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Abstract 

 

Distributed video coding (DVC) reverses the traditional coding paradigm of complex 

encoders allied with basic decoding to one where the computational cost is largely incurred 

by the decoder. This is attractive as the proven theoretical work of Wyner-Ziv (WZ) and 

Slepian-Wolf (SW) shows that the performance by such a system should be exactly the 

same as a conventional coder. Despite the solid theoretical foundations, current DVC 

qualitative and quantitative performance falls short of existing conventional coders and 

there remain crucial limitations. A key constraint governing DVC performance is the 

quality of side information (SI), a coarse representation of original video frames which are 

not available at the decoder. Techniques to generate SI have usually been based on linear 

motion compensated temporal interpolation (LMCTI), though these do not always produce 

satisfactory SI quality, especially in sequences exhibiting non-linear motion. 

This thesis presents an intelligent higher order piecewise trajectory temporal interpolation 

(HOPTTI) framework for SI generation with original contributions that afford better SI 

quality in comparison to existing LMCTI-based approaches. The major elements in this 

framework are: (i) a cubic trajectory interpolation algorithm model that significantly 

improves the accuracy of motion vector estimations; (ii) an adaptive overlapped block 

motion compensation (AOBMC) model which reduces both blocking and overlapping  

artefacts in the SI emanating from the block matching algorithm; (iii) the development of 

an empirical mode switching algorithm; and  (iv) an intelligent switching mechanism to 

construct SI by automatically selecting the best macroblock from the intermediate SI 

generated by HOPTTI and AOBMC algorithms. Rigorous analysis and evaluation 

confirms that significant quantitative and perceptual improvements in SI quality are 

achieved with the new framework.   
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Chapter 1 

 

 

 

Introduction 

 

 

1.1 Introduction 

Today, images and videos are everywhere and it is hard to imagine any area of life or 

industry where they do not play some role. The increasing processing power, 

miniaturization of chips by hyper-integration (Jian-Qiang, 2009) and storage capacity of 

computers (digital processors) has made it possible for mobile devices such as mobile 

phones, web cams and tablets to include video cameras making them widely available. The 

availability of these cameras has fuelled the increasing demand for visual communication 

technologies in all aspects of human life. Given that video capture, storage and 

transmission demands high bit rates, coupled with additional constraints in processing 

power and energy limitations for mobile devices, the compression of video data which is 

generally referred to as video coding has remained an important research area. Video 

coding refers to the exploitation of spatial-temporal correlation to remove redundancies 

leading to compression. While some compression techniques are lossless, such as 

arithmetic codes, others are lossy and includes techniques such as quantization, which 

results in the loss of visual information, which together reduces the quantity of data used to 

represent the information contained in the video. 
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Lossless coding techniques, such as arithmetic codes include Low Density Parity Check 

(LDPC) and Turbo codes which only remove redundancies. Lossy coding techniques on 

the other hand combine the removal of redundancies with dropping of visual information. 

For example, motion compensated prediction is used for removing temporal redundancy 

while the quantization process associated with discrete cosine transform (DCT) which in 

itself is completely reversible and therefore lossless, allows the hierarchical removal of 

spatial redundancies by making it possible for less sensitive visual information to be 

removed first. 

 

1.1.1 History and Trends of Video Coding 

Image and video compression has evolved from the 1990s to meet the various applications 

of images and videos as they develop with two groups being very prominent in their 

evolution. The present conventional state of the art coder-decoder (codec) is represented by 

the International Telecommunication Union, (ITU-T) advanced video coding (AVC) 

standard (Wiegand et al., 2003) and Moving Picture Experts Group (MPEG) - 4 (Gall, 

1991) coding standards, which have been combined into one standard under the 

supervision of the Joint Video Team (JVT) (Hendrawan and Yusuf, 2012). Figure 1.1 

shows the trend of the evolution of video compression from the matured conventional 

coding standards to the ones presently undergoing standardization, mostly through the 

efforts of the JVT ( Zhao et al., 2013; Chen et al., 2009) and the yet to be standardized 

advances such as Distributed Video Coding (DVC).  

While conventional video coding standards are efficient and fit well with the present day 

broadcasting paradigm, which has complex encoders allied with simple decoders (TV set 

top boxes), new and emerging application scenarios, such as wild life surveillance or 

transmission of medical images from remote villages to medical specialists in the cities 

have led to proposals for new architectures and paradigms.  
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Figure 1.1 Pictorial Diagram showing the trend of video compression and standards. 

 

 

These include DVC based on the theories of Wyner-Ziv (1973) (WZ) and Slepian-Wolf 

(1973) (SW) which reverses the broadcast paradigm to that which has simple encoders 

allied with more complex decoders. 

State of the art conventional video encompasses techniques which work well when the 

original video frame is present, thus are usually implemented at the encoder. They combine 

together to make the encoder typically 5 to 10 times more computationally complex 

(Semsarzadeh et al. 2013; Ostermann et al., 2004; Saponara et al., 2003) than the decoder, 

while at the same time making the state of the art video codec highly efficient. 
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1.1.2 Conventional Video Coding Standard and High Complexity Encoding  

One of the most successful conventional video coding standards that has crossed over to 

still feature prominently in the latest advances as can be seen from Figure 1.1, is the H.264 

video coding standard (Hendrawan and Yusuf, 2012). The H.264 codec clearly depicts the 

asymetric nature of the conventional encoder-decoder, where the encoder is significantly 

more complex than the decoder. Some of the features in the encoder side of the H.264 that 

increase its complexity include: 

(i) Multiple Frames Referencing: This is the use of multiple reference frames for 

motion estimation (ME) which greatly increases the efficiency of the codec while at the 

same time increasing overhead as the schemes with lowest overheads such as the 

adaptive and fast multi-frame selection algorithm consider at least five reference frames 

(Wiegand et al., 2003)  during ME. 

(ii) Variable Block Size Motion Estimation: This is the use of the optimum block size 

for each macro-block (MB) and this is determined using a block size prediction scheme 

known as the MB frame selection scheme (Ostermann et al., 2004) which is executed 

every time the block size is to be determined, making the overhead cost very high but 

increasing codec output quality.  

(iii) Integer Transforms: This is the use of a scaling algorithm to convert all DCT 

coefficients to integers. This makes the implementation of DCT in hardware simpler as 

the tasks can solely be handled using additions and shifts (Ostermann et al., 2004) while 

at the same time avoiding the inverse transform mismatch problem of DCT. Most of the 

algorithms have sacrificially higher calculation overheads for the simplicity of 

implementation (Ostermann et al., 2004; Hendrawan and Yusuf, 2012).    

(iv) Context Adaptive Binary Arithmetic Coding: This is the use of context-based 

adaptive binary arithmetic coding algorithm (Ostermann et al., 2004)  in coding residual 

data in state of the art video codecs which allow the exploitation of context modelling to 
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remove redundancy in the symbol statistics as it varies over space and time as well as 

source material and coding conditions. Though this technique increases coding 

performance, giving 5-15% bit rate reduction for typical coding conditions (Ostermann 

et al., 2004), it however also increases overhead (Hendrawan and Yusuf, 2012). 

  

1.1.3 Low Complexity Encoding, DVC and SI 

The high complexity of the encoder in the conventional codecs makes it difficult for them 

to be deployed in the resource poor cameras that are now increasingly available as hand 

held mobile devices. The possibilities of futuristic applications that can use these cameras, 

such as free viewpoint TV, remote surveillance and telemedicine, necessitate a new 

paradigm for a less computationally intensive encoder allied with a more computationally 

intensive decoder. This encouraged researchers to return to the lossy joint decoding of 

statistically correlated sources with side information (SI) using the, WZ theorem (Wyner 

and Ziv 1973) and lossless SW (Slepian and Wolf 1973) theorems propounded in the 

seventies to produce a practical implementation which is referred to as DVC. Both WZ and 

SW produced theoretical proof that the exploitation of redundancies of correlated sources 

at the decoder gives the same performance as the exploitation of the redundancies at the 

encoder (Brites et al., 2013). While SW produced theoretical rate bounds for the lossless 

case, WZ produced theoretical rate bounds for given performance targets, thereby allowing 

for losses. The practical implementation of WZ and SW theorems is referred to as DVC 

mainly because it enables the exploitation of the correlation between sources that might not 

be physically located in the same place, as they can be independently transmitted but 

jointly decoded where the correlation is exploited.(Brites et al., 2013). 

DVC is thus a paradigm shift from conventional coding standards as it allies simple 

encoders with complex decoders, allowing the deployment of simple, cheap, resource 

constrained encoders in portable mobile devices (Brites et al. 2013; Pereira et al. 2008). 
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This alternative DVC paradigm has restarted new research in video coding, producing 

interesting results and making feasible, a new set of futuristic applications including 

remote visible spectrum sensing and surveillance, three dimension (3D) TV, free viewpoint 

TV (Artigas et al. 2007; Li, 2008; Ye et al. 2009; Liu, Yue and Chen 2009; Brites et al. 

2013). 

DVC is non-predictive and though its practical implementation is difficult as evidenced by 

the WZ and SW theorems remaining as theory for more than thirty years after their 

publication, interest in its practical implementation and improvement has continued 

because it has a number of functional advantages over the conventional codecs including: 

(i) For conventional schemes, correlation is jointly exploited at the encoder in a so 

called downlink scenario which is feasible with present day video broadcast schemes 

requiring cheap decoders like TV set top boxes. However, for emerging technologies, 

where different encoders transmit from different locations real-time, then practical 

communication between views becomes difficult, and possible joint exploitation of 

correlation at the decoder becomes important.  

(ii) With the WZ codec, the computationally intensive algorithms are transferred to the 

decoder, thus reducing the complexity of the encoder, saving transmission 

computational overhead.  

(iii) The WZ codec becomes flexible as the decoder controls the coding process acting 

as a joint decoder for various frames and decides what frame(s) and bit rates should be 

employed to give the best performance, for example, when the audience at a video 

trailer been viewed on 3G mobile phone decided that a bit rate of 160 kb/s for 176x144 

frame resolution, sufficiently meets their viewing expectation (Knoche and Sasse, 

2006), the bit rate can be set at this rate from the DVC decoder. Whereas, conventional 

schemes however, have their coding process controlled at the encoder. The encoder 
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predicts the number of bits required and sends it regardless of actual requirement at the 

decoder, making it an inflexible structure. 

(iv)  Conventional video coding employs temporal correlation to predict the next frame, 

which is based on the last predicted frame and is thus prone to drift losses if there is loss 

of a set of predictors as the next set of predictors becomes less effective. DVC on the 

other hand is not predictive. The availability of different frames at the decoder, jointly 

decoded, gives the possibility of further processing before output is given, and 

processing to remove occlusions, and use of other fusion algorithms are possible using 

the DVC paradigm. 

All the early DVC architectures and practical implementations, while having low encoder 

overheads, had a quantitative and qualitative performance deficit compared to conventional 

codecs outlined in Section 1.2. Both Peak Signal to Noise Ratio (PSNR) and rate-

distortion (RD) results (Brites et al., 2013; Ouret, Dufau and Ebrahimi 2009) using 

stationary, head and shoulder, synthetic and slow object motion sequences, consistently 

revealed that codecs, like H.264 still performed better in comparison with WZ-based DVC 

codecs.  

A conceptualization of DVC highlighting the important role SI plays is shown in Figure 

1.2 for three sample input frames. The idea is for frame #2 to be dropped by the encoder to 

reduce complexity so it is not transmitted to the decoder. Instead, adjacent frames #1 and 

#3 (which are known as key frames) are transmitted to a computationally more powerful 

decoder, usually using an H.264 intra coding without motion compensation, which 

simplifies the encoding process. The missing frame is then reconstructed at the decoder 

using the SI, which is initially generated by interpolating frames #1 and #3. Various 

algorithms can then be applied at the decoder to improve SI quality to approximate the best 

representation of the missing frame. 
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Figure 1.2 Basic DVC Conceptualization and role of SI 

 

The final version of frame #2 is created normally using a DCT and quantization which is 

transmitted to the decoder to enable a reconstruction of the missing frame as shown in 

Figure 1.2. The DVC codec thus exploits a statistical dependence between the original 

input and SI via this lossy channel (usually a Gaussian correlation model).  

As Figure 1.2 shows, the output codec quality is dependent on the SI representation, 

making this the key DVC module. Since SW and WZ theories state DVC should have the 

same coding performance as conventional codecs, because the initial SI is based on a 

coarse approximation of the missing frame, (Brites et al. 2013; Artigas et al. 2007; Li, 
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2008; Ye et al. 2009; Liu, Yue and Chen 2009), all confirm that any improvement in SI 

quality will lead to better WZ codec output quality. This was the key motivation for the 

research work in this thesis as highlighted by the shaded SI Generation and Improvement 

Framework block in Figure 1.2.  

Additionally, linear motion compensated temporal interpolation (LMCTI) has been used 

in SI generation (Artigas et al. 2007; Li, 2008; Pereira et al. 2008), with proposed 

enhancements including hierarchical temporal interpolation (Liu, Yue and Chen 2009) and 

spatially-aided SI generation (Ye et al. 2009). These SI generation techniques use linear 

interpolation allied with various temporal and spatial refinements. While LMCTI provides 

reasonable SI quality for sequences with slow-to-medium object motion, it tends not to 

generally be so successful for sequences exhibiting non-linear and fast motion (Ye et al. 

2009). 

 

 

  

1.2 Motivation, Research Problem Statement and Objectives 

DVC provides a paradigm shift in video coding that reverses the traditional coding 

paradigm of complex encoders allied with basic decoding, to one where the computational 

cost is largely incurred by the decoder. This opens up the use of DVC on resource-poor 

mobile devices such as mobile phones, web cams, palmtops and tablets, to meet the ever 

increasing demand for high quality visual communication technologies in all aspects of 

human life and in every conceivable location.  Since the theoretical proof exists from SW 

and WZ theorems that DVC performance should match conventional codecs in quality 

(Wyner and Ziv 1973; Slepian and Wolf 1973), the hope that futuristic applications such as 

free viewpoint TV and remote surveillance and remote, disaster response, telemedicine has 

the potential to achieve high quality outputs acts as motivation to pursue DVC research.   
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The basic challenge and problem of DVC remains the persistent performance gap between 

contemporary DVC implementations and conventional codecs such as H.264 (Brites et al. 

2013; Artigas et al. 2007; Li, 2008; Ye et al. 2009; Ortega, 2007; Pereira et al. 2008).  Thus 

allowing for this research to set the reduction of the persistent performance gap as 

overarching objective. Therefore, by tackling one of the most important DVC performance 

bottlenecks the overall DVC output quality may be improved. This means that the 

development of new and effective solutions to remedy the bottleneck that has hitherto kept 

DVC from reaching the theoretical performance similar to that of the conventional codecs 

is a major motivation for the research presented in this thesis.  

As discussed in section 1.1, SI quality is an important element in terms of the overall DVC 

output quality and narrowing the coding performance gap with conventional codecs. To 

meet this challenge, SI improvement framework was proposed which addresses four key 

objectives in the thesis. They are as follows:  

(i) Investigate and appraise higher-order interpolation models to improve SI quality.  

Justification: Existing linear-based interpolation algorithms used for SI generation tend to 

degrade when video contains features like fast moving objects, multiple objects and/or 

complex motion. New high-order SI models will be designed to better reflect different 

types of motion in such sequences and their corresponding performance critically 

evaluated on both SI and WZ output quality.  

 

(ii) To understand and explain how the block matching algorithms (BMA) which create 

SI produce various visual artifacts and examine methods to minimize their impact.  

Justification: The interpolation process to generate the initial SI can lead to artefacts due to 

fast BMA blocking and overlapping effects. Similar artefacts appear in other interpolation 
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based techniques like video frame rate up conversion (FRUC) and de-interlacing, so an 

investigation will be undertaken to assess the schemes used to minimize their effects. SI 

specific solutions will be then constructed and integrated to lower the perceptual impact of 

BMA artefacts on output quality. 

(iii) To develop empirical techniques for switching SI block-based algorithms. 

Justification: In evaluating the solution proposed in (ii), not all MBs in an SI frame 

necessarily provide improved quality compared with the higher-order algorithm developed 

in (i), because parameter settings for the SI improvement algorithms vary between 

different video sequence, frames and even MBs. SI frames constructed by combining the 

better MB option from the two algorithms will thus be investigated and an empirical MB 

switching strategy developed with its impact on overall SI quality analysed. 

(iv) To construct an automated mechanism to manage block switching and parameter 

settings in the SI generation framework. 

Justification: Manual block switching necessitates the fixing of parameters which may not 

be appropriate for all sequences. To automatically manage block switching and key 

parameter selection based upon input video characteristics, new artificial intelligence-

based mechanisms will be examined and a proof-of-concept implementation developed for 

SI generation improvement, with corresponding output quality analysed. 

To achieve all four research objectives, this thesis will presents an original SI Generation 

and Improvement Framework shown in Figure 1.3 with original scientific contributions in 

four constituent blocks via a suite of rigorously analysed algorithms. These are 

respectively: 
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Figure 1.3 Block 1-4 of the SI Generation and Improvement Framework. 

 

BLOCK 1 comprises the higher order piecewise trajectory temporal interpolation 

(HOPTTI) algorithm which introduces higher-order trajectories into the SI generation 

scheme. This trajectory model solution fulfils objective (i) by including acceleration and 

jolt rather than the linear interpolation approaches traditionally used to create SI. RD 

results for a range of video test sequences show an SI improvement of up to 5 Decibels 

(dB) at typical rates employed by the community, compared with existing SI techniques. 

This work has been published in (Akinola, Dooley and Wong 2010).  

BLOCK 2 addresses the blocking and overlapping artifact issues identified in objective 

(ii), by integrating the AOBMC algorithm within the SI framework to improve output 
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quality.  Both numerical and perceptual results confirm SI improvements of up to 3.6dB 

and a minimum of 1dB PSNR improvement in SI achieved using this new technique for a 

wide range of test sequences. Part of this work was published in (Akinola, Dooley and 

Wong 2011) 

BLOCK 3 introduces and develops an empirical mode switching (MS) algorithm that uses 

spatial-temporal video content parameters to switch between AOBMC and HOPTTI MBs 

in the frames to improve SI generation and increase overall DVC RD performance. Part of 

this work was published in (Akinola, Dooley and Wong 2011). Empirical MS makes use of 

video content to generate more accurate SI representations to fulfill objective (iii) of the 

thesis. SI results confirm this empirical MS strategy can consistently provide up to 1.5dB 

PSNR improvement in SI quality.  

BLOCK 4 extends the MS algorithm to include intelligent MB switching based on Rough 

Set Theory (RST) in a proof-of-concept implementation, to automatically switch between 

HOPTTI and AOBMC MBs in the frame. The solution automatically sets certain 

thresholds which were previously manually determined, with results confirming that this 

intelligent MS improved the RD performance of SI by on average, 1.5dB making RD 

results to outperform even H.264 Intra, noteworthy particularly at low bit rates.  

Summarising, the conventional video codecs typified by H.264, has an encoder that has 5–

10 times overhead than the decoder which makes it difficult to employ in the emerging 

resource poor devices and possibilities of futuristic applications that can use them, such as 

free view point TV and remote surveillance and telemedicine. This necessitates a new 

paradigm for a less computationally intensive encoder allied with a more computationally 

intensive decoder, supported as feasible by the WZ and SW theorems. The above scenario 

gave rise to DVC which is the practical implementation of WZ and SW theorems with the 

publication in 2002 (Puri and Ramchandran 2002; Aaron, Rane and Girod 2004; Pradhan 
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and Ramchandran 2003) of the earlier architectures. The coding performance even for 

stationary, slow and single object video sequences is low compared to H.264 standard 

video codec. However, in literature (Brites et al., 2013; Ouret, Dufau and Ebrahimi 2009; 

Pradhan, Chou and Ramchandran 2003; Puri and Ramchandran 2002; Aaron, Rane and 

Girod 2004; Pradhan and Ramchandran 2003; Varodayan, Aaron and Girod 2006; Ortega 

2007; Pereira et al. 2008), it has emerged that one of the most important limitations to 

DVC performance is the SI, generated traditionally by the use of LMCTI based algorithms 

at the decoder where the original frames are not available. Therefore there is scope for 

DVC improvement and original contribution to knowledge as shown in the shaded block of 

DVC SI Generation and Improvement Framework in the DVC conceptualization of Figure 

1.2. A framework for SI improvement and increase in overall DVC performance quality is 

further presented with for contributions that show that the perpetual performance gap 

between DVC and conventional codecs have been narrowed.   

 

1.3 Organization of the Thesis  

This thesis is organized as follows: 

A survey of the origins and development of DVC including its information theoretic 

underpinnings from the SW and WZ theorems alongside a critical evaluation of the various 

DVC architectures in literature is presented in Chapter 2.   This Chapter also presents the 

DVC architecture employed for the test bed in this thesis. 

Chapter 3 presents a review of the SI generation strategies that have been implemented in 

DVC. A discussion of the importance of SI in DVC as well as its overarching status as a 

fundamental bottleneck that is militating against DVC performance is presented. The gap 

that has been identified in SI generation is highlighted. 
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Chapter 4 discusses the research methodology that is applied, spanning from the problem 

formulation and solutions strategy to the quantitative and qualitative performance analysis 

techniques. The Chapter presents the software implementation of the test bed used and the 

validation of the proposed solutions alongside an analysis of the video sequence dataset 

employed for testing.  

Chapter 5 introduces the HOPTTI framework that aims to provide a more accurate method 

of SI estimation and why this framework has the potential of providing a substantially 

improved SI for DVC. Furthermore, the improvement in SI as the trajectory order 

increases is shown. 

Chapter 6 develops and integrates AOBMC as to tackle overlapping and blocking artifacts 

that stem from block matching algorithms utilized in the generation of the higher order 

trajectories. Showing that AOBMC using only spatial window does not always perform 

well, the algorithm is further enhance by a MS algorithm that combines video content 

temporal parameter in order to empirically switch between the AOBMC generated SI and 

the one originally generated by HOPTTI.   

Chapter 7 presents an RST based intelligent enhancement to the MS algorithm which 

improves SI generation while at the same time automates the adaptive video content 

parameters used for spatial-temporal switching. Furthermore, due to the novel nature of 

this intelligent algorithm, a benchmark is established to effectively analyze the contribution 

of the RST switching enhancement. 

Chapter 8 explores some feasible future works that will exploit the outcomes from this 

thesis and Chapter 9 provides some conclusions with regards to the research. 
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Chapter 2 

 

 

Survey of DVC 

 

 

2.1 Theoretical Background 

This Chapter presents DVC from its theoretical foundations and literature to show how it 

represents a paradigm shift from conventional coding standards by allowing the 

deployment of simple, resource constrained encoders in portable mobile devices (Brites et 

al., 2013; Pereira et al., 2008). One major characteristic of DVC is that individual frames 

and sequences are coded independently (i.e. there is no communication between the 

sensors), but then transmitted to a central base station to be jointly decoded. In addition, 

computationally complex algorithms usually performed at the encoder such as motion 

compensation and disparity estimation are transferred to the joint decoder. This is based on 

the SW and WZ theorems and the DVC architecture models a lossy virtual correlation 

channel providing SI at the decoder.   

 

 

 

 

Figure 2.1 Basic Characterization of DVC Theorem as independent compression of 

statistically dependent sequences X and Y.  
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The scenario in Figure 2.1 depicts the independent encoding rate of two statistically 

dependent sources X and Y which are jointly decoded. This contrasts with the traditional 

source compression paradigm which deals with two statistically dependent sources (X and 

Y) that are jointly encoded and jointly decoded as shown in Figure 2.2. The scenario 

depicted by Figure 2.1 has been examined by using SW and WZ theorems which are 

further discussed in Sections 2.1.1 and Sections 2.1.2. 

 

 

 

Figure 2.2 Traditional coding paradigm joint encoding and joint decoding of 

statistically dependent sequences X and Y.  

2.1.1 SW and WZ Theorems 

In Slepian and Wolf (1973), SW established the lossless coding information theoretic 

bounds for Distributed Source Coding (DSC) which refers to correlated random sources 

that are independently encoded but are jointly decoded by exploiting their statistical 

dependencies. 

Consider a typical situation as depicted by SW in which X and Y are two binary correlated 

memory-less sources to be encoded in such a way that the encoder of each source is 

constrained to operate without knowledge of the other source, while the decoder has 

available both encoded binary message streams as shown in the Figure 2.1. 

The lossless rate for the case when both X and Y are jointly encoded and jointly decoded 

can be approached with a vanishing error probability for long sequences. The achievable 

rate region can be defined as   RX ≥ H(X|Y ), RY ≥ H(Y|X ) and RX + RY ≥ H(X, Y ), where 

H(X|Y ) and H(Y|X) denote the conditional entropies between the two sources. Considering 

the particular case where Y has been encoded at its own entropy rate RY = H(Y) then 
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according to the SW theorem, X can be losslessly decoded at the rate H(X|Y), if the 

sequence length tends to infinity. The minimum total rate for the two sources is thus H(Y) 

+ H(X|Y ) = H(X, Y ). Fig 2.3 shows graphically the rate bounds with vanishing error 

probability until there are no errors.  

 

Figure 2.3 Achievable rate regions defined by SW bounds (Ouret, Dufaux and 

Ebrahimi 2009). 

Practical implementations of the SW theorem popularly employed in DVC are two lossless 

channel codes namely, the TURBO code and the LDPC codes. The one used in this thesis 

is the LDPC code as it allows DVC to achieve better RD performance with respect to 

Turbo codes, especially for low motion video sequences (Varodayan, Aaron and Girod 

2006) and is therefore briefly introduced in Section 2.1.3. 

2.1.2 Practical Implementation of DVC 

In Wyner and Ziv (1973), WZ considered the problem of coding two statistically correlated 

sources X and Y, with respect to a fidelity criterion. They established the rate-distortion 

(RD) function R ∗X|Y (D) for the case where the SI Y is perfectly known to the decoder 

only. For a given target distortion D, R ∗X|Y (D) in general verifies RX|Y(D) ≤ R ∗X|Y (D) ≤ 

RX(D), where RX|Y(D) is the rate required to encode X if Y is available to both the encoder 

and the decoder, and RX is the minimal rate for encoding X without SI. WZ have shown 

that, for correlated Gaussian sources and a mean square error distortion measure, there is 
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no rate loss with respect to joint coding and joint decoding of the two sources, i.e., R ∗X|Y 

(D) = RX|Y(D). This no rate loss result has been extended in (Pradhan, Chou and 

Ramchandran 2003) to the case where X and Y does not need to be Gaussian, i.e. where X 

and Y can follow any arbitrary distribution, since these authors proved the theoretic duality 

between source coding with SI at the decoder and channel coding with SI at the encoder. 

Practically, code constructions based on the WZ theorem thus naturally rely on a source 

code quantizer, followed by a SW coder (channel code), such that the fidelity criterion 

determined by the quantizer remains the same so far as the channel model is matched 

perfectly and there is no loss in the channel. 

2.1.3 Channel Codes and Practical Implementation of WZ Theorem 

In the practical implementation of the WZ theory, the duality between source coding and 

channel coding with SI that has been established by Pradhan, Chou and Ramchandran 

(2003) was employed and two channel codes that have been utilized in DVC are LDPC 

and Turbo Codes. Channel coding was first introduced into DVC in one of the earliest 

architectures discussed in Section 2.2 called Distributed Source Coding Using Syndromes 

(DISCUS) (Pradhan and Ramchandran 2003), where coset codes are employed to encode a 

source X by calculating the corresponding syndromes. In the DISCUS framework, the 

decoder which receives the syndromes and has access to the correlated Y source (i.e. the 

SI) reconstructs X with the value closest (in terms of hamming distance) to the source. The 

LDPC and Turbo codes are subsequently discussed in more detail. 

a) LDPC Codes 

The LDPC codes form the basics of the SW channel coding part of the DVC codec 

employed in this thesis and it ensures that the necessary bits are transferred through the 

channel without loss. The LDPC codes are linear lossless block codes discovered by 

Gallager in 1960 (Gallager 1962) that are obtained from bipartite graphs such as shown in 
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Figure 2.4. such that if the graph G has n left nodes (also referred to as message nodes) and 

m right nodes (referred to as check nodes), the graph gives a linear block code with length 

n and dimension of at least n – m. The LDPC codes allow DVC to achieve better RD 

performance with respect to Turbo codes, especially for low motion video sequences 

(Varodayan, Aaron and Girod 2006). Overall, LDPC codes have been found to have lower 

complexity and better performance.  

The code given by the bipartite graph is analogous to a matrix representation whereby H is 

a binary m x n matrix in which the entries defined by the indices (i, j) is 1; if and only if the 

ith check node is connected to the jth message node in the graph. The LDPC code 

generated by the graph is then the set of vectors C = (c1, c2, c3……cn) such that H.CT =0.  

 

 

 

 

 

 

 

 

 

Figure 2.4 An LDPC code from a bipartite graph G 

 The matrix representation of the above bipartite graph would then be: 
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                                                                                       (2.2) 

 

 

 

 

                                                                                       (2.3) 

 

From the foregoing, we can infer that any linear code has a representation as a code 

associated to a bipartite graph, though not every linear code can be represented by a sparse 

bipartite graph. When the code can be represented by this graph, it is called an LDPC code. 

b) Turbo Codes 

Turbo codes are one of the other popular channel codes in the practical implementation of 

DVC and have been applied by (Ascenso, Brites and Pereira 2006; Aaron, Zhang and 

Girod 2002) and others.  

The turbo encoder consists of parallel concatenation of identical recursive systematic 

convolution (RSC) encoders. The RSC usually has a pseudo-random inter-lever between 

them shown by the illustration in Figure 2.5. 

 

 

 

 

 

 

Figure 2.5 A Turbo encoder with two RSCs and inter-leaver (Brites 2005). 
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Given an input sequence X, each RSC encoder enclosed by the turbo encoder generates a 

parity sequence Pj with j=[1, 2] corresponding to the sequence at its input which is X for 

RSC1 but an inter-leaved version of X for RSC2, depending on the RSC generator matrix. 

The RSCs also generate a systematically recursive copy of the sequence which is at its 

input, represented by Sj with j=[1, 2] in Figure 2.5. According to a given pattern, the input 

sequence is shuffled so that the inter-leaver could de-correlate the output parity sequences 

of both RSC which then allows turbo codes with very good bit error rate (BER) 

performance.  

Using a convergence criterion, usually the bit plane error probability (Brites 2005), an 

estimated X* of the sequence X at the input of the turbo encoder, is obtained when the 

convergence criterion is reached. The more random the parity sequence at the output of the 

RSC, and the longer the inter-leaver length, the better the BER performance of the turbo 

coder. 

2.2  DVC Architectures and Bottlenecks 

The first DVC architectures started appearing in 2002 (Puri and Ramchandran, 2002; 

Aaron, Rane and Girod, 2004; Artigas et al., 2007). The first of these (Puri and 

Ramchandran, 2002) is an architecture called, Power-efficient, Robust, high compression 

Syndrome based Multimedia coding (PRISM), proposed at UC Berkeley which has the 

architecture in Fig 2.6. These authors have earlier published a simpler distributed source 

coding precursor called DISCUS (Pradhan and Ramchandran 2003) which is discussed 

first due to its simplicity and the fact that it shows the link of DVC to distributed source 

coding.  

2.2.1 Distributed source coding using syndromes (DISCUS) 

DISCUS (Pradhan and Ramchandran 2003) is a binary source coding architecture where X 

and Y are correlated binary sources that can be generalized to the continuous-valued 
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sources X and SI Y where X is only present at the encoder but Y, the SI is present at the 

decoder. Using the known correlation condition between X and the SI Y, observed at the 

decoder, the decoder is able to reconstruct X” which is equivalent to X by sending only two 

bits representing the index. To illustrate, suppose X and Y are 3-bits binary words where 

the hamming distance between X and Y is 1, and the correlation conditions are: 

 3, {0,1}X Y             ( , ) 1Hd X Y                           (2.4) 

Where 3, {0,1}X Y  signifies that X and Y are members of the binary set {0, 1} with a word 

length equivalent to the index 3.  ( , ) 1Hd X Y   signifies that the Hamming distance 

between X and Y is less than or equal to 1. Using the correlation condition 3, {0,1}X Y    in 

2.4, the decoder builds a set of possible cosets of the 3- bit repetition code for X with 

Hamming distance of 3 in a look up table as {000,111} , {001,110} , {010,101} , {100,011} .  

Thus the index transmitted from encoder tell the decoder that X is for example, the set 

{010,101} , and the decoder knows the SI Y to be 011 , then X is decoded to be 010  as 

hamming distance between X and Y must not be greater than 1. 

In the above illustration and in Pradhan and Ramchandran (2003), we have the distributed 

source coding paradigm where the SI, Y known at only the decoder, is employed to decode 

X, in a codec which is shown to operate above the rate limit for the WZ fidelity criterion 

when zero mean Gaussian random variables are used as sources.   

2.2.2 PRISM architecture  

The PRISM architecture which was proposed by the University of California at Berkeley 

(and therefore also called the Berkeley Architecture), shown in Figure 2.6, is based on 

block classification and classifies 8X8 or 16X16 blocks into three sets, viz: WZ coded, not 

coded and intra-coded, having pre-defined rates that follow a Laplacian distribution. 
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Figure 2.6 PRISM Architecture (Puri and Ramchandran 2002) 

 

 

All blocks are transformed using DCT and the WZ data are quantized and encoded using 

trellis code. For the blocks that fall into the class to be coded, only the least significant bits 

of the quantized DCT coefficients are coded (called syndrome bits), since it is assumed 

that the most significant bits can be inferred from the SI. For each block, the encoder sends 

a 16-bit Cyclic Redundancy Check (CRC) signature needed to select the best candidate SI 

block. A motion search is performed to generate SI candidate blocks using half-pixel 

displacement in a window around the block to be decoded. 
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2.2.3 Stanford Architecture 

Stanford Architecture (Aaron, Zhang, and Girod 2002) appeared simultaneously with the 

PRISM architecture. The Stanford Architecture was proposed by Stanford University; Fig 

2.7 shows the details. 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

 

 

   

Figure 2.7 Stanford WZ Video Architecture (Aaron, Zhang, and Girod 2002) 
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frames are WZ coded. The coding architecture was first proposed for the pixel domain 

(Aaron, Zhang, and Girod 2002) and later extended to the block transform domain where 

WZ frames are DCT transformed, quantized and fed into a punctured turbo coder. The SI 

is constructed using motion compensated interpolation of previously decoded key frames. 

The SI for each WZ frame is taken as a noisy version of the original and the more accurate 

the SI, the less error the turbo decoder has to correct. 

 

2.2.4 DISCOVER Architecture 

The Distributed Coding for Video Services (DISCOVER) architecture is one of the most 

popular and well researched architectures (Artigas et al. 2007), it proposes an architecture 

similar to (Aaron, Zhang, and Girod 2002) in which a coding decision is made at the frame 

level but with many techniques added or improved to enhance the performance of the basic 

building blocks. This is therefore an enhanced form of the Stanford architecture. The frame 

level decision to decide which frames would be WZ frames and which frames would be 

key frames, for example, have been made adaptive by the inclusion of simple but powerful 

activity measures based on histogram functions, so that the GOP sizes depend on the 

motion activity within the frames. Other notable changes in the architecture include the 

introduction of the rate compatible LDPC discovered by (Gallager 1962) and discussed in 

Section 2.1.3, which was shown by (Li, 2008; Varodayan, Aaron and Girod 2006) to give 

better channel capacity for the DVC virtual channel model compared to the turbo codes. 

The DISCOVER architecture was followed by other implementations mostly based on the 

DISCOVER architecture but producing better functionality or improving performance. 

One notable implementation that improved performance is that which introduced source 

classification and advanced temporal interpolation for generating SI (Varodayan, Aaron 

and Girod 2006). The DISCOVER (Artigas et al. 2007) architecture is shown in Fig 2.8. 
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Figure 2.8 The DISCOVER architecture (Artigas et al. 2007) 

    

 

 

2.2.5 Li’s DVC Codec and Architecture 

The codec (Li, 2008) has an architectural framework which is also similar to the Stanford 

model (Aaron, Zhang, and Girod 2002) in which a coding decision is made at the frame 

level but with improvements to enhance the performance of the codec such as source 

classification and classification information algorithms. Li thus illustrated the impact of 

motion characteristics on the codec performance showing that when motion was slow 

temporal interpolation achieves high accuracy but as motion becomes faster, interpolation 

accuracy decreases. 

The codec is developed in a modular fashion using scripts which was published and is 

available for testing. This enable the results as published in Li, 2008 to be tested and for 

the codec to form a substantial part of the ground truth employed in this thesis as further 

explored in chapters 4 and 5. 
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2.2.6 Comparing and Contrasting the Features of Various Architectures 

The architectural frameworks proposed by Stanford University discussed in Section 2.2.3 

and that proposed by University of California at Berkeley are the most widely accepted 

DVC frameworks. While the other architectural framework proposals are improvements on 

one or the other, others combine the various features of the two architectures in order to 

achieve an improved framework.  

The major features both in the encoder and decoder of the architectural frameworks are 

presented in Table 2.1, enabling a detailed comparison of the features in the Stanford, 

Berkeley and other architectures. 

 

Table 2.1  FEATURES OF THE DVC PRACTICAL IMPLEMENTATION 

ARCHITECTURES 

Features Stanford Architecture PRISM 

Architecture 

(Berkeley) 

Other Architectures 

Encoder 

Frame Splitting Video divided into key 

frames and WZ frames 

with key frames 

periodically inserted to 

form GOP sizes. Key 

frames derived from 

intra coded 

conventional codecs 

without exploiting 

temporal redundancy 

e.g. H.264 Intra.  

The architecture 

works on block 

level and each 

video frame is 

divided into 8x8 

pixel blocks. 

Block 

classification is 

performed at the 

encoder to take 

advantage of the 

classification 

gain. 

The Stanford 

architecture frame 

level splitting with 

periodic GOP has 

been mostly adopted 

in literature including 

by the popular 

DISCOVER codec. 

Transform Block based Transform 

e.g. DCT to WZ frames 

forming coefficient 

DCT is applied to 

each 8x8 pixel 

block in the 

DCT is still by far the 

most widely 

employed transform 

including 
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bands. frame. DISCOVER. The 

wavelet transform is 

gaining in popularity 

especially to take 

advantage of the 

classification gain, 

e.g.  (Li, 2008)  

Quantization DCT bands are 

quantized with levels 

depending on target 

quality (Aaron, Rane 

and Girod 2004).  

A scalar 

quantization is 

applied to the 

DCT coefficients 

also depending on 

set targets similar 

to the Stanford 

Architecture.  

 

Transform bands are 

usually quantized and 

rates are controlled 

depending on set 

targets. 

Channel Coding Turbo codes are 

employed for coding 

the bit planes of DCT 

and sent to a buffer 

from where they are 

sent in packets to the 

decoder upon request 

through feedback loop.  

Syndrome codes 

are employed for 

blocks classified 

in the syndrome 

code classes 

where it is 

assumed that the 

most significant 

bits can be 

inferred from the 

SI.  

Both Turbo codes and 

LDPC codes are most 

important channel 

codes in literature but 

LDPC have been 

shown to give better 

RD performance. 

Decoder 

SI generation Decoder generates SI 

by motion compensated 

interpolation .The SI is 

taken as a noisy version 

of original WZ frame 

and ‘errors’ are 

corrected by employing 

bits from the turbo 

decoder.  

The candidate 

blocks in the 

syndrome codes 

are the SI.  

SI have been 

generated mostly by 

linear motion 

compensated 

interpolation, though 

it has been 

acknowledged that 

natural video motion 

is seldom linear and 

linear models are only 

appropriate for videos 

with slow motion.   
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Correlation noise 

model 

Residual statistics 

between WZ frame, 

DCT coefficients and 

SI is assumed to be 

modeled by a Laplacian 

distribution.  

There is no 

correlation model 

in the Berkeley 

architecture and 

residual statistics 

is not exploited. 

The channel model 

mostly employed in 

literature is the 

Laplacian distribution 

and it has been 

adopted by the 

popular DISCOVER 

codec. 

Channel decoding The DCT bit planes are 

turbo decoded as soon 

as the SI, DCT 

coefficients and 

residual statistics are 

known. 

The cosets are 

identified from 

the syndrome 

codes (SI) and 

then soft decoded 

using the 

codeword within 

the codet 

identified. 

The LDPC codes 

have been mostly 

adopted by other 

DVC architectures. 

Frame 

reconstruction 

The frame is finally 

reconstructed using the 

decoded WZ bits and SI 

DCT bands for bands 

not transmitted. 

CRC sum is 

generated for 

each decoded 

quantized block 

and compared to 

the CRC sum 

received from 

encoder until all 

blocks in the 

frame are 

matched and 

recovered from 

the corresponding 

SI. 

The frame 

reconstruction using 

decoded WZ bits and 

SI has been widely 

adopted in literature. 

 

2.2.7 The Architecture and Development of HOPTTI Test bed 

The architectural framework for the DVC test bed that is employed in the trialing of the 

ideas presented in this thesis is shown in Figure 2.9. The codec implementation is modular, 

which allows for the easy replacement of each module or sub-module as the case may be 

for new algorithm implementation.  
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The modularity is exemplified by the fact that there is a DVC main M-file (Matlab file) 

from where all the other sub-modules are called from. Thus a sub-module called YUVread 

in another M-file helps to load the original video in the YUV format, where all that is 

required to load another video format is to replace this sub-module with a different M-file 

with the code required to load that video format into matlab.    

Also, the architecture implements the latest advances in DVC architecture that are present 

in literature so that the new ideas presented will be building on the advances already made. 

The major features of the codec are hereby discussed and detailed: 

a) Channel Coding 

Following the proof of the duality between source coding and channel coding with SI by 

(Pradhan, Chou and Ramchandran 2003), the same authors introduced the coset codes in 

DVC in the DISCUS paper (Pradhan and Ramchandran 2003) as discussed in Section 

2.1.3. Other researchers have since proposed different channel codes and by far the most 

efficient of the channel codes is the LDPC codes by (Fresia and Vandendorpe 2009). 

Therefore, the LDPC codes have been adopted in the HOPTTI codec.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 Architecture of Codec highlighting SI module 
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b) Block Classification 

Li (2008) recognized that there is a non-negative classification gain and it will always 

improve the codec. Block classification is therefore adopted in the architectural framework 

of this thesis in line with Li’s codec where blocks are classified into four classes based on 

spatial-temporal correlation where bits are allocated to the class of significant wavelet 

coefficients. This requires a feedback channel which is kept at a minimum of 1 bit/block, 

using key frames only and scale invariant assumption of the  temporal correlation structure 

which keeps the encoder unchanged (low overhead) but the decoder becomes more flexible 

though at a slightly increased cost. 

c) Wavelet Transform 

The wavelet transform rather than the DCT is employed in the test bed following Li (2008) 

to exploit the spatial correlation as this has been employed successfully by other 

classification based approaches (Shapiro, 2000). The transform coefficients are quantized 

and reorganized into wavelet trees and the significant coefficients are coded and 

transmitted as per the classification previously determined at the decoder and fed back to 

the encoder.  

d) SI Generation 

The SI generation process in DVC is central to RD performance because it determines the 

amount of ‘errors’ that the frame reconstruction process needs to correct through the LDPC 

decoder and thus the higher the quality of SI that can be generated the fewer ‘errors’ and 

the better the overall performance of the codec (Brites et al. 2013). Bi-directional motion 

compensated temporal interpolation (MCTI) is adopted in the test-bed similar to the one 

used in (Varodayan, Aaron and Girod 2006). The SI generation module formed the basis of 

the major contributions in this thesis and the Higher Order Piece-wise Temporal Trajectory 
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Interpolation was implemented (Akinola, Dooley and Wong 2010) which is formulated 

based on a cubic trajectory model discussed in Chapter 5 of this thesis.   

2.3  DVC Application Scenarios 

DVC practical implementation has continued to generate interest due to its possible 

effective deployment for certain application scenarios that include: 

(i) Wireless video cameras for surveillance 

(ii) Mobile document scanners 

(iii)  Mobile video mail 

(iv) Free View-point TV 

This list of applications includes real time and non- real time applications as well as mono-

view and multi-view applications with differing complexities and power requirements. The 

following Section will briefly describe the applications and how the features of the DVC 

architecture discussed earlier fit into the application scenario (Brites 2005). 

2.3.1 Wireless Video Cameras for Surveillance 

Wireless video cameras for surveillance has the important distinction of consisting of video 

cameras in different locations, some of which might be remote and have size constraints. 

DVC exploits the spatial-temporal redundancies of independent sources  that do not 

communicate with each other at the source in the encoder, thus it fits perfectly well the 

application scenario. Furthermore, DVC's simplicity at the encoder makes it the perfect 

choice for an application whose members could be remotely located and may not have 

ready access to electrical power and other resources.  

These cameras can be employed for wildlife monitoring, traffic monitoring, home 

monitoring (Brites 2005) and control systems etc. 



34 

 

2.3.2 Mobile Document Scanners 

In recent times a lot of people do business from locations that are far away from their 

offices, especially working from home and sites. Also, global travelers oftentimes  need to 

transmit documents during their trip and the ability to use mobile document scanners 

would come in handy. The application requires mobile scanners that record parts of the 

document as video frames. The video frames are then sent to a central server for processing 

which includes registration and super resolution techniques that are too complex to be 

undertaken at the document scanner. This application scenario readily lends itself to DVC 

which has a low cost encoder and a powerful decoder. 

 

  

2.3.3 Mobile Video Mail 

Increasingly, people want to convey the videos of what is happening in their environment 

to their friends and relatives instead of typing a text which in most cases can be inadequate. 

They therefore become mobile broadcasters giving real time news from remote locations 

or even disaster areas. In most cases the person they are messaging are in urban locations 

where they have access to powerful computers for decoding the coded video message. 

This application scenario fits the DVC paradigm. 

 

2.3.4 Free View-point TV 

This is a futuristic TV viewing paradigm where the view to be watched by the viewer is 

determined by the viewer, thus making it necessary for additional processing to be 

undertaken at the decoder. An application scenario where the decoder actively participates 

in the coding process by selecting what to see is not envisaged by the conventional coder-

decoder which expects the decoder to be a "slave" that faithfully reproduces whatever it 
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gets. DVC on the other hand readily accommodates this application scenario, since in the 

DVC paradigm the decoder is where the central processing unit and viewer preferences can 

easily be incorporated at the decoder.  

 

2.4 Summary 

This Chapter presented the theoretical foundations of DVC, which has been proposed by 

SW and WZ in the 70’s whose practical implementation has only recently been pursued 

due to advances in video coding requiring more views and transmission from remote 

locations which mandate a paradigm shift from the costly encoder and cheap decoder 

conventional coding standards to a cheap encoder which accommodates a slightly more 

expensive decoder.  

The architectural frameworks for the practical implementation of DVC that have been 

presented in literature were then presented, comparing and contrasting their various 

features, pointing out what works well and does not. This led to the presentation of the 

HOPTTI test bed architecture that was developed for the trialing and testing of ideas for 

this thesis highlighting its features and how it leverages from the existing architectures. 

Thus the HOPTTI framework is a highly modular and flexible architecture that has the 

various component parts of HOPPTI implemented as sub-modules called from the main 

DVC M-file which enables the testing and trialing of the ideas that form the major 

contributions in this thesis. 

From the theoretical foundations and architectural frameworks presented, it was shown that 

SI generation is central to the improvement of DVC if it is to produce high quality output 

that compares favourably with the conventional coder-decoders. Therefore, a more 

comprehensive survey of SI generation in DVC is pursued in the next Chapter of this thesis 
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in order to present the case for the ideas presented in this thesis which were then tested and 

the results presented in subsequent Chapters.  

Finally, examples of application scenarios that readily fits into the DVC paradigm was 

listed and how they fit into the DVC context is highlighted. 
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Chapter 3 

 

 

Survey of SI Generation in DVC  

 

 

3.1 Introduction to SI Generation 

DVC and the practical implementation of the WZ theory has received a huge interest from 

the research community because of its perceived advantages in emerging technologies such 

as Multi-sensor Surveillance, Free Viewpoint TV (FVTV) and Three Dimensional 

Television (3DTV) over conventional coding represented by the International 

Telecommunication Union (ITU-T) Standard of AVC (Wiegand et al., 2003) and the 

Moving Picture Experts Group (MPEG) (Gall, 1991) coding standard.  The availability of 

wearable webcams, mobile document scanners, mobile (wireless) video conferencing 

devices, etc, with limited resources in mobile phones and hand held devices is a major 

factor driving the above mentioned emerging technologies where these resource limited 

devices need to stream videos from remote locations.  

While the conventional coding standards and implementation have been quite successful in 

the quality of their outputs, it is agreed by many researchers 
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 (Brites et al. 2013; Puri, and Ramchandran, 2002.; Aaron, Rane and Girod, 2004; 2000; 

Holman, 2000; Ortega, 2007; Pandit, Vetro and Chen, 2008; Yeo and Ramchandran, 2007; 

Guo et al., 2008; Ouret, Dufaux and Ebrahimi, 2007; Artigas et al., 2007; Puri et al., 2006; 

Aaron, Zhang and Girod 2002) that the algorithms they employ are too resource intensive 

for use by these portable resource limited devices that are now widely available.  

The theories of SW and WZ provide the theoretical foundations for the paradigm shift to 

move the resource intensive algorithms used by conventional codecs to exploit the 

correlation in videos (code video) from the encoder to the decoder i.e. away from the 

resource limited encoder to a powerful decoder, theoretically without compromising the 

quality of the output as discussed in Chapter 2.  

The exploitation of correlation at the decoder where the actual video frames (source 

information) are not available is, however, not trivial and this is the root of the challenge 

posed by the new DVC paradigm. Though there had been a lot of previous work, the first 

set of successful practical implementation of WZ codecs and their architectures presented 

with detailed comparison in Chapter 2, were reported more than thirty years after the 

theories were published (Artigas et al., 2007; Puri, et al., 2006; Aaron, Zhang and Girod, 

2002; X. Li, 2008; Varodayan, Aaron and Girod, 2006; Ascenso, Brites and Pereira 2006; 

Guillemot et al., 2007). 

A review of the reported performance of the practical implementations of WZ DVC codecs 

shows that there is a big performance gap between the qualities of the output both 

qualitatively (visual) and quantitatively, when compared to conventional codecs. This gap 

had persisted over time making reviewers (Brites et al., 2013; Ortega 2007; Guillemot et 

al., 2007; Pereira et al., 2008) ask for radical new thoughts and approaches if this gap is to 

be closed. The reviewers identified quality of the SI as a major bottleneck to the 

performance of the WZ codec and it is a consensus in literature as discussed in Chapter 2 
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that SI generation is central to DVC performance. While there are surveys on DVC 

generally where the overall improvement in DVC is discussed, the growing body of work 

that focuses primarily on SI generation has shown it as the single most important 

bottleneck of DVC that deserves particular attention and as such will benefit from a 

separate and in-depth review. An in-depth review is critical to identifying the gaps of what 

is left undone and modifications of what is not being done properly that continue to make 

SI generation a bottleneck to DVC performance. Furthermore, in this chapter, presentation 

is made of the tools that would enable this SI generation bottleneck to be overcome. 

3.2   Theoretical Background of SI Generation 

The theoretical underpinnings of DVC SI generation at the decoder can be traced to the 

information theoretic proofs for the WZ (Wyner and Ziv 1973) and SW (Slepian and Wolf 

1973) theorems as discussed in Section 1.1.2 and Section 2.1. In order to prove “faithful 

reproduction” (Slepian and Wolf 1973) of correlated sources, in the SW theory certain 

assumptions were made, one of the fundamental assumptions is that there are two encoders 

drawing independently from a bivariate distribution, however the ability of the joint 

decoder to decode the encoded streams depends on further assumptions of the information 

available to it both in itself and from the encoder. In Slepian and Wolf (1973), sixteen 

different classes of information made available for the faithful reproduction were 

examined, noting some interesting combinations and their effect.  

WZ further introduced the concept of the fidelity criterion where the reproduction might 

not be exactly the same as the source, but only satisfies the criterion that it produces a 

decoded message that is compatible with the required fidelity. Therefore, WZ clearly 

relaxes further the requirements for the information necessary to produce a lossy version of 

the correlated sources at the decoder. 
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From the foregoing, it can be seen that the ability of the decoder to reproduce the so called 

“faithful reproduction” (Slepian and Wolf 1973) as well as a copy meeting the fidelity 

criterion (Wyner and Ziv 1973) depends hugely on the information (same as SI) available 

at the decoder. The importance of SI even from the theoretical underpinnings of DVC can 

therefore not be over-emphasized. 

3.2.1 SI and Practical Implementation of DVC 

The earliest practical implementations of DVC that discusses SI are the works of A. Aaron 

et al (Aaron, Zhang and Girod 2002; Jagnohan, Sehgal and Ahuja 2002) where the simplest 

scenario of taking the adjacent video frame as the SI was considered in the implementation 

of SI generation (Jagnohan, Sehgal and Ahuja 2002) as shown in Figure 3.1 

 

 

 

 

 

  

 

Figure 3.1 Illustration of one of the simplest  SI generation scenarios (Jagnohan, Sehgal 

and Ahuja 2002) 

 

Then the idea of “smart” implementation of SI generation was also discussed where the SI 

that is closest to the original is generated, for instance, which adjacent frame is to be 

chosen, is it the previous adjacent frame or the later adjacent frame. 

Furthermore, various means of generation of SI that would improve the quality of SI can 

thus be flexibly considered with Aaron, Zhang and Girod (2002) and Jagnohan, Sehgal and 

Ahuja (2002) considering bi-directional interpolation. 
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3.2.2 DVC Bottlenecks and SI  

The SI generation problem is fundamental to DVC theoretical foundations. Information 

theoretic proofs assumes that the decoder is capable of generating multiple cosets which is 

the SI, with one of the cosets being the original. The decoder essentially then has to predict 

in a one step problem the right coset (Jagnohan, Sehgal and Ahuja 2002). However, the 

problem in practical implementation of DVC is that the SI can be generated by a decoder 

through various means but none will be the original. Therefore, the problem practically 

becomes a WZ coding problem which has a two-step solution in which in the first step the 

best coset is generated (but can never be as good as the original) and the second step is a 

refinement process using more bits from the encoder to reach pre-determined fidelity 

criterion or the upper bound. While (Jagnohan, Sehgal and Ahuja 2002) recognized this 

problem, they did not present any practical solution as noted in (Aaron, Zhang and Girod 

2002).  

The two steps in the WZ problem depend on each other as can be seen above. The more 

fundamental bottleneck is the generation of the SI, as the bits for refinement can be 

exhausted for poorly generated SI before the required SI fidelity is attained. 

 

3.3 SI Generation  

In DVC literature, the generation of SI has always played a prominent role. The quality of 

the SI as the building block for the final decoder output has been noted (Brites et al., 2013; 

Ouret, Dufau and Ebrahimi 2009; Pradhan, Chou and Ramchandran 2003; Puri and 

Ramchandran 2002; Aaron, Rane and Girod 2004; Pradhan and Ramchandran 2003; 

Varodayan, Aaron and Girod 2006; Ortega 2007; Pereira et al. 2008). In the earliest 

architectures described in Chapter 2, starting with DISCUS (Pradhan and Ramchandran 
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2003) that uses binary sources, the generation of the SI, which in this case are the cosets at 

the decoder plays a prominent role in the failure (error) rates. In fact the results presented 

(Pradhan and Ramchandran 2003) shows that with the employment of more sophisticated 

trellis codes, DISCUS gains 3 – 4dB for increasing the possibility of generating of 

generating error free cosets by the use of channel codes. 

In PRISM (Puri and Ramchandran 2002), the authors described an SI generation scheme 

that uses a half pixel motion search in the window surrounding the block under 

consideration in order to generate high quality SI and in turn have a high quality output at 

the decoder. This becomes necessary especially as the sources being investigated move 

from the binary sequences to more complex and natural sources. The DISCOVER (Artigas 

et al. 2007) architecture, one of the most prominent DVC implementations and well 

documented research platforms, also acknowledged the importance of SI. DISCOVER 

introduced the famous advance temporal interpolation scheme for SI generation which is 

the same as the linear motion compensated temporal interpolation (LMCTI) that has 

become the most widely used in SI generation (Pereira et al. 2008; Artigas et al. 2007; Li 

2008), with a lot of proposed enhancements including hierarchical temporal interpolation 

(Liu, Yue and Chen 2009) and spatially-aided SI generation (Ye et al. 2009). LMCTI 

provides reasonable SI quality for sequences with slow-to-medium object motion; it tends 

not to be so successful for sequences exhibiting non-linear motion (Ye et al. 2009). Other 

enhancements to LMCTI includes the 3-D content adaptive recursive search (3DCARS) 

(Borchert et al., 2007) which employs a quarter-pixel Motion Vector (MV) search implying 

16 more MV searches than other MB based search algorithms. The pixel-domain WZ (PD-

WZ) codec (Tagliasacchi et al. 2006) also improved the pixel domain SI generation 

algorithm by spatial smoothing.  
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Moving away from LMCTI, higher-order trajectories (Chahine, 1995; Chahine and Konrad 

1995) for temporal variations have been modeled, leading to more accurate sequence 

reconstructions, at the cost of greater computational complexity at the decoder. Though 

this is of less consideration in DVC generally, it might become critical depending on the 

application. One of the major drawbacks of temporal SI generation is that the fast, block 

based MV generation algorithms,  which AOBMC has been employed in a number of 

variants to tackle and to improve SI quality, bring about artifacts and overlapping 

(ghosting). Examples include motion compensated frame interpolation and adaptive object 

block motion compensation (MCFI-AOBMC) (Choi et al. 2007) for instance, where 

bilateral LMCTI is applied to overcome both hole and overlapping problems by coupling 

AOBMC with an object segmentation and MV clustering technique. Also, in improved side 

information generation for distributed video coding (ISIG-DVC) (Huang and 

Forchhammer, 2008), AOBMC is combined with a variable block-size refinement 

algorithm to produce improved SI, while the low complexity motion compensated frame 

interpolation (ALCFI) (Zhai, Yu and Li 2005) utilizes AOBMC together with MV 

smoothing. These AOBMC-based algorithms all attempt, to some degree, to address the 

blocking artifacts and overlapping issues caused by BMA by using AOBMC. A related 

issue is the fact that depending on the spatial-temporal characteristics of the video, some 

frames and blocks are not improved by AOBMC therefore it might not be necessary to 

expend further computational overhead in applying AOBMC to such frames or blocks. 

This led to the investigation of a combination of the higher-order HOPTTI algorithm with 

AOBMC in a way to both enhance the quantitative and perceptual SI quality by increasing 

peak signal-to-noise ration (PSNR) and reduce BMA induced artifacts while at the same 

time improving the efficiency of the codec. 
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3.3.1 Pixel Domain SI Generation Scheme 

One of the earliest DVC implementation was the pixel domain DVC introduced by A. 

Aaron et al (Aaron, Rane and Girod 2004) where the average pixel value of the two 

adjacent key frames to the WZ frame is used to generate the SI. In (Aaron, Rane and Girod 

2004), this SI generation scheme is referred to as average interpolation which averages the 

two pixel values from the same position of the adjacent frames. If for instance the pixel at 

location j of the previous adjacent frame is 
2 1i jX 

 while the pixel at location j of the future 

adjacent frame is 2 1i jX  , then the SI for location j will be calculated as 2 1 2

1
( )

2
i j i jX X  . 

More sophisticated spatial, pixel domain interpolation have been used and they include the 

edge directed interpolation scheme introduced by Li (2008). The edge directed 

interpolation scheme, while giving reasonably high quality SI is computationally and 

memory intensive thereby necessitating intermediate storage of output. 

Though some DVC architectures continue to use the pixel domain encoder, they have 

opted to generate the SI by additionally employing the use of motion compensated 

interpolation which is a temporal rather than spatial, pixel domain SI generation scheme. 

One of such DVC architectures is the one introduced by Tagliasacchi et al. (2006), where 

the pixel based SI referred to as 
2

S

iY  is combined with the temporal SI generated by 

motion compensated interpolation referred to as 
2

T

iY . The combination of the pixel 

domain SI and the temporal domain SI is achieved on a pixel by pixel basis by examining 

the one that gives the closest estimate to the original, referred to as 2iX . Therefore, a 

selection is made based on the SI that gives the minimum difference to the original and the 

SI that emerges is then referred to as the spatial-temporal SI
2

ST

iY . However the problem 

that arises is the fact that in DVC, the original is not known at the decoder and an estimate 

of the original is made based on potentially erroneous data at the decoder. 
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3.3.2 Temporal Domain SI Generation Scheme 

By far the most versatile and widely used SI generation technique is the temporal domain 

SI generation schemes. The temporal SI generation schemes involve the modeling of the 

movement of pixels between frames and the assumption or calculation of a trajectory 

which enables the estimation of the location of pixels in intermediate frames. The major 

tools used in the temporal domain SI generation are motion estimation (ME) and motion 

compensation (MC). The method of estimation of motion and its subsequent use to locate 

the MBs in the intermediate frame is illustrated in Figure 3.2.  

 

 

 

 

 

 

 

Figure 3.2 Temporal domain SI generation 

 

In Figure 3.2, the previous frame is used as reference and the MV represents the location 

best match for the MB in the future frame. Also, it is assumed that the MB motion is linear 

and the position in the intermediate frame is thus given by half of the MV between the 

previous and future frames.  

3.3.3 Reducing Encoder Complexity in DVC  

In video coding where we deal with the removal of redundancies either to improve storage 

efficiencies or transmission efficiencies, it is necessary to encode only frames or blocks 

that vary while deliberately not coding other video frames.  
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In DVC, in order to reduce encoder side complexity, frames are deliberately split into 

WZ frames and key frames (KFs). In the simplest case, every other frame is dropped, the 

so called Group of Picture (GOP) of 2. 

In order to regenerate the WZ frames knowing the location of the pixels in available (key) 

frames is not enough. The need therefore arises for a method to estimate the location of 

the various pixels in between the key frames. The knowledge of how the pixels traveled 

between key frames, referred to as the trajectory therefore becomes all important in order 

to accurately regenerate the dropped frames.  

The simplest trajectory model is to assume that there is no motion between key frames. 

This model just replaces WZ frames with available KFs. While this might be adequate for 

some video sequences that contain objects that are mostly stationary such as (i) a person 

standing in front of a door phone or (ii) someone reading the news in front of a stationary 

background, the quality of such models deteriorates very fast immediately there is the 

slightest motion. As a matter of fact in the news scenario where the video includes sound 

it is quickly apparent as it seems as if the news is not been read by the newscaster based 

on the perception from the movement of the mouth region which incidentally is the 

region where most viewers would concentrate their gaze. Figure 3.3 shows two possible 

implementations of this scenario, where Figure 3.3 a) makes use of the (t+1)th KF as the 

intermediate frames that replaces the missing or dropped frames and Figure 3.3 b) makes 

use of the previous (t)th frame as the intermediate frame.  

Another trajectory model which is by far the most widely used model (Aaron, Setton and 

Girod 2003; Aaron, Zhang and Girod 2002; Pereira et al. 2008; Artigas et al. 2007; Li 

2008; Liu, Yue and Chan 2009; Ye et al. 2009), is the one that assumes that video objects 

have linear motion. This model assumes uniform motion (which implies constant 

velocity). The major advantage of this model is its algorithmic simplicity as intermediate 
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frames can be readily generated by finding an average distance that objects have moved 

between available key frames. A simple illustration of the linear trajectory model is 

shown in Figure 3.4 where the intermediate frame is generated by assuming linear 

trajectory and is simply executed by averaging the MV between the key frames. While 

the linear trajectory model is algorithmically attractive, it is not an adequate motion 

trajectory model. It is therefore not surprising that a raft of algorithms to improve this 

trajectory model exists in DVC literature as noted in Section 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Scenario assuming no object motion. (a) the (t+1)th frame used as 

Intermediate frames (b) the (t)th frame used as Intermediate frames 
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Literature, (Aaron, Setton and Girod 2003; Aaron, Zhang and Girod 2002; Pereira et al. 

2008; Artigas et al. 2007; Li 2008; Liu, Yue and Chan 2009; Ye et al. 2009) shows that it 

is essential to use higher order trajectories in order to be able to regenerate intermediate 

frames with reasonably high quality, as is needed for DVC to be competitive as 

conventional coding, which has the advantage of coding (exploitation of redundancies) at 

the camera side where the original is present as stated in Chapter 1. 
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Figure 3.4 Linear Trajectory (a) front view and (b) cross-sectional view 
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3.3.4 Practical Linear Motion Compensated Temporal Interpolation (LMCTI) 

In the practical implementation of the ME and MC algorithms for temporal interpolation 

schemes of SI generation several different underlying problems have arisen and different 

solutions have been proposed to ameliorate the problems.  

First, the problem of MV search which leveraged from the BMA of conventional video 

coding paradigms that have developed lightweight, fast and reliable ME. Conventional 

coding solutions were able to have access to the residual information from the original 

frames, while DVC does not have access to such and the effectiveness of the BMA 

algorithms was compromised leading to the observation of serious artifacts and holes in the 

SI subsequently generated (Wu et al. 2009).  

3.3.5 Improvements to Linear Motion Compensated Temporal Interpolation 

(LMCTI) 

Due to the perceived inadequacies of LMCTI for SI generation coupled with the growing 

realization of the importance of SI quality to overall DVC performance, various 

researchers have proposed improvements to it. It is worth looking at a few of them, 

signposting the developments in DVC SI generation. 

a) Hierarchical Linear Motion Compensated Temporal Interpolation (LMCTI) 

In this model introduced by Liu et al. (2009), the MVs generated by LMCTI are refined for 

more accurate MVs by the use of the bi-direction motion estimation (BDME) technique on 

the basis of variable block size hierarchical motion estimation. BDME technique using 

smaller and smaller block sizes to estimate MV is employed in order to see if the MVs can 

be improved and accuracy improved. Furthermore, motion vector filters are used to correct 

false MVs due to partial similarities in the video sequences in conjunction with a decision 

mechanism to handle overlapping caused by varying the block sizes.   
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b) Spatially Aided LMCTI 

The spatially aided LMCTI (Wu et al. 2009) scheme uses spatial information to aid 

partially decoded WZ frames from linear motion compensated temporal interpolation. The 

algorithms implemented involve MV refinement and smoothing in conjunction with mode 

selection for optimal compensation. This scheme also implements an error concealment 

algorithm which conceals errors in the final SI frames generated making their subjective 

appearance more pleasing to the eye. 

c) 3-D content adaptive recursive search (3DCARS) LMCTI 

The 3-D content adaptive search (3DCARS) LMCTI scheme (Borchert et al. 2007) 

introduces a more demanding MV search algorithm which utilizes quarter pixel search and 

thus produces more accurate MVs. This scheme was used in order to get true motion 

estimates for objects in video sequences. Though there is improvement in DVC 

performance, the fact that the true motion is obtained could not compensate adequately for 

the linear trajectory that was assumed. 

d) Low Delay Linear Motion Compensated Temporal Extrapolation (LMCTE) 

In low delay applications that employ the use of resource poor encoders, it might be 

necessary to reduce delay at the decoder at the expense of performance. Thus, 

extrapolation schemes that make use of only past frames to generate SI have been 

examined by Wu et al (Borchert et al. 2007) and (Wu et al 2009). Due to the fact that this 

scheme does not have to wait for future frames it inherently presents a low delay advantage 

though extrapolation being a subset of interpolation, its performance is always slightly 

below that of similar interpolation schemes that use the same scheme. In hierarchical 

schemes where the LMCTI and LMCTE is employed and this step has to be completed 
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before any other step can begin, considerable time delay could be incurred by LMCTI 

schemes that is absent in LMCTE based schemes. 

e) Hybrid Block and Mesh Based Motion Estimation and Interpolation Approach 

A very complex SI creation approach introduced by Kubasov et al. (2006) enhances the SI 

quality when spatial domain motion discontinuities and occlusions are present in the video 

sequence. Though experimental results show that this approach gives a better RD 

performance when compared with similar pixel domain DVC codec with only the block 

based approach of generating SI, the complexity associated with this method made the 

block based approach to be embraced by the DVC community rather than the mesh based 

approach or this hybrid method.    

f) Motion Field Estimation SI Generation Scheme 

Generation of SI by the use of MV smoothness constraint on the motion field estimation 

between two previously generated frames at time instants, t-2 and t-1 and extrapolating the 

MV for the current frame is an approach that was proposed by Aaron et al. (2004). This 

MV estimation approach was coupled with overlapped motion compensation using pixel 

values from the frame at t-1. Experimental results however, show that the SI generation by 

extrapolation technique leads to a significant RD performance loss when compared to the 

frame interpolation approach.  

g) Context Based SI Pixel Generation 

A method where each SI pixel is created as a weighted average of pixel values referred to 

context, at the same spatial location in previous reconstructed frames is proposed by Li et 

al. (2006). The initially reconstructed frames are generated by LMCTI and the weight 

corresponds to the number of occurrences of corresponding context in the four previously 

reconstructed frames. The proposers of this scheme claim that the pixel based DVC 
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decoding complexity is significantly reduced with respect to an equivalent video codec 

with pixel based motion compensated interpolation while having comparable overall 

coding performance for low motion video sequences.  

h) Multiple SI Generation by both Interpolation and Extrapolation 

A multiple SI generated by means of linear frame interpolation and frame extrapolation is 

proposed by Huang et al. (2009). A combination of the available SI estimates is achieved 

through the corresponding correlation noise models and used to provide more accurate soft 

input data to the LDPC decoder, reducing the required parity rate for the target decoded 

quality. The authors reported RD gains of 0.4dB at high bitrates compared to SI generation 

with single SI generated by interpolation techniques. This improvement is not a 

qualitatively visible improvement which requires PSNR increase of at least 0.5dB to be 

visible in the video codec output sequence (Girod, 1993; Yang et al. 2005).  

i) Motion Compensated Refinement Techniques 

Ascenso et al. (2005) propose generating SI by continuously enhancing the decoded frame 

quality as WZ bits are received. In their framework, the initial SI is also created from linear 

frame interpolation which is then continuously refined. The results show that there is 

improved RD performance over an equivalent video codec without refinement. 

j) Spatial-Temporal Refinement Method 

A spatial-temporal refinement technique to improve SI was proposed by Weerakkody et al. 

(2007). In this method, initial SI is generated by linear frame extrapolation which is then 

interleaved for error estimation and flagging. The de-interleaving process then fills the 

flagged bits with alternative bits generated by an iterative spatial-temporal prediction 

technique. Experimental results also show improved RD performance over similar pixel 

domain DVC codec without the proposed method. 
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k) Expectation Maximization Algorithm 

An expectation maximization algorithm which performs unsupervised learning of the 

disparity at the decoder by exchanging soft information is proposed by Varodayan et al. 

(2007). The soft information is obtained from the LDPC decoder and a probabilistic 

motion estimator and used to iteratively refine the SI. Experimental evaluation of the 

approach by the authors shows an increasingly better RD performance for increasing GOP 

sizes. 

l) Spatial-Temporal Refinement of SI by Mode Selection 

Exploitation of the spatial-temporal correlation of partially decoded WZ frames and 

reference key frames by MV refinement and smoothing and mode selection was proposed 

by (Ye et al. 2009). The resulting enhanced SI frame is then employed to perform another 

reconstruction, reducing the distortion in the reconstruction process while at the same time 

increasing the overall RD performance of the DVC codec. 

m) Block Classification Gain, Coded Information, implicit and explicit MC for SI 

generation 

A method to exploit the so called “block classification” gain and coded information (CI) 

was proposed by Li (2008). In this approach the SI is generated based on two methods, the 

explicit method based on multi-hypothesis MC temporal interpolation with sub-pixel 

accuracy and second method based on implicit MC with the Least-Square approach. An 

average of the SI generated from both approaches is then taken as it was noted that the 

explicit method provides better improvement for fast moving video sequences such as 

American Football, while the implicit method provides better SI for slow moving video 

sequence such as Container.  The final SI is then combined with CI which is received 

parity bits for final reconstruction of the video frame. 
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n) SI generation by Refinement Based on Learning Approach 

A proposed method to generate SI by refinement where the DCT bands to be decoded are 

successively improved as the decoding process continues is presented by Martins et al. 

(2009), and (2010). In the technique, the initial SI alongside reconstructed frame for 

already decoded bands of DCT in the pixel domain is employed to decide which SI blocks 

should be refined. The already decoded DCT bands provide information about the original 

WZ data that was not available during initial SI generation. Refinement is performed using 

displaced blocks and as such no explicit updating of MV field occurs (Martin et al. 2009). 

In their subsequent paper (Martin et al. 2010) a learning process which defines the 

relevance of the SI displaced blocks considering the previously decoded DCT bands that 

explicitly updates the MV field was introduced. Experimental results show RD 

performance improvements for high motion content video sequences and long GOP 

lengths.  

3.3.6 Analysis of the Surveyed SI generation Schemes 

The fundamental commonality with the entire SI generation schemes surveyed is that they 

have employed the linear frame interpolation either in the spatial (pixel) domain or in the 

temporal domain. The schemes have tried to leverage from the simple linear frame 

interpolation to correct the poor quality of SI produced by the linear interpolator. 

There is a general consensus that linear frame interpolation gives a better SI than the linear 

extrapolation as there is always a RD penalty on extrapolation based SI.  

A number of fundamental directions for the study of the SI bottleneck emerging from the 

survey therefore include the following: 

(i) LMCTI is predominantly the algorithm of choice for generating SI in current DVC 

literature. It is used for generating the SI because of inherent advantages in its easy 
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formulation and the use of fast block based MV algorithms already well researched and 

documented in literature. At the very least it is used as the initial starting point for SI 

generation. 

(ii) A study of the frame interpolation process is paramount in order to be able to 

proffer solutions and overcome the SI bottleneck. The first inclination from the survey 

of literature (e.g. Li 2008) is to explore the possibility of higher order frame 

interpolation, as object motions in naturally occurring scenes are non-linear. The use of 

two past frames in extrapolating a present frame has been suggested in Aaron et al. 

(2004). 

(iii) A fundamental understanding of the MV search algorithms is important. Variation 

of the search algorithm in Borchert et al. (2007) is an example. The creation of a set of 

smooth MVs and removal of outliers has been proposed. 

(iv) The various video sequences with their spatial-temporal characteristics need to be 

studied as the various algorithms have shown that some SI generation algorithms are 

better with slow sequences while others are better when the video sequences contain 

fast moving objects. 

(v) Low delay SI creation is assumed to be generated by extrapolation without visible 

experimental results showing better times and computational costs. The fact based 

conclusion that can be reached from the survey of literature is that there is a RD 

lowering cost to pay when extrapolation is employed compared to interpolation. 

(vi) Intelligent learning algorithms needed to be explored as the various mode changes 

and learning based algorithms (Ascenso et al. 2005; Weerakkody et al.  2007; Martin et 

al 2009; Martin et al 2010) have shown there is a gain in learning and intelligently 

applying what is learnt in improvement of the SI. 

(vii) The use of auxiliary data such as CI proposed by Li (2008) points to the inadequacy 

of the initial SI generation techniques (notably LMCTI). The incorporation of CI data in 
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the initial SI generation algorithms should be explored as SI generation is done at a 

powerful decoder that reduces the impact of increased overhead. At the same time, care 

must be taken so the decoder does not becomes several times more costly than 

overheads in the encoder of conventional codecs. 

3.3.7 Higher Order Motion Compensated Temporal Interpolation  

The inadequacies of LMCTI have been noted variously in literature, especially when 

working with real life video sequences with multiple objects that move with varying 

motion in the same sequence. This work incorporates improvements to LMCTI by using 

non-linear trajectory models for the generation of SI. 

The earliest introduction of non-linear trajectory model in temporal interpolation was by 

Chahine (1995) and Chahine and Konrad (1995). Though they used a dense motion field 

which implies at least pixel by pixel MV generation and experimentation was with 

interlaced video, they showed that including an acceleration term can give substantial 

improvement over the linear interpolation model. Petrazzuoli, Cagnazzo and Pesquet-

Popescu (2010) introduced the same quadratic (acceleration) trajectory model in DVC and 

showed improvement in DVC performance.  

3.4 Exploiting Spatial-Temporal Redundancy in DVC 

In order to achieve high video compression ratios, the temporal information contained in 

the video needs to be understood and exploited. Basically there are two sources of motion 

in video and they are (i) the motion of objects in the video and (ii) camera motion. While 

camera motion results in the global movement or displacement of all pixels in the frame, 

object motion is selective and differs between the objects in the video and then between 

objects and background. In order to exploit temporal redundancy for video compression, an 
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estimation of the motion present in the video must be carried out, and this is usually a 

computationally intensive step in video coding. 

Video frames on the other hand which are the building block of video sequences are spatial 

two dimensional arrangements of pixels. The qualitative performance output of video 

processing which eventually determines viewer satisfaction is what matters and errors 

introduced into video sequences by transmission channels, storage mediums and rendition 

mediums eventually show up as artifacts (pixels being in wrong positions in the frame or 

being in the frame when they are not supposed to be there) which make the output different 

from the original video sequence. 

This section therefore discusses the various algorithms and processing in SI generation that 

constitute fundamental architectural bottlenecks identified in the SI generation literature 

survey of Section 3.1 with the aim of eventually employing them to change SI generation 

and achieve major contributions to DVC performance.       

3.4.1 Block Matching Algorithms For Motion Estimation  

One of the points identified in the SI generation literature survey is the predominant use of 

block based ME for interpolation, and in order to effect fundamental changes in SI 

generation, it is necessary to understand how it works. Block based ME is one of the most 

versatile means of exploiting the temporal redundancies in video sequences that have been 

well researched and documented in literature. It is said to be the single most important 

(Ghanbari 1999) factor that accounts for the compression performance efficiency of 

conventional codecs as represented by the H.264/AVC standard, achieving up to 100:1 

compression ratio (Ghanbari 1999). The underlying assumption in ME is that patterns 

corresponding to background and objects move within the frame to form corresponding 

backgrounds and objects in subsequent frames. Therefore, the current frame is divided into 

a matrix of 16x16 pixels called a macro-block (MB) that are then compared with a 
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corresponding block and its adjacent neighbours in the previous frame to create a motion 

vector (MV) that shows the movement of the MB from one location to the other. Figure 3.5 

illustrates the search area for a good MB match, constrained up to p pixels on all the sides 

of the corresponding MB in the previous frame, where p is called the search parameter.  

 

 

 

 

 

 

 

Figure 3.5 Illustration of Block Matching a MB of 16x16 pixels using a search parameter 

p=16 

 

The selection of one MB in the reference frame with another in the current frame which 

best matches each other is based on the MB whose output of a cost function produces the 

least cost. Two such cost functions are mean absolute difference (MAD) represented by 

(3.1) and mean square error (MSE) represented by (3.2), where N is the size of the MB, Cij 

and Rij are pixels in the current frame and reference frames being compared, while i and j 

are the indices of the pixel in the MB.  

                                                                                               (3.1) 

                                                                              

 

                                                                                               (3.2) 

 

PSNR makes use of MSE and is defined according to equation 3.3. 
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                2

1010log (255 / )PSNR MSE                              (3.3) 

The value of 255 is the maximum possible pixel value in a gray-scale frame where pixels 

are represented by 8 bits. 

The most basic block based ME using the BMA is the exhaustive search (ES) algorithm, 

this algorithm and improvements made to it as documented in literature is hereby 

presented:  

 

a) Exhaustive Search 

This ES algorithm is also known as the full search algorithm because it searches every 

possible location in the search window and calculates the cost function for everyone of 

such locations before deciding which one has the lowest cost function and thus the best 

match. The ES algorithm is highly computationally expensive, especially as the search 

window increases due to its exhaustive nature though it gives the best performance, usually 

measured in terms of PSNR of all the search algorithms. All other Fast BMAs try to 

achieve the same performance while reducing computation overhead compared to ES as 

much as possible. Some algorithms may include some scene specific weighting that though 

may not improve qualitative and quantitative performance but reduce overhead cost. For 

example, giving preference to blocks closer to the block under consideration during search 

will definitely reduce overhead cost but may not improve performance over ES, as 

trajectory continuity may suggest that parts of a solid object are not likely to suddenly 

move so far away from the other parts within the span of one frame difference. 
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b) Three Step Search (TSS) 

The TSS is one of the earliest attempts to reduce the computational overhead of ES while 

keeping the quantitative performance as close as possible to the ES algorithm. The 

underlying principles of TSS is illustrated in Figure 3.6. Starting at the centre of the MB 

and setting up a “step size” S=4 for a usual search parameter of 7 it searches at eight 

locations +/- S pixels around the centre (0, 0).  

 

 

 

 

 

 

 

Figure 3.6 Illustration of the TSS algorithm (Li, Zeng and Liou 1994) 

From the searches conducted in the first step described earlier, the one with the least cost is 

then selected to serve as the origin for a new search reducing the step size S, usually by 

half. The search is conducted for three such steps and the MB at the location of the point 

with the least cost is chosen as the best match. The TSS algorithm gives a flat rate 

computational cost reduction of a factor of 9.  

Another variation of TSS is the New Three Step Search (NTSS) introduced by Li, Zeng 

and Liou (1994) and is one of the first BMA algorithms widely accepted into earlier 

conventional coding standards of MPEG 1 and H.261. While NTSS is similar to TSS in 

being centre biased, it has provision for a half way stop which further reduces 

computational cost. 

 

    

  

    

  

    

o  o  

LEGEND 

 1st Step 

 2nd Step 

o 3rd Step 
   

o  o      

  
  



61 

 

c) Diamond Search 

The diamond search (DS) algorithm (Zhu and Ma, 2000) is similar to the four step search 

algorithm (Po and Ma, 1996) with a diamond search pattern instead of the normal square 

pattern. In addition to the diamond search pattern, it has no limit to the number of steps 

that the search can take. DS employs two fixed patterns to undertake the search namely; 

the Large Diamond Search Pattern (LDSP) and the Small Diamond Search Pattern (SDSP). 

The DS procedure and the way the two fixed patterns interact are illustrated in Figure 3.7. 

 

                      

Figure 3.7 Illustration of the Diamond Search Algorithm (Zhu and Ma, 2000). 

 

d) Adaptive Rood Pattern Search 

The adaptive rood pattern search (ARPS) algorithm was developed by (Zhao et al. 2008) 

and it is the search algorithm that has been adopted in this thesis. It is therefore discussed 

in detail and its strengths and weaknesses highlighted. ARPS makes use of the fact that 

general motion in a frame is usually coherent, which implies that if the MBs around a 

particular MB moves in a particular direction, then the probability that the MB under 

discussion will as well move in the same direction is quite high. ARPS therefore employs 

Legend                  LDSP 1                  LDSP 2 

         LDSP 3              LDSP 4               SDSP 
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the MV of the MB to its immediate left to predict its own MV. The Figure 3.8 illustrates 

the use of the step size and the predicted vector in ARPS. The rood (cross-like) pattern 

search illustrated in Figure 3.9 is always the first step and this places the search in the area 

where probability of the best match being found is highest.  

 

Figure 3.8 Illustration of the Adaptive Rood Pattern Search (ARPS) algorithm (Zhao et al. 2008) 

 

 

Figure 3.9 Illustration of the cross-like (rood) search pattern in ARPS  

The main advantage of ARPS over DS is that if predicted MV is at the origin, it does not 

waste computational time and resources in a LDSP pattern search as in the DS but rather 

starts using SDSP straightaway. ARPS has been found to take a factor of 2 less 

computation compared to DS while PSNR performance is slightly better than DS. The fact 

that it gives a coherent MV set advocated in the literature review of Section 3.3.4 and 
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Aaron et al. (2004) and Borchert et al. (2007) and rejects outliers gives it a distinctive edge 

over the other MV search algorithms discussed in this section. 

3.4.2 Motion Compensation 

Using the set of MVs that are obtained during the motion estimation phase and the 

reference frame, a new frame with the blocks displaced can be generated and this is known 

as motion compensation. Usually, bidirectional motion compensation technique is 

employed in DVC and this makes use of both the current and future key frames as 

references and in most cases a simple average of the two frames from both directions is 

used to form the target blocks and frame. 

Furthermore, in DVC, the motion estimation and compensation phases are carried out at 

the decoder where the original reference frame is not available and this means the residue 

which is the difference between original frames and the target frame is not available which 

is one major reason why the conventional codecs perform better (Brites et al., 2013; 

Semsarzadeh et al 2013).   

 

 

3.4.3 The sources of visual artifacts in video 

It is very important to identify the root causes of visual artifacts in image and video 

sequences in order to be able to proffer mitigating solutions that will reduce such artifacts 

or even eliminate it.  

a) External Systems Artifacts and Sources 

These artifacts are from sources external to the regeneration process and they include:  

(i) artifacts existing in base video which are due to the fact that in image or video 

regeneration, the regenerated video is based on an existing image or video and the 

existing video might previously contain both latent and visible artifacts that becomes 

more acutely visible in the regenerated video. For example, in DVC, key frames used in 
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the regeneration of missing WZ frames are usually generated using some standard video 

codec such as H. 263 which might introduce its own artifacts  

(ii) video acquisition and content creation artifacts which include artifacts caused by 

incorrect calibration or configuration of the camera (Cancellaro, Palma and Neri 2010)  

(iii)  artifacts from transmission medium noise and packet losses and  

(iv) artifacts caused by the rendering medium, for example holographic displays can 

introduce their own artifacts while vacuum tube displays have also been known to 

introduce peculiar artifacts into video being viewed. 

Other additional artifacts that are caused by external systems are; keystone distortions 

which distort the image dimensions, temporal mismatch, cardboard effect, jitter and color 

bleeding (Cancellaro, Palma and Neri 2010). 

b) Computational Systems Artifacts and Sources 

Image generation and regeneration involves a lot of computation and constitutes an 

important source of artifacts in images and video thus generated. In 1994, the classification 

of the sources of errors that lead to the introduction of artifacts in image generation and 

regeneration referred to as image synthesis was introduced by Arvo, Torrance, and Smits 

(1994). The sources of error were classified into three namely:  

(i) errors due to the limitation of measurement or modeling, when models or 

measurements have to be approximated  

(ii) errors due to digitization when analogue (continuous) data have to be digitized in 

order to make it possible to apply finite computer based operations on them  

(iii) numerical precision errors when calculations are made with limited precision. 

The computational errors enumerated above lead to different kinds of artifacts which 

include tessellation which is the repetitive visualization of some geometric form or shape, 

banding which includes blocky artifacts caused by quantization or coarse sampling  and 
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aliasing which makes objects to appear jagged caused by over amplification of digitized 

objects in images (Arvo, Torrance, and Smits 1994). 

 

c) Block Based Computational Artifacts  

One of the most prominent root causes of computational artifacts in regenerated images is 

BMA and its assumption that a block of pixels can be handled as a single pixel. Also in 

DVC, computation artifacts in LMCTI were analyzed (Liu et al. 2010) by the use of 

texture and motion activity enabling the authors to locate the position of artifacts and to 

propose viable ways to remove the artifacts. Figure 3.10 shows the blocks of a frame from 

the Foreman sequence containing artifacts located after the texture and temporal analysis 

have been carried out. 

 

Figure 3.10 Sample DVC, LMCTI computational artifacts (a) frame #14 with (b) 

highlighting artifacts location (in blocks) and (c) frame #70   with artifacts 

location in (d). (Liu et al. 2010). 

 

3.4.4 Review of Artifacts in DVC SI 

In the earliest implementations of DVC, the need to show that it is possible to exploit 

correlation at the decoder was paramount and these DVC implementations experimented 
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with both synthetic and real life, no motion to very slow motion video sequences 

containing single objects. As interest in DVC increases, its performance compared to 

existing conventional codecs becomes important. Therefore, the need to experiment with 

real life sequences with medium to high motion content, containing multiple objects 

became important in order to enable adequate comparison with outputs of conventional 

codecs. Furthermore, the comparison was not limited to numerical (objective) comparison 

alone, but visual, qualitative (though subjective) evaluation needed to be carried out, thus 

the appearance of visual artifacts in DVC output had to be addressed.   

 Natario et al. (2005) reported that visual artifacts are prevalent in DVC SI and this affects 

DVC performance, so they proposed several SI artifact mitigating blocks in their SI 

generation module including motion field for overlapping and uncovered areas and blocks. 

The best methods to mitigate and remove artifacts in regenerated video sequences are those 

that are linked to the root causes of the artifacts. In Grouiller et al. (2007) artifacts are 

deliberately introduced into image sequences in such a way that that the causes of such 

artifacts are known and their characteristics studied (so called forward models) which 

enable artifact correction methods to be developed, ensuring that such correction methods 

do not introduce further artifacts of their own. Also, in Bosc et al (2011) thorough analysis 

of artifacts is performed before correction methods are proposed, and one notable finding 

of the analysis was that the type and location of certain artifacts are specific to the root 

cause of such artifacts, making it possible to develop generic method for mitigating such 

artifacts.  

In DVC, various artifact mitigation solutions have been proffered which have a basis 

especially in the fact that artifacts begin to show up in DVC when there is motion in the 

sequence. One of the first sets of artifacts in DVC are mostly due to video capturing 

devices. Thus, no motion sequences such as head and shoulder news, performed very well 

but real life videos with camera movements such as panning and zooming exhibited 



67 

 

artifacts. Block 3 of the SI improvement framework (Figure 1.3), therefore develops a MS 

algorithm that employs the spatial-temporal characteristics to mitigate these artifacts. 

 

3.4.5 Adaptive Overlapped Block Motion Compensation (AOBMC) 

While higher-order interpolation with BMA for MV estimation has been shown promising 

results (Petrazzuoli, Cagnazzo and Pesquet-Popescu 2010), fast motion sequences with 

multiple objects still exhibited artefacts, signifying  that there are issues to be resolved 

which are traceable to the use of block based computation in the higher order algorithms. 

The AOBMC approach (Choi et al. 2007) allows the MV of a MB to be applied to larger 

groupings of pixels by using a raised cosine window. Specifically, situations where a MB 

either contains multiple objects with varying motions or one object traverses multiple 

MBs, so it is represented by different MVs, can be mitigated by this approach. The raised 

cosine window gives an enlarged window greater than the MB under consideration to 

allow the MV of the MB to be moderated by the MV of surrounding pixels in such a way 

that depends on the distance of the pixel from the afore-mentioned MB. This has led to 

AOBMC being employed in a number of variants to improve SI quality. In motion 

compensated frame interpolation and adaptive object block motion compensation (MCFI-

AOBMC) (Choi et al. 2007) for instance, bilateral LMCTI is applied to overcome hole and 

overlapping problems by coupling AOBMC with an object segmentation and MV 

clustering technique. In ISIG-DVC (Huang and Forchhammer 2008), AOBMC is 

combined with a variable block-size refinement algorithm to produce improved SI, while 

low complexity motion compensated frame interpolation (ALCFI) (Zhai, Yu and Li 2005) 

also utilizes AOBMC, this time together with MV smoothing. These AOBMC-based 

algorithms all attempt to a varying degree, to address the restrictions caused by BMA by 

using LMCTI in SI generation. 
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3.5 Employing Video Content Characteristics, Processing 

Mode Changes and Artificial Intelligence for Improvement of SI 

Generation  

In order to achieve high video compression ratios, the spatial-temporal information 

contained in the video need to be understood and exploited. Basically there are two sources 

of motion in video and they are (i) the motion of objects in the video while background 

remains static, these consist mainly of localized motion, (ii) the motion of background and 

objects simultaneously which consists mainly of global camera motion such as zooming 

and panning.  

In Section 3.2, one conclusion is that intelligent learning algorithms needed to be explored 

as the various mode changes and learning based algorithms (Ascenso et al. 2005; 

Weerakkody et al.  2007; Martin et al 2009; Martin et al 2010) have shown there is an 

advantage in learning and intelligently applying what is learnt in improvement of the SI. 

In order to incorporate learning, adaptation, reasoning and evolution capabilities into the SI 

generation paradigm, it is necessary to evaluate the various computational intelligence 

algorithms that are available that enable machines to be taught to interpret possible 

variations in video data such as variations in object movements and patterns. 

Some of such computational intelligence algorithms that would be examined here will 

form a basis for the selection of intelligence algorithm in the major contribution Chapter 7 

later in this thesis. We would examine Neural Network (NN), Fuzzy Logic System (FLS), 

Support Vector Machines (SVM) and RST.  

3.5.1 Neural Network 

One of the earliest machine learning algorithms is the NN which has biologically inspired 

roots and it has found widespread acceptance for being a robust system for information 

processing (Craven and Shavlik, 1997).  
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Basically, NNs are electronic simulation of the brain and how it functions, thus it 

comprises of several artificial neurons (AN) that are arranged in such a way and in such 

numbers so that it can be used to perform a task. An AN, illustrated in Figure 3.11 

comprises of several inputs associated with its own weights illustrated by the red circles 

which can be adjusted during training, a nucleus represented by the black circle in our 

illustration and finally an output. 

 

Figure 3.11 Illustration of an Artificial Neuron 

 

As indicated above, these ANs can be arranged in different ways and numbers to form an 

NN. An illustration a feed forward arrangement to form an NN is in Figure 3.12. This 

arrangement is call a feed forward arrangement because of the way neurons feed their 

output forward to the next layer until a final output is obtained. 

The optimal structure of the learning and organizational dynamics of NN is still not 

satisfactorily known, though there has been intensive research from many different fields 

applying NN, thus taking the myth away from the hidden layers of neurons and neural 

processing. One key drawback of NN is that biological systems are organized in a 

completely different way compared to artificial computing system. Thus it is usually 

difficult to adapt NN to computing systems. NN are powerful classifiers when some 

explicit prior knowledge of underlying probability distribution is known. 

 

Neuron 
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Figure 3.12 Illustration of a feed forward NN 

 

3.5.2 Fuzzy Logic System 

The concept of Fuzzy Logic System (FLS) was conceived by Lotfi Zadeh, a professor at 

the University of California at Berkeley (Zadeh 1996). FLS can be defined as the non-

linear mapping of an input data set to a scalar output and usually consists of four 

components illustrated in Figure 3.13 which are; (i) Fuzzifier, (ii) Rules, (iii) Inference 

engine and (iv) Defuzzifier. 

 

 

 

 

 

 

Figure 3.13 Illustration of the various components of the FLS 

The FLS follows the following set of algorithm for its implementation which involves a 

four step cycle process of initialization, fuzzification, inference and defuzzification. 

(i) Define the linguistic variables and terms (initialization) 

(ii) Construct the membership functions (initialization) 

(iii) Construct the rule base (initialization) 

Fuzzifier Defuzzifier 

Inference 

Rules 

Crisp 

Input 
Crisp 

Output 
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(iv) Convert crisp input data to fuzzy values using the membership functions 

(fuzzification) 

(v) Evaluate the rules in the rule base (inference) 

(vi) Combine the results of each rule (inference) 

(vii) Convert the output data to non-fuzzy values (defuzzification) 

Linguistic variables are the input or output variables of the system whose values are words 

or sentences from a natural language, instead of numerical values. A linguistic variable is 

generally decomposed into a set of linguistic terms. Membership functions, some 

illustration of which is shown in Figure 3.14 are used in the fuzzifcation and defuzzifcation 

steps of a FLS, to map the non-fuzzy input values to fuzzy linguistic terms and vice versa. 

A membership function is used to quantify a linguistic term. In a FLS, a rule base is 

constructed to control the output variable. A fuzzy rule is a simple IF-THEN rule with a 

condition and a conclusion. The evaluations of the fuzzy rules and the combination of the 

results of the individual rules are performed using fuzzy set operations. After evaluating 

the result of each rule, these results should be combined to obtain a final result. This 

process is called inference. The results of individual rules can be combined in different 

ways. After the inference step, the overall result is a fuzzy value. This result could be 

defuzzified to obtain a final crisp output. This is the purpose of the defuzzifier component 

of a FLS. Defuzzification is performed according to the membership function of the output 

variable. 

 

 

 

 

                           (i)                                  (ii)                         (iii)  

Figure 3.14 Illustration of  three different types of membership functions (i) Triangular  (ii) 

Trapezoidal (iii) Singleton 
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3.5.3 Support Vector Machine  

Support Vector Machines (SVM) is a machine learning algorithm introduced by V. N. 

Vapnik (Vapnik 1998; Vapnik 1995) which is based on statistical learning theory and has 

been successfully used for handwriting digit recognition (Cortes and Vapnik, 1995; 

Scholkopf, Burges and Vapnik, 1995; Scholkopf, Burges and Vapnik, 1996; Burges and 

Scholkopf, 1997), object recognition (Blanz et al., 1996), speaker identification which 

implies mouth movement recognition (Schmidt, 1996), face detection in images (Osuna, 

Freund and Girosi, 1997a), and text categorization (Joachims, 1997).  

The simplest classifier is the linear classifier which separates into two classes and 

maximizes the distance between the two classes by computing the (n-1) -dimensional 

hyper plane with nearest data points on each side. These nearest data points are referred to 

as the support vectors. 

 

 

 

 

 

  

Figure 3.15 Illustration of optimal hyper plane and support vector points in the SVM 

algorithm. 

 

The Figure 3.15 illustrates the principles and training of SVM using the linear classifier, 

where the optimal hyper plane is linear and is the one with the maximum distance from the 

nearest data points separating the two classes. The support vectors are those data points 

shown in solid dots (red and black) nearest to the optimal hyper plane. 

Optimal hyper plane 

Support Vector Points 
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Thus the complexity of SVM can be appreciated with a linear hyper plane, since the 

optimal location of the plane and the calculation of the support vectors are not trivial. More 

so, when a linear hyper plane does not fit the problem and quadratic, polynomial, radial or 

sigmoid basis functions has to be employed. 

   

3.5.4 Rough Set Theory 

RST was introduced by(Pawlak (1982) and was designed to be used for the classification 

of imprecise, uncertain and incomplete information similar to the problem posed by the 

generation of SI in DVC at the decoder, where the original is not available and as such the 

information for the generation of SI is noisy, imprecise and incomplete. 

RST employs a Table containing information about the spatial-temporal characteristics of 

the video whose SI is to be generated, with each row of the Table representing a different 

unit of the video (MBs or frames are units that are prevalent in the DVC architectural 

framework) and each column containing different attributes that describe the MB or frame 

( e.g. MSE described in Section 3. 3 employed in exploiting the temporal characteristics of 

MBs). 

RST provides the tools to arrange the information described above in a Table and 

determine the relationships between them in so called "equivalent classes". Then RST tools 

are then employed to construct a matrix which maps how these characteristics participate 

in the decision making process. The matrix is then used to generate functions and derive 

rules for generalization in a training scenario where the decisions have already been 

determined. Lastly, the outcomes from the training are employed in a generalized 

framework to analyze an unknown MB or frame and determine the decision that is best for 

the unknown MB or frame. Further exploration of RST in DVC is a major contribution in 

Chapter 7 of this thesis. 
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The advantages of the RST compared to other artificial intelligence methods considered in 

this section are:  

(i) Unlike other closely related artificial intelligence methods, RST does not need any 

preliminary or additional information about the data (a priori knowledge), for example 

FL needs the value possibility in order to work effectively with provided data and 

Dumpster-Shafer theory requires basic probability assignments. RST just takes the 

given data and information provided and applies the RST processing algorithm on it. 

(ii) RST provides all the tools and methods that efficiently find hidden patterns in the 

data as part of the overall RST algorithm. These tools and methods are deployed to find 

the hidden patterns in the spatial-temporal data of the various video sequences, MBs, 

segments and frames such that better decisions to improve SI can be reached in an 

intelligent manner.  

(iii) RST allows for an automatic way to generate the decision making rules, by 

evaluating the objects, attributes and decisions in the information Table and deducing 

the minimal set that is important in the decision making process which is used to 

compile the decision making rules. RST thus effectively removes data that does not aid 

the decision making process, while compiling the decision making rules.  

(iv) RST gives easy and straightforward results that are easy to interpret as the results 

are given in terms of the required decision. For example, in the use of RST for selecting 

the best methods of de-interlacing various sequences in Jeon et al. (2005). RST gives a 

decision which method will give better de-interlacing given the data under investigation.  

Some drawbacks of the RST algorithms are also as follows:  

(i) One major drawbacks of RST is the assumption that the information Table contains 

all the required data to deduce the rules needed for decision making and thus all that has 

to be done is deduce the rules.  
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(ii) Whenever the information Table does not contain all the rules, erroneous decisions 

would be made when predicting decisions. 

  

 

3.6  Summary   

This Chapter presents a survey of SI generation in DVC, starting with the theoretical 

foundations of SI generation and the earliest SI’s employed in DVC. Improvements in the 

SI generation schemes highlighted the fact that LMCTI is the predominant SI generation 

algorithm. The inadequacy of LMCTI and the efforts in literature to improve SI generated 

by LMCTI is presented while the fundamentals of LMCTI SI generation is examined in 

detail including the ME search algorithms based on fast and efficient block based 

computations. The fact that errors in computation and algorithms finally show up as 

artifacts in video sequences causing an unpleasant viewing experience is highlighted, and 

the various sources of artifacts are also presented. Finally, it was shown that smart and 

intelligent schemes need to be exploited in order to explore the video characteristics both 

within video sequences and between various video sequences, making an algorithm to 

perform well in certain parts of a sequence while performing poorly in another part of the 

same sequence or an algorithm performing well with one video sequence but 

underperforming in another. 

The shortcomings of the present SI generation schemes presented in this Chapter therefore 

form the basis of ideas to be presented in Chapters 6, 7 and 8 to improve SI generation in 

DVC which are then rigorously tested and showed to improve SI generation and 

subsequently, the entire DVC codec. 

In order to show that the various ideas presented improves both SI generation and 

ameliorate this all important bottleneck in DVC, an underlying methodology for 
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investigating the outcomes of this survey, experimenting on the weaknesses discovered and 

showing that the solutions provided are valid improvements are thus presented in the next 

Chapter.  
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Chapter 4 

 

 

 

Research Methodology 

 

This Chapter discusses the research methodology employed to design, analyze and validate 

the algorithms which were introduced in the SI Generation and Improvement framework in 

Figure 1.2, with the overarching aim of narrowing the performance gap between 

conventional codecs and DVC. A model-based, simulation methodology has been chosen 

because it offers both a high degree of flexibility in designing DVC systems, and a realistic 

platform for testing the contributions.  Such a model-based methodology is importantly a 

widely accepted development approach for DVC and has been used for example by 

Ghorbel et. al., 2014; Katsoyiannis and Breivik, 2014. The remaider of this Chapter will 

present: 

(i) the framework for design and testing of proposed algorithms 

(ii) performance measurement metrics 

(iii) video datasets 

(iv) and validation of software implementation 
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4.1 Framework for Design and Testing of Proposed 

Algorithms 

The framework for modeling the DVC test-bed is the Stanford architecture whose detailed 

features were described in Section 2.2.3. The theories of SW and WZ which the DVC 

architecture is based on underpins the model based, simulation methodology. The theories 

make it likely that subsequent investigation and testing of the SI Generation and 

Improvement Framework comprising a suite of four algorithms in Figure 1.3, when 

implementing in the proposed DVC model could improve DVC output to the same quality 

as that from conventional codecs.  

The next decision is the platform to be employed for modeling the DVC codec and testing 

the ideas. Three options are available: 

(i) Hardware based: this includes dedicated and off-the-shelf prototyping hardware 

solutions such as Digital Signal Processors (DSP) and Graphics Processing Units (GPU) 

for real time video processing applications. While DSP and GPU platforms can achieve 

real-time image processing (Dong and Thinh, 2014; Pieters et al., 2007), they are not so 

flexible in term of experimenting with different algorithms and parameters which are 

essential in developing the understanding of the inter-relations and cause and effect the 

changes may have on the performance of the system. Despite the fact that system 

changes are possible, it often requires a time consuming process of replacing hardware 

modules and uploading of new system firmware. As the overarching objective of this 

research is improving the DVC efficiency by trying new algorithms, modes and 

parameter settings, requiring flexibility, though, the hardware based platform will afford 

real time simulation scenarios, it is inflexible, restricts the possible algorithm changes 

and the development time is long and costly.   
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(ii) Hybrid Hardware-Software based: popularly referred to as “co-design” where 

computationally intensive parts of the system are undertaken by specially designed 

hardware, while other parts of the system are software based and realized on a general-

purpose processor (Nath and Datta, 2014; Wolf, 2003). The benefit of this approach is 

that real-time processing can be achieved through the hardware module while a degree 

of flexibility in altering the system design and parameters is achievable through the 

software module. For this research project, it is possible to implement the SI Generation 

and Improvement Framework, in a software module with the other parts of the DVC 

architecture such as the SW, LDPC channel codes, and H.264 intra codec being 

implemented in hardware. However, this approach is still not suitable for this project for 

three reasons: a) an interface module is needed which seamlessly connects the SI 

Generation and Improvement Framework to other DVC parts. b) When modifying 

various parameters in software, the other DVC parts implemented in hardware may also 

require modification which cannot be easily achieved. c) Dedicated video processing 

hardware can be expensive. 

(iii) Software based: these build upon a comprehensive set of image processing 

libraries, which make prototyping easier and faster so shortening the development time 

and makes the process more efficient and less error prone. Furthermore, the software 

option provides maximum flexibility in designing and experimenting with the DVC 

model. This means the algorithms and parameters can be easily changed and improved 

in such a way that the behavior of the model can be studied more effectively.  

In considering the thesis objectives defined in Section 1.2, and the key design 

requirements of flexibility, time and cost, a software-based simulation approach was 

deemed the most viable option and was thus used in developing the new SI Generation 

and Improvement Framework. As for the image processing libraries, the most 

commonly used ones are the Matlab Image processing toolbox (Brites et al 2013; 
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Petrazzuoli et al 2013; Akinola, Dooley and Wong 2011; Li 2008) and the OpenCV 

library (Bradski 2000). The next section will analyze the benefits and drawbacks of 

these two libraries and explain the choice made.  

a) Choice of Image Processing Library: 

Matlab is a fourth-generation software computing environment, made up of functional 

tool-boxes that allows matrix manipulations, plotting of functions and data, 

implementation of algorithms, creation of user interfaces and easily interfaces with 

programs written in other languages. OpenCV on the other hand is a library of 

programming functions mainly aimed at real-time computing (especially, hybrid 

hardware-software based described in Subsection (ii) of Section 4.1) which is also 

cross- platform, which means it can interface with programs written in other languages.  

Matlab and OpenCV are competing software development platforms for image and 

video processing, the choice of either of which could have been justified by the usual 

criteria of flexibility, functionality, usability, popularity, support and cost as they are 

quite similar. However, the acceptance of Matlab by the DVC community makes it 

easier to build on the functionality that is already available.  Matlab has various DVC 

codecs and algorithms such as the Li DVC codec (Li, 2008) available. OpenCV is also 

more widely used by the general-purpose image processing community.  

Furthermore, Matlab supplies well documented manuals with detail of all the 

commands, their functionalities and examples of how they are employed which makes 

Matlab easier to learn and use. Thus, Matlab was chosen as the development platform 

for this DVC research work. 

b) Software Computing Platform 

The DVC model was developed upon the Stanford DVC architecture (Detailed in 

Section 2.2.3) using Matlab version R2009b on a PC running the Microsoft Windows 

XP operating system with Intel Dual Core CPU at 2.20 GHz and 3.5 GB of RAM. 
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4.2 Performance Analysis Techniques 

To assess the performance of the algorithms in the SI Generation and Improvement 

Framework of Figure 1.2, two quantitative metrics used in the DVC literature are 

employed, namely; PSNR and RD curves. Furthermore, for qualitatative inspection, 

selected frames which highlight particular perceptual observations are provided for 

comparison.  

a) PSNR Metric 

PSNR metric is based on MSE which is defined in (3.2) with the PSNR itself given in 

(3.3). PSNR is inversely proportional to the distortion (D) i.e., the higher the MSE between 

the output and original frames, the lower the PSNR value.  

b) RD Curves 

The bit rates R to achieve a given distortion for two statistically dependent sequences X 

and Y, where X is the original sequence to be encoded and Y is the output of the WZ codec 

can be represented by: 

                   

1

m

n

n

r

B

f
R 




                                (4.1) 

 

Where 
1

( )
PSNR

nB f is the number of bits required to reconstruct a frame, which 

means R is inversely proportional to PSNR, m is the number of frames in the sequence and 

rf is the frame rate. Figure 4.1 shows an example RD curve for the DISCOVER (2007) 

codec for the Hall sequence. It shows the distortion (PSNR) against a range of of codec 

bit-rates used to reconstruct the sequence. For example, a bit-rate of 150 Kb/s is required to 

reconstruct Hall with an average PSNR of 35dB. 
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Figure 4.1 Example RD Curve showing the DISCOVER codec performance for Hall 

sequence @ 15f/s  

c) PSNR and Perceptual Quality 

While PSNR mathematically measures the mean square error between the processed video 

and the original, it does not always show the same perception in the human vision sytem 

because the difference in the pixels that gives the same PSNR value could come from 

different spatial-temporal locations in the video. Thus a video with error in the corner of a 

video frame can have the same PSNR with another with an error at the centre of its frame, 

perceptually appearing different.  Other reasons why PSNR does not always match up with 

perception are (Girod, 1993; Yang et al. 2005): 

a) not every error between the original and processed video can be noticed by the 

human eye.  
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b) not every region of the video frame receives the same attention from the human 

observer. 

Generally, for a change in PSNR to be perceptible to the human vision system, it must be 

at least 0.5 dB change in PSNR (Girod, 1993; Yang et al. 2005). This is a rule of thumb for 

the just noticeable difference threshold. 

d) Evaluation of Computational Complexity 

Since the SI Generation and Improvement Framework is at the decoder where high 

computational power is available, a lower priority is given to the computational complexity 

of the algorithms and more  given to improving SI quality. For completeness, a 

computational time analysis is provided which considers the overheads incurred by the 

various algorithms which comprise the SI Generation and Improvement Framework and 

the simulation time measurements obtained by time stamps during experimentation as in 

DISCOVER (2007); Ascenso and Pereira (2009); HoangVan and Jeon (2012). 

To enable comparison between the various algorithms in the SI Generation and 

Improvement Framework, each is broken down into a series of components and the 

average time for each to process one frame is determined. The defined variables are shown 

in Table 4.1. 

 

 

Table 4.1 TIME VARIABLES IN SECONDS 

 

ConstT : Time for loading algorithm parameters and initialization per frame. 

VelT : Time for computing velocity term in trajectory per frame. 

AcclT : Time for computing acceleration term in trajectory per frame 
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JoltT : Time for computing Jolt term in trajectory per frame 

BMAT : Time for MV based Block search and BMA per frame 

 AOBMCT : Time for MB surrounding block enlargement and matching per frame 

Off LineT  : A lumped parameter reflecting off-line manual input and algorithms of 

external libraries per frame 

MST : Time for empirical MS per frame 

IMST : Time for intelligent MS per frame 

 

 

A summary of the complexity analysis for different algorithms in the SI Generation and 

Improvement Framework is shown in Table 4.2. It shows the time variables for the various 

algorithms, where the differences in time variables comes from and which aspect 

contributes to additional complexity. For instance the difference in time variables between 

the empirical MS and the intelligence based MS (IMS) algorithms emanates from the 

difference between the MST  and IMST  terms plus the off lineT   term. 

 

Table 4.2 SUMMARY OF TIME VARIABLE ANALYSIS  

 

Algorithm 

 

Time Complexity 

 

Comment 

HOPTTI_Linear Const Vel BMAT T T   

Minimum of two 

frames required and 

a velocity term 

calculated. 

HOPTTI_Quadratic 
2Const Vel Accl BMAT T T T    

Minimum of three 

frames required and 

2 velocity terms and 

1 acceleration term 

calculated. 
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Algorithm 

 

Time Complexity 

 

Comment 

HOPTTI_cubic 
4 2Const Vel Accl Jolt BMAT T T T T     

Minimum of for 

frames required and 

4 velocity terms, 2 

acceleration terms 

and 1 jolt term 

calculated. 

HOPTII-AOBMC 

4 2Const Vel Accl Jolt BMA AOBMCT T T T T T    

 

HOPTTI cubic 

employed plus 

AOBMC overhead. 

MS HOPTTI and 

HOPTTI-AOBMC 

4 2Const Vel Accl Jolt BMA HOPTTI AOBMC MST T T T T T T       

HOPTTI cubic 

employed plus 

HOPTTI reuse for 

HOPTTI-AOBMC. 

IMS HOPTTI and 

HOPTTI-AOBMC 

4 2Const Vel Accl Jolt BMA HOPTTI AOBMC IMS off lineT T T T T T T T       

 

HOPTTI cubic 

employed plus 

HOPTTI reuse for 

HOPTTI-AOBMC. 

                                                                              

 

 

To complement the expressions in Tables 4.1 and 4.2, actual time measurements are also 

presented, obtained by taking a time stamp immediately before an algorithm is executed 

and another time stamp immediately after the execution of the algorithm is completed. The 

time difference between the two time stamps gives the time taken for the algorithm to be 

executed. To ensure a fair comparison, all the algorithms were run on the same computer 

system (refer to Section 4.1), with no other programs running at the same time.  

The time complexity variables of Tables 4.1 and 4.2 are employed  in the subsequent 

Chapters to discuss the complexity of the proposed new algorithms. 

 

4.3 Video Dataset 

In order to test the algorithms developed, a video dataset was used, consisting of sequences 

with various spatial-temporal characteristics ranging from single object to multiple objects 
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and slow to fast object motion. They include: Container, Foreman, Mother, Hall, 

Carphone, Salesman, Coastguard, American Football, Stefan and Soccer (Acticom GmbH 

2002, Xiph.org 2013, Arizona State University 2014).  

These sequences are standard Quarter Common Intermediate Format (QCIF) format, with 

resolution of 176 x 144 pixels at 15 Hz. All quantitative measurements refer to the 

luminance values only and for a GOP=2 unless otherwise stated. This format is adopted by 

the DVC community for the testing and validation of DVC codecs and is used in this thesis 

for comparison purposes.  

 

4.4 Validation of Software Implementation 

In order to verify that the proposed algorithms in the SI Generation and Improvement 

Framework were properly implemented and that the results presented were valid, a number 

of strategies were put in place. The following discuss the validation strategies for the 

algorithms implemented in the test bed: 

a) Validation of Basic DVC Software Implementation 

The ground truth for the validation of all results is the original video sequences. These are 

made available for comparison and referencing during the quantitative evaluation phase, 

though they would generally be not available at the decoder in an actual DVC 

implementation. The original sequences thus form an upper bound for any performance 

improvements in SI. 

The basis of this software implementation is the DVC codec of Li, (2008). The codes 

tested using the same sequences (Li, 2008) and show agreement with published results. 

Subsequently, the codec formed the basis of the development of the testbed. Therefore in 

Chapter 5, the results from (Li, 2008) are compared with those from the higher order SI 

generation test bed, using exactly the same settings to validate the results.  
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b) Validation of Higher Order Algorithm Implementation 

The higher order algorithm is introduced to replace the linear SI module employed in the 

codec. This was rigorously tested with squences which include, Foreman, Mother, Hall, 

Carphone, Salesman, Coastguard, American Football, Stefan and Soccer sequences with 

the expectation that sequences with objects incorporating more complex motion will give 

improved SI quality both qualitatively and quantitatively. The quantitative analysis 

involved a frame-by-frame inspection of the results and a comparison made with those 

generated by Li’s codec, as will be discussed in Chapter 5. 

Furthermore, a stepwise approach of progressively changing the model from linear to 

quadratic and then cubic with results validating incremental improvements alongside 

increased complexity and time delay from the theoretical consideration was also used to 

validate the results. 

c) Validation of BMA Mitigtion Algorithm  

Likewise, the BMA mitigation algorithm which was introduced to tackle artifacts in other 

parts of the resulting decoded video sequences is taken from reproducible codes of various 

authors and validated against their results (Bosc et al. 2011; Liu et al. 2010; Ye at al. 

2009). After rigorously testing the codes of the original BMA mitigation algorithm and 

confirming the reproduced results corroborate the published results, the algorithm module 

was incorporated into the test bed. The results produced by the algorithm as shown in 

Chapter 6, agree with the expected qualitative and quantitative improvements, especially in 

areas where visible artifacts previously appeared on the SI produced by the higher order 

algorithm. This improvement is tracked by using the frame by frame analysis.  

d) Validation of Artificial Intelligence Based Classifier Implementation  

The role of an artificial intelligence based classifier is to choose between macroblocks 

produced from the higher order and BMA mitigtion algorithms in order to generate a more 

accurate SI. To validate the classification performance of the intelligence based algorithm, 
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a ground truth, which is a list of correct decisions of choosing between the higher order 

and BMA mitigation algorithms for each MB of a sequence, is employed. A decision is 

made by comparing the PSNR values of the SI for a MB produced by the two algorithms 

and the one with higher PSNR is chosen. This ground truth and the classification results 

produced by intelligence-based MS algorithm are critically evaluated in terms of their 

classification performance. Furthermore, overall codec performance in terms of of 

measurng the SI quality is evaluated using RD curves.    

 

 

4.5 Summary 

The research methodology framework presented forms the basis of the rigorous analyses 

and validation of the major contributions in the SI Generation and Improvement 

Framework, the first of which is the higher order HOPTTI algorithm which is presented in 

the following Chapter.  
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Chapter 5 

 

 

SI Generation using Higher Order Piecewise 

Trajectory Temporal Interpolation (HOPTTI). 

 

5.1 Introduction 

As stated earlier in Chapter 3, the quality of SI impacts upon DVC performance 

significantly way and it is one of the most important bottlenecks in DVC performance, 

which have been acknowledged in the earliest practical implementations of DVC theory 

(Aaron, Zhang and Girod 2002; Jagnohan, Sehgal and Ahuja 2002). The quality of SI 

impacts DVC in two ways:  

(i) RD – this reflects bit rates versus PSNR and it shows the number of decoder bits 

required to provide a prescribed output quality. The better quality codec would be the 

one that employs lower bits to achieve higher PSNR output. The decoders that have 

high SI quality would request lower bits to improve SI to the prescribed quality (same 

as, WZ fidelity criterion as stated in the theoretical aspects of DVC in Chapter 3) and 

they will therefore exhibit superior performance.  

(ii) Robustness (error resilience) – in DVC, SI frames are constructed in most cases 

independent of channel fidelity at the decoder, so the better the SI quality, the more 

resilient the codec becomes compared to the situation where more bits are needed via 

error prone channels. SI is improved at the decoder using different image processing 

and intelligent methods such as those highlighted in the SI generation and improvement 

framework of Figures 1.2 and 1.3. Conventional codecs on the other hand rely on the 
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transmitted bits stream of both the transformed images based on prediction and its 

residue (Ostermann et al., 2004), discussed earlier in Chapter 1, which propagates the 

prediction error making it difficult to guarantee lossless receipt at the decoder.  

Generating an SI with very high quality is therefore of paramount importance if DVC 

performance is to be improved to give similar performance as conventional codecs and this 

forms the major objective of this thesis. The SI frames can be improved upon to obtain 

better quality than the originally received frame by noise reduction (de-noising), super 

resolution and in-painting algorithms. 

Also, from the survey of SI in Chapter 3, LMCTI has been predominantly used in SI 

generation (Aaron, Setton and Girod 2003; Aaron, Zhang and Girod 2002; Pereira et al. 

2008; Artigas et al. 2007; Li 2008; Liu, Yue and Chan 2009; Ye et al. 2009) where the 

motion of objects in the video sequences are assumed to be linear. While LMCTI provides 

reasonable SI quality for sequences with contrived, slow-to-medium object motion, it tends 

not to be generally so successful for sequences exhibiting natural motion where non-linear 

motion (Ye et al. 2009) including acceleration, deceleration, turns, twists and jerks is quite 

common, most especially where fast object motion and multiple objects predominates. In 

order to achieve more accurate trajectories for natural video sequences higher-order 

trajectories (Chahine and Konrad 1995; Chahine 1995; Akinola, Dooley and Wong 2010; 

Petrazzuoli, Cagnazzo and Pesquet-Popescu 2010) for temporal variations have been 

modeled, leading to reported more accurate sequence reconstructions and greater 

compression efficiencies. 

While most of the solutions for generation of SI in literature make use of LMCTI, there 

have been various suggestions as to how to generate SI as reviewed earlier in Chapter 3 

and a summary of the various methods which was presented in detail in Chapter 3 is: 

(i) Use of previous or future key frames as SI 

(ii) Simple pixel based averaging of previous and future key frames 
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(iii) Pixel based edge directed linear interpolation 

(iv) LMCTI 

(v) Bi-directional LMCTI 

(vi) Higher order motion compensated interpolation 

The first case though quite straightforward and simple to implement, presents a challenge 

in terms of number of bits required from the encoder to improve the SI as the missing 

frame is often quite significantly different from both the previous and future frames, except 

for stationary head and shoulder sequences acquired with stationary cameras that exhibit 

almost no global motion. Even after the request of several bits from the encoder, the final 

decoder output is significantly poorer than the original since the starting point for 

reconstruction, which is the SI, is so poor.  

The second case, though computationally more intensive also does not give a more 

improved SI compared to the first case as it merely averages pixel values and blurs out 

some parts of objects if they have moved away in the future key frame while it places a 

pale (ghosting) resemblance of object parts where they have moved to.  

The third case gives relatively similar quality of SI with LMCTI as it is a predictive 

interpolation method, but the intensive pixel by pixel iteration of the algorithm is time 

consuming.  

The fourth case, LMCTI, as discussed earlier and buttressed by literature in Chapter 3, 

gives a reasonably high SI quality for sequences with slow to medium object motion. The 

employment of fast block based motion search algorithms similar to predictive H.264 

(Ostermann et al., 2004) gives it an edge and this is why it is predominantly employed by 

the community while its shortcoming with sequences having asymmetric, medium to high 

object motion is overlooked.  

The fifth case employing Bi-directional LMCTI derives from an acknowledgment of the 

fact that the linear motion model cannot deliver further improvement in SI as the 
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estimation of motion from the previous to the future frames usually results in holes and 

artifacts on the intermediate frame while the estimation done from future frame to previous 

frame also results  in different set of holes and artifacts, thus the combination of 

intermediate frames obtained from both directions tend to cover the holes.  

 

 
Figure 5.1 Block Diagram of SI Generation and Improvement Framework with BLOCK 1 

Highlighted. 

 

The sixth case is thus a more realistic approach to modeling of object motion. This is even 

more compelling since the same fast block based motion search algorithms can be 

engaged. Thus the concept of BLOCK 1 of Figure 1.3 in Chapter 1 is pursued here to show 

that a more efficient exploitation of the temporal redundancies in video sequences can be 

achieved by incorporating a more accurate trajectory model into the SI Generation and 
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Improvement Framework of DVC introduced in Figure 1.2. The block diagram of the 

motivated research formulation is reproduced with BLOCK 1 highlighted in Figure 5.1. 

This Chapter presents the incorporation of higher order object motion trajectories in DVC 

SI Generation and Improvement Framework rather than the hitherto linear models, leading 

to a block-based, higher-order piecewise trajectory temporal interpolation (HOPTTI) 

algorithm for SI generation which is based upon the models in (Chahine and Konrad 1995; 

Chahine 1995; Akinola, Dooley and Wong 2010; Petrazzuoli, Cagnazzo and Pesquet-

Popescu 2010). The HOPTTI model, instead of tracking every pixel, employs MB (16 x 16 

pixel blocks) for tracking the motion field, with the flexibility to employ sub-blocks of 4 x 

4 pixels and 8 x 8 pixels whenever necessary, though at the expense of increasing 

computational overhead. Furthermore, as will be evidenced, due to the use of higher-order 

motion trajectory models, HOPTTI proves superior SI quality both in terms of the average 

peak signal-to-noise ratio (PSNR) and qualitative visual appearance when compared with 

existing LMCTI techniques, with certain test sequences providing an improvement of up to 

8dB when piecewise cubic polynomials is employed instead of a linear model, while an 

average of about 5dB improvement is achieved over a range of slow to fast object 

motioned sequences with single and multiple objects. 

 

5.2 HOPTTI SI Module and DVC Architecture 

The basic DVC architecture adopted for this thesis is shown in Figure 5.2, which was 

generally described in Chapter 2. The HOPTTI SI Generation Module (enclosed in the 

dashed-line box, labeled SI in Figure 5.2) and its key components are hereby described in 

more detail. The key components and how they interact are shown in Figure 5.3.  

From the discussions and literature review in Chapters 2 and 3, it is noted that the quality 

of SI generation in DVC is a major bottleneck and that the quality of SI is directly linked 
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with the inadequacies in temporal exploitation techniques presently in use in DVC. The 

HOPTTI algorithms is proposed in order to ameliorate the problems identified and 

generate a higher quality of SI by the provision of a more accurate prediction of object 

position in the intervening WZ frames in the DVC architecture. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Architecture of Codec highlighting SI module 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Detailed Blocks of SI Generation Module 
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The proposed SI generation module, the key components and their interaction in the 

HOPTTI algorithm formulation are discussed in the following sub-sections. 

 

5.2.1 Decoded Key Frame Buffer and HOPTTI  

Compared to conventional coding as discussed in Chapter 2, DVC cannot employ 

predictive coding using the original as reference frame referred to as residual coding 

because the original frame is not present at the decoder where the exploitation of the 

redundancies is taking place.  DVC therefore employs motion compensated interpolation 

with intra-coded or lower complexity inter-coded key frames from conventional codecs 

with H.264 being employed in this thesis. Figure 5.4 (a), shows the conceptual linear 

interpolation process which requires the arrival at the decoder of two key frames in order 

to interpolate the missing WZ frame in a K-W-K-W-K-W arrangement. This arrangement 

is referred to as GOP of 2, (Petrazzuoli, Cagnazzo and Pesquet-Popescu 2010). 

In order to employ higher order trajectory interpolation as being proposed, additional key 

frames are required and this is shown conceptually for quadratic and cubic interpolation in 

Figure 5.4 (b) and (c). This is straightforward as higher order means further determination 

of higher differentials as will be further illustrated in subsequent sections.  

The key frames buffer therefore becomes more important as this is required to hold more 

key frames for motion estimation (ME) and furthermore to hold MB based estimated MVs 

for the piecewise construction of the motion trajectories which in turn allow for the 

formulation of a more accurate framework for the evaluation of missing intermediate WZ 

frames from motion compensated interpolation.  

While MB, block based, MV generation is adopted for the purpose of formulating the more 

accurate higher order trajectories due to the advantages highlighted both in Chapter 3 and 

the introductory part of this chapter, two underlying assumptions which weaken the 

HOPTTI formulation have been implicitly made which are the following: 
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Figure 5.4 Conceptual illustration of additional frames required for higher order trajectory 

formulation (a) Linear Interpolation requires 2 No. Key frames (b) Quadratic 

(2nd Orider) Interpolation requires at least 3 No. key frames (c)  Cubic (3rd 

order) Interpolation requires at least 4 key frames 
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The first is the fact that the motion to be exploited is translational which means that global 

and rotational motion is assumed not to be present. The major weakness in this assumption 

is the non-inclusion of rotational motion as global motion that leads to translational motion 

can be said to be taken care of. The second assumption is that MBs are assumed to contain 

only one singular object type which implies that the object must be larger than MB sizes.  

The weaknesses highlighted earlier have been addressed to some extent by the flexibility in 

sub-MB sizes adopted in the DVC architecture proposed for HOPTTI by allowing 8 X 8 

and 4 X 4 sub-blocks as discussed both in Chapter 2 and earlier in this Chapter. Other 

aspects of the weaknesses will be further addressed in Chapter 6.  

 

5.2.2 Adaptive Rood Pattern Search (ARPS) Motion Estimation  

In formulating a more accurate motion trajectory model, we try to emulate true motion 

which, as has been noted in literature, is necessary for better exploitation of temporal 

redundancies (Chahine and Konrad 1995; Chahine 1995; Akinola, Dooley and Wong 2010; 

Petrazzuoli, Cagnazzo and Pesquet-Popescu 2010). Therefore, we introduce the fact that 

objects actually possess inertia and thus exhibit acceleration, deceleration and surges. 

Furthermore, objects thereby exhibit smooth translational trajectory motion. This implies 

that MVs must follow smoothly from preceding ones and outliers are not common (Choi et 

al., 2007). The adaptive rood pattern search (ARPS) (Zhao et al. 2008) introduced in 

Chapter 3 of this thesis has been adopted in our test bed and experimentation as it 

possesses the characteristic of producing such a set of true motion MVs with little or no 

outliers due to its use of the adaptive rood pattern search algorithm. ARPS makes use of 

neighboring blocks as region of support and is hereby described to give depth to the 

motion estimation algorithm as a temporal exploitation tool for video compression, while 
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at the same time explaining one of the crucial parts of the proposed, more accurate higher 

order motion trajectory formulation. 

 

The ARPS algorithm is one of the versatile fast and accurate true motion estimation 

algorithms that have been shown to increase computational gain with little loss in PSNR 

compared to the Full search (FS) algorithm (Nie Y. and Ma K-K., 2002; Zhao et al. 2008). 

While ARPS avoids the use of the sequential whole frame as a search window, which 

makes searching cumbersome and time consuming, it at the same time remedies the 

inadequacies inherent in a predetermined small window search breakdown being stuck in a 

local maxima. In instances where widely varying motion can cause objects to move outside 

a pre-determined window as its zero motion pre-judgment has been shown to give higher 

PSNR in large motion video sequences such as Foreman and Coastguard (Zhao et al. 

2008). ARPS uses a rood (cross-like) pattern that changes in line with the predicted size of 

MV, employing the surrounding blocks as support, which results in placing the search in 

the location where there is the highest probability of finding the best matching block. 

Employing a two-step search algorithm of 1) initial search and 2) refined search (Nie Y. 

and Ma K-K., 2002) dynamically changes the search window size based on a selection of 

region of support as shown in Figure 5.5 where the shaded blocks are the supporting blocks 

and the block marked “O” is the block under consideration. The region of support with 

maximum of two supporting blocks (Type C) is employed in this implementation as there 

is no visible improvement in quality beyond this (Nie Y. and Ma K-K., 2002). This implies 

that the ARPS implementation in HOPTTI dynamically changes the region of support 

between 1 and 2 in order to refine the MV search. 
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Figure 5.5 Different types of regions of support based on surrounding blocks  

 

5.3 The Higher Order Piecewise Temporal Trajectory 

Interpolation (HOPTTI) 

From the discussions in section 5.2, the assumption of no motion by the earliest DVC 

models or even linear trajectories also referred to as LMCTI may not always generate the 

requisite high quality SI when objects in the sequence exhibit non-linear and global motion, 

we therefore investigate the use of higher order trajectories in motion compensated temporal 

interpolation. Also, in Chahine and Konrad (1995) and Chahine (1995) for instance, 

asymmetric object motion in video sequences was addressed by a quadratic trajectory model 

allied with MV sampling of one MV per pixel for temporal interpolation, which was 

reported to have given an overall improvement of up to 4dB over conventional linear-based 

models. 

To investigate a higher order trajectory approach for SI generation in a DVC context, cubic 

higher-order polynomial trajectory models for temporal interpolation are hereby formulated 

in (5.1) – (5.6) and implemented in the HOPTTI algorithm, thereby replacing the SI 

generation module of the DVC architecture described for the use of this thesis in Chapter 3 

by the HOPTTI algorithm block diagram shown in Figure 5.3. The cubic model has been 

chosen as it enables the formulation of a natural trajectory model that gives the most 

favourable PSNR results compared to overhead cost as will be evidenced later. 
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5.3.1 The Piecewise Trajectory Formulation and Parameterization  

The cubic higher order piecewise trajectory formulation and parameterization enables 

objects exhibiting non-uniform, sudden accelerated or decelerated motion, such as a surge 

(also popularly referred to as jolt) which is the rate of change of acceleration, to be more 

accurately represented.  

To illustrate the idea, example segments of the motion trajectory of an object in 3-D , ,x y t  

space between time t1 and t4 are shown in Figure 5.6(a) while a 2-D view of the same is 

shown in Figure 5.6 (b). It is assumed the displacements (MV) of the blocks relating to the 

object at key frames K1, K2, K3 and K4 between t1 and t4 are respectively A1, B1, C1 and D1. 

In HOPTTI, the MV of a block is evaluated by finding the position of best match in the next 

key frame. All key frames are available at the decoder, while WZ frames (denoted as W in 

Figure 5.6) are produced using motion compensated temporal interpolation.  

The motion trajectory ( )C t  of an object can be represented by a set of piecewise cubic 

polynomials: 
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  
  
 
   

                      (5.1) 

where each segment of the trajectory )(tpi is represented by an equation of motion similar 

to Chahine and Konrad, (1995) and considering a constant jolt given by: 

3 21 1
( ) ( ) ( ) ( )

6 2
i i i i i i i ip t j t t a t t v t t d                    (5.2) 

For 1, 2.......i n . In (5.1), n is the number of available key frames, while in (5.2), ji is the 

average jolt (the rate of change of acceleration), ai the average acceleration, vi the average 

velocity between ti and ti+1 and di the initial displacement at ti.  
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To calculate the four parameters ji, ai, vi and di, a minimum of 4 key frames are required, and 

if it is assumed the respective displacements of the blocks at these key frames are Ai, Bi, Ci 

and Di, then the following holds: 

 

ii Ad                                                            (5.3) 

T

AB
v ii

i


                                              (5.4) 

                        
2

1

2

2

2 T

ABC
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vv
a iiiii
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


                    (5.5) 

                        
3

1

6

33

3 T

ABCD

T

aa
j iiiiii
i





              (5.6) 

 

where T is the time between two consecutive key- frames, 

iiiiii DCCBBA   111 ,, . 

 

The forward motion trajectory of an object can be evaluated using (5.1) – (5.6), thus 

enabling the MV of the object at any time between t1 and tn+1 to be accurately interpolated. 

The backward motion trajectory is evaluated the same way as the forward one using (5.1) – 

(5.6) as described but in reverse direction i.e. Di, Ci, Bi and Ai. 

The use of additional future and past frames and the additional overhead this imposes on the 

codec can be better appreciated from Figure 5.6 that shows how the number of frames 

needed to complete a piecewise trajectory increases for GOP of 2 as the trajectory order 

increases from linear (first order, used in LMCTI), to quadratic (second order) and to cubic 

(third order) trajectory used in the formulation of HOPTTI.  
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(a)  

 

  

 

 

 

 

 

 

 

(b) 

Figure 5.6 Example segments of the higher order motion trajectory of an object in (a) 3-D   

space between time t1 and t4, where K are the key frames  (Akinola, Dooley 

and Wong 2010)  and (b) 2-D slice of same object and SI is the object of the 

WZ frame. 

 

 

5.3.2 The HOPTTI Algorithm 

The structure for HOPTTI framework is shown in Figure 5.7 with the individual blocks 

explained. 
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Figure 5.7 Block diagram of the HOPTTI algorithm  

 

(i) Frame structure definition:  

The structure is as follows: 

Estimate the MVs (A, B, C and D as shown in Figure 5.6) for both forward and backward 

path using ARPS (Zhao et al. 2008). 

A fractional weight ζ is introduced to combine the temporal SI (the missing WZ frames) 

in both forward and backward directions, shown in Figure 5.8, which gives the highest 

PSNR. For LMCTI ζ=0.5 (Artigas et al. 2007), averaging both forward and backward 

MC frames, while for higher-order models the value of ζ must take cognizance of the 

fact a MV may not necessarily intersect at the centre of a block. 

Using the estimated parameters from Step 1, calculate the cubic polynomial motion 

trajectory; the SI using bi-directional motion compensation and the weight ζ to generate 

the final interpolated frame (see Figure 5.8).  

Repeat Steps 1 to 3 for all SI frames. 
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(ii) Piecewise trajectory formulation and bi-directional motion compensation:  

The HOPTTI formulation uses a trajectory formulation analogous to Chahine and 

Konrad (1995), Chahine (1995) and the same as (Akinola, Dooley and Wong 2010). 

The block-based motion estimation scheme does not capture all aspects of the motion 

field, therefore the higher order piecewise trajectory and bi-directional motion 

estimation and compensation reduces the impact of this by refining the MV in a way 

similar to B-frames in conventional video coding. In DVC however, the original block 

is not known at the decoder and the corresponding residue is not available so a 

different refinement strategy following the higher order trajectory is applied. In 

addition, MV estimation for uncovered areas (corresponding to holes) is estimated 

from previous frames in both the forward and backward directions resulting in forward 

and backward interpolated frames. In bi-directional motion estimation and 

compensation in LMCTI schemes, there are two methods used to generate the final 

interpolated frame, namely: i) spatial hole tracking and filling as in Li (2008), which 

involves pixel-wise searching of both forward and backward frames which is 

computationally very expensive, and ii) a temporal MV scheme (Aaron, Setton and 

Girod 2003; Aaron, Zhang and Girod 2002; Pereira et al. 2008; Artigas et al. 2007; 

Liu, Yue and Chan 2009; Ye et al. 2009) where the forward and backward MV 

interpolated frames are averaged together. The second approach has been adopted 

most often due to its simplicity and lower computational cost. However, due to 

irregular object motion in real world video, the scheme which assumes linearity and 

regular object motion is not sufficient. Figure 5.8 shows the approach adopted in this 

work with MCF and MCB representing forward and backward motion compensation 

respectively,  ζ representing the weighting factor and KA KB KC KD representing the 

ME of MBs, A, B, C and D rerespectively. 
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HOPTTI introduces a weighting factor ζ to adjust the respective contributions of the 

forward and backward MVs to generate the interpolated frame, as illustrated in Figure 

5.8. The best ζ is empirically determined to provide the highest average PSNR for each 

sequence. The empirical analysis of best ζ and how it is determined is provided in the 

results section (section 5.5) of this Chapter. Figure 5.8 shows the use of the weight ζ to 

obtain the final interpolation frame from the forward and backward frames, while at the 

same time illustrating how the MV of a block from 4 key frames is used to obtain the 

piecewise cubic motion trajectory, which is shown more clearly by the illustration in 

Figure 5.9 (a) and (b).  

 

 

 

 

 

 

 

 

 

 

Figure 5.8 Bidirectional motion estimation and compensation with cubic trajectory and 

MV sampling estimation at decoder.  Fractional weight ζ combines for final SI 

frame. 

 

 

5.4 HOPTTI AND DIFFERENT GOPs 

Until now, the GOP of 2 i.e. the case where the sequence is split evenly between key 

frames and WZ frames (KWKWKW…), was considered. It is of interest to observe the 

effect of the higher order trajectory on different GOPs as this will imply more WZ frames 
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and fewer key frames. Higher GOPs are employed in DVC in order to reduce the encoder 

overhead in DVC as this reduces the number of key frames that have to be encoded via the 

conventional codec at the encoder, while transferring the work load to the decoder where 

the exploitation of the WZ frames takes place. As will be evidenced in the results section, 

the higher order trajectory formulation gives a more accurate model also for higher GOP 

values.  

The structure adopted is similar to Aaron, Setton and Girod (2003), Ascenso, Brites and 

Pereira (2006) and Petrazouli et al. (2010). Figure 5.9 (b) follows from Figure 5.4 (a) and 

(b) where the number of frames for higher order interpolation was illustrated for the GOP 

of 2. While it is straight forward in higher order interpolation for a GOP of 2, where one 

WZ frame is missing between key frames, to use the adjacent key frames (previous and 

future frames), it becomes more complicated when higher order trajectories are considered 

for higher GOP values.  

In Figure 5.9 (a), the linear interpolation of a GOP of 4 (KWWWKWWWK…) is depicted 

with three WZ frames and SI for these three frames have to be interpolated. The key 

frames are used to generate the central SI frame first and after generating the central SI 

frame, this is then used alongside the future frame to generate the adjacent SI frame 

between the future frame and the central SI frame. Likewise, the previous key frame is 

employed alongside the central SI frame to generate the adjacent SI frame between the 

previous frame and the central SI frame.  

Figure 5.4 (b), illustrated the case where two past frames and two future frames were 

employed for the piecewise cubic trajectory formulation for a GOP of 2 (KKWKK…). 

This is further extended in Figure 5.9 (b) to illustrate how the cubic trajectory formulation 

works for the GOP of 4. While the linear GOP of 4 case is (KWWWK…), the cubic 

trajectory formulation for GOP of 4 case is (KKWWWKK…). Two past frame and two 

future frames are employed to generate the central SI (WI), then the central SI is employed  
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(b) 

Figure 5.9 Illustration of GOP of 4 using (a) Linear and (b) Cubic SI frame generation. 

 

 

alongside two future frames and the past key frame to generate the adjacent SI frame 
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alongside the two past frames and one future frame to generate the adjacent SI frame 

between the central SI and the past frames (WI-1).  

The summary of the different GOPs using HOPTTI is as follows: 

(i) The generation of the central SI (WI) is done using at least four frames 

corresponding to A, B, C and D in the HOPTTI formulation. 

(ii) An implementation of (a.) is illustrated in Figure 5.9 by using one previous key 

frame and three future key frames. 

(iii) Lateral SIs {(WI+1), (WI-1)}, are then generated using the central SI in combination 

with the least number of key frames that is needed to complete HOPTTI trajectory that 

encloses the lateral SI in question. 

 

5.5 Simulation and Results 

The HOPTTI algorithm and test bed as described in Section 2.2.5 was implemented in 

Matlab version 7.5.0 (R2007b) running under Microsoft Windows XP on a PC with an 

Intel Duo Core CPU at 2.20 GHz. A GOP size of 2 was chosen for the initial proof of 

concept experiments reported. Where higher GOP is utilized this will be explicitly stated in 

this section. 

The cubic trajectory is employed in HOPTTI which is one order higher than the 

implementation in Chahine and Konrad (1995) and Chahine (1995) and uses polynomial 

trajectory parameterization as described in Section 4.3. The reason for choosing cubic as 

will be evidenced shortly is that the complexity increases as the order increases while the 

gain in terms of improved SI quality reduces. 

 

 

Furthermore, the simulation and results are employed to show rigorous proof of the 

concept that the HOPTTI higher order algorithm gives a more accurate temporal 
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exploitation of video sequences in DVC as espoused in BLOCK 1 of Figure 1.1 of Chapter 

1 and introductory section of this Chapter. 

To numerically and qualitatively evaluate HOPTTI, the simulation to analyze and 

determine that the cubic higher order trajectory gives the best trade off as proposed in the 

theory sections is shown, then the direct comparison of HOPTTI with the results from Li’s 

SI generation algorithm (Li, 2008) that was replaced with HOPTTI, furthermore, various 

QCIF (Quarter Common Intermediate Format) test sequences were applied including 

Carphone, Mother, Coastguard, Silent, Hall, and Foreman, which provided a range of 

different types of motion and objects. Three LMCTI interpolation-based SI generation 

approaches widely referenced in literature and that also employed various QCIF sequences 

were used for comparison, namely the 3-D content adaptive recursive search (3DCARS) 

(Borchert et al. 2007) which employs a quarter-pixel MV search implying 16 more MV 

searches than HOPTTI, the pixel-domain WZ (PD-WZ) codec (Tagliasacchi et al 2008) and 

the publication introducing global and feature based points in motion estimation (MPBTI), 

(Hansel, Richter and Muller 2011). All these SI generation techniques use linear 

interpolation allied with various temporal and spatial refinements respectively. 

 

5.5.1 The Higher Order SI Algorithm Computational Complexity Evaluation 

Experimental analysis corroborates the theoretical choice of the cubic trajectory in the 

HOPTTI formulation as PSNR quality is employed with overhead analysis. Table 5.1 

summarizes the HOPTTI algorithm SI average PSNR results for linear, quadratic and 

cubic-order trajectories for various sequences. The results confirm consistently superior SI 

quality is achieved when a cubic polynomial trajectory model is applied to the various 

sequences, with for instance Foreman providing an average improvement of up to 5dB and 

Coastguard an 8dB improvement compared with the linear HOPTTI model. Furthermore, 

Table 5.1 reveals the HOPTTI algorithm exhibits progressive SI quality improvement for 
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increasing polynomial trajectory order, i.e., quadratic over linear and cubic over quadratic. 

However, the percentage change in PSNR reveals that while there is improvement from 

linear to quadratic and quadratic to cubic, the increase from quadratic to cubic is less than 

half of the increment from linear to quadratic. Table 5.2 shows the increase in overhead in 

terms of computational time for SI generation from linear to quadratic and cubic 

trajectories. The Table 5.2 shows that the overhead increases dramatically with video 

sequences exhibiting up to 600% increase in complexity as we go from linear to quadratic 

and cubic trajectories even as the PSNR improvement change reduces as seen in Table 5.1. 

Pragmatically however, when the SI improvements are juxtaposed by a higher complexity 

overhead, it will be seen that consideration of even higher-order polynomial trajectories 

above the cubic cannot be justified. Therefore, the cubic trajectory is chosen for the 

HOPTTI implementation. 

 

 

Table 5.1 SI AVERAGE PSNR PERFORMANCE COMPARISON IN dB 

FOR VARIOUS TRAJECTORY ORDERS FOR HOPTTI 

Sequences 
HOPTTI 

Linear(L) 

HOPTTI 

Quadratic(Q) 

%change 

Q-L/L 

HOPTTI 

Cubic(C) 

%change 

C-L/L 

Carphone 
30.9 34.0 10.0 35.3 14.2 

Coastguard 
28.4 34.3 20.8 36.4 28.2 

Foreman 
29.9 33.0 10.4 35.1 17.4 

Mother 
36.2 44.4 22.7 47.3 30.7 

Hall 
30.5 36.2 18.7 38.5 26.2 

Silent 
31.7 37.2 17.4 38.9 22.7 
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Table 5.2 AVERAGE SI GENERATION TIME PER FRAME IN SECONDS  

Sequences 
HOPTTI 

Linear(L) 

HOPTTI 

Quadratic(Q) 

%change 

Q-L/L 

HOPTTI 

Cubic(C) 

%change 

C-L/L 

Carphone 
0.01 0.03 200 0.07 600 

Coastguard 
0.02 0.06 200 0.10 400 

Foreman 
0.03 0.08 166.7 0.14 366.7 

Mother 
0.02 0.04 100 0.08 300 

Hall 
0.03 0.06 100 0.11 266.7 

Silent 
0.01 0.03 200 0.06 500 

 

Finally, from the computational complexity variables defined in Table 4.1 of Chapter 4, the 

complexities for HOPTTI_Linear is 
Const Vel BMAT T T  , HOPTTI_Quadratic is 

2Const Vel Accl BMAT T T T   , while overhead for HOPTTI_Cubic is 

4 2Const Vel Accl Jolt BMAT T T T T    . Thus, it is possible to observe that there is correlation 

with the time recorded in Table 4.4. In terms of complexity, HOPTTI cubic is twice that of 

the quadratic and 5 times greater than HOPTTI linear. The variations in time between video 

sequences and order can be accounted for from the fact that there are slight variations in the 

BMA complexity of the sequences with video sequences and further variation between 

complexity for calculating of velocity, acceleration and jolt terms.  

 

5.5.2 Comparison of HOPTTI with other SI generation schemes 

In order to compare HOPTTI with other SI generation schemes, we have employed the 

same sequences used by the authors and taken the results published.  Tables 5.3, 5.4 and 5.5 

show the comparative results for HOPTTI with 3DCARS (Borchert et al. 2007), PD-WZ 

(Tagliasacchi et al 2008) and MPBTI (Hansel, Richter and Muller 2011). This reveals for 

example, that for Mother, HOPTTI gave better SI quality with an improvement on average 

of 2.9dB and 9.0dB respectively compared with 3DCARS, PD-WZ and MPBTI. This is 
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particularly noteworthy when noted the enhancements introduced in both (Borchert et al. 

2007) and (Tagliasacchi et al 2008). While MPBTI introduced feature points in ME and 

global ME alongside LMCTI, 3DCARS for example used quarter-pixel interpolation 

accuracy compared with the integer accuracy for HOPTTI alongside LMCTI. The HOPTTI 

algorithm also provided better SI quality of more than 2dB over 3DCARS for Coastguard, 

though this was counterbalanced by its performance being less satisfactory compared to PD-

WZ (Borchert et al. 2007; Tagliasacchi et al 2008). This was due to the influence of the 

significant temporal noise components produced by the water in this sequence. While it 

should be noted that the PSNR values we are comparing HOPTTI with are not the results of 

LMCTI implementation alone, but combined with other algorithms, which in itself is an 

indication that the authors realized the fact that LMCTI is not quite adequate as alluded to 

earlier. The fact that HOPTTI without any additional improvements gives better 

performance compared to these improved LMCTI implementations further strengthens the 

higher order approach.  

 

Table 5.3 COMPARISON OF AVERAGE PSNR IN dB PERFORMANCE 

FOR 3DCARS SI INTERPOLATION TECHNIQUE FOR VARIOUS VIDEO 

SEQUENCES 

Sequences 
3DCARS (Borchert 

et al. 2007) 
HOPTTI 

Carphone 
34.9 35.3 

Mother 
44.4 47.3 

Foreman 
34.9 35.1 

Silent 
36.4 38.9 

Coastguard 
37.5 36.4 

Hall 
37.4 38.5 
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Furthermore, the argument of lower overhead for LMCTI cannot be sustained as the 

additional algorithms required to improve LMCTI based SI increase the overhead 

considerably (Borchert et al. 2007; Tagliasacchi et al 2008; Hansel, Richter and Muller 

2011).  

 

Table 5.4 COMPARISON OF AVERAGE PSNR IN dB PERFORMANCE 

FOR PD-WZ  SI INTERPOLATION TECHNIQUE FOR VARIOUS VIDEO 

SEQUENCES 

Sequences 

PD-WZ 

(Tagliasacchi et al. 

2008) 

HOPTTI 

Mother 
38.3 47.3 

Foreman 
33.0 35.1 

Coastguard 
34.2 36.4 

Hall 
36.8 38.5 

 

 

 

Table 5.5 COMPARISON OF AVERAGE PSNR IN dB PERFORMANCE 

FOR MPBTI SI INTERPOLATION TECHNIQUE FOR VARIOUS VIDEO 

SEQUENCES 

Sequences 
MPBTI (Hansel et 

al. 2011) 
HOPTTI 

Foreman 
30.2 35.1 

Coastguard 
32.8 36.4 

Soccer 
22.9 26.4 

Stefan 
24.2 28.5 

 

 

Figures 5.10, 5.11 show the perceptual SI quality of sample frames and the frame by frame 

quantitative quality for Hall, where HOPTTI performed better in comparison with the 
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other SI generation schemes, with Tables 5.3 and 5.4 confirming the average numerical 

PSNR improvements are 1.1dB and 1.7dB respectively.  

For the same Hall sequence, looking at the frame by frame plot in Figure 5.11, it is noted 

that that the plot pattern is closely related to other such frame-wise plots for the Hall 

sequence in literature (Borchert et al. 2007; Tagliasacchi et al 2008; Hansel, Richter and 

Muller 2011). The major differences in Figure 5.11 however are: 1) The SI PSNR values 

are higher than those already reported in literature and 2) the falling off in performance 

(dips in PSNR) while new objects emerge, while objects increase their motion and while 

background changes occur due to translational motion, global motion panning, sudden 

movements etc., still occurs in similar locations for HOPTTI, but unlike the other 

generation schemes that show greater reduction in quality, HOPTTI quickly stops the 

decline as it predicts the direction of motion more accurately by the higher order trajectory 

as predicted in the earlier sections of this Chapter. Furthermore, Figure 5.10 which shows 

qualitative sample frames of SI produced from the Hall sequence, proves that the quality of 

SI produced from the HOPTTI algorithm is quite high as it shows that there are no holes 

evident in the sample frames while the MB forms are  continous without breaks visible to 

the human perception. Figure 5.10 also highlighted major areas of difficulty where the 

HOPTTI algorithm struggles, which include appearance of a man in the hall, turning of the 

man from doorway into direction of hall, acceleration of movement etc. In all these cases 

the qualitative SI output of HOPTTI is commendably high. The sample frames in Figures 

5.10 and 5.11 also shows the places where HOPTTI fails, and as such further 

improvements can be contemplated. Such areas where there is panning in the background 

and new objects appear have been adequately filled by the bi-directional estimation 

employed by HOPTTI but they show overlapping of blocks and slight ghosting, especially 

in high motion object areas such as the legs of the human objects. These and other 

weaknesses observed in the HOPTTI algorithm will be further explored in Chapter 6 in 
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order to improve the DVC codec and make a further contribution by tackling the 

overlapping observed. 

 

 

 

 

 

 

 

 

 

Figure 5.10 Sample frames for the Hall sequence showing the SI quality obtained using  

HOPTTI algorithm 

 

Frame #19         

Original                SI for HOPTTI 

PSNR=34.1dB 
original frame No: 23 Cubic Traj HOPTTI SI frame No: 23 PSNR: 37.4934

 

Frame #21         

Original                SI for HOPTTI 

PSNR=34.0dB 
original frame No: 25 Cubic Traj HOPTTI SI frame No: 25 PSNR: 38.4206

 

Original               Frame #77        SI for HOPTTI  

                                                       PSNR=37.5dB 
original frame No: 77 Cubic Traj HOPTTI SI frame No: 77 PSNR: 44.4399
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Figure 5.11 Frame-wise plot showing SI quality of HOPTTI algorithm for Hall sequence 

 

The Stefan sequence sample frames shown in Figure 5.12 and the frame-wise PSNR plot of 

Figure 5.13 shows that HOPTTI copes better with sudden movements such as jerks and 

jumps by the player as predicted from the HOPTTI formulation. Though the frame-wise 

plot in Figure 5.13 follows the pattern of Stefan sequence framewise plots, falling at 

similar locations as usual (Borchert et al. 2007; Tagliasacchi et al 2008; Hansel, Richter 

and Muller 2011), HOPTTI gives higher PSNR performance and thus shorter dips showing 

that HOPTTI handles the translational movements, bounces, jumps and jerks of the object 

movement better than LMCTI SI generation algorithms. Looking more closely at the 

sample frames of Figure 5.12, the qualitative output of the HOPTTI generation scheme 

gives good perceptual quality making it possible to distinctly recognise all the objects. 

While there are no visible holes, the multiple objects in the background (spectators) 

sometimes are blurry showing multiple overlapping of MV blocks. This further reinforces 

the fact that HOPTTI suffers from overlapping of multiple MVs on the same MB.  
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Figure 5.12 Sample frames for the Stefan sequence showing the SI quality 

obtained using  HOPTTI algorithm. 

 

Frame #25        

Original              SI for HOPTTI 

PSNR=32.4dB 
original frame No: 25 Cubic Traj AOBM SI frame No: 25 PSNR: 31.1704

 

Frame #89        

Original              SI for HOPTTI 

PSNR=23.9dB 
original frame No: 89 Cubic Traj AOBM SI frame No: 89 PSNR: 22.105

 

Frame #93        

Original              SI for HOPTTI 

PSNR=23.1dB 
original frame No: 93 Cubic Traj AOBM SI frame No: 93 PSNR: 22.141

 

 



118 

 

0 50 100 150
23

24

25

26

27

28

29

30

31

32

33

Frame No.

P
S

N
R

 in
 d

B

 

Figure 5.13 Frame-wise plot showing SI quality of HOPTTI algorithm for Stefan 

sequence 

 

The Foreman sequence shows another set of characteristics which is difficult for the 

HOPTTI SI generation formulation to deal with, as the objects occupy large swathes of the 

sequence frame making it traverse many blocks. Also, translational motion is not very 

frequently prevalent though the Foreman sequence is regarded as a fast motion sequence. 

The fast motion comprises of the deformation of parts of the face and movement of the 

head which results in sudden jerks and rotational motion. Figures 5.14 and 5.15 shows 

sample frames of the qualitative SI output of the HOPTTI SI generation module and the 

frame-wise PSNR results which also shows that HOPTTI performs quite remarkably well 

considering that the formulation captures mostly translational motion. Tables 5.3, 5.4 and 

5.5 shows up to 3.9dB gain over published LMCTI SI generation results, as LMCTI finds 

it really difficult to cope with the complex motion component of the Foreman sequence. 

The qualitative results of HOPTTI shows serious overlapping and in some extreme cases 

the MBs in some frames can be distinguished, which is evidence that there are some holes 

at the MB edge or that the transition between MBs are not smooth. For example in frame 
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81, there appeared two ears and the MBs around the cheek area are clearly visible. One 

immediate area where HOPTTI needs improvement is the inclusion of an algorithm that 

will tackle overlapping while at the same time improving the smoothing between MBs so 

that MB borders are no longer visible in all sequences. 

 

 

Figure 5.14 Sample frames for the Foreman sequence showing the SI quality obtained 

using  HOPTTI algorithm 

Frame #53        

Original              SI for HOPTTI 

PSNR=36.5dB 
original frame No: 53 Cubic Traj HOPTTI SI frame No: 53 PSNR: 37.6699

 

Frame #79        

Original              SI for HOPTTI 

PSNR=26.0dB 
original frame No: 79 Cubic Traj AOBM SI frame No: 79 PSNR: 33.2724

 

Frame #81        

Original              SI for HOPTTI 

PSNR=32.0dB 
original frame No: 81 Cubic Traj AOBM SI frame No: 81 PSNR: 33.2313
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Figure 5.15 Frame-wise plot showing SI quality of HOPTTI algorithm for Foreman 

sequence 

 

5.5.3 Overall DVC RD Performance using SI generated by HOPTTI 

Conventionally, the accepted method in coding literature to access the performance of a 

codec is to plot its RD curves. Therfore, in order to effectively evaluate the overall effect 

of the HOPTTI SI generation scheme it is necessary to insert the HOPTTI SI algorithm in a 

complete DVC codec, and as explained in Chapter 3 and mentioned in earlier sections of 

this chapter, it is possible to employ any modular codec that enables us to replace the SI 

generation module. 

For this purpose as stated earlier, the DVC codec by Li (2008) has been employed. The 

first set of evaluation performed would be to compare HOPTTI results with the results 

published from Li using the same testing scenarios. In Li the first 30 frames of Foreman 

and Hall sequences were tested making use of QCIF test sequences, additionally the 

originals were made available and the published results are shown alongside other RD 

curves in Figures 5.16 and 5.17. 
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Figure 5.16 RD Curves showing HOPTTI  PSNR performance for Foreman sequence @ 

15f/s using original as key frames for first 30 frames. 
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Figure 5.17 RD Curves showing HOPTTI  PSNR performance for Hall sequence @ 15f/s 

using original as key frames for first 30 frames. 

 

The results for the Foreman sequence, in Figure 5.16, shows that the HOPTTI algorithm 

has improved the codec with a PSNR gain of at least 1.8 dB for the same scenario. Thus, 
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showing that the HOPTTI based codec outperforms the Li codec under the same 

conditions, due primarily to the gains from the SI generation scheme employed in 

HOPTTI.  

Likewise, the RD curves for the Hall sequence is plotted for rigorous comparison with the 

Li (2008) codec. Figure 5.17 shows the RD plots for the scenario similar to that employed 

for the published Li results, which implies that the first 30 frames of the Hall sequence is 

considered and key frames are original frames. Figure 5.17 shows that the HOPTTI based 

codec outperforms the Li codec by up to 2.6dB. 

In order to compare the HOPTTI based codec with the DISCOVER codec (Artigas et al. 

2007) which is discussed in detail in the introductory Chapter 1 of this thesis and is a 

popular DVC codec that is well referenced and highly regarded in DVC literature, RD 

curves of the HOPTTI based codec employing similar scenarios to the ones under which 

the DISCOVER codec operates are plotted. The most important fact in the DISCOVER 

codec is that it employs the H.264 Intra codec as key frames. This implies lower quality 

key frames than that employed by Li (2008) and this in turn affects the codec RD 

performance. 

The RD curve of HOPTTI based codec employing H.264 intra codec as key frames as 

shown in Figure 5.18 outperforms the DISCOVER RD curves and the H.264 intra RD 

curve by up to 1.4 dB while it also gives a  performance very close to the H.264 No 

Motion codec at low bit rates. 
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Figure 5.18 RD Curves showing HOPTTI  PSNR performance for Foreman sequence @ 

15f/s using H.264 Intra as key frames and the whole Foreman sequence WZ 

frames only. 
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Figure 5.19 RD Curves showing HOPTTI  PSNR performance for Foreman sequence @ 

15f/s using H.264 Intra as key frames and the whole Foreman sequence with 

key frame rates added. 

Figure 5.18 shows the RD curve of the HOPTTI based codec with the whole of the 

Foreman sequence being employed but considering only the reconstructed WZ frames and 
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H.264 Intra as key frames. This shows that the HOPTTI based codec outperforms the 

DISCOVER codec and that the H.264 No Motion conventional codec acts as an upper 

bound. Finally, Figure 5.19 shows the RD curve of the HOPTTI based codec with the most 

restrictive set of conditions which includes the fact that H.264 Intra is a key frame and the 

bit rates for the intra key frames being included in the RD plot. Under this condition, the 

HOPTTI based codec still slightly outperforms the DISCOVER codec.  

In order to complete the RD analysis for the Hall sequence and compare with the 

DISCOVER codec as well, the HOPTTI based codec is tested with the H.264 intra 

conventional codec as key frames is shown in Figure 5.20, where the HOPTTI based codec 

outperforms the DISCOVER codec and performs very close to the H.264 No Motion 

conventional codec at low bit rates. 
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Figure 5.20 RD Curves showing HOPTTI PSNR performance for Hall sequence @ 15f/s 
using H.264 Intra as key frames and the whole Hall sequence WZ frames only. 
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Figure 5.21 RD Curves showing HOPTTI PSNR performance for Hall sequence @ 15f/s 
using H.264 Intra as key frames and the whole Hall sequence with key frames 
rates added. 

 

Furthermore, Figure 5.21 further relaxes the scenario by including the whole Hall sequence 

and including the rates from the key frames and the HOPTTI based codec outperforms the 

DISCOVER codec by up to 0.6dB which is a qualitatively perceptible difference. 

 

 

5.5.4 Empirical Results, Analysis and Evaluation of Weighted (ζ ) Combination of 

Forward and Backward MC frames in HOPTTI 

The theoretical underpinnings of the HOPTTI formulation in Section 5.3 suggest that 

depending on the motion and other characteristics of the objects in the video sequences, the 

weighting of the forward trajectory MC frame and backward trajectory MC frame 

combination for maximizing PSNR performance will differ. In order to empirically 

determine the best weight therefore, simple experimentation for different values of weights 

for different sequences was performed and plotted in Figure 5.22. The results show that the 

weights have an impact on the PSNR performance and that the maximizing weight differs 
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from sequence to sequence. The effect of the video object content on PSNR performance 

will be further exploited in Chapter 7 of this thesis. 

 

Figure 5.22 Empirical results for the determination of the Weights to maximize the PSNR 
when combining forward and backward MC in HOPTTI for various sequences. 

 

 

 

5.5.5 Results for Various GOPs in HOPTTI 

Using the same HOPTTI testbed described earlier and modifying the number of WZ 

frames dropped at the encoder, the various central and lateral SI frames were generated as 

discussed earlier and the results are shown in Tables 5.6 and 5.7. For effective comparison, 

the results for GOP 4 using linear interpolation with enhancement in 3DCARS (Borchert et 

al. 2007) and GOP of 4 in CA-WZ (Ascenso et al. 2008) which is the DISCOVER 

implementation of longer temporal distance was employed. Furthermore HOPTTI was 

used to extensively test the various sequences and up to a GOP of 8 was tested. 

Table 5.6 shows that HOPTTI provides improved quantitative results for the sequences 

tested in comparison with 3DCARS and CA-WZ with up to 1.8 dB improvement in the 

Stefan sequence. 
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Table 5.7 shows that HOPTTI improves as the GOP increases when compared to 3DCARS 

(Borchert et al. 2007) as the reduction in quality is less than that reported for GOP of 4, 

even when there is enhancement of the results. As the GOP increases to 8 the decrease in 

quality is not significant as it is less than 0.5 dB for most of the sequences tested. 

Table 5.6 COMPARISON OF AVERAGE PSNR IN dB PERFORMANCE 

FOR VARIOUS SI INTERPOLATION TECHNIQUES FOR GOP SIZE 4 

Sequences 

3DCARS 

(Borchert 

et al. 

2007) 

CA-WZ 

(Ascenso et 

al. 2008) 

HOPTTI 

Foreman 
29.2 28.85 30.1 

Coastguard 
31.9 30.59 32.4 

Stefan 
23.2 21.53 25.0 

News 
32.7 32.80 33.6 

                                                                          

 

Table 5.7 COMPARISON OF AVERAGE PSNR IN dB PERFORMANCE FOR 

VARIOUS SI HOPTTI INTERPOLATION FOR DIFFERENT GOP SIZES 

Sequences 

HOPTTI 

Linear 

GOP 2 

HOPTTI 

Linear 

GOP 4 

HOPTTI 

Linear 

GOP 8 

HOPTTI 

GOP 2 

HOPTTI 

GOP 4 

HOPTTI 

GOP 8 

Carphone 
30.9 29.0 27.4 35.3 34.0 33.7 

Mother 
36.2 34.9 33.6 47.3 46.6 46.1 

Foreman 
29.9 26.4 23.2 35.1 33.1 30.9 

Silent 
31.7 30.2 28.7 38.9 38.1 37.8 

Coastguard 
28.4 23.5 19.5 36.4 32.4 31.1 

Hall 
30.5 28.5 26.4 38.5 37.6 37.2 

Stefan 
20.1 18.3 16.5 28.2 25.0 22.2 

News 
32.8 29.5 26.4 39.0 33.6 33.1 

 

Furthermore, from Table 5.7, the HOPTTI linear (LMCTI) model using the HOPTTI codec 

(Akinola, Dooley and Wong 2010) to simulate various GOPs, it can be seen that the 
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degradation of LMCTI is progressive. As the GOP doubles from 2 to 4 the degradation in 

quality of SI is the same as when the GOP is doubled from 4 to 8.   

 

5.5.6 Qualitative Results Showing Challenges to HOPTTI Algorithm 

Though it has been shown conclusively from the qualitative and quantitative results 

presented in Sections 5.5.2 to 5.5.5 that a more accurate HOPTTI formulation gives an 

improved SI compared to LMCTI that is predominantly employed in literature, in this 

section we present some qualitative results showing the challenges that the HOPTTI 

algorithm has yet to overcome, which forms the bedrock of further algorithms and 

techniques introduced in the subsequent Chapters of these thesis to further tackle these 

challenges and overcome the bottleneck of poor SI in DVC. In particular, sample frames 

from video sequences that possess complex and challenging spatial-temporal 

characteristics that HOPTTI cannot overcome are presented.  

First, frames from the multiple object, fast motion sequence Hall is presented. The 

characteristics are exemplified by frames #51, #85 and #99. In frame #51 there is ghosting 

in the left foot which is caused by overlapping of the higher order trajectories.  

In frame #85 we have a different artifact on the left leg which presents itself as multiple 

lower part of the left leg which is due to the rotational movement that is not adequately 

captured by the HOPTTI formulation. Lastly, in frame #99, there is a slight protrusion 

around the neck which is caused by the deformable neck part of the object that is 

represented by different MVs. 

Next, frame #143 from the multiple object, complex spatial characteristics sequence 

Coastguard is also presented which exemplifies another challenge that the HOPTTI 

algorithm was unable to deal with. 
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Figure 5.23 Sample Illustrations of Artifacts causing challenges for Qualitative performance 
of HOPTTI in Hall Sequence. 

 

Frame #51 

 

Original 

SI for  HOPTTI 

PSNR=37.6dB 
original frame No: 51 Cubic Traj SI frame No: 51 PSNR: 38.3889

original frame No: 51 PSNR: Inf Cubic Traj AOBM SI frame No: 51 PSNR: 36.4222

            

original frame No: 51 Cubic Traj SI frame No: 51 PSNR: 38.3889

original frame No: 51 PSNR: Inf Cubic Traj AOBM SI frame No: 51 PSNR: 36.4222

 

Frame #85 

             Original                                SI for HOPTTI 

PSNR=37.6dB 

  

original frame No: 85 Cubic Traj SI frame No: 85 PSNR: 42.0286

original frame No: 85 PSNR: Inf Cubic Traj AOBM SI frame No: 85 PSNR: 42.2422

           

original frame No: 85 Cubic Traj SI frame No: 85 PSNR: 42.0286

original frame No: 85 PSNR: Inf Cubic Traj AOBM SI frame No: 85 PSNR: 42.2422

 

Frame #99                             

             Original                        SI for HOPTTI 

PSNR=37.6dB 

         

original frame No: 99 Cubic Traj SI frame No: 99 PSNR: 41.6423

original frame No: 99 PSNR: Inf Cubic Traj AOBM SI frame No: 99 PSNR: 42.4231

          

original frame No: 99 Cubic Traj SI frame No: 99 PSNR: 41.6423

original frame No: 99 PSNR: Inf Cubic Traj AOBM SI frame No: 99 PSNR: 42.4231
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In the video there was fast panning of the background which results in the ghosting of the 

shrubs and the placing of shrubs where there was none in the original. This is due mainly 

to the spatial similarity between the background objects and the global motion that is not 

adequately captured in the HOPTTI formulation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.24 Sample Illustration of Artifacts causing challenges for Qualitative performance 
of HOPTTI in Coastguard Sequence. 

 

 

Lastly, frames from the multiple image fast motion and complex spatial-temporal 

characteristics video sequence of American Football is presented. This is a very challenging 

sequence and HOPTTI gives a much more improved SI compared to LMCTI but frame #61 

exemplifies the problems of ghosting which emanates from overlapping of MV trajectories 

of HOPTTI formulation. 

Added to this is double object representation which emanates from the representation of 

deformable objects by the same MV. Frames 93 and 99 also shows serious artefacts that 

emanate from the same sources coupled with rotational and global motion that are not 

adequately captured in the HOPTTI formulation. 

Frame #143 

Original                                                   SI for all blocks on Frame  

HOPTTI 

PSNR=31.2dB 

        

original frame No: 143 Cubic Traj SI frame No: 143 PSNR: 34.3683

original frame No: 143 PSNR: Inf Cubic Traj AOBM SI frame No: 143 PSNR: 31.1994

    

original frame No: 143 Cubic Traj SI frame No: 143 PSNR: 34.3683

original frame No: 143 PSNR: Inf Cubic Traj AOBM SI frame No: 143 PSNR: 31.1994
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Frame #61              

Original                      SI for all blocks on Frame  

HOPTTI 

PSNR=24.6dB 
original frame No: 65 Cubic Traj SI frame No: 65 PSNR: 23.0302

original frame No: 65 PSNR: Inf Cubic Traj AOBM SI frame No: 65 PSNR: 24.9945

        

original frame No: 65 Cubic Traj SI frame No: 65 PSNR: 23.0302

original frame No: 65 PSNR: Inf Cubic Traj AOBM SI frame No: 65 PSNR: 24.9945

 

Frame #93              

Original                      SI for all blocks on Frame  

HOPTTI 

PSNR=24.5dB 

  

original frame No: 97 Cubic Traj HOPTTI SI frame No: 97 PSNR: 25.1761

      

original frame No: 97 Cubic Traj HOPTTI SI frame No: 97 PSNR: 25.1761

 

Frame #99       

Original                SI for all blocks on Frame  

HOPTTI 

PSNR=24.8dB 
original frame No: 99 Cubic Traj SI frame No: 99 PSNR: 24.4558

original frame No: 99 PSNR: Inf Cubic Traj AOBM SI frame No: 99 PSNR: 24.6348

         

original frame No: 99 Cubic Traj SI frame No: 99 PSNR: 24.4558

original frame No: 99 PSNR: Inf Cubic Traj AOBM SI frame No: 99 PSNR: 24.6348

 

Figure 5.25 Sample Illustration of Artefacts causing challenges for Qualitative performance 
of HOPTTI in American Football Sequence. 
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5.6 Summary 

This Chapter presents a novel method of generating SI in WZ coding using a higher-order 

piecewise trajectory temporal interpolation (HOPTTI) algorithm. Both numerical and 

qualitative results confirm that HOPTTI consistently provided superior SI quality compared 

to a number of existing interpolation techniques, especially for sequences which exhibited 

non-linear object motion. 

Furthermore, the desirability of reducing the complexity of the encoder by dropping more 

frames and the resultant lengthening of the temporal distance by the use of higher GOP 

values is investigated showing that the use of higher order interpolation techniques brings 

the same benefits as that obtained from increased object motion and multiple objects in 

video sequences. 

Finally, the lapses in the HOPTTI algorithm and inability to eradicate completely visual 

artifacts are highlighted. Though very high quantitative improvements are recorded for 

some high motion video sequences, it does not result in artifact free qualitative 

improvement and this is rooted in the formulation of the HOPTTI algorithm that employs 

fast block based ME techniques. The next Chapter is therefore devoted to improving these 

qualitative visual defects.  
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Chapter 6 

 

 

Improved SI Generation Using Adaptive 

Overlapped Block Motion Compensation and 

Higher Order Interpolation 

 

6.1 Introduction 

The exploitation of correlation at the decoder where original video frames are not available 

is non-trivial and one of the critical factors impacting upon DVC performance is SI quality 

(Wyner and Ziv 1973; Akinola, Dooley and Wong 2010). As discussed and shown in 

Chapter 5, LMCTI has been widely adopted for SI generation, though findings (Petrazzuoli, 

Cagnazzo and Pesquet-Popescu 2010) show that better PSNR can be achieved when a more 

accurate object motion trajectory is adopted to produce SI.  As natural motions are not 

always linear, HOPTTI as shown in Chapter 5 is able to better model these types of motion, 

by using 3 or more MVs from previous and future frames to predict the MV for a MB in the 

current frame which better exploits the temporal redundancies in the video sequences. 

It is also clear from the results in Chapter 5 that visual artifacts still remain though HOPTTI 

is able to more accurately model object motion. One of the root causes of artifacts is the fact 

that BMA is employed in HOPTTI. Though HOPTTI comes with distinct advantages 

shown in Chapter 5, it has its own disadvantages including overlapping which lowers PSNR 

where abrupt changes in trajectory and global motion occur due to overlapped multiple 

trajectories created from the MVs of previous and future frames. When such motions occur, 
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this leads to ghosting in HOPTTI as well as other algorithms that employ variants of 

averaging the forward and backward MCI as explained in Chapter 3.  

Another disadvantage that the use of BMA in HOPTTI is also blocking artifacts (sometimes 

called macro-blocking, quilting or checker-boarding, see sources of artifacts in Chapter 3) 

which makes the PSNR lower when deformable objects or more than one object is present 

in some MBs (Bosc et al. 2011; Liu et al. 2010), which are represented by a single MV per 

MB in the HOPTTI formulation though these may contain differing motions and would 

therefore require more than one MV to adequately characterize the motions in one MB.  The 

concepts of overlapping and blocking artifacts are explored in more detail in Section 6.2. 

 

In Chapter 3, presentation was made of various ways employed in literature of mitigating 

the introduction of artefacts in video sequences, reinforcing the fact that the analysis of 

artifacts to ascertain the root causes and the source of such artifacts is an all-important 

prelude to proffering effective solutions. Furthermore, in the literature survey in Chapter 3, 

several solutions have been proposed to mitigate the root problems of BMA that leads to 

artifacts in video outputs with BMA based processing. For example in Choi et al. (2007), 

the problem of discontinuities in BMA based MV estimation was highlighted, and the need 

to address this root cause of artifacts from BMA based processing by making sure that the 

discontinuities were eliminated and making use of MV estimation techniques that follow the 

true motion trajectory, eliminating outliers, and thus making sure that MVs are not 

distinctively different from their neighbours, was suggested. Another example is the 

proposal of Kuo and Kuo (1998) for the use of a median filtering technique that is to replace 

the MV at a point with the median value in the filtering neighbourhood, which requires 

complicated operations for the same BMA based artifacts and could produce undesirable 

artifacts of its own. However, from Chapter 3, the solution which effectively mitigates most 
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of the enumerated problems caused by BMA based processing while offering a video 

content adaptive approach is AOBMC (Orchard and Sullivan 1994; Choi et al. 2007). 

In summary, AOBMC allows for the following: 

(i) It allows for the use of a MV estimation that follows more closely the true motion 

trajectory and improves on it by moderating the MVs with the surrounding MBs. 

(ii) It allows for the selection of the most appropriate MV when there are two or more 

MV candidates for the same pixel due to overlapping by grading the MVs using both the 

surrounding MBs and the video content parameter. 

(iii) It allows for the use of bi-directional MV estimation such as employed in HOPTTI, 

thereby reducing drastically the possibility of holes in the output SI and thus handling 

blocks with deformable objects or parts of different objects. 

(iv) It avoids over-smoothing at the edges by not applying the overlapping uniformly but 

with appropriate weighting and adaptive video content parameters taken into 

consideration. 

Therefore, to further improve the qualitative performance of SI generated by HOPTTI while 

at the same time increasing PSNR and overall codec performance, tackling of root causes of 

artifacts as stated by Grouiller et al. (2007), is necessary, leading to the selection of 

AOBMC as an appropriate algorithm to explore. This explores the BLOCK 2 and BLOCK 

3 in Figure 1.3 and the SI Generation and Improvement Framework in Figure 1.2 of 

Chapter 1 of this thesis which has recognized the problems associated with the use of BMA 

rather than pixel level or even sub-pixel level iteration would need addressing. The 

motivated research framework block diagram is reproduced with the BLOCK 2 and 

BLOCK 3 highlighted in Figure 6.1.  

Thus investigation of applying the higher-order HOPTII algorithm alongside AOBMC to 

enhance SI quality and reduce the artifacts caused by the BMA is pursued here.  

 



136 

 

 

 

Figure 6.1 Block Diagram of SI Generation and Improvement Framework with BLOCK 2 and 
BLOCK3 Highlighted. 

 

While an overall SI improvement is achieved, analysis reveals that for certain frames in 

various test sequences, HOPTII produced better SI quality than when combined with 

AOBMC. The reason for this is that some of the neighboring MVs are not correlated with 

one another and their addition to the reference MB used in the enlarged window degrades 

the overall SI quality in that particular frame. A mode switching (MS) technique based on 

Ye at al. (2009) is thus introduced which uses a matching criterion to switch between 

HOPTTI, and AOBMC combined with HOPTTI (AOBMC-H) to obtain a Switched 

HOPTTI-AOBMC final SI. The corresponding impact on SI quality of both the new 
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AOBMC-H approach and MS mechanism are also analyzed in this chapter, with numerical 

and perceptual results exhibiting a consistent improvement in overall SI quality. 

The positioning of the AOBMC algorithm in the SI generation module of HOPTTI is shown 

in Figure 6.2 which shows the overall AOBMC-H block diagram. The AOBMC algorithm 

is the gridlocked circle on top of the Bi-directional MC module. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Detailed Blocks of SI Generation with AOBMC Module.  

 

6.2 The AOBMC and  Higher Order Piecewise Trajectory 

Interpolation 

To deal with the issues relating to the use of BMA that introduces blocking artifacts and 

overlapping MVs, a higher order (cubic) trajectory model allied with AOBMC algorithm 

with a MS mechanism was used. Numbered bullet points (I. – V.) describing how the 

AOBMC algorithm fits into the existing HOPTTI algorithm (See Chapter 5 for HOPTTI 

details) and how AOBMC actually handles the issues of overlapping and blocking artifacts 

discussed in Section 6.1 is shown in Figure 6.6 and Figure 6.7. 
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6.2.1 The Artifacts From Block Matching Algorithm 

While higher-order interpolation with BMA for MV estimation has been shown promising 

results (Petrazzuoli, Cagnazzo and Pesquet-Popescu 2010; Akinola, Dooley and Wong 

2010), there are two issues to be resolved: i) MB overlapping caused by inaccurate MV 

estimations from the forward and backward trajectories; and ii) blocking artifacts caused 

by multiple or deformable objects having different motions in the same MB (Bosc et al. 

2011; Liu et al. 2010). 

These two scenarios are respectively illustrated in Figures 6.3 and 6.4. The overlapping 

scenario is illustrated in Figure 6.3, the solid blocks represents the actual MBs where the 

points that intercept in the intermediate frame emanate from different MBs and trajectories 

(blue trajectory, forward and red trajectory backward) in the previous frame and the next 

frame but intersect in the middle of the same block in the intermediate frame (green 

coloured solid block), thus showing how multiple trajectories passing through the 

intermediate frame can cause overlapping in the intermediate frame.  

The blocking artifact scenario is illustrated in Figure 6.4 which shows a four pixel MB that 

has only one trajectory connecting the pixel, on the upper right hand pixel of the MB, both 

in the previous and future frames (marked as pixel 1). The dashed lines and dashed MB 

however shows an ideal case where the single dashed trajectory adequately representing all 

four pixels in the dashed MB as all the pixels belong to the same solid object (probably a 

background). The other case with the solid trajectory in Figure 6.4 with four differently 

coloured and numbered pixels presents another extreme case where all the four-pixel MB 

that actually contain the pixels belongs to four different objects and is traversed by only 

one trajectory so the intermediate frame can only correctly locate pixel 1 and all other three 

pixels are replaced by the closest match that can be located in the next frame, resulting in 

an artifact in the MB in the intermediate frame. In HOPTTI, because forward and 

backward trajectory MV are employed and compensation is usually the weighted 
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averaging of both forward and backward pixels, artifacts are more likely to be lighter 

patches and ghosting.  

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Example of multiple motion trajectories of a block passing through the 

intermediate frame which leads to overlapping.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 Example of a 4-pixel block with each having different motions but being 

represented by one trajectory and MV.  
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6.2.2 The AOBMC Algorithm 

AOBMC is applied to each MB in the interpolated frame by modulating its MV with a set 

of surrounding pixels using a raised cosine weighting window which determines adaptively 

the amount by which the surrounding pixels modifies the boundary pixels in the MB under 

consideration and is illustrated in Figure 6.6 and Figure 6.7.  

 

 

  

 

 

  

 

 

  

 

Figure 6.5 Illustration of sample overlapped blocks for AOBMC.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 Illustration of the how raised cosine window is drawn for one block 

overlapping the other for OBMC.  
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Figure 6.7 Illustration of the raised cosine window for one hypothetical supporting block 

in AOBMC.  

 

The way that AOBMC works is as follows: 

(i) As opposed to the conventional MC where the MV is applied to each block, in 

OBMC, the MV of a block under consideration is applied to a larger set of pixels using 

the raised cosine weighting window (Choi et al. 2007).  

(ii) The MV of the block under consideration is used to predict the MV of every pixel 

in the block by moderating the MV of the block with the MV of the supporting blocks 

and the distance of the pixel from the supporting block.  

(iii) The pixels and the region which they fall into depend on the distance from the 

border of the block and are usually determined by a smooth function which is the raised 

cosine weighting window, in this thesis (Orchard and Sullivan 1994). 

(iv) The predicted MV is then further moderated by adapting it to the sum of boundary 

absolute difference (SBAD), (defined in (6.1)), since in regular overlapped block motion 

compensation (OBMC) where the proximity of pixels only determine the weights, if 

neighbouring blocks belong to different fast moving objects or one belonging to 

W1 [MB1] 

W1 [MB2] 

MBi 

Wi 

W1 [SBAD1] 

W1 [SBAD2] 

Weighting 

Window 

Coefficient 

Pixel distance 

from MB border 

Arc AA 

moderating 

Cosine window 
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background and the other a moving object weights due to proximity will be high which 

can have an erroneous over bearing influence to the pixel MV prediction. Therefore, 

SBAD between neighbouring blocks is further employed to adapt weights and 

neighbouring blocks with high disparity in SBAD from the block under consideration 

would have their weight reduced. The prediction weight is therefore moderated 

adaptively by the SBAD of the surrounding blocks as well as proximity from block 

under consideration (Choi et al. 2007). 

(v) The predicted MV for each pixel in the MB under consideration is then employed 

for MC for the entire block on a pixel by pixel basis. 

The process of enlarging the blocks can be better illustrated with Figure 6.5 where solid 

lines represent the original blocks and dashed lines represent elastic lines covering 

enlarged blocks as well as areas inside the original block that benefits from overlapping, 

forming a variable border region (shaded) which enable the pixels in the border area inside 

the original blocks to overlap with neighboring blocks. The variable region in this 

illustration has been taken to be square for simplicity but can be any smooth function 

which in this thesis is the raised cosine function (Orchard and Sullivan 1994; Choi et al. 

2007). Thus, the enlargement of the borders gives rise to three typical regions A, B and C 

that can be formed in and around the MB under consideration with the region A not 

overlapping with any neighboring blocks which implies the neighboring blocks are not 

likely to have any significant spatial relationship with the pixels outside the block, thus no 

action will be required to be undertaken. Typical region B overlaps with one neighboring 

block, thus the action that is taken is that part of the MB under consideration that falls in 

region B is supported by one overlapping supporting block, while a typical region C 

overlaps with three neighboring blocks, thus the action taken in this case is to support the 

part of the MB under consideration that falls under region C with three overlapping 

neighbouring blocks. 
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The size of the enlarged window (marked by the outer dashed line and labeled in Figure 

6.5) is the raised cosine function weighting window in the implementation in this thesis as 

explained earlier. The corresponding weighting coefficient for predicting the MV for each 

pixel in the MB under consideration is proportional to the pixel distance from the boundary 

of the block under consideration which is moderated by the reliability of the neighboring 

MV determined by adapting the weights to a grading of the video content parameter 

illustrated in Figure 6.5. The video content parameter employed is the sum of boundary 

absolute difference (SBAD) (Choi et al. 2007). SBAD is defined as: 
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                     (6.1) 

Where 0 0( , )x y is the coordinate of the top left corner of the MB under consideration in the 

interpolated frame 1F , 2F  is the HOPTTI SI frame used as the reference since the original 

frame is unavailable at the decoder ( , )x yMV MV  is candidate MV and ( , )M N are the row 

and column dimensions of the MB.  

From the foregoing, continuing with the illustration of Figure 6.5, a typical region C from 

Figure 6.5 with three neighboring blocks adjoining the original block under consideration 

will not have all three blocks weighted the same in their support of the predicted MV of the 

pixels in the block under consideration, but will be weighted by Wi, a sum of weights 

comprising the weighted coefficients of the cosine window proportional to the distance 

from the border of the block for each supporting overlapped block, then adapted by the 

weight of grading the video content parameter SBAD, an iterative process that uses (6.1) 

for grading the reliability of the neighboring blocks. Likewise for the region B in Figure 



144 

 

6.5, with one adjoining (overlapped) block to the block under consideration, the MV will 

be moderated by that one block but the weight Wi would also be determined by the cosine 

window and the reliability adapted by the SBAD grading. Finally, for region A, the 

predicted MV will be employed without moderation as it has no adjoining (overlapped) 

neighbouring block. 

Figure 6.6 shows how the raised cosine window is drawn for two blocks adjacent to each 

other. For Block 1, the continuous cosine window starts at zero reaching a maximum at the 

middle of the block, while the window for Block 2, is a minimum at the middle of Block1 

and a maximum at the middle of Block 2. Thus each pixel point in Block 1 is associated 

with two weights moderating its MV, W1 (MB1) and W1 (MB2).  Each pixel is predicted by 

the weighted sum of the window coefficients Wi = W1 (MB1) + W1 (MB2) where W1 (MB1) 

is the weight associated with the distance of the pixel in the window of Block 1 which is 

the MB under consideration and W1 (MB2) weight is for the overlapping block.  

Similarly, Figure 6.7 illustrates the raised cosine weighting window for a region in a block 

under consideration that has one surrounding block to support the prediction of the MV for 

each pixel in that region of block under consideration but introducing weights for 

adaptability by applying SBAD. This gives a disparity measure between blocks such that if, 

for example, the neighbouring block 2 in Figure 6.6 is has a high SBAD measure, the arc 

AA in Figure 6.7 moderates the cosine window, increasing W1(MB1) due to the block 

under consideration by W1(SBAD1) while reducing W1(MB2) by W1(SBAD2). The weight 

W1 (SBAD1) is due to the video content parameter SBAD on the cosine window of block 

under consideration and W1 (SBAD2) is due to the surrounding block. They moderate the 

final weights Wi, thus giving the final Wi = [W1 (MB1) ± W1 (SBAD1)] + [W1 (MB2) ± W1 

(SBAD2)].  The illustration is equivalent to that for the region B from Figure 6.5 having one 

supporting block. 
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The illustration can be extended for the region C from Figure 6.5 also, the amount of 

weight Wi, attributed to each of the three surrounding blocks would be Wi = [W1 (MB1) ± 

W1 (SBAD1)] + [W1 (MB2) ± W1 (SBAD2)] + [W1 (MB3) ± W1 (SBAD3)]  + [W1 (MB4) ± W1 

(SBAD4)]  where, W1 (MB1), W1 (MB2),  W1 (MB3), W1 (MB4) are the weights due to the 

coefficients cosine window (proportional to distance) for the block under consideration and 

for each of the overlapping blocks, and W1 [SBAD1], W1 [SBAD2], W1 [SBAD3] W1 

[SBAD4] are the weight adapted by the grading of the spatial video content parameter, 

SBAD for the block under consideration and each of the overlapping blocks.  

The AOBMC algorithm described is incorporated into the HOPTTI based DVC codec as 

illustrated in Figure 6.2. The details of the integration of AOBMC into the HOPTTI 

algorithm are as follows: 

(i) ARPS in the HOPTTI algorithm is employed for block based MV estimation (See 

the ARPS algorithm and advantages in Chapter 5) for forward path and backward path 

following closely the higher order trajectory. 

(ii) AOBMC utilizes the MV of each block to predict MVs for each pixel of the block 

under consideration, moderating the MV by the raised cosine window and the video 

content parameter adaptively. 

(iii) AOBMC based forward and backward intermediate frames are thus generated. 

(iv) The AOBMC based forward and backward frames are combined together as in 

HOPTTI using the weighted average, MCF (1-ζ) +MCB (ζ) as shown in Figure 5.8 in 

Chapter 5. 

(v) The output MCI frame is then further utilized in the Mode Switching algorithm 

described in the next section 6.2.3 such that the most improved frame generated by both 

HOPTTI and AOBMC based algorithms is selected as SI.  
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6.2.3 The Mode Switching Algorithm 

While AOBMC reduces errors caused by the scenarios discussed in Section 6.2.1, the 

results produced by HOPTTI with AOBMC reveal that the aggregate sum of using the 

spatial correlation of pixels around a MB in AOBMC results in specific frames becoming 

degraded. The reason for degradation was further investigated in Akinola, Dooley and 

Wong (2010) showing that not all frames of the sequence nor all blocks in the frame benefit 

equally from the addition of AOBMC, as the neighboring pixels to the MB under 

consideration used in AOBMC algorithm due to different motion and object content give 

conflicting information so the modification of the MV using them produces erroneous 

results giving rise to situations where original HOPTTI outperforms HOPTTI-AOBMC 

output. The spatial-temporal pixel correlations surrounding a MB are exploited to determine 

those frames most likely to exhibit this tendency and this formed the basis of the Mode 

Switching (MS) facility.  

The aim is to define a matching criterion (M) that determines the level of the spatio-

temporal correlation and a threshold T that separates aggregate contributions to all the MBs 

in a frame. When M is below T, it gives negative aggregate contribution and as a result 

AOBMC-H is disallowed, and the MB from HOPTTI is switched in to replace it. In 

contrast, when M is above T, it gives positive aggregate contribution and AOBMC-H is 

allowed. Therefore, in addition to the spatial measure SBAD that measures spatial continuity 

of MVs from the MB under investigation, the sum of mean absolute difference (SMAD) 

which measures temporal continuity by employing the future frame F3 is included in the 

matching criterion following Ye at al. (2009). SMAD is defined as:  
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where the various parameters are defined as in (5.1), F3 is the future frame and F2 the 

reference frame as earlier. A weighted sum of SMAD and SBAD is then used to form the 

matching criterion such that: 

                                (1 )M SBAD SMAD                                           (6.3) 

where is a predefined weighting factor. In (6.3) the spatial-temporal continuity of SBAD 

and SMAD are exploited as the measure to match the surrounding blocks with the reference 

MB. The MS mechanism then applies a threshold T so:  

 

Calculate M in (6.3)  

If M   T THEN apply HOPTTI with AOBMC 

ELSE use HOPTTI only 

END 

 

The performance of this Switched HOPTTI-AOBMC DVC codec in improving SI quality 

will be shown and analyzed in section 6.3. 

 

 

6.3 Simulation and Results 

The same HOPTTI algorithm implemented in Matlab version 7.5.0 (R2007b) running under 

Microsoft Windows XP on a PC with an Intel Duo Core CPU at 2.20 GHz is employed and 

modified to include the AOBMC module shown in Figure 6.2. Similarly, a GOP size of 2 

was chosen for all experiments i.e. KWKW, where K and W denote key and WZ frames 

respectively. HOPTTI (Akinola, Dooley and Wong 2010) used a cubic trajectory and 

parameterization as outlined in Section 5.31 of Chapter 5. To evaluate both quantitatively 

and qualitatively, HOPTTI with and without AOBMC, various QCIF (Quarter Common 

Intermediate Format) test sequences were applied including Carphone, Table Tennis, 
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Mother, Coastguard, Silent, Hall, Mobile, Soccer, Foreman and American Football, which 

provided a wide range of different types of motion and objects features. Where average 

results are presented, they are the result of averaging the result for the entire frames in the 

various video sequences. Both  in (6.3) and the threshold T in the MS mechanism were 

determined empirically and set to 0.4   and T=10 which provided the best results for a 

number of slow, medium and high object motion sequences tested with Table 6.1 showing 

the experimental results. 

Table 6.1 EMPIRICAL EXPERIMENT SHOWING AVERAGE PSNR (dB) 
VERSUS WEIGHT(λ) OF SWITCHED HOPTTI-AOBMC FOR SELECTED 
TEST SEQUENCES 

T=10 (Fixed) 

American Football 

Weight (λ) 0.0       0.2         0.4       

  

 0.6       

  

0.8       1.0 

PSNR (dB) 25.65    25.71     25.80   

   

25.68   

   

25.63     25.59     

Coastguard 

Weight (λ) 0.0       0.2       

  

0.4       

  

 0.6       

  

0.8       1.0 

PSNR (dB) 37.20    37.60   

  

37.90   

   

37.55   

   

37.10     35.65 

Hall 

Weight (λ) 0.0       0.2       

  

0.4       

   

0.6       

  

0.8       1.0 

PSNR (dB) 39.00    39.50   

  

39.90   

  

39.35   

   

38.90     38.70 

 

In Table 6.1, while the threshold and weight provides a good range for empirical 

experimentation for Coastguard (2.25 dB) and Hall (1.20 dB). This is not the same for 

American Football where the range of PSNR values for the weights only gives a range of 
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0.31 dB. This is due to the fact that the spatial-temporal characteristics of the American 

Football is significantly different from the Coastguard and Hall Sequences which shows 

that empirically fixing thresholds and weights may provide significant improvements for 

sequences whose characteristics are in the middle of the range (single object, medium 

motion), it is inadequate for outlier sequences (multiple objects, high motion) which may 

require intelligent setting of the threshold and weights. 

Furthermore, careful observation of the American Football sequence range of PSNR results 

over the weighted range for T=10 shows that the PSNR is only increasing whereas that of 

the Coastguard and Hall sequences went up and then down showing a point of maxima 

which the averaging out of spatial-temporal characteristics does not allow for the American 

Football sequence. This again should be mitigated if the thresholds and weights are fixed 

adaptively by intelligently applying the spatial temporal characteristics which is explored in 

Chapter 7 of this thesis. 

 

6.3.1 Experimentation to Determine Weight (λ) Empirically 

First we perform experiments to determine empirically the best value for the weight (λ). 

Thus, Table 6.1 shows that for fast to medium object motion sequences with single and 

multiple objects, the empirical setting applied in this thesis, using T=10 and λ=0.4 gives 

the best possible setting as is shown for Hall, Coastguard and American Football 

sequences. 

Three other AOBMC-based implementations which all attempt to address the restrictions 

caused by BMA by using LMCTI in SI generation were used as SI quality performance 

comparators. They are: 

(i) motion compensated frame interpolation and adaptive object block motion 

compensation (MCFIAOBMC), (Choi et al. 2007) where bilateral LMCTI is applied to 
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overcome both hole and overlapping problems by coupling AOBMC with an object 

segmentation and MV clustering technique.  

(ii) ISIG-DVC, (Huang and Forchhammer 2008) where AOBMC is combined with a 

variable block-size refinement algorithm to produce improved SI.  

(iii) Low complexity motion compensated frame interpolation (ALCFI), (Zhai, Yu and 

Li 2005) that utilizes AOBMC together with MV smoothing. 

 

6.3.2 SI Generation Simulation Results 

Tables 6.2, 6.3, 6.4 and 6.5 show the corresponding PSNR values for various test 

sequences, with the aforementioned AOBMC based, LMCTI centered algorithms 

compared to the Switched HOPTTI AOBMC algorithm introduced in this Chapter.  

 

Table 6.2 AVERAGE PSNR (dB) FOR SWITCHED HOPTTI-AOBMC and 
HOPTII FOR DIFFERENT TEST SEQUENCES 

Sequences 

Switched 

HOPTTI-

AOBMC 

HOPTTI 

(Akinola, Dooley 

and Wong 2010) 

Carphone 
36.2 35.3 

Mother 
48.4 47.3 

Foreman 
36.7 35.1 

Silent 
39.9 38.9 

Coastguard 
37.9 36.4 

Hall 
39.9 38.5 

American Football 
25.8 24.5 
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Table 6.3 AVERAGE PSNR (dB) FOR SWITCHED HOPTTI-AOBMC and 
MCFI-AOBMC FOR DIFFERENT TEST SEQUENCES 

 

Sequences 

Switched 

HOPTTI-

AOBMC 

MCFI-AOBMC 

algorithm 

(Choi et al. 2007) 

TableTennis 
48.4 32.0  

Foreman 
36.7 36.0  

Mobile 
35.5 25.2 

American Football 
25.8 24.0  

 

 

 

Table 6.4 AVERAGE PSNR (dB) FOR SWITCHED HOPTTI-AOBMC and 
ISIG-DVC FOR DIFFERENT TEST SEQUENCES 

 

Sequences 

Switched 

HOPTTI-

AOBMC 

ISIG-DVC 

 algorithm 

(Huang and 

Forchhammer 

2008) 

Foreman 
36.7 29.3  

Coastguard 
37.9 31.8  

Hall 
39.9 36.5  

Soccer 
29.6 21.3 

 

 

The results reveal that Switched HOPTTI-AOBMC consistently provided an SI 

improvement for each sequence analyzed, with Foreman for instance giving a 1.6dB PSNR 

improvement over both the original HOPTTI and various AOBMC-based results.  Though 

the PSNR results from the Table seem to be high compared to other SI results, this can be 

directly attributed to the HOPTTI algorithm which is the basis of the experimentation that 

has been shown to give more accurate results in Chapter 5 of this thesis and in Akinola, 
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Dooley and Wong (2010, 2011). The actual average PSNR improvement due to AOBMC 

and empirical mode switching is about 1.6 – 2.0 dB. 

 

Table 6.5 AVERAGE PSNR (dB) FOR SWITCHED HOPTTI-AOBMC and 
ALCFI FOR DIFFERENT TEST SEQUENCES 

Sequences 

Switched 

HOPTTI-

AOBMC 

ALCFI  

algorithms 

(Zhai, Yu and Li 

2005) 

Carphone 
36.2 33.6  

Mother 
48.4 38.0  

Foreman 
36.7 34.7  

Coastguard 
37.9 34.0  

Mobile 
35.5 31.4 

Clair 
43.6 41.7 

 

 

 

From a perceptual perspective, the sample frames from Hall and American Football shown 

in Figures 6.8 and 6.9 reveal how the inclusion of HOPTTI into the AOBMC algorithm 

and applying the MS mechanism qualitatively improved SI quality. These qualitative 

judgments are numerically confirmed in the average PSNR values in Table 6.2, with 

improvements of 3.4dB and 1.4dB respectively over the other AOBMC variants. For Hall, 

the improvement is readily apparent in the extended leg of the moving object (man), while 
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Frame #23                

      Original                                SI for HOPTTI 

PSNR=36.6dB 

SI for Empirically 

Switched HOPTTI-

AOBMC                                       

PSNR=38.3dB 
original frame No: 23 Cubic Traj HOPTTI SI frame No: 23 PSNR: 36.3283

 

original frame No: 23 Cubic Traj AOBM SI frame No: 23 PSNR: 39.0251

 

Frame #49                             

Original                                SI for HOPTTI 

PSNR=37.8dB 

SI for Empirically 

Switched HOPTTI-

AOBMC                                       

PSNR=39.2dB 
original frame No: 49 Cubic Traj SI frame No: 49 PSNR: 37.7219

original frame No: 49 PSNR: Inf Cubic Traj AOBM SI frame No: 49 PSNR: 38.2196

original frame No: 49 Cubic Traj SI frame No: 49 PSNR: 37.7219

original frame No: 49 PSNR: Inf Cubic Traj AOBM SI frame No: 49 PSNR: 38.2196

 

original frame No: 49 Cubic Traj SI frame No: 49 PSNR: 37.7219

original frame No: 49 PSNR: Inf Cubic Traj AOBM SI frame No: 49 PSNR: 38.2196

 

Frame #51                             

Original                                SI for HOPTTI 

PSNR=38.6dB 

SI for Empirically 

Switched HOPTTI-

AOBMC                                       

PSNR=39.6dB 
original frame No: 51 Cubic Traj SI frame No: 51 PSNR: 38.3889

original frame No: 51 PSNR: Inf Cubic Traj AOBM SI frame No: 51 PSNR: 36.4222

original frame No: 51 Cubic Traj SI frame No: 51 PSNR: 38.3889

original frame No: 51 PSNR: Inf Cubic Traj AOBM SI frame No: 51 PSNR: 36.4222

 

original frame No: 51 Cubic Traj SI frame No: 51 PSNR: 38.3889

original frame No: 51 PSNR: Inf Cubic Traj AOBM SI frame No: 51 PSNR: 36.4222

 

 

Frame #85    
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Figure 6.8 Sample frames for Hall showing the SI quality obtained using  HOPTTI 

(Akinola, Dooley and Wong 2010) and Switched HOPTTI-AOBMC. 

 

 

in American Football, object ghosting visible in the HOPTTI frame has been significantly 

attenuated in the Empirically Switched HOPTTI-AOBMC frame. The corresponding frame-

wise plots corroborate the role of MS in ensuring that no frame for any sequence analysed 

had the PSNR value for Switched HOPTTI-AOBMC lower than HOPTTI, i.e. HOPTTI 

provided a lower performance bound in terms of SI quality. 

 

Original                                SI for HOPTTI  

PSNR=40.6dB 

SI for Empirically 

Switched HOPTTI-

AOBMC                                       

PSNR=41.8dB 
original frame No: 85 Cubic Traj SI frame No: 85 PSNR: 42.0286

original frame No: 85 PSNR: Inf Cubic Traj AOBM SI frame No: 85 PSNR: 42.2422

original frame No: 85 Cubic Traj SI frame No: 85 PSNR: 42.0286

original frame No: 85 PSNR: Inf Cubic Traj AOBM SI frame No: 85 PSNR: 42.2422

 

original frame No: 85 Cubic Traj SI frame No: 85 PSNR: 42.0286

original frame No: 85 PSNR: Inf Cubic Traj AOBM SI frame No: 85 PSNR: 42.2422

 

Frame #99                             

Original                                SI for HOPTTI 

PSNR=42.0dB 

SI for Empirically 

Switched HOPTTI-

AOBMC                                       

PSNR=42.8dB 
original frame No: 99 Cubic Traj SI frame No: 99 PSNR: 41.6423

original frame No: 99 PSNR: Inf Cubic Traj AOBM SI frame No: 99 PSNR: 42.4231

original frame No: 99 Cubic Traj SI frame No: 99 PSNR: 41.6423

original frame No: 99 PSNR: Inf Cubic Traj AOBM SI frame No: 99 PSNR: 42.4231

 

original frame No: 99 Cubic Traj SI frame No: 99 PSNR: 41.6423

original frame No: 99 PSNR: Inf Cubic Traj AOBM SI frame No: 99 PSNR: 42.4231
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Figure 6.9 Frame-wise SI-quality of HOPTTI (Akinola, Dooley and Wong 2010) and 

Switched HOPTTI-AOBMC for Hall 
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Figure 6.10 Frame-wise SI-quality of HOPTTI (Akinola, Dooley and Wong 2010) and 

Switched HOPTTI-AOBMC for American Football 
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Figure 6.11 Sample frames for American Football showing the SI quality obtained using  

HOPTTI (Akinola, Dooley and Wong 2010) and Switched HOPTTI-AOBMC.  

 

Frame #61    

 Original 

 

SI for  Original                           

HOPTTI 

PSNR=24.6dB 

SI for Empirically Switched 

HOPTTI-AOBMC                                      

PSNR=26.0dB 
original frame No: 65 Cubic Traj SI frame No: 65 PSNR: 23.0302

original frame No: 65 PSNR: Inf Cubic Traj AOBM SI frame No: 65 PSNR: 24.9945

    

original frame No: 65 Cubic Traj SI frame No: 65 PSNR: 23.0302

original frame No: 65 PSNR: Inf Cubic Traj AOBM SI frame No: 65 PSNR: 24.9945

 

original frame No: 65 Cubic Traj SI frame No: 65 PSNR: 23.0302

original frame No: 65 PSNR: Inf Cubic Traj AOBM SI frame No: 65 PSNR: 24.9945

 

Frame #93                    

Original                            SI for Original 

HOPTTI 

PSNR=24.5dB 

SI for Empirically Switched 

HOPTTI-AOBMC                                      

PSNR=26.0dB 
original frame No: 97 Cubic Traj HOPTTI SI frame No: 97 PSNR: 25.1761

  

original frame No: 97 Cubic Traj HOPTTI SI frame No: 97 PSNR: 25.1761

 

original frame No: 97 Cubic Traj HOPTTI+AOBMC+AMS SI frame No: 97 PSNR: 26.7502

 

Frame #99                    

Original                            SI for Original 

HOPTTI 

PSNR=24.8dB 

SI for Empirically Switched 

HOPTTI-AOBMC                                      

PSNR=26.2dB 
original frame No: 99 Cubic Traj SI frame No: 99 PSNR: 24.4558

original frame No: 99 PSNR: Inf Cubic Traj AOBM SI frame No: 99 PSNR: 24.6348

  

original frame No: 99 Cubic Traj SI frame No: 99 PSNR: 24.4558

original frame No: 99 PSNR: Inf Cubic Traj AOBM SI frame No: 99 PSNR: 24.6348

 

original frame No: 99 Cubic Traj SI frame No: 99 PSNR: 24.4558

original frame No: 99 PSNR: Inf Cubic Traj AOBM SI frame No: 99 PSNR: 24.6348
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6.3.3 Computational Complexity and Improvement in Qualitative Results on 

Challenges to HOPTTI Algorithm 

The qualitative and quantitative results presented in Section 6.3.2 shows that AOBMC 

combined with the more accurate HOPTTI formulation gives an improved SI compared to 

LMCTI and HOPTTI only. However, there is a computational cost that the HOPTTI 

algorithm adds which is shown by the additional time required for the HOPTTI-AOBMC 

algorithm to execute in the Table 6.6. The Table 6.6 shows that the AOBMC algorithm 

adds a significant amount of computational time for the performance improvement that it 

brings as it adds at least 18.1% time to the execution time. The time however is about the 

same per frame for all the video sequences tested which shows that the computational 

complexity will depend on the number of frames in the input sequence. Employing the 

defined complexity variables in Table 4.1, HOPTTI-AOBMC complexity is 

4 2Const Vel Accl Jolt BMA AOBMCT T T T T T      and it can be observed that the added complexity 

compared to the HOPTTI algorithm is from the AOBMC algorithm whose overhead 

between different video sequences only varies slightly, corroborating the direct time 

measurements of Table 6.6.  

 

Table 6.6 AVERAGE SI GENERATION TIME PER FRAME IN SECONDS  

Sequences HOPTTI  
HOPTTI-

AOBMC 

Difference %change 

Carphone 
0.07 0.095 0.025 26.3 

Coastguard 
0.10 0.125 0.025 25.0 

Foreman 
0.14 0.166 0.026 18.6 

Mother 
0.08 0.105 0.025 31.3 

Hall 
0.11 0.136 0.026 23.6 

Silent 
0.06 0.085 0.025 41.7 
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Figure 6.12 HOPTTI, Improved by Empirical MS in HOPTTI-AOBMC for Hall 
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The frames presented in Chapter 5 to show the challenges to HOPTTI algorithm are hereby 

represented to show the improvement that AOBMC and the MS mechanism has achieved 

and how far the artifacts have been mitigated. 

First the frames from the Hall sequence are presented and show clearly the ghosting 

around the feet in frame #51. 

 

Next the challenging frame from the Coastguard sequence is presented which shows 

clearly that the ghosting in the background have been removed. 

 

 

 

Figure 6.13 Challenging Artifacts in HOPTTI, Improved by Empirical MS in HOPTTI-

AOBMC for Coastguard 

 

 

 

 

Frame #143             

Original       SI for all blocks on                                

Frame  HOPTTI                

PSNR=31.2dB                   

SI for empirically 

Switched MB in Frame 

PSNR=33.8dB 

original frame No: 143 Cubic Traj SI frame No: 143 PSNR: 34.3683

original frame No: 143 PSNR: Inf Cubic Traj AOBM SI frame No: 143 PSNR: 31.1994

    

original frame No: 143 Cubic Traj SI frame No: 143 PSNR: 34.3683

original frame No: 143 PSNR: Inf Cubic Traj AOBM SI frame No: 143 PSNR: 31.1994

   

original frame No: 143 Cubic Traj SI frame No: 143 PSNR: 34.3683

original frame No: 143 PSNR: Inf Cubic Traj AOBM SI frame No: 143 PSNR: 31.1994

 



160 
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Figure 6.14 Challenging Artifacts in HOPTTI, Improved by Empirical MS in HOPTTI-

AOBMC for American Football 
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Lastly, the challenging frames for the HOPTTI algorithm for America Football sequence 

are presented. This shows significant improvement in the frames after the AOBMC 

algorithm is introduced. 

Rate Distortion Performance of Empirical MS results: 

The overall RD results for Foreman and Hall sequence presented to accommodate both a 

complex single object sequence and a multiple object sequence are shown in Figure 6.15 

and Figure 6.16 respectively. The result is that empirical based MS outperforms HOPTTI, 

H.264 No Motion and H.264 intra while the H.264 inter remains the upper limit that 

outperforms Empirical MS in Hall, while H.264 inter outperforms Switched RST by up to 

2 dB in the Foreman sequence.   
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Figure 6.15 RD Curves showing HOPTTI  PSNR performance in codec based on (Li, 

2008)  for Foreman sequence @ 15f/s 
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Figure 6.16 RD Curves showing HOPTTI  PSNR performance in codec based on (Li 2008)  

for Hall sequence @ 15f/s 

 

 

6.4 Summary 

This Chapter tackled the twin problems of overlapping and blocking artifacts in higher 

order piecewise temporal trajectory interpolation (HOPTTI) due to the use of BMA by 

selectively incorporating it into the AOBMC algorithm, and using a mode switching 

mechanism to generate the Switched HOPTT-OABMC SI. Both numerical and perceptual 

results confirm the SI quality improvement in applying the HOPTTI and AOBMC 

combination, with up to 3.6dB improvement in PSNR achieved. From frame based 

empirical results (Akinola, Dooley and Wong 2010) presented in this chapter, it is evident 

that improved SI quality can be achieved if the more appropriate algorithm is selected on a 

MB basis aided by video content parameters. This forms the basis of further improvement 

of the SI in the next Chapter to intelligently maximize the threshold and parameter settings, 

and to do this automatically at MB level as it is cumbersome to undertake empirically. 
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Chapter 7 

 

 

 

Improved SI Generation Using Rough Set Theory 

 

 

7.1 Introduction 

The main aim of this thesis is to tackle a major DVC bottleneck that impacts on its output 

quality which is a coarse approximation of the original video frames that are not available 

at the decoder. This Chapter concentrates on BLOCK 4 of the framework from Figure 1.3 

which is reproduced in Figure 7.1 for convenience with BLOCK 4 highlighted. It addresses 

the need for RST based intelligent mode switching (IMS) at MB level and the use of video 

content to maximize the parameters by employing RST. In Chapter 6, it was shown that as 

the spatial-temporal characteristics of the video changes, it is necessary to switch the 

threshold settings and the mode of the algorithm being used to generate the SI. 

Furthermore, empirical experiments in Section 6.3 showed that MS yields improvement to 

the SI thus generated. This Chapter tackles the aspect of SI Generation and Improvement 

Framework of Figure 1.2, that has been identified in literature in Chapter 3, Section 3.3.6 

that the changing spatial-temporal characteristics in video sequences and spatial-temporal 

differences between different video sequences is the reason why different algorithms 

perform differently or even fail (Ascenso et al. 2005; Weerakkody et al. 2007; Martin et al 

2009; Martin et al 2010). Thus, RST an artificial intelligence (AI) algorithm first discussed 
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in Chapter 3 is introduced into MS, employing the spatial-temporal characteristics of video 

sequences.  

 

Figure 7.1 Block Diagram of SI Generation and Improvement Framework with BLOCK 4 
Highlighted. 

In Chapter 6, AOBMC was employed in HOPTTI and an empirical approach to setting 

thresholds was used to show that Switched HOPTTI-AOBMC performed better than a 

number of variants where LMCTI was combined with AOBMC to improve SI quality. 

While the addition of AOBMC to HOPTTI and empirical MS showed improved SI, 

investigations reveal that algorithm performance fluctuate within the same video sequence 

and from one video sequence to the other resulting in subsequent analysis in Section 6.2.3 

of Chapter 6 that for certain frames in the various test sequences investigated HOPTTI 

produced better SI quality than when combined with AOBMC. The introduction of AI will 
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determine when to switch between HOPTTI algorithm and the AOBMC-H algorithm which 

results from the following summaries: 

(i) The spatial and temporal characteristics of the sequences, for example how spatial 

contrast between different objects and that between objects and the background both 

intra-frame and inter-frames change in video sequences. 

(ii) The thresholds are constant for every part of a given sequence without due regard to 

spatial-temporal variations. For example, Table 6.1 T=10 while the weight is varied and 

eventually set at λ=0.4. 

(iii) The complexity of the fluctuations of the spatial-temporal characteristics makes it 

difficult to make one rule fits all setting of thresholds as the setting of one rule 

dynamically affects others already set.  

(iv) Thresholds are subsequently approximated and depend on other approximated 

thresholds earlier set leading to accumulation of errors. Thus, the knowledge of how the 

setting of one threshold affects others is not explicitly known, learnt or fed back to adjust 

previously set ones. 

To evaluate the use of spatial-temporal characteristics of video sequences in Chapter 6, a 

mode switching (MS) technique based on (Ye et al. 2009) was introduced, showing that an 

improved SI can be generated using the spatial-temporal characteristics SMAD and SBAD. 

MS uses a matching criterion to switch between SI generation using HOPTTI only, and that 

using the AOBMC algorithm combined with HOPTTI (AOBMC-H) to obtain a final SI 

named the Switched HOPTTI-AOBMC. The corresponding impact on SI quality of both the 

new AOBMC-H approach and MS mechanism which introduces an explicit rule (if, else) 

and empirically determines a cut off threshold for the rule was shown to exhibit a consistent 

improvement in overall SI quality with numerical and perceptual results. This Chapter takes 

a further step to improve SI by introducing RST based IMS as shown in Figure 7.2 which 
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gives the detailed block diagram of the SI generation scheme using RST, with the RST 

mode switching block highlighted. 

 

 

 

 

 

 

 

 

 

 

Figure 7.2 Detailed Blocks of SI Generation with RST Based IMS Module 

As emphasized in Chapter 6, coupled with the four points on the nature and spatial-temporal 

characteristics of video sequences raised above, a more intelligent way of setting weights 

and thresholds is likely to further improve SI since AI methods are knowledge based and 

non-linear, taking into consideration various complex features and attributes of the video 

sequences to make essential rules to handle efficiently the fluctuations and as such can 

improve quantitative and qualitative DVC performance.  

In Chapter 3, the various AI based methods of handling the setting of weights and 

thresholds were discussed including SVM, neural networks, FL, genetic algorithm, and 

RST. An intelligent method that classifies data features for correct decision making is the 

Gaussian Mixture Model but the attributes and features in videos may not necessarily be 

based on Gaussian distributions when the data is non-Gaussian, as stated in (Verbeek, 

Vlassis and Krose 2003). Since an intelligent method is required to select between HOPTTI 
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sequences with a wide variety of sequences, a method that assumes a specific probability 

model is not suitable.  

Another versatile AI classifier is the Support Vector Machines (SVM) which works 

particularly well with small data size, able to deal with non-linear problems with high 

dimensions. However, SVM requires the construction of a classification function which 

matches the input space to the non-linear transform, referred to as the kernel function which 

includes a polynomial function, a radial basis function and a multi-layered perception 

function. That is usually a complex exercise whose validity or otherwise affects the 

accuracy of the classification. 

While Neural Networks (NN) can be utilized for classification of data and have been widely 

used, they have a lot of drawbacks which include  slow learning rate, difficult convergence 

and complex network structure especially when there is limited and incomplete information 

in the data set. These problems lead to under-learning or over-learning as the NN falls into a 

local minimum or local maximum and results in high computational complexity which is 

not desirable where algorithms with higher order trajectories are already in use. 

FL can also be used to develop functional rules for classification of data. FL however, 

involves an elaborate initialization process which involves the definition of linguistic 

variables and terms, construction of membership functions and construction of the rule base, 

processes that have to be empirically determined. Furthermore, FL also involves a 

fuzzification process with the use of a membership function whose appropriateness is 

empirically determined, which makes it similar to empirically switched MS introduced in 

Chapter 6.     

Genetic algorithms (GA) are another intelligent optimization method for decision making 

which is based on the principles of biological evolution but in order to utilize GA, a priori 

knowledge of the data is required to design the objective function. Also, the number of 
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chromosomes, crossover probability and mutation probability are set empirically with high 

computational complexity.    

Intelligent methods that more closely fit the problem domain where complex attributes and 

rule system is to be used to set thresholds and classify data are SVM, FL and RST. FL has 

gained popularity in the image processing research community due to its ability to offer a 

structure for the development of functionality and rules using FL reasoning. Examples in 

interpolation include Taguchi and Kimura (1997) and Ting and Hang (1997) where FL was 

applied to edge preserving interpolation. RST on the other hand have also been employed in 

de-interlacing interpolation which include Yeo and Jeong (2002) and Jeon et al. (2008). 

SVM has been applied extensively in pattern recognition such as text categorization 

(Joachims 1997) and face detection in images (Osuna, Freund and Girosi 1997) successfully 

and can handle incomplete data gracefully provided the right support vectors, kernel and 

prior knowledge are employed. FL utilizes a similar (if, else) rule system to the one already 

introduced in MS mechanism in Chapter 6 where fixed thresholds still have to be set which 

might be difficult where the attributes information system has limited information with 

indistinguishable rules. While FL requires fuzzy rules to set the thresholds RST on the other 

hand utilizes the data directly to induce the rules based on the spatial-temporal attributes 

system with rough thresholds that can handle complex systems with a high degree of 

uncertainty and limited information. While SVM can handle limited data information, it has 

no capacity to handle uncertainty, also the complexity of the kernel and the identification of 

the ideal kernel are disadvantages. RST can robustly handle the roughness in information 

systems and most importantly, where it has been applied in de-interlacing interpolation 

alongside FL, (Jeon et al. 2008) RST has been reported to give better quantitative and 

qualitative results. This Chapter introduces RST, a decision making algorithm into DVC to 

increase performance and intelligently provide a switching mechanism, referred to as RST 

based intelligent mode switching (IMS).  
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RST provides a method to decide which MB in the frame will benefit from the addition of 

AOBMC by characterizing a video sequence as a decision Table of attributes and objects. 

The implicit complex interrelationships within the attributes of the sequence can be known 

and thresholds to switch between the HOPTTI and AOBMC-H can thus be intelligently 

and more accurately determined, leading to the improved performance of the MS 

mechanism thereby eliminating the need to empirically determine thresholds for each 

sequence that is to be improved as is done in Chapter 6. 

Experimental results using the RST for improving SI generation show that after training, 

the intelligently switched HOPTTI (HOPTTI-RST) can produce up to 1.6dB improvement 

in PSNR over the empirically switched HOPTTI-AOBMC when RST predictions are 

based on the  conventional cross-validation method used for the training sequences during 

training sessions. When the video sequence is tested using RST based IMS rules, a 3dB 

improvement over HOPTTI is achieved. Lastly, employing the original as “Target” which 

gives the ground truth of 100% of MBs that could be correctly switched, we find that the 

RST based switching could give up to 98.5% of correctly switched MBs.   

 

7.2 RST based Intelligent Mode Switching (IMS) 

In introducing some intelligence into the MS algorithm, RST is investigated and developed 

here for IMS. RST which is a method that has been used to address the processing of 

redundant video data in an efficient manner such as for example, in video shot 

segmentation (Cooper, Liu and Rieffel 2007; De-Bruyne, Van-Deursen and De-Cock 

2008), key frame extraction (Lee, Yoo and Jang 2006), video summarization (Shuping and 

Xinggang 2005; Lie and Lai 2004) and as a technique for selecting the best methods of de-

interlacing various sequences (Jeon et al. 2005).  
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RST is a tool which systematically extracts knowledge from various types of data to 

produce a reduced (core) decision database containing discrete essential information for 

increasing the efficiency of any decision making that involves the data under 

consideration, used extensively in applications where video content determines parameter 

setting (Yuan et al. 2006; Jeon et al. 2005; Qin, Wu and Wang 2006; Burges 1998; Hur et 

al. 2001). In Jeon et al. (2005), RST was successfully applied to selection of and switching 

between various re-sampling methods, depending on video content parameters used for de-

interlacing which is a similar problem as switching between the algorithms for SI 

generation in DVC, and the RST solution to the DVC switching problem is explored in this 

Chapter. The key advantages that RST has over AI solutions outlined in Chapter 3 can be 

summarized as: 

1) RST does not need a priori information about the data. For example FL needs prior 

knowledge of the data in order to choose the best membership function to apply that 

works effectively with provided data. The spatial-temporal characteristics, typically the 

SBAD and SMAD measures defined in Chapter 5 can be used as data inputs to RST to 

switch between either HOPTTI or AOBMC-H in order to secure the best SI quality. 

2) RST provides tools that efficiently find hidden patterns in the spatial-temporal 

characteristics of the video by systematically applying the RST tools. These have been 

deployed in this thesis to find the hidden patterns in the spatial-temporal characteristics 

of MBs that will benefit from AOBMC being selected.  

3) RST allows for an automatic way to generate the decision making rules, by 

evaluating the objects, attributes and decisions in the information Table and deducing 

the minimal set that is important in the decision making process which is used to 

compile the decision making rules. RST thus effectively removes attributes and objects 

that does not aid the decision making process, while compiling the decision making 

rules.  
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4) RST provides straightforward results that are easy to interpret as they are given as a 

decision. For example, in the use of RST for selecting the best methods of de-interlacing 

various sequences in (Jeon et al. 2005) RST gives a decision which method will give 

better de-interlacing given the data under investigation. The results in the context of 

DVC are presented in the form of which method, AOBMC or HOPTTI, gives a better 

quality MB in the frame of the video sequence. 

A drawback of RST is the assumption that the spatial-temporal characteristics of each MB 

contains all the required information to induce the rules needed to decide which algorithm 

will give a better output. Whenever the Table of spatial-temporal characteristics does not 

contain all the characteristics to form rules for certain video types, erroneous decisions can 

occur when predicting decisions. Furthermore, there is an underlying assumption that all 

the possible relationships within the spatial-temporal Table can be discerned and its 

importance correctly induced. While efficient algorithms and RST tools have been 

developed, some relationships might still not be discerned leading to erroneous decisions. 

Lastly, there is a learning phase (rules discovering phase) after which the rules are applied 

to new information not previously encountered which presents a weakness, as hitherto 

unknown relationships will definitely lead to erroneous decisions. However, given the fact 

that a large enough database of video sequences with various spatial-temporal 

characteristics are available and that RST can induce rules based on limited and incomplete 

data, the drawbacks highlighted above does not preclude the use of RST to great effect as 

shown by the improvements in SI resulting from RST based IMS presented in Section 

7.2.6.     

7.2.1 Rough Set Information Table for DVC SI generation 

In RST based IMS, the information Table is used to describe MBs. It consists of a Table 

where each column contains attributes derived from spatial-temporal characteristics of the 

MBs, and the attributes of each row is describing a particular MB (object in RST term). 
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More specifically, a full set of MBs that are generated from both the HOPTTI and 

AOBMC-H algorithms applied on a video sequence. Each MB is described by five 

attributes which are derived from the spatial-temporal characteristics of the video sequence 

namely; Mean Pixel which gives the mean pixel value of each MB, SMAD defined in (6.1) 

in Chapter 6, SBAD defined in (6.2) in Chapter 6, Condition MAD which is obtained by 

digitizing SMAD using the RST classification tool and Condition BAD also obtained by 

digitizing SBAD. The attributes have an association with the decision to switch to and 

employ one of the two algorithms of HOPTTI or AOBMC-H. In the training phase, known 

outcomes are put in the place of the decisions such that rules are induced from the 

attributes and outcome. In contrast, outcomes are deduced from attributes and rules in the 

test phase. Conditional BAD and Conditional MAD are used to deepen the relationship 

between SBAD, SMAD and the MBs in the Table looking from different perspectives. For 

example, the difference between pixels might require more than association with being 

from the object or the background, for it to be useful in predicting spatial-temporal 

behaviour, as realizing that the number of different objects in the frame is more than one, 

thereby dividing (cutting) the object into object 1, object 2 etc would increase the usability 

of the pixel difference data.  

Employing the Table of MBs and their spatial temporal characteristics described earlier as 

training data, RST tools derive the rules that enable decisions as to which algorithm 

(HOPTTI or AOBMC-H) will generate MBs that will improve the SI from a new video 

sequence different from the one utilized for training. 

7.2.2 RST basics and Mode Switching  

RST was introduced by Z. Pawlak (Pawlak 1982) for reasoning about data. It provides a 

formal method for manipulating the various features and attributes in data sets which leads 

to the determination of the nature of the data. The features and attributes in the DVC 

context are the spatial-temporal characteristics of the various video sequences that are used 
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to switch intelligently and efficiently between the AOBMC-H algorithm and the HOPTTI 

algorithm. Also, the objects are the individual MBs whose characteristic attributes are 

being utilized to deduce the algorithm that will produce the most improved SI. These 

spatial-temporal characteristics have been applied empirically and shown to produce SI 

generation improvements in Chapter 5, which can be further increased by employing RST 

tools. 

 

      

      

      

      

      

      

      

 

Figure 7.3 Schematic Illustration of RST.  

 

This is illustrated in Figure 7.3, where ( )XR MB  is a set where the rough imprecise 

(unknown) boundary lies which in terms of IMS, and DVC is the set of MBs (these are 

usually MBs from a new video sequence whose SI we wish to improve) where we are not 

sure that generating the MBs with either HOPTTI or AOBMC-H algorithm will improve 

the SI quality of the video, thus a decision has to be made concerning them. MB X - the 

universal set of all the MBs generated either by HOPTTI or AOBMC-H. ( )LR MB is the 

lower approximation, which is the known set of MBs that will be generated by HOPTTI 

and included in the improved SI. ( )UR MB is the upper approximation, which is the known 

RX MB 

The unknown set 

 

RL (MB) 

The lower 

approximation 

RU (MB) 

The upper 

approximation 

Rules/Conditions 

Membership 

from each MB 

features 

The set of all 

Objects 



174 

 

set of MBs that will be generated by AOBMC-H and are included in the improved SI. The 

decision as to which algorithm the MB of the set ( )XR MB will be generated with, for 

improved SI, is made by employing the spatial-temporal characteristics of the MBs and 

RST tools in the same way as the task undertaken in Chapter 5 using empirical thresholds. 

The basic description of the RST algorithm for implementation in the decision making in 

IMS for DVC SI generation is defined in the pseudo-code in Table 7.1.  

Table 7.1 PSEUDOCODE FOR RST-BASED MODE IMS   

 

Input: Table of spatial-temporal characteristics of Video for each MB  

Output: Decisions between AOBMC-H or HOPTTI for SI generation 

Processing: 

Algorithm 1 RST based IMS Algorithm 

 

STEP 1 

1. Initialize variables: SMAD, SBAD, Mean Pixel, Conditional MAD, 

Conditional BAD. 

2. FOR i = 1 to n where n is number of MB entries for particular video 

sequence. 

3. Read in Variables SMAD, SBAD, Mean Pixel, Conditional MAD and 

Conditional BAD MB entries 

4. Determine which algorithm HOPTTI or AOBMC-H is 

improved by each variable.   

5. IF attribute improves HOPTTI 

  Variable is essential Rule for decision HOPTTI 

Save Variable and it's characteristics  

6. IF attribute improves AOBMC-H 

              Variable is essential Rule for decision AOBMC-H 
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The Table 7.1 contains the pseudo code for the RST algorithm which outputs the decision 

as to which algorithm between HOPTTI and AOBMC-H will generate an improved SI MB 

based on the spatial-temporal characteristics of the video. STEP I, with pseudo code 

numbers 1-7 generates the rules from the object MBs and attributes SMAD, SBAD, Mean 

Pixel, Conditional MAD and Conditional BAD utilized to decide if HOPTTI or AOBMC-

            Save Variable and it's characteristics 

7. ELSE 

              Variable is not essential 

                                 Discard non-essential Variable 

ENDIF 

ENDIF 

ENDFOR 

STEP II 

8. FOR i = 1 to k where k is number of MB entries for new Video 

sequence 

9. Read in Variables SMAD, SBAD, Mean Pixel, Conditional MAD and 

Conditional BAD for new Video MB entries 

10. Compare attributes with Saved Variables and their 

characteristics in STEP I. 

IF Attributes Match HOPTTI 

Output HOPTTI as decision 

ELSE 

Output AOBMC-H 

ENDIF 

ENDFOR 

 END 
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H will produce improved SI using training video sequences. STEP II, with pseudo code 

numbers 8-10, compares the established rules with the spatial-temporal variables from a 

new video sequence and decides if it matches the HOPTTI algorithm or the AOBMC 

algorithm and outputs the decision.   

7.2.3 Video Sequence Content (spatial-temporal) Analysis and Composition of the 

Information Table 

An important factor in RST processing is the Table of MBs and its spatial-temporal 

characteristics, and the choice of features to populate the Table is of critical importance. In 

video processing algorithms using RST, the features that have been employed in literature 

are luminance values, spatial characteristics of the luminance values such as luminance 

difference values within MBs or frames, SBAD and the temporal characteristics of the 

luminance values between MBs or frames, SMAD (Shuping and Xinggang 2005; Lie and 

Lai 2004; Jeon et al. 2005). In Chapter 5, for HOPTTI and AOBMC MS, classification 

tools operate on MBs generated by different algorithms thus using the empirical MS for 

switching between the two algorithms employing SMAD and SBAD (defined in (6.1) and 

(6.2) in Chapter 6) similar to (Jeon et al. 2005), we confirmed that classifying the MBs into 

the two modes using the spatial-temporal parameters SBAD and SMAD generates an 

improved SI.  

The video content attributes SBAD is a measure of the spatial entropy in the video 

sequences that measures the pixel intensity difference between pixels along the border of a 

MB and the pixels outside the MB. This implies that SBAD enforces spatial smoothness 

property between internal and external borders of the MB in the interpolated frame, while 

SMAD is a measure of the temporal entropy in the video sequence that minimizes the 

difference between the mean of pixels in a MB and the mean of pixels in MBs in the  
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intermediate frame indicating the motion of the MB and pixels under consideration (Ye et 

al. 2009). M is the mean of SBAD and SMAD. Examining the variation of the spatial-

temporal characteristics in a systematic manner gives an indication of when thresholds 

need to change and modes of algorithms needed to be switched. Thus effectively, an 

intelligent system that could be interpreted in its simpler terms by both humans and 

machine can be developed (Shirahama and Uehara 2010).In order to improve SI generation 

using RST, the available attributes and objects must be properly classified. Employing the 

same strategy used in RST literature (Shuping and Xinggang 2005; Lie and Lai 2004; Jeon 

et al. 2005; Shirahama and Uehara 2010) where RST have been employed for video 

processing by relying on heuristics, familiar cuts already observed from the data enable us 

track what is going on in the RST based system. 

Using the properties of the various video sequences two spatial-temporal properties of 

SBAD and SMAD (defined in (6.1) and (6.2) in Chapter 6) and further defining other 

spatial-temporal characteristics in the video sequences employed in the SI generation 

system which include high motion region, complex motion region, low motion region, low 

spatial detail region, complex spatial detail region and high spatial detail region, similar to 

heuristics employed in literature (Jeon et al. 2005), which are observable characteristics 

referred to as regions for decision making and equivalent classes in RST terminology.  

Table 6.2 shows a sample spatial-temporal characterization of three video sequences that 

can be made from video sequence data such as SMAD and SBAD used in this thesis. The 

regions for decision making from heuristics are included to enable us to understand what is 

going on as they are observable by human experts. However, these classes can be 

generated automatically using RST tools and their generation is further discussed in 7.2.5 

where the additional use of the heuristics enable us to explain the classification statistics 

easily.  

 



178 

 

 

0 50 100 150
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Frame No.

N
O

R
M

A
L
IZ

E
D

 S
B

A
D

, 
S

M
A

D
 A

N
D

 M

NORMALIZED DIFFERENCES Vs Frame No. for HALL SEQUENCE

 

 

SBAD

SMAD

M

 
(a) 

0 20 40 60 80 100 120 140
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame No.

N
O

R
M

A
LI

Z
E

D
 S

B
A

D
, 

S
M

A
D

 A
N

D
 M

NORMALIZED DIFFERENCES Vs Frame No. for AMERICAN FOOTBALL SEQUENCE

 

 

SBAD

SMAD

M

 
(b) 

0 50 100 150

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Frame No.

N
O

R
M

A
L
IZ

E
D

 S
B

A
D

, 
S

M
A

D
 A

N
D

 M

NORMALIZED DIFFERENCES Vs Frame No. for COAST GUARD SEQUENCE

 

 

SBAD

SMAD

M

 
(c) 

 

Figure 7.4 Frame by frame normalized SBAD and SMAD for (a) 

Hall, (b) American Football,  and (c) Coastguard sequences. 
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Figure 7.4 plots the spatial-temporal characteristics of Hall, American Football and 

Coastguard sequences and depicts the scope of spatial-temporal fluctuations that various 

algorithms try to cope with, and act as a pointer to the reasons why thresholds being kept 

constant lead to marginal improvements or failure of the algorithms. Analysis of spatial-

temporal content in Coastguard for example, using the normalized SBAD and SMAD in 

Figure 7.4 (c), shows the fluctuations in the spatial-temporal characteristics, with SMAD, a 

temporal measure, assuming predominance in the early part of the sequence while SBAD, a 

spatial measure, assumes dominance between frames 65 and 120. With the above 

fluctuations, it is evident that keeping a single threshold or even applying the same 

algorithm for the whole sequence cannot give the same improvement throughout the 

sequence. 

Based on spatial-temporal analysis six video sequences were chosen for the 

experimentation and rigorous testing of the RST based algorithm namely, American 

Football, Hall, Coastguard, Carphone, Mother and Foreman because they have a range of 

spatial-temporal characteristics as stated in the Table 6.1 in Chapter 6, supported by their 

wide use in literature, thus this thesis relies on these video sequences for training, rule 

extraction and testing as they cover most of the spatial-temporal characteristics required for 

video classification.  

7.2.4 Practical Illustration of Feature Attribute Extraction 

The RST for the AOBMC and HOPTTI switching is formulated into a system of attributes, 

objects and decisions in an information Table. Table 7.2 shows a typical characterization 

of the spatial-temporal characteristics of some sequences of the video dataset employed. A 

sample illustration of which feature attributes cuts and digitization are employed and how 

the labels are extracted is shown in Table 7.3 where SBAD and SMAD are divided into 

three categories with the labels; Small (Sm), Medium (Me) and Large (La). A and B in the 

Table are the variables denoting the values of SBAD and SMAD.   
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Table 7.2 SAMPLE SPATIAL-TEMPORAL CHARACTERIZATION  

American 

Football 

Complex spatial detail, high motion, 

complex motion 

Hall Simple spatial detail, low motion, 

complex spatial detail 

Coastguard Complex spatial detail, low motion 

Carphone Simple spatial detail, low motion, 

complex motion  

Mother Complex spatial detail, low motion 

Foreman Complex spatial detail, high motion, 

complex motion. 

 

 

 

Table 7.3 ILLUSTRATION OF POSSIBLE DIGITIZATION OF 

ATTRIBUTES 

IF SBAD  8 THEN A is Sm 

IF 8SBAD16 THEN A is Me 

IF SBAD  16 THEN A is La 

IF SMAD  8 THEN B is Sm 

IF 8SMAD16 THEN B is Me 

IF SMAD  16 THEN B is La 

 

 

 

The cuts here have been arbitrarily chosen to divide the numbers into three parts following 

a pattern that will recognize what is happening in the RST system by forming all possible 

classes in the information Table, and this does not affect the output SI as in practice as 

many distinct categories as necessary will be made by the chosen classifier (Shuping and 

Xinggang 2005; Lie and Lai 2004; Jeon et al. 2005). 

Table 7.4 shows a sample illustration of the Table generated from spatial-temporal 

characteristics of MBs for American football as extracted by the digitization of Table 7.3. 

SBAD, SMAD are thus the basic information from the video sequences which is the same 

from the fixed parameter based model that uses the weighted sum of SMAD and SBAD to 

form a matching criterion in Chapter 6. The information Table illustrated is used for 
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training and the decisions are taken from the ground truth which compares the PSNR of 

MBs generated from AOBMC-H with HOPTTI: whichever is higher should be the right 

decision. This is further discussed in section 7.2.6. A similar Table without the DECISION 

class is used for testing. 

 

 

Table 7.4 SAMPLE ILLUSTRATION OF INFORMATION TABLE SHOWING 

OBJECTS, ATTRIBUTES AND DECISION FOR AMERICAN FOOTBALL 

 

 

 

7.2.5 Classification and Training Using ZeroR K-Nearest Neighbour Algorithm and 

Matlab Test Bed 

To employ RST for the AOBMC and HOPTTI switching, a classification module is 

necessary to generate equivalent classes, instead of relying solely on heuristics as discussed 

in Section 7.2.4, and subsequently discernible matrix rules under training, which will be 

used to reach decisions for other totally different video sequences, in line with the RST rules 

formulation steps of Section 7.2.2. The ZeroR k-nearest-neighbour (KNN) algorithm 

(Clarkson K. 2005; Liu, Moore and Gray 2006; McNames 2001; Kim and Park 1986) is 

employed in order to avoid the use of heuristics, and it is a simple linear classifier that fits 

MB

No. 

mean 

pixel (px) 

SMAD 

(px) 

SBAD 

(px) 

Conditional 

MAD 

Conditional 

BAD DECISION 

7 110.31 19.78 38.02 La La AOBMC 

9 110.64 18.04 37.66 La La AOBMC 

51 96.91 6.12 13.82 Sm Me AOBMC 

53 96.56 7.12 15.19 Sm Me AOBMC 

97 107.00 9.57 19.42 Me La AOBMC 

99 107.78 10.36 21.81 Me La HOPTTI 
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well the premise of using the spatial-temporal characteristics of neighbouring MBs both 

intra-frame, inter-frame and between video sequences to choose the algorithm that will best 

improve the MB under consideration, and subsequently produce an improved SI.  

The ZeroR KNN algorithm works by constructing a frequency Table for the target class and 

is usually employed as a baseline classifier, which is exactly what it is employed for in RST. 

The ZeroR KNN minimizes zero order error and is part of a group of fast learning 

algorithms that are called lazy learners, because most of its calculations are done at test 

time, making it useful for online, real time training data which have been found to be a 

better trade-off between speed and accuracy (Clarkson K. 2005; Liu, Moore and Gray 2006; 

McNames 2001; Kim and Park 1986).  

Also, the ZeroR linear classifier is used instead of the more complex SVM which, though it 

can have a linear kernel, support vectors have to be calculated and the optimal hyper plane 

determined as discussed in section 7.1.  

Furthermore, the ZeroR classifier is chosen over Neural Networks which require a higher 

number of training samples (Verbeek, Vlassis and Krose 2003) in order to achieve similar 

accuracies as the ZeroR KNN classifier. These advantages are shown in the real time 

training time and accuracies illustrated in Table 7.5 of this Section. 

The role of ZeroR KNN here is acting as a tool in RST to obtain equivalent classes instead 

of relying on heuristics, which is then used to induce the RST rules during training where 

the discernible matrix rules are generated in line with the pseudo code of Table 7.1. 
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The information Table of MBs, their spatial-temporal characteristics and decisions on 

algorithms was used to generate the MBs in Table 7.4 which contains data from the 

American Football in combination with Coastguard and Hall sequence. 

Tables 7.5, 7.6, 7.7 and 7.8 illustrate the classification statistics for the evaluation on the 

training set of MBs from the American Football sequence. 202 MBs using the training set of 

spatial-temporal characteristics from the video were used to make decisions for AOBMC 

MBs.   

The illustration statistics from the equivalent classes in Tables 7.5 and 7.6 shows the 

classification for class ConditionMAD, predicting AOBMC and HOPTTI respectively and 

giving the statistics of classification based on 202 instances of which 155 predict AOBMC 

and 47 predict HOPTTI during training.   

The Tables illustrate how the relationship between the charateristic attribtes and the decision 

for correctly classified instances during training becomes RST rules and uncertainties are 

eliminated. Also, ConditionMAD is chosen for illustration because it follows known 

heuristics, whereas the relationship between the characteristic attributes in SBAD, for 

instance, is internal to ZeroR KNN.   

Likewise, Tables 7.7 and 7.8 show the classification for class DECISION, predicting 

AOBMC and HOPTTI respectively and giving the statistics based on the 202 instances. 

Thus the ZeroR KNN classifier acts as a baseline classifier for equivalent classes from 

which the RST rules will be extracted using the values of the characteristic attributes that 

are correctly classified.  
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Table 7.5 SAMPLE ILLUSTRATION OF EQUIVALENT CLASSIFICATION 

STATISTICS FROM TRAINING USING HALL, AMERICAN FOOTBALL AND 

COASTGUARD SEQUENCE PREDICTING AOBMC, CLASS CONDITIONMAD 

Test Mode: Evaluation on training data; ZeroR classifier; Predicting AOBMC 

Total Number of training instances: 202 

 Predicted  True 

Positives 

% 

False 

Positives 

% 

Time 

Taken 

(ms)  

RMS 

Error 

AOBMC Correct 

% 

HOPTTI Incorrect 

% 

Actual 

Class 

 

La 58 96.7% 2 3.3% 98% 2% 5 0.022 

Me 50 100% 0 0% 

Sm 44 97.8 1 2.2% 

 

 

 

Table 7.6 SAMPLE ILLUSTRATION OF EQUIVALENT CLASSIFICATION 

STATISTICS FROM TRAINING USING HALL, AMERICAN FOOTBALL AND 

COASTGUARD SEQUENCE PREDICTING HOPTTI, CLASS CONDITIONMAD 

Test Mode: Evaluation on training data; ZeroR classifier; Predicting HOPTTI 

Total Number of training instances: 202 

 Predicted  True 

Positives 

% 

False 

Positives 

% 

Time 

Taken 

(ms)  

RMS 

Error 

AOBMC Incorrect 

% 

HOPTTI Correct 

% 

Actual 

Class 

 

La 0 0% 14 100% 96% 4% 2 0.025 

Me 1 5.9% 16 94.1% 

Sm 1 6.2% 15 93.8% 

 

 



185 

 

Table 7.7 SAMPLE ILLUSTRATION OF EQUIVALENT CLASSIFICATION 

STATISTICS FROM TRAINING USING HALL, AMERICAN FOOTBALL AND 

COASTGUARD SEQUENCE PREDICTING AOBMC, CLASS DECISION 

Test Mode: Evaluation on training data; ZeroR classifier; Predicting AOBMC 

Total Number of training instances: 202 

 Predicted  True 

Positives 

% 

False 

Positives 

% 

Time 

Taken 

(ms)  

RMS 

Error 
AOBMC Correct 

% 

HOPTTI Incorrect 

% 

Actual 

Class 

 

AOBMC 155 100% 0 0% 100% 0% 5 0.02 

HOPTTI 0 0% 0 0% 

 

 

Table 7.8 SAMPLE ILLUSTRATION OF EQUIVALENT CLASSIFICATION 

STATISTICS FROM TRAINING USING HALL, AMERICAN FOOTBALL AND 

COASTGUARD SEQUENCE PREDICTING HOPTTI, CLASS DECISION 

 

 

Closer scrutiny of the classification statistics shows that True Positives (TP) and False 

positives (FP) rates are very good, especially for the DECISION class. As stated earlier in 

Section 7.2.4 the decisions are known and are taken from the ground truth such that TP is 1 

Test Mode: Evaluation on training data; ZeroR classifier; Predicting HOPTTI 

Total Number of training instances: 202 

 Predicted  True 

Positives 

% 

False 

Positives 

% 

Time 

Taken 

(ms)  

RMS 

Error 
AOBMC Incorrect 

% 

HOPTTI Correct 

% 

Actual 

Class 

 

AOBMC 0 0% 0 0% 100% 0% 2 0.02 

HOPTTI 0 0% 47 100% 
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and FP is 0 both for predicting AOBMC and HOPTTI, which validates the ZeroR KNN 

classifier as a good baseline classifier.  

Also for the class ConditionMAD, the TP is 0.98 for AOBMC prediction while it is 0.96 for 

HOPTTI prediction. FP for the ConditionMAD class for AOBMC prediction is 0.02 and 

0.04 for HOPTTI prediction.  

The correctly classified instances which is another important statistic is up to 100% in this 

training phase for DECISION class. The error values are insignificant and the root mean 

squared error of 0.02 - 0.025, though not very high, is an indication that there are still errors 

in the training. 

The discernible matrix, an illustration of which is shown in Table 7.9, depends on the 

number of accurate decisions that are made. In this case, there are two decisions and 

therefore, there is a 2x2 matrix that shows correctly classified MBs. The illustration is for 

the ConditionMAD class based on 202 instances. 

Table 7.9 SAMPLE ILLUSTRATION OF DISCERNIBLE MATRIX FROM 

TRAINING USING HALL, AMERICAN FOOTBALL AND COASTGUARD 

SEQUENCE FOR CONDITIONMAD CLASS. 

Classification AOBMC HOPTTI 

correct 152 45 

incorrect 3 2 

  

After the training and induction of the rules, they are then employed to predict the MBs for 

video sequences starting with the ones that were employed for training.  
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a) Modification of Software Implementation of HOPTTI Test Bed for Simulation 

and Results of RST based SI generation 

A prediction of the decision is made at each MB based on the attributes using the cross-

validation method because of its advantage of using the maximum possible number of 

training MBs. In the training statistics of Table 7.5, the training time of 0.005 seconds for 

ZeroR algorithm running under Microsoft Windows XP on a PC with an Intel Duo Core 

CPU at 2.20 GHz is negligibly small showing that ZeroR K-NN algorithm is a fast learner. 

The time taken is not significant compared to the overall time taken to generate SI. Thus the 

rules for accurate decision making is built very fast by the ZeroR K-NN algorithm from the 

number of accurate predictions in this training phase. 

b) Computational  Complexity Analysis 

Generally, the DVC paradigm recognizes the fact that the decoder can be complex at the 

expense of the encoder complexity being reduced compared to conventional codecs like the 

H.264 codec.  

However, the complexity and overhead that the decoder can bear is not unlimited and the 

computational complexity of algorithms being utilized need to be analyzed.  In RST, by far, 

the most computationally complex part is the generation of the information Table that has 

adequate characteristic attributes to forms the bedrock on which the RST tools can be applied 

and subsequent training classification phase.  

Using the SI generation time per frame presented in Table 5.1 of Chapter 5, we get the 

average time taken to generate an MB HOPTTI SI based on the fact that QCIF frames 

(176X144 pixels) employed in the experimentation results contain 99 MBs (16X16 pixels) 

and compare with the average learning time for ZeroR K-NN algorithm per MB.  

Furthermore, the time taken to generate a typical Table for various test sequences for 99 MBs 
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are included in the Table 7.10, with the generation of the DECISION for each MB 

accounting for more than 50% of the time as SI has to be generated using both HOPTTI and 

AOBMC-H in order for the best decision between the two algorithms to be known.  

 

 

 

Table 7.10 AVERAGE SI GENERATION TIME PER FRAME IN 

MILISECONDS  

Sequences 
HOPTTI 

Cubic(C) 

ZeroR K-

NN 

Algorithm 

Information 

Table 

Generation 

Carphone 
70 2.5 144 

Coastguard 
100 2.7 205 

Foreman 
140 3.0 288 

Mother 
80 2.5 165 

Hall 
110 2.8 226 

 

 

Table 7.10 coupled with the learning time shown in the statistics Table 7.5 - Table 7.8, shows 

that the additional computational overhead for the ZeroR K-NN algorithm is not significantly 

high. Generation of the information Table however takes about 2 times the time taken for 

HOPTTI algorithm. 

Employing the defined complexity variables from Table 4.1, the complexity is 

4 2Const Vel Accl Jolt BMA HOPTTI AOBMC IMS off lineT T T T T T T T         which shows that the additional 

complexity is from the IMS (includes information Table generation and classification) and 

off-line input during discretization and learning phase. While the information Table 
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generation and classification can be timed, the offline discretization and learning phase 

cannot be timed, showing the limitation of the time stamping method of complexity 

evaluation. 

 

 

 

7.2.6 Simulation and Results 

a) Intelligently Switched RST SI Generation Results: 

The simulations employing RST use the rules deduced from predictive performance of the 

ZeroR classifier algorithm i.e. the correctly classified instances. The spatial-temporal 

characteristic attributes of American Football, Hall and Coastguard sequences, are employed 

to generate the rules during training for a generic RST based IMS classifier.  

The three sequences are chosen because of the range from low to complex spatial-temporal 

characteristics that they possess. Furthermore, they are all multiple object sequences with a 

variety of object types.  

The generic RST classifier is used to generate SI output by switching between HOPTTI and 

AOBMC-H as predicted. Figures 7.5, 7.6 and 7.7 show the frame by frame generated RST 

based IMS SI curves compared to the empirically generated switched HOPTII-AOBMC SI 

and the original HOPTTI algorithm for the selected training sequences of American Football, 

Coastguard, and Hall sequences.  

These reveal an improvement in the PSNR by intelligently switching in the correct MBs in 

the frames. RST based IMS outperformed original HOPTTI by up to 4 dB improvement on 

some frames and it is also shown to perform better than empirically switched MS.  
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Figure 7.5 Frame-wise SI-quality of Original HOPTTI, Switched HOPTTI-AOBMC and 

Swiched RST for the American Football sequence 

 

 

Figure 7.6 Frame-wise SI-quality of Original HOPTTI, Switched HOPTTI-AOBMC and 

Switched RST for the Coast Guard sequence 
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Figure 7.7 Frame-wise SI-quality of Original HOPTTI, Switched HOPTTI-AOBMC and 

Switched RST for the Hall sequence 

 

 

Table 7.11 AVERAGE PSNR (dB) FOR SWITCHED HOPTTI-AOBMC, 
SWITCHED RST and HOPTTI FOR THE SELECTED TESTING SEQUENCES 
INCLUDED IN TRAINING PHASE 

Sequences 

Switched 

HOPTTI-

AOBMC 

(Akinola, 

Dooley and 

Wong 2011) 

HOPTTI 

(Akinola, 

Dooley and 

Wong 2010) 

 

Switched RST  

 

Coastguard 
37.9 36.4 39.45 

Hall 
39.9 38.5 41.42  

American 

Football 
25.8 24.5 27.04 

Carphone 
36.2 35.3 37.34 

Mother 
48.4 47.3 49.12 

Foreman 
36.7 35.1 38.11 
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Table 7.11 shows the average PSNR improvement in SI generated employing the generic 

RST rules induced during training, giving an improvement of about 3dB for the American 

Football sequence over HOPTTI and about 1.2 dB over empirically switched SI. The 

Foreman sequence also gave above 3dB improvement over HOPTTI with a 1.4dB 

improvement over empirically switched SI. Likewise, the Hall sequence also showed about 

3dB improvement over HOPTTI SI. 

The results however show that when the information Table contains enough data to show 

adequate interrelationships for decision making, more accurate decisions can be made and 

higher levels of improvement achieved. Thus future works should make use of a larger pool 

of sequences for the rule inducing phase and training. Further analysis of the results is made 

using the target which is the ground truth of the algorithm that will produce better SI 

performance.  

 

b) Target and Ground Truth Analysis:  

A Ground truth is introduced to compare the switching performance both in terms of correct 

switches and PSNR performance; The target is obtained by comparing the PSNR of the SI 

MBs for AOBMC-H with HOPTTI, whichever is higher should be the MB that should 

ideally have been chosen and this is taken as the ground truth. In reality however, this is not 

so due to errors of prediction and the limitations of the spatial-temporal video content 

parameter employed in the algorithm which shows up in the information Table of attributes, 

objects and decisions of Table 7.6. Table 7.12 shows that  intelligent switching (Switched 

RST) consistently outperforms the empirically switched algorithm (Switched HOPTTI-

AOBMC) both in terms of percentage correctly switched frames and PSNR.  
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The benchmark switching performance analysis shows that intelligent switching approach 

improves SI generation performance both in terms of switching accuracy and PSNR 

performance giving up to 1.1dB over empirically switched MB based switching. 

   

Table 7.12 BENCHMARK ANALYSIS FOR SWITCHED HOPTTI-
AOBMC(Empirical) VERSUS SWITCHED RST (Intelligent) FOR THE SELECTED 
TEST SEQUENCES 

 ` 

Sequences 

 

Mode 

Switching 

 

Switched 

RST 

 

Target/ Ground 

Truth 

Coastguard 

% correct 

switch 78.1% 
 

98.5% 
100% 

PSNR dB 37.9 39.45 40.2 

Hall 

% correct 

switch 
75.6% 87.0% 100% 

PSNR dB 39.9 41.42 41.8 

American 

Football 

% correct 

switch 
88.2% 95.5% 100% 

PSNR dB 25.8 27.04 27.7 

Carphone 

% correct 

switch 
79.9% 92.3% 100% 

 36.2 37.34 38.1 

Mother 

% correct 

switch 
88.0% 96.4% 100% 

 48.4 49.12 49.9 

Foreman 

% correct 

switch 
88.0% 96.5% 100% 

PSNR dB 36.7 38.11 38.6 
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Also,  qualitative (visual) results show that SI produced by RST MB based intelligent 

switching is qualitatively improved over that produced by HOPTTI-AOBMC and the basic 

mode  switching algorithm. Further analysis of Table 7.12 shows that the difference between 

the PSNR of switched RST and the ground truth should still be within the threshold where 

some artefacts should still be visible as PSNR difference is in most cases above the 0.5 dB 

threshold (see discussion in section 4.2), the qualitative results in Figure 7.8 for example, 

show that there are no more visible artefacts. This further buttresses the discussion in section 

4.2, showcasing the problems with PSNR as the quantitative measure of choice in the video 

processing community (Girod, 1993). 

The challenging video sequences and frames to the HOPTTI algorithm introduced in Chapter 

5, Section 5.6.3, which are further improved in Chapter 6, Section 6.3.6 are presented so that 

it can be concluded that improved quality of SI is achieved by RST based IMS. 

Frames of the American Football sequences showing perceptual improvements are 

illustrated in Figure 7.9, where qualitative and quantitative performance is seen to be 

improving as we go from all the MBs being HOPTTI to empirical MS to RST based IMS 

with the ghosting disappearing and PSNR increasing.  

In frame #61, overlapping is overcome as we move from HOPTTI to empirical MS with the 

people in the background becoming as distinct as they are in the original frame. Also, in the 

same frame #61, as we move to the RST based IMS, the ghosting challenges in the HOPTTI 

frame have almost all disappeared.   

The most illustrative example is frame #93 which shows the ghosting being gradually 

removed as the various algorithms are introduced, with the RST based IMS frame providing 

improved qualitative SI performance that is quite good in visual perception compared to the 

original frame.  
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Frame #61           

Original SI for all blocks on 

Frame  HOPTTI 

PSNR=24.6dB 

SI for empirically 

Switched MB in Frame              

PSNR=26.0dB 

SI for  RST Switched 

MB in Frame                                                 

PSNR=26.8dB 
original frame No: 65 Cubic Traj SI frame No: 65 PSNR: 23.0302

original frame No: 65 PSNR: Inf Cubic Traj AOBM SI frame No: 65 PSNR: 24.9945

original frame No: 65 Cubic Traj SI frame No: 65 PSNR: 23.0302

original frame No: 65 PSNR: Inf Cubic Traj AOBM SI frame No: 65 PSNR: 24.9945

 

original frame No: 61 Cubic Traj HOPTTI+AOBMC+AMS SI frame No: 61 PSNR: 24.4219

  

original frame No: 65 Cubic Traj SI frame No: 65 PSNR: 23.0302

original frame No: 65 PSNR: Inf Cubic Traj AOBM SI frame No: 65 PSNR: 24.9945

 

Frame #93 

Original SI for all blocks on 

Frame  HOPTTI 

PSNR=24.5dB 

SI for empirically 

Switched  MB in Frame                         

PSNR=26.0dB 

SI for  RST Switched 

MB in Frame                                                       

PSNR=26.8dB 
original frame No: 97 Cubic Traj HOPTTI SI frame No: 97 PSNR: 25.1761

 

original frame No: 97 Cubic Traj HOPTTI+AOBMC+AMS SI frame No: 97 PSNR: 26.7502

 

original frame No: 93 Cubic Traj HOPTTI+AOBMC+AMS SI frame No: 93 PSNR: 25.6594

 

Frame #99 

Original SI for all blocks on 

Frame  HOPTTI 

PSNR=24.8dB 

SI for empirically  

Switched MB in Frame 

PSNR=26.2dB 

SI for RST Switched 

MB in Frame                    

PSNR=26.8dB 
original frame No: 99 Cubic Traj SI frame No: 99 PSNR: 24.4558

original frame No: 99 PSNR: Inf Cubic Traj AOBM SI frame No: 99 PSNR: 24.6348

   

original frame No: 99 Cubic Traj SI frame No: 99 PSNR: 24.4558

original frame No: 99 PSNR: Inf Cubic Traj AOBM SI frame No: 99 PSNR: 24.6348

 

original frame No: 99 Cubic Traj SI frame No: 99 PSNR: 24.4558

original frame No: 99 PSNR: Inf Cubic Traj AOBM SI frame No: 99 PSNR: 24.6348

   

original frame No: 99 Cubic Traj SI frame No: 99 PSNR: 24.4558

original frame No: 99 PSNR: Inf Cubic Traj AOBM SI frame No: 99 PSNR: 24.6348

 

Figure 7.8 Sample frames for American Football showing the SI quality obtained using  all 

blocks HOPTTI (Akinola, Dooley and Wong 2010), empirically Switched MS and 

RST based IMS. 

 

original frame No: 97 Cubic Traj HOPTTI SI frame No: 97 PSNR: 25.1761
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Another of the challenging HOPTTI frames introduced in Chapter 5 and 6, in the American 

Football sequence, frame #99, is also presented showing improvement with the RST based 

IMS providing the best perceptual frame. 

Table 7.13 shows the PSNR of SI generated using higher GOP values by employing the 

HOPTTI algorithm and the Switched RST algorithm. The results show that SI generation by 

higher GOP values which effectively increase the distances between key frames results in 

low degradation with Switched RST giving lower percentage PSNR reduction (∆% ) values 

throughout all sequences tested giving higher PSNR improvement compared to HOPTTI. 

In like manner, the frames of the Hall sequence that pose challenges to the HOPTTI 

algorithm introduced in Chapters 5 and 6 are presented showing perceptual improvements 

are illustrated in Figure 7.10, where qualitative and quantitative performance is seen to be 

improving as we go from all the MBs being HOPTTI to empirical MS to RST based IMS 

with the ghosting disappearing and PSNR increasing. One illustrative example is the frame 

#51 where the left leg shows ghosting when compared to the original, which then 

disappeared on the introduction of AOBMC in the empirically switched MS algorithm.  

The most illustrative example is frame #99 which shows the artifact on the neck and head 

due to the rotational motion, that HOPTTI did not accommodate, being gradually removed 

as the various algorithms are introduced with the RST based IMS frame providing the 

clearest frame with improved qualitative SI performance with the face, neck and shoulder 

distinctively clearer comparable to the original frame. 
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Figure 7.9 Sample frames for Hall showing the SI quality obtained using  all blocks HOPTTI 

(Akinola, Dooley and Wong 2010), empirically Switched MS and RST based IMS. 

Frame #51              

Original                SI for all blocks on 

Frame  HOPTTI 

PSNR=38.6dB 

SI for empirically       

Switched MB in 

Frame              

PSNR=39.6dB          

SI for  RST Switched                       

MB in Frame                                         

PSNR=39.9dB 

original frame No: 51 Cubic Traj SI frame No: 51 PSNR: 38.3889

original frame No: 51 PSNR: Inf Cubic Traj AOBM SI frame No: 51 PSNR: 36.4222

original frame No: 51 Cubic Traj SI frame No: 51 PSNR: 38.3889

original frame No: 51 PSNR: Inf Cubic Traj AOBM SI frame No: 51 PSNR: 36.4222

 

original frame No: 51 Cubic Traj SI frame No: 51 PSNR: 38.3889

original frame No: 51 PSNR: Inf Cubic Traj AOBM SI frame No: 51 PSNR: 36.4222

  

original frame No: 51 Cubic Traj SI frame No: 51 PSNR: 38.3889

original frame No: 51 PSNR: Inf Cubic Traj AOBM SI frame No: 51 PSNR: 36.4222

 

Frame #85                  

Original                 SI for all blocks on 

Frame HOPTTI 

PSNR=40.6dB 

SI for empirically        

Switched MB in 

Frame             

PSNR=41.8dB        

SI for  RST Switched                        

MB in Frame                                        

PSNR=41.9dB 

original frame No: 85 Cubic Traj SI frame No: 85 PSNR: 42.0286

original frame No: 85 PSNR: Inf Cubic Traj AOBM SI frame No: 85 PSNR: 42.2422

original frame No: 85 Cubic Traj SI frame No: 85 PSNR: 42.0286

original frame No: 85 PSNR: Inf Cubic Traj AOBM SI frame No: 85 PSNR: 42.2422

 

original frame No: 85 Cubic Traj SI frame No: 85 PSNR: 42.0286

original frame No: 85 PSNR: Inf Cubic Traj AOBM SI frame No: 85 PSNR: 42.2422

  

original frame No: 85 Cubic Traj SI frame No: 85 PSNR: 42.0286

original frame No: 85 PSNR: Inf Cubic Traj AOBM SI frame No: 85 PSNR: 42.2422

 

Frame #99              

Original                  SI for all blocks on 

Frame  HOPTTI 

PSNR=42.0dB 

SI for empirically       

Switched MB in 

Frame                                            

PSNR=42.8dB             

SI for  RST Switched                       

MB in Frame             

PSNR=43.1dB 

original frame No: 99 Cubic Traj SI frame No: 99 PSNR: 41.6423

original frame No: 99 PSNR: Inf Cubic Traj AOBM SI frame No: 99 PSNR: 42.4231

    

original frame No: 99 Cubic Traj SI frame No: 99 PSNR: 41.6423

original frame No: 99 PSNR: Inf Cubic Traj AOBM SI frame No: 99 PSNR: 42.4231

 

original frame No: 99 Cubic Traj SI frame No: 99 PSNR: 41.6423

original frame No: 99 PSNR: Inf Cubic Traj AOBM SI frame No: 99 PSNR: 42.4231

   

original frame No: 99 Cubic Traj SI frame No: 99 PSNR: 41.6423

original frame No: 99 PSNR: Inf Cubic Traj AOBM SI frame No: 99 PSNR: 42.4231
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Lastly, frames #143 of the Coastguard sequences showing exemplary perceptual 

improvements to the challenges in the HOPTTI algorithm is illustrated in Figure 7.11, 

where qualitative and quantitative performance is seen to be improving as we go from all 

the MBs being HOPTTI to empirical MS to RST based IMS with the ghosting and 

overlapping disappearing and PSNR increasing. This most illustrative example is a frame  

which shows the ghosting around additional shrub in the background of the HOPTTI based 

frame, including the flag that is quite faint being gradually improved as the various 

algorithms are introduced, with the RST based IMS being the clearest frame with improved 

qualitative SI perfomance. 

 

 

Figure 7.10 Sample frames for Coastguard showing the SI quality obtained using  all blocks 

HOPTTI (Akinola, Dooley and Wong 2010), empirically Switched MS and RST based 

IMS. 

 

c) GOP Analysis of Switched RST results: 

Further testing of the algorithm is undertaken by increasing key frame temporal distances 

and reducing WZ frames to Key frames ratio employing higher GOP sizes as in Chapter 5, 

Frame #143       

Original                    SI for all blocks on   

Frame  HOPTTI 

PSNR=31.2dB 

SI for empirically               

Switched  MB in 

Frame                                           

PSNR=33.8dB                         

SI for  RST Switched                               

MB in Frame                         

PSNR=34.3dB 

  

original frame No: 143 Cubic Traj SI frame No: 143 PSNR: 34.3683

original frame No: 143 PSNR: Inf Cubic Traj AOBM SI frame No: 143 PSNR: 31.1994

    

original frame No: 143 Cubic Traj SI frame No: 143 PSNR: 34.3683

original frame No: 143 PSNR: Inf Cubic Traj AOBM SI frame No: 143 PSNR: 31.1994

        

original frame No: 143 Cubic Traj SI frame No: 143 PSNR: 34.3683

original frame No: 143 PSNR: Inf Cubic Traj AOBM SI frame No: 143 PSNR: 31.1994

  

original frame No: 143 Cubic Traj SI frame No: 143 PSNR: 34.3683

original frame No: 143 PSNR: Inf Cubic Traj AOBM SI frame No: 143 PSNR: 31.1994
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Section 5.4 with the results for various GOPs for HOPTTI in Section 5.5.5. The analysis 

shows that Switched RST shown in Table 7.13 gives lower PSNR percentage reduction ∆% 

degradation for up to GOP size of 8 while giving higher PSNR performance compared to 

HOPTTI. This means that RST based IMS would give better SI when compared to HOPTTI 

when the encoder is further simplified with the dropping of more key frames such that more 

frames will go through the WZ path rather than the conventional codec path of the DVC 

architecture. 

 

TABLE 7.13 AVERAGE PSNR OF SI OUTPUT FOR THE SELECTED 
SEQUENCES USING SWITCHED RST ALGORITHM FOR VARIOUS GOP SIZES. 

 

 

d) Rate Distortion Performance of Switched RST results: 

Rate distortion results show that not all the improvement in SI from the SI generation 

module is carried to the final codec output. While SI improvement is up to 3dB the final 

codec output is only up to 2dB improvement over HOPTTI. This shows that the bottlenecks 

Sequences 
Switched RST PSNR 

GOP 2 (in dB) 

Switched RST 

PSNR 

GOP 4 (in dB) 

Switched RST 

PSNR 

GOP 8 (in dB) 

American Football 

27.0 25.8 25.3 

∆PSNR(∆%)    → 1.2 (4.2) 1.7 (6.3) 

Foreman 

38.1 36.5 34.7 

∆PSNR(∆%)    → 1.6 (4.2) 3.4 (8.9) 

Coastguard 

39.5 37.4 36.1 

∆PSNR/∆%    → 2.1 (5.3) 3.4 (8.6) 

Hall 

41.4 40.1 39.9 

∆PSNR/∆%    → 1.3 (3.1) 1.5 (3.6) 
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in the other parts of the codec which include the channel model and rate allocation modules, 

also need to be improved upon in addition to SI generation. These bottlenecks are however 

major areas of research in themselves and are thus included in future works in Chapter 8. 

The overall RD results for Foreman and Hall sequence chosen to accommodate both a 

complex single object sequence and a multiple object sequence are shown in Figure 7.12 

and Figure 7.13 respectively. The reason for choosing these two sequences is that they 

contain complex motions and are commonly used as comparators. The result is that RST 

based IMS outperforms HOPTTI, H.264 No Motion and H.264 intra while the H.264 inter 

remains the upper limit that outperforms Switched RST in Hall, while H.264 inter 

outperforms Switched RST by up to 4dB in the Foreman sequence. Furthermore, MC in 

DVC does not have access to original frames at the encoder as this is done at the decoder 

which makes its architecture favour the class of video sequences with slow and rigid 

motion, where temporal characteristics are not complex, thus this shows in the results 

presented in the RD results as the Hall sequence performs better than the Foreman 

sequence. The amount of residue that is decoded at the decoder which helps the performance 

of conventional codecs increases with higher bit rates and this is the additional reason why 

DVC outperforms H.264 Intra at low bit rates. Also overall, this shows that the 

improvements in the key bottleneck of SI generation effected significant RD improvement 

which is more visible in simpler sequences as Hall compared to sequences with faster and 

more complex spatial-temporal characteristics.    
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Figure 7.11 RD Curves showing HOPTTI  PSNR performance in codec based on (Li, 2008)  for 

Foreman sequence @ 15f/s 

The RD results for the Hall sequence show that at low rates RST based RST outperforms 

H.264 inter. This is mainly due to the fact that the residue in H.264 which accounts for 

major performance only kicks in at medium to high bit rates and DVC is therefore more 

competitive at low bit rates. 
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Figure 7.12 RD Curves showing HOPTTI  PSNR performance in codec based on (Li 2008)  for 

Hall sequence @ 15f/s 
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7.3 Summary 

This Chapter presents the RST based IMS employed to further improve the empirical mode 

switching which produced up to 1.6dB improvement in PSNR over the empirically switched 

HOPTTI-AOBMC. Furthermore, about 3dB improvement is achieved over the HOPTTI SI 

generation algorithm. The ground truth switching performance analysis further shows that 

intelligent switching approach can correctly switch up to 98.5% of MBs to improve SI 

generation performance. However, it is possible that the switching performance can be 

improved further by incorporating more representative spatial-temporal characteristic 

attributes and objects in the information Table. One way to achieve this is to include a larger 

pool of MBs which are carefully selected to ensure fair representation from the various 

types of spatial-temporal stratum ranging from high motion to low motion, single object to 

multiple object sequences so that the RST induction rules are more accurate. Nevertheless, 

this is out of the scope of this proof-of-concept study. Future works including the use of 

multi-view images that contain highly complex sequences such as crowd and break-dancers 

are recommended.        

Qualitative perceptual results show that frames which pose challenges for the HOPTTI 

algorithm that have been marginally improved in Chapter 5 with the introduction of 

AOBMC are further improved with the RST based IMS. This shows that RST is a good 

choice for IMS but future works comparing RST with other theoretically viable artificial 

intelligent alternatives such as SVM and Neural Network should be pursued.  

Finally, overall RD curves show that a DVC codec employing Switched RST algorithm 

performs better than H.264 intra and H.264 no motion. Although the performance is not as 

good as H.264 inter, the gap is getting closer especially at low bit rates. 



203 

 

 

 

 

Chapter 8 

 

 

Future Work 

 

 

 

In this chapter, several ideas are presented in line with current literature to extend the 

findings from this thesis. The presented SI Generation and Improvement Framework in 

Figure 1.2 has contributed to the development of more effective DVC by tackling the pre-

eminent bottleneck of SI generation and narrowing the performance gap between DVC and 

conventional codecs. Some possible future directions for this research which directly build 

on the original contributions made in this thesis are outlined in the following sections.  

    

8.1 Extending RST Based Intelligent MS 

The main conclusion from the proof-of-concept RST-based solution in Chapter 7 was that 

integrating intelligent MS within the SI Generation and Improvement Framework meant 

further gains in SI quality could be achieved. This outcome could be extended to optimizing 

parameter settings such as SMAD, SBAD and Mean Pixel which were the key parameters in 

the information Table of Table 7.4, by formulating an objective function so their 

contributions to RST rule formation can be adjusted to ensure MS decisions lead to lower 

errors and better SI output quality.   
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Another possibility could be to broaden the concept of intelligent MS to more than the two 

modes (HOPTTI and AOBMC-HOPTTI) which were investigated in Chapter 7, to include 

for instance, switching trajectory orders depending on the input video characteristics. This 

means there could be a set of MS options including HOPTTI_LINEAR, 

HOPTTI_QUADRATIC, HOPTTI_CUBIC, AOBMC-HOPTTI_LINEAR, AOBMC-

HOPTTI_QUADRATIC and AOBMC-HOPTTI_CUBIC. A low object motion sequence 

like Container could thus switch at a MB level to HOPTTI_LINEAR and AOBMC-

HOPTTI_LINEAR for example, while American Football which has multiple high-object 

motion, may instead use HOPTTI_CUBIC and AOBMC-HOPTTI_CUBIC. This would not 

only boost SI quality of the proposed framework, but potentially also reduce computational 

complexity.  

It is also possible to progress the RST training classification processes by studying how to 

compose an optimal pool of video sequences for training purposes. The proposition is to 

increase the training dataset in careful and deliberate manner as it requires in-depth study 

(expert knowledge) in order to include sufficient number of training members with diverse 

characteristics to enhance learning. This enables the avoidance of the “memorization” 

problem that reduces the ability of AI training algorithms to truly learn. The development of 

an optimal pool of video training dataset will thus improve IMS, SI generated and DVC 

output performance.  

 

8.2 Other Intelligent MS Strategies 

As pointed out in Chapter 7, there are other alternative AI algorithms such as SVM, NN, FL 

and GA, which could be investigated as a means of comparison with the RST-based results. 

Given that AI has yet to gain wide use in DVC community, investigating the effect of 
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applying FL singleton, triangular or trapezoidal rule formation as opposed to RST, which 

induces the rules from the data presented, could be beneficial as this would dispense with 

the need to apply heuristics in the training processes which is inherent in RST.  

Another AI method that can replace and enhance RST in the IMS algorithm of Chapter 7 is 

the SVM. It was particularly noted in Section 7.1 that the SVM has good classification 

potential, though it could have higher complexity implications even when linear hyper 

planes are employed. Furthermore, there is an inherent difficulty to select the appropriate 

kernel function as this could be application dependent. However where overhead complexity 

is not an overbearing concern as in the decoder side of DVC, and an appropriate kernel 

function is found, SVM gives very accurate classification results. Therefore, it is worthwhile 

to explore this AI technique in the SI Generation and Improvement Framework to improve 

SI generation and DVC output performance.  

Thus a comparative analysis of different AI is merited and the corresponding impact upon 

SI and DVC performance should be critically evaluated. 

 

8.3 HOPTTI and Intelligent MS in Multi-view DVC 

One reason why DVC is a hot topic at the moment (Magli et al. 2013; Petrazzuoli et al 

2013) is that it fits well into the predicted future of multimedia broadcasting for 3D TV and 

Free Viewpoint TV (Magli et al. 2013) which utilizes multiple views of the same scene. The 

DVC coding theory allows for a multi-view video context where spatial-temporal 

correlations between the various views of the same scene can be coded. Presently, multi-

view DVC (Petrazzuoli et al 2013; Kodavalla and Mohan 2012) like its mono-view 

counterpart, utilizes LMCTI for SI generation. Therefore the development of a new Higher 

Order Multi-view Piecewise Temporal Trajectory Interpolation (HOMPTTI) within the SI 



206 

 

Generation and Improvement Framework is worthy of investigation as it could improve 

quantitative and qualitative multi-view DVC performance and multi-view SI quality in 

particular. Furthermore, video characteristics could be exploited in a HOMPTTI framework 

could be employed to intelligently determine the required number of views for a given 

quality of service level by using AI and IMS to optimize HOMPTTI. Thus, an extension of 

the SI Generation and Improvement Framework into multi-view DVC could enable both 

intelligent exploitation of the number of views, video characteristic and employment of 

more accurate, higher order, object motion model. 

 

8.4 Channel Correlation Noise Model 

The problem of how to effectively exploit intra-view and inter-view correlations, for 

efficient compression and joint decoding is another well-known DVC performance 

bottleneck (Brites et al., 2013; Petrazzuoli et al 2013; Roumy and Guillemot 2012; Yuan 

You and Fang 2012). In the DVC theory the channel model is assumed to be known and that 

it can thus be accurately modeled. Roumy and Guillemot (2012) and Yuan You and Fang 

(2012) showed the importance of the channel correlation model, SI and channel codes and 

their critical nature to the quality of decoded output. Leveraging from the research in this 

thesis, comprehensive investigation to determine how the spatial-temporal characteristics of 

sequences impact on key parameters of the various correlation noise models, especially the 

Laplacian model, which was implemented in the SI Generation and Improvement 

Framework. Furthermore, investigation and analysis of additional channel correlation 

models including, Gaussian and Dirichlet models is proposed. While a priori and post priori 

knowledge of the video has been proposed to improve the channel model, with Brites et al. 

(2013) proposing perceptually driven error correction, the effect of video characteristics on 
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each of the channel models and the intelligent switching of the correlation models to 

maximize DVC improvement gain is proposed.  
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Chapter 9 

 

 

Conclusion  

 

 

 

The basis for this thesis was the proven DVC theories of WZ and SW, which reverse the 

conventional coding paradigm of high-end encoders coupled with low-cost decoders to that 

of low-cost encoders coupled with high-end decoders. The premise is that despite these core 

theories stating DVC and conventional codecs should give the same performance quality, 

there is an acknowledged performance deficit which is primarily due to the low quality of SI 

at the DVC decoder. 

The main objective in this thesis was to narrow this gap by introducing a new SI Generation 

and Improvement Framework which comprised four constituent modules, which represent 

original contributions to DVC. These are respectively: 

(i) A cubic trajectory based HOPTTI framework for SI generation which significantly 

improves the accuracy of MV estimation particularly for fast moving objects, multiple 

objects and complex motion. 

(ii) Development and incorporation of the AOBMC model to minimize the impact of 

BMA blocking and overlapping effects. The perceptual quality of both the SI and WZ 

outputs has been improved by employing this SI specific AOBMC solution. 
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(iii) An empirical MS algorithm that uses spatial-temporal video content parameters to 

switch between HOPTTI and HOPTTI-AOBMC macroblocks within frames to enhance 

SI generation. 

(iv) An intelligent RST-based switching strategy which selects the best MBs between the 

HOPTTI and HOPTTI-AOBMC based intermediate frames and automatically determines 

key parameters. 

The most notable contribution in the SI framework is the HOPTTI algorithm, because 

HOPTTI significantly improved the MV estimation accuracy for non-linear motions which 

occur in many natural sequences. HOPTTI addressed the problem differently by using a 

higher-order trajectory model, and even without the enhancements, consistently provided 

superior SI quality compared to linear-based models, especially for non-linear object motion. 

Improvement of at least 1.5dB and up to 5dB in PSNR was achieved for the sequences tested.  

The cost benefit of the HOPTTI model was analysed and revealed that SI quality generally 

improved as the trajectory model order increased, though the degree of improvement became 

negligible beyond cubic-order, while the computational cost rose exponentially.  

Despite the improvements due to HOPPTI, artefacts appeared in the DVC codec output 

whose root causes were traced to the BMA applied during interpolation. The AOBMC 

algorithm was then integrated into HOPTTI and provided both quantitative and perceptual SI 

improvements. The results confirmed that frames produced by HOPPTI with AOBMC had 

lower artefacts than frames produced by HOPTTI alone.  

It was also observed the AOBMC enhancement did not always work for all MBs in the 

frame. An investigation into selecting the better MBs between HOPTTI and HOPTTI-

AOBMC frames was therefore conducted. The resulting MB selection MS mechanism was 
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guided by the spatial-temporal characteristics of a sequence on a MB basis, with the 

corresponding results confirming quantitative SI improvements of at least 1dB.    

A constraint on the empirical MS algorithm was that parameters had to be set manually and 

different settings required for different sequences. A proof-of-concept intelligent MS 

algorithm was thus trialled and analysed. The RST-based method automated both parameter 

settings and MS between HOPTTI and HOPTTI-AOBMC and provided further SI 

improvement, with on average, 1.5dB gained in RD performance. 

Overall, the findings from the novel SI generation improvement framework presented in this 

thesis have contributed to a narrowing of the performance gap between conventional codecs 

and DVC. While it is recognised that aside from the quality of SI generation, there are other 

DVC components which limit coding efficiency, however this thesis has explored the most 

fundamental bottleneck of them all whose outcome is the higher order SI Generation and 

Improvement Framework which have contributed on average 5 dB RD improvement when 

the improvement from each aspect of the framework is considered.  
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