL) , �� ∶= c(eL) , ���1 ∶= c(P1
L
) , and ���

2
∶= c(P2

L
) . 

Similar to above, we define ��� ∶= (���
1
+ �

��
2
)∕2 . Note that � − �

� = 2��� . It fol-
lows easily that c(L) ≥ �

� + 4��� . Let L′ be a forest with a minimum number of 
full components from OPT

new
k

 such that OPT
old
�,k

− Ct
1
− Ct

2
+ L� is connected. 

From Lemma 3, we obtain that L′ contains at most 3k full components and thus 

(10)optold
�,k

− 2�� + c(P�) = optold
�,k

− �
�
1
− �

�
2
+ c(P�) ≥ �optnew

(11)� ⋅ optnew
k

≥ c(P�) + c(P��) ≥ 2c(P�)

(12)(1 + �) ⋅ c(P�) ≥ (� − 1 − �)optnew + (1 − �)�� − (1 + �)���,

(13)
�optnew

k
≥ 2((� − 1 − �)optnew + (1 − �)�� − (1 + �)���)∕(1 + �)

≥
4

(1 + �)(1 + �)
(� − 1 − �)optnew − 4���.

(1 + O(�))� ≥ (� − 1 − �)optnew + (1 − �)�� + (3 − �)���.

(14)(1 + O(�))�optnew
k

≥
2

(1 + �)
(� − 1 − �)optnew + 2���.

� ≤
(11� − 8)(1 + �)

8� − 5 + 3�
+ O

�,�(�).
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we considered guessing L′ when computing T3 in DeClaresteiner. We define 
� ∶= c(L�) − �

� − 4��� . Since L′ contains L, � is non-negative.
To find an upper bound on the value of � , we maximize � subject to the con-

straints (2), (9) and the following constraints.
By removing eL from OPT

new
k

 and adding the paths P1 and P2 , we obtain a feasible 
solution to (G, R, c); conversely, by removing e1 and e2 from OPT

old
�,k

 and adding PL , 
we obtain a feasible solution to (G,R⧵t, c) that is considered in T2 . Therefore

In T2 we also consider to remove Ct
1
,Ct

2
 completely and to add L′ . Therefore

Due to Lemma 2, we may assume

In T3 , one of the considered guesses is L′ and therefore

We scale the values such that optnew = 1 . Then we perform the following replace-
ments. We replace optold in (9) and in (15) by using (2); we use (9) to replace optold 
in (16); we use (9) to replace optold in (17). We keep (18) and (19). This way we 
obtain a linear program that maximizes � subject to the following constraints, where 
we ignore the dependence on �.

Now we obtain the dual linear program

(15)optnew
k

+ 2�� + 2��� − �
� ≥ optold,

(16)optold
�,k

− 2�� + �
� + 2��� ≥ �optnew.

(17)optold
�,k

− 2�� − 4��� + �
� + 4��� + � ≥ �optnew.

(18)� − �� + � ≥ �∕(1 + �).

(19)� ⋅ optnew
k

≥ �
� + 4��� + �.

− �
� − �

�� + �∕(1 + �) ≤ 1

− 2�� − 2��� + �
� + �∕(1 + �) ≤ 1

(1 − �)�� − (1 + �)��� − �
� − 2��� + � ≤ 1 + �

(1 − �)�� + (3 − �)��� − �
� − 4��� − � + � ≤ 1 + �

(� − 1)� + � ≤ �

�
� + 4��� + � − � ≤ 0

minimize y1 + y2 + (1 + �)y3 + (1 + �)y4 + �y5
s.t.: − y1 − 2y2 + (1 − �)y3 + (1 − �)y4 ≥ 0

− y1 − 2y2 − (1 + �)y3 + (3 − �)y4 ≥ 0

y2 − y3 − y4 + y6 ≥ 0

− 2y3 − 4y4 + 4y6 ≥ 0

− y4 + y6 ≥ 0

(� − 1)y5 − y6 ≥ 0

y1∕(1 + �) + y2∕(1 + �) + y3 + y4 + y5 ≥ 1
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To finish the proof, we consider the following feasible solution. We set

With these values, the objective function value matches the claimed value in Theo-
rem 2. By weak duality, we obtained an upper bound on the value of � in the primal 
linear program, which finishes the proof.

5  A Steiner Node Becomes a Required Node

In this section, instead of removing nodes from R, we consider the problem to 
add nodes to R, i.e., we declare a Steiner node to be a required node. Formally 
the problem STPR+

�
 is defined as follows. 

Given:  A parameter 𝜀 > 0 , a Steiner tree instance (G, R, c), a solution OPT
old
�

 to 
(G, R, c) such that optold

�
≤ (1 + �)optold , and a Steiner node t ∈ V(G)⧵R

.
Solution:  A Steiner tree solution to (G,R ∪ {t}, c).

Unlike in the case of terminal removal, in the following theorem we may 
allow OPT

old
�

 with 𝜀 > 0 without any exceptions.

Theorem 3 Let 
(

G,R, c, OPT
old
�
, t
)

 be an instance of STPR+
�

 . Then, for an arbitrary 
𝛿 > 0 , DeClarerequireD is a 

(

(10+7�)�−7⋅(1+�)

7�−4
+ O

�,�(�)
)

-approximation algorithm 
for STPR+

�
.

y1 =
2(�−1)(1+�)(1−2�)

7�−4+5�−2��
; y2 = y1∕2;

y3 = y1∕(1 − 2�); y4 = y1∕(1 − 2�);

y5 =
3(1+�)(1−2�)

(1−2�)(7�−4+5�−2��)
; y6 =

3y1

2(1−2�)
.
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5.1  Proof of Theorem 3

We prove the theorem in three steps, according to the degree of t in OPT
new
k

.
Let us first assume that deg(t) = 1 . Then there is a well defined edge {t, t�} in 

OPT
new
k

 . Thus we may solve (G,R, c, OPT
old
�
, t�) and add {t, t�} afterwards if t is not 

included. If t� ∈ R , OPT
old
�

 is good enough already. Otherwise deg(t�) ≥ 2 in the 
k-restricted optimal solution to (G,R, c, OPT

old
�
, t�) that we obtain from OPT

new
k

 by 
removing t. Adding {t, t�} after obtaining a solution to (G,R, c, OPT

old
�
, t�) does not 

increase the approximation ratio since both the computed and the optimal solution 
are increased by the same amount. Note that in DeClarerequireD, the transforma-
tion is implicitly contained. If t� ∈ R , T1 provides a (1 + �)-approximation. Since for 
both instances we consider the same full components C, T2 is at most as large as 
the solution obtained for (G,R, c, OPT

old
�
, t�) together with {t, t�} . In T3 , we implicitly 

considered deg(t) = 1 by choosing k + 1 as parameter, whereas k is sufficient for the 
remaining proof. Therefore, in the following we assume deg(t) ≥ 2.

For the remaining proof where deg(t) ≥ 2 in OPT
new
k

 , we introduce the following 
notation. Let us fix a close-to-optimal solution OPT

new
k

 to (G,R ∪ {t}, c).
We consider t as the root of OPT

new
k

 and fix two subtrees F1 and F2 such that there 
is a full component L of OPT

old
�

 with V(L) ∩ V(F1) ≠ � and V(L ∩ V(F2) ≠ � . Thus L 
connects F1 and F2 . We define � = c(L) . The trees F1 and F2 exist, because OPT

old
�

 is 
a connected graph. Let us now consider the graph H = F1 ∪ F2 ∪ L . Note that since 
nodes not in R have a degree of at least three, there is at most one edge eL in L that 
is a cut edge of H. If eL exists, we set �� = c(eL) ; otherwise, �� = 0 . If there are more 
than one components of OPT

old
�

 connecting F1 and F2 , we change the names such 
that �′ is minimal.

We set R1 ∶= R ∩ V(F1) and R2 ∶= R ∩ V(F2) . Then 
� ∶= min{c({v1, v2}) ∶ v1 ∈ R1, v2 ∈ R2} . We define p1 = min{c({r, t}) ∶ r ∈ R1} , 
p2 = min{c({r, t}) ∶ r ∈ R2} , and p ∶= min{c({r, t}) ∶ r ∈ R} . Furthermore, let P1 
and P2 be the minimum-cost paths from t to R1 resp. R2 in OPT

new
k

 . Let e1 and e2 
be the edges of P1 resp. P2 incident to t. We define, for i ∈ {1, 2} , p�

i
∶= c(ei) and 

p��
i
∶= c(Pi) − p�

i
 . Then p� ∶= (p�

1
+ p�

2
)∕2 and p�� ∶= (p��

1
+ p��

2
)∕2 . In particular,

Before we continue with the second case, let us state two general constraints. Since 
OPT

new is a feasible solution to (G, R), we have

We get

since otherwise T1 is a good enough solution. The constraints (22) and (23) imply

(20)p ≤ p� + p��.

(21)p1 + p2 ≤ 2(p� + p��).

(22)optnew ≥ optold.

(23)optold
�

+ p ≥ �optnew,
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Next we reduce the problem to deg(t) = 2.

Lemma 6 For an arbitrary 𝛿 > 0 , DeClarerequireD is a 
(

4�−3+(3�−3)�

3�−2
+ O

�,�(�)
)

-approximation algorithm for instances (G,R, c, OPT
old
�
, t) with deg(t) > 2 in OPT

new
k

.

Proof By definition of p, we conclude that �optnew
k

≥ 3p . Using (24), we conclude 
that (1 + �)� ≥ 3(� − 1 − �) . Therefore, by (1), we obtain the claimed result.   ◻

For the last case where deg(t) = 2 , we obtain the following additional constraints. 
Since L contains a path between R1 and R2 of length at least � , and eL is the only cut 
edge (if there is any).

In other words, if we double eL then there are two edge-disjoint paths between R1 
and R2 in OPT

new
k

 . Furthermore,

since adding a direct edge between F1 and F2 reconnects the graph after removing e1 
and e2 . From (23) and (26), we obtain

To get a feasible solution to (G,R ∪ {t}, c) , we can remove eL from L (if eL exists) 
and connect the graph again by adding minimum-cost edges from R1 and R2 to t. 
Therefore T2 is good enough unless

We obtain the following constraint from (22) and (28).

Finally, in T3 we guess a collection of trees that combine the connected components 
of OPT

old
�,k

− L , and therefore

Also from T3 we obtain

From (25) and (30) we obtain

From (21), (29), (32), we obtain

(24)p ≥ (� − 1 − �)optnew.

(25)� ≥ 2 ⋅ � − �
�

(26)optnew
k

− 2p� + � ≥ optold

(27)(1 + �)p ≥ (� − 1 − �)optnew + (1 + �)(2p� − �).

(28)optold
�,k

− �
� + p1 + p2 ≥ �optnew.

(29)p1 + p2 ≥ (� − 1 − �)optnew∕(1 + �) + �
�.

(30)�optnew
k

≥ �.

(31)�optnew
k

≥ 2p� + 4p�� ≥ 2p + 2p��.

(32)�optnew
k

≥ 2� − �
�.
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Then from (20), (27), (33) we obtain

From (34), together with (24) and (31), we get (1 + O
�
(�))� ≥ 7(� − 1 − �)∕3 . 

Therefore applying (1) finishes the proof.

6  Increased Edge Cost

We now consider the reoptimization variant where the edge cost of one edge 
is increased, STPE+

�
 . If e is the edge of G with increased cost, we define 

cnew ∶ E(G) → ℝ≥0 as cnew(e�) = c(e�) for all edges e� ∈ E(G)⧵{e} and cnew(e) is the 
increased cost. Then the formal definition of the reoptimization variant is as follows. 

Given:  A parameter 𝜀 > 0 , a Steiner tree instance (G, R, c), a solution OPT
old
�

 to 
(G, R, c) such that optold

�
≤ (1 + �)optold , and a cost cnew(e) ≥ c(e) for an 

edge e ∈ E(G).
Solution:  A Steiner tree solution to (G,R, cnew).

Observe that the cost function obtained after applying the local modification in 
general is not a metric, and OPT

new
�,k

 is assumed to live in the metric closure according 
to the new cost function. 

Theorem  4 Let 
(

G,R, c, OPT
old
�
, e, cnew(e)

)

 be an instance of STPE+
�

 . Then, for an 
arbitrary 𝛿 > 0 , eDGeinCrease is a 

(

7�−4+�(4�−4)

4�−1
+ O

�,�(�
)

-approximation algorithm 
for STPE+

�
.

Proof Let us introduce the following notation. To emphasize which of the two 
instances we consider, we write cold(e) instead of c(e), where e is the edge with 
increased cost. We assume that e ∈ E(OPT

old
�,k
) , as otherwise T1 would be good 

enough already. Therefore the graph OPT
old
�,k

− e has exactly two connected 

(33)�∕O
�
(1 + �) ≤ p� + p�� + (� + 1 − � + �)optnew∕2.

(34)
(1 + �)(1 + O

�
(�))p�� ≥ (�(3 + �) − (3 + �)(1 + �) − � (1 + �))optnew∕4 + �p∕2.
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components F1 and F2 . Similar to the previous proof, we define R1 ∶= R ∩ V(F1) 
and R2 ∶= R ∩ V(F2).

In OPT
old
�,k

 , let K be the full component that contains e. Let P be a minimum-cost 
path from R1 to R2 within K. Then we set � ∶= c(P) − cold(e).

In OPT
new
k

 , there is a full component L of cost � such that V(L) contains nodes 
from both R1 and R2 . If L has two edge-disjoint paths between R1 and R2 , we 
define �� = 0 . Otherwise there is an edge eL ∈ E(L) such that eL is a cut edge in 
F1 ∪ F2 ∪ L , and �� ∶= c(eL) . We obtain the following inequalities, where as before 
� = c(T)∕optnew.

Removing e and adding a shortest path between R1 and R2 within L gives a feasi-
ble solution to (G,R, cnew) . Therefore T2 is good enough unless

One feasible solution to the original instance is to remove eL and to add P. Therefore 
we obtain

From (35) and (36), we obtain

Since clearly optnew ≥ optold , (35) implies

In (37) and (38), we have used that cold(e) ≥ 0 and therefore it can be omitted.
We obtain an additional constraint by observing that in addition to using eL , 

within OPT
new
k

 the required vertices of K have to be connected. Let K1 be the tree 
of K − e that contains R1 ∩ V(K) . We see K1 as a rooted tree with the root r1 con-
tained in e = {r1, r2} . Let us fix any two vertices u ≠ u� ∈ V(K1)⧵{r} , with parents 
v, v′ . Then the minimum distance between the two subtrees rooted at u, u′ is at least 
max{c(u, v), c(u�, v�)} . The same argumentation holds for K2 , which we define analo-
gous to K1 (it contains R2 ∩ V(K) , and has the root r2 ). By traversing a path from 
V(K1) ∩ R1 to r1 within K1 and from V(K2) ∩ R2 to r2 , and adding the distances, we 
conclude that there is a collection of at most k full components in OPT

new
k

 that with-
out counting eL have a total cost of at least � . Therefore, using T2,

which due to (37) implies

and with (38) we obtain

(35)optold
�,k

− cold(e) + �∕2 + �
�∕2 ≥ �optnew.

(36)optnew
k

− �
� + cold(e) + � ≥ optold.

(37)(1 + �)(1 + �)� ≥ (� − 1 − �)optnew + ��
� + �

�∕2 − �∕2.

(38)�
� ≥ 2(� − 1 − �)optnew

�,k
− �.

�optnew
k

≥ �
� + �,

(1 + �)(1 + �)�optnew
k

≥ (� − 1 − �)optnew
�,k

+ ((3 + 4�)∕2)�� − �∕2,

(39)(1 + �)�optnew
k

≥ 4(� − 1 − �)optnew
�,k

− 2�.
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By definition of T2,

The value � is minimized subject to the constraints (39) and (40) if

Now the claim follows from (1).   ◻

7  Decreased Edge Cost

We consider the reoptimization variant where the edge cost of one edge is decreased, 
STPE−

�
 . Similar to the previous section, if e is the edge of G with decreased cost, we 

define cnew ∶ E(G) → ℝ≥0 as cnew(e�) = c(e�) for all edges e� ∈ E(G)⧵{e} and cnew(e) 
is the decreased cost. Then the formal definition of the reoptimization variant is as 
follows. 

Given:  A parameter 𝜀 > 0 , a Steiner tree instance (G, R, c), a solution OPT
old
�

 to 
(G, R, c) such that optold

�
≤ (1 + �)optold , and a cost cnew(e) ≤ c(e) for an 

edge e ∈ E(G).
Solution:  A Steiner tree solution to (G,R, cnew).

We show that decreasing the edge cost does not allow for a robust reoptimization 
better than STP approximation, similar to the case considered in Theorem 1. The 
proof of the following theorem is analogous to the proof of Theorem 1.

Theorem 5 For an arbitrary 𝜀 > 0 , let A  be a polynomial-time �-approximation 
algorithm for STPE−

�
 . Then there is a polynomial-time �-approximation algorithm 

for the Steiner tree problem.

Proof Given a Steiner tree instance (G,  R,  c), we construct a STPE−
�

 instance 
(G�,R�, c�, e, cnew(e)) . We first compute a minimum spanning tree T̃  of G[R]. As in 
the proof of Theorem 1, G[R] is a complete graph since w.l.o.g. we assume c to be 
metric, and c(T̃) ≤ 2optnew , as shown by Takahashi and Matsuyama [32]. Again, we 
assume w.l.o.g. that 𝛼 < 2.

We obtain G′ by combining G and a new node t as follows. We set 
V(G�) ∶= V(G) ∪ {t} and E(G�) = E(G) ∪ {t, t�} for a node t� ∈ R . Then we obtain c′ 
from c by setting c�(t, t�) = c(T̃) ⋅max{1, (1 − 𝜀)∕𝜀} and forming the metric closure. 
We set R� = R ∪ {t} and obtain OPT

old
�

 by adding {t, t�} to T̃  . Finally, we obtain the 
Steiner tree T by applying A  to (G�,R�, c�, {t, t�}, 0).

Observe that reducing the cost in this case does not influence any edge costs in 
G′ except for those edges incident to t. Therefore the new instance is equivalent to 
(G, R).

(40)�optnew
k

≥ �.

� = 4(� − 1 − �)∕3.
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To finish the proof, we have to show that OPT
old
�

 was a valid solution given to A  , 
i.e., optold

�
 is at most a factor (1 + �) larger than optimum. This step is identical with 

the corresponding step in the proof of Theorem 1.   ◻

8  Changing the Node Set

Finally, we consider the local modifications where we remove nodes from the graph 
or add nodes to the graph. The results of this section are much simpler than the 
results of the previous sections and we sketch them for completeness, without for-
mal definitions of the considered reoptimization problems.

Removing a required node or a Steiner node gives a reoptimization problem that 
is as hard as the original Steiner tree problem [17]. The idea is that if (G, R, c) is a 
Steiner tree instance that we want to solve, then we add a node t that has cost zero 
edges to all nodes in G, and therefore there is a trivial optimal Steiner tree of cost 
zero. Removing t, however, leaves us with the original problem instance; in this case 
the hardness does not even depend on the robustness, the problem is hard even if we 
are given an optimal solution.

Adding a node is at least as hard as decreasing the edge cost. If a Steiner node 
t is added, this is straightforward: if we want to decrease the cost of e = {u, v} in a 
Steiner tree instance (G, R, c), we add a Steiner node v′ with c(v, v�) = 0 , c(u, v�) the 
reduced cost, and c(v�,w) = c(v,w) for all other w ∈ V(G).

If a required node t is added, we have to consider an additional step. Observe that 
decreasing the cost of e = {u, v} can only have an impact, if it is contained in all 
optimal solutions to the modified problem, as otherwise keeping the given solution 
is close to optimal. Therefore we can solve STPE−

�
 by taking the best of the following 

two solutions: we either keep the given old optimal solution or we reduces the edge 
cost analogous to the case where t is a Steiner node.
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