22 research outputs found

    Rendering Geometry with Relief Textures

    Get PDF
    International audienceWe propose to render geometry using an image based representation. Geometric information is encoded by a texture with depth and rendered by rasterizing the bounding box geometry. For each resulting fragment, a shader computes the intersection of the corresponding ray with the geometry using pre-computed information to accelerate the computation. Great care is taken to be artifact free even when zoomed in or at grazing angles. We integrate our algorithm with reverse perspective projection to represent a larger class of shapes. The extra texture requirement is small and the rendering cost is output sensitive so our representation can be used to model many parts of a 3D scene

    Relief impostor selection for large scale urban rendering

    Get PDF
    Image-based rendering techniques are often the preferred choice to accelerate the exploration of massive outdoor models and complex human-made structures. In the last few years, relief mapping has been shown to be extremely useful as a compact representation of highly-detailed 3D models. In this paper we describe a rendering system for interactive, high-quality visualization of large scale urban models through a hierarchical collection of properly-oriented relief-mapped polygons. At the heart of our approach is a visibilityaware algorithm for the selection of the set of viewing planes supporting the relief maps. Our selection algorithm optimizes both the sampling density and the coverage of the relief maps and its running time is mostly independent on the underlying geometry. We show that our approach is suitable for navigating through large scale urban models at interactive rates while preserving both geometric and appearance details.Postprint (published version

    Hybrid Rugosity Mesostructures (HRMs) for fast and accurate rendering of fine haptic detail

    Get PDF
    The haptic rendering of surface mesostructure (fine relief features) in dense triangle meshes requires special structures, equipment, and high sampling rates for detailed perception of rugged models. Low cost approaches render haptic texture at the expense of fidelity of perception. We propose a faster method for surface haptic rendering using image-based Hybrid Rugosity Mesostructures (HRMs), paired maps with per-face heightfield displacements and normal maps, which are layered on top of a much decimated mesh, effectively adding greater surface detail than actually present in the geometry. The haptic probe’s force response algorithm is modulated using the blended HRM coat to render dense surface features at much lower costs. The proposed method solves typical problems at edge crossings, concave foldings and texture transitions. To prove the wellness of the approach, a usability testbed framework was built to measure and compare experimental results of haptic rendering approaches in a common set of specially devised meshes, HRMs, and performance tests. Trial results of user testing evaluations show the goodness of the proposed HRM technique, rendering accurate 3D surface detail at high sampling rates, deriving useful modeling and perception thresholds for this technique.Peer ReviewedPostprint (published version

    Per-Pixel Extrusion Mapping with Correct Silhouette

    Get PDF
    Per-pixel extrusion mapping consists of creating a virtual geometry stored in a texture over a polygon model without increasing its density. There are four types of extrusion mapping, namely, basic extrusion, outward extrusion, beveled extrusion, and chamfered extrusion. These different techniques produce satisfactory results in the case of plane surfaces, but when it is about the curved surfaces, the silhouette is not visible at the edges of the extruded forms on the 3D surface geometry because they not take into account the curvature of the 3D meshes. In this paper, we presented an improvement that consists of using a curved ray-tracing to correct the silhouette problem by combining the per-pixel extrusion mapping techniques and the quadratic approximation computed at each vertex of the 3D mesh

    Geometry Textures

    Get PDF
    International audienceIn highly tessellated models, triangles are very small compared to the entire object, representing at the same time its macro- and mesostructures. The main idea in this work is to use a visualization algorithm that is adequate to mesostructure but applied to the whole object. Tessellated models are converted into geometry textures, a geometric representation for surfaces based on height maps. In rendering time, the fine-scale details are reconstructed with LOD speed-up while preserving original quality

    Instant Sound Scattering

    Get PDF
    International audienceReal-time sound rendering engines often render occlusion and early sound reflection effects using geometrical techniques such as ray or beam tracing. They can only achieve interactive rendering for environments of low local complexity resulting in crude effects which can degrade the sense of immersion. However, surface detail or complex dynamic geometry has a strong influence on sound propagation and the resulting auditory perception. This paper focuses on high-quality modeling of first-order sound scattering. Based on a surface-integral formulation and the Kirchhoff approximation, we propose an efficient evaluation of scattering effects, including both diffraction and reflection, that leverages programmable graphics hardware for dense sampling of complex surfaces. We evaluate possible surface simplification techniques and show that combined normal and displacement maps can be successfully used for audio scattering calculations. We present an auralization framework that can render scattering effects interactively thus providing a more compelling experience. We demonstrate that, while only considering first order phenomena, our approach can provide realistic results for a number of practical interactive applications. It can also process highly detailed models containing millions of unorganized triangles in minutes, generating high-quality scattering filters. Resulting simulations compare well with on-site recordings showing that the Kirchhoff approximation can be used for complex scattering problems

    Geometry Textures and Applications

    Get PDF
    International audienceGeometry textures are a novel geometric representation for surfaces based on height maps. The visualization is done through a GPU ray casting algorithm applied to the whole object. At rendering time, the fine-scale details (mesostructures) are reconstructed preserving original quality. Visualizing surfaces with geometry textures allows a natural LOD behavior. There are numerous applications that can benefit from the use of geometry textures. In this paper, besides a mesostructure visualization survey, we present geometry textures with three possible applications: rendering of solid models, geological surfaces visualization and surface smoothing
    corecore