
Relief Impostor Selection for Large Scale Urban Rendering
Carlos Andujar∗ José Dı́az† Pere Brunet‡

Modeling, Visualization, Interaction and Virtual Reality Group
Universitat Politècnica de Catalunya

ABSTRACT

Image-based rendering techniques are often the preferred choice to
accelerate the exploration of massive outdoor models and complex
human-made structures. In the last few years, relief mapping has
been shown to be extremely useful as a compact representation of
highly-detailed 3D models. In this paper we describe a rendering
system for interactive, high-quality visualization of large scale ur-
ban models through a hierarchical collection of properly-oriented
relief-mapped polygons. At the heart of our approach is a visibility-
aware algorithm for the selection of the set of viewing planes sup-
porting the relief maps. Our selection algorithm optimizes both the
sampling density and the coverage of the relief maps and its running
time is mostly independent on the underlying geometry. We show
that our approach is suitable for navigating through large scale ur-
ban models at interactive rates while preserving both geometric and
appearance details.

1 INTRODUCTION

Real-time visualization of large urban models is a challenging prob-
lem requiring a careful handling of their intrinsic multiple lev-
els of scale. Image-based rendering techniques offer a convenient
solution to accelerate the rendering of massive outdoor models.
These techniques typically outperform textured-mapped simplified
meshes for replacing distant geometry, as traditional simplification
techniques typically perform poorly on dense collections of small
connected components.

Relief mapping techniques make use of per-texel depth values
to provide parallax effects and faithfully reproduce details on sil-
houettes. Unfortunately, most relief mapping approaches suffer
from undersampling problems in regions with multi-valued projec-
tion. This problem is particularly noticeable in urban model visual-
ization due to the large number of self-occlusions between human-
made structures. Omni-directional relief impostors (ORIs) [1] over-
come these limitations by representing detailed 3D objects through
a small set of properly-oriented relief mapped polygons. Unlike
other approaches, each relief map provides a global view of the
whole model from a particular direction (see Figure 1-a). A small
subset of the selected maps (typically three) are rendered based on
a ray-height-field intersection algorithm. A major issue with ORIs
is the selection of the set of viewing planes supporting the relief
maps. The goal here is to maximize the sampling quality and
coverage while minimizing the number of directions.

The construction algorithm proposed in [1] starts with 20 reg-
ularly spaced directions and optimize this initial set of views by
searching for the neighboring view that maximizes the entropy of
relative projected areas of the visible polygons. In this case, it was
considered that n=20 relief maps was a good compromise between

∗e-mail: andujar@lsi.upc.edu
†e-mail:jose.diaz.iriberri@gmail.com
‡e-mail:pere@lsi.upc.edu

(a) (b)

Figure 1: A set of relief maps defining an omni-directional relief im-
postor (a). Three levels of the quadtree hierarchy (b)

memory requirements and sampling quality for representing single
objects.

In this paper we propose a radically different approach for se-
lecting an optimized set of view directions particularly designed
for large urban models. Our algorithm optimizes both the number
of directions and the directions themselves while achieving a good
trade-off between sampling density and sampling coverage. Our
optimization algorithm only requires as input a depth map taken
from an orthogonal camera aligned with the vertical direction. Un-
like [1], our optimization phase is based solely on simple 2D im-
age processing operations and does not require to render repeatedly
the original model to evaluate the sampling quality, thus enabling
searching on a larger space with fast preprocessing times.

The main contributions of the paper are:

• A visibility-aware algorithm for selecting a small subset of
relief maps which optimizes both the sampling density and
sampling coverage on urban models.

• A GPU-based rendering strategy to seamlessly render over-
lapping relief maps which guarantees that all texels in a relief
map can contribute to the final output image.

• A rendering system for interactive visualization of large urban
models through a quadtree hierarchy of relief impostors.

2 RELATED WORK

In this section we review only previous work most closely related
to our approach. Interested readers may refer to recent surveys on
massive model visualization [5] for further information.

Impostors that replace distant geometry can be used for extreme
appearance-preserving simplification [6]. A complete overview of
the state-of-the-art is given in [4]. Several works based on relief
texture mapping try to represent fine detail geometry or complex
objects by using depth textures. Policarpo et al. [8] exploit the pro-
grammability of modern GPUs to implement a pixel-driven solu-
tion to relief texture mapping. All the necessary information for
adding surface details to polygonal surfaces is stored in RGBA tex-
tures. The RGB channels encode a normal or color map, while its
alpha channel stores quantized depth information. The technique
uses an inverse formulation based on a ray-heightfield intersection
algorithm implemented on the GPU.

(a) (b) (c) (d) (e)

Figure 2: Relief map selection: (a) input depth map, (b-d) θm-maps corresponding to the three best directions found by the selection algorithm,
(e) scanlines used for computing the θm-maps for ψ = 0.

A major problem in the above image-based techniques is how to
guarantee sufficient sampling so as to minimize disocclusion arti-
facts. For example, a relief map constructed from a vertical view
direction might fully capture the geometry of a urban model (as-
suming it appears as 2.5D geometry when viewed at a distance) but
would completely miss facade details. Some attempts have been
proposed to overcome this problem [7, 2]. The original relief map-
ping approach is extended in [7] to render non-height-field surface
details in real time. This new technique stores multiple depth and
color values per texel. Unfortunately, faithfully representing build-
ing blocks with high depth complexity would require storing a pro-
hibitive number of (z,color) pairs. Baboud and Décoret [2] build the
height fields using inverse perspective frusta, which help improve
the sampling on certain regions but fail to capture concave parts.

The BlockMap representation [3] encodes both the geometry and
the sampled appearance of a small group of simple buildings, rep-
resented by a collection of textured vertical prisms. Although the
BlockMap representation is less redundant than ours, our approach
does not suffer from artifacts when reproducing non-orthogonal
surfaces like tilt roofs and provides a more general solution for a
larger class of building shapes.

3 OVERVIEW

Omni-directional relief impostors can be used in a hierarchical way,
using a space-subdivision scheme, for the interactive inspection
of complex scenes (see Figure 1-b). Although we have adopted
a simple quadtree-based representation inspired by [1], relief im-
postors can be seamlessly integrated into streaming-friendly, multi-
threaded architectures for interactive rendering of complex urban
models [3].

Unlike [1], we build the relief maps for each submodel in a
bottom-up fashion, using the relief maps of the child nodes to ob-
tain the relief maps for the parent node. This strategy dramatically
accelerates preprocessing times and provides a fully scalable con-
struction since the whole city model is not required to fit in memory
at any time. Relief maps for the leaves of the quadtree hierarchy
are generated using the view selection algorithm described in Sec-
tion 5. Once an optimal view set has been computed, the model
is rendered using orthogonal cameras aligned with the chosen view
directions, and we grab the depth and color maps. We use six clip-
ping planes that bound the corresponding box to ensure that only
interior geometry is captured by the impostors.

Our relief map selection algorithm always ensures that one of
the relief maps (called zenithal map) is built using an orthogonal
projection onto a horizontal plane (see Figure 2-a). This relief
map fully captures the geometry of the building blocks, assuming
rough 2.5D geometry. The rendering algorithm detailed in next sec-
tion guarantees that the geometric error (in the Hausdorff distance
sense) is bounded by half of the length of the diagonal of a zenithal
map texel in object space, and the geometric error in screen space
is the projection of such length. The view-dependent navigation of
the quadtree is based on these projected error values. In a pre-order

traversal, a given node is rendered (by rendering a subset of their
relief maps) if its screen-projected error is below a user-defined
tolerance. If the projected error is above the tolerance value, we
recursively descend the quadtree repeating the above test.

4 RENDERING THE QUADTREE NODES

Each quadtree node stores a collection of up to eight properly-
aligned relief maps (see next section) plus a zenithal map. Fortu-
nately, we do not have to render all eight precomputed relief maps,
but only those contributing to the current view. In a typical sce-
nario only the selected subset will reside in GPU memory whereas
the others will be requested from a remote server as needed. Tradi-
tional pre-fetching and streaming techniques [5] can be adopted for
smooth animation.

Therefore the first step is to select a subset of the precomputed
relief maps to be rendered. We force this subset to always in-
clude the zenithal relief map, as it fully captures the geometry of
the buildings and provides the best sampling for horizontal surfaces
like roofs. The rest of the selected impostors would basically con-
tribute to add detail to building facades and other non-horizontal
surfaces poorly captured by the zenithal map.

The view-dependent selection proposed in [1] is based on dis-
cretizing the Gauss sphere representing all possible view directions
and finding the best subset for each view v using a brute-force ap-
proach which compares the render of the original model from v with
that of the subset being tested. For comparing the two renderings,
the authors measure the coverage error defined as the number of
pixels covered by the original model that are missing in the render
of the selected relief maps.

In our urban rendering system we have adopted a completely
different strategy. Since the zenithal relief map is always rendered,
the coverage error is approximately zero. Therefore we use a much
simpler and faster selection strategy: we select the two relief maps
whose direction is better aligned with the current camera direction,
in addition to the zenithal map. Once the relief maps to render have
been chosen, the support polygon is in turn sent to the graphics
pipeline, where the actual relief mapping of the impostors will be
computed by the fragment shader. The shader requires computing
the intersection of the fragment’s viewing ray with the height field
encoded by the depth map. For this particular problem we have
adopted the simple algorithm described in [9].

Since each relief map provides a global view of the underly-
ing geometry, we will have pixels covered by more than one re-
lief map, and we need to be able to decide which one will con-
tribute its color to the pixel. We compute the correct depth value in
the fragment shader, so that correct visibility and interpenetration
with other scene objects are guaranteed. In case of approximate tie,
which is very likely to happen in overlapping parts, we prioritize
the relief map whose direction is better aligned with the view direc-
tion, giving to the zenithal map the lowest priority. This priority is
implemented as a simple offset of the depth value computed in the
fragment shader.

A key issue is how to compute the rectangular portion of the
plane to be drawn. This is important because this determines which
fragments will be processed and hence which viewing rays will be
checked for intersection with the model. We project the vertices of
the bounding box of the model (stored in each quadtree node) into
the plane (in the direction of the viewpoint). Using textured coor-
dinates outside the range [0,1] enables the ray intersection code to
quickly jump to the portion of the plane where texture information
is available. This strategy guarantees that every frontfacing relief
map will be able to contribute to the final image, even those at graz-
ing angles, and ensures seamless reconstructions between adjacent
quadtree cells.

5 RELIEF MAP SELECTION

We now describe the algorithm to select the set of directions that
will be used to build the relief maps. The problem can be stated as
follows: given the part of the urban model overlapping a quadtree
cell, decide the number n of required relief maps and compute the
n directions to use in the construction of them.

Figure 3: Basic components for computing the sampling quality of a
facade along a given view direction.

Recall that we always build one of the relief maps by projecting
the model onto a horizontal plane (the zenithal map). The selection
algorithm will have to compute additional view directions which
will be used to build the complementary relief maps. This step is
critical to ensure proper sampling of the appearance attributes of
model parts like building facades. Note that the depth channel of the
zenithal map provides accurate sampling of the geometry whereas
its color channels provide excellent sampling of the color of roughly
horizontal surfaces. Therefore complementary maps will basically
add color detail to those parts poorly sampled by the zenithal map.

Our algorithm choses n view directions from a hemisphere
around the model. Each direction is represented by a pair of angles
(θ ,ψ) where θ ∈ (0,90) represents the elevation measured from
the vertical axis (i.e. θ = 0 corresponds to the zenithal map) and
ψ ∈ [0,360) represents the direction measured from the X axis.

The goal here is to maximize the color sampling quality and cov-
erage while minimizing the number of directions. By sampling cov-
erage we refer to the presence of a particular model feature in the
resulting relief map, regardless of the number of texels used for
sampling it. Sampling coverage from a particular view direction is
severely affected by self-occlusions, which is particularly important
in urban models. Therefore sampling coverage optimization algo-
rithm must be visibility-aware. A related concept is color sampling
density, which refers to the ratio between the area of a surface part
and the corresponding area in texture space. Besides texture resolu-
tion, sampling density depends on how well the relief map direction
is aligned with the surface normal being captured.

Note that in a typical urban environment with multiple occlu-
sions, maximizing sampling coverage and sampling density are
often opposite goals. Consider several possible elevation values
for building a relief map, ranging from a nearly zenithal direction
(θ ≈ 0) to a horizontal direction (θ ≈ 90) perfectly aligned with the
main facades of a building. A nearly zenithal direction would pro-
vide greater coverage as bird’s eye views are less subject to occlu-
sion effects, but the sampling density will decrease proportionally
with the sinus of the elevation angle θ .

The direction achieving a good compromise between sampling
density and coverage depends basically on the depth complexity of
the model in hand (how densely occluded are the buildings). Exam-
ples of two extreme cases are rural areas with low-height buildings
distributed sparsely and downtown areas populated with skyscrap-
ers. The first kind of scene is mostly unoccluded, so nearly hor-
izontal views would provide both excellent sampling density and
coverage. Analogously, the second kind of scene is densely oc-
cluded and hence nearly horizontal views would provide very poor
coverage of second-line buildings and hence it would suffer from
disocclusion events.

Suppose we fix a given direction angle ψ and want to find an ele-
vation angle θ achieving a good trade-off between sampling quality
and sampling coverage. For this particular direction and for a given
facade roughly aligned with ψ , we can compute the maximum an-
gle θm for which the whole facade is captured by a relief map ori-
ented along (θ ,ψ) (see Figure 3). As we move the elevation angle
θ from 0 to θm, the sampling density increases whereas the cover-
age is preserved, as no disocclusion events occur. Therefore for this
particular value of ψ taking values θ < θm is clearly suboptimal.

When moving θ from θm to 90, the sampling density still in-
creases but the sampling coverage decreases due to the partial oc-
clusion of the facade. Therefore we must select a value for θ

achieving a good balance between density and coverage. Regard-
ing the selection of ψ values, we should also optimize the sampling
quality by avoiding unstable views so as to minimize artifacts due
to disocclusion events [1].

The input of our selection algorithm is the depth map corre-
sponding to the zenithal direction (see Figure 2-a). This depth map
contains all the geometric information and thus is enough to eval-
uate the sampling density and coverage of any view direction. In
the following we consider inverted h = 1− z values so that they
correspond to heights above the horizontal plane. Our algorithm
only produces a set of directions where all (θ ,ψ) pairs have dis-
tinct values on ψ (there is at most one elevation for each selected
direction). Multiple θ values for the same direction ψ makes sense
on arbitrarily shaped objects but not on urban models with rough
2.5D structure.

Our selection algorithm proceeds through two main steps. We
first build a θm-map for a fixed set of probe directions which define
the search space for the optimization of ψ values (in the examples
we used 24 directions, leading to 15 degree steps). The θm-map
contains the value of θm for each point not belonging to a building
(i.e. for image points with h below some threshold). Figure 2 shows
the θm-maps for three directions (ψ =315, 135 and 225 deg).

The θm-maps can be computed very efficiently using a simple
algorithm. The algorithm visits the texels of the input depth map
using a collection of scanlines aligned according to ψ (see Figure 2-
e). As we proceed through a scanline, we keep an initially empty
stack of (h,x) pairs for each building of height h at distance x en-
countered during the scan (the stored distance x is measured from
the scanline origin). Every time we encounter a pixel correspond-
ing to a building at (h,x), we pop from the stack all the buildings
with height below h (these wont contribute anymore to the current
scanline) and we push (h,x) into the stack. By construction the
stack is always sorted by h and x (with the smallest value of h and
greatest value of x in the top of the stack).

Pixels not belonging to a building (h < ε) will be referred to
street pixels. Every time we encounter a street pixel we compute its
θm value using the stack. For each building in the stack we compute
a θm value as arctan(d/h) where d is the distance from the current
texel to the building (see Figure 3). The minimum θm is stored in
the θm-map, and we pop buildings from the stack until the building
providing the minimum θm occupies the top. The computation of
the 24 θm-maps for a 128x128 depth map takes less than 100ms.

The second step of the algorithm uses the 24 θm-maps to select n

view directions. We use a greedy algorithm combined with a voting
scheme. A facade pixel is a pixel belonging to a building but im-
mediately following a street pixel along the scanline. Each facade
pixel votes for all the (θ ,ψ) directions from which it is visible.
The vote is weighted by the height of the building corresponding
to the facade pixel. The set of θ values are discretized into 10-
degree bins, resulting in 24x10 bins. Each vote is divided by the
total facade area so that votes accumulated on a bin (θ ,ψ) can be
seen as the fraction of facade area visible from a relief map oriented
along (θ ,ψ). The best view is selected by choosing the pair max-
imizing the benefit function sin(θ)V (θ ,ψ) where V (θ ,ψ) is the
fraction of facade surfaces visible from (θ ,ψ). Experimentally we
have found this function to give a good trade-off between sampling
density and sampling coverage. Once the best view is selected, we
repeat the voting process but keeping facade pixels captured by pre-
viously computed views from voting. The process is repeated until
we reach a user-defined coverage (e.g. 80% of the facade surfaces)
or the number of computed views reaches a user-defined limit (we
use up to 8 views per quadtree node). Figure 2 shows the three best
directions found by the selection algorithm. Note that our algorithm
naturally produces stable, well distributed views.

(a) (b)

Figure 4: Results using the closest impostor (a) and the two closest
impostors (b).

6 RESULTS

We have developed a prototype implementation of the described
system and tested it with a 2GB textured model of Rome cover-
ing around 36 km2. Reported results have been measured on a
dual-core CPU @2.13 GHz and a GeForce 7950GT graphics card
equipped with 512 MB.

Figure 5: Original building and the result using two relief maps.

For the city model we use a five-level quadtree whose leaf nodes
subdivide the model into 16x16 squares, resulting in 64 terminal
nodes and 21 non-terminal nodes. Construction time is roughly 4
hours, including the time required to load a partial VRML model
for each terminal quadtree node. Selection of view directions and
construction of the relief maps accounts for a small fraction of this
time, around 6 min. Table 1 shows the results with a part of the city
model. In order to enable the comparison with the original model,
we only show results with the largest city part fitting in GPU mem-
ory (covering 64 Ha of Rome) and the corresponding two-level sub-
tree (see Figure 4). We include results using one, two or three relief

maps per quadtree node. In all cases we use a 512x512 viewport.
Note that rendering times are greatly decreased and allow for real-
time exploration. Note also that the resulting images exhibit very
few artifacts and the image quality is comparable to that of the orig-
inal model.

Table 1: Comparison between rendering the original model and our
approach.

Original Relief maps
texture maps 2741 4 8 12
Texture Memory (MB) 10.7 0.25 0.5 0.75
FPS 3 370 260 150

One of the benefits of our approach is that most texels of the com-
plimentary relief maps contribute to the final image, and hence the
texture resolution is a good measure of the sampling density. Note
that approaches using parameterizations of the facade walls [3]
build color maps whose sampling density depends on the perimeter
of the buildings. As a consequence, quadtree cells covering large
areas populated with many buildings either require huge textures or
color information must be dramatically subsampled.

7 CONCLUSIONS

We have presented a urban rendering system for high-quality visu-
alization of large scale urban models through a hierarchical collec-
tion of properly-oriented relief-mapped polygons. A new algorithm
for the selection of the set of viewing planes supporting the relief
maps has been presented. The algorithm achieves a good balance
between the sampling density and sampling quality, and it is fast
enough to be applied to each quadtree node. We have shown that
our approach is suitable for navigating through large scale urban
models at interactive rates.

ACKNOWLEDGEMENTS

This work has been partially funded by GeoVirtual and the Spanish
Ministry of Science and Technology under grant TIN2004-08065-
C02-01. The Rome city model has been provided by Tele Atlas.

REFERENCES

[1] C. Andujar, J. Boo, P. Brunet, M. Fairen, I. Navazo, P. Vazquez, and
A. Vinacua. Omni-directional relief impostors. Computer Graphics
Forum, 26(3):553–560, 2007.

[2] L. Baboud and X. Décoret. Rendering geometry with relief textures. In
Proc. of Graphics Interface, pages 195–201, Toronto, Canada, 2006.

[3] P. Cignoni, D. B. M, F. Ganovelli, E. Gobbetti, F. Marton, and
R. Scopigno. Ray-casted blockmaps for large urban models visual-
ization. Computer Graphics Forum, 26(3):405–413, 2007.

[4] S. Jeschke, M. Wimmer, and W. Purgathofer. Image-base representa-
tions for accelerated rendering of complex scenes. In STAR reports,
Eurographics 2005, pages 1–20, 2005.

[5] D. Kasik, D. Manocha, A. Stephens, B. Bruderlin, P. Slusallek, E. Gob-
betti, W. Correa, and I. Quilez. Real time interactive massive model
visualization. In Eurographics 2006 Tutorials, 2006.

[6] P. W. C. Maciel and P. Shirley. Visual navigation of large environments
using textured clusters. In SI3D ’95: Proceedings of the 1995 sympo-
sium on Interactive 3D graphics, 1995.

[7] F. Policarpo and M. M. Oliveira. Relief mapping of non-height-field
surface details. In Proc. of ACM Symp. on Interactive 3D Graphics and
Games, pages 55–62. ACM Press, 2006.

[8] F. Policarpo, M. M. Oliveira, and J. Comba. Real-time relief mapping
on arbitrary polygonal surfaces. In Proc. of ACM Symposium on Inter-
active 3D Graphics and Games, pages 155–162. ACM Press, 2005.

[9] F. Policarpo, M. M. Oliveira, and J. Comba. Real-time relief mapping
on arbitrary polygonal surfaces. In Proc. of ACM Symposium on Inter-
active 3D Graphics and Games, pages 155–162. ACM Press, 2005.

