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ABSTRACT 

Super-resolution reconstruction process offers the solution to overcome the 

high-cost and inherent resolution limitations of current imaging systems. The 

wavelet transform is a powerful tool for super-resolution reconstruction. This 

research provides a detailed study of the wavelet-based super-resolution 

reconstruction process, and wavelet-based resolution enhancement process 

(with which it is closely associated). It was addressed to handle an explicit need 

for a robust wavelet-based method that guarantees efficient utilisation of the SR 

reconstruction problem in the wavelet-domain, which will lead to a consistent 

solution of this problem and improved performance. 

This research proposes a novel performance assessment approach to improve 

the performance of the existing wavelet-based image resolution enhancement 

techniques. The novel approach is based on identifying the factors that 

effectively influence on the performance of these techniques, and designing a 

novel optimal factor analysis (OFA) algorithm. A new wavelet-based image 

resolution enhancement method, based on discrete wavelet transform and new-

edge directed interpolation (DWT-NEDI), and an adaptive thresholding process, 

has been developed. The DWT-NEDI algorithm aims to correct the geometric 

errors and remove the noise for degraded satellite images. A robust wavelet-

based video super-resolution technique, based on global motion is developed 

by combining the DWT-NEDI method, with super-resolution reconstruction 

methods, in order to increase the spatial-resolution and remove the noise and 

aliasing artefacts. A new video super-resolution framework is designed using an 

adaptive local motion decomposition and wavelet transform reconstruction 

(ALMD-WTR). This is to address the challenge of the super-resolution problem 

for the real-world video sequences containing complex local motions. 

The results show that OFA approach improves the performance of the selected 

wavelet-based methods. The DWT-NEDI algorithm outperforms the state-of-the 

art wavelet-based algorithms. The global motion-based algorithm has the best 

performance over the super-resolution techniques, namely Keren and structure-

adaptive normalised convolution methods. ALMD-WTR framework surpass the 
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state-of-the-art wavelet-based algorithm, namely local motion-based video 

super-resolution. 
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1 Introduction 

1.1 Research Background 

High-resolution (HR) images and videos are highly desirable, and in strong 

demand for most electronic imaging applications: they are used to both 

providing better content visualisation, and for extracting additional detailed 

information. However, it is difficult to obtain the requisite HR images/videos in 

many practical applications. This is due to the high cost and inherent physical 

constraints of the precision optics and imaging sensors involved, or the 

limitations in bandwidth of data communications. Therefore, super-resolution 

(SR) reconstruction has emerged as an alternative low-cost solution, and is 

attracting increasing attention. Super-resolution reconstruction aims to 

reconstruct a single HR image, or a set of HR images (video), from a sequence 

of different low-resolution (LR) images captured from the same scene in order 

to overcome the limitations and/or possibly ill-posed conditions of the imaging 

system [1], [2]. SR reconstruction has been a very active area of research over 

the last two decades for many applications in various fields, such as satellite 

imaging [3], astronomical observation [4], medical diagnostics [5], forensic 

imaging [6], video surveillance systems [7], and other applications [8].  

A HR image means that the number of pixels per unit area is high, and thus the 

HR image contains more detail; this can be crucial in particular applications [1]. 

Image resolution is classified into five different types: pixel resolution, spatial 

resolution, spectral resolution, temporal resolution, and radiometric resolution. 

Spatial resolution is the primary focus of this research. Spatial resolution refers 

to the number of pixels per unit area contained in an image, and it is measured 

in pixels per unit area. The spatial resolution of a digital image is initially 

determined by the imaging sensors, or the imaging systems. A modern image 

sensor is typically either a charge-coupled device (CCD), or a complementary 

metal-oxide-semiconductor (CMOS) active-pixel sensor. These sensors consist 

of a two-dimensional array of photo-detector elements or pixels. The higher the 

number of detector elements per unit area, the higher the spatial resolution 

possible of the image acquisition device. An imaging system with an insufficient 



 

2 

number of detectors will produce a LR image with an aliasing effect; when a 

scene is captured with a LR device, it is sampled at a low sampling rate, 

causing the aliasing effect. To increase the spatial resolution of an imaging 

system, there are two possible hardware-based solutions [9], [10], [11].  

A straightforward solution to increase spatial resolution is to reduce the pixel 

size with enhanced sensor manufacturing techniques. However, as the pixel 

size decreases, the amount of light incident on that pixel also decreases; this 

causes shot noise, severely degrading the quality of the image. Furthermore, 

the hardware cost of the sensor will also increase with the increase in pixel 

density. Reducing the pixel size without causing the shot noise is subject to 

physical constraints; the optimal pixel size is estimated at about 40𝑢𝑚2 for a 

CMOS sensor. The current imaging sensor technology has almost reached this 

limitation [1], [11], [12]. 

Another solution to enhance spatial resolution is to increase the chip size, which 

results in an increase in capacitance. This means more pixels will be involved in 

an imaging system. However, this solution is not considered to be effective; a 

large capacitance slows down the charge transfer rate, leading to a longer 

period of time to acquire an image. Moreover, the hardware cost of an image 

sensor will also increase with the increase in chip size. Therefore, it is essential 

to find an effective image processing technique to increase the spatial 

resolution level for a low-cost, without replacing the existing imaging system. To 

address this challenge, the concept of super-resolution has been developed [1], 

[11], [12].  

The fundamental notion behind SR reconstruction for increasing spatial 

resolution relies on the availability of a sequence of LR images acquired from 

the same scene. That is, the LR images represent different views of the same 

scene with sub-pixel shifts, and thus each LR image contains additional 

information introduced by sub-pixel shifts between the LR images. If the LR 

images are shifted by integer pixel shifts, each LR image contains the same 

information, and therefore there is no extra information that can be combined to 

generate a HR image. However, if the LR images are shifted by sub-pixel shifts 
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and down-sampled (aliased), each LR image contains additional information 

that can be exploited to reconstruct a HR image. 

To obtain different viewpoints (multi-view analysis) of the same scene, relative 

scene motions (sub-pixel shifts) must exist between the LR images from 

multiple scenes or video sequences. Multiple scenes can be acquired by using 

a single camera with successive captures, or by employing multiple cameras 

positioned in different locations. These scene motions can occur due to 

controlled motions in imaging systems (e.g. images captured from orbiting 

satellites); or due to uncontrolled motions between the imaging system and 

scene (e.g. movement of local objects or vibration of imaging systems) [11], 

[12]. If these sub-pixel shifts are known or can be estimated with sub-pixel 

accuracy, SR reconstruction is possible by combining these LR images, as 

illustrated in Figure 1-1.  

 

Figure 1-1 The basic premise for super-resolution [1] 
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SR image/video reconstruction is a severely ill-posed inverse problem because 

of an inadequate number of LR images, ill-conditioned motion 

estimation/registration, and unknown degradation operators. There are two 

major challenges in SR reconstruction: image registration and image 

reconstruction. Image registration is the process of aligning two or more images 

(the reference and observed images) captured from the same scene at different 

times, from different viewpoints, and/or by different sensors [13]. 

Registration/motion estimation aims at estimating the motion between the 

reference LR image and each of the neighbouring LR images at sub-pixel 

accuracy. It plays a critical role in the success of SR reconstruction, and it is 

widely understood as an ill-posed estimation problem. The problem becomes 

more difficult in building a practical SR system; the observed LR images contain 

large amounts of aliasing artefacts. The performance of the basic registration 

algorithms degrades rapidly when the resolution of the observed images goes 

down, leading to more registration errors [11], [14].  

Image reconstruction aims to combine a sequence of different registered 

images into a single HR image, and eliminate any blur and noise that occurred 

during image acquisition [15]. Most SR reconstruction approaches can be 

classified into either frequency-domain-based or spatial-domain-based 

approaches. Between these two domains, the wavelet-domain-based SR 

approach has more recently emerged as an effective tool for many image and 

signal processing applications. The wavelet transform-based approach is able 

to provide both frequency information and temporal information in the 

transformation process. The attractive properties of the wavelet transform (WT), 

such as locality, multi-resolution, and compression enable it to analyse real-

world signals [16]. The wavelet transform is a tool that decomposes an image 

into low and high-frequency sub-bands, and then examines each sub-band with 

a resolution matched to its scale [17]. The advantage of wavelet decomposition 

is that image characteristics at different scales can be isolated and analysed: 

global characteristics can be examined at coarse scales, while local 

characteristics can be analysed at fine scales [18]. The essential idea behind 

wavelet-based SR reconstruction approaches is the estimation of unknown 
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wavelet coefficients in sub-bands containing high-pass frequency spatial 

information, in order to reconstruct a HR image from the observed LR images. 

Discrete wavelet transform (DWT) is one of the recent wavelet transforms: it 

being used as a powerful tool for resolution enhancement, and in many image 

and video processing applications [19]. The DWT provides a sufficient quantity 

of information for local analysis and synthesis of an image [12].  

A closely related approach to SR reconstruction is image interpolation, which 

can also be used to increase the number of pixels in an image. Image 

interpolation aims to estimate values at unknown locations using known pixel 

constraints [19]. Interpolation is extensively used in several image processing 

applications, including region-of-interest image magnification, image rotation, 

and sub-pixel image registration. However, as there is no extra information 

introduced, the quality of the interpolated image is inherently limited due to the 

use of a single, aliased LR image. Another limiting factor is the number of pixel 

constraints present within the data [11], [12]; the interpolated image does not 

reconstruct the missing high-frequency information, and does not remove the 

aliasing effect [14]. Consequently, multi-frame SR reconstruction approaches 

have been proposed to exploit the additional information provided by a 

sequence of temporarily correlated LR frames with sub-pixel accuracy in order 

to improve the resolution. Another related approach to SR reconstruction, that 

cannot be used to change the size of the image, is image restoration. Image 

restoration endeavours to recover an original HR image from a degraded image 

by applying a priori knowledge of the degradation operators and inverse 

process.  

1.2 Research Motivation 

SR reconstruction technology offers a means to overcome the high-cost and the 

inherent physical resolution limitations of hardware-based approaches, for many 

practical applications. For instance, satellite imaging is one such an application 

as updating the cameras in a satellite is hugely expensive. Satellites, e.g. 

Landsat and WorldView-2, can acquire multi-temporal or multi-view images of 

the same area and thus provide an opportunity for SR. A significant example of 
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SR is shown in [3] for remote sensing images provided by multi-angle 

WorldView-2, which incorporate five angular images. The main challenge for 

remotely sensing image SR is to tackle the scene changes caused by temporal 

differences. In astronomical observation, the physical resolution limitations of 

astronomical devices also provide the possibility for SR technologies to play a 

key role. Therefore, SR techniques have been developed to help astronomers 

with the exploration the outer space by improving the spatial resolution of small 

objects. A specific example of SR is given in [4] for multiple star images. In 

medical diagnosis, resolution limitations of medical imaging systems usually 

degrade the quality of images in the diagnosis. Thus, SR techniques have been 

used to increase the spatial resolution of medical images while preserving the 

true isotropic 3-D imaging. In surveillance, digital video recorder devices play a 

significant role in applications, such as traffic surveillance and security 

monitoring. However, it is difficult to supply large-scale HR devices. This is 

because outdoor video devices are vulnerable to weather conditions. Therefore, 

the need for video SR technologies is necessary [8]. These applications make 

SR techniques a particularly requisite and relevant research topic in our daily 

life.  

Most SR reconstruction approaches employ either the spatial-domain, or 

frequency-domain, to reconstruct a HR image from given LR images. The 

wavelet-domain-based SR reconstruction approach is able to employ both the 

spatial and frequency-domains, and integrate properties of both to reconstruct a 

HR image from observed LR images. The wavelet-domain-based SR has not 

yet been fully exploited in SR reconstruction. This work is a detailed study of the 

wavelet-based SR problem, and wavelet-based resolution enhancement 

problem (with which it is closely associated). This research identifies previous 

methods, their associated limitations, and the major differences between them. 

This work then develops new algorithms that solve these problems more 

efficiently. This work also focused on the study of SR reconstruction in the 

spatial-domain and frequency-domain. This research clarifies the merits of 

wavelet-domain in terms of the conceptual properties, associated strategies and 

achieved challenges. There is an explicit need for a robustness wavelet-based 
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method that guarantees efficient utilisation of the SR reconstruction problem in 

the wavelet-domain, and considers different scenarios of this problem, which 

will lead to a consistent solution of this problem and improved performance. As 

a result, there has an explicit lack of a generally accepted and validated 

definition of this problem which has lead, in turn, to inconsistent solutions and 

limited performance. 

This research will  

1. Identify the SR reconstruction problem in different domains (spatial, 

frequency, and wavelet). 

2. Address the wavelet-based SR reconstruction problem and wavelet-

based resolution enhancement problem. 

3. Develop a robust algorithm for wavelet-based SR reconstruction 

demonstrating an improved performance. 

1.3 Research Questions 

The main research question of this study is to investigate how wavelet-based 

approach can be used to improve the SR performance and go beyond the 

resolution limit of the LR observations, rather than improving the expensive 

hardware devices. In order to form the framework for the required work, the 

following research questions were formulated: 

1.  What is the current performance bottleneck of the existing wavelet-

based image resolution enhancement methods? 

2.  Why these methods use inconsistent factors to assess the performance 

and what is the impacts of using different factors on each method? 

3. How to address resolution enhancement problem in the wavelet-domain 

and increase the spatial resolution for a single observed noisy LR image 

and a particularly more challenging satellite images? 

4.  How to compensate for the errors and remove potential noise caused by 

the limitations of imaging systems? 

5.  How to solve SR reconstruction problem in the wavelet-domain and 

increase the spatial resolution for the observed noisy video sequences 

captured from a moving camera which feature global motion? 
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6.  What is the current performance limitations of the existing wavelet-

based SR methods working under global motion and how to investigate 

the effectiveness of the parameters that influence on the SR 

performance? 

7. How to solve SR reconstruction problem in the wavelet-domain and 

increase the spatial resolution for real-world video sequences which 

feature complex local motions caused by multiple moving objects? 

8.  What is the current performance drawbacks of the existing wavelet-

based SR methods working under complex local motions and how to 

overcome local motion inaccuracies? 

1.4 Research Aim and Objectives 

The attractive primary properties of the wavelet transform, such as locality and 

multi-resolution make it effective for analysing real-world signals at more than 

one resolution. The wavelet-based SR reconstruction is a new research area, 

which has recently received increasing attention in the digital image processing. 

The primary aim of this project was to design and develop a set of wavelet-

based reconstruction approaches in order to increase spatial-resolution and 

overcome the inherent physical resolution limitations for different imaging 

systems. 

In order to accomplish the aim of this study, the following four objectives were 

defined: 

1. To design a novel performance assessment approach for improving the 

existing wavelet-based image resolution enhancement techniques. 

2. To develop a new wavelet-based image resolution enhancement method 

for increasing the spatial resolution of a single LR image. 

3. To develop a robust wavelet-based multi-frame (video) super-resolution 

method for increasing the spatial resolution when the camera is moving 

and the observed object is static. 

4. To design a new wavelet-based video super-resolution framework for 

increasing the spatial resolution when the camera is stationary and the 

observed object is moving. 
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The reason for designing a novel performance assessment approach to 

improve the performance of the existing wavelet-based methods is that these 

methods make a number of assumptions with regard to the factors that affect 

the performance and they use inconsistent factors to assess the performance, 

which limit their application in various fields. Therefore, the need for a more 

advanced approach to find the best factors so as to increase the applicability 

and improve the overall performance of the existing wavelet-based methods. 

Although many wavelet-based image resolution enhancement methods have 

been developed progressively in various fields for different practical 

applications, resolution enhancement of satellite images still remains a 

challenge. This is because satellite imaging is one such an application as 

improving the sensors on satellites is the most cost means. In addition, the 

applicability of these methods to satellite images is still limited by the relatively 

poor performance and time consuming. Thus, the demand for developing a 

more efficient wavelet-based image resolution method to improve the 

performance is highly desirable.  

The justification for proposing a new SR reconstruction technique in the 

wavelet-domain to increase the spatial resolution for video sequences with 

global motion is that the application of the proposed technique is especially 

useful when the camera is moving and the observed object is stationary, and 

the existing wavelet-based SR techniques have limited performance capabilities 

for the parameters that influence on the SR performance. Therefore, the need 

for proposing a robust SR algorithm to provide high performance and improved 

flexibility for these various parameters. Although, the application of the 

proposed algorithm is very useful for video sequences with global motion, 

dealing with real-world video sequences containing complex local motions is still 

a challenge. This is because some wavelet-based SR algorithms can deal with 

local motions, but the local motion inaccuracies caused by multiple moving 

objects, and computational cost limit their performance in different application 

fields. Thus, the demand for designing a new SR reconstruction technique in 

the wavelet-domain to reduce the local motion errors and increase the spatial 

resolution is still highly requested in reduced computation intensive. 
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1.5 Research Methodology 

The research methodology of this Thesis is illustrated by Figure 1-2. This PhD 

research starts from reviewing the classic and state-of-the-art SR reconstruction 

approaches in both spatial and frequency-domains, with a focus on wavelet-

domain-based SR approaches through the literature review, and then identifying 

the research gap. A sensitivity analysis of various factors of the existing 

wavelet-based methods is conducted to determine if there is a prospect to 

improve the performance of these methods in a relatively straightforward way, 

which is the first major objective of this research. In this objective, the 

performance evaluation measures are reviewed and improved, which may help 

select the optimal factors. Such a study is important and essential because it 

contributes to the development of new wavelet-based approaches through 

guiding the selection of optimal factors.  
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Figure 1-2 Research Methodology 

The research is then to develop a novel and generic wavelet-based SR 

reconstruction framework, which is the main contribution of knowledge of this 

Thesis. Following the "simple to complex" strategy, the new framework is then 

tailored on various applications, starting from single image resolution 

enhancement, global motion-based video SR to local motion-based video SR, 

which are the next three major objectives respectively. The proposed new 

framework aims to have wide applications on various imaging scenarios. It 

should be noted that the algorithm for each application is tailored considerably 

due to natural difference of imaging systems, although the way to employ the 
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wavelet transform is similar. The research methodology of each objective is 

summarised below: 

1.5.1 Designing Performance Assessment Approach 

The first objective is devoted to a study of the existing wavelet-based image 

resolution enhancement techniques with regard to the way to assess their 

performance. This objective focuses on identifying the assumptions regarding 

the factors that influence on the performance of these techniques, and 

investigating the inconsistent factors used for each technique, which limit their 

performance in practice. The first step contributes a sensitivity analysis of the 

important factors and evaluating the impacts of the prevailing assumptions, see 

Chapter 4 for more details. 

The output of this step helps the development of a new wavelet-based 

approach to guide the selection of optimal factors in a more comprehensive 

approach, in order to increase the applicability and better improve the 

performance of the current wavelet-based methods. The proposed algorithm is 

based on an exhausted search in finding the best parameters, a detailed 

mathematical model formulation and solution is discussed in Chapter 4. A new 

metric is also proposed to better measure the overall performance. This 

objective provides a better understanding of the resolution enhancement 

problem in the wavelet-domain, plays a significant role to connect between the 

other objectives, and reveals what is the current performance bottleneck of the 

existing wavelet-based image resolution enhancement methods. 

In terms of the used testing samples, this objective uses three well known 

standard images (Lena, Baboon, and Elaine) with different features as test 

images to assess the performance of the considered wavelet-based resolution 

enhancement methods. 

1.5.2 Developing Single Image Resolution Enhancement Method 

This objective is to develop a new wavelet-based image resolution 

enhancement approach for addressing the resolution enhancement problem of 

the more challenging degraded satellite images. This approach focuses on 
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satellite images acquired by cameras on satellites, which can have errors and 

are most corrupted by noise. The developed method is based on integrating 

properties from both the frequency-domain and spatial-domain by connection 

between concepts of wavelet-based interpolation and wavelet-based de-noising 

in order to increase the spatial resolution. This objective aims to provide a more 

efficient algorithm, which has low computational expensive and time consuming. 

The proposed method is based on using the interpolation of separated high-

frequency sub-bands generated by wavelet transform in order to preserve more 

edges and correct the errors. The developed algorithm is also based on 

employing the wavelet thresholding of estimated high-frequency sub-bands in 

order to boost the edges and eliminate the potential nose. The concept of 

wavelet thresholding process is that the signal energy is often preserved on a 

few coefficients whereas the noise energy is spread in all coefficients in the 

wavelet-domain. The proposed approach aims to keep few large coefficients 

representing the signal whilst suppressing noise coefficients to zero. The details 

about the chosen methods and the hypothesis of application these methods are 

discussed in Chapter 5.  

The developed method is tested firstly on the same standard images used in 

Chapter 4, and then it is tested on the real satellite images in order to validate 

and compare the variation in performance in terms of two types of different 

images, see Section 5.4 Results and Discussion for more details. The 

performance of the proposed method is also compared with the interpolation 

methods and state-of-the-art wavelet-based resolution enhancement methods. 

1.5.3 Developing Global motion Video Super-Resolution Method 

The third objective is dedicated to proposing a robust wavelet-based SR 

technique for solving the SR reconstruction problem of the observed noisy video 

sequences containing global motion. The technique proposed is based on 

combining the developed single wavelet-based resolution enhancement 

approach, with SR reconstruction methods. The purpose of the technique 

developed is to integrate merits from these methods in both the spatial and 
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frequency-domains for increasing the spatial resolution, while supressing the 

noise and aliasing artefacts.  

Another purpose of the algorithm developed is to address the limited 

performance of most the existing wavelet-based SR methods for the 

parameters that influence on the SR performance, and investigate the 

sensitivity analysis of the proposed algorithm for these parameters. This task 

contributes determining the parameters that affect the SR performance, 

analysing how these parameters can affect the performance of the implemented 

technique, and discussing the effectiveness of each parameter. This objective 

provides improved performance and flexibility of the proposed technique over 

the existing wavelet-based SR techniques working under global motion, see 

Chapter 6 for more details. 

To validate and evaluate the performance of the proposed SR technique, three 

well-known video sequences, namely, "Akiyo", "Mother & daughter", and 

"Forman" are tested. The performance of the proposed technique is also 

evaluated in comparison with interpolation techniques, and state-of-the-art 

wavelet-based resolution enhancement and global motion-based video SR 

techniques, see Section 6.4 Results and Discussion for more details. 

1.5.4 Designing Local motion Video Super-Resolution Framework 

This objective is to propose a new SR framework for solving the SR problem of 

the challenge practical video sequences with complex local motion between 

video frames. The proposed method is based on dividing the observed LR 

frame into multiple types of blocks and regions based on motion characteristics, 

and then proposing wavelet-based SR approach or wavelet-based resolution 

enhancement approach for each type of blocks/regions. This method aims to 

increase the spatial resolution through reducing the local motion errors by 

adapting motion decomposition, and reducing the boundary artefacts. The 

details about the chosen methods are discussed in Chapter 7. 

The proposed SR method is tested on four benchmark video sequences, 

namely, "Akiyo", "Mother & daughter", "Foreman", and "Ice" in order to evaluate 
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the performance. The performance of the proposed method is also evaluated 

and validated in comparison with the interpolation methods, and state-of-the-art 

resolution enhancement and local motion-based video SR methods, see section 

7.4 Results and Discussion for more details. 

1.6 Thesis Structure 

This thesis is divided into eight chapters, along with the references. The outline 

of structure is shown in Figure 1-2, and is summarised below: 

Chapter 1 provides an introduction and a general overview of SR reconstruction 

as the solution to overcome the high-cost and inherent resolution constraints of 

current imaging systems: solving this for many practical applications. However, 

it is an ill-posed problem because of the major challenges in the two processes 

known as image registration and image reconstruction. This chapter also 

discusses the research motivation, the research questions, the research aim 

and objectives, and the research methodology of each objective. 

Chapter 2 provides a review of the literature. The literature was examined 

according to a variety factors in order to classify SR reconstruction approaches, 

and the review covers all aspects related to wavelet-based SR reconstruction 

approaches. It starts with a taxonomy of the surveyed SR reconstruction 

methods in terms of the domain deployed; this survey consists of three 

categories: spatial-domain, frequency-domain, and wavelet-domain. A range of 

previous spatial-domain and frequency-domain SR algorithms are reviewed in 

this chapter in addition to their advantages and disadvantages. Finally, the SR 

taxonomy ends with a comprehensive literature review of predefined methods in 

the wavelet-based SR reconstruction. The literature is divided into two classes: 

the first includes the existing wavelet-based image resolution enhancement 

methods of single image; the second includes the existing wavelet-based SR 

methods of multiple images (video). 

Chapter 3 presents the basic concepts of wavelet-based image resolution 

enhancement and SR reconstruction methods. This chapter contains the key 

elements for analysing the resolution enhancement and SR reconstruction 
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problems in the wavelet-domain, which include the image observation model, 

the wavelet transform, wavelet bases, and types of wavelet transforms. 

Chapter 4 presents a study of the predefined wavelet-based image resolution 

enhancement methods and a comparison of these methods based on the 

method of assessing their performance. This study was conducted in this 

research because the current methods to assess performance have many 

limitations with regard to the factors that influence on the performance which 

results in an inaccurate conclusion. The proposed solution is based on 

determining the factors that significantly affect the performance of wavelet-

based methods, and designing a novel optimal factor analysis (OFA) algorithm 

for improving the performance of these methods. In this chapter, a new figure of 

merit measure is proposed to assist the selection of factors. The content of 

Chapter 4 has been published (see Publication 1 in the Publication List). 

Chapter 5 discusses the development of a new wavelet-based image resolution 

enhancement algorithm, based on discrete wavelet transform (DWT) and new 

edge-directed interpolation (NEDI), to correct the geometric errors and improve 

the spatial resolution for low-quality satellite images degraded by geometric 

distortion. An adaptive thresholding process is proposed to preserve the true 

edges whilst removing the noise. The DWT-NEDI algorithm is based on the 

observations made in Chapter 4. The performance of the DWT-NEDI method is 

validated with regard to different classes of satellite images, and in terms of a 

comparison with the state-of-the-art wavelet-based resolution enhancement 

methods. In this chapter, four new image quality measures are proposed to 

better compare the overall performance for multiple images. The content of 

Chapter 5 has been published (see Publication 2 in the Publication List). 
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Figure 1-3 Thesis structure 

Chapter 6 describes the development of a robust wavelet-based SR algorithm 

based on a combination of the DWT-NEDI method, developed in Chapter 5 

with, spatial-domain SR reconstruction methods. The new algorithm is to 

address the SR reconstruction problem of the observed noisy LR video frames 

taken from a moving camera with global motion, in order to increase the spatial 
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resolution, and remove the noise and aliasing artefacts. The content of Chapter 

6 has been published (see Publication 3 in the Publication List) 

Chapter 7 describes the designing of a new wavelet-based SR framework 

based on an adaptive local motion decomposition and wavelet transform 

reconstruction (ALMD-WTR). This is to solve the challenge of the SR problem 

for the real-world video sequences with complex local motion between frames. 

The ALMD-WTR approach is based on the DWT-NEDI method developed in 

Chapter 5 and the global-based SR method developed in Chapter 6. 

Chapter 8 describes the accomplishment of the research aim and objects. It 

explains the key challenges, contributions and limitations of the research. It also 

highlights the overall and most significant conclusions, and suggests 

recommendations for future work. 
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2 Literature Review 

2.1 Introduction  

In general, most SR approaches can be classified into two main categories: 

reconstruction-based SR approaches and learning-based SR approaches. 

Fundamentally, reconstruction-based SR approaches exploit the additional 

information in each observed LR image provided by the sub-pixel 

displacements, and then reconstruct a HR image or a set of HR images. The 

essential idea behind learning-based SR approaches is to model the 

relationship between LR and HR images with the available image pairs in the 

database and then infer HR image from input LR images within the established 

model. This research focuses on SR as a reconstruction problem.  

SR has been an active research topic over the last two decades. Early 

consideration of SR mainly followed work by Tsai and Huang [20] in 1984, 

based on the shift and aliasing properties of the Fourier transform. 

Subsequently, Park et al. [1], and Borman and Stevenson [21], [22], provided a 

comprehensive overview of exiting SR reconstruction techniques and described 

how reconstruction-based SR methods can be classified based on a variety 

factors. These factors include the domain utilised, the number of LR images 

involved, and the kind of adopted reconstruction method. In terms of the domain 

deployed, SR algorithms can initially be classified into three categories: the 

spatial-domain, the frequency-domain, and the wavelet-domain. Based on the 

number of LR images included, spatial-domain and wavelet-domain-based 

algorithms can be further divided into two classes: single image or multiple 

images. Based on these classifications, Figure 2-1 shows a taxonomy of the 

surveyed SR methods.  
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Figure 2-1 A taxonomy of the surveyed SR methods 

Reconstruction-based SR approaches consist of two main phases: image 

registration and image reconstruction. In image registration, a sequence of LR 

images is aligned with sub-pixel accuracy. In image reconstruction, the 

registered images are combined to reconstruct a HR image [15]. Accurate sub-

pixel image registration is required in order to correctly reconstruct the HR 

image. However, precise motion estimation is a challenging task for practical 

video sequences with relatively complex local motion between frames. 

Registration algorithms can be conducted either in the spatial-domain or the 

frequency-domain. Frequency-domain-based registration algorithms are usually 

limited to global motion models, while spatial-domain-based registration 

algorithms largely allow for more general motion models. After registration, most 

reconstruction-based SR algorithms reconstruct the high-frequency image 

information in either spatial-domain or frequency-domain. Although the 

frequency-domain-based reconstruction algorithms are usually simple and 

computationally inexpensive, they are limited to global translational motion and 

linear space-invariant blur. On the other hand, the spatial-domain-based 

reconstruction algorithms can accommodate both global and local motion, linear 

space-variant blur and noise, but they are generally computationally expensive. 

Typical spatial-domain-based SR approaches include: Non-uniform interpolation 

method; Iterative back-projection (IBP) method; Projection onto convex sets 

(POCS) method; Regularization-based methods, which include Maximum 
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likelihood (ML) method and Maximum a posteriori (MAP) method; Hybrid 

ML/MAP-POCS method; and Computationally efficient method. Among these 

two domains, the wavelet-domain-based SR approach has more recently 

emerged as a powerful tool for many image and signal processing applications. 

The wavelet-domain-based approach is able to integrate merits from both the 

frequency-domain and spatial-domain. The wavelet-domain proves to be a 

natural setting for various real-world signals applications, involving resolution 

enhancement, estimation, detection, classification, compression, synthesis, and 

other applications. The wavelet transform (WT) has several attractive primary 

properties, such as locality, multi-resolution, and compression that make it a 

natural for analysing real-world signals [16]. The wavelet transform decomposes 

image data into different frequency sub-bands, and then studies each sub-band 

with a resolution matched to its scale [17]. The advantage of wavelet 

decomposition is that image tendency at different scales can be separated and 

analysed [18]. The fundamental idea behind wavelet-based SR approaches is 

to estimate the unknown wavelet coefficients of high-frequency sub-bands in 

order to reconstruct the HR image from the given LR images. There are 

different types of wavelet transforms, such as discrete wavelet transform 

(DWT), complex wavelet transform (CWT), and stationary wavelet transform 

(SWT). DWT is one of the recent wavelet transforms being used for resolution 

enhancement and many image/video applications.  

2.2 Frequency-Domain-based Approaches 

Tsai and Huang [20] proposed the first frequency-domain-based SR approach 

to reconstruct a HR image from several shifted, down-sampled and noise-free 

LR images. They formulated the system equations that relate the HR image to 

the observed LR images by estimating the relative shifts between LR images. 

The frequency-domain formulation is based on three basic properties: i) the 

shifting property of the Fourier transform (FT); ii) the aliasing relationship 

between the continuous Fourier transform (CFT) of an original HR image and 

the discrete Fourier transform (DFT) of observed LR images; and iii) an original 

image is assumed to be bandlimited. Kim et al. [23] extended this method to 



 

22 

noisy and blurred LR images by proposing a weighted least squares solution to 

solve the set of linear equations in the frequency-domain. It was based on the 

assumption that the blur and noise characteristics are the same for all LR 

images. This method was further extended by Kim and Su [24] to the case 

where different blur operators for each LR image are considered by employing 

the Tikhonov regularization algorithm. A major advantage of the frequency-

domain-based SR methods is that they are usually theoretically simple and 

computationally inexpensive. They are also intuitive tools to enhance the 

detailed information. However, these methods are inadequate when dealing 

with real-world applications as they are limited to global translational motion and 

linear space-invariant blur (LSI) during the image acquisition process.  

2.3 Spatial-Domain-based Approaches 

A major advantage of the spatial-domain-based SR methods is that they can 

tackle real-world applications better by accommodating: both global and non-

global motions, linear space-variant (LSV) blur, and noise during image 

acquisition process. However, these methods are generally computationally 

expensive.  

2.3.1 Nonuniform Interpolation Approach 

Most of the SR reconstruction methods consist of three basic tasks: (i) 

registration or motion estimation, (ii) interpolation, and (iii) restoration. These 

tasks can be performed separately or sequentially depending on the 

reconstruction method employed. A nonuniform interpolation approach is one of 

the most intuitive methods for SR reconstruction. The three stages illustrated in 

Figure 2-2 are implemented sequentially in this approach. Registration is the 

process of geometrically aligning images (the reference and observed images) 

of the same scene acquired at different times, from different views, and/or by 

different sensors. Motion estimation/registration is a crucial stage in SR 

reconstruction [13]. The basic idea of motion estimation is that the relative 

displacements between the reference LR image and each of the observed LR 

images are estimated with sub-pixel accuracy. Accurate sub-pixel image 

registration is a fundamental requirement to the success of any SR 
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reconstruction algorithm [14]. As the relative displacements are arbitrary, the 

composition of LR images will not coincide with a uniformly sampled HR grid. 

Nonuniform interpolation stage is therefore essential to produce a uniformly 

spaced HR image from a nonuniformly spaced composition of LR images [1]. 

Interpolation aims to estimate values at unknown locations using known data 

and generate HR image. It is a necessary process used widely in several 

applications of image processing, such as image resizing, image rotation, and 

sub-pixel image registration [19]. In the third stage, restoration is performed on 

the interpolated image to reduce noise and de-blurring by applying any 

deconvolution method [1].  

  

 

 

 

 

Figure 2-2 The three stages for SR reconstruction methods 

Figure 2-3 is an example of global translation and shows that the interpolation 

process in a HR grid is needed when the sub-pixel of motion is not located on 

the HR grid. In this Figure, a circle is the original HR image 𝑥, and a triangle as 

well as a diamond are globally translated versions of 𝑥. When the down-

sampling factor is 2, a diamond has (0.5,0.5) sub-pixel shifts, but a triangle has 

a shift of less than (0.5,0.5). In this case, interpolation is required only for a 

triangle, while it is not needed for a diamond [1]. 
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Figure 2-3 The requirement of interpolation stage in a HR grid [1] 

Ur and Gross [25] implemented a nonuniform interpolation of several spatially 

shifted LR images based on the generalized multichannel sampling theorem of 

Papoulis [26] and Brown [27]. They assumed that the point-spread function 

(PSF) of the detectors and the relative displacements between LR images are 

accurately known. Alam et al. [28] developed a method for real-time infrared 

image registration and multi-frame SR reconstruction. They employed a 

gradient-based registration algorithm to estimate the random translational shifts 

between the acquired frames and developed a weighted nearest neighbour 

method to locate the frames on a uniformly spaced HR grid. The Wiener filter is 

used by Alam et al. [28] to reduce the effects of blurring and noise caused by 

the limitations of imaging systems. Nguyen and Milanfar [18] proposed an 

efficient wavelet-based interpolation SR reconstruction method by exploiting the 

interlaced structure and regularity of the sampling grid in SR. The method 

proposed significantly minimises the computational complexity for 2-D 

interlaced data to only twice that for 1-D data. Pham et al. [29] proposed a so-

called structure-adaptive normalised convolution (SANC) method for fusion of 

irregularly sampled LR images. This method uses a normalised convolution 

(NC) method [30] which models the local signal through a projection onto a set 

of polynomial basis functions. Different from the traditional NC, a Gaussian 

applicability function is adapted to extend along local linear structures. This 

enables sufficient samples of the same intensity and gradient information to be 

gathered for a better analysis, which leads to improved signal-to-noise ratio 

(SNR) and minimises diffusion across edges. A robust signal certainty is also 

adapted to reduce the errors of outliers due to sensors or mis-registration. The 

advantage of the nonuniform interpolation method is that it has relatively low 

computational cost, which is suitable for real-time applications. However, 

degradation operators are only applicable when all LR images have the same 

blur and noise characteristics.  
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2.3.2 Iterative Back-Projection (IBP) Approach  

Peleg et al. [31] formulated the iterative back-projection (IBP) method by 

estimating an initial guess of a HR image, and simulating the imaging process 

to achieve simulated LR images. They improved this guess by iteratively back 

projecting it to the error between the simulated and the observed LR images, 

and updating the result according to the minimal error. The algorithm is applied 

to the case of a simple uniform translational motion between the observed LR 

images. Although this method produced good results for noise-free images, the 

performance for noise images is limited. Later, Irani and Peleg [32], [33] further 

developed the IBP method by applying a simple uniform translational and 

rotational motion between the LR images; but the method can also be applied 

for other motion models, such as perspective motion and multiple motions in the 

image. The proposed method resembles the IBP method employed in computer 

aided tomography (CAT). Irani and Peleg [34], [35] also proposed detecting and 

tracking multiple moving objects over several frames to improve its resolution 

using the IBP method. A more general motion model such as an affine model is 

employed to estimate the motion of objects. The advantage of the IBP method 

is that it can accommodate both global translational and rotational motions. 

However, the solution might not be unique due to the ill-posed nature of the SR 

reconstruction problem, and the selection of some parameters is usually 

difficult.  

2.3.3 Projection onto Convex Sets (POCS) Approach 

The projection onto convex sets (POCS) method represents an alternative 

iterative approach to include prior knowledge about the solution into the SR 

reconstruction process when the SR problem is posed in set-theoretic 

formulation. Set-theoretic estimation produces a solution whose property is 

compatible with the information obtained from the observed LR images and a 

priori knowledge. This information is corresponded with the constraint sets in 

the solution space where the intersection of these sets provides the acceptable 

solution [36]. Stark and Oskoui [37] formulated the POCS method, and 

accounted for the sensor blur due to the physical dimensions of the LR sensor. 
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Tekalp et al. [38] extended the POCS formulation to consider the sensor noise 

in addition to the sensor blur. These methods assume that the relative motion 

between the LR images is translations only and the aperture time of the camera 

is ignored. Patti et al. [39] then further developed the POCS algorithm to take 

into account motion blur due to nonzero aperture time, space-variant blur, 

sensor blur due to nonzero aperture size, sensor noise, and sampling over an 

arbitrary lattice. As the original algorithm was limited to the case of a single 

moving object in the scene, it was subsequently extended by Eren et al. [40] to 

the case of scene containing multiple moving objects using a validity map 

and/or a segmentation map. The validity map permits robust reconstruction in 

the case of inaccurate motion estimation, whereas the segmentation map 

enables an object-based resolution enhancement approach. Patti and 

Altunbasak [41] proposed improving the accuracy of the POCS-based SR 

reconstruction techniques in two ways. Firstly, they improved the discretization 

of the continuous image formation model by employing higher order 

interpolation methods. Secondly, they modified the constraint sets by including 

regularization constraints into the inversion process to decrease the ringing 

effects in the neighbourhood of edges created in the HR image estimate. The 

POCS method benefits from the utilisation of the powerful image formation 

model and an appropriate inclusion of a priori knowledge. The disadvantages 

on the other hand are lack of a unique solution, slow convergence rate and an 

expensive computational cost. The reconstruction results of spatial-domain-

based SR approaches, such as a nonuniform interpolation approach using the 

SANC method, IBP, and POCS, are illustrated in Figure 2-4. In this simulation, 

four LR images with a size of 128 × 128 pixels are obtained from the Graphical 

User Interface (GUI) software, where the blur and noise characteristics are the 

same for all LR images. Figure 2-4(a) shows one of the four LR images and (b)-

(d) show super-resolved images generated from the fusion of the four LR 

images using the SANC, IBP, and POCS reconstruction methods respectively, 

where the Keren method was used for registration. A significant improvement 

with shaper results is observed in Figure 2-4(b) when compared with (c) and 

(d). A moderate improvement combined with aliasing effect is observed in 
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Figure 2-4(c) and a moderate improvement combined with blurring effect is 

observed in (d). 

                                                                                                                                                

                                 (a)                                                           (b)                                                                                                          

           

                                (c)                                                             (d) 

Figure 2-4 An example of SR reconstruction results using different 

reconstruction methods (a) one of the observed LR images, (b) the HR image 

produced by SANC method for reconstruction and Keren method for registration, 

(c) the HR image produced by IBP method and Keren method, (d) and the HR 

image produced by POCS method and Keren method. 
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2.3.4 Regularized-based Approach 

SR image reconstruction is generally an ill-posed inverse problem due to an 

adequate number of LR images, and ill-conditioned motion estimation and 

blurring effects. Thus, the solution to the ill-posed problem is not unique. When 

the solution is not unique, some additional information is needed to constraint 

the solution. Therefore, regularized-based approaches are proposed to 

regularize the inversion of this ill-posed estimation problem. Regularization 

methods incorporate a priori knowledge of the target HR image in order to 

compute an approximate solution. The target HR image can be estimated by 

some statistics of its probability distribution. In this section, the stochastic 

regularization approaches are presented, including a Maximum likelihood (ML) 

estimation and Maximum a posteriori (MAP) estimation.  

2.3.4.1 Maximum Likelihood (ML) Approach 

Tom and Katsaggelos [42] proposed a Maximum likelihood (ML) SR image 

estimation algorithm to simultaneously estimate the sub-pixel displacements, 

the noise variances of each image, the HR image, and the power spectra of the 

HR image. They employed the expectation maximization (EM) algorithm to 

solve the ML estimation. Capel and Zisserman [43] used ML and MAP 

estimators for the SR enhancement of video mosaics. The transformation 

estimation algorithm was based on a general homography model. ML 

estimation is a special case of MAP estimation without prior term. Because the 

inclusion of a priori information is necessary for the solution of ill-posed inverse 

problem, MAP estimation is preferable to ML. 

2.3.4.2 Maximum A Posteriori (MAP) Approach 

Stochastic regularized approaches (Bayesian estimation methods) solve the ill-

posed SR inverse problem by regarding SR reconstruction as a statistical 

estimation problem. They provide a powerful and appropriate way to include a 

priori knowledge essential for the successful solution of the ill-posed SR inverse 

problem. A Bayesian approach is used when the posteriori probability density 

function (PDF) of the HR image can be modelled. The HR image 𝑥 and the 

observed LR images 𝑦𝑘 can be treated as stochastic variables.  
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The MAP estimation method is one of the probabilistic SR reconstruction 

formulations and solutions to incorporate various regularizing constraints into 

the inversion process [1], [2]. Schultz and Stevenson [44] introduced a Bayesian 

estimation method for a single frame image expansion that keeps the edges 

and other discontinuities of the original image. They employed a MAP method 

to compute the expanded image and addressed two problems: a constrained 

optimization problem for expanding the image that is a noise-free; and an 

unconstrained optimization problem for expanding image data containing white 

Gaussian noise. The same authors [45] then extended their work and 

developed the MAP method for SR reconstruction from a LR video sequence. 

They utilised a discontinuity-preserving Huber-Markov random field prior model 

within the MAP formulation. They also employed a hierarchical block matching 

registration technique to estimate the sub-pixel motion parameters between 

frames. Hardie et al. [46] introduced a joint MAP framework to estimate 

simultaneously the image registration parameters and the HR image. They 

iteratively updated the registration parameter estimates with respect to the HR 

image using a cyclic coordinate-descent optimization process. Shen et al. [47] 

used a joint MAP formulation to integrate motion estimation, segmentation and 

super-resolution together for the more complex multiple moving objects 

problem. They also applied a cyclic coordinate-descent process to solve the 

formulation, in which the motion fields, the segmentation field, and the HR 

image are considered as unknown and estimated jointly by using the available 

data. Li et al. [48] proposed applying two new regularization items, namely 

locally adaptive bilateral total variation and gradient consistency, to preserve 

both edges and flat regions of the LR images. Capel and Zisserman [49] 

proposed a MAP estimator based on a Huber-edge penalty function, and an 

estimator regularized based on the total variation norm for the SR enhancement 

of text images. They proved that the ML estimator is extremely sensitive to 

small amounts of errors, such as noise, registration errors, and PSF errors. In 

general, the ML method only considers the relationship among the observed LR 

images and the original HR image without prior information while the MAP 

method considers both.  
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2.3.5 (ML/MAP-POCS) Hybrid Approach 

Elad and Feuer [50] proposed a general hybrid approach which combines the 

advantages of the regularization methods (ML or MAP) and the POCS method 

to solve the SR reconstruction problem. The hybrid algorithm effectively 

combines all a priori information and guarantees the single optimal solution.  

2.3.6 Computationally Efficient Approach 

SR is a computationally expensive problem and involves tens of thousands of 

unknown pixel values. For instance, super-resolving a sequence of LR images 

with a size of 128×128 pixel values by a scale factor of 4 in each spatial 

dimension requires 512×512 = 262,144 unknown pixels in the HR estimate. 

Moreover, the matrix system is ill-conditioned and typically underdetermined 

problem which can trigger system noise and blurring artefacts. Therefore, to 

reduce the computational and numerical issues, it is important to develop 

efficient SR algorithms that deal with real-time applications. Nguyen et al. [51] 

presented a block circulant preconditioner to accelerate the conjugate gradient 

(CG) method for solving the Tikhonov-regularized SR problem. They also 

utilised the generalized cross-validation (GCV) method to automatically 

compute the regularization parameters and extended the derivation of the GCV 

to the underdetermined problems. Elad and Hel-Or [52] proposed a fast and 

effective SR reconstruction algorithm that separates the de-blurring from the 

fusion stage. To reduce the computational cost, they dealt with a special SR 

case where the geometric warps between the measured images consist of pure 

translations; the blur is space-invariant and the same for all the measurements, 

and the additive noise is white. Although the fusion process is achieved by a 

simple noniterative algorithm, it can preserve the optimality of the SR 

reconstruction process in the ML sense. Elad and Hel-Or also provided a proper 

mathematical justification of the noniterative method for this simple case of the 

additive Gaussian noise. Although these assumptions limit the utility, they are 

very practical in some cases, such as the case in a video sequence where the 

scene is stationary and the images are acquired with slight translations. Zomet 

et al. [53] introduced a successful SR algorithm which is robust to outliers due 
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to local model inaccuracies, such as moving objects and highlights, at a low 

computational load. They used a robust median-based estimator to estimate a 

summation in an iterative process and discard inconsistent measurements. 

However, the limitation of this method is that it lacks an adequate mathematical 

justification. A robust SR method was presented by Farsiu et al. [54] based on 

the use of L1 norm minimisation both for the regularization and the 

measurement terms. They proved that the additive Gaussian noise model is not 

satisfactory for SR problem, then proposed an appropriate mathematical 

justification for the noniterative image fusion algorithm based on shift and add 

method and L1 norm for more general noise models. Farsiu et al. [55] also 

proposed a fast and robust SR algorithm using the L1 norm and robust 

regularization based on bilateral variation prior to deal with different data and 

noise models. This method is robust to motion errors, blur estimation, and 

outliers, resulting in images with sharp edges.  

2.4 Wavelet-Domain-based Approaches  

The wavelet transform (WT) is an effective tool that decomposes data or 

functions or operations into different frequency components, and then studies 

each component with a resolution corresponded to its scale [17]. The 

advantage of wavelet decomposition of a signal is that signal characteristics at 

different scales can be separated and examined. Global characteristics can be 

examined at coarser scales, while local characteristics can be analysed at fine 

scales [18]. The wavelet transform has advantages over the Fourier transform 

in analysing real-wold signals where the signal contains discontinuities [12]. 

Wavelet transforms depend on small waves, known as wavelets, produced from 

a single mother wavelet function using the property of dilations and translations. 

Wavelet transforms and wavelets are a relatively recent imaging tools being 

applied rapidly in a wide range of image processing applications, including 

enhancement, restoration, de-noising, registration, and segmentation [19]. 

Recently, there has been much development on wavelet-based SR 

reconstruction and resolution enhancement methods. Estimating the unknown 

wavelet coefficients in sub-bands containing high-pass frequency spatial 
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information is the essential target of wavelet-based algorithms to reconstruct the 

HR image from the given LR image/images. A simple approach, called wavelet 

zero padding (WZP), is to recover an approximation to the HR image by filling 

the unknown wavelet coefficients of high-frequency sub-bands with zeros and 

then applying the inverse wavelet transform (IWT). Although this method is able 

to surpass the conventional interpolation methods, it commonly introduces 

artefacts, such as smoothing and ringing, into the reconstructed HR image. To 

overcome this limitation, many advanced methods have been introduced to 

estimate the wavelet coefficients of high-frequency sub-bands. The existing 

literature on wavelet-based resolution enhancement and SR reconstruction 

approaches describes different types of wavelet transforms in both the single 

frame (image) case and multi-frame (video) case, which are introduced below: 

2.4.1 Single Frame (Image) Resolution Enhancement Approaches 

2.4.1.1 Extrema Evolution Approach  

Chang et al. [56] and Carey et al. [57], estimated only the coefficients of high-

frequency sub-bands with large magnitudes as the evolution of the wavelet 

coefficients among the scales while it is difficult to estimate the other small 

coefficients. The performance is fundamentally affected by the signs of the 

estimated coefficients being copied directly from the signs of the parent 

coefficients without any attempt to estimate the actual signs. However, the 

accepted fact is that there is very low correlation between the signs of the 

parent coefficients and the estimated coefficients. Therefore, the signs of the 

estimated coefficients using extrema evolution methods cannot be relied upon. 

2.4.1.2 Hidden Markov Tree (HMT) Approach  

The hidden Markov tree (HMT) approach in the wavelet-domain is able to 

precisely model the statistical structure of real-wold signals by exploiting the 

statistical relationships between wavelet coefficients at different scales. Crouse 

et al. [16] introduced a statistical approach for signal processing by using 

wavelet-domain hidden Markov models (HMMs). The HMM framework is 

capable of matching the non-Gaussian statistics for individual coefficients and 

characterising the statistical dependencies between coefficients. Subsequently, 
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Kinebuchi et al. [58] proposed a hidden Markov tree-based method using HMM 

approach for image enlargement. Zhao et al. [59] presented an extended 

version of this method. All these methods are based on modelling the unknown 

detail coefficients by the mixed Gaussian distributions (states), which are 

symmetrical around zero. The motivation comes from the fact that the 

coefficient distributions could be modelled by a Gaussian mixture model, as 

they have high density at zero and are heavy tailed. HMT-based methods are 

used to determine the most probable state for the estimated coefficient. 

However, their main drawback is that the performance is affected by the sign 

changes between the scales not being taken into account. To reduce the 

drawback of HMT-based methods which affect the accuracy of coefficient sign 

estimation and consequently the resulting image quality, a refined HMT-based 

image resolution enhancement method was proposed by Temizel [60]. Due to 

the fact that the coefficient sign and magnitude information which are 

statistically independent could be separated, the coefficient magnitude 

estimation is separated from the sign estimation. The magnitude parameters 

are estimated using HMT methods, and the sign estimation is modelled based 

on the work of Temizel and Vlachos [61]; this demonstrated that there is higher 

correlation among the coefficients between high-pass filtered wavelet LR image 

and the high-frequency sub-bands. 

2.4.1.3 Cycle-Spinning (CS) Approach 

Temizel and Vlachos [62] developed a nondirectional cycle-spinning (CS) 

technique, termed WZP-CS, as an effective method towards reducing ringing 

artefacts. It was based on obtaining an initial estimate of the unknown HR 

image using WZP, and generating a number of LR images from this initial 

estimated HR image using spatial horizontal and vertical shifts, wavelet 

transform, and discarding the high-frequency sub-bands. This is followed by 

applying WZP to all those LR images and averaging these intermediate HR 

images to give the final reconstructed HR image. However, ringing artefacts not 

only occur in the neighbourhood of edges, they are particularly correlated with 

the orientation of edges. A directional CS technique, which can refine better 

edge orientation and prevent ringing artefacts, was introduced in [63] by 
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Vlachos. Additionally, it can reduce the computational complexity compared 

with a nondirectional CS technique. A further improvement of this method could 

be obtained by applying a CS and edge rectification technique [64] proposed by 

Temizel and Vlachos. 

2.4.1.4 Complex Wavelet Transform (CWT) Approach 

A one-level complex wavelet transform (CWT) of an input image results in two 

complex-valued low-frequency sub-bands and six complex-valued high-

frequency sub-bands. The high-frequency sub-bands are constructed by 

direction-selective filters with high magnitude responses in the presence of 

image features oriented at +75°, +45°, +15°, -15°, -45°, and -75°. The 

advantages of CWT is that it has shift-invariant property and good directional 

selectivity. Reeves and Kingsbury [65] introduced a dual-tree complex wavelet 

transform (DT-CWT). The DT-CWT is a combination of two real-valued 

decimated DWT. Recently, Demirel and Anbarjafari [66] proposed a DT-CWT 

technique for resolution enhancement of satellite images. One-level DT-CWT 

decomposes an input LR image into different frequency sub-bands, and then 

the high-frequency sub-bands are interpolated using bicubic interpolation. In 

parallel, two magnified real-valued sub-bands are produced by interpolation and 

a shifted version of the input LR image in the horizontal and vertical directions; 

these are used as the real and imaginary components of the interpolated 

complex low-frequency sub-band. Finally, a super-resolved image is generated 

by combining all these interpolated sub-bands through the inverse DT-CWT. 

More recently, Iqbal et al. [67] proposed a DT-CWT technique based on a non-

local means filter and Lanczos interpolation in order to improve the 

performance. Although DT-CWT is approximately shift-invariant and has 

improved directional resolution, it generates artefacts in the interpolated high-

frequency sub-bands. Therefore, non-local means filtering is used to reduce 

these artefacts. Jagadeesh and Pragatheeswaran [68] used an edge-directed 

interpolation (EDI) method as an alternative interpolation method of high-

frequency sub-bands obtained by DT-CWT to improve the performance. 
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2.4.1.5 Discrete Wavelet Transform (DWT) Approach  

The discrete wavelet transform (DWT) has emerged as a dominant and 

powerful new tool for resolution enhancement and is being employed in many 

image and signal processing applications. The advantage of DWT lies in 

isolating and recovering the high-frequency information of an image that is lost 

due to the limitations of imaging systems [19]. The DWT provides an adequate 

information for local analysis and synthesis of an image [12]. However, the 

decimated DWT is shift-variant and, thus, suppression of wavelet coefficients 

because of the decimation operation exploited in the transform introduces 

artefacts into the image which emerge as ringing in the neighbourhood of 

discontinuities. The fundamental concept of DWT is the decomposition of a 

given image into four frequency sub-bands: low-low (LL), low-high (LH), high-

low (HL) and high-high (HH); achieved by using dilations and translations by a 

single wavelet function, referred to as the mother wavelet. Acharya et al. [69] 

proposed using one-level DWT to separate an input LR image into four 

frequency sub-bands, and then the LL sub-band is replaced by the input image, 

the high-frequency sub-bands LH and HL are up-sampled by inserting zeros 

between successive rows and columns, and HH is discarded. A high-resolution 

image is generated by performing the inverse DWT on these approximated sub-

bands. Recently, a Demirel-Anbarjafari Super-Resolution (DASR) technique 

was proposed [70], in which the decomposed three high-frequency sub-bands 

and the input image are interpolated using the bicubic interpolation. Upgrading 

from the DASR, Demirel and Anbarjafari [71] introduced a DWT-Diff method for 

resolution enhancement of satellite images in which the estimated high-

frequency sub-bands are further enhanced by considering the difference 

between the input LR image and the interpolated LL sub-band, and then adding 

the difference image into the estimated high-frequency sub-bands.  

2.4.1.6 Discrete Wavelet Transform (DWT) and Stationary Wavelet 

Transform (SWT) Approach 

Demirel and Anbarjafari proposed a DWT-stationary wavelet transform (SWT) 

technique based on DWT and SWT [72], which introduced an intermediate 

process by adding the high-frequency sub-bands obtained through SWT of the 
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input image with the high-frequency sub-bands obtained through DWT to 

improve the performance. SWT is similar to DWT but it does not cause down-

sampling and, as a result, each sub-band has the same size as the input image. 

A 2-D and 3-D technique was proposed [73] for resolution enhancement of 

medical images based on DWT and SWT. The 2-D version of this technique 

outperforms the results in [72] by computing the mean of the corrected high-

frequency sub-bands, and using a shape function to enhance the edges of the 

input LR image. In the 3-D version, 3-D DWT is employed to decompose a 3-D 

LR image into eight different sub-bands and then 3-D bicubic interpolation is 

used to up-sample the high-frequency sub-bands. Additionally, 3-D SWT is 

applied to these interpolated coefficients and their mean are considered to 

correct the estimated coefficients. Finally, the 3-D IDWT is applied to create a 

shaper enhanced HR image.  

2.4.2 Multi-Frame (Video) Super-Resolution Approaches  

For the multi-frame case, Izadpanahi and Demirel [74] introduced a resolution 

enhancement method based on DT-CWT and EDI for LR videos to improve the 

performance. Izadpanahi and Ozcinar [75] presented a SR technique using 

DWT and bicubic interpolation of LR video frames. They applied an illumination 

enhancement method based on singular value decomposition before the 

registration process of the LR frames to reduce the illumination inconsistences 

between the reference frame and each of the other LR frames. One-level DWT 

decomposes each reference frame of the input video frames into four frequency 

sub-bands and the bicubic interpolation is applied to the high-frequency sub-

bands of the consecutive frames. On the other hand, the Irani and Peleg 

registration method is performed on the LR frames to obtain the LL sub-band of 

DWT. Finally, all these sub-bands are composed using IDWT to produce a 

super-resolved frame. Anbarjafari et al. [76] proposed a SR technique for LR 

video sequences using DWT and SWT. For proper registration, they also 

performed the illumination enhancement method by using the highest singular 

value to decrease the illumination differences between the frames. One-level 

DWT and SWT decompose each reference frame of the video sequences into 
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four frequency sub-bands, and then the high-frequency sub-bands obtained by 

DWT are enlarged using a SR reconstruction method. Furthermore, those high-

frequency sub-bands are enhanced by the sub-bands obtained through SWT, 

as these sub-bands contain more information. In parallel, the LR frames are 

registered using the Vandewalle method to produce the LL sub-band of DWT.  

For motion-based video SR, Izadpanahi and Demirel [77] proposed a SR 

technique using DT-CWT and new edge directional interpolation (NEDI) to 

improve the resolution of LR video sequences. They divided each frame into 

stationary and motion regions for better registration. A SR reconstruction 

technique is performed on the stationary regions and the motion blocks 

extracted by the motion detection algorithm to obtain the LL sub-bands of DT-

CWT. On other hand, DT-CWT process followed by NEDI method is used to 

generate the interpolated high-frequency sub-bands. Izadpanahi and Demirel 

[78] also presented a SR technique based on detecting the motion and static 

regions of the LR frames. They divided the static and motion regions into small 

blocks using an optical flow motion estimation algorithm between a reference 

frame and its neighboring frames for accurate registration. Additionally, an 

adaptive threshold is performed on the motion blocks in order to separate the 

occluded blocks with inaccurate motion from non-occluded blocks with accurate 

motion for more accurate local registration. 

2.5 Interpolation Methods 

Interpolation is one of the most commonly used techniques for image resolution 

enhancement. Fundamentally, image interpolation is a process of estimating 

values at unknown locations using known data [19]. Interpolation is a basic 

process used extensively in several digital image processing applications such 

as image rotation, sub-pixel image registration, and image geometric 

corrections. There are four well-known conventional interpolation methods: 

nearest neighbour, bilinear, cubic spline, and Lanczos [79]–[84]. Nearest 

neighbour is the simplest interpolation method, where the intensity value of the 

new location is assigned as that of the old location which is the nearest 

neighbour to the new point. Although this method is simple to implement, it 
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results in annoying artefacts, such as distortion of straight edges. A more 

frequently used method is bilinear interpolation, where the four nearest 

neighbour points are used to estimate the value at a new location by taking a 

weighted average of these points. This method produces much better results 

than nearest neighbour with a moderate increase in computational load [81], 

[82]. Cubic spline interpolation methods [79]-[83] have been researched 

extensively and received much attention. Hou and Andrews [79] investigated 

the cubic B-spline interpolation function, which sometimes is also known as 

cubic spline, as a tool in image interpolation to smooth the interpolated image. 

Keys [80] adopted the cubic convolution interpolation, which is also referred to 

as bicubic interpolation and HR cubic spline interpolation in [81], [82] and [83]. 

Bicubic interpolation is a more complex method, in which sixteen nearest 

neighbour points are used to estimate the intensity value of the new point by 

taking a weighted average of these points. This method is more efficient and 

accurate than nearest neighbour, bilinear interpolation and cubic-B spline 

interpolation, as well as giving slightly sharper results in terms of preserving fine 

details in the original image [80]. It is generally the most preferred in commercial 

image editing programs [19]. Lanczos interpolation also produces good results 

because of its capability to detect edges and linear features. It delivers a good 

compromise in terms of reduction of aliasing, sharpness of edges, and 

suppression of ringing artefacts [67] and [84]. However, these linear methods 

cannot handle the fast-growing statistics around edges and accordingly yield 

interpolated images with blurred edges and undesirable artefacts. To address 

this problem, other nonlinear interpolation methods have been developed to 

improve the visual quality of the reconstructed images over linear interpolation 

methods by taking edge information into account; these techniques include 

edge-directed interpolation (EDI) [85], [86], and new edge-directed interpolation 

(NEDI) [87]. Allebach and Wong [86] developed an EDI method [85] through 

emphasising the visual integrity of the edges. The EDI method consists of two 

stages: rendering and correction. The rendering stage, termed edge-directed, is 

based on modifying the interpolation procedure to match a source model and 

prevent smoothing across edges. The correction stage is based on correcting 
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the mesh values on which the interpolation is based. Li and Orchard [87] 

proposed a NEDI method, known as also an orientation-adaptive interpolation, 

to estimate local covariance coefficients from a LR image and then employed 

the covariance estimates to modify the interpolation scheme by using the 

geometric duality between the LR covariance and the HR covariance. The 

advantage of the NEDI method is that it significantly improves the subjective 

quality of the pixels around edges. Nevertheless, the improvements by NEDI 

are limited at the textures and nonlinear edges of the interpolated images. 

However, a lot of research has achieved enhanced performance of NEDI since 

the NEDI method uses a relatively simple model and hence has low 

computational complexity. Tam et al. [88] presented a modified NEDI method by 

considering a modified training window structure to eliminate the prediction error 

accumulation and extending the covariance values into multiple directions to 

mitigate the covariance mismatch problem. 

2.6 Registration Methods 

Image registration aims at overlying (two or more) images of the same scene of 

interest acquired at different times, from different viewpoints, and/or by different 

sensors. The extant disparities between the images are introduced because of 

different conditions during image acquisition. Image registration is a necessary 

task used extensively in various applications in remote sensing, medical 

imaging, and computer vision. In general, these applications can be classified 

into four basic groups according to the manner of image acquisition: different 

viewpoints (multi-view analysis), different times (multi-temporal analysis), 

different sensors (multi-modal analysis), and scene to model registration. A 

comprehensive overview of image registration methods has been presented by 

Zitova and Flusser [13]. Registration methods can be operated either in the 

spatial-domain or the frequency-domain of images. Frequency-domain 

registration methods are usually limited to global motion models due to the 

nature of the Fourier domain. Reddy and Chatterji [89] described an extension 

of the phase correlation method for registering images subject to translational, 

rotational, and scale movement. They applied a planar motion model in order to 



 

40 

determine the shift and rotation parameters. Marcel et al. [90] also used a 

planar motion model to estimate the shift and rotation between the LR images. 

Lucchese and Cortellazzo [91] developed a frequency-domain registration 

algorithm to estimate planar roto-translations between two images. A planar 

rotation is estimated by using the property that the difference between the 

magnitude of the Fourier transform FT of one image, and the mirrored version 

of the magnitude of the FT of the other image, has a pair of orthogonal zero 

crossing lines. These two lines are rotated relatively to the frequency axes with 

an angle that is equal to half the rotation angle. The planar shifts are estimated 

using a phase correlation technique. Vandewalle et al. [14] presented an image 

registration algorithm to accurately register a series of aliased images based on 

their low-frequencies, thereby aliasing its free-part. They also used a planar 

motion model, particularly for the scenario when a set of images are captured in 

a short period of time with a small camera motion. It has been seen that 

Vandewalle’s method performs better than the other frequency-domain 

registration methods, such as Marcel method and Lucchese and Cortellazzo 

method.  

Spatial-domain registration methods generally allow more general motion 

models. They are based on the whole image or correspondence between a set 

of selected features. Earliest methods in the spatial-domain used correlation 

methods and Gaussian pyramids/multi-scale approaches. Pratt [92] developed 

an extension of the basic correlation measure for registering images with 

translational shifts. This method is based on a linear spatial pre-processing 

operation of one of the images before applying the correlation measure. Bergen 

et al. [93] developed a hierarchical framework for estimating the motion in a 

multi-resolution approach. Four motion models: affine flow, planar surface flow, 

rigid body motion, and general optical flow can be combined within this motion 

estimation algorithm. Keren et al. [94] developed an iterative planar motion 

estimation algorithm that uses different, down-sampled versions of the images 

in order to estimate the shift and rotation parameters based on Taylor series 

expansions. The goal of this pyramidal scheme is to increase the accuracy for 

estimation of large motion parameters. Irani et al. [95] proposed a method to 
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detect and track multiple occluding and transparent moving objects in an image 

sequence using segmentation and temporal integration. The motions are 

computed based on parametric motion models, such as affine and projective 

transformations. Gluchman [96] introduced a method for registering images that 

are significantly rotated and translated relative to each other. A planar rotation is 

first determined from the gradient field distribution of the images to be 

registered. Then planar shifts are computed after disregarding the rotation using 

a phase correlation technique. Capel and Zissermann [97] established 

corresponding features by first determining putative correspondences using the 

normalised correlation algorithm and then refining them using the RANCAC 

algorithm [98]. Baboulaz and Dragott [15] proposed two methods for feature 

extraction in LR images in order to increase the registration accuracy. These 

methods are used to recover perfectly global features, such as image moments, 

as well as local features, such as step edges in LR images. 

2.7 Motion Detection Methods 

Motion detection is one of the greatest problem areas in human motion 

analysis; it not only provides segmentation of the video sequences into moving 

foreground objects and background for the extraction of desired moving objects, 

but is also a critical pre-process for many computer vision applications, 

including human-machine interaction, video surveillance, and object-based 

video encoding [99]. The existing motion detection approaches can be classified 

into three classes: background subtraction, temporal differences, and optical 

flow [100]. Background subtraction is a popular approach for motion detection, 

because it is relatively simple to implement and produces reasonable motion 

segmentation particularly for situation with a relatively static background. 

However, it is extremely sensitive to changes in a dynamic scene caused by 

illumination and extraneous events [101], [102]. Oral and Deniz [103] used the 

simple background subtraction (SBS) method which can segment moving 

objects in a video sequence by taking an absolute difference between each 

pixel of the incoming frame and the background reference frame, and 

thresholding the output to get the binary-moving objects detection mask. 
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However, noise tolerance, lighting changes, weather changes, and clutter 

motion make motion segmentation a critical process. Therefore, there is a need 

for a good background models that effectively update the background reference 

frame through generation of adaptation models. An updated background model 

using running average (RA) method based on a simple adaptive filter was 

adopted by Wren et al. [104] for compensation to the temporal changes of 

illumination and weather in the video sequence. Manzanera and Richefeu [105] 

detect the moving objects captured by a fixed camera using the sigma-delta 

filter. However, the optical flow method shows good approximation of the 

complex background, but it usually requires expensive computational 

complexity. For example, Liu and Sun [106] used optical flow techniques to 

register multiple images with sub-pixel accuracy whereas Liao et al. [107] used 

an ensemble of optical flow models to reconstruct the original HR frames with 

rich high-frequency details. 

2.8 Spatio-Temporal-based SR Approaches 

In the recent years, producing high space-time resolution of video sequence 

has become a new challenge for SR research and has thus received increasing 

attention. Temporal resolution is defined by the number of frames detected per 

second and is usually referred to as the frame-rate. It aims to recover rapid 

dynamic events that occur faster than video frame-rate and therefore they are 

not seen or captured correctly in the recorded video sequence. The temporal 

resolution of the camera is limited by two factors: the frame-rate and the 

exposure-time that determine the maximal speed of dynamic events that can be 

detected in video recording. There are two visual effects in video recordings 

which are caused by very fast dynamic events. One effect (motion blur) is due 

to the long exposure time of the camera, and the other effect (motion aliasing) is 

caused by the insufficient frame-rate of the camera. An increase of frame-rate 

can result in less, or even completely avoid, visual effects caused by very fast-

moving objects. Traditional methods used single video to enhance the temporal 

resolution and exploited the complicated temporal interpolations [108]. 

Shechtmane et al. [109], [110], [111] extended the concept of SR to the space-



 

43 

time domain to increase both the spatial and the temporal resolution by 

combining information from multiple LR video sequences of the same dynamic 

scene captured by different cameras at (sub-pixel) spatial and (sub-frame) 

temporal displacements. This approach introduces visual trade-offs in time and 

space which are unique to spatio-temporal SR and results in new visual 

capabilities of very fast dynamic events. This approach also produces smooth 

up-scaling of local pixels, but cannot handle motion aliasing. Shahar [112] 

showed that SR in time and space can be obtained from a single natural video 

sequence of a dynamic scene based on recurrence of small space-time patches 

inside the same video at multiple spatio-temporal scales by combining 

information from multiple space-time patches of the same dynamic scene 

obtained at sub-frame accuracy. Shimano [113] introduced a temporal SR 

method for increasing the temporal resolution of a video from a single input 

image sequence by exploiting the self-similarity which means self-similar motion 

blur appearances in the spatio-temporal domain of videos at different temporal 

resolutions. Such self-similarity resolves the unconstrained problem of temporal 

SR by using a MAP estimation that combines both a prior probability from self-

similar appearances and reconstruction constraints.  

Probabilistic motion estimation algorithms [114], [115] and steering kernel 

regression algorithms [116], [117] have been proposed to circumvent the 

problem of space-time video SR by avoiding the explicit need for precise sub-

pixel motion estimation. Protter et al. [114] developed a non-local means (NLM) 

de-noising method by measuring the similarity of image patches across space-

time and giving relatively higher weights to more comparable patches. This 

work resulted in "fuzzy" or probabilistic estimates of motion. The main 

advantage of fuzzy motion estimation is to handle sequences with an arbitrary 

motion pattern, thus avoiding explicit sub-pixel motion estimation. This method 

was then extended by Cheng et al. [115] based on dividing each frame into 

simple areas and complex areas to improve the performance of the NLM 

algorithm. Takeda et al. [116] introduced a method based on the extension of 

the steering kernel regression (SKR) framework [117] to 3-D signals for 

performing video de-noising, spatio-temporal up-scaling, and SR, without the 
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need for explicit sub-pixel accuracy motion estimation. In this method, each 

pixel in the sequence is estimated by a 3-D local Taylor series, using the local 

behaviour of its spatio-temporal neighbourhood, and the coefficients are 

computed by solving a local weighted least-squares problem. 

2.9 Learning-based SR Approaches 

Recently, learning-based SR approaches have emerged to further boost the 

efficiency of SR. The fundamental idea of these methods is to capture the co-

occurrence prior between LR and HR patches. Machine learning algorithms 

consist of two main parts: learning and recovering. In the learning part, a 

dictionary which contains a large number of LR and HR patch pairs is 

constructed. In the recovering part, the LR frame is divided into overlapped 

patches, and each patch searches its more similar LR patch from the dictionary. 

The HR frame is obtained by incorporating the corresponding HR patch into the 

LR frame. For example, Timofte et al. [118] introduced a simple function method 

and the anchored neighbour regression (ANR) method. The same authors 

further improved the ANR method and proposed the adjusted ANR (A+) method 

for fast SR [119]. These methods divide the training data into a small number of 

groups and learn a regression model for each group. Deep learning-based SR 

approaches have also appeared to improve SR results. Huang and Siu [120] 

proposed using a decision tree method and a SR hierarchical decision trees 

(SRHDT) method for improving SR performance. To better model complex 

image contents and details, deep learning networks methods have been 

introduced. Dong et al. [121] proposed a SR convolution neural network 

(SRCNN) method to perform a sparse reconstruction. However, this method 

does not exploit natural image priors and suffers from losing sharp edges. 

Following the SRCNN method, a deep edge guided recurrent residual method 

[122] was proposed to provide high-quality image SR and recover the edges by 

recurrent residual learning. Takeda et al. [116] introduced a method based on 

the extension of steering kernel regression framework to 3-D signals for 

performing video de-noising, spatio-temporal up-scaling and SR, without the 

need for explicit sub-pixel accuracy motion estimation. To generate better 
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results, multi-dimensional kernel regression was applied. Yang et al. [123] 

proposed a sparse-coding method where the LR and HR patch pairs share the 

same sparse representation in terms of coupled dictionaries jointly trained. The 

sparse representation of a LR patch can be incorporated into the HR dictionary 

to obtain HR patch. Kang et al. [124] proposed a joint SR and de-blocking 

method for a highly compressed image; they learned respectively image sparse 

representations for modelling the relationship between LR and HR image 

patches in terms of the learned dictionaries for image patches with and without 

blocking artefacts. Zhang et al. [125] employed clustering and collaborative 

representation to learn the mapping functions (i.e. projection matrices) from the 

LR feature spaces to their HR feature spaces for fast SR. Jiang et al. [126] also 

addressed the problem of learning the projection matrices by introducing the 

non-local self-similarity and local geometry priors of the training data. However, 

learning-based methods usually requires a large amount of training data.  

2.10 Summary and Comparison 

A general comparison of advantages and disadvantages of spatial and wavelet-

domains SR reconstruction approaches is presented in Table 2-1. 

Table 2-1 Summary of advantages and disadvantages of spatial and wavelet-

domains SR reconstruction methods. 

Disadvantages Advantages Methods 

 Degradation operators are 

only applicable when all 

LR images have the same 

blur and noise.  

 Low computational cost.  

 
Nonuniform Interpolation 

 The solution might not be 

unique.  

 The selection of some 

parameters is difficult. 

 Accommodates both global 

translational and rotational 

motions. 

 

Iterative Back-Projection 

(IBP)  

 Lack of a unique solution. 

 Slow convergence rate. 

 Expensive computational 

 Utilizes a powerful 

observation model. 

 Utilizes an appropriate 

Projection onto Convex 

Sets (POCS) 
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cost.  inclusion of a priori 

knowledge. 

 Without prior information.  

 

 Considers only the 

relationship among the 

observed LR images and 

the original HR image 

without prior information. 

Maximum Likelihood (ML) 

Estimation 

 

 Considers the relationship 

among the observed LR 

images and the original HR 

image with prior 

information.  

Maximum A Posteriori 

(MAP) Estimation 

 
 Combines effectively all a 

priori information. 

 Guarantees a single 

optimal solution.   

(ML/MAP-POCS) Hybrid 

 
 Reduces the computational 

load. 

 Reduces numerical 

difficulty. 

Computationally Efficient  

 Introduces 

smoothing and 

ringing artefacts. 

 

 Simple to implement. 
Wavelet Zero Padding 

(WZP) 

 Difficult to estimate 

the coefficients with 

small magnitudes. 

 Signs of the 

estimated 

coefficients cannot 

be relied. 

 Estimates only the wavelet 

coefficients with large 

magnitudes. 

Extrema Evolution 

 Sign changes 

between the scales 

are not being taken 

into account. 

 Estimate the wavelet 

coefficients by the mixed 

Gaussian distributions. 

Hidden Markov Tree 

(HMT) 
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 Reduces ringing artifacts. 
Cycle-Spinning (CS) 

 Shift variant. 

 

 Isolates and preserves the 

high-frequency 

components. 

 Easy to implement. 

Discrete Wavelet 

Transform (DWT) 

 Shift variant. 

 

 Isolates and preserves the 

high-frequency 

components. 

 Easy to implement. 

Stationary Wavelet 

Transform (SWT) 

 Difficult to implement. 

 

 Isolates and preserves the 

high-frequency 

components. 

 Approximately shift 

invariant. 

Dual Tree Complex 

Wavelet Transform (DT-

CWT) 

A general comparison of spatial and frequency-domains SR reconstruction 

approaches is presented in Table 2-2. 

Table 2-2 Frequency-domain SR reconstruction approaches against spatial-

domain SR reconstruction approaches. 

Properties Frequency-domain Spatial-Domain 

Observation model Frequency-domain Spatial-Domain 

Motion models Global translation Almost unlimited 

Degradation model Limited, LSI LSI or LSV 

Noise model Limited Very Flexible 

Computational requirement Low High 

A priori Knowledge Limited Almost unlimited 

Regularization Limited Excellent 

Applicability Limited Wide 

Applicability performance Good Good 
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2.11 Research Gap 

Based on the literature review, the following research gap were identified: 

 There was a clear research gap of the benefits to integrate the 

information from both the spatial-domain and frequency-domain for 

solving the SR reconstruction problem. The wavelet-based approach 

covers both of them together to bring in advantages to the SR 

reconstruction problem and boost the resolution limit of LR observations. 

 There was a clear research gap to identify the SR reconstruction problem 

in the wavelet-domain in comparison with the spatial and frequency-

domains in terms of the associated mechanisms, involved limitations, 

and achieved challenges. 

 There was a research gap to clarify the difference between the wavelet-

based SR reconstruction and wavelet-based resolution enhancement in 

terms of the associated implementation, the parameters that influence on 

the performance, and the quality of produced HR image. 

 Although the SR reconstruction is based on reasonable assumptions or 

prior knowledge about the observation that maps the original HR image 

to the observed LR images, there was a research gap of the mechanism 

to generate the observed LR images. There was no discussion on the 

mechanism to produce LR images and how this factor can affect the 

performance. There was also no discussion on the other factors that 

affect the performance. 

 There was a clear research gap to analysis the sufficient number of used 

LR images. No discussion on the adequate number of LR images and 

how this parameter can influence on the SR performance. Again, no 

discussion on the other parameters that influence on the SR 

performance. 

 There was a clear research gap in application the wavelet-based 

approach to degraded satellite images for improving the performance by 

preserving the true edges while compressing the noise and errors. 
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 There was a research gap in application the wavelet-based SR approach 

on video sequences containing global motion, and are contaminated by 

noise for increasing the spatial resolution whilst supressing the noise and 

aliasing artefacts. 

 There was a research gap in application the wavelet-based SR approach 

on practical video sequences containing local motions for increasing the 

spatial resolution while overtaking the local registration errors in low 

computational expensive. 
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3 Mathematical background 

3.1 Image Observation Model 

The image observation model describes the relationship between the original 

referenced HR image and the observed LR image/images. The image 

acquisition process in the spatial-domain involves warping, blurring and down-

sampling to produce the LR image/images from the HR image. Figure 3-1 

shows a block diagram of the observation model. Assuming that the HR image 

can be represented in the vector form as 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝐿1𝑁1×𝐿2𝑁2
]
𝑇
, where 

𝐿1𝑁1 × 𝐿2𝑁2 is the size of the HR image. Assuming that 𝐿1 and 𝐿2 represent the 

down-sampling factors in the horizontal and vertical directions, respectively, and 

each observed LR image has the size of 𝑁1 × 𝑁2.; the LR image can thus be 

denoted in the vector form by 𝑦𝑘 = [𝑦𝑘1, 𝑦𝑘2, … , 𝑦𝑘(𝑁1×𝑁2)
]
𝑇

, 𝑘 = 1,2, … , 𝑝 , where 

𝑝 is the number of LR images. Assuming that each observed LR image is 

corrupted by additive noise, the observation model can be represented as 

𝑦𝑘 = 𝐷𝐵𝑘𝑀𝑘𝑥 + 𝑛𝑘 (3-1) 

where 𝑀𝑘 is the warp matrix of size 𝐿1𝑁1𝐿2𝑁2 × 𝐿1𝑁1𝐿2𝑁2, 𝐵𝑘 is the camera blur 

matrix with the same size, 𝐷 is the down-sampling matrix of size 𝑁1𝑁2 ×

𝐿1𝑁1𝐿2𝑁2, and 𝑛𝑘 represents the 𝑁1𝑁2 × 1 noise vector. It is assumed that all LR 

images have the same blurring model, and thus the matrix 𝐵𝑘 can be 

substituted by 𝐵. These operations can be incorporated into one matrix [1], [7] 

and be expressed as 

𝑦𝑘 = 𝐷𝐵𝑀𝑘𝑥 + 𝑛𝑘 = 𝐻𝑘𝑥 + 𝑛𝑘 (3-2) 

The matrix 𝐵 generates blurred images from the warped HR image. The matrix 

𝐷 produces down-sampled (aliased) LR images from the warped and blurred 

HR image. There are various sources of blur, which are dependent on the 

characteristics of the main components of the camera used in the image 

acquisition. The first main component of the camera to add blur is the lens; 

because of the imperfection of the lens. Another main component of the camera 
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that contributes in blurring the image is the image sensor; due to the insufficient 

sampling rate of the LR sensor and the finiteness of a physical dimension in LR 

sensors. The overall blur introduced by the camera is characterised via the 

point-spread function (PSF). Other sources of blur are the relative motion 

between the camera and the observed scene, which is called motion blur; and 

atmospheric conditions can also participate to blurring of an image [1], [15].  

 

Figure 3-1 The image observation model 

3.2 Wavelet Transform 

Since the late 1950s, the Fourier transform (FT) has been the foundation of 

transform-based image processing. However, a powerful new transform, called 

the wavelet transform (WT), has advantages that make it more effective than 

the Fourier transform for compression, transmitting, and analysing many images 

[19]. The wavelet transform has also advantages over the Fourier transform in 

analysing real-wold signals where the signal contains discontinuities because 

the WT has attractive primary properties, such as locality, and multi-resolution 

[12], [16]. Different from the Fourier transform, which has bases functions called 

sinusoids, the wavelet transform depends upon bases functions called 

wavelets, of varying frequency and finite duration. This permits it to provide 

frequency information as well as temporal information; whereas, the Fourier 

transform provides only frequency information in the transformation process 

[19]. Wavelets are defined as functions generated from a unique mother 

wavelet function ∅ by dilations and translations. A wavelet is a small wave with 

an oscillating waveform of limited duration. The main advantage of a wavelet 

transform is the capability to perform local analysis. Figure 3-2 illustrates (a) 

sine wave and (b) wavelet of db.10. It makes sense that sharp changes can be 

better analysed with an irregular wavelet than a smooth sinusoid. It is also 

better to describe local features with wavelets which own local extent [127].  
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(a)                                                          (b) 

Figure 3-2 (a) Sine wave and (b) wavelet of db.10 [127] 

A multi-resolution analysis (MRA) approach is a new mathematical tool revealed 

by Mallat [128], which is beneficial in the use of wavelet bases in image analysis 

and leads to a rapid computation. Multi-resolution representation is very 

effective when analysing the information content of an image at more than one 

resolution [129]. The advantage of this approach is that objects of small size or 

low contrast are analysed at fine resolutions, while objects of large size or high 

contrast are examined at coarse resolution. There are two functions in multi-

resolution theory: a scaling function 𝜑 and a mother wavelet function ∅. The 

scaling function is employed to provide a series of approximations of a signal or 

image. The wavelet functions are employed to add the difference in information 

between the neighbouring approximations [19], [129].  

The wavelet transform is an effective tool that decomposes an image into low 

and high-frequency sub-bands locally, and then examines each sub-band with a 

resolution corresponded to its scale [17]. The wavelet transform can be 

categorised as a discrete wavelet transform (DWT), a dual-tree complex 

wavelet transform (DT-CWT), and a stationary wavelet transform (SWT). A one-

level DWT and SWT of an input image result in one low-frequency sub-band 

and three high-frequency sub-bands. The high-frequency sub-bands are formed 
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by direction filters with high magnitude responses matching to image features 

oriented at 0°, +45°, and 90°. The DWT is shift-variant because of the down-

sampling operation exploited in the transform and, thus, each sub-band has half 

the size of the input image; the SWT does not cause down-sampling and, as a 

result, each sub-band has the same size as the input image. On the other hand, 

DT-CWT of the input image produces two complex-valued low-frequency sub-

bands and six complex-valued high-frequency sub-bands at each level of 

decomposition. These high-frequency sub-bands correspond to the directions 

oriented at +75°, +45°, +15°, -15°, -45°, and -75° [77]. DT-CWT is approximately 

shift-invariant and, each sub-band has the same size as the input image. All 

these wavelet transforms are affected by the selection of wavelet basis. An 

improper wavelet basis applied in the wavelet-based methods will directly affect 

the accuracy of the performance of these methods. 

3.3  Wavelet Bases 

There are two types of wavelet bases: orthogonal and biorthogonal. 

Biorthogonal wavelets have advantages over orthogonal wavelets. The main 

advantage of biorthogonal wavelets is that they allow the use of a much wider 

class of filters called symmetric filters, which eliminate the problem of border 

effects; however they do result in coefficient expansion problem. Nevertheless, 

biorthogonal wavelets also have the advantage that they can use linear wavelet 

phase filters, which solve the problem of coefficient expansion. However, the 

limitation of biorthogonal wavelets is that they do not have the property of 

energy conservation. On the other hand, orthogonal wavelets have the 

advantage that they are energy preserving, but they do not allow the use of 

linear phase filters, except for one set of linear phase filters: Haar filters. The 

fact that biorthogonal wavelets are not energy conserving does not cause a 

significant problem; because there are linear phase biorthogonal wavelets 

which are very close to being orthogonal wavelets. The Dubechies db.9/7 

wavelet filter has this beneficial property [130], [131]. The biorthogonal 

Daubechies 9/7 filter (also called Chohen- Daubechies-Feauveau CDF filter) is 

the most commonly used wavelet function for the DWT process, especially in 
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image resolution enhancement and compression. However, it has irrational 

coefficients, and thus its hardware implementation requires large resources 

[132].  

Daubechies is a well-known family of wavelets referred to as Chohen-

Daubechies-Feauveau biorthogonal wavelets. As the scaling and wavelet 

functions of the family are symmetrical and have similar length, Daubechies 

wavelets are among the most widely used biorthogonal wavelets. Symlets (the 

shortened name for symmetrical wavelets) is another well-known family of 

wavelets. While symlets wavelets are not exactly symmetrical, they are made to 

have the least asymmetry [19]. Table 3-1 lists the wavelet families and their 

names as well as number of included filters [133].  

Table 3-1 Summary of different wavelet families, their shortened names, and 

number of included wavelets  

Wavelet Families Shortened 

Family Name 

Number of Wavelets Type 

Haar 'haar' 'haar' or 'db1' Orthogonal 

Daubechies 'db' 'db2', 'db3',…,'db45' Biorthogonal 

Symlets 'sym' 'sym2', 'sym3',…,'sym45' Biorthogonal 

Coiflets 'coif' 'coif1', 'coif2',…,' coif5' Biorthogonal 

Biorthogonal 'bior' 'bior1.1', 'bior1.3', 'bior1.5', 

'bior2.2','bior2.4',…,'bior2.8', 'bior3.1', 

'bior3.3',…, 'bior3.9', 'bior4.4', 

'bior5.5', 'bior6.8' 

Biorthogonal 

3.4 Discrete Wavelet Transform (DWT) 

The discrete wavelet transform DWT is an efficient mathematical tool for 

representing and analysing digital images at multiple resolutions. The DWT 

provides a powerful insight into an image space and frequency attributes [133]. 

The DWT provides suitable information for local analysis and synthesis of a 

time series data, or an image [12]. Firstly, it will be expressed wavelet series 

expansion. The generalised wavelet series expansion of function 𝑓(𝑥) ∈ 𝐿2(𝑅) 
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can be represented by a scaling function expansion 𝜑(𝑥) and wavelet function 

expansions ∅(𝑥), which can be written as 

𝑓(𝑥) = ∑𝑐𝑗0 (𝑘)

𝑘

𝜑𝑗0,𝑘(𝑥) + ∑ ∑𝑑𝑗(𝑘)∅𝑗,𝑘

𝑘

∞

𝑗=𝑗0

(𝑥) (3-3) 

where 𝑗0 is a starting scale, 𝑗 is a higher scale and 𝑘 is an index of a finite or 

infinite summation; 𝑐𝑗0(𝑘) are referred to as approximation and/or scaling 

coefficients and 𝑑𝑗(𝑘) are called detail and/or wavelet coefficients. The scaling 

function is employed to provide a series of approximations of 𝑓(𝑥) at scale 𝑗0 

and wavelet functions are then employed to add the difference in information 

between the neighbouring approximations for scale 𝑗 ≥ 𝑗0. If the expansion 

scaling and wavelet functions 𝜑𝑗0,𝑘 and ∅𝑗,𝑘 are an orthonormal wavelet basis, 

the expansion coefficients are computed by inner products of the expanded 

function 𝑓(𝑥) and these functions, i.e. 

𝑐𝑗0(𝑘) = 〈𝑓(𝑥)𝜑𝑗0,𝑘
(𝑥)〉 = ∫𝑓(𝑥)𝜑𝑗0,𝑘

(𝑥)𝑑𝑥 (3-4) 

 

𝑑𝑗(𝑘) = 〈𝑓(𝑥)∅𝑗,𝑘(𝑥)〉 = ∫𝑓(𝑥)∅𝑗,𝑘(𝑥)𝑑𝑥 (3-5) 

If the expanded signal is discrete, the coefficients are referred to as the discrete 

wavelet transform DWT. The one dimension (1-D) DWT decomposes an input 

signal 𝑓(𝑥) into a translated and dilated mother wavelet function ∅(𝑥) and 

scaling function 𝜑(𝑥). For example, considering a sequence 𝑓(𝑛) = 𝑓(𝑥0 + 𝑛∆𝑥) 

for 𝑥0, ∆𝑥, 𝑎𝑛𝑑 𝑛 = 0,1,2, … ,𝑀 −1, the expansion coefficients of 𝑓(𝑥) for Eqs. (3-

4) and (3-5) become the forward DWT coefficients of 𝑓(𝑛): 

𝑤𝜑(𝑗0, 𝑘) =
1

√𝑀
∑𝑓(𝑛)𝜑𝑗0.𝑘(𝑛)

𝑛

 (3-6) 
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𝑤∅(𝑗, 𝑘) =
1

√𝑀
∑𝑓(𝑛)∅𝑗.𝑘(𝑛)

𝑛

…𝑓𝑜𝑟 𝑗 ≥ 𝑗0 (3-7) 

where 𝜑𝑗0,𝑘(𝑛) and ∅𝑗,𝑘(𝑛) are discretised forms of the bases functions 𝜑𝑗0,𝑘(𝑥) 

and ∅𝑗,𝑘(𝑥). According to Eq. (3-3), the inverse DWT is 

𝑓(𝑛) =
1

√𝑀
∑𝑤𝜑

𝑘

(𝑗0, 𝑘)𝜑𝑗0,𝑘(𝑛) +
1

√𝑀
∑ ∑𝑤∅

𝑘

∞

𝑗=𝑗0

(𝑗, 𝑘)∅𝑗,𝑘(𝑛) (3-8) 

It is assumed 𝑗0 = 0 and 𝑀 is chosen to be  𝑀 = 2𝐽, and the summations in 

Eqs. (3-6) to (3-8) are applied over 𝑛 = 0,1,2,… ,𝑀 − 1, 𝑗 = 0,1,2, … , 𝐽 −

1, 𝑎𝑛𝑑 𝑘 = 0,1,2,… 2𝑗 − 1. 
1

√𝑀
 is a normalising factor added to both the forward 

and inverse DWT [19]. 

The 1-D DWT can be extended to the 2-D DWT using separable 2-D scaling 

and wavelet functions. Similar to the 1-D DWT, the 2-D DWT decomposes an 

input image 𝑓(𝑥, 𝑦) through a series of translations and dilations of a scaling 

function 𝜑(𝑥, 𝑦) and three directional wavelet functions ∅𝐻(𝑥, 𝑦) , ∅𝑉(𝑥, 𝑦), and 

∅𝐷(𝑥, 𝑦). The wavelet functions provide the directional selectivity along 

horizontal, vertical, and diagonal directions. The DWT of 𝑓(𝑥, 𝑦) with the size of 

𝑀 × 𝑁 is 

𝑊𝜑(𝑗0,𝑚, 𝑛) =
1

√𝑀𝑁
∑ ∑ 𝑓(𝑥, 𝑦)

𝑁−1

𝑦=0

𝑀−1

𝑥=0

𝜑𝑗0,𝑚,𝑛(𝑥, 𝑦) (3-9) 

 

𝑊∅
𝑖(𝑗, 𝑚, 𝑛) =

1

√𝑀𝑁
∑ ∑ 𝑓(𝑥, 𝑦)

𝑁−1

𝑦=0

𝑀−1

𝑥=0

∅𝑗,𝑚,𝑛
𝑖 (𝑥, 𝑦) (3-10) 

where 𝑖 refers to the index of directional wavelets. The coefficients 𝑊𝜑(𝑗0,𝑚, 𝑛) 

provide an approximation of 𝑓(𝑥, 𝑦) at scale 𝑗0 and the coefficients 𝑊∅(𝑗,𝑚, 𝑛) 

provide the directional details for scale ≥ 𝑗0 . 



 

58 

𝑓(𝑥, 𝑦) =
1

√𝑀𝑁
∑∑𝑊𝜑(𝑗0,𝑚, 𝑛)𝜑𝑗0,𝑚,𝑛(𝑥, 𝑦)

𝑛𝑚

+
1

√𝑀𝑁
∑ ∑ ∑∑𝑊∅

𝑛𝑚𝑗=𝑗0𝑖=𝐻,𝑉,𝐷

(𝑗,𝑚, 𝑛)∅𝑗,𝑚,𝑛(𝑥, 𝑦) (3-11) 

A one-level DWT can be represented by filtering an input signal through low-

pass and high-pass filter banks, and then down-sampling by a factor of 2 to 

eliminate the redundant information. Multiples scale levels are constituted by 

repeating the filtering and down-sampling operations on the low-pass outputs 

[131], [132]. A block diagram of DWT filter banks and down-samplers of level 1 

are illustrated in Figure 3-3.  

With separable filter banks, the 2-D DWT of an input image can be implemented 

by first applying the 1-D wavelet transform to all the rows of the image, and then 

repeating this step in all the columns. This process decomposes the input 

image into four filtered sub-bands: known as the approximation or low-low (LL); 

vertical detail or low-high (LH); horizontal detail or high-low (HL); and diagonal 

detail or high-high (HH) [19]. 

 

Figure 3-3 Block diagram of DWT filter banks of level 1 

3.5 Dual-Tree Complex Wavelet Transform (DT-CWT) 

The dual-tree complex wavelet transform DT-CWT is constructed by using two 

real-valued decimated DWTs. The 1-D DT-CWT separates an input signal 𝑓(𝑥) 

into a complex translated and dilated mother wavelet function ∅(𝑥) and scaling 

function 𝜑(𝑥), i.e.  

𝑓(𝑥) = ∑𝑠𝑗0,𝑙𝜑𝑗0,𝑙(𝑥)

𝑙∈𝑧

+ ∑ ∑𝑐𝑗,𝑙∅𝑗,𝑙(𝑥)

𝑙∈𝑧𝑗≥𝑗0

 (3-12) 
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where 𝑧 is the set of natural numbers, 𝑗 and 𝑙 denote the integer index of 

translations and dilations, respectively, 𝑠𝑗0,𝑙 are the complex scaling coefficients, 

𝑐𝑗,𝑙 are the complex wavelet coefficients, 𝜑𝑗0,𝑙(𝑥) = 𝜑𝑗0,𝑙
𝑟 (𝑥) + √−1𝜑𝑗0,𝑙

𝑖 (𝑥) and 

∅𝑗,𝑙(𝑥) = ∅𝑗,𝑙
𝑟 (𝑥) + √−1∅𝑗,𝑙

𝑖 (𝑥) , 𝑟 and 𝑖 refer to the real and imaginary parts, 

respectively, where the real and imaginary parts are calculated using separable 

filter banks. 

The 2-D DT-CWT separates an input image 𝑓(𝑥, 𝑦) using a series of 

translations and dilations of a one complex scaling function and six complex 

wavelet functions, i.e. 

𝑓(𝑥, 𝑦) = ∑ 𝑠𝑗0,𝑙

𝑙∈𝑧2

𝜑𝑗0,𝑙(𝑥, 𝑦) + ∑ ∑ ∑ 𝑐𝑗,𝑙
𝜃

𝑙∈𝑧2𝑗≥𝑗0𝜃∈Ɵ

∅𝑗,𝑙
𝜃 (𝑥, 𝑦) (3-13) 

Here 𝜃 ∈ Ɵ = {±15°, ±45°, ±75°} creates the direction of the complex wavelet 

function; in other words, a one-level DT-CWT of the input image results in one 

complex-valued low-frequency sub-band and six complex-valued high-

frequency sub-bands [65], [134]. The advantages of DT-CWT is that it has a 

shift-invariant property and good directional selectivity, and benefits from using 

direction-selective filters with high magnitude responses in the presence of 

image features.  

3.6 Image Interpolation  

Interpolation is the widely used technique for increasing the resolution of a 

digital image. Fundamentally, image interpolation is the process of using known 

data to estimate values at unknown locations [19]. Interpolation is a basic tool 

used extensively for several different applications in image processing, 

including zooming, shrinking, rotating, and geometric corrections. The sinc 

interpolation function produces an exact reconstruction of a continuous function, 

if the data was sampled at or above the Nyquist rate [79]. However, the sinc 

basis function does not yield satisfactory results for image data as image data is 

acquired at a much lower sampling rate [44]. The classical polynomial 

interpolation methods, such as Lagrange interpolation, also do not produce 

acceptable results as the global polynomial model is not able to precisely model 
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local image features. The piecewise polynomial approaches, which are also 

called splines, were investigated to minimise the limitations suffered by the 

global polynomial methods [79]. There are four well-known interpolation 

methods: nearest neighbour, bilinear, bicubic, and Lanczos.  

Nearest neighbour interpolation is the easiest method, where the intensity value 

at the new location is assigned as the value at the old location, which is the 

nearest neighbour to the new location. The main drawback of this method is 

that it results in staircase artefacts. An improved method is bilinear interpolation, 

in which the value of the new location is estimated using the four nearest 

neighbour pixels by taking a weighted average of these pixels. This method 

produces much better results than the nearest neighbour interpolation, with a 

moderate increase in computational cost [19], [81], [82]. Bicubic interpolation is 

a more complex method, which is also referred to as cubic convolution 

interpolation in [80] and HR cubic spline interpolation in [81], [82], and [83]. In 

this method, the intensity value of the new location is assigned using the sixteen 

nearest neighbour points by taking a weighted average of these points. This 

method is more efficient and accurate than bilinear interpolation and nearest 

neighbour, by producing sharper edges in terms of preserving more of the 

details in the original image [80]: it is the most preferred interpolation method in 

commercial image editing programs [19]. Lanczos interpolation is a windowed 

form of the sinc function. There are two versions of such a windowed sinc 

function: the Lanczos windowed sinc function of degree 2 and 3. This method 

also produces good results in terms of its capability to detect edges and linear 

features. It gives a good compromise in terms of reduction of aliasing and 

ringing artefacts, and sharpness of edges [67], [84]. The main drawback of most 

interpolation methods is that the images produced suffer from blurring and 

staircase artefacts.  

3.7 Summary 

This chapter presents the basic concepts of wavelet-based image resolution 

enhancement techniques, and SR techniques. Although the goal of SR 

reconstruction methods is to produce one, or a set of, HR images from multiple 
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LR images, it also covers resolution enhancement methods that produce a 

single HR image from a single LR image. The image observation model is the 

first step to analyse resolution enhancement and SR reconstruction processes, 

which is applicable for degradation of both still images and video sequences. 

The second step is to describe the wavelet-domain, which is the employed 

domain. This chapter contains the key elements of the wavelet transform, which 

include the wavelet bases and types of wavelet transforms. 
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4 An Optimal Factor Analysis Approach to Improve the 

Wavelet-based Image Resolution Enhancement 

Techniques 

4.1 Introduction 

This chapter studies the existing wavelet-based image resolution enhancement 

techniques in terms of the way to assess their performance. It has been 

observed that the existing wavelet-based methods have many assumptions of 

the factors that affect the performance. A major limitation of most these 

methods is that the assumptions they make are not always satisfied for real 

applications, which limit their performance in practice. For example, the detail of 

a physical object that an optical instrument can reproduce in an image has limits 

which are mandated by the laws of physics, whether formulated by the 

diffraction equations in the wave theory of light or the Uncertainty Principle for 

photons in quantum mechanics. There is no such a well-accepted model that 

can fully describe the underlying mechanism to produce the observed LR 

image. This mechanism can also be varied case by case. Another example is 

that the selection of different wavelet functions is either very limited or never 

considered. Most of the existing wavelet-based image resolution enhancement 

methods evaluate their performance using the wavelet function db.9/7. Although 

the db.9/7 wavelet function is the most widely used one in the wavelet-based 

resolution enhancement methods, there is a wide range of wavelet families and 

their different wavelet functions for chosen. It has also been observed the 

inconsistency of assumptions of the factors for each method. For example, the 

studied methods assume that the observed LR image is obtained either from 

down-sampling the original HR image by applying discrete wavelet transform 

(DWT) and considering a low-frequency (LL) sub-band of DWT, or low-pass 

filtering and then down-sampling. In other words, the superior of one method 

than other methods claimed in the literatures is conditional. Although it has 

been reported in [135] that the performance of resolution enhancement 

techniques can be affected by the methods to produce the LR images, and 
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other factors, there is very limited literatures investigating how to utilise these 

factors to assess and improve the performance of these techniques.  

Resolution enhancement techniques in the wavelet-domain have attracted more 

and more investigations to address the problems associated with conventional 

interpolation methods. Wavelet-based resolution enhancement methods aim to 

reconstruct the HR image from the given LR image by estimating the unknown 

wavelet coefficients in sub-bands containing high-pass frequency information. A 

simple approach, called wavelet-zero padding (WZP), is to recover an 

approximation of the HR image by filling the unknown wavelet coefficients with 

zeros and applying the inverse wavelet transform [62]. Although, this method is 

able to surpass the conventional interpolation methods, it commonly introduces 

artefacts, such as smoothing and ringing, into the reconstructed HR image. 

Many advanced methods have been introduced to estimate the wavelet 

coefficients of high-frequency sub-bands. Hidden Markov tree (HMT) approach 

in the wavelet- domain is able to exploit the statistical relationships between 

wavelet coefficients at different scales. A statistical framework for signal 

processing was introduced by Crouse et al. [16] using wavelet-domain hidden 

Markov models (HMMs). A hidden Markov tree -based method using HMM 

approach [16] was proposed by Kinebuchi et al. in [58] and an extended version 

of HMM approach [16] was presented by Zhao et al. in [59], to estimate the 

unknown detail coefficients by the mixed Gaussian distributions, which are 

symmetrical around zero. However, the performance of these methods is 

affected by the sign changes between the scales not being taken into account. 

To reduce this drawback, a refined HMT-based method was proposed by 

Temizel in [60], where the coefficient magnitude estimation is separated from 

the sign estimation. A non-directional cycle-spinning (CS) method [62], called 

WZP-CS, was developed by Temizel and Vlachos as an effective method for 

reducing ringing artefacts by averaging out the translated zero-padded 

reconstructed images. However, ringing artefacts not only occur at the vicinity of 

edges; in particular, they are predominantly correlated with the orientation of 

edges. A directional CS method, called WZP-DCS, was introduced in [63] by 

Vlachos, which can refine better edge orientation and prevent ringing artefacts. 
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A further improvement of this method could be obtained by applying a CS and 

edge rectification technique [64]. A dual-tree complex wavelet transform (DT-

CWT) approach was introduced by Reeves and Kingsbury [65]. Recently, DT-

CWT technique [66] was proposed by Demirel and Anbarjafari for resolution 

enhancement of satellite images. One-level DT-CWT decomposes an input LR 

image into different frequency sub-bands, and then the high-frequency sub-

bands produced by DT-CWT and the input image are interpolated using bicubic 

interpolation. Finally, a super-resolved image is generated by combining all 

these interpolated sub-bands through the inverse DT-CWT. More recently, a 

DT-CWT technique based on non-local means filter and Lanczos interpolation 

was proposed by Iqbal et al. [67] for resolution enhancement of satellite images. 

In recent years, discrete wavelet transform DWT-based image resolution 

enhancement techniques have attracted increasing investigations. A Demirel-

Anbarjafari Super Resolution (DASR) method [70] was proposed, in which the 

decomposed three high-frequency sub-bands and the input image are 

interpolated using bicubic interpolation. Upgrading from the DASR, a DWT-Diff 

technique [71] was introduced by Demirel and Anbarjafari with its application in 

satellite images, in which the high-frequency sub-bands are further enhanced 

by considering the difference between the input LR image and the interpolated 

low-frequency sub-band. The same authors proposed a method based on 

DWT- and stationary wavelet transform (SWT) [72], which introduced an 

intermediate process by adding the high-frequency sub-bands obtained through 

SWT of the input image with the high-frequency sub-bands obtained through 

DWT.  

4.2 State-of-The-Art Image Resolution Enhancement Methods 

In this section, the wavelet zero padding (WZP) and cycle-spinning (CS) 

methods will be described below as an example of the state-of-the-art wavelet-

based image resolution enhancement methods, aiming to use for performance 

assessment because they are relatively simple. 
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4.2.1 Wavelet Zero Padding (WZP) 

Wavelet zero padding WZP is the simplest method for image resolution 

enhancement in the wavelet-domain. An initial approximation to the unknown 

HR image is obtained by using an input LR image as low-frequency sub-band 

and zero-padding of high-frequency sub-bands (i.e. filling all the elements of 

these sub-bands with zeros), and applying the inverse wavelet transform (IWT). 

A simplified block diagram of the method is shown in Figure 4-1. 

�̂�0 = 𝑤−1 [
𝑦 0𝑚,𝑛

0𝑚,𝑛 0𝑚,𝑛
] (4-1) 

where �̂�0 is an initial approximation to the unknown HR image, 𝑦 is an input LR 

image of size 𝑚 × 𝑛, 0𝑚,𝑛 represents an all-zero sub-matrix of dimensions 

𝑚 × 𝑛 , and 𝑤−1 is the inverse discrete wavelet transform. This method is 

relatively simple to implement and is capable of outperforming the conventional 

interpolation methods [62]. 

 

Figure 4-1 A simplified block diagram of the WZP method [62] 

4.2.2 Cycle-Spinning (CS) 

A non-directional cycle-spinning CS method, called WZP-CS, was used as an 

effective tool toward reducing ringing artefacts. A non-directional CS technique 

in the wavelet-domain can be summarized by the following steps: 

1) An initial approximation to the unknown HR image �̂�0 is obtained using 

WZP. 

2) A number of LR images �̂�𝑖,𝑗 are generated from the initial HR 

approximation image in step (1) by spatial horizontal and vertical shifts, 

wavelet transform, and discarding the high-frequency sub-bands.  
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�̂�𝑖,𝑗 = 𝐷𝑊𝑆𝑖,𝑗�̂�0 (4-2) 

where 𝐷 denotes discarding of high-frequency sub-bands, 𝑊 is wavelet 

transform, 𝑆𝑖,𝑗 represents a shift operator by applying horizontal and 

vertical shifts of 𝑖, 𝑗 ∈ {−𝑘, 𝑘 + 1,… , 𝑘 − 1, 𝑘}., where 𝑘 ∈ {1,2,3, … ,𝑁}. 

3) WZP processing is applied to all those LR images �̂�𝑖,𝑗 to give 𝑁 HR 

images �̂�𝑖,𝑗, where 𝑁 = (2𝑘 + 1)(2𝑘 + 1). These intermediate HR images 

are realigned and averaged to give the final reconstructed HR image �̂�, 

as written by Eq. (4-3), where 𝑆𝑖,𝑗
−1 denotes the inverse of the shifting 

operator [62].  

�̂� =
1

𝑁
∑ ∑ 𝑆𝑖,𝑗

−1�̂�𝑖,𝑗

𝑘

𝑗=−𝑘

𝑘

𝑖=−𝑘

 (4-3) 

A block diagram of the algorithm is illustrated in Figure 4-2. 

 

Figure 4-2 Block diagram of the WZP-CS method [62] 

4.3 Proposed Methods 

4.3.1 Important Factors 

Table 4-1 summaries the reviewed wavelet-based image resolution 

enhancement techniques in terms of the way to evaluate their performance. The 

inconsistencies in the assumptions of the considered factors for each individual 

technique has been observed.  
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Table 4-1 Summary of different wavelet-based image resolution enhancement 

techniques in terms of performance assessment. 

Techniques 
Input LR 
Image 

Scale 
Factor 

Interpolation 
Method 

Wavelet 
Function 

Test Image 

WZP-CS [62] 
LL sub-band of 
DWT 

2 & 4 N/A Db.9/7 Lena, Elaine, 
Baboon, and 
Peppers 

WZP-DCS 
[63] 

Low-pass 
filtering and 
down-sampling 

2 & 4 N/A Db.9/7 Lena, Elaine, 
Baboon, and 
Peppers 

HMT [58] 
Down-
sampling of 
HR image 

N/A N/A N/A Lena 

HMT [59] 
Down-
sampling of 
HR image 

2 N/A N/A Lena 

HMT [60] 
 Low-pass 
filtering and 
down-sampling 

2 & 4 N/A Db.9/7 Lena, Elaine, 
Baboon, and 
Peppers 

DT-CWT [66] 
LL sub-band of 
DWT 

2 & 4 Bicubic N/A 5 Satellite 
Images 

DT-CWT [67] 
Down-
sampling of 
HR image 

4 Lanczoc N/A 1 Satellite 
Image 
(Washington 
DC) 

DASR [70] 
LL sub-band of 
DWT 

4 Bicubic Db.9/7 Lena, Elaine, 
Baboon, and 
Peppers 

DWT-Diff 
[71] 

LL sub-band of 
DWT 

4 Bicubic Db.9/7 5 Satellite 
Images 

DWT-SWT 
[72] 

Down-
sampling of 
HR image 

4 Bicubic Db.9/7 Lena, Elaine, 
Baboon, and 
Peppers 

DWT-SWT 
[73] 

Down-
sampling of 
HR image 

4 Bicubic N/A Lena, Elaine, 
Head, and 
Brain 

For example, the considered methods make the assumption that the observed 

LR image is produced by either applying a low-pass filtering and then 

downsampling, or achieving the low-frequency LL sub-band of DWT. For some 

methods, the description of these factors is either neglected or unclear. The 

performance of these methods is unknown when such an assumption is not 
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satisfied. A method to compare the resolution enhancement methods in a more 

comprehensive and equitable way is therefore required. Such a method can 

also be used to further improve the overall performance of the existing methods. 

Each potential factor that affects the performance has been studied one by one. 

4.3.1.1 The Mechanism to Produce Low-Resolution Images 

It has been identified from the literature review that there are various ways to 

generate LR images including down-sampling of the original HR image through 

(a) DWT by the db.9/7 wavelet function or by the Haar wavelet function, (b) 

bicubic interpolation, (c) bilinear interpolation, (d) nearest neighbour, and (e) 

low-pass filtering and then down-sampling. Table 4-2 shows the resulting PSNR 

values for Lena image using different resolution enhancement methods by 

considering different LR image generation methods.  

Table 4-2 PSNR results for Lena image using different techniques for resolution 

enhancement from 128×128 to 512×512 for several LR image generation 

methods. 

Techniques 

PSNR (dB) 

DWT by 
DB.9/7 

DWT by 
Haar 

Bicubic Bilinear Nearest Low-pass 

WZP(haar) 22.36 25.77 25.75 25.19 24.35 25.18 

WZP(db.9/7) 24.22 25.75 25.73 25.23 23.21 24.04 

Bicubic 22.51 26.31 26.28 25.75 24.80 25.67 

Bilinear 22.63 25.53 25.54 24.85 24.87 25.21 

Nearest 21.53 24.71 24.61 24.44 22.79 23.97 

Inspection of Table 4-2 shows that WZP method with the wavelet function 

db.9/7 has the best performance among the considered methods for the input 

LR image produced by DWT with db.9/7. For the LR images obtained by DWT 

with Haar, bicubic interpolation, bilinear interpolation and low-pass filtering 

methods, the bicubic interpolation method has the highest PSNR values, but for 

the LR image produced by the nearest neighbor, the bilinear interpolation 

method has the best performance. These observations clearly indicate that the 

method to produce LR image has significant effect on the performance of 

different techniques. 
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4.3.1.2 Wavelet Function 

There are several well-known wavelet families such as Daubechies (db), 

Symlets (sym), Biorthogonal (bior), Coiflets (coif), etc. [133]. In this chapter, the 

behaviour of the considered resolution enhancement techniques has been 

studied for a wide range of wavelet families as well as their various wavelet 

functions, including (db1-20), (sym2-20), (bior1.1-6.8) and (coif1-5). Note that 

db.1 is also referred to as Haar, and db.9/7 is equivalent to bior4.4 [129]. Table 

4-3 illustrates the PSNR values for three well-known test images (Lena, 

Baboon, and Elaine) using the WZP method with various wavelet functions, 

where only the wavelet functions producing high PSNR values are shown to 

save space. The input LR image has been produced by down-sampling the 

original HR image using DWT with db.9/7 wavelet function. The quantitative 

results show that coif2, sym3, and db3 are top three wavelet functions in terms 

of PSNR values for all three test images, not the well investigated Haar or 

bior4.4. This observation indicates that the selection of wavelet function can 

play a key role in improving the performance. However, in most of the existing 

wavelet-based resolution enhancement methods, the discussion of selection 

different wavelet functions is very limited.  

Table 4-3 PSNR results for three well-known test images (Lena, Baboon, and 

Elaine) generated by DWT with db.9/7 using different techniques for resolution 

enhancement from 128×128 to 512×512 of various wavelet families and functions. 

Techniques PSNR (dB) 

Lena Baboon Elaine 

Bicubic 22.51 24.21 25.49 

Bilinear  22.63 24.23 25.52 

Nerest 21.53 23.49 24.40 

WZP (haar) 22.36 24.09 25.31 

WZP (bior 1.1) 22.36 24.09 25.31 

WZP (bior 2.2) 24.19 25.19 27.40 

WZP (bior 3.1) 22.64 24.27 25.57 

WZP (bior 4.4) 24.22 25.23 27.46 

WZP (bior 5.5) 24.13 25.19 27.41 

WZP (bior 6.8) 24.22 25.22 27.44 

WZP (sym2) 25.32 25.67 28.77 

WZP (sym3) 26.45 26.26 30.15 

WZP(sym7) 25.59 25.91 28.90 
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WZP (sym15) 25.56 25.88 29.08 

WZP (sym19) 26.15 26.13 29.86 

WZP (coif1) 24.16 25.18 27.39 

WZP (coif2) 26.56 26.30 30.28 

WZP (coif3) 24.08 25.16 27.41 

WZP (db2) 25.32 25.76 28.77 

WZP (db3) 26.45 26.26 30.15 

WZP (db4) 24.21 25.23 27.51 

 

4.3.1.3 Enlargement Factor  

As shown in Table 4-1, the performance of most methods has been evaluated 

by an enlargement factor of 2 or 4. To better evaluate the effectiveness of this 

factor on performance, this study has considered different scale factors of 2, 4, 

8 and 16. The input LR image has been obtained by down-sampling using DWT 

with db.9/7 wavelet function. The produced PSNR values for Lena image are 

shown in Table 4-4, inspection of which shows that WZP method with db.9/7 

produces the highest PSNR values for all enlargement factors. The Lanczos 

and bicubic techniques provide higher PSNR values than bilinear technique for 

the scale factor of 2 but for the scale factors of 4, 8 and 16, the bilinear 

technique produces higher PSNR values than Lanczos and bicubic techniques. 

The performance variation of the considered methods decreases following the 

increase of scale factor, which indicates that the scale factor is an important 

parameter to be considered for performance assessment. 

Table 4-4 PSNR results for Lena image generated using DWT with db.9/7 for 

enlargement factors of 2, 4, 8 and 16 using different techniques.   

Techniques PSNR (dB) 

Factor 2 Factor 4 Factor 8 Factor 16 

WZP(db.9/7) 32.93 24.22 19.89 17.22 

WZP(haar) 26.44 22.36 19.26 16.97 

Bicubic 28.05 22.51 19.28 16.98 

Lanczos 28.06 22.39 19.16 16.83 

Bilinear 27.77 22.63 19.46 17.22 

Nearest 26.44 21.53 18.60 16.32 
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4.3.1.4 Interpolation Function 

Because of the obvious weakness of the nearest neighbor method, it has been 

neglected in this study, and the bilinear, bicubic and Lanczos methods have 

been tested. The input LR image has been produced by down-sampling using 

DWT with db.9/7. The PSNR results for Lena image are illustrated in Table 4-5, 

inspection of which indicates that there is no significant difference in 

performance for different interpolation methods. Moreover, the interpolation 

method producing the highest PSNR value is not consistent for different 

methods. These observations indicate that the selection of interpolation function 

for wavelet-based techniques can affect the performance, but not significantly. 

Table 4-5 PSNR results for Lena image generated using DWT with db.9/7 for 

resolution enlargement factor from 128×128 to 512×512 using different resolution 

enhancement techniques. 

Techniques PSNR (dB) 

Bicubic Lanczos Bilinear 

WZP-CS(db.9/7) 24.23 24.18 24.05 

WZP(db.9/7) 24.22 24.18 24.05 

WZP(haar) 22.36 22.23 22.52 

WZP(coif2) 26.56 26.88 25.60 

 

4.3.1.5 Test Image 

In order to show the effectiveness of the test images on the performance of the 

considered resolution enhancement methods, three well-known standard 

images (Lena, Baboon, and Elaine) with different features have been tested for 

comparison. Table 4-6 illustrates the PSNR values using different conventional 

interpolation and state-of-the-art wavelet-based resolution enhancement 

methods. The input image has also been generated by DWT with db.9/7 

wavelet filter. Inspection of Table 4-6 shows that Elaine image with many sharp 

edges [72], has the highest PSNR improvement. For Lena image with many 

strong edges relative to the number of textures [57], the improvement is lower. 

However, Baboon image with many textures [72], has the lowest PSNR 

improvement because of the relative redundancy of textures. These 
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observations indicate that the test image is an important factor to be considered 

for performance evaluation. 

 

 

 

 

 

Table 4-6 PSNR results for three well-known test images (Lena, Baboon, and 

Elaine) generated by DWT with db.9/7 using different techniques for resolution 

enhancement from 128×128 to 512×512. 

Techniques PSNR (dB) 

Lena Baboon Elaine 

WZP(coif2) 26.56 26.30 30.28 

WZP-CS(db.9/7) 24.23 25.23 27.47 

WZP(db.9/7) 24.22 25.22 27.46 

WZP(haar) 22.36 24.09 25.31 

Bicubic 22.51 24.21 25.49 

Lancozos 22.39 24.16 25.43 

Bilinear 22.63 24.23 25.52 

 

4.3.2 Image Fidelity Criteria 

There are two types of criteria for assessing the performance of resolution 

enhancement algorithms: (1) objective fidelity criteria and (2) subjective fidelity 

criteria. 

Objective fidelity criterion or quantitative metric evaluates the performance as a 

mathematical function of the input and output images. The root-mean-square 

error (𝑅𝑀𝑆𝐸) between the original HR image and the output image is one of the 

commonly used objective fidelity criteria. Consider 𝑓(𝑥, 𝑦) is an input image and 

𝑓(𝑥, 𝑦) is an output image. For any value of 𝑥 and 𝑦, the error 𝑒(𝑥, 𝑦) between 

𝑓(𝑥, 𝑦) and 𝑓(𝑥, 𝑦) is  
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𝑒(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦) (4-4) 

The total error between the two images is 

𝑒𝑠𝑢𝑚 = ∑ ∑[𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦)]

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 (4-5) 

where the images are with size 𝑀 × 𝑁. The 𝑅𝑀𝑆𝐸 between these two images is 

the square root of the squared error averaged over the 𝑀 × 𝑁 array, and it can 

be expressed as 

𝑅𝑀𝑆𝐸 = [
1

𝑀𝑁
∑ ∑[𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦)]

2
𝑁−1

𝑦=0

𝑀−1

𝑥=0

]

1 2⁄

 (4-6) 

If the output image 𝑓(𝑥, 𝑦) is considered to be the input image 𝑓(𝑥, 𝑦) and the 

error or difference is considered to be "noise" signal 𝑒(𝑥, 𝑦), the mean-square 

signal-to-noise ratio (𝑆𝑁𝑅𝑚𝑠) of the output image can be defined as 

𝑆𝑁𝑅𝑚𝑠 =
∑ ∑ 𝑓(𝑥, 𝑦)2𝑁−1

𝑦=0
𝑀−1
𝑥=0

∑ ∑ [𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦)]
2𝑁−1

𝑦=0
𝑀−1
𝑥=0

 (4-7) 

The ratio (𝑆𝑁𝑅𝑚𝑠) offers a measure of the level of signal power to the level of 

noise power. An image with low noise has a high ratio and the same image with 

a larger level of noise has a lower ratio.  

The peak-signal-to-noise ratio (𝑃𝑆𝑁𝑅) between the resolution enhanced image 

and the original HR image is one of the most important and commonly used 

quantitative measures. It can be calculated as 

𝑃𝑆𝑁𝑅 = 10 log10(
𝐿2

𝑀𝑆𝐸
) (4-8) 

where 𝐿 is the maximum fluctuation in the image. If the image is represented by 

8-bit grayscale, the value of 𝐿 will be 255. 𝑀𝑆𝐸 represents the mean-square-

error between the resolution enhanced image and the original HR image. It can 

be calculated as 
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𝑀𝑆𝐸 =
1

𝑀𝑁
∑ ∑ [𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦)]

2𝑁−1

𝑦=0

𝑀−1

𝑥=0
 (4-9) 

Although objective fidelity criteria give a simple and appropriate way to assess 

the performance, subjective fidelity criteria are often more convenient. It is 

based on evaluating image quality by the subjective assessments of humans 

[19].  

4.3.3 Optimal Factor Analysis (OFA) 

The behaviour of resolution enhancement methods has been assessed above 

by varying one factor and fixing other factors, which aims to identify the 

important factors but it cannot reveal the best technique with the optimal 

parameter selection. Addressing this challenge, this chapter proposes an 

Optimal Factors Analysis (OFA) approach in order to increase the performance 

of the existing wavelet-based methods, and also better assess their overall 

performance. 

OFA algorithm considers a resolution enhancement technique, ∅, as a Multi-

Input and Multi-Output (MIMO) model, which includes five inputs variables: the 

way to produce LR image 𝐿𝑅𝑎(𝑎 = 1,2, … , 𝐴), the scale factor 𝑆𝐹𝑏(𝑏 = 1,2, … , 𝐵), 

the test image 𝑇𝐼𝑐(𝑐 = 1,2, . . , 𝐶), the wavelet function 𝑊𝐹𝑑(𝑑 = 1,2, … , 𝐷), and 

the interpolation method 𝐼𝑀𝑒(𝑒 = 1,2, … , 𝐸), where 𝐴, 𝐵, 𝐶, 𝐷, and 𝐸 are the total 

number of possible states for five variables, respectively. There are three 

outputs including the highest 𝑃𝑆𝑁𝑅 value 𝑃𝑆𝑁𝑅∗, the optimal wavelet function 

𝑊𝐹∗ and the optimal interpolation method 𝐼𝑀∗. The MIMO model can therefore 

be written as: 

(𝑃𝑆𝑁𝑅∗,𝑊𝐹∗, 𝐼𝑀∗) = 𝐹∅(𝐿𝑅𝑎, 𝑆𝐹𝑏 , 𝑇𝐼𝑐,𝑊𝐹𝑑 , 𝐼𝑀𝑒) (4-10) 

Depending on the values of 𝐴, 𝐵, 𝐶, 𝐷, and 𝐸, Eq. (4-10) can be solved by either 

an exhausted search or advanced optimisation techniques. In this study, the 

exhausted search has been employed. 

The advantages of proposing the OFA approach are to find the best factors and 

evaluate the performance of the existing wavelet-based resolution 
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enhancement techniques in a more comprehensive and equitable method in 

order to increase the applicability and fidelity of the existing methods. However, 

the disadvantage of OFA method is that it has to scan all possible states for 

input variables, e.g. it has to consider different methods to generate LR images, 

and different wavelet functions and different interpolation methods. 

To better evaluate the overall performance, this chapter proposes a new Figure 

of Merit (FoM) measure, called Ratio of PSNR (RPSNR) that considers the 

‘bicubic’ interpolation as the baseline. For a test image 𝑇𝐼𝑐, a way to produce LR 

image 𝐿𝑅𝑎,  and a scale factor 𝑆𝐹𝑏, RPSNR of the technique ∅  can be written 

as 

𝑅𝑃𝑆𝑁𝑅∅(𝐿𝑅𝑎, 𝑆𝐹𝑏 , 𝑇𝐼𝑐) =
max {𝑃𝑆𝑁𝑅∅(𝐿𝑅𝑎, 𝑆𝐹𝑏 , 𝑇𝐼𝑐,𝑊𝐹𝑑 , 𝐼𝑀𝑒)}

𝑃𝑆𝑁𝑅∅(𝐿𝑅𝑎, 𝑆𝐹𝑏 , 𝑇𝐼𝑐,′ 𝑏𝑖𝑐𝑢𝑏𝑖𝑐′)
 (4-11) 

A higher 𝑅𝑃𝑆𝑁𝑅 indicates a better performance. To collectively assess the 

performance of ∅ over all considered factors, the averaged RPSNR is 

introduced and expressed as 

𝑅𝑃𝑆𝑁𝑅̅̅ ̅̅ ̅̅ ̅̅ ̅̅
∅ =

1

𝐴 × 𝐵 × 𝐶
∑ ∑∑𝑅𝑃𝑆𝑁𝑅∅(𝐿𝑅𝑎, 𝑆𝐹𝑏 , 𝑇𝐼𝑐)

𝐶

𝑐=1

𝐵

𝑏=1

𝐴

𝑎=1

 (4-12) 

4.4 Results and Discussions 

This study has considered six methods to generate input LR images (𝐴 = 6), 

including DWT with db. 9/7 wavelet function, DWT with Haar wavelet function, 

bicubic, bilinear, nearest, and low-pass filtering. Three scale factors 2, 4, and 8 

(𝐵 = 3) and three tested images (𝐶 = 3) including Lena, Baboon, and Elaine 

have also been considered in this study. Considered wavelet families and their 

functions include Daubechies (db1 to db20), Symlets (sym2 to sym20), Coiflets 

(coif1 to coif5) and Biorthogonal (bior1.1 to bior6.8). Considered resolution 

enhancement techniques can be classified into five groups: interpolation 

methods and four WZP-based methods with different wavelet families 

(WZP+db, WZP+sym, WZP+coif, and WZP+bior). Three interpolation methods 

(𝐸 = 3) have been considered, namely bilinear, bicubic and Lanczos.  
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Figure 4-3 Performance improvement for the WZP techniques by applying the 

proposed OFA method for the scale factor of 4. 

Figure 4-3 illustrates the performance of the WZP-based methods before and 

after applying the proposed method, where the LR images have been resolution 

enhanced from 128 × 128 to 512 × 512. The blue and red bars plot the PSNR 

values before and after applying OFA method, respectively. It is clearly shown 

that the proposed method significantly improves the performance of the WZP-

based techniques for all six ways to produce LR images and for all three tested 

images. 

Table 4-7 shows the results including the best performed method with its 

optimal parameter selection, as well as the highest PSNR and RPSNR value for 

different factors. For the LR image obtained from DWT with db. 9/7 wavelet 

function, the optimal class corresponding with the optimal interpolation method 

is WZP using "sym" with bilinear interpolation for the Lena image with the scale 

factor of 2. However, for the Baboon and the Elaine images, the best class is 

WZP using "bior" with bilinear interpolation for the Elaine image and with 

Lanczos interpolation for the Baboon image. For the scale factors of 4 and 8, 

the best class with the best interpolation method is WZP using "coif" with 

Lanczos interpolation for all three tested images.  
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Table 4-7 Highest PSNR and RPSNR results corresponding with optimal 

resolution technique and interpolation method for Lena, Baboon and Elaine 

images with three scale factors 2, 4, and 8. 

Testing 
image 

Scale 
factor 

Methods to produce LR image  

DWT by DB.9/7 DWT by Haar 
Bicubic Bilinear Nearest Low-pass 

Lena 

2 WZP(sym20) 

Bilinear 

32.98(1.1760) 

Interpolation 

Lanczos 

32.63(1.0221) 

Interpolation 

Lanczos 

32.48(1.0237) 

Interpolation 

Lanczos 

30.85(1.0218) 

WZP(sym18) 

Lanczos 

31.22(1.1319) 

WZP(sym18) 

Bilinear 

31.18(1.1232) 

4 WZP(coif2) 

Lanczos 

26.88(1.1942) 

Interpolation 

Lanczos 

26.56(1.0097) 

Interpolation 

Lanczos 

26.58(1.0117) 

Interpolation 

Lanczos 

25.89(1.0125) 

WZP(sym18) 

Bicubic 

25.40(1.0243) 

WZP(sym18) 

Lanczos 

26.45(1.0305) 

8 WZP(coif4) 

Lanczos 

23.14(1.2004) 

Interpolation 

Lanczos 

23.05(1.0058) 

Interpolation 

Lanczos 

23.09(1.0078) 

Interpolation 

Lanczos 

22.64(1.0096) 

WZP(sym8) 

Bilinear 

21.76(1.0150) 

WZP(sym9) 

Bicubic 

22.35(1.0035) 

Baboon 

2 WZP(bior4.4) 

Lanczos 

30.07(1.0777) 

Interpolation 

Lanczos 

29.64(1.0038) 

Interpolation 

Lanczos 

29.67(1.0094) 

WZP(sym13) 

Bilinear 

28.97(1.0106) 

WZP(sym6) 

Bilinear 

28.06(1.0419) 

WZP(sym18) 

Bilinear 

29.19(1.0582) 

4 WZP(coif2) 

Lanczos 

26.43(1.0918) 

Interpolation 

Lanczos 

26.33(1.0029) 

Interpolation 

Lanczos 

26.39(1.0053) 

Interpolation 

Lanczos 

26.03(1.0063) 

WZP(sym18) 

Bilinear 

25.25(1.0251) 

WZP(sym18) 

Bicubic 

26.21(1.0119) 

8 WZP(coif4) 

Lanczos 

24.22(1.1073) 

Interpolation 

Lanczos 

24.06(1.0031) 

Interpolation 

Lanczos 

24.10(1.0051) 

WZP(bior5.5) 

Lanczos 
23.86(1.0067) 

WZP(bior3.1) 

Bilinear 

22.76(1.0212) 

WZP(sym6) 

Bilinear 

23.50(1.0040) 

Elaine 

2 WZP(bior4.4) 

Bilinear 

34.96(1.1177) 

Interpolation 

Lanczos 

34.54 (1.0074) 

Interpolation 

Lanczos 

34.56(1.0115) 

Interpolation 

Lanczos 

33.56(1.0122) 

WZP(sym6) 

Bilinear 

32.71(1.0700) 

WZP(sym18) 

Lanczos 

33.73(1.0901) 

4 WZP(coif2) 

Lanczos 

30.64(1.2021) 

Interpolation 

Lanczos 

30.42 (1.0108) 

Interpolation 

Lanczos 

30.49(1.0116) 

Interpolation 

Lanczos 

29.70(1.0130) 

WZP(sym18) 

Bicubic 

29.35(1.0343) 

WZP(sym18) 

Lanczos 

30.39(1.0379) 

8 WZP(coif4) 

Lanczos 

26.58(1.2488) 

Interpolation 

Lanczos 

26.60 (1.0130) 

Interpolation 

Lanczos 

26.63(1.0134) 

Interpolation 

Lanczos 

25.89(1.0147) 

WZP(sym17) 

Bicubic 

25.26(1.0064) 

WZP(sym17) 

Bicubic 

26.08(1.0073) 
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For the LR images obtained from DWT with Haar, bicubic, and bilinear, the 

optimal technique with the highest PSNR value is Lanczos interpolation for most 

of the cases. For the LR images produced by nearest and low-pass filtering, the 

best class is WZP using “sym” for almost all cases. These observations 

conclude that, for the LR images obtained from DWT with db. 9/7, nearest and 

low-pass filtering, the wavelet-based techniques have the biggest potential to 

outperform the conventional interpolation methods, due to the fact that they 

have relatively large RPSNR values. For the LR images produced by Haar, 

bicubic, and bilinear, the wavelet-based methods have no significant 

advantages over the interpolation methods. This conclusion justifies that for 

almost all papers about wavelet-based resolution enhancement techniques, the 

LR image has been produced by either DWT with db. 9/7 wavelet function or 

low-pass filtering. 

 

Figure 4-4 Highest PSNR values for each class of resolution enhancement 

technique for different test images and LR image producing ways. (a) Lena with 

low pass filtering; (b) Baboon with low pass filtering; (c) Elaine with low pass 

filtering; (d) Lena by DWT with db. 9/7; (e) Baboon by DWT with db. 9/7; Elaine by 

DWT with db. 9/7. 

 

(a)     (b)     (c) 

 

(d)     (e)     (f) 
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In order to show the sensitivity for the selection of class of technique with 

different scale factors, input LR image producing methods and test images, the 

highest PSNR value for each class of technique has been detected and the 

results are shown in Figure 4-4. The standard deviation (std) for each scale 

factor has been calculated to describe the performance variation of each class. 

Table 4-8 shows the std values for the three tested images generated by low-

pass filtering and DWT with db.9/7 respectively, for scale factors of 2, 4, 8 and 

16. A high std value indicates that the selection of class is important because 

the performance for different classes of techniques is significantly varied. A low 

std value indicates that the performance for each class of technique is relatively 

similar.  

Table 4-8 Standard deviation results for three test images (Lena, Baboon, and 

Elaine) obtained by low-pass filtering and DWT with db. 9/7 for scale factors 2, 4, 

8, and 16. 

Scale 

Factor 

Lena Baboon Elaine 

Low-pass 
DWT by db. 

9/7 
Low-pass 

DWT by db. 

9/7 
Low-pass 

DWT by db. 

9/7 

2 2.50 2.16 1.27 0.83 1.71 1.05 

4 0.88 1.92 0.43 0.99 0.97 2.01 

8 0.16 1.70 0.07 1.03 0.28 2.27 

16 0.03 1.40 0.03 0.92 0.04 1.91 

 

Figure 4-4 (a), (b) and (c) illustrate the sensitivity of the class selection for Lena, 

Baboon, and Elaine respectively, with the LR images obtained by low-pass 

filtering. It is observed that if the scale factor is high, the PSNR is low as 

expected, and importantly the std is low. This observation means that different 

classes of techniques have similar performance for a larger scale factor and, as 

a result, the selection of class of technique is less important. On the contrast, 

the selection of class of technique is very important if the scale factor is low. To 

demonstrate the superiority of the technique comparing with others, if the LR 

image is generated by low-pass filtering, a small-scale factor is recommended. 



 

81 

However, for the LR images obtained by DWT with db. 9/7, the result of 

sensitivity analysis is different, as illustrated in Figure 4-4 (d), (e) and (f). The 

values of std show that the selection of class of technique has significant effect 

on the results, and it is almost independent on the scale factor. In other words, 

the selection of scale factor to demonstrate the superior of a new technique is 

not important. Another observation is that the above conclusions are almost 

independent on test images due to the fact that Figure 4-4 (a), (b) and (c) have 

similar patterns, as well as Figure 4-4 (d), (e) and (f). 

To demonstrate the visual quality of the produced results, Elaine image was 

selected from the tested images. Figure 4-5 shows the resolution enhanced 

images using the conventional interpolation methods and state-of-the-art 

resolution enhancement methods with an enlargement factor 4. The original HR 

image with the size of 512×512 pixels which is considered as the reference 

image to evaluate the performance of the implemented methods. Based on the 

image observation model, the input LR images with the size of 128×128 pixels 

were generated from blurring and down-sampling the original HR image through 

applying twice cascaded DWT with db.9/7 wavelet function. In spite of the 

impressive quantitative performance, the visual results show that the difference 

between the resolution enhanced images from the considered methods can be 

small, and it is difficult to be inspected visually. Note that all methods including, 

the proposed method and other selected methods, were implemented using 

Matlab 2015. 
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Figure 4-5 Resolution enhancement results from different interpolation methods 

and wavelet-based resolution enhancement methods with an enlargement factor 

from 128×128 to 512×512 for Elaine image (a) the input LR image, (b) Bicubic, (c) 

Lanczos, (d) WZP-CS, (e) WZP(db.9/7), and (f) WZP(coif2). 



 

83 

4.5 Summary 

The wavelet-based image resolution enhancement techniques have been 

reviewed in this chapter, especially the way to assess the performance. The 

inconsistency of assumptions has been observed, and for some methods, the 

description of these assumptions is either neglected or unclear. Due to the fact 

that the laws of physics to generate LR images are unclear and also various 

case by case, the current methods to assess the performance may result in a 

biased conclusion. This chapter initially identifies the factors that substantially 

affect the performance of these techniques and quantitatively evaluates the 

impact of the existing assumptions. The importance of each factor has then 

been analysed by varying this factor and fixing the other factors. It has been 

revealed that the way of producing LR image, the variation of wavelet family 

and its wavelet functions, and the scale factor can significantly affect the 

performance of techniques. It has been also revealed that the selection of test 

images with different features as well as the selectin of interpolation method can 

influence moderately on the performance.  

An Optimal Factor Analysis OFA approach has been proposed in this chapter in 

order to improve the performance of existing techniques and better evaluate the 

overall performance. The OFA algorithm selects the optimal technique 

(including the selection of wavelet family as well as its wavelet function and 

interpolation method) by simultaneously varying the way of producing LR 

image, the enlargement factor, and the test image. Moreover, a new Figure of 

Merit FOM measure is proposed to assist the selection of factors and better 

assess the overall performance. 

The quantitative results reveal that the proposed OFA method can significantly 

improve the performance of the WZP methods. It also has the potential to be 

extended to other wavelet-based methods. Results also reveal that the most 

important factors that have significant effect on the performance are the method 

of producing LR image and the selection of wavelet function. For most of 

existing wavelet-based resolution enhancement techniques, the variation of 

these factors is very limited or never considered. The experimental results also 
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indicate that the interpolation method has no significant effect on the 

performance and the best interpolation method is not consistent for different 

techniques. More precisely, the selection of interpolation method for wavelet-

based techniques can affect the performance, but this effect is not distinct. For 

the LR images obtained by down-sampling using DWT with db.9/7, nearest 

neighbour, and low-pass filtering, wavelet-based techniques have the biggest 

potential to overtake the conventional interpolation methods. However, for the 

LR images produced by DWT with Haar, Bicubic interpolation, and Bilinear 

interpolation, wavelet-based techniques have no pronounced improvements 

over conventional interpolation methods. All these observations conclude that in 

order to assess more comprehensively and equitably for wavelet-based 

resolution enhancement techniques, variation of LR image generation method, 

scale factor, and wavelet functions must be considered; otherwise observed 

performance could be limited and inaccurate. 

The limitation of the proposed OFA method is that it has relatively high 

computational cost and time consuming because this algorithm depends on the 

exhausted search to find the best parameters. Therefore, there is a need to 

develop a more computational efficient method, which has low computational 

cost and is suitable for real applications. The linkage from Chapter 4 to Chapter 

5 is the contribution of investigation the important factors that affect the 

performance of the wavelet-based methods. This contribution plays a key role 

for improving the performance and presents a direct impact to connect between 

these two Chapters, e.g. it has been observed in Chapter 4 that the selection of 

wavelet function plays an important role in improving the performance. 

Therefore, the sensitivity analysis of wavelet function is conducted in Chapter 5 

to fully explore the potential of the proposed method. 
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5 Satellite Image Resolution Enhancement using 

Discrete Wavelet Transform and New Edge-Directed 

Interpolation  

5.1 Introduction 

Satellite imaging is usually the most cost-efficient means of collecting regular 

and frequent data about the earth’s surface. These data are routinely used to 

monitor land use change, urban expansion, agricultural health and productivity, 

the status of urban tree corridors, fire threat, environmental condition, etc. [136]. 

High-resolution (HR) satellite images are strongly demanded in many 

applications, such as remote sensing, astronomy, geoscience, and 

geographical information systems, not only for providing better visualisation but 

also for extracting additional information details, which can be crucial in these 

applications. For example, HR satellite images are crucial in distinguishing an 

object from similar ones and achieving a better classification of regions in a 

multi-spectral remote sensing image [1]. 

When remote sensing image data are acquired by sensors on satellites and 

aircraft, the data can have errors in geometry and in the measured intensity 

values of the pixels. The first is referred to as geometric errors while the latter is 

referred to as radiometric errors [137], [138]. The geometric errors can result 

from many sources, such as the relative motions of the remote sensing 

platform, nonidealities in the sensors themselves, the rotation of the earth, and 

uncontrolled variations in the position and attitude of the platform. However, the 

radiometric errors can arise from the instruments used to acquire the image 

data, the wavelength dependence of solar radiation, and the effect of the 

atmosphere. Geometric distortion effects of the image data are more severe 

than radiometric distortion and lead to varying degrees of severity in the 

produced image. Therefore, image processing procedures are used to 

compensate for these errors and to find more general applications. Resolution 

enhancement is one of the applications for correcting the errors in image 

geometry [137]. Resolution enhancement based on a single low-resolution (LR) 

image or multiple LR images, also called super-resolution (SR), recently has 
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attracted lots of interest and has been used for different applications, such as 

satellite imaging [3, 66, 67, 71], medical imaging [5, 73], and video surveillance 

systems [7].  

Interpolation is one of the commonly used techniques for image resolution 

enhancement. Fundamentally, it is the process of estimating values at unknown 

locations using known data [19]. There are four well-known conventional 

interpolation methods: nearest neighbour, bilinear, bicubic, and Lanczos. 

However, these linear methods cannot handle the fast-growing statistics around 

edges and accordingly yield interpolated images with blurred edges and 

undesirable artefacts. To address this problem, other nonlinear interpolation-

based resolution enhancement methods have been developed to improve the 

subjective quality by taking edge information into account, such as edge-

directed interpolation (EDI) [86] and new edge-directed interpolation (NEDI) 

[87]. EDI emphasises the visual integrity of the edges, and NEDI is the 

upgraded version. Nevertheless, the improvements by these methods are 

limited at the textures and non-linear edges of the interpolated images [78]. 

However, a lot of research has achieved enhanced performance of NEDI 

because the NEDI method uses a relatively simple model and hence has low 

computational complexity. The modified NEDI method was presented in [88] by 

considering a modified training widow structure to eliminate the prediction error 

accumulation and extending the covariance values into multiple directions to 

mitigate the covariance mismatch problem.  

Another class of image resolution enhancement methods is wavelet-based. A 

common assumption of wavelet-based methods is that the LR image is the low-

pass filtered sub-band of the wavelet-transformed HR image. Estimating the 

unknown wavelet coefficients in sub-bands containing high-pass frequency 

spatial information is the essential target of this class of algorithms to estimate 

the HR image from the LR image. Many advanced methods have been 

introduced in order to estimate the wavelet coefficients of high-frequency sub-

bands. 
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This chapter proposes an improved image resolution enhancement approach 

based on discrete wavelet transform (DWT) and new edge-directed 

interpolation (NEDI) for degraded satellite images by geometric distortion to 

correct the errors in image geometry and recover the edge details of directional 

high-frequency sub-bands, called DWT-NEDI, which integrates merits from both 

the frequency-domain and spatial-domain. There are three major stages in the 

proposed method. First, the DWT is employed to decompose the input image 

into different frequency sub-bands in the frequency-domain. Second, for the 

three high-frequency sub-bands, NEDI is employed to process each of them 

and output the estimated sub-bands using soft-thresholding method. 

Meanwhile, the input image is directly interpolated by NEDI to output the low-

frequency sub-band. Finally, after combining both low and high-frequency sub-

bands, the processed image is transformed back to the spatial-domain as the 

outcome of resolution enhancement through inverse discrete wavelet transform 

(IDWT). The majority of developed SR approaches focus on grayscale or 

single-channel image SR, while this study applies the performance of the 

proposed technique to colour images. Although the proposed approach also 

works well for other types of images, this chapter focuses its application on 

satellite images.  

5.2 State-of-The-Art Image Resolution Enhancement Methods 

In this section, the state-of-the-art new edge-directed interpolation (NEDI) and 

state-of-the-art wavelet-based image resolution methods, including discrete 

wavelet transform (DWT)-based resolution enhancement methods will be 

described below as examples of the state-of-the-art resolution enhancement 

methods. 

5.2.1 New Edge-Directed Interpolation (NEDI) 

Li and Orchard [87] proposed a new edge-directed interpolation NEDI method 

for upsampling regular sampled images. The fundamental idea is to estimate 

local covariance coefficients from a LR image and then employ the covariance 

estimates to adapt the interpolation coefficients by exploiting the geometric 

duality between the LR covariance and the HR covariance. Geometric duality 
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refers to the matching between the HR covariance and the LR covariance which 

couple the pair of pixels along the same orientation but at the different 

resolution. 

Let consider the LR image 𝑌𝑖,𝑗 with size of 𝐻 × 𝑊 obtained from the original HR 

image 𝑋2𝑖,2𝑗 with size of 2𝐻 × 2𝑊, which means 𝑋2𝑖,2𝑗 = 𝑌𝑖,𝑗. To interpolate the 

interlacing lattice (the missing pixel) 𝑋2𝑖+1,2𝑗+1 from the lattice 𝑋2𝑖,2𝑗, the forth-

order linear interpolation can be used, as shown in 

�̂�2𝑖+1,2𝑗+1 = ∑ ∑ ∝2𝑘+𝑙 𝑋2(𝑖+𝑘),2(𝑗+𝑙)

1

𝑙=0

1

𝑘=0

 (5-1) 

The interpolation is performed by weighted averaging the four nearest 

neighbouring pixels along the diagonal directions. Using the classical Wiener 

filtering theory [139], the optimal minimum mean squared error (MMSE) linear 

interpolation coefficients can be given by 

∝⃗⃗ = 𝑅−1𝑟  (5-2) 

where 𝑅 = [𝑅𝑘,𝑙], (0 ≤ 𝑘, 𝑙 ≤ 3) and 𝑟 = [𝑟𝑘], (0 ≤ 𝑘 ≤ 3) are the HR 

covariance. The computation of HR covariance 𝑅𝑘,𝑙, 𝑟𝑘 require the knowledge of 

𝑋2𝑖+1,2𝑗+1 which is not available before interpolation. To overcome this difficulty, 

the geometric duality is used. The geometric duality between the HR covariance 

𝑅𝑘,𝑙, 𝑟𝑘 and the LR covariance �̂�𝑘,𝑙, �̂�𝑘 is shown in Figure 5-1, where the LR 

covariance �̂�𝑘,𝑙, �̂�𝑘 is applied to replace the HR covariance 𝑅𝑘,𝑙, 𝑟𝑘. Therefore, the 

unknown pixel (the missing pixel) 𝑋2𝑖+1,2𝑗+1 is estimated by Eq. (5-1) with �̂�𝑘,𝑙, �̂�𝑘 

[88]. 

The advantage of NEDI algorithm is that it substantially improves the subjective 

quality of the pixels around edges. In order to perform a better trade-off 

between subjective quality and computational complexity, a hybrid approach of 

combining bilinear interpolation and covariance-based-adaptive interpolation is 

achieved. Covariance-based adaptive interpolation is only applied to pixels 

around edges (edge pixels) while bilinear interpolation is only applied to pixels 

in the smooth regions (non-edge pixels). 
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Figure 5-1 Geometric duality between the HR covariance 𝑹𝒌,𝒍, 𝒓𝒌 and the LR 

covariance �̂�𝒌,𝒍, �̂�𝒌 is exploited when interpolating the missing pixel �̂�𝟐𝒊+𝟏,𝟐𝒋+𝟏 

from 𝑿𝟐𝒊,𝟐𝒋 using NEDI 

5.2.2 DWT-based Image Resolution Enhancement Methods 

An edge-enhanced DWT-based image up-sampling method was proposed by 

Acharya and Tsai [69]. One-level DWT process is employed to decompose an 

input LR image into four frequency sub-bands (LL, LH, HL, and HH). After the 

decomposition, each sub-band has quarter the size of the input image due to 

down-sampling operation in each of the DWT sub-bands. Then the low-

frequency LL sub-band is replaced by the input image as well as multiplied by 

the scale factor α, and the high-frequency sub-bands LH and HL are up-

sampled with the factor of 2 by inserting zeros between successive rows and 

columns in each sub-band and HH is discarded. IDWT process is performed on 

these approximated sub-bands to generate an up-sampled image. This method 

was demonstrated better visual quality than the conventional interpolation 

methods. Figure 5-2 shows a block diagram of the edge-enhanced DWT-based 

up-sampling technique. 
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Figure 5-2 Block diagram of the DWT-based up-sampling method [69] 

A Demirel-Anbarjafari Super-Resolution (DASR) method [70] was introduced 

based on the interpolation of the input image and the high-frequency sub-bands 

obtained through the DWT process. In the DASR algorithm, the three high-

frequency sub-bands are interpolated using bicubic interpolation with the 

enlargement factor α. The LL sub-band is replaced by the input image because 

it contains more information and is also interpolated using bicubic interpolation 

with half of the scale factor α/2 used to interpolate the high-frequency sub-

bands in order to have the required size for the IDWT process. Finally, IDWT is 

applied to achieve a resolution enhanced image by combining the interpolated 

sub-band images and the input image. Although the DWT process was 

employed to preserve the high-frequency components in the high-frequency 

sub-bands of the image, the blurring effect from the employed interpolation 

method causes the potential loss of edges in these sub-bands. 

𝐼 ∗ 𝛼 
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5.2.3 DWT and Difference Image (DWT-Diff)-based Image Resolution 

Enhancement Methods 

Demirel and Anbarjafari proposed a DWT-Diff technique [71] for resolution 

enhancement of satellite images based on interpolating the input image as well 

as the high-frequency sub-band images, and correcting the estimated high-

frequency components using the difference image. In the DWT-Diff algorithm, 

all the decomposed frequency sub-bands are interpolated using bicubic 

interpolation with factor 2. To preserve more edges, an intermediate stage using 

the difference image is included for enhancing the estimated high-frequency 

components by subtracting the interpolated LL sub-band from the input LR 

image and then adding the difference image into the estimated high-frequency 

sub-bands, as illustrated in Figure 5-3. Another interpolation by using bicubic 

interpolation with factor α/2 can be applied again to the new corrected sub-

bands to have the required size for the IDWT process. In parallel, the input 

image is also interpolated with factor α/2. A sharper enhanced image is 

obtained by applying IDWT to combine all these sub-band images. 
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Figure 5-3 Block diagram of the DWT-Diff technique [71] 

5.2.4 DWT and Stationary Wavelet Transform (DWT-SWT)-based 

Image Resolution Enhancement Methods 

A DWT-stationary wavelet transform SWT technique [72] was proposed based 

on interpolating the high-frequency sub-bands as well as the input image, and 

correcting the estimated high-frequency sub-bands using SWT. One-level DWT 

is used to separate an input LR image to obtain high-frequency sub-bands, and 

then these sub-bands are interpolated using bicubic interpolation with factor 2. 

To better preserve the edge details, an intermediate process using SWT is 
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included for correcting the estimated high-frequency sub-bands by adding the 

high-frequency sub-bands obtained through SWT of the input image with the 

interpolated DWT high-frequency sub-bands. For higher enlargement, bicubic 

interpolation by the factor of α/2 can be applied further to the new corrected 

high-frequency sub-bands. The input image is used for interpolation instead of 

using the LL sub-band and is interpolated with the factor of α/2. Finally, all these 

sub-bands are combined using IDWT to achieve a sharper HR image. The 

block diagram of this algorithm is shown in Figure 5-4. 

 

Figure 5-4 Block diagram of the DWT-SWT technique [72] 

5.3 Proposed Resolution Enhancement Approach 

The main drawback for using a direct interpolation to enhance image resolution 

is the generated visual degradations around edge areas and, as a result, the 
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production of blurred edges. This degradation is due to annoying levels of 

smoothing across edges caused by the employed interpolation method, which 

does not use any information pertinent to the edges in the original image. 

Preserving the high-frequency components (i.e. edges) and consequently 

increasing the quality of the resulted HR image is the fundamental target for 

reconstructing the HR image from the given LR image.  

Therefore, in this work, the DWT process was employed to isolate and better 

preserve the edges of the image using the interpolation of high-frequency sub-

bands. This is due to the interpolation of isolated high-frequency components in 

the high-frequency sub-bands preserving more edges of the image than 

interpolating the image directly. On the other hand, the DWT process 

decomposes the given image into three directional high-frequency sub-bands, 

which isolate the edges in three directions and thus reduce the undesirable 

inter-directional interference in the resolution enhancement process. Although a 

number of DWT-based interpolation methods [69, 70, 71, 72] have been 

developed for recovering the missing high-frequency components of the given 

LR image, the blurring effect from their employed interpolation methods causes 

the potential loss of edges in these sub-bands. For example, bicubic, the most 

widely used interpolation method in wavelet-based resolution enhancement 

approaches, can produce blurring around edge areas because of the smoothing 

process. Therefore, the blurring effect caused by the interpolation method 

needs to be addressed. 

Many dual-tree complex wavelet transform (DT-CWT)-based resolution 

enhancement methods [68, 74, 77] attempt to address this problem. In [68], the 

edge-directed interpolation EDI [86] was employed as an alternative 

interpolation method of high-frequency sub-bands obtained by DT-CWT. Later, 

Izadpanahi and Demirel [74] proposed an extended version of this approach for 

multi-frame SR. Recently, the same authors applied a new-edge directional 

interpolation NEDI [87] which improved the performance of EDI, for the 

interpolation of high-frequency sub-bands generated by DT-CWT for motion-

based video SR [77]. In this work, NEDI is employed to process the high-
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frequency sub-bands obtained through DWT and output the estimated sub-

bands using a nonlinear adaptive threshold.  

This chapter proposes combining DWT and NEDI, which integrates merits from 

both the frequency-domain and spatial-domain, and substantially improves the 

visual quality of the pixels around edges. The advantage of using DWT with 

NEDI is that it recovers the edge details of directional high-frequency sub-bands 

and thus decreases the annoying inter-directional interference in the SR 

process. This merit cannot be achieved using only the NEDI method. Consider 

an input LR image with the size of 𝑊 × 𝐻, and the scale factor is denoted by 𝛼. 

Initially, one-level DWT process decomposes the input LR image into four 

frequency sub-bands, called low-low (LL), low-high (LH), high-low (HL), and 

high-high (HH). Each sub-band has half the size of the input image due to 

down-sampling. The high-frequency sub-bands (LH, HL, and HH) are 

interpolated using the NEDI method with the scale factor 𝛼. Generally, image 

data sets recorded by sensors are most commonly corrupted by additive 

Gaussian noise and multiplicative noise. Therefore, to preserve more edges 

and reduce the noise in the estimated high-frequency sub-bands, a thresholding 

procedure using an adaptive threshold is included to process the produced 

wavelet coefficients. Many types of thresholding functions have been introduced 

for the modification of estimated wavelet coefficients, such as hard and soft 

[127]. This chapter employs a nonlinear soft-thresholding technique proposed 

by Donoho [140] and extended by Zhang [141]. The universal threshold 𝜏 for 

the considerd sub-band can be calculated as 

𝜏 = 𝜎√2 log(𝑁) /𝑁 (5-3) 

where 𝜎 is the standard deviation of the sub-band and 𝑁 is the total number of 

pixels. The nonlinear soft-thresholding function is defined as 

𝑋𝑜𝑢𝑡(𝑖, 𝑗) = {

𝑋𝑖𝑛(𝑖, 𝑗) − 𝜏 𝑋𝑖𝑛(𝑖, 𝑗) > 𝜏

0 |𝑋𝑖𝑛(𝑖, 𝑗)| ≤ 𝜏

𝑋𝑖𝑛(𝑖, 𝑗) + 𝜏 𝑋𝑖𝑛(𝑖, 𝑗) < −𝜏

 (5-4) 
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The basic idea of this thresholding process is that the energy of a signal is often 

concentrated on a few coefficients while the energy of noise is spread among all 

coefficients in the wavelet domain. Therefore, the nonlinear soft-thresholding 

tends to maintain few larger coefficients representing the signal while reducing 

noise coefficients to zero in the wavelet domain. A universal threshold is 

intuitively expected to uniformly remove the noise since the Gaussian noise still 

has the same variance over different scales in the transform domain [141]. The 

application of this soft-thresholding function is based on the hypothesis that the 

large coefficients in the high-frequency sub-bands reflect the true edges of 

objects while the small coefficients reflect the noise. This hypothesis can be 

proven by Figure 5-5, where (a) shows the observed LR image and (b) shows 

the reconstruction image of high-frequency sub-bands only without 

thresholding. Both true edges and noise can be observed in Figure 5-5(b). 

Figure 5-5(c) shows the reconstruction image of high-frequency sub-bands with 

thresholding where the small coefficients are removed. It can be observed that 

the noise is significantly reduced while the true edges are preserved. The 

reconstruction image of high-frequency sub-bands where the large coefficients 

are removed is illustrated by Figure 5-5(d), which is dominated by noise with 

very little true edge information found. 
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Figure 5-5 An example to help justify the use of thresholding process. (a) the 

observed LR image; (b) the reconstruction image of high-frequency sub-bands 

only without thresholding; (c) the reconstruction image of high-frequency sub-

bands only where the small coefficients are removed; (d) the reconstruction 

image of high-frequency sub-bands only where the large coefficients are 

removed. 

The input LR image, interpolated by the NEDI method with half of the scale 

factor α/2, is used as the estimated LL sub-band because it contains more 

information than the LL sub-band produced by the DWT process, as suggested 

in [70, 71, 72]. Finally, IDWT is applied to achieve a super-resolved image by 
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combining the estimated LL sub-band and corrected high-frequency sub-bands. 

The block diagram of the DWT-NEDI approach is illustrated by Figure 5-6. 

 

Figure 5-6 Block diagram of the proposed DWT-NEDI resolution enhancement 

approach.  

The proposed approach can be summarised by the following steps: 

1. Consider the red channel of the observed LR image; 

2. Compute one-level DWT decomposition of this channel; 
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3. Apply the NEDI method to LH, HL, and HH high-frequency sub-bands 

with the scale factor 𝛼; 

4. For each high-frequency sub-band, calculate the threshold 𝜏; 

5. Apply the adaptive thresholding process for each high-frequency sub-

band and create the estimated LĤ, HL̂ and HĤ; 

6. Apply the NEDI method to the input LR image with the scale factor 𝛼/2 to 

create LL̂; 

7. Apply IDWT using (LL̂, LH,̂ HL,̂ HĤ) to produce the enhanced channel; 

8. Repeat steps 2-7 for the blue and green channels respectively; 

9. Combine the three enhanced channels into the final enhanced HR colour 

image. 

5.4 Results and Discussions 

5.4.1 Visual and Quantitative Evaluation of Standard Images 

This section presents the experimental results of visual and quantitative 

evaluation to firstly test the proposed DWT-NEDI method on the same standard 

images used in Chapter 4 before testing on the more challenge satellite images. 

The proposed method was tested on three well-known standard images "Lena, 

Baboon, and Elaine". The original test HR images with size of 512 × 512 pixels 

were considered as the reference images to evaluate the performance of the 

proposed algorithm. Based on the observation model, the input LR images with 

the size of 128 × 128 pixels were generated from blurring and down-sampling 

the original HR images through achieving twice cascaded DWT by the db.9/7 

wavelet function and considering the low-frequency (LL) sub-band of DWT. The 

observed LR images were further corrupted by an additive Gaussian noise with 

the signal-to-noise ratio (SNR) of 40 dB. 
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To illustrate the visual quality of the experimental results, Elaine image was 

selected because of the most improvement with the proposed DWT-NEDI 

algorithm. Figure 5-7 shows the resolution enhanced images using the 

proposed method and the other compared methods with an enlargement from 

128 × 128 pixels to 512 × 512 pixels of the Elaine image. It can be observed 

that the DWT-NEDI algorithm preserves the sharp edges of the original image 

better than the other methods. 

 

Figure 5-7 Resolution enhanced results from the proposed approach with an 

enlargement from 𝟏𝟐𝟖 ×  𝟏𝟐𝟖 to 𝟓𝟏𝟐 ×  𝟓𝟏𝟐 for an image selected from the 

construction group. (a) the whole input LR image; (b) the selected region of the 

input LR image; resolution enhance images by (c) Bicubic, (d) WZP, (e) DASR 

and (f) the proposed method. 

Tables 5-1 to 5-4 respectively, list the quantitative results evaluated by PSNR, 

RMSE, Entropy, and SSIM for all three tested standard images. In terms of the 

values of PSNR and RMSE, the proposed DWT-NEDI method has the greatest 

improvement among the considered methods for Elaine image with many sharp 



 

103 

edges and Lena image with many strong edges relative to the number of 

textures, while the WZP-CS method has the highest improvement for Baboon 

image. In terms of the results of Entropy, the DWT-NEDI technique has the best 

performance for Elaine image with edges and Baboon image with relative 

abundance of textures, whereas the WZP method is the best for Lena image. In 

terms of the values of SSIM, the WZP-CS method produces the highest 

performance for all three tested images. Nevertheless, the method proposed 

still has a higher improvement better than the other remaining methods. These 

observations conclude that the performance of the technique proposed depends 

on different image features and performance evaluation criteria. 

Table 5-1 PSNR (db) results of the selected standard images for resolution 

enhancement from 𝟏𝟐𝟖 × 𝟏𝟐𝟖 to 𝟓𝟏𝟐 × 𝟓𝟏𝟐. 

Techniques Standard Images 

Lena Baboon Elaine 

Nearest 23.76 19.60 25.65 

Bilinear 24.92 20.06 26.88 

Bicubic 24.84 20.03 26.88 

Lanczos 24.75 20.00 26.83 

WZP 25.50 20.21 27.48 

WZP-CS 26.34 20.70 28.52 

DWT 25.40 20.16 27.38 

DASR 25.19 19.88 27.60 

DWT-Dif 23.52 19.29 25.41 

DWT-SWT 24.42 19.53 26.69 

Proposed 26.91 20.31 29.12 

 

Table 5-2 RMSE results of the selected images for resolution enhancement from 

𝟏𝟐𝟖 × 𝟏𝟐𝟖 to 𝟓𝟏𝟐 × 𝟓𝟏𝟐. 

Techniques Standard Images 

Lena Baboon Elaine 

Nearest 16.54 26.71 13.31 

Bilinear 14.48 25.33 11.55 

Bicubic 14.60 25.41 11.55 

Lanczos 14.76 25.50 11.61 

WZP 13.53 24.89 10.79 

WZP-CS 12.29 23.53 9.56 

DWT 13.69 25.04 10.91 
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DASR 14.03 25.85 10.64 

DWT-Dif 17.01 27.66 13.67 

DWT-SWT 15.33 26.91 11.81 

Proposed 11.51 24.61 8.92 

 

Table 5-3 Entropy results of the selected images for resolution enhancement 

from 𝟏𝟐𝟖 × 𝟏𝟐𝟖 to 𝟓𝟏𝟐 × 𝟓𝟏𝟐. 

Techniques Standard Images 

Lena Baboon Elaine 

Nearest 4.97 6.20 4.93 

Bilinear 5.38 6.14 5.39 

Bicubic 5.29 6.14 5.29 

Lanczos 5.32 6.15 5.28 

WZP 4.86 6.09 4.91 

WZP-CS 5.20 6.41 5.28 

DWT 4.88 6.10 4.92 

DASR 5.15 6.18 5.35 

DWT-Dif 5.00 6.14 5.36 

DWT-SWT 5.17 6.08 5.28 

Proposed 5.18 6.03 4.58 

 

Table 5-4 SSIM results of the selected images for resolution enhancement from 

𝟏𝟐𝟖 × 𝟏𝟐𝟖 to 𝟓𝟏𝟐 × 𝟓𝟏𝟐. 

Techniques Standard Images 

Lena Baboon Elaine 

Nearest 0.30 0.19 0.37 

Bilinear 0.36 0.20 0.43 

Bicubic 0.37 0.22 0.44 

Lanczos 0.37 0.23 0.44 

WZP 0.39 0.27 0.43 

WZP-CS 0.43 0.29 0.48 

DWT 0.38 0.27 0.43 

DASR 0.36 0.24 0.42 

DWT-Dif 0.29 0.21 0.34 

DWT-SWT 0.33 0.22 0.39 

Proposed 0.40 0.27 0.45 

5.4.2 Visual Evaluation of Satellite Images 

The reason to choose the more challenging satellite images as test images to 

improve the spatial resolution is that satellite imaging is one such an application 
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as improving the sensors on satellites is hugely expensive. In addition, analysis 

from these low-quality (degraded) images can be extremely difficult. 

Furthermore, SR is still highly demanded in satellite imaging although the 

hardware specification has been improved. This is because it is always 

attractive to see smaller objects with more details. The proposed technique was 

tested on 20 different satellite images obtained from the Satellite Imaging 

Corporation webpage [142], which is a public data set. To assess the variation 

in performance in terms of different types of images, the studied satellite images 

were divided into five classes: "natural disaster, tourism, defence and 

intelligence, construction, and cadastre and land". Each class includes four 

images that were randomly selected from the data set. The size of the original 

HR images in the public data set is different. For the consistency of comparison, 

each original HR image was therefore resized to 512 × 512 pixels as the 

reference image. The input LR images with the size of 128 × 128 pixels were 

produced from blurring and down-sampling the original HR images by applying 

twice cascaded DWT with the db.9/7 wavelet filter. The observed LR images 

were further corrupted by a Gaussian noise with the signal-to-noise ratio (SNR) 

of 40 dB. The biorthogonal Daubechies (db.9/7) was chosen because the 

literature review shows that it is the most commonly used wavelet function for 

the decomposition process by DWT [132]. Note that all methods including, the 

proposed method and other considered methods, were implemented using 

Matlab 2015. 

To demonstrate the visual quality of the produced results, one image was 

randomly selected from each group and tested by the proposed technique. 

Figures 5-8 and 5-9 show the resolution enhanced images using the proposed 

technique and the other considered methods with an enlargement from 128 × 

128 to 512 × 512 of the images from the construction and tourism groups. The 

visual results demonstrate the ability of the DWT-NEDI technique to enhance 

the observed LR images by proving more sharp edges, potentially offering more 

details of interested objects.  
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Figure 5-8 Resolution enhanced results from the proposed approach with an 

enlargement from 𝟏𝟐𝟖 ×  𝟏𝟐𝟖 to 𝟓𝟏𝟐 ×  𝟓𝟏𝟐 for an image selected from the 

construction group. (a) the whole input LR image; (b) the selected region of the 

input LR image; resolution enhanced images by (c) Bicubic, (d) WZP, (e) DASR 

and (f) the proposed method. 
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Figure 5-9 Resolution enhanced results from the proposed approach with an 

enlargement from 𝟏𝟐𝟖 ×  𝟏𝟐𝟖 to 𝟓𝟏𝟐 ×  𝟓𝟏𝟐 for an image selected from the 

tourism group. (a) the whole input LR image; (b) the selected region of the input 

LR image; resolution enhanced images by (c) Bicubic, (d) WZP, (e) DASR and (f) 

the proposed method. 

5.4.3 Quantitative Evaluation of Satellite Images 

The difference between the super-resolved images from different techniques 

can be small, and it is difficult to be inspected visually. This section presents the 

results of quantitative comparison. The peak-signal-to-noise-ratio (PSNR) 

between the super-resolved image and the original HR image is one of the most 

commonly used objective fidelity criteria for evaluating image quality. It can be 

calculated as Eq. (4-8). 

𝑀𝑆𝐸 represents the mean-square-error between the super-resolved image 

�̂�(𝑖, 𝑗) and the original HR image 𝑋(𝑖, 𝑗). It can be calculated as 

𝑀𝑆𝐸 =
1

𝑊 × 𝐻
∑ ∑ [�̂�(𝑖, 𝑗) − 𝑋(𝑖, 𝑗)]

2𝐻

𝑗=1

𝑊

𝑖=1
 (5-5) 
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The root-mean-square error (RMSE) between these two images is also one of 

the commonly used quantitative measures [19], and it can be expressed as 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 (5-6) 

Entropy is another quantitative measure used to assess image quality when the 

error images for different image resolution enhancement techniques are very 

close to each other and it is very difficult to make assessment. The entropy of a 

negative error image, denoted by 𝐸, can be calculated as  

𝐸 = −∑ 𝑃
𝐿

𝑘=1
(𝑟𝑘)𝑙𝑜𝑔2𝑃(𝑟𝑘) (5-7) 

where 𝑃(𝑟𝑘) is the probability of an intensity value 𝑟𝑘. The lower the 𝐸, the better 

the improvement is [135]. 

To complement the quantitative analysis, the structural similarity (SSIM) [143] 

image quality measure has also been applied. The SSIM index evaluates the 

visual effect of three characteristics of an image: luminance, contrast, and 

structure. It is based on the computation of these three components and is an 

inner product of them. It is defined as 

𝑆𝑆𝐼𝑀 =
(2𝜇�̂�𝜇𝑋 + 𝐶1)(2𝜎�̂�𝜎𝑋 + 𝐶2)

(𝜇�̂�
2 + 𝜇𝑋

2 + 𝐶1)(𝜎�̂�
2 + 𝜎𝑋

2 + 𝐶2)
 (5-8) 

where 𝜇�̂� , 𝜇𝑋 are the local means for the images �̂�, 𝑋, respectively,  𝜎�̂�,𝜎𝑋 are 

corresponding standard deviations, and 𝐶1, 𝐶2 are two constants used to avoid 

the instability. The higher the SSIM, the better the improvement is. 

The quantitative performances measured by PSNR, RMSE, Entropy, and SSIM 

for the selected examples of each group are listed in Tables 5-5 to 5-8, 

respectively. In terms of the results of PSNR and RMSE, the proposed 

technique has the best performance for all five selected images. In terms of the 

results of SSIM, the proposed technique and WZP-CS achieve the highest 

performance for the images from the natural disaster and tourism groups, 

whereas the proposed technique is the best for the images from the remaining 

groups. In terms of the values of entropy, the nearest neighbour has the best 
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performance for the images from the natural disaster and tourism groups, WZP 

and DWT-Diff produces the highest performance for the images from the 

defence and cadastre groups, while the proposed technique is the best for the 

images from the construction group. 

Table 5-5 PSNR (db) results of the selected images for resolution enhancement 

from 𝟏𝟐𝟖 × 𝟏𝟐𝟖 to 𝟓𝟏𝟐 × 𝟓𝟏𝟐. 

Techniques 
Image Group* 

1 2 3 4 5 

Nearest  22.42 25.87 22.53 19.66 15.92 

Bilinear  23.25 26.67 23.21 20.42 16.65 

Bicubic  23.20 26.68 23.18 20.39 16.61 

Lanczos 23.15 26.65 23.13 20.35 16.56 

WZP 23.65 26.92 23.50 20.82 16.93 

WZP-CS 24.17 27.57 23.79 21.27 17.34 

DWT 23.54 26.83 23.42 20.71 16.85 

DASR 22.99 26.48 22.90 20.00 16.51 

DWT-Dif 21.92 25.47 21.89 18.94 15.57 

DWT-SWT 22.31 25.87 22.37 19.43 15.99 

Proposed 24.90 27.83 24.53 21.93 18.01 

*Group 1: natural disaster; 2: tourism; 3: defence and intelligence, 4: construction, 
and 5: cadastre and land. 

Table 5-6 RMSE results of the selected images for resolution enhancement from 

𝟏𝟐𝟖 × 𝟏𝟐𝟖 to 𝟓𝟏𝟐 × 𝟓𝟏𝟐. 

Techniques 
Image Group 

1 2 3 4 5 

Nearest  19.31 12.98 19.06 26.51 40.80 

Bilinear  17.55 11.84 17.62 24.30 37.50 

Bicubic  17.63 11.83 17.68 24.39 37.68 

Lanczos 17.74 11.87 17.78 24.51 37.91 

WZP 16.75 11.50 17.04 23.20 36.30 

WZP-CS 15.77 10.67 16.49 22.03 34.63 

DWT 16.96 11.61 17.20 23.50 36.64 

DASR 18.08 12.10 18.26 25.50 38.11 

DWT-Dif 20.43 13.59 20.51 28.82 42.46 

DWT-SWT 19.54 12.97 19.42 27.24 40.47 
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Proposed 

method 

14.50 10.35 15.13 20.42 32.05 

Table 5-7 Entropy results of the selected images for resolution enhancement 

from 𝟏𝟐𝟖 × 𝟏𝟐𝟖 to 𝟓𝟏𝟐 × 𝟓𝟏𝟐. 

Techniques 
Image Group 

1 2 3 4 5 

Nearest  5.01 4.83 5.62 5.83 6.06 

Bilinear  5.31 4.96 5.84 6.08 6.19 

Bicubic  5.21 4.92 5.82 5.92 6.15 

Lanczos 5.21 4.92 5.81 5.91 6.21 

WZP 5.13 4.86 5.60 5.67 5.98 

WZP-CS 5.20 4.87 5.79 5.65 6.11 

DWT 5.04 4.89 5.62 5.59 5.98 

DASR 5.17 4.85 5.70 5.87 6.13 

DWT-Dif 5.20 4.86 5.71 5.71 5.88 

DWT-SWT 5.17 5.02 5.66 5.84 5.90 

Proposed 

method 

5.16 4.89 5.83 5.54 6.14 

 

Table 5-8 SSIM results of the selected images for resolution enhancement from 

𝟏𝟐𝟖 × 𝟏𝟐𝟖 to 𝟓𝟏𝟐 × 𝟓𝟏𝟐. 

Techniques 
Image Group 

1 2 3 4 5 

Nearest  0.27 0.26 0.21 0.24 0.17 

Bilinear  0.31 0.29 0.21 0.26 0.19 

Bicubic  0.33 0.31 0.23 0.28 0.21 

Lanczos 0.33 0.31 0.24 0.28 0.21 

WZP 0.34 0.34 0.29 0.33 0.25 

WZP-CS 0.38 0.37 0.30 0.35 0.27 

DWT 0.33 0.33 0.28 0.32 0.25 

DASR 0.31 0.30 0.24 0.26 0.22 

DWT-Dif 0.25 0.25 0.21 0.23 0.19 

DWT-SWT 0.28 0.27 0.22 0.24 0.20 

Proposed 

method 

0.38 0.36 0.32 0.37 0.28 
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The above four criteria can be used to compare the performances of different 

techniques for a single image. However, they are not straightforward for 

collectively evaluating the performance for a number of testing images. This 

chapter proposes four normalised criteria to better measure the improved 

performance of a considered resolution enhancement technique compared with 

a reference technique, which includes ratio of PSNR (RPSNR), ratio of RMSE 

(RRMSE), ratio of Entropy (RENTROPY), ratio of SSIM (RSSIM). They can be 

calculated as 

𝑅𝑃𝑆𝑁𝑅(𝑚1,𝑚2) =
𝑃𝑆𝑁𝑅(𝑚1) − 𝑃𝑆𝑁𝑅(𝑚2)

𝑃𝑆𝑁𝑅(𝑚2)
× 100% (5-9) 

𝑅𝑅𝑀𝑆𝐸(𝑚1,𝑚2) =
𝑅𝑀𝑆𝐸(𝑚1) − 𝑅𝑀𝑆𝑅(𝑚2)

𝑅𝑀𝑆𝐸(𝑚2)
× 100% (5-10) 

𝑅𝐸𝑁𝑇𝑅𝑂𝑃𝑌(𝑚1, 𝑚2) =
𝐸(𝑚1) − 𝐸(𝑚2)

𝐸(𝑚2)
× 100% (5-11) 

𝑅𝑆𝑆𝐼𝑀(𝑚1,𝑚2) =
𝑆𝑆𝐼𝑀(𝑚1) − 𝑆𝑆𝐼𝑀(𝑚2)

𝑃𝑆𝑁𝑅(𝑚2)
× 100% (5-12) 

where 𝑚1 is the considered resolution enhancement technique and 𝑚2 is the 

reference technique, which was chosen as the bicubic interpolation method in 

this chapter due to its popularity. The higher the RPSNR and RSSIM, the better 

the performance of the considered technique is. A positive value of RPSNR and 

RSSIM indicates a better performance than the reference method. The lower 

the RRMSE and RENTROPY, the better the performance of the considered 

technique is. A negative value of RRMSE and RENTROPY indicates a better 

performance than the reference method.  
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Figure 5-10 Comparison of RPSNR, RRMSE, RSSIM, and RENTROPY results of 

all tested images for resolution enhancement from 𝟏𝟐𝟖 × 𝟏𝟐𝟖 to 𝟓𝟏𝟐 × 𝟓𝟏𝟐 by the 

proposed approach and the conventional interpolation and state-of-the-art 

resolution enhancement techniques. 

Figure 5-10 shows the results of the new proposed criteria for all 20 testing 

images, organised by five groups, using the selected nine resolution 

enhancement techniques, which include the nearest neighbour, the bilinear 

interpolation, the bicubic interpolation, the Lanczos interpolation, WZP, WZP-

CS, DWT, DASR and the proposed technique. The wavelet function db.9/7 was 

used in the wavelet-based techniques. To evaluate the overall performance of 

the proposed technique for different classes of satellite images, Table 5-9 

shows the percentage of images in which the DWT-NEDI technique has the 

best performance among the considered techniques. It can be inferred from 

Figure 5-10 that the DWT-NEDI technique has superior performance against 

other methods in terms of RPSNR and RRMSE, which is supported by it tops 

the performance for 80% of images, especially for the images from the 

construction group in which it tops 100%. In terms of RSSIM, it tops the 

performance for 100% of all images from five groups. For the remaining 20% of 

images, the WZP-CS has the best performance. However, in terms of 
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RENTROPY, the difference of performance is not significant among the 

considered methods. On average, the DWT-NEDI technique still has the best 

performance as it tops 65% of images.  

Table 5-9 Percentage of tested images where the proposed technique tops the 

performance. 

Image Group RPSNR RRMSE RE RSSIM 

Natural disaster 75% 75% 75% 100% 

Tourism  75% 75% 75% 100% 

Defences and 
intelligence 

75% 75% 50% 100% 

Construction 100% 100% 50% 100% 

Cadastre and land 75% 75% 75% 100% 

Average 80% 80% 65% 100% 

 

5.4.4 Variation of Wavelet Functions 

All above results from the wavelet-based resolution enhancement techniques 

were produced by the most widely used wavelet function db.9/7. This section 

discusses the prospect of the proposed approach using other wavelet functions. 

Previous research in Chapter 4 shows that the selection of wavelet function can 

affect the performance. A total of 50 wavelet functions, including db.1-20, sym2-

20, bior1-6 and coif1-5 [133], were tested using the proposed technique. Table 

5-10 shows the calculated PSNR results for randomly selected satellite images 

from each group using nine wavelet functions, which include db1, db2, sym16, 

sym20, ciof1, ciof2, db.9/7, bior5.5, and bior6.8 as well as bicubic interpolation. 

These functions were selected due to their better performance than the 

remaining functions. The patterns for five groups of images are very similar, for 

example, a) the performance of the proposed technique using the selected 

wavelet functions is better than the bicubic interpolation; b) the function db.9/7 

has relatively high PSNR and is in the top 3; and c) the function bior5.5 has the 

highest PSNR value, although its superiority over db.9/7 is relatively small.  
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Table 5-10 PSNR values produced by the proposed approach using the selected 

wavelet functions for randomly selected images from each group, where top five 

are highlighted. 

Wavelet 
functions 

Natural 
disaster 

Tourism Defences Construction 
Cadastre and 

land 

bicubic 28.49 24.66 24.13 20.09 17.33 

db1 29.99 25.67 25.16 21.26 18.45 

db2 30.43 25.99 25.43 21.56 18.76 

sym16 30.60 26.15 25.56 21.74 18.90 

sym20 30.60 26.15 25.56 21.74 18.90 

ciof1 30.57 26.11 25.52 21.69 18.86 

ciof2 29.47 25.26 24.80 20.78 18.06 

db.9/7 30.70 26.24 25.63 21.82 19.00 

bior5.5 30.74 26.30 25.69 21.88 19.05 

bior6.8 30.61 26.14 25.56 21.73 18.90 

 

5.5 Summary 

A new resolution enhancement approach based on DWT and NEDI was 

proposed in this chapter to correct the errors in image geometry and recover the 

details of directional high-frequency sub-bands. The observed image is 

decomposed into four frequency sub-bands through DWT, and then the three 

high-frequency sub-bands and the observed image are processed with NEDI. 

To A nonlinear adaptive thresholding process is also included to boost the 

edges and reduce the noise in the estimated high-frequency sub-bands for 

enhancing satellite images. Finally, the enhanced image is reconstructed by 

applying inverse DWT. The motivation for this approach is to better preserve the 

edges and remove potential noise in the estimated high frequency sub-bands 

since a direct interpolation through interpolation methods will blur the areas 

around edges. Five groups of satellite images (totally 20 images), randomly 

selected from a public data set, were tested by the proposed approach, and the 

results were compared with the conventional interpolation methods and state-

of-the-art wavelet-based techniques. Four new criteria were introduced, aiming 

to better evaluate the overall performance of the proposed technique for 
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multiple images. Results show that the proposed method outperforms 

conventional interpolation methods, in both objective and subjective terms, and 

in most scenarios, it also outperforms the state-of-the-art methods operating in 

the wavelet-domain. 
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6 Global Motion based Video Super-Resolution 

Reconstruction using Discrete Wavelet Transform  

6.1 Introduction 

High resolution (HR) images and videos are highly desirable, and strongly 

demanded for most digital imaging applications, not only for offering better 

visualisation, but also for extracting additional details. However, HR images are 

not always available since the setup of high resolution imaging can be 

expensive and the inherent physical limitations of the sensors, optics 

manufacturing technology, data storage and communication bandwidth. 

Therefore, it is essential to find an effective way in image processing to increase 

the resolution level at a low-cost manner, without replacing the existing imaging 

system. To address this challenge, the concept of super-resolution (SR) has 

now been sought after. This technique aims to produce a single HR image, or 

HR video, from a set of different successive low-resolution (LR) images 

captured from the same scene in order to overcome the limitations and/or 

possibly ill-posed conditions of the imaging system [1]. Due to its wide 

applications, it has been an active research over the last two decades in various 

fields, such as satellite imaging, medical imaging, forensic imaging and video 

surveillance systems. 

Most SR methods consist of two main parts: image registration and image 

reconstruction. Image registration aims to estimate the motion between the LR 

images, while image reconstruction aims at combining the registered images in 

order to reconstruct the HR image [15]. In image registration, the motion 

between the reference LR image and its neighbouring LR images is required to 

be estimated accurately to reconstruct correctly a super-resolved image [116], 

[14]. When the camera is moving and the scene is stationary, global motion 

occurs. On the contrary, when the camera is fixed and the scene is moving, 

non-global (local) motion occurs. This chapter primarily focuses on the first 

scenario. 
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Registration methods can be conducted either in the spatial-domain or the 

frequency-domain of images. Frequency-domain methods are usually limited to 

global motion models, whereas spatial-domain methods generally allow more 

general motion models. Global models describe the motion over the entire 

visual field, while local models limit the motion in the neighbourhood of a pixel 

[93]. In the frequency-domain, Vandewalle et al. [14] presented an image 

registration algorithm to accurately register a series of LR images, based on the 

advantage of discarding their high-frequency components, where aliasing may 

have occurred. A planar motion model was used to estimate the shift and 

rotation between the images when a set of images is acquired within a short 

amount of time using a small camera motion. Vandewalle’s method performs 

better than the other frequency-domain registration methods [14], such as 

Marcel et al. [90] and Luchese and Cortelazzo [91]. In the spatial-domain, Keren 

et al. [94] developed an iterative planar motion estimation algorithm that uses 

different filtered, down-sampled versions of the images to estimate the shift and 

rotation parameters based on Taylor series expansions. The goal of this 

pyramidal scheme is to increase the accuracy for estimating large motion 

parameters. Keren’s method is the most accurate for sub-pixel image 

registration in comparison to other spatial-domain algorithms. Keren’s method 

and Vandewalle’s method have been well accepted to tackle global motions. 

However, the existing sub-pixel image registration methods become inaccurate 

when the motion is non-global.  

Image reconstruction methods can also be classified into frequency-domain- 

based and spatial-domain-based approaches. Frequency-domain-based 

methods, such as approaches proposed by Tsai and Huang [20], Kim et al. [23], 

are usually theoretically simple and have high computationally efficiency but 

they are limited to only global translational motion and linear space-invariant 

blur during image acquisition process. Spatial-domain-based methods include, 

Nonuniform interpolation methods [25]- [30], Iterative back-projection (IBP) 

methods [31]- [35], Projection onto convex sets (POCS) methods [36]- [41], 

Regularized-based methods which include Maximum likelihood (ML) methods 

[42], [43] and Maximum a posteriori (MAP) methods [44]- [49], and an extension 
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of this approach, called Hybrid (ML/MAP-POCS) method [50]. This kind of 

methods can accommodate both global and non-global motions, linear space-

variant blur and noise during imaging process.  

In addition to the frequency and spatial-based domains, efforts have been made 

using the wavelet-domain. The wavelet transform (WT) is a powerful tool that 

divides an image data into low and high frequency sub-bands, each of which is 

studied independently with a resolution corresponded to its scale [17]. The 

mechanism behind the strategy of WT is that the features of the image at 

different scales can be separated, analysed and manipulated such that global 

features can be examined at coarse scales, while local features can be 

analysed at fine scales [18]. Manipulating wavelet coefficients in sub-bands 

containing high-frequency components is the essential target of wavelet-based 

methods to solve the SR reconstruction problem. The existing literature on WT-

based methods is in both the single frame (image) case and multi-frame (video) 

case. For the multi-frame, Izadpanahi and Ozcinar [75] presented a SR 

technique using DWT and bicubic interpolation of the LR video frames. 

Anbarjafari et al. [76] proposed a SR technique for the LR video sequences 

using DWT and stationary wavelet transform (SWT). However, these available 

methods have limited performance for a variety of noise levels, motion levels, 

wavelet functions, and the number of used frames. 

Wavelet transforms have been tremendously successful in image de-noising 

applications. Xiang et al. [144] proposed wavelet-based image regularization 

framework by connection of concepts from structured dyadic-tee complexity 

measures, wavelet shrinkage, morphological wavelets, and smoothness 

regularization, in which edge preservation in image de-noising is controlled by a 

single parameter. 

Different from the existing super-resolution reconstruction approaches working 

under either the frequency-domain or the spatial-domain, this chapter proposes 

a robust video super-resolution technique, based on both frequency and spatial-

domains by combining the so-called DWT-NEDI and a soft-thresholding for 

increasing the spatial resolution and recovering the noiseless high-frequency 
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components of the observed noisy low-resolution video sequences containing 

global motion, which integrates merits from methods of image registration and 

reconstruction in both the frequency-domain and spatial-domain. An iterative 

planar motion estimation algorithm between a reference frame and its 

neighbouring frames followed by a structure-adaptive normalised convolution 

(SANC) reconstruction method are applied to produce the estimated low-

frequency sub-band. The discrete wavelet transform (DWT) process is 

employed to decompose the input reference LR frame into four sub-bands, and 

then the new edge-directed interpolation (NEDI) method is used to interpolate 

each of the high-frequency sub-bands. To better preserve the edges and 

remove potential noise, a nonlinear soft thresholding process is introduced to 

the estimated high-frequency sub-bands. Finally, the super-resolved frame is 

reconstructed by combining both estimated low and high-frequency sub-bands 

through the invert DWT.  

The application of the proposed SR technique is particularly useful when the 

camera is moving and the observed scene is stationary. One of the motivations 

of the proposed technique is to provide flexibility for a variety of motion levels, 

noise levels, wavelet functions, and sufficient number of used LR frames since 

the existing wavelet-based SR methods have limited performance capabilities 

for these various factors and this potential has not yet been fully explored. The 

performance of this technique is tested on three well-known videos. The 

robustness of the proposed algorithm is then evaluated through empirical tests 

with various motion levels, noise levels, wavelet functions, and the number of 

used frames. Most of the existing wavelet-based SR methods have limited 

discussion for these various factors.  

6.2 State-of-The-Art Super-Resolution Methods 

6.2.1 Keren Method 

Keren et al. [94] developed the following registration method, which has been 

found to be the most precise for registering a sequence of observed LR images 

captured from a moving camera with sub-pixel accuracy in respect to translation 

and rotation.  
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The relation between the horizontal shift 𝑎, the vertical shift 𝑏, and the rotation 

angle 𝜃 between the LR images 𝑓 and 𝑔 can be written as 

𝑔(𝑥, 𝑦) = 𝑓(𝑥 cos(𝜃)−𝑦 sin(𝜃) + 𝑎, 𝑦 cos(𝜃) + 𝑥 sin(𝜃) + 𝑏) (6-1) 

Expanding sin(𝜃) and cos(𝜃) to the first two terms in their Taylors series 

expansion gives the following equation 

𝑔(𝑥, 𝑦) ≈ 𝑓(𝑥 + 𝑎 − 𝑦𝜃 − 𝑥𝜃2 2⁄ , 𝑦 + 𝑏 + 𝑥𝜃 − 𝑦𝜃2 2⁄ ) (6-2) 

Expanding 𝑓 to the first term in its Taylors series gives the first-order equation 

𝑔(𝑥, 𝑦) ≈ 𝑓(𝑥, 𝑦) + (𝑎 − 𝑦𝜃 − 𝑥 𝜃2 2⁄ )
𝜕𝑓

𝜕𝑥
+ (𝑏 + 𝑥𝜃 − 𝑦 𝜃2 2⁄ )

𝜕𝑓

𝜕𝑦
 (6-3) 

The error between 𝑔 and 𝑓 after translation by 𝑎 and 𝑏 and rotation by 𝜃 can 

thus be approximated by 

𝐸(𝑎, 𝑏, 𝜃) = ∑[𝑓(𝑥, 𝑦) + (𝑎 − 𝑦𝜃 − 𝑥 𝜃2 2⁄ )
𝜕𝑓

𝜕𝑥
+ (𝑏 + 𝑥𝜃 − 𝑦 𝜃2 2⁄ )

𝜕𝑓

𝜕𝑦

− 𝑔(𝑥, 𝑦)]
2

 

(6-4) 

where the summation is over the overlapping area of 𝑓 and 𝑔. 

The minimum of 𝐸(𝑎, 𝑏, 𝜃) can be obtained by computing its derivatives with 

respect to 𝑎, 𝑏 and 𝜃 and setting them to zero. The difference between 𝑔 and f 

warped by (𝑎, 𝑏, 𝜃) will be minimised by solving the following equation for 𝑎, 𝑏,  

and 𝜃: 

[∑(
𝜕𝑓

𝜕𝑥
)
2

] 𝑎 + [∑
𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦
] 𝑏 + [∑𝑅

𝜕𝑓

𝜕𝑥
] 𝜃 = ∑

𝜕𝑓

𝜕𝑥
(𝑓 − 𝑔) 

(6-5) [∑
𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦
] 𝑎 + [∑(

𝜕𝑓

𝜕𝑦
)
2

] 𝑏 + [∑𝑅
𝜕𝑓

𝜕𝑦
] 𝜃 = ∑

𝜕𝑓

𝜕𝑦
(𝑓 − 𝑔) 

[∑𝑅
𝜕𝑓

𝜕𝑥
] 𝑎 + [∑𝑅

𝜕𝑓

𝜕𝑦
] 𝑏 + [∑𝑅2] 𝜃 = ∑𝑅(𝑓 − 𝑔) 



 

122 

where = 𝑥
𝜕𝑓

𝜕𝑦
− 𝑦

𝜕𝑓

𝜕𝑥
 . 

By solving this set of linear equations, the motion parameters 𝑎, 𝑏,  and 𝜃 can 

then be computed. These equations were obtained using approximations which 

are valid only for small values of (𝑎, 𝑏, 𝜃). 

6.2.2 Vandewalle Method 

Vandewalle et al. [14] proposed a frequency-domain registration algorithm to 

precisely align a sequence of aliased images, based on their low-frequencies, 

thereby aliasing its free part. They employed a planar motion parallel to the 

image plane to estimate the shift and rotation parameters between the 

reference LR image and each of the neighbouring LR images. This motion can 

be represented as a function of three parameters: horizontal and vertical shifts, 

∆𝑥1 and ∆𝑥2, and a planar rotation angle ∅. Assume that a reference image is 

𝑓1(𝑥) and its shifted and rotated version is 𝑓2(𝑥), the relation between the 

images can be expressed as 

𝑓2(𝑥) = 𝑓1(𝑅(𝑥 + ∆𝑥)) (6-6) 

where  𝑥 = [
𝑥1

𝑥2
] ,  ∆𝑥 = [

∆𝑥1

∆𝑥2
] , 𝑅 = [

cos∅ −𝑠𝑖𝑛∅
sin ∅ cos ∅

] 

The Fourier transform of 𝑓2(𝑥) can be expressed as 

𝐹2(𝑢) = ∬𝑓2(𝑥)𝑒−𝑗2𝜋𝑢𝑇𝑥 𝑑𝑥 

(6-7) = ∬𝑓1(𝑅(𝑥 + ∆𝑥))𝑒−𝑗2𝜋𝑢𝑇𝑥 𝑑𝑥 

= 𝑒𝑗2𝜋𝑢𝑇∆𝑥 ∬𝑓1(𝑅(�́�))𝑒−𝑗2𝜋𝑢𝑇�́� 𝑑�́� 

where 𝐹2(𝑢) is the Fourier transform of 𝑓2(𝑥) and �́� = 𝑥 + ∆𝑥 is the coordinate 

transformation. After another transformation �́́� = 𝑅�́� , the relation between the 

amplitudes of the Fourier transforms |𝐹1(𝑢)| and |𝐹2(𝑢)| can be computed as 
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|𝐹2(𝑢)| = |𝑒𝑗2𝜋𝑢𝑇∆𝑥 ∬𝑓1(𝑅�́�)𝑒−𝑗2𝜋𝑢𝑇�́�𝑑�́�| 

(6-8) 
= |∬𝑓1(𝑅�́�)𝑒−𝑗2𝜋𝑢𝑇�́�𝑑�́�| 

= |𝐹1(𝑢)| 

where |𝐹2(𝑢)| is a rotated version of |𝐹1(𝑢)| using the same rotation angle ∅ 

used in the spatial-domain rotation . As the shift values ∆𝑥 only affect the phase 

values of the Fourier transforms 𝐹1(𝑢) and 𝐹2(𝑢), the amplitudes of the Fourier 

transforms |𝐹1(𝑢)| and |𝐹2(𝑢)| do not rely on the spatial-domain shifts. 

Therefore, the rotation angle can first be estimated from |𝐹1(𝑢)| and |𝐹2(𝑢)| and 

then the shifts can be estimated from the phase difference between 𝐹1(𝑢) and 

𝐹2(𝑢). 

6.2.3 Structure-Adaptive Normalized Convolution (SANC) Method 

Pham et al. [29] proposed a so-called structure-adaptive normalised convolution 

(SANC) reconstruction method for fusion of irregularly sampled data obtained 

from the different LR images. The method is based on the normalised 

convolution (NC) method [30], which approximates the local signal from 

projections onto a set of polynomials basis functions. Using the polynomials 

basis functions in the NC makes it equal to a local Taylor series expansion. The 

intensity value at position 𝑠 = {𝑥 + 𝑥0, 𝑦 + 𝑦0} is estimated using a polynomial 

expansion at the center of analysis 𝑠0 = {𝑥0, 𝑦0} 

𝑓(𝑠, 𝑠0) = 𝑃0(𝑠0) + 𝑃1(𝑠0)𝑥 + 𝑃2(𝑠0)𝑦 + 𝑃3(𝑠0)𝑥
2 + 𝑃4(𝑠0)𝑥𝑦 + 𝑃5(𝑠0)𝑦

2

+ ⋯ 
(6-9) 

where {𝑥, 𝑦} are the local coordinates samples with respect to 𝑠0 . 𝑃(𝑠0) =

[𝑃0𝑃1 …𝑃𝑚]𝑇(𝑠0) are the projection coefficients onto their entire polynomial basis 

functions at 𝑠0. 

An applicability function is used in NC to localise a polynomial approximation, 

which gives different weights to all data points in a neighbourhood in the image. 
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In addition, the signal certainty is introduced in NC to ensure each input signal 

owing its certainty value and reduce the impact of outliers caused by missing 

samples or erroneous registration. 

6.3 Proposed Video Super-Resolution Approach 

Recovering the missing high-frequency details of the given LR frames is the 

fundamental target of the video SR methods. The first step is sub-pixel image 

registration that aims to estimate the motion parameters between the reference 

LR frame and each of the neighbouring LR frames. When the camera is moving 

and the scene is stationary, global motion occurs including translation and 

rotation. In this work, Keren’s method [94] is selected for global motion 

estimation which is one of the most accurate methods for sub-pixel image 

registration in the spatial-domain.  

For image reconstruction, conventional interpolation methods (e.g., nearest 

neighbour, bilinear and bicubic) address the problem of reconstructing a HR 

image from the available LR image. However, these methods generally yield 

images with blurred edges and undesirable artefacts because they do not use 

any information pertinent to the edges in the original image. Therefore, the 

wavelet-based method is applied to preserve the high-frequency details (i.e. 

edges) and consequently construct the HR image from the given LR image. In 

the proposed technique, the discrete wavelet transform DWT is employed to 

isolate and preserve the high-frequency components of the image, and then the 

interpolation is applied to the high-frequency sub-bands. This is because the 

interpolation of isolated high-frequency components in the high-frequency sub-

bands preserving more edges of the image than using a direct interpolation. A 

number of DWT-based interpolation methods [69]-[72] have been developed to 

preserve the high-frequency components in the interpolated sub-bands. 

Nevertheless, the blurring effect from the employed interpolation method 

causes the potential loss of edges in these sub-bands. Dual-tree complex 

wavelet transform (DT-CWT)-based interpolation methods [68], [74] and [77] 

have been applied to address this problem by utilising an alternative 

interpolation method. Jagadeesh and Pragatheeswaran [68] used edge-directed 
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interpolation (EDI) [86] as an alternative interpolation method of high-frequency 

sub-bands produced by DT-CWT. Later, this method was extended by 

Izadpanahi and Demirel [74] for video SR. Recently, the same authors applied 

new-edge directional interpolation (NEDI) [87] method to better preserve the 

edges of the interpolated high-frequency sub-bands generated by DT-CWT for 

local motion-based video SR [77]. However, none of these existing wavelet-

based methods have tackled the problem of noisy high-frequency details 

corrupted by the limitations of imaging systems. For the current work, a 

combination of DWT, NEDI and a soft thresholding process is proposed not only 

for preserving the high-frequency details, but also for recovering the noiseless 

high-frequency information. One-level DWT process decomposes the input LR 

reference frame into four frequency sub-bands (LL, LH, HL and HH) in the 

frequency-domain. The high-frequency sub-bands (LH, HL and HH) are 

interpolated using the NEDI method with the scale factor 𝛼. Generally, real 

video sequences are most commonly contaminated by noise, such as additive 

Gaussian noise. Therefore, to better preserve the edges and remove potential 

noise in the estimated high-frequency sub-bands, a nonlinear thresholding 

procedure that uses a soft-thresholding technique [141] is applied to process 

the estimated wavelet coefficients. The universal threshold 𝜏 for the considered 

sub-band can be calculated as 

𝜏 = 𝜎√2 log(𝑁) /𝑁 (6-10) 

where 𝜎 is the standard deviation of the sub-band and 𝑁 is the total number of 

pixels. The nonlinear soft-thresholding function is defined as 

𝑋𝑜𝑢𝑡(𝑖, 𝑗) = {

𝑋𝑖𝑛(𝑖, 𝑗) − 𝜏 𝑋𝑖𝑛(𝑖, 𝑗) > 𝜏

0 |𝑋𝑖𝑛(𝑖, 𝑗)| ≤ 𝜏

𝑋𝑖𝑛(𝑖, 𝑗) + 𝜏 𝑋𝑖𝑛(𝑖, 𝑗) < −𝜏

 (6-11) 

Eq. (6-10) is chosen in the proposed method considering the prospect of 

automation in the proposed method and successful application of this equation 

in similar studies [141]. 
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The rationale to include this thresholding process is that the signal energy is 

often concentrated on a few coefficients while the noise energy is spread in all 

coefficients in the wavelet domain. Therefore, the nonlinear soft-thresholding 

tends to maintain few larger coefficients representing the signal and reduce 

noise coefficients to zero in the wavelet domain. On the other hand, in the 

spatial-domain, when the LR frames are precisely registered by Keren’s 

method, the registered frames can be combined to reconstruct the missing high-

resolution information and produce the low-frequency sub-band. In this work, 

structure- adaptive normalised convolution (SANC) reconstruction method [29] 

is applied, with half of the scale factor α/2. This algorithm is used for fusion of 

irregularly sampled LR frames to recover the high-frequency details and 

generate the estimated LL sub-band, as the LL sub-band produced by the DWT 

does not contain any high-frequency information. Finally, inverse DWT (IDWT) 

process is applied to achieve a super-resolved frame by combining the 

estimated LL sub-band and processed high-frequency sub-bands. The block 

diagram of the proposed video SR technique is illustrated by Figure 6-1. 
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Figure 6-1 Block diagram of the proposed video SR technique 

The combination of DWT with NEDI aims to recover the edge details of 

directional high-frequency sub-bands and decrease the undesirable inter-

directional interference in the SR process. This merit cannot be achieved using 

only the NEDI method, as indicated in the results section. The application of this 

soft-thresholding function is based on the hypothesis that the large coefficients 

in the high-frequency sub-bands reflect the true edges of objects, while the 

small coefficients reflect the noise, which is demonstrated by Figure 6-2. Figure 

6-2(a) shows the reconstruction image of high-frequency sub-bands only using 

IDWT without thresholding. Both the true edges and noise can be clearly 

observed. Figure 6-2(b) shows the reconstruction image of high-frequency sub-
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bands only with thresholding where the small coefficients are removed. It can 

be observed that the noise is significantly reduced, particularly in the 

background, while most of the true edges of the human body are preserved. 

The reconstruction image of high-frequency sub-bands only where the large 

coefficients are removed is illustrated by Figure 6-2(c), which is dominated by 

noise and very few true edge information can be observed. To demonstrate the 

importance of this process, a region of the produced HR image using the 

proposed method without the soft-thresholding is shown in Figure 6-2(d), where 

the noise can be clearly observed. 

 

Figure 6-2 An example to help justify the use of thresholding process. (a) the 

reconstruction image of high-frequency sub-bands only without thresholding; (b) 

the reconstruction image of high-frequency sub-bands only with thresholding 

where the small coefficients are removed; (c) the reconstruction image of high-
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frequency sub-bands only where the large coefficients are removed, (d) the 

produced HR image without thresholding. 

The proposed technique can be summarised by the following steps: 

1. Consider four consecutive frames from the LR video; 

2. Estimate the motion parameters between the reference frame and each 

of the other LR frames using global motion estimation algorithm 

proposed by Keren; 

3. Apply one-level DWT to decompose the input LR reference frame into 

four frequency sub-bands; 

4. Apply the NEDI method to the LH, HL and HH high-frequency sub-bands 

with the scale factor of 𝛼; 

5. Calculate the threshold 𝜏 for each high-frequency sub-band; 

6. Apply the nonlinear soft-thresholding process for each high-frequency 

sub-band to create the estimated LĤ, HL̂ and HĤ; 

7. In the spatial-domain, employ the structure adaptive normalised 

convolution SANC with half of the scale factor α/2 to create the estimated 

LL̂; 

8. Apply IDWT using (LL̂, LH,̂ HL,̂ HĤ) to produce the output super-resolved 

frame. 

6.4 Results and Discussion 

The proposed super-resolution technique was tested on three well-known video 

sequences, namely, "Mother & daughter", "Akiyo", and "Foreman". The video 

sequences were downloaded from a public data-base Xiph.org. The proposed 

method and other methods for comparison were implemented using Matlab 

2015. The original high-resolution test videos were resized to 512×512 pixels 

which are considered as the ground truth to evaluate the performance of the 

proposed algorithm. The reason for resizing the original test videos to 512×512 

pixels is for the convenience to compare the performance of the proposed SR 

technique with the other state-of-the-art resolution enhancement and SR 

reconstruction techniques in the literature. The frame rate of the test videos is 

30 frames per second and each of the video sequences has 300 frames. Based 
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on the observation model, the input LR video frames with the size of 128×128 

pixels were created as follows. Each original HR video frame is (1) blurred by a 

low-pass filter, (2) down-sampled in both the vertical and the horizontal 

directions by a scale factor of 1/4, and (3) added by a Gaussian noise with a 

certain value of signal-to-noise ratio (SNR).  

6.4.1 Visual and Quantitative Performance Evaluation 

This example aims to evaluate the overall performance of the proposed 

technique with a typical selection of parameters against other methods. For 

each original HR frame, four shifted and rotated LR frames were generated and 

down-sampled, and a Gaussian noise was then added with the SNR value of 

30 dB. The motion vectors were randomly produced with a standard deviation 

(STD) of 2 for shift of both directions and 1 for rotation. The wavelet function 

was chosen as db.9/7. 

 

Figure 6-3 Results of produced HR images using different SR methods for a 

randomly selected frame of Akiyo, Mother & daughter, and Foreman video 

sequence respectively. Column 1: input LR frame, Column 2: Bicubic, Column 3: 
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Vandewalle-SANC, Column 4: Keren-SANC, and Column 5:  the proposed 

technique. 

Figure 6-3 shows the super-resolved frames using the proposed method and 

other methods, for selected arbitrarily regions from the video sequences Akiyo, 

Mother & daughter, and Foreman, respectively. It can be observed that the 

proposed technique produces the best visual quality in terms of preserving the 

edges, and removing the noise and aliasing artefacts in comparison to the other 

considered methods. The proposed technique preserves more information of 

the edges of the original HR video frame without smearing. For example, the 

edges of the face in Akiyo produced by the proposed method are much cleaner 

in comparison with the images produced using other methods. Similar visual 

results can be observed for other edges in Akiyo and for other tested videos. 

Additionally, the noise and aliasing artefacts are removed by the proposed 

method in comparison to the other methods. For example, the aliasing artefacts 

in Mother shoulders and hands are removed substantially by the proposed 

technique as well as the Gaussian noise on the face of Foreman, while these 

aliasing artefacts and noise are clearly presented in the images produced by the 

other methods. From the motion estimation point of view, the aliasing high-

frequency components due to down-sampling process appear to have different 

motions than the low-frequency components, and cause incorrect motion 

estimation [106]. Moreover, a larger noise level generates errors in motion 

estimation.  

To further investigate the improvement of the proposed method, Figure 6-4 

shows the local PSNR maps for different scenarios of the example Akiyo. The 

local PSNR map was calculated by a 5×5 pixels window. Figure 6-4(a) shows 

the PSNR distribution between the raw HR image and the interpolated HR 

image produced by nearest neighbour method, which indicates the location of 

noise introduced by the degrading process. Regions of the human body have 

more noise (blue regions) introduced by the degrading process, while 

background regions have less noise (yellow regions). Blue regions tend to be 

areas with fine features (like boundary of the human body), while yellow regions 

tend to have more coarse structures. Similar representation using the proposed 
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method is shown in Figure 6-4(b), inspection of which proves that both 

background and fine features have been better recovered. To break down the 

contribution of each component, Figure 6-4(c) and (d) show the PSNR gain of 

the proposed method over NEDI and Keren-SANC, respectively. It can be 

observed that fine features are significantly improved in comparison to NEDI 

due to the consideration of adjacent frames, while the improvement of coarse 

structures is relatively small. Coarse structures are significantly improved in 

comparison to Keren-SANC, while the improvement of fine features is relatively 

small. All these observations clearly demonstrate that the proposed method 

improves the quality of both background and true edges, but other methods can 

only have one merit. 

 

Figure 6-4 An example to show the improved distribution of the proposed 

technique. (a) The distribution of PSNR between the HR image using the nearest 

interpolation method and the raw image; (b) the distribution of PSNR between 

the super-resolved image using the proposed method and the raw image; (c) the 

PSNR gain between the proposed method and NEDI; (d) the PSNR gain between 

the proposed method and Keren-SANC 
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For quantitative evaluation of the experimental results, the nearest neighbour 

and bicubic interpolation methods, state-of-the-art resolution enhancement 

methods including NEDI [87], DASR [70], DWT-Diff [71], DWT-SWT [72], and 

state-of-the-art SR methods Keren-SANC and Vandewalle-SANC were 

implemented to compare the performance of the proposed technique.  

Table 6-1 shows the comparison of the averaged PSNR and SSIM results of 

100 frames produced from the proposed method and the other considered 

methods on the test videos. The reason to choose the first 100 frames of tested 

video sequences is that there is no big difference in results in terms of the 

content of video frames based on global motion. It is clearly shown that the 

proposed method achieves the highest average PSNR and SSIM values 

(31.48 dB, 30.57 dB and 23.88 dB for PSNR respectively; 0.90,0.91 and 0.84 for 

SSIM) for three tested videos. Achievement of this improved performance is 

probably because that the DWT-based SR reconstruction approach is more 

effective to recover the noiseless high-frequency components of the given LR 

frames, where the true edges are preserved and the noise is removed 

benefiting from the nonlinear soft thresholding method. Additionally, the 

combination of DWT and NEDI enables the recovering of the edge details of 

directional high-frequency sub-bands and reduces the annoying inter-directional 

interference in the SR process. For the videos Mother & daughter and Akiyo, 

the proposed technique based on global motion of the entire frame is suitable 

for these videos and produces better PSNR results than the interpolation, 

resolution enhancement and classic SR methods (16% and 11% increment over 

Keren-SANC respectively). For the video Foreman, although the PSNR result 

achieved by the proposed method is higher than the other considered methods 

(17% increment over KEREN-SANC), the performance gain can be further 

increased by utilising local motion which constrains the motion in the 

neighbourhood of a pixel by dividing each frame into multiple blocks and 

processing each block individually. Similar observation can be concluded based 

on SSIM values. 
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Table 6-1 The averaged PSNR and SSIM values of 100 frames produced from 

different methods for three tested videos 

SR methods 

Mother& Daughter Akiyo Foreman 

PSNR SSIM PSNR SSIM PSNR SSIM 

Nearest  24.80 0.69 24.54 0.75 20.89 0.61 

Bicubic  25.92 0.77 25.77 0.82 22.02 0.72 

NEDI [94] 24.88 0.75 24.89 0.81 21.19 0.71 

DASR [70] 23.76 0.62 23.83 0.69 20.16 0.55 

DWT-Diff [71] 22.57 0.55 22.58 0.62 18.97 0.47 

DWT-SWT [72] 23.10 0.57 23.09 0.65 19.83 0.50 

VAN-SANC 22.05 0.75 25.18 0.81 19.96 0.72 

Keren- SANC 27.14 0.82 27.51 0.84 20.41 0.70 

Proposed method 31.48 0.90 30.57 0.91 23.88 0.84 

 

6.4.2 Performance for Variety of Noise Levels 

To demonstrate the robustness of the proposed method against noise 

benefiting from the adaptive thresholding process, four shifted and rotated LR 

frames for each original HR frame were generated and down-sampled, and the 

motion vectors were randomly produced with a standard deviation of 2 for shift 

and 1 for rotation. The wavelet function was chosen as db.9/7. The noise level 

was increased from 50 dB to 20 dB with the step of 5 dB. The first 10 frames 

from Akiyo video were tested by the proposed method and other different 

methods, and the results were averaged. To demonstrate the robustness of the 

proposed SR method against noise and other parameters, only the first 10 

frames were tested and the results were averaged. Results have no significant 

difference if more frames are considered. 
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Table 6-2 shows the comparison of averaged PSNR results between different 

methods of the first 10 frames. The last column shows the PSNR increment 

over Keren-SANC in percentage by the proposed technique. It can be clearly 

seen that the proposed method consistently has the best performance for every 

noise level. Furthermore, the performance is even better for images corrupted 

by high noise level (15%, 21%, 18% increment for 30 dB, 25 dB and 20 dB 

respectively) than those with low noise level (10%, 8%, 5%, 3% increment for 

50 dB, 45 dB, 40 dB and 35 dB respectively). 

Table 6-2 The averaged PSNR results of 10 frames from Akiyo test video for each 

noise level, range from 20 dB to 50 dB with 5 dB step 

SNR Nearest 
Bicubi

c 
Keren-SANC Proposed method Increment 

50 dB 25.20 26.50 28.18 31.13 10.47% 

45 dB 23.86 24.85 28.46 30.82 8.29% 

40 dB 24.98 26.29 30.05 31.64 5.29% 

35 dB 24.18 25.20 30.49 31.30 2.65% 

30 dB 23.84 24.86 26.50 30.37 14.60% 

25 dB 23.69 24.85 24.80 30.08 21.29% 

20 dB 23.42 24.93 24.31 28.63 17.78% 

 

6.4.3 Performance for Variety of Wavelet Functions 

The above results from the proposed technique were produced by the most 

widely used wavelet function db.9/7 in image SR applications. This section 

discusses the prospect of the proposed approach using other wavelet functions. 

Previous research in Chapter 4 shows that the selection of wavelet function can 

affect the performance of SR techniques. In this experiment, the same 

parameters were chosen except that the noise level was fixed as 30 dB, and the 

wavelet function is variable. Table 6-3 shows the averaged PSNR and SSIM 

results of the first 10 frames for the Akiyo video sequence produced by the 

proposed method using nine wavelet functions, which include db1, db2, sym16, 

sym20, ciof1, ciof2, bior4.4 (db.9/7), bior5.5, and bior6.8. The results show that 
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the proposed technique can perform well under other wavelet functions apart 

from db.9/7, even better than db.9/7. Bior4.4 is equal to db.9/7 [129]. In terms of 

both PSNR and SSIM values, the wavelet function with top 5 performance are 

sym20, sym16, bior6.8, bior4.4 and coif1 respectively, although the difference 

between them is not significant. 

Table 6-3 The averaged PSNR and SSIM values of 10 frames produced by the 

proposed technique for different wavelet functions  

Wavelet functions PSNR SSIM 

Db1 28.18 0.88 

Db2 29.95 0.90 

Sym16  30.83 0.92 

Sym20 30.89 0.92 

Coif1 
 

30.39 0.91 

Coif2 26.78 0.85 

Bior4.4 30.72 0.92 

Bior5.5 30.20 0.90 

Bior6.8 30.81 0.92 

 

6.4.4 Performance for Variety of Motion Levels 

This section is dedicated to discuss the effectiveness of motion level (shift and 

rotation) on the performance of the proposed algorithm. In this experiment, the 

shift on both horizontal and vertical directions and rotation angle were randomly 

selected with the standard variation STD changing from 1 to 4 during generating 

the input LR frames from the original HR frame. Four shifted and rotated LR 

frames for each original HR frame were generated and down-sampled. The 

wavelet function was chosen as db.9/7, and the noise level was fixed as 30 dB. 

The averaged PSNR and SSIM results of the first 10 frames form Akiyo video 

produced by the proposed technique with different motion levels are shown in 

Table 6-4. It can be observed that the proposed method produces the highest 

PSNR and SSIM values when the motion level is relatively small. This is 
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because the estimation of a small motion is usually more accurate and leads to 

better reconstruction of the original HR frames. When the motion level is large, 

the values of PSNR and SSIM drop as expected. This is because a large 

motion is more difficult to be measured accurately and errors in motion 

estimation prevent reconstructing the original HR frames correctly. From the 

considered smallest to largest motions, 12% and 7% decrease of PSNR and 

SSIM values respectively has been observed. 

Table 6-4 The averaged PSNR and SSIM values of 10 frames produced by the 

proposed technique with different motion levels 

STD of Shift 

STD of Rotation 

1 2 4 

PSNR SSIM PSNR SSIM PSNR SSIM 

1 30.74 0.92 29.44 0.90 28.09 0.87 

2 29.16 0.90 29.00 0.89 27.97 0.88 

4 27.35 0.86 27.13 0.86 26.90 0.85 

 

6.4.5 Performance for Variety of Number Frames 

This section aims to evaluate the effectiveness of the number of used frames on 

the performance. In all previous experiments, it was assumed that the shift and 

rotation parameters were randomly produced. But in real applications, the 

camera usually moves towards one direction which means the shifts change 

monotonously. The shifts include two motion vectors, horizontal shift ∆𝑥 and 

vertical shift ∆𝑦. To simplify the process, in this experiment, the rotation angle 

was randomly selected with the standard deviation of 1, and only the shifts are 

changed. The shifts were produced based on 

∆𝑥(𝑖) = ∆𝑦(𝑖) =
𝑖

𝑁
 (6-12) 

where 𝑖(𝑖 = 1,2, … ,𝑁) denotes the time index of LR frames and 𝑁 denotes the 

total number of used frames. All other parameters are same as the previous 

experiment. 
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Table 6-5 shows the averaged PSNR and SSIM results of the first 10 frames for 

the Akiyo video sequence produced by the proposed technique using the 

number frames of 4, 8, 16 and 32 respectively. It can be observed that, as 

expected, higher PSNR and SSIM values were achieved with more number of 

sampled frames. However, the increment is only about 1% when the number of 

frames changes from 4 to 32. This observation is because that the used motion 

model is simple, and there is very limited extra contribution from 32 frames in 

comparison to 4 frames. More improvement could be achieved when the motion 

is more complicated and the motion is corrupted by more noise. 

Table 6-5 The averaged PSNR and SSIM values of 10 frames produced by the 

proposed technique by sampling different number of frames  

Number of sampled frames PSNR SSIM 

4 29.81 0.91 

8 30.06 0.92 

16 29.98 0.92 

32 30.07 0.92 

 

6.5 Summary 

A robust video super-resolution reconstruction approach based on combining 

discrete wavelet transform, new edge-directed interpolation and the nonlinear 

soft-thresholding has been proposed in this chapter for noisy LR video 

sequences with global motion to recover the noiseless high-frequency details 

and increase the spatial resolution, which integrates properties from methods of 

image registration and reconstruction. The application of the proposed SR 

technique is especially useful for a sequence of images captured from a moving 

camera where images differ mostly by translation and rotation. Firstly, an 

iterative planar motion estimation algorithm by Keren is used to estimate the 

motion parameters between a reference LR frame and its neighbouring LR 

frames in the spatial domain. The registered frames are combined by the SANC 

reconstruction method to output the estimated low-frequency sub-band. 

Secondly, the DWT is employed to decompose each input reference LR frame 
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into four frequency sub-bands in the frequency-domain. The NEDI is employed 

to process each of three high-frequency sub-bands, which are then filtered 

using the adaptive thresholding process to preserve the true edges and reduce 

the noise in the estimated high-frequency sub-bands. Finally, by combining the 

estimated low-frequency sub-band and three high-frequency sub-bands, a 

super-resolved frame is recovered through the invert DWT process.  

Subjective results show that this approach can better preserve the edges and 

remove potential noise in the estimated high-frequency sub-bands since a direct 

interpolation will blur the areas around edges.  Three well-known videos (totally 

100 frames for each) were tested, and the quantitative results show the superior 

performance of the proposed method. The proposed method tops the averaged 

PSNR values and SSIM values (31.48 dB, 30.57 dB and 23.88 dB for PSNR 

respectively; 0.90,0.91 and 0.84 for SSIM) of 100 frames for three videos 

respectively, and the averaged increment over KEREN-SANC is 16%, 11%, and 

17% respectively. The performance against noise has also been analysed. 

Analysis based on contribution of each component clearly demonstrates that 

the proposed method improves the quality of both background and true edges, 

but other methods usually can only have one merit. 

One of the motivations of this chapter is to address the limited performance 

capabilities of most the existing wavelet-based SR methods for a variety of 

motion levels, noise levels, wavelet functions and adequate number of used 

frames, do empirical tests and analyse how these factors can affect the 

performance of the proposed method. The conclusions are: 

 The proposed technique has produced 10%, 8%, 5% and 3% averaged 

increment of PSNR for image corrupted by low level noise with the SNR 

value of 50 dB, 45 dB, 40 dB and 35 dB respectively. It has produced 

15%, 21% and 18% averaged increment of PSNR for image corrupted by 

high level noise with the SNR value of 30 dB, 25 dB and 20 dB 

respectively.  
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 The proposed technique can perform well using other wavelet functions 

apart from db.9/7, even better than db.9/7, although the difference 

between them is not significant. 

 Different levels of motion can affect the performance. From the 

considered smallest to largest motions, 12% and 7% decrease of PSNR 

and SSIM values respectively has been observed. 

 If the motion is simple, the number of sampled frames has limited 

improvement on the performance due to the limited extra information. If 

the motion is complex and corrupted by high level of noise, significant 

improvement is expected using more frames. This research requires 

further study. 

A limitation of this method is that it can only be applied to video sequences with 

global motion between frames. However, it can be extended to local motion by 

dividing the video frame into multiple blocks such that each block has some 

uniform motion and then applying this method to each block.  

 



 

141 

7 Video Super-Resolution based on Adaptive Local 

Motion Decomposition and Wavelet Transform 

Reconstruction 

7.1 Introduction 

Super-resolution (SR) reconstruction technique aims to reconstruct a single 

high-resolution (HR) image, or a set of HR images (video), from a sequence of 

observed low-resolution (LR) images captured from the same scene [1]. There 

are two main stages in SR algorithms: image registration and image 

reconstruction. Image registration aims to estimate the motion parameters 

between the reference LR image and its neighbouring LR images at sub-pixel 

accuracy, while image reconstruction aims to integrate the registered images 

and eliminate any degradation operators to estimate the target HR image [15]. 

Motion estimation/registration plays a critical role for the success of SR 

algorithms. When the camera shifts and the observed scene is stationary, the 

sub-pixel displacements for all pixels in the LR images are identical, which is 

called global motion. When the camera is stationary and the scene moves, the 

sub-pixel displacements for different regions are variant, which is called non-

global or local motion. However, the existing sub-pixel motion estimation 

methods become inaccurate and cause errors when the motions of the objects 

are local. For local motions, motion detection methods have to be applied to 

segment regions belonging to moving objects from the rest of an image [105]. 

There are three main categories of these methods, including background 

subtraction, optical flow, and temporal differences. Background subtraction is 

the most popular method that aims at the discrimination of moving objects from 

a maintained and updated background model. It is relatively easy to implement 

and requires less computational complexity [100]-[102]. Although the optical 

flow method [106], [107] shows the projected motion on the image plane with 

good approximation of the complex background, it often demands very high 

computational complexity. Temporal differencing method can be effectively 

adapted to environmental changes, but it often achieves incomplete detection of 

the shapes of moving objects [101], [102].  
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Image reconstruction algorithms can be classified into frequency-domain-based 

and spatial-domain-based approaches. Between these two domains, the 

wavelet transform (WT) approach has emerged as an effective new transform 

over the Fourier transform for analysing real-world signals because of its 

attractive properties, such as locality and multi-resolution [19], [16]. Discrete 

wavelet transform (DWT) is one of the recent wavelet transforms and is being 

employed as a powerful mathematical tool in many image/video processing 

applications to isolate and preserve the high-frequency components of the 

image. DWT decomposes the given image into four frequency sub-bands using 

the property of dilations and translations by a single wavelet function called 

mother wavelet [19], [129]. However, the decimated DWT is shift variant 

because of the decimation process exploited in the transform and, thus, 

suppression of wavelet coefficients introduces artefacts into the image [62], 

[63]. Estimating the unknown wavelet coefficients in sub-bands containing high-

frequency components is the essential target of wavelet-based methods to 

reconstruct the HR image from the given LR image/images. SR reconstruction 

techniques strongly rely on accurate motion estimation for the recovery of finer 

details. The need for sub-pixel accuracy has restricted its application to video 

sequences with global simple motions only. Unfortunately, real-world video 

sequences contain complex local motions and motion estimation becomes a 

difficult task for such videos. A variety of research has been conducted to 

address SR reconstruction problem for practical videos and reduce local 

registration errors. For local motion-based video SR, Izadpanahi and Demirel 

divided each frame into stationary and motion blocks for better registration. 

They applyed NEDI method to better preserve the edges of the interpolated 

high-frequency sub-bands generated by dual-tree complex wavelet transform 

(DT-CWT) of the LR video frames. However, they could not address directly the 

problem of complex-motion blocks which causes inaccurate motion estimation 

and artefacts around motion boundaries [77].  

Probabilistic motion estimation algorithms and steering kernel regression 

algorithms have been proposed to circumvent the problem of SR by avoiding 

the explicit need for precise sub-pixel motion estimation. Protter et al. [112] 
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developed a non-local means (NLM) de-noising method by measuring the 

similarity of image patches across space-time and giving relatively higher 

weights to more similar patches. This method was then extended by Cheng et 

al. [113] based on dividing each frame into simple areas and complex areas to 

improve the performance of the NLM algorithm. Takeda et al. [114] introduced a 

method based on the extension of steering kernel regression framework to 3-D 

signals for performing video de-noising, spatio-temporal upscaling and SR 

without the need for explicit sub-pixel accuracy motion estimation.  

As most real senses contain complex motions with local motions and spatial 

variations, super-resolving real-world video sequences remains challenging. 

This chapter focuses on addressing the challenge of video sequences 

containing complex local motions by proposing a new video SR reconstruction 

framework that initially divides the observed LR video frame into background 

regions, simple-motion blocks, and complex-motion blocks. Each of 

block/region is then super-resolved using appropriate registration and 

reconstruction methods or a single wavelet-based resolution enhancement 

approaches to achieve an overall better performance. This method aims to 

improve image quality through (a) motion decomposition for more accurate 

motion estimation, (b) reduction of background boundary and extension of 

motion blocks to reduce the artefacts caused by boundary, and (c) employment 

of the discrete wavelet transform to preserve the true edges of objects 

meanwhile compress the noise. 

7.2 State-of-The-Art Background Subtraction Methods 

Background subtraction is a popular approach for motion detection, because it 

is relatively simple to implement and produces reasonable motion segmentation 

particularly for situation with a relatively static background. The most commonly 

used methods include the simple background subtraction (SBS) [103], the 

running average (RA) [104], and the sigma-delta estimation (SDE) [105]. In this 

section, the SBS and SDE methods will be described and the RA method will be 

described and used in the next section for the proposed framework. 
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7.2.1 Simple Background Subtraction (SBS) Method 

SBS discriminates moving objects by taking the absolute difference between 

the static background frame 𝐵(𝑥, 𝑦) and the current frame 𝐼𝑡(𝑥, 𝑦) from the video 

sequence. A binary motion detection mask is calculated by the equation: 

𝐷(𝑥, 𝑦) = {
1,    𝑖𝑓|𝐼𝑡(𝑥, 𝑦) − 𝐵(𝑥, 𝑦)| > 𝜏

0,    𝑖𝑓|𝐼𝑡(𝑥, 𝑦) − 𝐵(𝑥, 𝑦)| ≤ 𝜏
 (7-1) 

where 𝜏 is an experimentally selected threshold which distinguishes pixels as 

either the foreground or the background in a video frame. If the absolute 

difference between 𝐵(𝑥, 𝑦) and 𝐼𝑡(𝑥, 𝑦) is bigger than 𝜏,  the pixels of the 

detection mask are labeled with 1, which indicate moving objects; otherwise the 

pixels are labelled with 0, which indicate background. However, this method 

demonstrates poor performance in most real video sequences. The main 

reason that causes the SBS method fails to respond accurately is that the noise 

or illumination changes occur in the incoming video frame and static objects 

occur in the reference frame [103]. 

7.2.2 Sigma-Delta Estimation (SDE) Method 

An adaptive background model is generated by sigma-delta estimation (SDE) 

method [105] which is used to calculate the temporal statistics of the pixels in 

the original video sequence. For the first background estimation, the 𝑠𝑔𝑛 

function is used to evaluate the intensity of the background. The 𝑠𝑔𝑛 function is 

defined as follows: 

𝑠𝑔𝑛(𝑎) = {

1,    𝑖𝑓𝑎 > 0
0,    𝑖𝑓𝑎 = 0

−1,    𝑖𝑓𝑎 < 0
 (7-2) 

where 𝑎 is an input real value intensity. The background estimation is 

expressed as follows: 

𝐵𝑡(𝑥, 𝑦) = 𝐵𝑡−1(𝑥, 𝑦) + 𝑠𝑔𝑛(𝐼𝑡(𝑥, 𝑦) − 𝐵𝑡−1(𝑥, 𝑦)) (7-3) 

where 𝐵𝑡(𝑥, 𝑦) is the current background model, 𝐵𝑡−1(𝑥, 𝑦) is the previous 

background model, and 𝐼𝑡(𝑥, 𝑦) is the current incoming video frame. The 
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background intensity model increases or decreases by a value of one through 

the 𝑠𝑔𝑛 function evaluation at each frame. Then absolute difference ∆𝑡(𝑥, 𝑦) is 

computed as follows: 

∆𝑡(𝑥, 𝑦) = |𝐼𝑡(𝑥, 𝑦) − 𝐵𝑡(𝑥, 𝑦)| (7-4) 

For the time-variance 𝑉𝑡(𝑥, 𝑦) , the computation makes use of the 𝑠𝑔𝑛 function 

which measures motion activity to distinguish every pixel as background or 

moving object. 

𝑉𝑡(𝑥, 𝑦) = 𝑉𝑡−1(𝑥, 𝑦) + 𝑠𝑔𝑛(𝑁 × ∆𝑡(𝑥, 𝑦) − 𝑉𝑡−1(𝑥, 𝑦)) (7-5) 

where 𝑉𝑡(𝑥, 𝑦) is the current time-variance, 𝑉𝑡−1(𝑥, 𝑦) is the previous time-

variance, 𝑁 is the predefined parameter which ranges from 1 to 4. 

According to the produced current time-variance; the binary motion detection 

mask 𝐷(𝑥, 𝑦) is detected by the equation 

𝐷𝑡(𝑥, 𝑦) = {
1, 𝑖𝑓∆𝑡(𝑥, 𝑦) > 𝑉𝑡(𝑥, 𝑦)

0, 𝑖𝑓∆𝑡(𝑥, 𝑦) ≤ 𝑉𝑡(𝑥, 𝑦)
 (7-6) 

7.3 Proposed Video Super-Resolution Method  

7.3.1 Framework 

The new method, called Adaptive Local Motion Decomposition and Wavelet 

Transform Reconstruction (ALMD-WTR), involves three modules: motion 

detection module, motion decomposition module, and reconstruction module. 

As illustrated by Figure 7-1, the motion detection module aims to divide the 

input LR frames into background blocks and motion blocks in a binary form. In 

the motion decomposition module, the adjacent background blocks are 

connected and transformed into background regions. Additionally, the motion 

blocks are further divided into two types of blocks: simple-motion blocks and 

complex-motion blocks. For the simple-motion blocks and background regions, 

tailored registration and reconstruction methods based on considering the 

reference frame and the adjacent frames are used for each type of 

blocks/regions in the reconstruction module to produce the HR blocks/regions. 
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For the complex-motion blocks, a single wavelet-based resolution enhancement 

approach based on the reference frame only is applied for this type of blocks to 

produce the HR blocks, and finally a super-resolved frame is reconstructed by 

merging all of them. Details of each module are discussed below. 

 

Figure 7-1 Block diagram of the proposed ALMD-WTR method, where the left 

rectangle shows the motion detection model, the middle one shows the motion 

decomposition module and the right one shows the reconstruction module.  

7.3.2 Motion Detection Module 

This chapter uses the background subtraction method to detect moving objects 

due to its advantages of easy implementation and low computational 

complexity. The concept of this method is building a model of the static scene 

without moving objects called background, and then comparing each frame in 

the sequence to this background to differentiate moving objects, called 

foreground [105]. In this section, the running average (RA) [104] is described 

and used in the proposed method The RA method is able to adapt for temporal 

changes of weather and lighting on motion detection in the video sequence by 

iteratively updating the background frame of the adaptive background model to 

guarantee reliable motion detection. Due to this prominent adaptability, this 

algorithm is employed in the proposed ALMD-WTR method. 

In the RA method, the current background frame 𝐵𝑡(𝑥, 𝑦) is updated by the 

equation 

𝐵𝑡(𝑥, 𝑦) = (1 − 𝛽)𝐵𝑡−1(𝑥, 𝑦) + 𝛽𝐼𝑡(𝑥, 𝑦) (7-7) 
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where 𝐵𝑡−1(𝑥, 𝑦) is the previous background frame and 𝐼𝑡(𝑥, 𝑦) is the current 

considered LR frame. The updating rate 𝛽 represents the speed of new 

changes in the scene updated to the background frame, which is usually 

chosen as a small value. A difference image 𝐷𝑡(𝑥,𝑦) is then produced iteratively 

based on an absolute difference between the current frame and the current 

background frame 

𝐷𝑡(𝑥, 𝑦) =  |𝐼𝑡(𝑥, 𝑦) − 𝐵𝑡(𝑥, 𝑦)| (7-8) 

A binary (pixel-based) motion mask 𝑃𝑀(𝑥, 𝑦), initially each pixel of which is 

assigned to zero, is generated by transforming 𝐷𝑡(𝑥,𝑦) into the binary form 

based on a threshold 𝜏𝑝. A few experiments have been conducted in this study 

to choose the best threshold and the results showed that the Otsu’s method 

[145] performs well in this process. The Otsu’s method chooses the threshold to 

minimise the intraclass variance of the black and white pixels, and produce a 

more reasonable motion distribution. Therefore, it is used for all examples in 

this chapter. An example of the detected difference image and pixel-based 

motion mask using the video sequence of Akiyo is illustrated by Figure 7-2(a) 

and (b), where the size of observed LR images is 128 × 128 pixels, 𝛽 has been 

chosen as 0.05. The foreground (white) and background (black) are clearly 

detected. 

 

Figure 7-2 Results produced from the motion detection module, where the white 

colour represents the motion pixel or block and black colour represents the 

background pixel or block. (a) 𝑫𝒕(𝒙, 𝒚); (b) 𝑷𝑴(𝒙, 𝒚); (c) 𝑩𝑴(𝒙, 𝒚). 
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To construct the units for processing, the pixel-based mask 𝑃𝑀(𝑥, 𝑦) is 

transformed into a block-based mask 𝐵𝑀(𝑥, 𝑦). Firstly, the frame is divided into 

multiple blocks with a size of 𝑛 × 𝑛 pixels. Considering each block, if the block 

contains white pixels whose summation is more than 1, it is marked as a motion 

block; otherwise it is marked as a background block. Figure 7-2(c) shows the 

results of block-based mask with a block size of 8 × 8 pixels.  

The selection of the block size is important because a large block may lead to a 

poor accuracy of motion estimation while a small block will result in many 

boundaries that cause artefacts during the SR process [77]. The selection of 

block size in the proposed method follows a divide-merge methodology. A pre-

set small block size is applied to divide the image initially, and then the blocks 

which are adjacent and have the same property of motion characteristics are 

merged to reduce the boundary perimeter.  

7.3.3 Motion Decomposition Module 

This module aims to merge and transform the adjacent background blocks into 

background regions and segment the motion blocks into two types of blocks 

that have different motion characteristics.  

The first step in this module is the extraction of background regions. This 

chapter introduces a unique background extraction method that aims to extract 

the background regions rather than blocks to reduce the boundary artefacts 

produced during the SR process. The inputs to the proposed background 

extraction algorithm are four consecutive LR frames, where the 2nd frame is 

chosen as the reference frame. All the adjacent background blocks are merged 

to reduce the boundary perimeter. Figure 7-3(a) shows the background blocks 

before the merging, where the red colour indicates the pixels on the boundaries. 

After the merging, the background now is represented by regions rather than 

blocks, as illustrated by Figure 7-3(b). By this mean, the perimeter of the 

background boundary is substantially reduced. In this example, the boundary 

pixels of background are reduced from 3840 pixels to 1120 pixels with a 71% 

reduction. To further reduce this type of artefacts, this chapter proposes to use 
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only the background regions of the LR images for the registration process. This 

is achieved by taking the inner region of the LR frames outside the motion 

mask. The purpose of this step is to produce more accurate registration of the 

background regions, where the motion parts are removed and only the 

background regions are considered. It should be noted that, the reconstruction 

process is applied to the whole LR images. The original LR images are used for 

the reconstruction process based on the motion parameters from the 

background regions, by which means the artefacts around the boundary 

between background and motion regions can be significantly reduced. 

 

Figure 7-3 Results of detected background regions in the motion decomposition 

module, where (a) shows the background blocks (white) before applying this 

module and (b) shows the background regions after applying this module. The 

red colour indicates the boundary pixels for background. 

The second step in this module is to decompose the motion blocks into two 

types: simple-motion blocks and complex-motion blocks. For the complex-

motion blocks, due to the high complexity of motion objects, such as occlusion 

which refers to sudden disappearing of the existing objects and appearing of 

new objects, image registration methods may produce incorrect motion 

parameters that can substantially degrade the quality of super-resolved image. 

A single resolution enhancement method based on the reference frame only is 

therefore required for this type of blocks. For the simple-motion blocks, as the 

simple motion contains small motion and large motion, initially the simple-

motion blocks were divided into small and large motion blocks and it was found 

that the Keren’s method works better for both types of blocks than other image 
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registration methods, such as the Vandewalle’s method. The rationale behind 

this process is that the Keren’s method is suitable to estimate small motion and 

even large motion due to a coarse-to-fine image strategy used in this method, 

called a Gaussian pyramidal scheme. This pyramidal scheme uses different 

filtered, down-sampled versions of the original images to increase the precision 

for estimating large motion parameters. Therefore, even large motion will be 

transformed into small motions after this process [94], [146]. Hence, it is 

proposed to use simple-motion blocks rather than small and large-motion blocks 

in this chapter to reduce the computational cost.  

The Keren’s method uses the planar motion model based on three parameters 

to estimate the shifts and rotation parameters for each block of each LR video 

frame based on Taylor series expansions, including horizontal shift 𝑎𝑖, vertical 

shift 𝑏𝑖, and rotation angle 𝜃𝑖  (𝑖 = 1,2,3,4). Euclidean distance of shifts is 

calculated based on 

𝑑𝑖 = √𝑎𝑖
2 + 𝑏𝑖

2 (7-9) 

A preset threshold 𝜏1 is introduced to define the motion type of the considered 

block based on the below equation 

MT =  {
simple max

1≤𝑖≤4
𝑑𝑖 ≤ 𝜏1

complex max
1≤𝑖≤4

𝑑𝑖 > 𝜏1
 (7-10) 

The discussion for the selection of this parameter is presented in the next 

section. Figure 7-4 shows an example of motion decomposition module, where 

the left graph maps the maximum value of 𝑑𝑖 and the right graph shows the 

visualisation of different types of motion blocks, where the three types of motion 

are clearly presented. Note that this example is for demonstration purpose only 

where the parameter is not optimally selected. 
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Figure 7-4 Results produced from the motion decomposition module, where (a) 

shows the maximum of 𝒅𝒊 and (b) shows the divided three types of motion 

blocks/regions (white: background regions; light-gray: simple-motion blocks; 

dark-gray: complex-motion blocks). 

To reduce the artefacts on the boundary of super-resolved motion blocks, each 

motion block is extended by 𝛼 pixels at each side before applying the third 

module where 𝛼 is the scale factor, which means that the block size becomes 

(n + 𝛼)  × (n + 𝛼). The SR method will then be applied to the extended block, 

and 𝛼 at each side of the HR blocks will be removed before merging in the 

reconstruction module. 

7.3.4 Reconstruction Module 

This module aims to super-resolve each motion block and background region 

and then merge them to reconstruct the final super-resolved frame. 

For the complex motion blocks, a single wavelet-based resolution enhancement 

approach that uses only the reference frame is applied for this type of blocks. 

This chapter proposes to use a combination of WZP method with the scale 

factor 𝛼/2 to produce the estimated LL sub-band and DWT-NEDI approach with 

the scale factor 𝛼 to produce the estimated high-frequency sub-bands. The 

block diagram of this method is illustrated by Figure 7-5. The input is the LR 

motion block rather than the whole frame. The procedure can be summarised 

as: 
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Figure 7-5 Block diagram of the proposed DWT-NEDI-WZP resolution 

enhancement approach for complex-motion blocks. 

1 Apply one-level DWT decomposition of the input LR block to produce 

four frequency sub-bands (LL, LH, HL, HH); 

2 Apply the NEDI method [87] to the high-frequency sub-bands (LH, HL, 

HH) with the scale factor 𝛼; 
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3 Apply an adaptive soft-thresholding process [141] for each high-

frequency sub-band based on Eq. (7-11) to produce the estimated LĤ, 

HL̂ and HĤ. 

LĤ(x, y) = {

LH(x, y) − 𝜏𝑑 LH(x, y) > 𝜏𝑑

0 |LH(x, y)| ≤ 𝜏𝑑

LH(x, y) + 𝜏𝑑 LH(x, y) < −𝜏𝑑

 (7-11) 

The threshold 𝜏𝑑 can be calculated through 

𝜏𝑑 = 𝜎√2 log(𝑁)/𝑁 (7-12) 

where 𝜎 is the standard deviation of the sub-band and 𝑁 is the total number of 

pixels. 

4 Apply WZP method [62] to the input LR block with the scale factor 𝛼/2 to 

create the estimated LL̂; 

5 Apply the invert DWT (IDWT) using (LL̂, LH,̂ HL,̂ HĤ) to produce the HR 

block; 

A few DWT-based interpolation methods [70,71,72] have been developed to 

preserve the high-frequency components in the interpolated sub-bands. 

Nevertheless, the blurring effect from the employed interpolation method 

causes the potential loss of edges in these sub-bands. The combination of DWT 

with NEDI, namely DWT-NEDI, aims to improve the edge details of directional 

high-frequency sub-bands and reduce the annoying inter-directional 

interference in the SR process. This merit cannot be achieved using only the 

NEDI method. The application of this soft-thresholding function is based on the 

hypothesis that the large coefficients in the high-frequency sub-bands reflect the 

true edges of objects while the small coefficients reflect the noise.  

For the background regions and simple-motion blocks, the Keren’s method is 

used to estimate the motion between the reference LR frame and its adjacent 

LR frames and then the structure-adaptive normalised convolution SANC [29] 

𝛼/2 is used to produce the estimated LL sub-band. method with the scale factor 
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Figure 7-6 Block diagram of the proposed SR technique for simple -motion 

blocks and background regions. 

The estimated high-frequency sub-bands are produced using the same 

procedure as shown in Figure 7-5 based on the reference frame only. The block 

diagram can be summarised by Figure 7-6.  

Before merging all the HR regions and blocks together, the motion mask is used 

to select the HR background regions, and the boundary extension for motion 

blocks (𝛼 for each side) is removed. 
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7.4 Results and Discussions 

In this section, four benchmark video sequences, namely, "Akiyo", "Mother & 

daughter", "Foreman" and "Ice" were tested to evaluate the performance of the 

proposed super-resolution technique. The video sequences were downloaded 

from a public database Xiph.org. The proposed algorithm and other methods for 

comparison were implemented using Matlab 2015. The original high-resolution 

test video sequences were resized to 512×512 pixels which are considered as 

the ground truth for performance evaluation. The reason to resize the original 

test videos to 512×512 pixels is for the convenience to evaluate the 

performance of the proposed SR technique in comparison with the other state-

of-the-art resolution enhancement and SR reconstruction techniques in the 

literature. Based on the observation model, the input low-resolution video 

frames with the size of 128×128 pixels were produced from blurring and down-

sampling each original HR video frame by applying twice cascade DWT with the 

db.9/7 wavelet function. The frame rate of the test videos is 30 frames per 

second and each of the videos has 300 frames. The scale factor was chosen as 

4. The wavelet function db.9/7 was used in DWT for reconstruction. 

7.4.1 Visual and Quantitative Performance Evaluation  

Thirty frames were used to produce the motion mask, and the results of motion 

decomposition for the first 30 frames of Akiyo, Mother, Foreman and Ice are 

shown in Figure 7-7. It can be observed that Akiyo has only the simplest motion 

blocks, the motion of objects for Mother is dominated by simple-motion blocks 

and has very few complex-motion blocks while Foreman and Ice have 

significant complex-motion blocks, respectively. 
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Figure 7-7 Results of motion decomposition for Akiyo, Mother & daughter, 

Foreman and Ice, respectively. The left column is the observed LR images, the 

middle column is the detected motion masks and the right column is the 

segmented three motion types. The mapping between colour and motion type 

can be found in Figure 7-4. 

Figure 7-8 shows the randomly selected super-resolved frames using the 

proposed method comparing with other methods for a selected region. It can be 

clearly observed that the proposed algorithm is more efficient for representing 

the required complex areas of the original HR video frame.  
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Figure 7-8 Visual results of HR images using the proposed method in 

comparison with other methods. The first row is the 27th frame of the Akiyo; the 

second row is the 49th frame of the Mother & daughter; the third row is the 2nd 

frame of the Foreman, and the fourth row is the 19th frame of the Ice. The first 

column is the observed LR images; the second column is the interpolated HR 

images using bicubic; the third column is the interpolated HR images using NEDI 

and the fourth column is the super-resolved images using the proposed ALMD-

WTR method. 
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For example, the lips in Foreman’s mouth and the teeth in Mother’s mouth are 

better represented by the proposed SR algorithm, whereas these areas are not 

described well by the resolution enhanced methods (NEDI and Bicubic). 

Additionally, the proposed technique preserves the edges of the original HR 

video frame without burring. For example, the edges of the face in Foreman and 

Akiyo, and the ice skates of the top right person in Ice produced by the 

proposed technique are much distinct in comparison to the resolution enhanced 

images produced by NEDI and Bicubic. Moreover, the aliasing artefacts are 

reduced by the proposed method in comparison to other methods, for example, 

the shoulders of Akiyo, Mother, and the stripe of the wall in Foreman. It can be 

concluded from the above observations that the proposed algorithm produces 

the best visual quality among the considered methods in terms of representing 

the complex areas, preserving the edges and reducing the aliasing artefacts. 

The proposed method uses WZP method to estimate the LL sub-band for the 

complex-motion blocks, as illustrated by Figure 7-5. Empirical tests have been 

conducted using other two resolution enhancement methods: bicubic and NEDI. 

As an example, the results of the 4nd frame of Foreman are shown in Figure 7-9. 

Inspection of Figure 7-9(b)-(d), shows that the PSNR gain between the 

proposed method using bicubic, NEDI, and WZP and the nearest neighbour 

interpolation. It clearly proves that the proposed WZP method has the most 

improvement with less influence on the boundary, where the face area has the 

most significant improvement.  
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Figure 7-9 An example to show the results using different methods to estimate 

the LL sub-band for the complex blocks. (a) The distribution of PSNR between 

the nearest neighbour interpolation and the raw image; (b) the PSNR gain 

between the proposed method using bicubic to estimate LL and the nearest 

neighbour; (c) the PSNR gain between the proposed method using NEDI to 

estimate LL and the nearest neighbour; (d) the PSNR gain between the proposed 

method using WZP to estimate LL and the nearest neighbour. 

To further investigate the improvement of the proposed method, Figure 7-10 

shows the local PSNR maps for different scenarios for the example of Mother. 

The local PSNR map was calculated by a 5×5 pixels window. Figure 7-10(a) 

shows the PSNR distribution between the raw HR image and the interpolated 

HR image using the nearest neighbour method, which indicates the location of 

noise introduced by the degrading process. Regions of the human body have 

more information loss (blue regions) introduced by the degrading process, while 

background regions have less information loss (yellow regions). The blue 

regions tend to be areas with fine features (like boundary of the human body or 

the photo frame), while the yellow regions tend to have more coarse structures. 

Similar representation using the proposed method is shown in Figure 7-10(b), 

inspection of which proves that background has been improved slightly while 

fine boundaries have been much better improved. To break down the 
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contribution of each component, Figure 7-10(c) and (d) show the PSNR gain of 

the proposed method over bicubic and NEDI, respectively. It has been observed 

that fine features are significantly improved in comparison to bicubic due to the 

consideration of adjacent frames, while the improvement of coarse features is 

relatively small. Fine features are further improved in comparison to NEDI while 

the improvement of coarse structures is very small. All these observations 

clearly demonstrate that the proposed method improves the quality of both 

background and true edges with different levels. 

 

Figure 7-10 An example to show the improved PSNR distribution of the proposed 

technique. (a) The distribution of PSNR between the interpolated image using the 

nearest neighbour and the raw image; (b) the distribution of PSNR between the 

super-resolved image using the proposed method and the raw image; (c) the 

PSNR gain between the proposed method and bicubic interpolation; (d) the 

PSNR gain between the proposed method and NEDI. 

The improvement of the proposed method could be better demonstrated by 

using the modified metric, PSNR-HVS-M [147] based on properties of a human 

visual system (HVS). This metric can also be calculated for each image block 



 

161 

as the local PSNR map. However, the advantage of PSNR-HVS-M measure is 

that it takes into account human perception, while the standard PSNR doesn’t 

relate to human perception. 

Table 7-1 shows the comparison of the average PSNR and SSIM values of the 

100 frames from the proposed method and other interpolation methods for the 

four test videos, where the motion block size was chosen as 32×32. For 

achieving statistical significance, the first 100 frames of each video were tested. 

Experiments show that there is no big difference in results if more frames are 

considered. It can be observed that the proposed method consistently produces 

the highest PSNR and SSIM values for each video sequence. This is because 

that NEDI, bicubic, and nearest methods use only spatial information in the 

reference frame, while the proposed method uses spatio-temporal information 

of the reference frame and other neighbouring frames. Additionally, DWT-based 

SR reconstruction approach is more effective to recover the missing high-

frequency details of the given LR video frames, where the true edges are 

preserved and the noise is removed benefiting from the nonlinear soft- 

thresholding.  

Table 7-1 The average PSNR and SSIM values of the 100 frames by the proposed 

technique in comparison with other interpolation methods, where the block size 

is 32 by 32 

Methods 
PSNR  SSIM  

Akiyo Mother Foreman Ice Akiyo Mother Foreman Ice 

Nearest  26.18 28.05 25.30 25.27 0.37 0.31 0.38 0.29 

Bicubic  27.33 29.24 26.84 26.58 0.45 0.37 0.47 0.34 

NEDI  30.47 32.43 28.34 30.08 0.53 0.47 0.53 0.44 

Proposed 
method 

31.51 33.57 31.60 31.43 0.53 0.48 0.58 0.40 
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Table 7-2 The average PSNR values by the proposed technique in comparison 

with other state-of-the-art methods, where the block size is 32 by 32 

Methods Foreman 

Protter et al. [112] 29.01 

Izadpanahi et al. [77] 31.51 

Proposed technique 31.60 

 

Furthermore, the PSNR increment percentage of the proposed method over the 

NEDI method is 3.4%, 3.5% and 11.5% respectively. The proposed method was 

also compared with state-of-the-art SR methods [77,112], and the results for 

one of the examples with large proportion of complex-motion blocks (Foreman) 

are shown in Table 7-2, which clearly demonstrates that the proposed 

technique has the best performance for objects with complex motions. As 

shown in Table 7-2, the PSNR increment percentage of the proposed method is 

8.9% over Protter et al. [112] and the increment is 0.3% over Izadpanahi et al. 

[77], which illustrates a superior performance against the compared state-of-the 

art methods. 

7.4.2 Parameters Selection 

The effectiveness of the size of motion block on the performance of the 

proposed technique is firstly discussed. Based on object characteristics, the 

four test video sequences are classified into two types: simple-motion objects 

(Akiyo and Mother), and complex-motion objects (Foreman and Ice). Table 7-3 

shows the average PSNR and SSIM values of the 100 frames produced by the 

proposed technique with different motion block sizes on the four test video 

sequences. It has been observed that the size of block can affect the 

performance significantly, especially when the motion of objects is complex. For 

Akiyo and Mother with simple-motion objects, the results are almost the same 

(with a standard deviation of PSNR of 0.09 dB and 0.21 dB respectively). This 

may be due to the contribution of motion compensation is very limited. For 

Foreman and Ice with complex-motion objects, the block size has more 

influence on the results (with a standard deviation of 0.74 dB and 0.40 dB 
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respectively). It has been also observed that a relatively large block sizes 

produce better results for videos with complex-motion objects, while for videos 

with simple-motion objects, small block sizes produce better results. 

Collectively, a 32×32 block size is suggested for the proposed method. 

Table 7-3 The PSNR and SSIM values of the 100 frames for four examples 

produced by the proposed technique using different motion block sizes  

Block size 
PSNR(SSIM)  

Akiyo Mother Foreman Ice 

8×8 31.67(0.54) 33.68(0.48) 30.80(0.55) 30.51(0.38) 

16×16 31.62(0.53) 33.64(0.48) 31.54(0.57) 30.82(0.39) 

32×32 31.51(0.53) 33.57(0.48) 31.60(0.58) 31.43(0.40) 

64×64 31.47(0.53) 33.21(0.46) 30.02(0.54) 31.17(0.40) 

 

 

 

Figure 7-11 Motion detection results using (a) a small threshold, (b) the Otsu’s 

method, and (c) a large threshold 

The proposed technique also requires several other pre-set parameters. In the 

motion detection module, the selection of parameter 𝛽 which represents the 

updating rate has been recommended as 0.05. The selection of threshold 𝜏𝑝 

which determines the quality of motion distribution has been discussed in many 

experiments. Figure 7-11 shows motion detection results using the Otsu’s 

method, a small and large values of 𝜏𝑝. It is clearly shown that the proposed 
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method using the Otsu’s method Figure 7-11(b) produces a more reasonable 

motion distribution in comparison to those from a too large and small threshold. 

For Figure 7-11(a), motions are detected on the wall of the background, which 

will result in many motion blocks on this background region. Although the same 

registration method is applied in this region, no matter the selection of 

threshold, the artefacts around the motion blocks will degrade the image quality. 

For Figure 7-11(c), some small and moderate motions are treated as 

background, which will result in inaccurate local motion estimation. 

Table 7-4 The PSNR values for the second frame with different values of 𝝉𝟏, 

where the block size is 32 by 32 

𝜏1 Akiyo Mother Foreman Ice 

0.2 31.51 32.61 31.22 31.13 

0.5 31.51 33.57 31.60 31.43 

1 31.51 33.57 31.60 31.43 

In the motion decomposition module, experiments show that when the 

parameter 𝜏1 is selected between 0.1 to 1, the proposed method performs well. 

Table 7-4 shows the PSNR values when 𝜏1 is chosen as 0.2, 0.5 and 1 

respectively. It is observed that the variation of result is not significant in the 

considered range. For Akiyo, since all values of 𝑑𝑖 are smaller than 0.2, the 

results are identical. For all tested videos, the selection of 0.5 is recommended.  

The selection of threshold 𝜏𝑑 in the reconstruction module is determined by Eq. 

(7-12). This parameter controls the balance between noise removal and edge 

preservation. 

7.4.3 Performance from Different Motion Detection Methods 

This sub-section is dedicated to show the performance of the proposed 

technique using different motion-based background subtraction methods. Two 

state-of-the-art background subtraction methods, including simple background 

subtraction SBS and sigma delta estimation SDE, have been implemented on 

the four test videos. The average PSNR and SSIM results of the first 10 video 

frames are shown in Table 7-5. It has been observed that the PSNR and SSIM 
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values produced by the proposed method of each video sequence are relatively 

similar. 

Table 7-5 The average PSNR and SSIM values of the first 10 frames produced by 

the proposed technique using different motion-based background subtraction 

methods, where the block size is 32 by 32 

Motion detection 
methods 

PSNR(SSIM) 

Akiyo Mother Foreman Ice 

SBS  31.45(0.53) 33.53(0.45) 32.02(0.6) 30.51(0.45) 

SDE  31.42(0.53) 33.52(0.45) 32.13(0.6) 30.48(0.44) 

RA 
 

31.42(0.53) 33.53(0.45) 32.13(0.6) 30.49(0.44) 

 

7.4.4 Performance against Noise 

To evaluate the performance of the proposed method against noise in the LR 

images, three different levels of noise, 35dB, 25 dB and 20dB respectively, 

have been applied into the 2nd frame of the Mother video. Ten tests for each 

noise level were conducted and the results were averaged. Results including 

PSNR and SSIM are shown in Table 7-6. It has been observed that the 

proposed technique produces the highest PSNR and SSIM values for all three 

cases among the selected methods, which demonstrates the good robustness 

of ALMD-WTR against noise.  It also has been observed that the merit of the 

proposed technique against higher level of noise is more significant. 

Table 7-6 The average PSNR and SSIM values of the second frames produced by 

the proposed technique with different levels of noise for the Mother video, where 

10 tests were repeated   

Methods 
PSNR SSIM 

35dB 25dB 20 dB 35dB 25dB 20 dB 

Nearest  27.85 26.39 24.03 0.24 0.16 0.11 

Bicubic  29.07 27.79 25.56 0.31 0.22 0.16 

NEDI  32.21 30.47 27.94 0.41 0.30 0.23 

Proposed 

technique 

 

33.40 31.63 29.65 0.44 0.33 0.26 
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For example, when the SNR is reduced from 35 dB to 20 dB, the PSNR value 

drops 13.7%, 12.1%, 13.3% and 12.46% for nearest, bicubic, NEDI and ALMD-

WTR respectively. The SSIM value drops 54.2%, 48.4%, 43.9% and 40.9% 

respectively. These observations are a clear evidence that the proposed 

technique can reduce noise benefiting from the soft-thresholding process.  

7.5 Summary 

This chapter proposes a new video super-resolution reconstruction technique, 

called ALMD-WTR based on merits from both the frequency and spatial- 

domains, especially for the real-world videos with complex local motions 

between video frames. The introduced method has the following features: 

 The frame is divided into three types of blocks/regions based on motion 

characteristics, and each type is processed with a tailored registration 

and reconstruction methods or a single resolution enhancement method. 

For the complex-motion blocks, a single wavelet-based image resolution 

enhancement method based on WZP, and DWT-NEDI is introduced 

without considering the adjacent frames. For the simple-motion blocks 

and background regions, to achieve more accurate motion estimation, 

the Keren’s registration method is used to estimate the motion between 

the reference frame and its adjacent frames.  

 The combination of DWT and NEDI is unique. It is able to improve the 

edge details of directional high-frequency sub-bands and hence 

decrease the undesirable inter-directional interference in the SR process. 

A nonlinear soft-thresholding process on the high-frequency sub-bands 

produced by DWT is proposed to remove the noise and preserve the true 

edges. 

 The artefacts caused by the boundary have been reduced by three ways: 

(a) the adjacent background blocks are connected and transformed into 

background regions, by which means the perimeter of background 

boundary is significantly reduced; (b) the reconstruction process for the 

background regions is applied to the whole image rather than only the 

background regions; (c) each motion block is extended by 𝛼 pixels at 
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each side for registration and reconstruction processes, and the scaled 

extension is then removed before merging all the HR blocks/regions. 

The performance of the proposed method has been evaluated through testing 

four benchmark video sequences in comparison with other interpolation 

methods and state-of-the-art SR techniques. Both subjective and objective 

results show that the proposed approach outperforms the compared methods. It 

has been found that the relatively small-motion block sizes perform better than 

the large-motion block sizes for all four tested videos. Although, the small-

motion block sizes cause artefacts around the boundary, the proposed method 

has successfully suppressed more artefacts around boundaries. It has also 

been found that for complex-motion objects, the selection of block size has 

much influence on the results than that for simple-motion objects.  

A limitation of this technique is that it requires a number of pre-set parameters. 

An optimisation of these parameters requires further studies in the future. 
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8 Conclusions and future work 

This chapter describes the fulfilment of the research aim and objectives, 

explains the key research challenges, summarises the research contributions, 

discusses the main research limitations, highlights the most significant 

conclusions, and finally suggests recommendations for future work in the 

wavelet-based super-resolution research area. The chapter is divided into 5 

sections: Section 8.1 details the accomplishment of the research aim and 

objectives, along with the research challenges; Section 8.2 describes the 

research contributions; Section 8.3 discusses the research limitations; Section 

8.4 draws the central conclusions; and Section 8.5 suggests recommendations 

for future work. 

8.1 Fulfilment of aim and objectives (main challenges) 

This section discusses the challenges and subsequent fulfilment of the four 

research objectives outlined in Chapter 1. A description for each objective and 

corresponding achievement is given below: 

(1) Design a novel performance assessment approach for improving the 

wavelet-based image resolution enhancement techniques. 

In order to achieve this objective, a comprehensive literature review, as well as 

a taxonomy of the existing wavelet-based image resolution enhancement 

techniques were implemented, and a summary of these techniques in terms of 

the way to evaluate their performance was conducted. It was observed that the 

existing methods make a number of assumptions with regard to the factors that 

affect the performance of the wavelet-based methods, such as the method of 

producing the observed LR images and the selection of wavelet functions. This 

limits the performance of these methods in practical applications. It also was 

observed that there are inconsistencies in the assumptions regarding the 

factors considered for each individual method. And for some methods, the 

factors are even not described. All these observations inspired this project to 

identify the factors that effectively influence on the performance of these 
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methods, and to then quantitatively assess the impact of the prevailing 

assumptions. 

Notwithstanding the fact that the performance of the resolution enhancement 

techniques under consideration were assessed to analyse the importance of 

each factor by varying one factor and fixing others, another challenge of this 

objective was how to improve the best developed techniques with optimal factor 

selection. Thus, this project proposed a novel optimal factor analysis (OFA) 

approach to improve the performance of the analysed wavelet-based image 

resolution enhancement techniques, and assess the performance of these 

techniques in a more comprehensive way: by selecting the best technique and 

simultaneously analysing the optimal factors. A new figure of merit measure 

was also introduced in this project to better evaluate the overall performance. 

(2) Develop a new wavelet-based image resolution enhancement method 

for increasing the spatial resolution of a single LR image. 

In order to achieve this objective, the issues, assumptions, important factors, 

and methods relative to wavelet-based image resolution enhancement were 

revealed and studied. Although many state-of-the-art wavelet-based methods 

have been introduced in different fields in order to reconstruct the high-

resolution HR image from an observed LR image, resolution enhancement of 

satellite imaging is in high demanded for a number of applications, particularly 

for remote sensing. This is because remote sensing image data can have errors 

in geometry, and analysis from these low-quality (degraded) images can be 

extremely difficult. 

Ultimately, success was achieved by developing a new image resolution 

enhancement method based on DWT and NEDI (DWT-NEDI) for degraded 

satellite images; this was to compensate for the geometric errors and improve 

the edge details of high-frequency sub-bands. An adaptive threshold is applied 

to boost the edges and eliminate potential noise in the estimated high-frequency 

sub-bands. This approach is based on using the interpolation of isolated high-

frequency sub-bands produced by DWT in order to preserve better edges of the 
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image, rather than using a direct interpolation technique which blurs the edges 

and produces artefacts. 

The DWT-NEDI algorithm was tested on 20 different satellite images divided 

into five groups, so as to evaluate the variation in performance in terms of 

different types of images. The performance of the DWT-NEDI method was also 

evaluated in comparison with the conventional interpolation and state-of-the-art 

wavelet-based image resolution enhancement methods. Furthermore, four new 

criteria were proposed to better assess the overall performance for a number of 

images. 

(3) Develop a robust wavelet-based multi-frame (video) super-resolution 

method for increasing the spatial resolution when the camera is moving 

and the observed object is static. 

This objective was achieved through developing a robust wavelet-based super-

resolution SR technique based on a combination of DWT-NEDI and a nonlinear 

soft-thresholding, with reconstruction-based SR techniques for noisy LR video 

sequences containing global motion to increase the spatial resolution and 

recover the noiseless high-frequency details. The technique developed is 

especially useful in particular situations when the camera is moving and the 

observed scene is stationary. The algorithm proposed is based on applying a 

planar motion estimation, by the Keren method, to estimate the motion 

parameters between the reference LR frame and its neighbouring LR frames, 

and then applying the structure adaptive normalised convolution, SANC 

method, to combine the registered frames and produce the estimated low-

frequency sub-band. 

Although most of the existing wavelet-based SR methods also assume global 

motion between video frames, these methods have limited performance 

capabilities for a variety of noise levels, motion levels, wavelet functions, and 

number of LR frames used. Therefore, another challenge of this objective is to 

develop a robust SR method that can provide flexibility for these various factors. 

To address this, the proposed algorithm was modified and it was analysed how 

variety of these factors can affect the performance, and the effectiveness of 
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each factor was also discussed. The proposed robust SR method was tested on 

three-well known video sequences (a total 100 frames for each) and the results 

were compared with conventional interpolation, state-of-the art resolution 

enhancement, and classic SR methods. 

(4) Design a new wavelet-based multi-frame (video) super-resolution 

framework for increasing the spatial resolution when the camera is 

stationary and the observed object is moving. 

In order to achieve this objective, a new wavelet-based SR framework, called 

adaptive local motion decomposition and wavelet transform reconstruction 

(ALMD-WTR), is proposed in order to address the challenge of the SR problem 

for real-wold video sequences containing complex local motion. 

The new framework proposed to solve the problem through three modules: 

motion detection module, motion decomposition module, and reconstruction 

module. The aim of the motion detection module was to divide the observed LR 

video frames into background blocks and motion blocks. This module was 

achieved by introducing the running average (RA) method to detect moving 

objects from an adaptive background model. A binary pixel-based motion mask, 

based on a threshold, was then produced; where the Otsus method was applied 

to choose the optimal threshold. To construct the units for processing, it was 

proposed to transform the pixel-based mask into a block-based mask for 

differentiating the motion blocks from the background blocks. 

There are two steps in the motion decomposition module. The first step was to 

transform the adjacent background blocks into background regions and extract 

the background regions for reduction of background boundary artefacts. In 

order to achieve this process, the researcher proposed a unique background 

extraction algorithm to extract the background regions rather than blocks. The 

second step was to decompose the motion blocks into two types of blocks: 

simple-motion blocks and complex-motion blocks.  

The reconstruction module aimed at producing HR blocks for the complex-

motion blocks, simple-motion blocks and background regions, and then 
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combining them to reconstruct the super-resolved frame. When producing HR 

complex-motion blocks, as the motions of the objects can be very complex, 

image registration algorithms may produce incorrect motion vectors. Therefore, 

a resolution enhancement method is required for this type of blocks, based on 

consideration of the reference frame only. Following on from the research 

conducted in objective two, the researcher proposed a unique resolution 

enhancement approach by combining the DWT-NEDI method and WZP method 

to produce the estimated high-frequency and low-frequency sub-bands 

respectively, and then combining them to reconstruct the HR blocks. For the 

simple-motion blocks, the author proposed dividing the simple-motion blocks 

into small and large-motion blocks due to the simple motion contains small and 

large motion. Based on the rationale that the Keren method performs well for 

both types of blocks, the author proposed using simple-motion blocks, instead 

of large and small-motion blocks, in order to reduce the computational cost. 

Therefore, to produce the HR simple-motion blocks, the Keren method is used 

to estimate the motion for this type of blocks, and then the structure-adaptive 

normalised convolution SANC is used to produce the estimated low-frequency 

sub-band. On the other hand, the estimated high-frequency sub-bands are 

produced using the contributed DWT-NEDI algorithm. 

8.2 Research contributions 

The main contributions of this research are summarised below: 

(1) Designing of a novel optimal factor analysis (OFA) approach to 

improve the performance of the wavelet-based image resolution 

techniques. This research analyses the important factors that affect the 

performance of the wavelet-based techniques and then reveals how to 

utilise these factors to assess and improve the performance, by the 

design of a novel OFA approach. The OFA algorithm assesses the 

performance of the selected methods in a more comprehensive and 

equitable way so as to increase the applicability and fidelity of these 

methods, as well as better assess their overall performance. 
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(2) Developing of a new image resolution method using DWT and NEDI 

for application with degraded satellite images to correct the 

geometric distortion and remove potential noise. This research 

develops DWT-NEDI algorithm based on integrating merits from both the 

frequency and spatial-domains for improving the spatial resolution and 

preserving more edges of directional high-frequency sub-bands. The 

novelty of this algorithm is the introduction and integration of a nonlinear 

soft thresholding process in order to better preserve the edges and 

remove the noise. 

(3) Developing of a robust global-based video SR method using 

discrete wavelet transform reconstruction to increase the spatial 

resolution. This research contributes a robust video SR algorithm of the 

observed noisy LR video frames captured from a moving camera with 

global motion for increasing the spatial resolution whilst supressing the 

noise and aliasing artefacts. The algorithm is based on combining the 

Keren registration method, followed by SANC reconstruction method, 

with the DWT-NEDI approach. Another contribution of this research is 

that the algorithm proposed can be modified to provide flexibility with 

various motion levels, noise levels, wavelet functions, and number of 

used LR frames. 

(4) Designing of a new local-based video SR framework using adaptive 

local motion decomposition and wavelet transform reconstruction 

(ALMD-WTR) to increase the spatial resolution. The new framework 

aims at addressing the challenge of practical video sequences with 

complex local motion between frames. This framework contributes to 

increasing image resolution through solving the local registration errors. 

This is achieved from: adaptive motion decomposition; reducing the 

boundary artefacts by reduction of background boundary; and extension 

of motion blocks. 
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8.3 Research limitations 

Although, the research aim and objectives were successfully achieved, there 

were some limitations relating to the methods developed by this project, as well 

as those of other SR methods.  

Firstly, there was a limitation of the mechanism to produce the observed LR 

images. This is because there is no validated model that can fully describe this 

underlying mechanism, and this mechanism is unclear, and also varies case by 

case due to the laws of physics. 

Secondly, there were very limited knowledge to guide the selection of the 

number of LR images used to produce the HR image in SR reconstruction.  

Thirdly, there was difficulty in building a practical SR system. This is because 

the observed LR images contains large amounts of aliasing artefacts. The 

performance of the registration algorithms degrades rapidly when the resolution 

of the observed LR images goes down. 

Fourthly, there were difficulties in evaluating the performance of the proposed 

DWT-NEDI technique compared to other techniques for a number of the test 

images. This is because the available criteria are used for evaluating the 

performance of the considered techniques for a single image. This adds 

challenges in the validation process. 

Finally, there were limitations in selection of the pre-set parameters and 

difficulties in selection of the optimal thresholds for the proposed ALMD-WTR 

method. 

8.4 Discussion and Conclusions 

This research addresses an important issue in SR reconstruction regarding the 

wavelet-based SR reconstruction problem. The following overall points are 

concluded: 

 The wavelet-domain-based SR reconstruction problem is different from 

the spatial-domain or frequency-domain-based SR reconstruction 

problems in terms of the associated strategies, achieved challenges, and 
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available approaches. The wavelet-domain-based SR exploits both the 

spatial and frequency-domains, and integrates the merits of both to solve 

the SR reconstruction problem. The wavelet transform provides both 

frequency information and temporal information in the transformation 

process. 

 The wavelet transform is an effective tool that decomposes an image into 

low and high-frequency sub-bands, and then studies each sub-band with 

a resolution matched to its scale. The attractive multi-resolution property 

of wavelet transform enables it to analysis the image data at more than 

one resolution. The advantage of this strategy is that image 

characteristics can be isolated and examined such that global 

characteristics can be examined at coarse scales, while local 

characteristics can be analysed at fine scales. 

 The wavelet-based SR problem is an advanced technique developed 

initially from the wavelet-based resolution enhancement problem. 

However, the wavelet-based SR is different from the wavelet-based 

resolution enhancement in terms of the number of LR images, the quality 

of reconstructed image, associated challenges, and existing algorithms. 

The wavelet-based SR aims to reconstruct one HR image, or a sequence 

of HR images, from multiple different LR images acquired from the same 

scene, while the wavelet-based resolution enhancement aims to 

reconstruct one HR image from one LR image. 

 This research was divided into 4 research dependent objectives. 

Objectives 1 and 2 were based on addressing the wavelet-based 

resolution enhancement problem; Objectives 3 and 4 were based on 

addressing the wavelet-based SR problem. Objective 1 was to design 

the OFA approach for improving the performance of wavelet-based 

resolution enhancement methods. Objective 2 was to develop an 

improved resolution enhancement DWT-NEDI approach for improving 

the spatial resolution. Objective 3 was underpinned by Objective 2 from 

the combination of the DWT-NEDI method with SR methods for 

increasing the spatial resolution. Objective 4 was underpinned by 
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Objectives 2 and 3 for increasing the spatial resolution. The most 

significant conclusions of this research include: 

 The factors that can substantially affect the performance of wavelet-

based resolution enhancement methods include: the way of generating 

the LR image; the wavelet family and its wavelet function; and the scale 

factor. The factors that can moderately influence on the performance of 

these methods are the selection of the interpolation method, and the 

selection of the test image. 

 The introduced OFA approach is able to improve the performance of the 

wavelet-based methods considered and increase the applicability and 

fidelity of these methods. The quantitative results show that the OFA 

method significantly improves the performance of the WZP method and 

has the potential to be extended to other wavelet-based methods. 

Notwithstanding the significant quantitative results, the visual results 

indicate that the difference between the selected methods can be small; 

and it is difficult to be inspected visually. 

 The combination of DWT-NEDI is able to improve edges of directional 

high-frequency sub-bands and thus reduce the annoying inter-directional 

interference in the resolution enhancement process. An adaptive 

threshold on the high-frequency sub-bands is proposed to remove the 

noise and preserve the true edges.  

 The DWT-NEDI approach contributed here is based on the interpolation 

of isolated high-frequency sub-bands produced by DWT, to preserve 

more edges than when using a direct interpolation by conventional 

interpolation methods, which produce blurred edges and undesirable 

artefacts. This benefit cannot be achieved using only DWT or NEDI. 

 The visual results demonstrate the ability of the DWT-NEDI method to 

improve the observed LR images by providing more edges, potentially 

offering more details in selected regions. The DWT-NEDI algorithm can 

perform well with the db.9/7 wavelet function, and even better with other 

wavelet functions, although the difference between them is relatively 

small. 
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 The proposed global-based SR technique is based on combining the 

resolution enhancement DWT-NEDI approach with the Keren registration 

and SANC reconstruction methods for increasing the spatial resolution. 

One of the motivations for this approach is to deal with various motion 

levels, noise levels, wavelet functions, and the sufficient number of 

frames. 

 The visual results indicate that the proposed SR technique can better 

preserve the edges and remove the noise and aliasing artefacts. The 

quantitative results show that the algorithm contributed here produces a 

(16% and 11% increment over Keren-SANC for the videos Mother and 

Akiyo respectively), and a (17% increment over Keren-SANC for the 

video Foreman). 

 The global SR algorithm introduced is able to deal with various motion 

levels, noise levels, wavelet functions, and the requisite number of 

frames. Different motion levels can affect performance; the highest 

PSNR and SSIM values were produced when the motion level is 

relatively small; however, when the motion level is large, these values 

decrease. There was a 12% and 7% decrease of PSNR and SSIM 

values respectively, observed from the smallest to largest motions 

considered. Different number of used frames can affect performance; 

higher PSNR and SSIM were achieved with a higher number of sampled 

frames; however, only about a 1% increase of PSNR and SSIM values 

was observed when the number of frames considered changed from 4 to 

32. 

 The ALMD-WTR framework is able to decompose the observed LR 

frame into simple-motion blocks, complex-motion blocks, and 

background regions, and produce HR blocks/regions for each type using 

a tailored registration and reconstruction methods, or a wavelet-based 

resolution enhancement approach, and finally reconstruct a super-

resolved frame by combining all of them. 

 For the complex-motion blocks, a combination of WZP and DWT-NEDI 

approach, based on the reference frame only, is proposed for this type of 
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blocks, to produce the HR blocks. For the simple-motion blocks and 

background regions, the Keren method and SANC method are applied 

for this type of blocks/regions to produce the HR blocks and regions. 

 The ALMD-WTR method aims to reduce the artefacts caused by 

background boundary through transforming the adjacent background 

blocks into background regions, applying the registration process on only 

the background regions to produce more accurate registration of the 

background regions in which the motion parts are removed and only the 

background regions are considered, while applying the reconstruction 

process on the whole image This method also aims to reduce the 

artefacts caused by motion blocks boundary through extension each 

motion block by the scale factor 𝛼 pixels at each side for the registration 

and reconstruction processes, and the scaled extension is then removed 

before combining all the HR blocks. 

 The selection of block size can significantly affect performance, 

especially when the motion of objects is complex. For videos Akiyo and 

Mother, with simple-motion objects, the block size has less influence on 

the performance (with a standard deviation of PSNR of 0.09 dB and 0.21 

dB respectively) and a small block size produces better results. For 

videos Foreman and Ice, with complex-motion objects, the block size has 

more influence on the performance (with a standard deviation of 0.74 dB 

and 0.40 dB respectively) and a relatively large block size produces 

better results. 

8.5 Future work 

This PhD project focused on the study of the wavelet-based SR reconstruction 

problem, which could be beneficially explored further in the field of SR 

reconstruction. Recommended suggestions for future work include: 

 Extending the proposed SR algorithms to address the wavelet-based SR 

reconstruction problem for increasing the spatial and temporal resolution 

for video sequences containing complex local motions. This research 

aims to recover very fast local motions that are not seen or acquired 
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correctly in the video sequence. This future work will introduce new 

visual capabilities of very fast moving objects by handling together the 

two visual effects caused by motion aliasing and motion blur. 

 Extending the proposed wavelet-based SR algorithms to incorporate with 

learning-based SR algorithms in a comprehensive method for further 

improving the efficiency of SR. Learning-based methods have attracted 

more and more interests due to their fine performance, but they require 

significant training data set. This future work will advance SR technology 

by improving the reconstruction performance meanwhile reducing the 

dependency on large data set. 

 Improving the developed SR algorithms to handle the selection of 

threshold values and pre-set parameters in a smarter way.  

 Developing a new wavelet-based video SR method for increasing the 

spatial resolution when the camera is moving and the observed object is 

moving together. A potential advantage of the proposed method is to 

have wider applications in video surveillance, such as security monitoring 

by increasing the spatial resolution meanwhile tackling the scene 

changes caused by weather conditions. 
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