674 research outputs found

    Mitigation of H.264 and H.265 Video Compression for Reliable PRNU Estimation

    Full text link
    The photo-response non-uniformity (PRNU) is a distinctive image sensor characteristic, and an imaging device inadvertently introduces its sensor's PRNU into all media it captures. Therefore, the PRNU can be regarded as a camera fingerprint and used for source attribution. The imaging pipeline in a camera, however, involves various processing steps that are detrimental to PRNU estimation. In the context of photographic images, these challenges are successfully addressed and the method for estimating a sensor's PRNU pattern is well established. However, various additional challenges related to generation of videos remain largely untackled. With this perspective, this work introduces methods to mitigate disruptive effects of widely deployed H.264 and H.265 video compression standards on PRNU estimation. Our approach involves an intervention in the decoding process to eliminate a filtering procedure applied at the decoder to reduce blockiness. It also utilizes decoding parameters to develop a weighting scheme and adjust the contribution of video frames at the macroblock level to PRNU estimation process. Results obtained on videos captured by 28 cameras show that our approach increases the PRNU matching metric up to more than five times over the conventional estimation method tailored for photos

    Distortion-constraint compression of three-dimensional CLSM images using image pyramid and vector quantization

    Get PDF
    The confocal microscopy imaging techniques, which allow optical sectioning, have been successfully exploited in biomedical studies. Biomedical scientists can benefit from more realistic visualization and much more accurate diagnosis by processing and analysing on a three-dimensional image data. The lack of efficient image compression standards makes such large volumetric image data slow to transfer over limited bandwidth networks. It also imposes large storage space requirements and high cost in archiving and maintenance. Conventional two-dimensional image coders do not take into account inter-frame correlations in three-dimensional image data. The standard multi-frame coders, like video coders, although they have good performance in capturing motion information, are not efficiently designed for coding multiple frames representing a stack of optical planes of a real object. Therefore a real three-dimensional image compression approach should be investigated. Moreover the reconstructed image quality is a very important concern in compressing medical images, because it could be directly related to the diagnosis accuracy. Most of the state-of-the-arts methods are based on transform coding, for instance JPEG is based on discrete-cosine-transform CDCT) and JPEG2000 is based on discrete- wavelet-transform (DWT). However in DCT and DWT methods, the control of the reconstructed image quality is inconvenient, involving considerable costs in computation, since they are fundamentally rate-parameterized methods rather than distortion-parameterized methods. Therefore it is very desirable to develop a transform-based distortion-parameterized compression method, which is expected to have high coding performance and also able to conveniently and accurately control the final distortion according to the user specified quality requirement. This thesis describes our work in developing a distortion-constraint three-dimensional image compression approach, using vector quantization techniques combined with image pyramid structures. We are expecting our method to have: 1. High coding performance in compressing three-dimensional microscopic image data, compared to the state-of-the-art three-dimensional image coders and other standardized two-dimensional image coders and video coders. 2. Distortion-control capability, which is a very desirable feature in medical 2. Distortion-control capability, which is a very desirable feature in medical image compression applications, is superior to the rate-parameterized methods in achieving a user specified quality requirement. The result is a three-dimensional image compression method, which has outstanding compression performance, measured objectively, for volumetric microscopic images. The distortion-constraint feature, by which users can expect to achieve a target image quality rather than the compressed file size, offers more flexible control of the reconstructed image quality than its rate-constraint counterparts in medical image applications. Additionally, it effectively reduces the artifacts presented in other approaches at low bit rates and also attenuates noise in the pre-compressed images. Furthermore, its advantages in progressive transmission and fast decoding make it suitable for bandwidth limited tele-communications and web-based image browsing applications

    Some Intra-Frame and Inter-Frame Processing Schemes for Efficient Video Compression

    Get PDF
    Rapid increase in digital applications due to recent advances in digital communication and devices needs significant video information storing, processing and transmitting. But the amount of original captured video data is huge and thus makes the system complex in all kind of video processing.But applications demand a faster transmission in different sized electronic devices with good quality.Along with, limited bandwidth and memory for storage makes it challenging. These practical constraints for processing a huge amount of video data, makes video compression as active and challenging field of research. The aim of video compression is to remove redundancy of raw video while maintaining the quality and fidelity. For inter frame processing, motion estimation technique is significantly used to reduce temporal redundancy in almost all the video coding standards e.g. MPEG2, MPEG4, H264/AVC which uses state-of-art algorithm to provide higher compression with a perceptual quality.Though motion estimation is main contributor for higher compression, this is the most computationally complex part of video coding tools. So, it is always a requirement to design an algorithm that is both faster and accurate and provides higher compression but good quality output. The goal of this project is to propose an algorithm for motion estimation which will meet all the requirements and overcome all the practical limitations. In this thesis we analyze the motion of video sequences and some novel block matching based motion estimation algorithms are proposed to improve video coding efficiency in inter frame processing. Particle Swarm Optimization technique and Differential Evolutionary model is used for fast and accurate motion estimation and compensation. Spatial and temporal correlation is adapted for initial population. We followed some strategy for adaptive generations, particle population, particle location history preservation and exploitation. The experimental result shows that our proposed algorithm is efficient to maintain the accuracy. There is significant reduction of search points and thus computational complexity while achieving comparable performance in video coding. Spatial domain redundancy is reduced skipping the irrelevant or spatially co-related data by different sub-sampling algorithm.The sub-sampled intra-frame is up-sampled at the receiver side. The up-sampled high resolution frame requires to have good quality . The existing up-sampling or interpolation techniques produce undesirable blurring and ringing artifacts. To alleviate this problem, a novel spatio-temporal pre-processing approach is proposed to improve the quality. The proposed method use low frequency DCT (Discrete cosine transform) component to sub-sample the frame at the transmitter side. In transmitter side a preprocessing method is proposed where the received subsampled frame is passed through a Wiener filter which uses its local statistics in 3×3 neighborhood to modify pixel values. The output of Wiener filter is added with optimized multiple of high frequency component. The output is then passed through a DCT block to up-sample. Result shows that the proposed method outperforms popularly used interpolation techniques in terms of quality measure

    Efficient From-Point Visibility for Global Illumination in Virtual Scenes with Participating Media

    Get PDF
    Sichtbarkeitsbestimmung ist einer der fundamentalen Bausteine fotorealistischer Bildsynthese. Da die Berechnung der Sichtbarkeit allerdings äußerst kostspielig zu berechnen ist, wird nahezu die gesamte Berechnungszeit darauf verwendet. In dieser Arbeit stellen wir neue Methoden zur Speicherung, Berechnung und Approximation von Sichtbarkeit in Szenen mit streuenden Medien vor, die die Berechnung erheblich beschleunigen, dabei trotzdem qualitativ hochwertige und artefaktfreie Ergebnisse liefern

    Complexity management of H.264/AVC video compression.

    Get PDF
    The H. 264/AVC video coding standard offers significantly improved compression efficiency and flexibility compared to previous standards. However, the high computational complexity of H. 264/AVC is a problem for codecs running on low-power hand held devices and general purpose computers. This thesis presents new techniques to reduce, control and manage the computational complexity of an H. 264/AVC codec. A new complexity reduction algorithm for H. 264/AVC is developed. This algorithm predicts "skipped" macroblocks prior to motion estimation by estimating a Lagrange ratedistortion cost function. Complexity savings are achieved by not processing the macroblocks that are predicted as "skipped". The Lagrange multiplier is adaptively modelled as a function of the quantisation parameter and video sequence statistics. Simulation results show that this algorithm achieves significant complexity savings with a negligible loss in rate-distortion performance. The complexity reduction algorithm is further developed to achieve complexity-scalable control of the encoding process. The Lagrangian cost estimation is extended to incorporate computational complexity. A target level of complexity is maintained by using a feedback algorithm to update the Lagrange multiplier associated with complexity. Results indicate that scalable complexity control of the encoding process can be achieved whilst maintaining near optimal complexity-rate-distortion performance. A complexity management framework is proposed for maximising the perceptual quality of coded video in a real-time processing-power constrained environment. A real-time frame-level control algorithm and a per-frame complexity control algorithm are combined in order to manage the encoding process such that a high frame rate is maintained without significantly losing frame quality. Subjective evaluations show that the managed complexity approach results in higher perceptual quality compared to a reference encoder that drops frames in computationally constrained situations. These novel algorithms are likely to be useful in implementing real-time H. 264/AVC standard encoders in computationally constrained environments such as low-power mobile devices and general purpose computers

    Wavelet-based image and video super-resolution reconstruction.

    Get PDF
    Super-resolution reconstruction process offers the solution to overcome the high-cost and inherent resolution limitations of current imaging systems. The wavelet transform is a powerful tool for super-resolution reconstruction. This research provides a detailed study of the wavelet-based super-resolution reconstruction process, and wavelet-based resolution enhancement process (with which it is closely associated). It was addressed to handle an explicit need for a robust wavelet-based method that guarantees efficient utilisation of the SR reconstruction problem in the wavelet-domain, which will lead to a consistent solution of this problem and improved performance. This research proposes a novel performance assessment approach to improve the performance of the existing wavelet-based image resolution enhancement techniques. The novel approach is based on identifying the factors that effectively influence on the performance of these techniques, and designing a novel optimal factor analysis (OFA) algorithm. A new wavelet-based image resolution enhancement method, based on discrete wavelet transform and new-edge directed interpolation (DWT-NEDI), and an adaptive thresholding process, has been developed. The DWT-NEDI algorithm aims to correct the geometric errors and remove the noise for degraded satellite images. A robust wavelet-based video super-resolution technique, based on global motion is developed by combining the DWT-NEDI method, with super-resolution reconstruction methods, in order to increase the spatial-resolution and remove the noise and aliasing artefacts. A new video super-resolution framework is designed using an adaptive local motion decomposition and wavelet transform reconstruction (ALMD-WTR). This is to address the challenge of the super-resolution problem for the real-world video sequences containing complex local motions. The results show that OFA approach improves the performance of the selected wavelet-based methods. The DWT-NEDI algorithm outperforms the state-of-the art wavelet-based algorithms. The global motion-based algorithm has the best performance over the super-resolution techniques, namely Keren and structure-adaptive normalised convolution methods. ALMD-WTR framework surpass the state-of-the-art wavelet-based algorithm, namely local motion-based video super-resolution.PhD in Manufacturin

    Construction de mosaïques de super-résolution à partir de la vidéo de basse résolution. Application au résumé vidéo et la dissimulation d'erreurs de transmission.

    Get PDF
    La numérisation des vidéos existantes ainsi que le développement explosif des services multimédia par des réseaux comme la diffusion de la télévision numérique ou les communications mobiles ont produit une énorme quantité de vidéos compressées. Ceci nécessite des outils d’indexation et de navigation efficaces, mais une indexation avant l’encodage n’est pas habituelle. L’approche courante est le décodage complet des ces vidéos pour ensuite créer des indexes. Ceci est très coûteux et par conséquent non réalisable en temps réel. De plus, des informations importantes comme le mouvement, perdus lors du décodage, sont reestimées bien que déjà présentes dans le flux comprimé. Notre but dans cette thèse est donc la réutilisation des données déjà présents dans le flux comprimé MPEG pour l’indexation et la navigation rapide. Plus précisément, nous extrayons des coefficients DC et des vecteurs de mouvement. Dans le cadre de cette thèse, nous nous sommes en particulier intéressés à la construction de mosaïques à partir des images DC extraites des images I. Une mosaïque est construite par recalage et fusion de toutes les images d’une séquence vidéo dans un seul système de coordonnées. Ce dernier est en général aligné avec une des images de la séquence : l’image de référence. Il en résulte une seule image qui donne une vue globale de la séquence. Ainsi, nous proposons dans cette thèse un système complet pour la construction des mosaïques à partir du flux MPEG-1/2 qui tient compte de différentes problèmes apparaissant dans des séquences vidéo réeles, comme par exemple des objets en mouvment ou des changements d’éclairage. Une tâche essentielle pour la construction d’une mosaïque est l’estimation de mouvement entre chaque image de la séquence et l’image de référence. Notre méthode se base sur une estimation robuste du mouvement global de la caméra à partir des vecteurs de mouvement des images P. Cependant, le mouvement global de la caméra estimé pour une image P peut être incorrect car il dépend fortement de la précision des vecteurs encodés. Nous détectons les images P concernées en tenant compte des coefficients DC de l’erreur encodée associée et proposons deux méthodes pour corriger ces mouvements. Unemosaïque construite à partir des images DC a une résolution très faible et souffre des effets d’aliasing dus à la nature des images DC. Afin d’augmenter sa résolution et d’améliorer sa qualité visuelle, nous appliquons une méthode de super-résolution basée sur des rétro-projections itératives. Les méthodes de super-résolution sont également basées sur le recalage et la fusion des images d’une séquence vidéo, mais sont accompagnées d’une restauration d’image. Dans ce cadre, nous avons développé une nouvelleméthode d’estimation de flou dû au mouvement de la caméra ainsi qu’une méthode correspondante de restauration spectrale. La restauration spectrale permet de traiter le flou globalement, mais, dans le cas des obvi jets ayant un mouvement indépendant du mouvement de la caméra, des flous locaux apparaissent. C’est pourquoi, nous proposons un nouvel algorithme de super-résolution dérivé de la restauration spatiale itérative de Van Cittert et Jansson permettant de restaurer des flous locaux. En nous basant sur une segmentation d’objets en mouvement, nous restaurons séparément lamosaïque d’arrière-plan et les objets de l’avant-plan. Nous avons adapté notre méthode d’estimation de flou en conséquence. Dans une premier temps, nous avons appliqué notre méthode à la construction de résumé vidéo avec pour l’objectif la navigation rapide par mosaïques dans la vidéo compressée. Puis, nous établissions comment la réutilisation des résultats intermédiaires sert à d’autres tâches d’indexation, notamment à la détection de changement de plan pour les images I et à la caractérisation dumouvement de la caméra. Enfin, nous avons exploré le domaine de la récupération des erreurs de transmission. Notre approche consiste en construire une mosaïque lors du décodage d’un plan ; en cas de perte de données, l’information manquante peut être dissimulée grace à cette mosaïque
    corecore