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Construction de mosaïques de super-résolution à partir de la vidéo
de basse résolution. Application au résumé vidéo et la dissimulation
d’erreurs de transmission.

Résumé : La numérisation des vidéos existantes ainsi que le développement explosif des
services multimédia par des réseaux comme la diffusion de la télévision numérique ou les
communications mobiles ont produit une énorme quantité de vidéos compressées. Ceci né-
cessite des outils d’indexation et de navigation efficaces, mais une indexation avant l’enco-
dage n’est pas habituelle. L’approche courante est le décodage complet des ces vidéos pour
ensuite créer des indexes. Ceci est très coûteux et par conséquent non réalisable en temps
réel. De plus, des informations importantes comme le mouvement, perdus lors du déco-
dage, sont reestimées bien que déjà présentes dans le flux comprimé. Notre but dans cette
thèse est donc la réutilisation des données déjà présents dans le flux comprimé MPEG pour
l’indexation et la navigation rapide. Plus précisément, nous extrayons des coefficients DC et
des vecteurs de mouvement.
Dans le cadre de cette thèse, nous nous sommes en particulier intéressés à la construction

de mosaïques à partir des images DC extraites des images I. Une mosaïque est construite
par recalage et fusion de toutes les images d’une séquence vidéo dans un seul système de
coordonnées. Ce dernier est en général aligné avec une des images de la séquence : l’image
de référence. Il en résulte une seule image qui donne une vue globale de la séquence. Ainsi,
nous proposons dans cette thèse un système complet pour la construction des mosaïques à
partir du flux MPEG-1/2 qui tient compte de différentes problèmes apparaissant dans des
séquences vidéo réeles, comme par exemple des objets en mouvment ou des changements
d’éclairage.
Une tâche essentielle pour la construction d’une mosaïque est l’estimation de mouve-

ment entre chaque image de la séquence et l’image de référence. Notre méthode se base sur
une estimation robuste du mouvement global de la caméra à partir des vecteurs de mouve-
ment des images P. Cependant, le mouvement global de la caméra estimé pour une image
P peut être incorrect car il dépend fortement de la précision des vecteurs encodés. Nous dé-
tectons les images P concernées en tenant compte des coefficients DC de l’erreur encodée
associée et proposons deux méthodes pour corriger ces mouvements.
Unemosaïque construite à partir des images DC a une résolution très faible et souffre des

effets d’aliasing dus à la nature des images DC. Afin d’augmenter sa résolution et d’amé-
liorer sa qualité visuelle, nous appliquons une méthode de super-résolution basée sur des
rétro-projections itératives. Les méthodes de super-résolution sont également basées sur le
recalage et la fusion des images d’une séquence vidéo, mais sont accompagnées d’une res-
tauration d’image. Dans ce cadre, nous avons développé une nouvelle méthode d’estimation
de flou dû au mouvement de la caméra ainsi qu’une méthode correspondante de restaura-
tion spectrale.
La restauration spectrale permet de traiter le flou globalement, mais, dans le cas des ob-
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jets ayant un mouvement indépendant du mouvement de la caméra, des flous locaux appa-
raissent. C’est pourquoi, nous proposons un nouvel algorithme de super-résolution dérivé
de la restauration spatiale itérative de Van Cittert et Jansson permettant de restaurer des
flous locaux. En nous basant sur une segmentation d’objets en mouvement, nous restaurons
séparément la mosaïque d’arrière-plan et les objets de l’avant-plan. Nous avons adapté notre
méthode d’estimation de flou en conséquence.
Dans une premier temps, nous avons appliqué notre méthode à la construction de ré-

sumé vidéo avec pour l’objectif la navigation rapide par mosaïques dans la vidéo com-
pressée. Puis, nous établissions comment la réutilisation des résultats intermédiaires sert
à d’autres tâches d’indexation, notamment à la détection de changement de plan pour les
images I et à la caractérisation dumouvement de la caméra. Enfin, nous avons exploré le do-
maine de la récupération des erreurs de transmission. Notre approche consiste en construire
une mosaïque lors du décodage d’un plan ; en cas de perte de données, l’information man-
quante peut être dissimulée grace à cette mosaïque.

Mots clés : Indexation, MPEG, mosaïques, super-résolution

Discipline : Informatique

LaBRI (UMR CNRS 5800)
Université Bordeaux 1
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Résumé Etendu

Introduction, contexte et motivation

Aujourd’hui une énorme quantité de vidéos compressées est disponible, cette croissance
importante s’expliquant par la numérisation des vidéos existantes et le développement ex-
ponentiel des services de réseaux multimédia comme la diffusion de la vidéo numérique
et les communications via des téléphones portables. Pour pouvoir exploiter ces données, il
s’avère nécessaire de développer des outils efficaces pour indexer leur contenu et aussi pour
permettre de naviguer à travers ces données pour en extraire une information. L’approche
habituelle consiste à décoder complètement le flux pour pouvoir ensuite l’indexer. Cette ap-
proche nécessite des traitements lourds qui ne peuvent pas être réalisés en temps réel. De
fait, une grande quantité des vidéos compressées ne peut pas être indexée. Nous proposons
dans cette thèse d’exploiter seulement les données qui proviennent d’un flux vidéo partiel-
lement décodé.
Jusqu’à maintenant le standard MPEG-2 [117] est le plus utilisé pour l’encodage des vi-

déos, qu’elles soient stockées sur support numérique ou bien diffusées sur des canaux de
transmission.MPEG-2 est un système d’encodage hybride basé sur la compensation demou-
vement et le codage par transformée en cosinus discret (DCT). Une information essentielle
pour l’indexation est l’information de mouvement. Cette information présente dans le flux
MPEG-1/2 disparaît lors d’un décodage complet.
Des méthodes pertinentes ont déjà été proposées dans le domaine compressé pour dif-

férentes tâches d’indexation. Le point commun de ces méthodes est qu’elles sont princi-
palement basées sur l’extraction des images DC et/ou des vecteurs de mouvement du flux
MPEG-1/2. Une image DC est huit fois plus petite que l’image originale, en effet un pixel
dans l’image DC correspond à la valeur moyenne d’un bloc 8 × 8 dans l’image originale.
Les images DC et les vecteurs de mouvement peuvent facilement être extraits en décodant
partiellement le flux MPEG-1/2.
Yeo et Liu [208] démontrent qu’en résolution DC certaines caractéristiques importantes

pour le traitement d’images et l’indexation sont bien préservées. Un exemple de ces résul-
tats est proposé par Bescós [12] qui a développé une méthode efficace pour la détection de
changement de plan dans le domaine compressé en utilisant des images DC. Souvent, les
vecteurs de mouvement MPEG sont considérés comme trop erronés pour être réellement
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exploitables dans une estimation de mouvement. Pourtant, certaines méthodes arrivent à
compenser les vecteurs erronés et permettent d’obtenir des résultats suffisamment robustes
pour justifier l’utilisation des vecteurs de mouvement. Par exemple, Durik et Benois-Pineau
[38] ont développé une méthode robuste pour l’estimation de mouvement à partir des vec-
teursMPEG dans le cadre de détection de changement de plan. Dans [33], Coimbra et Davies
présentent une méthode de détection de piétons qui utilise les vecteurs de mouvement de
MPEG-2.

Dans cette thèse, nous nous sommes particulièrement intéressés à la construction desmo-
saïques pour le résumé des vidéos compressées en MPEG-1/2. Une mosaïque est construite
par recalage et fusion de toutes les images d’un plan vidéo dans un seul repère. Il en ré-
sulte une seule image qui donne une vue globale du plan. L’intérêt d’une image résumant
le contenu d’un plan vidéo est de permettre une compréhension immédiate de la scène.
C’est principalement pour cette raison que, pendant la dernière décennie, des méthodes so-
phistiquées ont été proposées pour la construction de mosaïques. Les représentations par
mosaïques sont intégrées dans le standard de codage MPEG-4 [118] car elles permettent
l’encodage efficace d’un plan en le décomposant en deux parties : la mosaïque en arrière-
plan et les objets en avant-plan. En outre, elles sont définies dans le standard MPEG-7 [119]
en tant que descripteur de plan et peuvent être utilisées pour la navigation et l’indexation
des vidéos.

Depuis les travaux de Peleg et Herman [139] et Sawhney et Ayer [156], les méthodes de
construction de mosaïque semblent totalement achevées. Pourtant la plupart des méthodes
proposées dans la littérature sont définies pour la vidéo non compressée, parmi elles la mé-
thode de Irani et Anandan [72] est intéressante pour la navigation et l’indexation des vidéos.
Contrairement à ces méthodes, nous nous focalisons dans cette thèse sur la construction de
mosaïque à partir du flux compressé MPEG-1/2 sans un décodage complet. Nous préten-
dons que les mosaïques construites à partir de la vidéo initiale ou décodée sont souvent trop
grandes pour leur affichage sur l’écran sans défilement ou sous-échantillonnage. En consé-
quence, nous proposons de construire la mosaïque à une résolution plus basse fournissant
une vue globale de la scène qui est plus appropriée pour la navigation dans un document
vidéo. Pour cela, nous considérons comme séquence d’entrée les images DC des images I.
De plus, nous utilisons les vecteurs de mouvement des images P dans une estimation du
mouvement global de la caméra pour l’alignement des images DC des images I.

L’intérêt de notre approche réside dans la proposition d’un système complet pour la
construction de mosaïques à partir de la vidéo qui se base sur les images DC des images I et
les vecteurs de mouvement des images P. Nous tenons compte des différents aspects et pro-
blèmes qui peuvent apparaître pendant la construction de mosaïque, à savoir les vecteurs
de mouvement bruités et/ou erronés, la suppression des objets en mouvement et leur seg-
mentation approximative, ou le changement d’illumination entre les images d’entrée. Afin
d’obtenir une description complète du plan, les objets représentatifs sont ensuite insérés
dans la mosaïque. Nous proposons un algorithme rapide et efficace qui couvre l’ensemble
des différentes nécessaires à la construction de mosaïque.

Les images DC sont caractérisées par une très faible résolution et des artefacts d’aliasing.
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De plus, deux phénomènes peuvent engendrer du flou. Le premier est dû au mouvement
de la caméra pendant le temps d’acquisition et le deuxième résulte du moyennage par blocs.
Quand unemosaïque est construite à partir des images DC, sa résolution peut être trop faible
pour une vue globale de la scène et la qualité de l’image peut être insuffisante à cause des
dégradations des images DC. C’est pourquoi nous nous sommes intéressés dans la suite de
cette thèse à la super-résolution.

Il existe plusieurs méthodes pour l’augmentation de résolution des images vidéo. La
manière la plus facile pour créer une image avec une résolution plus forte est une simple
interpolation, par exemple une interpolation bilinéaire ou bicubique. Cependant, les résul-
tats sont très médiocres à cause de l’aliasing et de la perte des hautes fréquences. Fassino et
Montanvert [49] ont proposé une méthode pour augmenter la résolution de la vidéo com-
pressée en MPEG. La résolution des images I est augmentée par des projections de l’image I
décodée sur des ensembles convexes. Puis, la résolution des images P et B est augmentée par
une mise à l’échelle des vecteurs de mouvement et des macroblocs utilisés dans le processus
de compensation de mouvement. Cependant, dans le cas de la vidéo, il est possible d’exploi-
ter l’information des images avoisinantes afin d’obtenir une image de résolution plus haute
par des algorithmes de super-résolution. Supposant que chaque image de la séquence fournit
une vue légèrement différente de la scène, toutes ces images peuvent alors être combinées
dans une seule image de résolution plus haute. Cette technique permet de restaurer certaines
hautes fréquences et d’obtenir ainsi une image de qualité supérieure.

Plusieurs algorithmes de super-résolution ont été développés pour la vidéo non com-
pressée par exemple par Patti et al. [137] et Irani et Peleg [75], et pour la vidéo compressée
par Segall et al. [164]. L’idée d’appliquer un algorithme de super-résolution aux mosaïques
construites a été proposé par Capel et Zisserman [22] et Zomet et Peleg [215]. Ces travaux se
faisaient dans le cadre de la vidéo non compressée, dans cette thèse nous nous inspirons de
leur approche mais dans le cadre de la vidéo compressée. Les points originaux de notre ap-
proche sont : l’estimation demouvement à partir de la vidéo compressée, le choix dumodèle
de flou adéquat et du filtre de restauration, ainsi que l’estimation des paramètres de flou.

Dans cette thèse, nous présentons deux algorithmes de super-résolution. Le premier est
basé sur les rétroprojections itératives de Irani et Peleg [75] incluant une restauration dans le
domaine fréquentiel. La restauration se faisant dans le domaine fréquentiel, cette méthode ne
permet que la restauration des flous globaux. Malheureusement, on observe dans la vidéo
des situations plus complexes où un flou local apparaît dû par exemple au mouvement des
objets. Dans ce cas, le mouvement des objets peut être très complexe mais pour les images
DC les objets sont représentés par peu de pixels. En conséquence, il est très difficile d’estimer
le mouvement de ces objets et donc de les positionner précisément dans le repère de la super-
résolution. Dans [75], un algorithme de super-résolution est appliqué aux objets en faisant
l’hypothèse que le mouvement des objets est un mouvement 2D paramétrique, dans notre
travail nous proposons une méthode générique qui ne tient pas compte de cette hypothèse.
Ainsi, nous proposons de restaurer les objets en mouvement et d’augmenter leur résolution
par une méthode de restauration n’utilisant qu’une seule image tandis que nous appliquons
une méthode de super-résolution à l’arrière-plan.
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L’origine de flou est double. D’une part, le flou provient des images de pleine résolution
dû au mouvement pendant le temps d’acquisition. D’autre part, les images DC représentent
une version passe-bas des images de pleine résolution, le filtre passe-bas étant effectué lo-
calement dans un bloc de 8 × 8 pixels. Ainsi, le flou global est un résultat de ces deux phé-
nomènes. Pour cette raison, nous proposons plusieurs modèles de flou pour modéliser la
fonction de flou global réel. De plus, nous proposons une méthode efficace d’estimation de
paramètres de flou global et local dans la direction de mouvement. Nous évaluons pour les mé-
thodes de super-résolution la performance des modèles de flou en combinaison avec diffé-
rents filtres de restauration.
En plus du résumé vidéo, nous abordons dans cette thèse d’autres domaines d’applica-

tion de notre méthode de construction de mosaïques. D’abord, nous montrons comment des
résultats intermédiaires peuvent être utilisés pour d’autres tâches d’indexation, précisément
la détection de changement de plan pour les images I et la caractérisation du mouvement
de caméra. Une application supplémentaire que nous avons élaborée dans cette thèse est
l’utilisation des mosaïques pour la dissimulation d’erreurs (« error concealement » en an-
glais). Notre approche consiste à construire une mosaïque en fonction des images du plan
courant, en cas de perte de données, l’information manquante sera restaurée en fonction des
informations présentes dans la mosaïque.

Résumé du contenu de la thèse

Cette thèse est structurée en deux parties. La Partie 1 présente la construction des mo-
saïques et leur augmentation de résolution par la super-résolution. La Partie 2 présente l’ap-
plication des résultats de la première partie à différents problèmes : la détection de change-
ments de plan, la caractérisation du mouvement de la caméra et la dissimulation d’erreurs
de transmission. Le premier et le dernier des neuf chapitres sont respectivement une intro-
duction et conclusion qui situent les enjeux et la démarche adoptée en général.
Plus précisément la Partie 1 est décomposée en 4 chapitres (numéroté de 2 à 5). Le Cha-

pitre 2 présente les standards de codage vidéo MPEG-1 and MPEG-2 et décrit l’extraction
des informations nécessaires à la construction de mosaïques. Nous utilisons les images DC
des images I en tant que séquence d’entrée pour la construction de la mosaïque, les vecteurs
de mouvement des images P pour l’alignement de la séquence, ainsi que les images DC
de l’erreur de compensation de mouvement des images P pour mesurer la confiance dans
l’exactitude des vecteurs de mouvement.
Le Chapitre 3, après un état de l’art sur la construction de mosaïque, décrit les techniques

développées pour la construction de mosaïque à partir du flux compressé MPEG-1/2. Dans
cette thèse, nous avons proposé un système complet pour la construction de mosaïque à partir de la
vidéo compressée. Toutes les étapes de ce processus ont été étudiées. Nous avons apporté une
solution aux différents problèmes qui peuvent être rencontrés : inexactitude des vecteurs
de mouvement dans le flux compressé, changements d’illumination, présence des objets en
mouvement et la difficulté de leur segmentation. Les résultats obtenus peuvent être consi-
dérés comme probants. Par ailleurs, les temps de calcul sont intéressants, les performances
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de cette méthode prennent environ trois fois plus de temps que le temps du décodage.

Nous avons proposée une méthode de calcul de la transformation géométrique permet-
tant de projeter une image I dans le repère de la mosaïque. Cette méthode est robuste malgré
le bruit et l’absence ou l’inexactitude des vecteurs de mouvement des images P. Le mouve-
ment global de la caméra est estimé pour les images P par un estimateur robuste. Néan-
moins, ceci n’est pas suffisant pour obtenir la trajectoire complète du mouvement dans la
séquence des images DC. Pour ce faire, nous avons proposé pour les images I d’extrapoler
les paramètres de mouvement des images P précédentes. De plus, les vecteurs de mouve-
ment encodés peuvent être erronés. Nous détectons, alors les images P concernées en nous
basant sur l’erreur de compensation de mouvement. Dans ce chapitre, nous avons proposé
une méthode pour corriger le mouvement erroné et une autre méthode pour le réestimer.
D’après nos connaissances une telle étude exhaustive du mouvement à partir du flux compressé
avec son raffinement n’a pas encore été proposée dans la littérature.

Un autre aspect de notre méthode de construction de mosaïque est la suppression des
objets en mouvement. Nous avons présenté une méthode pour la détection des objets en
mouvement dans la séquence des images DC des images I. Ceci permet la construction d’une
mosaïque sans artefact, mais aussi l’insertion ultérieure des objets représentatifs dans la mo-
saïque. Ainsi, nous obtenons une description complète de la séquence. Durant cette phase,
nous compensons également les défauts de segmentation localisés sur le bord des objets.

Les changements d’illumination entre les images de la séquence engendrent des artefacts
dans la mosaïque. Pour les éviter, nous avons développé uneméthode qui corrige les change-
ments d’illumination. L’exclusion des objets en mouvement, des textures, des contours ainsi
que le rejet des pixels aberrants dans le calcul permettent d’obtenir des résultats de bonne
qualité visuelle. Dans le cas d’images bruitées, certaines méthodes de correction se trouvent
dégradées par la propagation de l’erreur d’estimation. Afin de réduire ce phénomène, nous
avons proposé de corriger la séquence de manière hiérarchique.

Les mosaïques obtenues ont une résolution très basse et elles peuvent être dégradées
par le flou et l’aliasing du à la nature des images DC. De ce fait, un utilisateur préférera
sûrement une résolution plus haute et une meilleure qualité visuelle pour la visualisation de
la scène. Pour répondre à cette attente, nous avons proposée dans cette thèse deux méthodes
de super-résolution.

Le Chapitre 4 présente une première méthode de super-résolution basée sur l’itération
des rétroprojections couplée avec une restauration dans le domaine fréquentiel. Pour cette
restauration, nous avons considéré plusieurs modèles de flou : flou isotrope Gaussien, flou
anisotrope Gaussien et flou dû à un mouvement linéaire. En outre, nous avons développé
une méthode efficace pour l’estimation des paramètres du flou dans la direction du mouvement.

Une fois le modèle de flou établi, nous avons comparé deux méthodes classiques de res-
tauration : par filtrage pseudo-inverse et par filtre deWiener. En principe, le meilleur résultat
est obtenu en considérant le modèle de flou dû au mouvement linéaire en combinaison avec
le filtre pseudo-inverse.

Dû aux forts effets d’aliasing dans la séquence d’images DC il est parfois impossible de
superposer exactement les images dans les régions texturées et les contours. Il en résulte
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alors des artefacts dans l’image de super-résolution qui s’amplifient à chaque itération de
l’algorithme de super-résolution. Pour cette raison, nous avons intégré un opérateur de régu-
larisation dans l’algorithme de super-résolution qui pénalise les contours et les textures dans
le processus de rétroprojection.

Néanmoins, cetteméthode a des inconvénients. La restauration dans le domaine fréquen-
tiel limite la restauration seulement à des flous globaux alors qu’en général dans les vidéos
des situations plus complexes peuvent être rencontrées. C’est notamment le cas des objets en
mouvement qui produisent des flous locaux. Par conséquent, cetteméthode ne permet pas le
traitement des objets en mouvement. En plus, nous obtenons des temps de calcul important
du au « padding » et aux transformations de Fourier successives.

Nous présentons une deuxième méthode de super-résolution dans le Chapitre 5 avec
pour l’objectif de proposer une solution aux défauts et surtout aux manques de la première
méthode. Ainsi, la restauration est réalisée dans le domaine spatial ce qui permet de restaurer
des flous locaux. Pour réaliser la restauration des flous locaux, nous avons modifié la méthode
d’estimation des paramètres du flou présentée au chapitre Chapitre 4.

Le mouvement des objets peut être très complexe et dans le cas des images DC les objets
sont normalement représentés par peu de pixels. Pour cette raison, nous avons décomposé
la méthode en deux temps. Dans un premier temps, un algorithme de super-résolution est
utilisé avec les informations de l’arrière-plan, dans un second temps à partir d’une image de
référence les objets sont augmentés en résolution puis finalement insérés dans la mosaïque
en super-résolution. Comme pour la méthode précédente, nous avons également testé les
différents modèles de flou dans ce schéma de restauration. Nous avons obtenu le meilleur
résultat pour le flou Gaussien anisotrope, mais les résultats fournis par le flou Gaussien
isotrope étaient proches. Il semblerait que dans cette méthode, la modélisation de la PSF
par un modèle de flou dû au mouvement linéaire ne semble pas appropriée, du fait de la
discrétisation du masque de convolution.

Nous avons comparé les deux méthodes de super-résolution en utilisant des séquences
vidéo sans objets en mouvement. La méthode de super-résolution basée sur la restauration
fréquentielle donne des résultats légèrement meilleurs que la méthode de super-résolution
basée sur une restauration spatiale. Ces résultats sont obtenus en faisant une mesure quanti-
tative de l’erreur. Par contre, visuellement les artefacts sont moindres dans les résultats pro-
duits par la méthode de super-résolution basée sur la restauration spatiale. De plus, nous
obtenons un gain important en temps de calcul car la convolution est accomplie à basse
résolution et les transformations de Fourier sont omises.

Dans cette thèse, nous nous intéressons également aux différentes applications de notre
méthode de super-résolution. Les domaines d’applications concernent plus précisément la
détection de changement de plan, la caractérisation du mouvement de la caméra et la dis-
simulation des erreurs de transmission. La Partie 2 débute par le Chapitre 6 où une brève
introduction des domaines d’applications est présentée.

Le Chapitre 7 propose une méthode pour la détection des changements de plan pour les
images I ainsi qu’une méthode de caractérisation du mouvement dominant de la caméra.
La réalisation de ces deux méthodes s’appuie sur plusieurs composantes proposées dans la
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Partie 1. Pour la détection des changements de plan, nous avons utilisé l’estimation robuste
du mouvement extrait du flux compressé et l’extrapolation du mouvement pour les images
I. Le but était de superposer l’image DC de l’image I avec l’image DC de l’image I précédente
afin de mesurer leur similarité. Pour pouvoir comparer ces images, nous avons défini une
mesure de similarité basée sur l’opérateur de régularisation développé dans le cadre de la
restauration dans Chapitre 4. Cette méthode a permis des comparaisons efficaces entre des
images DC même dans le cas d’images texturées. La méthode de caractérisation du mouve-
ment dominant de la caméra s’appuie sur l’estimation robuste du mouvement et nous lui
avons adjoint un filtrage temporel et un système de prise de décision statistique.
Le Chapitre 8 aborde l’application de notre méthode de construction de mosaïques dans

le contexte de la dissimulation d’erreurs de transmission dans les images I. Dans un pre-
mier temps, nous avons examiné les modèles classiques de perte d’information dues aux
erreurs de transmission. Pour la modélisation des erreurs de transmission de la vidéo com-
pressée en MPEG-1/2, nous avons considéré que le modèle de Gilbert était suffisant. Puis,
nous avons utilisé la méthode de construction de mosaïques de super-résolution pour pro-
duire une mosaïque à partir d’une séquence contenant des images I partiellement erronées.
La redondance temporelle des images, permet de construire une mosaïque qui contient l’in-
formation perdue localement dans une image I erronée. Ainsi, les régions de l’image altérées
par les erreurs de transmission sont remplacées par les régions correspondantes dans la mo-
saïque.
Nous avons comparé nos résultats avec la méthode d’extrapolation sélective des fré-

quences de Meisinger et Kaup [111, 83]. Nous avons obtenu un PSNR moyen supérieur de
20 dB dans les régions altérées, ce résultat est meilleur que la valeur obtenue par la méthode
d’extrapolation sélective des fréquences. En outre, dans le cas d’une perte consécutive des
macroblocs notre approche fournit des résultats visuellement meilleurs que l’extrapolation
sélective des fréquences. Le résultat contient moins d’artefacts de blocs et s’adapte mieux
aux motifs des hautes fréquences de l’image.
Enfin, deux annexes terminent cette thèse. L’Annexe A contient la dérivation de la mé-

thode de super-résolution proposée dans le Chapitre 5 et l’Annexe B présente brièvement
les standards MPEG suivants avec pour but de monter que les méthodes développées dans
cette thèse peuvent être généralisées pour ces standards.

Perspectives

Nous avons récemment commencé des expériences sur des séquences biomédicales.
Nous avons appliqué nos méthodes de super-résolution à des images acquises par Ima-
gerie Résonance Magnétique (IRM) afin d’améliorer la résolution dans le plan d’image et
de restaurer le flou engendré par le mouvement des organes dû à la respiration et/ou à la
circulation sanguine. Les premiers résultats sont prometteurs et montrent des perspectives
intéressantes pour une recherche approfondie.
La méthode proposée, pour la construction de la mosaïque suppose que le choix des ob-

jets représentatifs est effectué. Dans ce cas, notre méthode ne peut être considéré comme
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automatique. La prochaine étape est une automatisation complète de notre méthode en sé-
lectionnant automatiquement les objets représentatifs. Les perspectives de recherche portent
alors sur le choix de ces objets, nous pensons mesurer quantitativement la segmentation de
ces objets pour élire le meilleur au sens de cette mesure.
La vidéo de haute définition (HD) qui est le nouveau format de diffusion devient de

plus en plus populaire. Dans nos expériences, nous avons observé que si une séquence HD
est encodée en MPEG-2, l’information de mouvement ne peut pas être récupérée car l’esti-
mation de mouvement de l’encodeur MPEG-2 échoue. Par contre, de nouveaux standards
de compression comme H.264/MPEG-4 AVC ont été développés avec une estimation de
mouvement améliorée et plus fiable. Nous avons brièvement exposé dans l’Annexe B ces
nouveaux standards MPEG. Nous pensons que si un décodage partiel approprié est réa-
lisé les méthodes proposées dans cette thèse peuvent être étendues à ces standards. Une
autre perspective de ce travail est donc l’extension de la méthode de construction de mo-
saïques de super-résolution aux standards MPEG suivants comme H.264/MPEG-4 AVC ou
H.264/MPEG-4 SVC afin de restaurer le flou de mouvement.
Nous avons présenté la dissimulation d’erreurs de transmission comme domaine d’ap-

plication supplémentaire de notre méthode de super-résolution. Cependant, une recherche
plus approfondie mérite d’être menée. La première extension évidente de nos travaux serait
de considérer les images P et B ainsi que les objets en mouvement.
Enfin d’autres domaines d’applications peuvent être considérés, comme par exemple la

transmission de la vidéo sur des réseaux bas-débit. Dans ce cas, seulement des images de
basse résolution peuvent être transmises et un algorithme de super-résolution est appliqué
lors de la réception afin d’obtenir la pleine résolution de la vidéo. Une autre application dans
le domaine de la télésurveillance concernerait la restauration/augmentation de résolution de
zones d’intérêt ainsi que leur suivi.
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Super-resolutionmosaicing from low-resolution video. Application
to video summarisation and error concealment.

Abstract: The digitisation of existing videos, together with the explosive development of
multimedia network services such as digital video broadcast or mobile communications,
made available tremendous volumes of video in compressed form. This requires efficient
indexing and browsing tools, but indexing before encoding is not usual in the industry. A
traditional approach is the full decoding of these videos in order to index them afterwards.
This is very costly and thus not feasible in real time. Moreover, important information for
example motion, lost during decoding, is reestimated although it was already present in the
compressed bitstream. Hence, our objective in this PhD is the reuse of data of the MPEG
compressed bitstream for the purpose of fast indexing and browsing. More precisely, we
extract DC coefficients and motion vectors.
In this PhD, we are in particular interested in the construction of mosaics using DC im-

ages of I-frames. A mosaic is constructed by aligning and warping the images of a sequence
upon each other in a single reference coordinate system. The latter is generally aligned with
one of the input images: the reference image. One single image results giving a global view
of the sequence. To this end, we propose in this thesis a complete framework for the mosaic
construction from MPEG-1/2 compressed video which takes into account various problems
occurring in real video sequences such as moving objects or illumination changes.
An essential task for mosaic construction is the motion estimation between each image

of the sequence with respect to the reference image. Our method is based on the robust esti-
mation of global camera motion from P-frames motion compensation vectors. Nevertheless,
the estimated motion for a P-frame may be inaccurate as it strongly depends on the accuracy
of the encoded motion vectors. We detect the concerned images taking into account the DC
coefficients of the associated encodedmotion compensation error and propose two methods
to correct this motion.
A mosaic constructed from DC images is of very low resolution and suffers from aliasing

due to the nature of DC images. In order to increase its resolution and to improve its visual
quality, we apply a super-resolution method which is based on iterative backprojections.
Super-resolution methods are also based on the alignment and warping of the images of a
sequence upon each other, but it is combined with an image restoration. Therefore, we have
developed a new estimation method for blur due to the camera motion and a corresponding
method for restoration in the frequency domain.
Frequency domain restoration methods allow the restoration of global blurs, but in the

case of objects moving independently of the camera motion local blurs appear. For this rea-
son, we propose a new super-resolution algorithm derived from the iterative spatial domain
restoration method of Van Cittert and Jansson allowing the restoration of local blurs. Based
on a segmentation of moving objects, we restore separately the backgroundmosaic and fore-
ground objects. Consequently, we enhanced our blur estimation method.
In a first step, we applied our method to video summarisation for the purpose of fast
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browsing of the video using mosaics. Then, we showed how the reuse of intermediary
results can be employed for other indexing tasks such as the shot boundary detection on
I-frames and the characterisation of camera motion. Finally, we elaborated the area of trans-
mission error concealment. Our approach consists in constructing a mosaic during the de-
coding of a shot; in case of data lost, the missing information can be concealed thanks to this
mosaic.

Keywords: Indexing, MPEG, mosaics, super-resolution

Discipline: Computer Science

LaBRI (UMR CNRS 5800)
Université Bordeaux 1
351, cours de la Libération
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Chapter 1
Introduction and Motivation

Today tremendous volumes of video in compressed form are available due to the digitisa-
tion of existing videos and the explosive development of multimedia network services such
as digital video broadcast or mobile communications. This requires efficient indexing and
browsing tools, but indexing before encoding is not usual in the industry. Thus, the tradi-
tional approach is the full decoding of these videos in order to index them afterwards. This
is very costly and thus not feasible in real time, so that a huge quantity of compressed video
remains unindexed.
Up to now the MPEG-2 standard [117] is the most frequent encoding for video available

in archives or coming from broadcast channels. It consists in a hybrid coding scheme based
on motion compensation and transform coding. Thus, important information which can be
used for indexing such as motion is lost during decoding. Typically, it is reestimated subse-
quently, although it was already present in the compressed bitstream. Hence, the challenge
is to index those compressed videoswithout full decoding and instead extracting useful data
by only partially decoding the compressed stream.
Some significant work in the compressed domain has been already been presented for

different indexing tasks. The common point of these methods is that they are mainly based
on the extraction of DC images and/or motion vectors of MPEG-1/2 compressed video. A
DC image is eightfold smaller than the original video frame whereas a pixel in the DC image
corresponds to themean value of an 8×8 block in the original frame. DC images andmotion
vectors can be easily extracted by partially decoding MPEG-1/2 compressed video.
Yeo and Liu [208] stated that even at DC resolution, global image features useful for

image processing and indexing operations are well preserved. For instance, Bescós [12] pro-
posed an efficient method to detected shot boundaries in compressed video based on the use
of DC images. Often, MPEG motion vectors are considered as to inaccurate for further use.
However, methods presented in literature demonstrate that when appropriate robust meth-
ods are developed their use is justified. Durik and Benois-Pineau [38] developed a robust
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method to estimate global cameramotion fromMPEGmotion vectors for the purpose of shot
boundary detection. In [33], Coimbra and Davies presented a method to detect pedestrians
using MPEG-2 motion vectors.

In this PhD thesis, we are particularly interested in the construction of mosaics for video
summarisation of MPEG-1/2 compressed video. A mosaic image is constructed by aligning
and warping the frames of a shot upon each other in a single reference coordinate system.
A single image results giving a panoramic view of the shot. In the last decade, powerful
methods have been presented for mosaic construction. This can be explained by the fact
that this kind of video representation allows a quick understanding of the scene through
the interpretation of a static image. Mosaic representations are a part of the MPEG-4 video
coding standard [118] as they allow an efficient encoding of a shot by decomposing it into
the background mosaic and foreground objects. Furthermore, they are defined as a shot
descriptor in the MPEG-7 standard [119] to be used for video browsing and indexing.

Since the works of Peleg and Herman [139] and Sawhney and Ayer [156], mosaicing
methods seem to have reachedmaturity. Nevertheless,mostmosaicingmethods proposed in
literature perform on raw video, amongst others the method of Irani and Anandan [72] pro-
posed for browsing and indexing raw video. Pilu [143] proposes a mosaicing method based
on MPEG-1 motion vectors, yet frames are completely decoded for mosaic construction. In
contrast to thesemethods, we focus in this thesis on themosaic construction fromMPEG-1/2
compressed video without completely decoding the compressed stream. We state that mo-
saics constructed using raw or decoded video frames are often too large to display on the
screen without scrolling or downsampling. Therefore, we propose creating mosaics of a
lower resolution providing a scene overview appropriate for browsing in a video document.
This is achieved by using DC images of I-frames as input image sequence. Moreover, we
estimate global camera motion from P-frame motion vectors for image warping.

The originality of our method is that we propose a complete framework to construct mo-
saics from MPEG-1/2 compressed video at the basis of DC images of I-frames and P-frame
motion vectors. We take into account different aspects and problems that can occur during
mosaic construction such as the noisiness and inaccuracy of motion vectors, the removal of
moving objects and their possible inaccurate segmentation, or illumination changes between
input frames. In order to obtain a complete description of the shot, representative objects are
inserted in the mosaic afterwards. A fast and efficient algorithm results.

DC images are mainly characterised by very low resolution and aliasing artefacts, but
also blur arises due to the camera motion during exposure time and block averaging. When
a mosaic is constructed from DC images, the resolution may be too low to give a scene
overview and the image quality may not be satisfying due to the strong degradations of the
DC images.

Several methods exist to increase the resolution of video frames. The easiest way to cre-
ate an image with a higher resolution is a simple interpolation e.g. a bilinear or bicubic
interpolation. However, this does not produce satisfying results due to aliasing and loss
of high frequencies. Fassino and Montanvert [49] proposed a method to increase the res-
olution of MPEG compressed video. The resolution of I-frames is increased by projecting



3

the decoded I-frame onto convex sets. Then, the resolution of P and B-frames is increased
by scaling the size of motion vectors and macroblocks used in the motion compensation
process. Anyhow, in case of video it is possible to exploit the information of neighbouring
frames in order to obtain an image of higher resolution using super-resolution reconstruction
methods. Assuming that each image of the sequence provides a slightly different view at
the same scene, then they can be combined into one higher-resolution image. This allows to
restore high-frequencies and an image of superior visual quality results.

Powerful super-resolution algorithms have been developed for raw video, e.g. by Patti
et al. [137], and Irani and Peleg [75], and for compressed video, e.g. by Segall et al. [164].
Thus, we apply a super-resolution algorithm to our DC-resolution mosaics to increase the
resolution and restore the blur. Capel and Zisserman [22], and Zomet and Peleg [215] already
proposed applying a super-resolution algorithm to mosaics constructed from raw video. In
our case of compressed video, the global approach is the same. Nevertheless, the estimation
of motion from compressed video, the choice of an adequate blur model and of a restoration
filter is different.

In this work, we present two super-resolution methods. The first one is based on the
iterative backprojections of Irani and Peleg [75] incorporating restoration in frequency domain.

Due to the frequency domain restoration, this method only allows to restore global blurs.
Unfortunately, in video, we observe more complex situations where local blurs appear e.g.
due to object motion. Hence, we propose a second super-resolution method derived from
the spatial domain restoration method of Van Cittert [31] and Jansson [78]. Performing restora-
tion in spatial domain this method allows the processing of local blurs. Nevertheless, the
motion of objects can be very complex and in case of DC images the objects are typically
represented by only few pixels, so that its it very difficult to estimate the motion of objects
and to superimpose them accurately enough for super-resolution. In contrast to [75], where
moving objects supposed to undergo 2D parametric motion are super-resolved, we propose
a generic method. We propose restoring and increasing the resolution of moving objects by
a single image restoration method whereas the scene background is super-resolved.

The origin of blur in DC images is twofold. On the one hand, the blur comes from full-
resolution frames due to motion during exposure time. On the other hand, DC images rep-
resent a low-pass version of the full-resolution frames in which the low pass is done locally
inside a block of 8 × 8 pixels. Therefore, the overall blur is a result of these two phenomena.
To this end, we propose several blur models to describe the real overall blur function. More-
over, we propose an efficient method to estimate global and local blur parameters in motion
direction. We evaluate the performance of the blur models in combination with different
restoration filters for both super-resolution methods.

In addition to video summarisation, we address in this PhD thesis other applications
of our mosaicing method. First, we show how intermediary results can be used for related
indexing tasks, namely the detection of shot boundaries on I-frames and the characterisation
of camera motion. Another application we studied in this thesis is the use of mosaics for
error concealment. Our approach consists in constructing progressively a mosaic during the
decoding of a shot; in case of data lost, the missing information can be concealed thanks to



this mosaic.
This PhD thesis is structured in two parts. Part 1 presents the construction of mosaic

from MPEG-1/2 compressed streams with regard to video summarisation, whereas Part 2
addresses additional applications of our mosaicing method.
Part 1 is organised as follows: In Chapter 2 we describe the MPEG-1 and MPEG-2 video

coding standards and explain what kind of information we extract from the compressed
stream for mosaic construction. We present the complete framework for mosaic construc-
tion from MPEG-1/2 compressed streams in Chapter 3. This framework incorporates a
robust registration of the sequence of DC images of I-frames using P-frame motion vec-
tors, the segmentation of moving objects and the correction of illumination changes between
frames of the input sequence. Chapter 4 presents our first super-resolutionmethod based on
restoration in frequency domain. We present different blur models that we consider for DC
images and propose an appropriate estimation of the blur parameters in motion direction.
Moreover, we test the performance of classical restoration filters in combination with the
different blur models. In Chapter 5 we present our second super-resolution method incor-
porating a spatial domain restoration. To realise the restoration of local blurs, we enhance
the blur estimation method of Chapter 4. Moreover, we compare the performance of this
super-resolution method with that one presented in Chapter 4.
Part 2 starts with a short introduction of the considered application areas in Chapter 6.

Chapter 7 presents a method for shot boundary detection on I-frames and a method for
the characterisation of dominant camera motion. Both methods are based on the methods
developed in Part 1. Chapter 8 addresses the application of our mosaicing method in the
context of error concealment.
Finally, we conclude our work in Chapter 9 stressing on our contributions. Some per-

spectives of future work are given.
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Part I

Mosaicing from the Compressed
Stream





7

Chapter 2
MPEG-1/2 Compressed Streams as a

Source of Low-Resolution Data

Massive digitisation of existing video, together with an explosive development of multime-
dia services via heterogeneous network broadband (such as digital video broadcast) or nar-
rowband (such as mobile communications), made available tremendous volumes of video in
compressed form. Indeed, be it in the field of digital libraries or in video communications,
a suitable compression standard is always applied to reduce the bit rate while preserving
the quality of video as a function of taste. Thus, in digital video archives and in broadcast
MPEG-2 is today the common standard, while browsing copies or preview applications still
use MPEG-1. Hence, as we are working on MPEG-1/2 compressed streams, we introduce
the MPEG-1 and MPEG-2 standards in this chapter. Furthermore, we explain what informa-
tion we recover directly from the compressed stream for our work.
In 1993, the Moving Picture Expert Group (MPEG), founded by the International Organi-

zation for Standardization (ISO) in 1988, specified a video and sound compression standard,
referred to as MPEG-1 [114]. This standard was designed for the application of digital video
storage and playback on CDs. It was quickly clear that this standard was not sufficient for
current applications. Hence, the MPEG was working on a second compression standard,
MPEG-2 [117], addressing a wider range of applications such as digital video storage, video
broadcast and communication. WhileMPEG-1was suited for coding of non-interlaced video
at lower resolutions and bit rates, MPEG-2, completed in 1995, was suited for coding of in-
terlaced video at higher resolutions and bit rates.
In the remainder of this chapter, we present the MPEG-1 and MPEG-2 coding standards

in Section 2.1. Then, we explain in Section 2.2 the data we extract from the MPEG-1/2 com-
pressed streams which will be furthermore used in this work. Section 2.3 concludes this
chapter.
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2.1 The MPEG-1 and MPEG-2 Video Compression Standards

The MPEG coding algorithm is a hybrid coding algorithm mainly based on motion com-
pensation and transform coding. Motion compensation is used to reduce the temporal re-
dundancy between frames by predicting the current video frame from a reference frame.
The resulting error signal, the difference between the current frame and its prediction, is
quantised and then transform coded in order to reduce the spatial redundancy in the frame.
Finally, entropy coding is applied to the data to remove the statistical redundancy. Figure 2.1
illustrates the structure of the encoder.

DCT Block
quantiser

Block
dequantiser

DCT−1

Input
video

VLC

Store
Motion
compensation

Motion
estimation

Encoded
bitstream

Figure 2.1: The MPEG-1/2 encoder structure [172, 188].

The MPEG-2 standard includes the MPEG-1 standard. It is more generic and supports
the efficient coding of interlaced video and scalability. Scalability allows to combine several
versions of different quality or resolutions of a video in one stream. MPEG-2 defines a non-
scalable and a scalable syntax, whereas the non-scalable syntax is defined as a super-set of
the MPEG-1 syntax. Due to its wide range of applications and supported image formats,
MPEG-2 introduces the concepts of profiles and levels (defining conformance and perfor-
mance limits) since certain applications do not require all the coding tools.

Now, we will introduce the properties of the compressed stream and the main coding
tools for reducing temporal, spatial and statistical redundancy of the video data. More in-
formation on the MPEG-1/2 standards can be found in [172].
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2.1.1 Sampling Formats

In MPEG a frame consists of three rectangular matrices of integers, a luminance matrix Y,
and two chrominance matrices Cb and Cr. The advantage of theYCbCr representation is
that the Cr and Cb components may be represented with a lower resolution than Y as the
human visual system is less sensitive to colour than luminance. This reduces the amount
of data required to represent the chrominance components without having an obvious ef-
fect on the visual quality. Hence, different sampling patterns exist to represent the colour
componentsCb and Cr. The MPEG-2 standard supports the 4:4:4, 4:2:2 and 4:2:0 sampling
formats, while MPEG-1 standard supports only the 4:2:0 sampling format.
The sampling patterns are illustrated in Figure 2.2. 4:4:4 sampling means that the three

components (Y, Cb and Cr) have the same spatial resolution. Hence, for each pixel po-
sition each component is available. So, the full fidelity of the chrominance components is
preserved. In 4:2:2 sampling, the chrominance components have the same vertical resolu-
tion as the luminance but half the horizontal resolution. In the 4:2:0 sampling format, Cb

and Cr each have half the horizontal and vertical resolution ofY.

4:4:4 4:2:2 4:2:0

luminance samples

chrominance samples

Figure 2.2: The 4:4:4, 4:2:2 and 4:2:0 sampling patterns [152].

2.1.2 Coding Structure

The coding structure of a MPEG-1/2 compressed bit stream is hierarchically organised. It is
decomposed into six levels: the video sequence, the group of pictures, the picture, the slice,
the macroblock, and the block.
The highest syntactic structure of the coded bitstream is the video sequence. It provides

general information with respect to the sequence, including the image format (such as the
image size, the pixel ratio, and the number of images per second) and the bit rate. It is di-
vided into groups of pictures (GOP). A GOP may include three types of pictures (also called
frames): Intra-coded frames (I-frames), predictive-coded frames (P-frames) and bidirectionally
predictive-coded frames (B-frames). I-frames are codedwithout reference to other frames. They
provide access points to the coded sequence where decoding can begin, but are coded with
only moderate compression only by transform coding. P-frames are coded more efficiently
using motion-compensated prediction from a past reference picture, the directly preceding
I or P-frame. B-frames provide the highest degree of compression but require both, a past
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and future reference picture, for motion compensation. These are respectively the preceding
and succeeding I or P-frames. A GOP starts with an I-frame followed by a fixed number
of P and B-frames as shown in Figure 2.3. Regardless of the frame type, each frame is di-
vided into slices. Each slice consists of adjacent macroblocks in a row. That can be only one
macroblock or up to all macroblocks of the row. Slices are used for synchronisation in case
of transmission errors. A macroblock refers to a 16 × 16 section of the luminance component
and the spatially corresponding chrominance components. Thus, according to the differ-
ent chrominance formats presented above, a macroblock consists of a variable quantity of
blocks. For the 4:2:0 sampling format, the macroblock consists of 6 blocks (4Y, 1 Cb, 1Cr).
A 4:2:2 macroblock consists of 8 blocks (4Y, 2 Cb, 2Cr), and a 4:4:4 macroblock consists of
12 blocks (4Y, 4Cb, 4Cr). A block represents a 8× 8 section of a luminance or chrominance
component of the image. This section can refer to original pixel values, to residuals or to
transform coefficients.

I B B B B B B B BP P P P B B I

Figure 2.3: A typical GOP structure of 15 frames in MPEG-2 [152].

2.1.3 Temporal Redundancy

The principle of reducing temporal redundancy is to predict the current video frame by ex-
ploiting the similarities between two frames. Therefore, motion vectors are estimated using
a block matching algorithm which describes how motion is compensated. Based on these
motion vectors, a residual frame is computed by subtracting the predicted frame from the
current frame. The basic unit for motion-compensated prediction in MPEG-1/2 is the mac-
roblock.

Block Matching

The motion vector for each macroblock is estimated from two original luminance frames
using a block matching algorithm. Motion estimation of a macroblock consists in finding
a 16 × 16 sample region in a reference frame that closely matches the current macroblock.
Therefore, a search area in the reference frame centered on the current macroblock position is
searched. Then, the 16×16 region within the search area that minimises a matching criterion
is chosen as the bestmatch. Themotion vectord = (dx, dy)

T describes the position of the best
matching region relative to the current macroblock position. These motion vectors provide
the first source of data we extract from the compressed stream. Once the motion vector d is
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estimated, the pixel values for the current macroblock can be predicted from the previously
decoded frame.

Motion Compensation

The best matching region in the reference frame is subtracted from the current macroblock to
produce a residual macroblock (luminance and chrominances) that is encoded together with
the motion vector. During encoding, the residual is encoded and decoded and added to the
matching region to form a reconstructed macroblock which is stored as a reference for fur-
ther motion-compensated prediction. It is necessary to use a decoded residual to reconstruct
the macroblock in order to ensure that encoder and decoder use an identical reference frame
for motion compensation. If there is a significant change between the reference and the cur-
rent frame, it might be more efficient to code the macroblock without motion compensation.
Then, the encoder may choose to encode the macroblock in intra mode.

Temporal redundancy reduction is followed by spatial and statistical redundancy reduc-
tion which is illustrated in Figure 2.4.

QDCT Intra DC Pred VLCRLEReorder

Statistical redundancySpatial redundancy

block bitstream

Figure 2.4: The encoding of a block.

2.1.4 Spatial Redundancy

Spatial redundancy is reduced using similarities between neighbouring samples in a frame.
Therefore, an orthogonal transform is applied to the samples in order to decorrelate their
values. Afterwards, the transform coefficients are quantised to remove insignificant values,
thus reducing the information.

Transform Coding

For transform coding, MPEG-1/2 uses the Discrete Cosine Transform (DCT) operating on
blocks (first step in Figure 2.4). In case of intra mode the block contains image samples and
in case of inter mode the block contains residual samples. The DCT of a M × M block is
defined as:

DCT(u, v) =
2

M
C(u, v)

M−1∑

x=0

M−1∑

y=0

f(x, y) cos
(2x + 1)uπ

2M
cos

(2y + 1)vπ

2M
(2.1)
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where x,y are spatial coordinates in the image domain, u,v frequencies in the transform
domain, and:

C(u, v) =

{
1√
2
if u = 0 and v = 0

1 otherwise

The inverse transform (DCT−1) is:

f(x, y) =
2

M

M−1∑

u=0

M−1∑

v=0

C(u, v)DCT(u, v) cos
(2x + 1)uπ

2M
cos

(2y + 1)vπ

2M
(2.2)

The first DCT coefficient of a block at the frequency (0, 0) is called the DC coefficient, the
other coefficients are called AC coefficients. DC coefficients are the second source of data
we use in this work. Then, the DCT coefficients are quantised in order to reduce the range
and remove insignificant values. Normally, the DCT is perfectly invertible, but due to the
quantisation of transform coefficients DCT−1 does not recover the original pixels values. So
called quantisation noise results.

Quantisation

A quantiser (step two in Figure 2.4) maps a signal to a quantised signal with a reduced
range with the objective of representing the quantised signal with fewer bits than the origi-
nal signal. Consequently, the precision of the image data is reduced and insignificant DCT
coefficients such as near-zero values are removed.
Figure 2.5 shows the default quantisation matrices for MPEG-2. For intra blocks, where

the high energy values are typically located in the low frequencies, the quantisation matrix
of Figure 2.5(a) is used. Its function is to quantise high frequencies with coarser quantisa-
tion steps. That will suppress high frequencies with no subjective degradation as the human
visual system is not very perceptive to high frequencies. Since the energy of transform coef-
ficients in inter mode coding is more uniformly distributed, the constant quantisation matrix
of Figure 2.5(b) is used.
The human visual system is very perceptive to luminance changes. Therefore, the DC

coefficients of intra blocks, represented by 11-bit values, are quantised in a different man-
ner than the other coefficients. They may be quantised to 8, 9, or 10 bits according to the
parameter settings. Thus, the quantised DC value DCTQ(0, 0) is calculated as:

DCTQ(0, 0) = round

(
DCT(0, 0)

P

)
(2.3)

where the constant P depends on the DC precision. Its values are 8, 4 or 2, respectively, for
a precision of 8 bits, 9 bits or 10 bits. Quantisation is a lossy process since it is not possible to
determine the exact value of the original fractional number from the rounded integer. Thus,
the DC coefficients we extract are degraded by quantisation noise.
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Figure 2.5: Default quantisation matrices [117]: (a) for intra blocks, (b) for inter blocks.

The AC coefficients of intra blocks are first quantised by the quantisation matrix Qintra

e.g. that one of Figure 2.5(a):

DCT′(u, v) = round

(
16 · DCT(u, v)

Qintra(u, v)

)
, u, v 6= 0 (2.4)

and then scaled:

DCTQ(u, v) =
DCT′(u, v) + sign(DCT′(u, v)) · round

(
P ·S
Q

)

2 · S , u, v 6= 0 (2.5)

where S is the quantiser scale, and P = 3 and Q = 4 in [115].
For inter blocks, the DCT coefficients are first quantised by the quantisation matrixQinter

e.g. that one of Figure 2.5(b):

DCT′(u, v) = round

(
16 · DCT(u, v)

Qinter(u, v)

)
(2.6)

and then scaled:

DCTQ(u, v) =
DCT′(u, v)

2 · S (2.7)

The quantised DCT coefficients DCTQ are then furthermore encoded.

Intra DC Prediction

Low-frequency transform coefficients of neighbouring intra-coded blocks are often corre-
lated. Thus, energy of DCT coefficients in intra blocks can further be reduced by intra DC
prediction (step three in Figure 2.4). Therefore, the DC coefficient of the current block (X in
Figure 2.6) is in addition predictedwith respect to the DC coefficient of the previous encoded
block (A). The residual value ∆DCTQ,j(0, 0) is encoded:

∆DCTQ,j(0, 0) = DCTQ,j(0, 0) − DCTQ,j−1(0, 0) (2.8)

where DCTQ,j(0, 0) is the quantised DCT coefficient of the current block (X in Figure 2.6)
and the quantised DCT coefficient of the previous encoded block (A in Figure 2.6).
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XA

Figure 2.6: Prediction of DC coefficients in intra blocks.

Reordering

The output of the quantiser is a sparse array containing a few non-zero coefficients and
a large number of zero-valued coefficients. The significant DCT coefficients of a block of
image or residual samples are typically in the low frequency positions around the DC co-
efficient. Reordering (step four in Figure 2.4) is applied prior to entropy coding in order to
group together non-zero coefficients and to enable the efficient representation of zero-valued
coefficients.

The optimum reordering path (scan order) depends on the distribution of non-zero DCT
coefficients. For a typical frame block a zigzag scan is applied. Starting with the DC co-
efficient, each quantised coefficient is copied into a one-dimensional array in the order as
illustrated in Figure 2.7(a). Then, the non-zero coefficients tend to be grouped together fol-
lowed by long sequences of zeros.

However, Zigzag scan is not ideal for field blocks (MPEG-2) since the coefficient distri-
bution is skewed. This is because field pictures have stronger high-frequency components
in the vertical axis due to the subsampling in the vertical direction. A modified scan order
as illustrated in Figure 2.7(b) is used, in which coefficients on the left hand side of the block
are scanned before those on the right hand side.

(a) (b)

Figure 2.7: Reordering [172]: (a) Zigzag scan order for frame blocks, (b) alternate scan order
for field blocks.
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2.1.5 Statistical Redundancy

Statistical redundancy in the data is reduced by entropy coding. First, Run Length Coding
(RLE) is applied to the reordered quantised DCT coefficients in order to encode efficiently
the zero sequences produced by the reordering process. This is followed by Variable Length
Coding (VLC).

Run Length Coding

The output of the reordering process is an array that typically contains one or more clusters
of non-zero coefficients near the start, followed by sequences of zero coefficients. During
RLE (step five in Figure 2.4) the large number of zero coefficients is represented more com-
pactly as a series of (run,level) pairs where run indicates the number of zeros preceding a
non-zero coefficient and level indicates the magnitude of the non-zero coefficient.

Variable Length Coding

The principle of VLC (step six in Figure 2.4) is that symbols with a higher occurrence are
encoded with code words of shorter length as rare symbols. Then, the pairs of (run,level)
are encoded by a Huffman-type entropy coder. VLC is also applied to encode the motion
vectors.

2.1.6 Scalability

Scalability allows the reconstruction of video only from pieces of the total bitstream. This
is achieved by structuring the bitstream in two layers, a standalone base layer and an en-
hancement layer. If there is only one layer, the coded video data is called non-scalable video
bitstream. If there are two layers, the coded video data is called a scalable bitstream. The
objective of scalable video coding is to combine video at different qualities or resolutions in
one bitstream. An additional advantage is the ability to provide resilience to transmission
errors. Themore important data of the base layer can be transmitted on a channel with better
error performance, while the less critical enhancement layer data can be sent over a channel
with poor error performance. The drawback is that some of the coding efficiency is lost as a
result of the extra overhead.

Spatial Scalability

Spatial scalability consists in generating several spatial resolution video layers from a single
video source. The base layer provides the basic spatial resolution. The upsampled recon-
structed base layer is then used as prediction of the enhancement layer. If both base layer
and enhancement layer are decoded the full spatial resolution of the video is achieved.
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SNR Scalability

The objective of SNR scalability is to generate a video stream of different qualities where all
layers have the same spatial resolution. The base layer provides the basic video quality and
the enhancement layer when added to the base layer improves the quality of the video.

Temporal Scalability

Temporal scalability generates a video stream of different temporal resolutions. The video
frames are partitioned into the two layers. The base layer provides the basic temporal rate
and the enhancement layer is coded with temporal prediction with respect to the base layer.
These layers when decoded and temporal multiplexed provide the full temporal resolution
of the video source.

2.1.7 Profiles and Levels

Due to an important number of potential applications and image formats supported by
MPEG-2, the definition of profiles and levels was introduced. A profile is a defined sub-
set of the bitstream syntax and so of the coding options specified by the standard. This
signifies that each profile allows the use of a subset of the coding tools which is adapted to
a certain application. A level is a defined set of constraints imposed on the parameters in the
bitstream. Table 2.1 summarises the main characteristics of the profiles and levels defined in
the MPEG-2 standard.

Profiles / Simple Main SNR Scalable Spatially Scalable High
Levels 4:2:0 4:2:0 4:2:0 4:2:0 4:2:2

High 1920/1152/60 1920/1152/60
1/0/0 3/1/1

High-1440 1440/1152/60 1440/1552/64
1/0/0 3/1/1

Main 720/576/30 720/576/30 720/576/30 720/576/30
1/0/0 1/0/0 2/0/0 3/1/1

Low 352/288/30 352/288/30
1/0/0 2/0/1

Table 2.1: Overview of the profiles and levels in MPEG-2 [9]: For each combination of profile
and level 1) the image size (number of pixels in a row/ number of pixels in a column/
number of frames per second) and 2) the number of layers (total number of layers/ number
of layers for spatial scalability/ number of layers for SNR scalability) is shown.

Note that a profile/level combination is usually referred to as “profile@level”. In the
scope of this PhD, we use video encoded at Main Profile@Main Level or Main Profile@Low
Level whereas the latter is compliant with MPEG-1. That is however no crucial constraint
for our work, because when the profile changes only adequate partial decoding is necessary
to extract our input information: DC coefficients and motion vectors.
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2.2 Extraction of Data from MPEG-1/2 Compressed Streams for
Video Analysis and Indexing

Lots of video analysis techniques working in the compressed domain are based on the pro-
cessing of DC coefficients. If only the DC coefficients of the 8 × 8 block are decoded and
divided by 8, an image, the so called DC image, is obtained. The DC image is eightfold
smaller than the original frame and a pixel corresponds to the mean value of the pixels in
the block. Yeo and Liu [208] showed that even at this resolution, global image features useful
for a specific class of image processing operations are well preserved. Operating on these
images offers a significant saving of computational time, because of the reduced spatial res-
olution and only partially decoding the compressed stream.
Another aspect in our work is the need of motion information. Motion can be estimated

after full decoding, while motion information has been already available in the compressed
stream in form of motion compensation vectors. Thus, the motion compensation vectors can
be used in a motion estimation process. This is an additional gain of computational time
since full decoding is still omitted and we work only on sparse optical flow.
Nevertheless, the use of motion vectors from the stream is rather challenging as they

were not computed for analysis, but for encoding based on a quality criterion. Their quality
depends very much on the encoder settings and they are typically noisy. The usage of such
motion vectors has already been presented in literature. For instance, Coimbra and Davies
[32] approximated optical flow to MPEG-2 motion vectors. In order to overcome the noisi-
ness of the MPEG motion vectors, DCT coefficients are used in a confidence measure for the
estimated flow vectors. The method proposed by Pilu [143] fits a global motion model to
MPEG-1 motion vectors after filtering. Other examples are the extraction of global motion
features of raw MPEG motion vectors [6] or after normalisation [89]. These examples show
that MPEG motion vectors can be used if adequate robust methods are developed.
Hence, in this work we consider that data extracted from the MPEG-1/2 compressed

streams is sufficient for our purpose i.e. the fast construction of mosaics, namely we use:

• DC images of I-frames as input sequence for the mosaic construction

• P-frame motion vectors for the estimation of global motion

• DC images of the encoded P-frame motion compensation error in a confidence measure for
the motion models estimated from MPEGmotion vectors

• DC images of P-frames for the reestimation of a motion model in the case of low-quality
MPEG motion vectors

Figure 2.8 shows the scheme of the MPEG-1/2 decoding process. It is clear, that P-frame
motion compensation vectors are easily to extract, just as DC images of I-frames and of the
P-frame motion compensation error. Motion compensation vectors can be extracted just
after variable length decoding as illustrated in Figure 2.8. The DCT coefficients of intra and
residual macroblocks are available after inverse quantisation.
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Figure 2.8: The MPEG-1/2 decoding process [114].

In order to extract DC images of I-frames, the compressed stream is parsed for I-frames
and for each block in the I-frame the DC coefficient is extracted. Therefore, the quantised
DC value is computed inversely to the prediction Equation (2.8). Thus, for the jth block:

DCTQ,j(0, 0) = DCTQ,j−1 + ∆DCTQ,j(0, 0) (2.9)

where∆DCTQ,j(0, 0) is the encoded difference between the predicted value and the original
value of DCTQ,j(0, 0).
Then, DC coefficients are quantised inversely to Equation (2.3):

DCT(0, 0) = P · DCTQ(0, 0) (2.10)

Finally, the pixel value of the DC image is DC = DCT(0, 0). The DC images of P-frames
can be extracted similarly to I-frames.
To extract this information (P-frames motion vectors, DC images of I-frames, DC images

of the motion compensation error of P-frames) from the compressed stream, we used the
MPEG Software Simulation Group decoder (MSSG) [121] and inserted output operations at
various steps of the decoding process.
Now, the problem is how to extract efficiently the DC images for P-frames from the com-

pressed stream. This means an increase of complexity, since motion vectors have to be taken
into account.
The basis of DC image reconstruction is the fact that the DCT is a linear transform. This

means that the DCT coefficients of the reconstructed block can be obtained by summing up
the DCT coefficients of the residual blockBdiff and the DCT coefficients of the reference block
Bref :

B = Bref + Bdiff (2.11)
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Therefore, in [26] a method is proposed to reconstruct DCT coefficients of a block by DCT
domain inverse motion compensation. Based on this, a more sophisticated method for DC
image reconstruction is proposed in [177] including DCT domain deinterlacing and DCT
domain interlacing.
From (2.11) it is obvious that the DC coefficients of the current frame can be obtained by

adding the appropriate DC coefficients of the reference image DCref to the DC coefficients
to the difference image DCdiff :

DC(x, y) = DCref(x, y) + DCdiff(x, y) (2.12)

However, due to motion compensation the DC coefficients DCref are not directly avail-
able (see Figure 2.9). The methods of [208, 171] propose to approximate DCref(x, y) by a
weighted average of the DC coefficients of the blocks pointed by the motion vector:

DCref(x, y) =
1

64

3∑

i=0

ω(Bi)DCref(Bi) (2.13)

where DCref(Bi) is the DC coefficient of the block Bi and ω(Bi) is the number of pixels in
the block Bi that is overlapped by the reference block.
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Figure 2.9: Motion-compensated reference block [177].

Based on Equation (2.12), we reconstruct DC images for P-frames. We propose to approx-
imate the DC coefficient DCref by a bilinear interpolation of the DC coefficients DCref(Bi).
As the encodedmotion compensation vectors are at macroblock basis, we use the scaled mo-
tion vector for approximating DCref in the reference DC image. Thus, DCref at the position
(x, y) is obtained by:

DCref = (1 − ∆x)(1 − ∆y) · DCref(B0) + (1 − ∆x)∆y · DCref(B1)

+∆x(1 − ∆y) · DCref(B2) + ∆x∆y · DCref(B3) (2.14)

In the case if a macroblock of the P-frame is intra-coded, then the DC image will contain
the DC values of the intra-coded blocks.
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2.3 Conclusion

In this chapter, we explained the MPEG-1/2 video compression algorithm and the data we
use in our work. The challenge of the extracted data from the MPEG-1/2 compressed video
as described above is that we only have rough information for indexing. DC images are
of very low resolution and thus degraded by aliasing. In addition, they suffer from blur
due to the block averaging. Motion vectors are in general noisy and are sometimes even
inaccurate. This can be due to the weakness of the MPEG encoder, if e.g. motion bypasses
the search window of the block matching algorithm. Using this data for indexing allows fast
computational times, but at the expense of image quality or motion accuracy. Hence, these
characteristics have to be taken into account when processing this data and adapted robust
algorithms need to be proposed.
We will show in Appendix B that we find similar situations (motion vectors and trans-

form coefficients) in later MPEG standards as they are based on the MPEG-1/2 video cod-
ing scheme. There, we show that our method can be enhanced for later MPEG stan-
dards. For instance, with the advancements of the MPEG-1/2 video compression, motion
estimation has been improved so that more reliable motion vectors can be extracted. In
H.264/MPEG-4 AVC, transform coding operates on a reduced block size of 4×4. This allows
the extraction of DC images at a higher resolution which are less aliased and less blurred.
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Chapter 3

Construction of Mosaics from the
Compressed Stream

Several application areas for mosaic representationse exist. Mosaic representations of video
segments shot by the same camera are a part of the MPEG-4 video coding standard [118].
They allow an efficient encoding of the whole scene by composing it into the foreground
objects and the background still mosaic. They are also defined as a descriptor of a shot in
the MPEG-7 standard [119] for the purpose of video indexing. For example they can be
used for a fast browsing of the video [72]. Further applications are video editing such as
the removal of an object from the scene [129], the creation of virtual environments [184], and
video post-production e.g. artificial modifications of the cameras point of view.

A mosaic is constructed by aligning and warping the frames of a shot upon each other in
a single reference coordinate system. One single image results giving a panoramic view of
the whole shot. Mosaicing methods proposed in literature perform on raw video, but today
an enormous quantity of video content is already available in compressed form. Up to now
the MPEG-2 standard [117] is the most frequent encoding for video available in archives or
coming from broadcast channels. Applying raw video mosaicing methods to this content
would mean its full decoding. Furthermore, aligning and warping frames in a mosaicing
process requires a motion estimation which is a costly operation. Thus, motion has to be es-
timated after the full decoding, while it has been already available in the compressed stream.

Thus, in this chapter we focus on the construction of mosaics from MPEG-1/2 com-
pressed video. Section 3.1 gives an overview of state-of-the-art mosaicing methods. In
Section 3.2 we present our mosaicing method. Section 3.3 presents some results obtained
with this method and Section 3.4 concludes this chapter.
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3.1 State of the Art

Since the last decade significant researchwork has been done in video analysis for themosaic
construction from raw video or image sequences. Thus, in this section we will review main
approaches in this domain.
Depending on the application different mosaic representations exist [73]:

• Static mosaic [106]: All frames of the sequence are aligned in a fixed coordinate system.
This image provides an extended view of the entire static background in the scene,
moving objects are not included.

• Dynamic mosaic [129]: A sequence of evolving mosaic images is created, where the
content of each new mosaic is updated with the most current information from the
most recent frame. The sequence of dynamic mosaics can be visualised either with a
stationary background with a fixed coordinate system, or in a manner such that each
new mosaic is aligned with the corresponding input video frame whereas the mosaic
is viewed within a moving coordinate system.

• Synopsis mosaic [72]: The aim of this mosaic type is to represent the dynamic events in
the scene. In order to provide a summary of the events in the scene, the background
mosaic is overlayed with the trajectories of moving objects.

• Temporal pyramid [71]: The pyramid is a tree structure whose leaves are the original
images and the interior nodes represent mosaics in form of residuals that merge to-
gether the visual information of their children. The root consists of a static mosaic
of the sequence and the succeeding levels represent residuals estimated over various
time scales. Reconstruction of the mosaic at a certain time is achieved by hierarchically
combining the static mosaic with the residual mosaics.

• Multi-resolution mosaic [98]: Varying image resolutions can be handled by a multi-
resolution data structure, which captures information from each new frame at its
closest corresponding resolution level in a mosaic pyramid. When a frame is pre-
dicted/reconstructed from the mosaic pyramid, the highest existing resolution data
in the mosaic which corresponds to the frame is projected onto the frame’s resolution.

Given an image sequence, the mosaic construction consists in two basic steps:

• Registration: The images of the sequence are aligned into one global coordinate system.

• Blending: The aligned images are combined into one single image.

Some methods consider additionally:

• Selection of frames [128]: Only a subset of the image sequence may be chosen for the
mosaic construction.

• Reprojection [21]: After registration, an additional transformationmay be applied to the
aligned images in order to render an image from a different view.
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• Moving object detection [75]: Moving objects may be detected and excluded from the
blending to avoid artefacts in the mosaic.

• Illumination correction [21]: In natural scenes the lighting variations can yield illumina-
tion changes in the image sequence. Then inconsistencies due to lighting variations,
so called seams, can appear in the mosaic on image borders. In order to avoid this
phenomenon an illumination correction is required. It consists in a harmonisation of
the illumination conditions of all frames in the sequence.

In the following, we will review each of these steps.

3.1.1 Selection of Frames

The construction of a mosaic can be accomplished starting from an image sequence sorted
in a temporal order. Such a sequence often contains a large number of frames. Because of
computational costs caused by the alignment of each frame, it is sometimes beneficial just to
use a subset of them. In order to reduce the computational costs and to optimise the mosaic
quality images may be discarded that do not contain sufficiently new information to the
mosaic or that are of low quality.
Nicolas [128] names the following section criteria:

• Amplitude of motion: If the motion amplitude with respect to the last selected frame
is large enough, then the new frame contains some regions which were invisible in
the preceding. This criterion allows to discard in particular frames with static camera
motion. This requires the motion estimation for all frames in the sequence.

• Quality of the image: The quality of the frames may be different e.g. due to noise or
contrast changes. Thus, the frames with a low quality are discarded.

Within this context, Stern et al. [179] proposed a frame selection method based on
the blur in each image. Frames blurred by low-frequency vibrations above a certain
blur level are discarded from the computation. Therefore, they define the effective blur
extend b as 3.46 times the standard deviation of the point spread function (PSF) (the
function which describes the blur):

bk = 3.46

[∫ ∞

−∞

∫ ∞

−∞

[
(x − tk,x)

2 + (y − tk,y)
2
]
Bk(x, y) dxdy

]1/2

(3.1)

(3.2)

where x, y are the coordinates, Bk(x, y) is the PSF of the kth image and tk,x, tk,y are
translational components of the kth image. In the above equation, it is assumed that
the motion PSF has nonzero values only in a line on the direction of the motion. Then,
the blur diversity ratio b̄K in the sequence ofK images is defined as:

b̄K =
bK

1/(K − 1)
∑K−1

k=1 bk

(3.3)
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where bK is the effective blur of themost severely blurred image and 1/(K−1)
∑K−1

k=1 bk

is the mean effective blur of the other images in the set. If b̄K is higher than 1.40, then
the most blurred image is discarded. If b̄K is lower than 1.40, which means that the
effective blur of the most images is no larger than 40% of the mean of the others, the
whole set of images is used. This work was extended by Stern et al. [180] in order
to discard additionally frames that are misregistered or for which the blur was not
estimated precisely enough.

• Complete or partial reconstruction: This constraint allows to define the percentage of
points in the mosaic that have to be defined with respect to the set of points defined in
the entire image sequence. A complete reconstruction corresponds to 100%.

• Respective contribution of the different frames: The selection of frames can be realised
by evaluating respectively the contribution of each frame to the mosaic construction.
Principally, two methods are possible, both relying on the alignment of the frames.

The first method evaluates recursively the contribution of each frame. For every new
frame which has not yet been used the number of undefined pixels in the mosaic is
computed. The frame with the highest contribution i.e. the highest number of un-
defined pixels in the mosaic is retained and blended into the mosaic. The process is
iterated until e.g. a certain percentage of the mosaic has been reconstructed, or the
maximal number of frames is achieved.

The second method evaluates a-priori the contribution of the frames. This allows to
better optimise the selection of frames using the effective contribution:

̟ =
∑

p∈M

Ī(p, k)

|p| (3.4)

with

Ī(p, k) =

{
1 if I(p, k) is defined at p

0 otherwise
(3.5)

where |p| represent the number of frames defined at the pixel p, andM is the set of
pixels in the mosaic which are not yet defined.

3.1.2 Registration

The objective of registration is to align every image into a global coordinate system which
represents the whole scene. The image alignment depends on the chosen world coordinate
system and the motion model describing the camera motion.
The choice of global coordinate system is usually that of one of the input images, called

the reference image, then all other images are aligned to that frame. This is illustrated in
Figure 3.1. If a virtual coordinate system is chosen, all images of the sequence are aligned
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θr+1,r
θr,r−1 θk+1,k

T(r+1,r)T(r−1,r)

...

T(k,r)

...

Figure 3.1: Registration of the image sequence with respect to a reference image.

with respect to a reference frame and an additional transformation between the reference
frame and the virtual coordinate system has to be defined (see Section 3.1.3).
There are several ways to compute the transformations for the images of the sequence to

the reference coordinate system:

• Frame to frame [157]: The transformations are first computed between successive
frames for the entire sequence. This is illustrated in Figure 3.1 where r denotes the
index of the reference frame. Then, the transformation between a particular image and
the reference image T(k, r) is obtained by concatenating the intermediate transforma-
tions. In case of backward intermediate transformations θk,k−1 the concatenation for
the kth image can be expressed as:

T(k, r) =

{
θk,k−1 ◦ θk−1,k−2 ◦ · · · θr+2,r+1 ◦ θr+1,r if k > r

θ−1
k+1,k ◦ θ−1

k+2,k+1 ◦ · · · θ−1
r−1,r−2 ◦ θ−1

r,r−1 if k < r
(3.6)

where ◦ is the concatenation operator.
The problem here is that alignment errors are accumulated during the repeated com-
position of transformations. Thus, the alignment can be further refined by directly
refining the composed transformations between each image and the mosaic [129, 95].

• Frame to mosaic [155]: The transformation from one frame to the reference frame is
computed directly. To handle the problem of large displacements between the mosaic
image and the current frame, the transformation computed between previous frame
and the mosaic image can be used as an initial estimate.

• Mosaic to frame [73] : In some dynamic applications, it is important to maintain the
images in their input coordinate systems. In this case, it is more useful to align the
mosaic to the current frame.
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• Global alignment [173, 158, 85]: All images of sequence are simultaneously registered
minimising a global error criterion.

• Topology determination [158]: During registration a graph is constructed describing
the neighbourhood relationships in the image sequence. Based on this graph local
alignments between neighbouring frames are refined and global consistency is opti-
mised.

Different types ofmotionmodels exist to describe these geometrical transformations. The
alignment can be limited to 2D motion models [140], or can utilise more complex 3D motion
models [95, 157, 184, 185], layered representations [156, 72], or optical flow [142, 149]. Their
computational complexity influences directly the quality of the obtained mosaic image. For
example the translational model, supposing only translational motion in the scene which is
easy and fast to compute, is too restrictive and would impact the quality of the mosaic. The
most common 2D motion models are the affine model [129], the homography [22, 21] and
quadratic models [73].
In the case of low-quality cameras using cheap, wide-angle lenses the acquired images

may be radially distorted at the periphery. This can be corrected by including a parametric
model of the lens distortion in the registration [155].

3.1.3 Reprojection

After registration each point of each image can be transformed to a point in the reference
coordinate system. In order to actually render an image from the reference coordinate sys-
tem an additional transformation T+ may be applied which maps points from the reference
coordinate system to points in the rendered image. T+ is referred to as the rendering trans-
formation. In principle T+ could be any one-to-one mapping, but in practice it is usually
determined by the choice of reprojection manifold e.g. a plane or a cylinder. Points in the ref-
erence coordinate system are projected onto the manifold, and then projected in the global
frame.
The simplest and most commonly used manifold is a plane onto which all of the images

are reprojected. In this case the rendering transform is a homography which reduces in the
trivial case to an identity transform (in this case we do not speak of reprojection). Using a
homography as rendering transform, straight lines are preserved. Using a planar manifold
and aligning all frames to a single reference frame is reasonable only when there are no
considerable depth differences in the scene and the camera motion is mainly a sideways
translation and rotation around the optical axis [142]. Significant distortions are created by
more general camera motions e.g. sideways rotation or when there are scale changes in the
image due to camera translation.
A cylindrical manifold was used by Szeliski [185], Mann and Picard [106], and Jaillon and

Montanvert [77]. This manifold, concentric with the camera, is suitable for image sequences
with a rotating camera which sweeps a very large angle. The method is best suited to image
sequences in which the camera rotates around a single axis, in which the images are tangent
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planes to the manifold. The rendered image does not suffer from the same projective dis-
tortion as the planar manifold. Instead, straight lines in the world are mapped to sinusoids.
The rendering transformation maps cylindrical polar coordinates to rectangular image co-
ordinates as follows. A point (X,Y,Z) in the camera centered coordinate system maps to a
point (ϑ, ν), ϑ =] − π, π] on the manifold as [185]:

ϑ = tan−1

(
X

Z

)
(3.7)

ν =
Y√

X2 + Z2
(3.8)

When the camera motion is pure rotation, a homogeneous 2D point p = (x, y, 1) in the kth
image projects to a ray P = (X,Y,Z) in camera coordinates as [21]:

P = R−1
k K−1

k p (3.9)

where Kk is the calibration matrix for the kth camera, Rk is the rotation of the kth camera
relative to the reference view. These equations are combined to obtain the mapping between
image points (x, y) and points on themanifold (ϑ, ν). Evidently, this method requires an esti-
mate of the camera calibration matricesKk. Amethod for estimating the internal parameters
of a rotating camera can be found in [65].

Another reprojection manifold is the spherical manifold. In a similar scheme to the cylin-
drical manifold, points in reference coordinate system may be parametrised in terms of
spherical polar coordinates. This kind of manifold was used by Szeliski and Shum [186].

Peleg et al. [140, 142] proposed the use of adaptive manifolds. To avoid distortions in the
mosaic they define a manifold projection which depends on the camera motion in the scene.
The rendered image is locally similar to the input images without the need for calibration.
Figure 3.2 illustrates some examples of adaptive manifolds in case of a pure translation of
the camera, a pure rotation of the camera and a combination of translation and rotation of
the camera.

(a) (b) (c)

Figure 3.2: Examples of adaptive manifolds [139]: a) a pure translation of the camera, b) a
pure rotation of the camera, and c) a combination of translation and rotation of the camera.
The projection is onto a smooth manifold passing through the centers of the image planes.
The camera (black point) is located at the top of the field-of-view cone, and the image plane
is marked by a bold segment.
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3.1.4 Moving Object Detection

If moving objects are not taken into account, ghost artefacts may appear as they are com-
bined with the background during blending. A common approach is to detect moving ob-
jects and exclude their pixels from the blending using outlier rejection schemes. An outlier
is defined as a region that has been occluded, an object that suddenly appears in one of the
images, or a region that undergoes unexpected motion.
The method of Eekeren et al. [198] detects moving objects by comparing a warped es-

timate of the background, Îbg(p) with the current frame I(p). To construct an initial back-
ground image, the authors assume that the first two frames of the sequence do not contain
moving objects. Then, the warped background estimate is subtracted from the current frame
and an residual image results:

Rbg(p) = I(p) − Îbg(p) (3.10)

The absolute value of each residual is compared with a threshold λ and is marked in the
mask O as moving object or as background:

O(p) =

{
1 if |Rbg(p)| > λ

0 otherwise
(3.11)

where 1 denotes a moving object and 0 the background.
The assumption that the first two frames do not contain moving object is restrictive and

it is generally not often hold for broadcast video. In addition, outlier rejection schemes
based on the pixel differences are known as not very robust as they strongly depend on the
accuracy of registration and the noise in the image. Therefore, other methods have been
proposed based on motion information.
The method of Irani and Peleg [76, 75] segments moving objects by first computing the

dominant motion between two images. Then, the image region having this motion has to be
determined. After registration the motion of the corresponding region is canceled and the
tracked region is stationary in the registered image. The segmentation problem reduces to
identifying the stationary region in the registered images.
An effective way of determining semantically significant residuals is to consider not only

the residual intensity but also the magnitude of local residual motions between the two
aligned frames. Thus, pixels are classified as moving or stationary using a local analysis
based on the weighted average of the normal flow magnitudes over a small neighbourhood
N (p) of each pixel p (typically a 3 × 3 neighbourhood). (The normal flow is the component
of the optical flow in the direction of the spatial gradient.) The weights are taken to be
‖∇I(p, k)‖2 [76]:

S(p, k) =

∑
pi∈N (p) |I(pi, k) − I(pi, k − 1)| · ‖∇I(p, k)‖

∑
pi∈N (p) ‖∇I(pi, k)‖2 + C

(3.12)

where I(k) and I(k−1) are the two registered frames and∇I(k) the spatial gradient of I(k).
The constant C is used to avoid numerical instabilities and to suppress noise.



3.1 – State of the Art 29

The reliability of the measure S at each pixel is determined by the numerical stability of
the two well-known optical flow equations [76]:

[ ∑
I2
x

∑
IxIy∑

IxIy
∑

I2
y

](
∆x

∆y

)
=

(
−∑ IxIt

−∑ IyIt

)
(3.13)

where for each pixel p the sum is taken over the neighbourhood N (p). Ix, Iy are the spatial
derivatives in x and y-direction and It is the temporal derivative of the image I .
The reliability R(p, k) is then expressed by the inverse of the condition number of the

matrix in (3.13):

R(p, k) =
λmin

λmax
(3.14)

where λmax and λmin are the largest and smallest eigenvalues, respectively.
In order to classify correctly large regions having uniform intensity, a multi-resolution

scheme is used as in low-resolution levels the uniform regions are small. First, all the pixels
at the lowest resolution level are initialised as unknown to be moving or stationary. Then,
for each pixel at each resolution level S and R are computed. If S is high (i.e. the pixel is
moving) or if it is low with highR (i.e. the pixel is stationary) then value S of the pixel at that
resolution level is set to the new value of S. Otherwise, if the local information available at
the current resolution level is not sufficient for classification, then the value S of the previous
lower resolution level is maintained.
This algorithm yields a continuous function, which is an indication of the magnitude of

the displacement of each pixel between the two images. Taking a threshold on this function
yields the partitioning of image into moving and stationary regions.
Then, the segmented objects are tracked along the image sequence. This is done by

temporal integration where for each object a dynamic internal representation image is con-
structed. This image is constructed by taking a weighted average of recent frames, registered
with respect to the tracked motion. This image contains after a few frames a sharp image of
the tracked objects, and a blurred image of all other objects. Each new frame in the sequence
is compared to the internal representation image of the tracked object. Figure 3.3 shows an
example of the object detection and tracking method of Irani and Peleg.
Kumar et al. [95] propose an overall algorithm for moving object detection and registra-

tion. Given two views of a general 3D scene and for arbitrary 3D motion, first a parametric
2Dmotionmodel is computed and then a 3D parallax motion field to align the two images. If
the majority of the image is aligned, the algorithm stops and unaligned areas are labelled as
moving objects, otherwise the motion parameters are refined. Unaligned areas are labelled
as moving objects. The test for alignment is accomplished by thresholding the magnitude of
the normal flow.
The method of Odobez and Bouthemy [130] takes advantage of a multiresolution frame-

work and an incremental scheme. It minimises a M-estimator criterion to ensure the goal of
robustness to outliers formed by the points corresponding to secondary motions or to areas
where the classical image motion equation used is not valid. The outlier rejection scheme is
based on the Tukey’s biweight function. The authors consider a six-parameter affine motion
model.
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(a) (b) (c) (d)

Figure 3.3: Detection and tracking the dominant object using temporal integration [75]: (a)
and (b) two frames of the sequence where both the background and the helicopter are mov-
ing, (c) the segmented object (background) using affine dominant motion computed between
the first two frames, (c) the segmented object after a few frames using temporal integration.

Sawhney andAyer [156] extend the approach [130]. The algorithm employs an automatic
computation of the scale parameter that is crucial in rejecting the non-dominant components
as outliers, in contrast to predefined schedules for scale used by [130]. Additionally to 2D
affine and plane projective motion models for describing image motion using direct meth-
ods, they employ a true 3D model of motion and scene structure with uncalibrated cameras.
Here, the M-estimator is based on the sum of squares function and the German-McLure
function. An example of the outliers rejection method of Sawhney and Ayer is shown in
Figure 3.4.

(a) (b) (c) (d)

Figure 3.4: Example of outlier rejection [156]: (a) One frame, (b) the difference without mo-
tion compensation, (c) the difference after compensating the dominant motion, (d) the outlier
mask. (Low differences are shown in white and high difference in black).

Hasler and Süsstrunk [66] propose a statistical outlier modeling scheme. First, the inliers
are modelled by a Laplacien distribution of the residuals (the registration error) in order
to discriminate outliers from inliers. Then, the two models are combined in an OutlierMix
model enabling to find the proportion of outliers and to compute for each pixel a probability
to belong to the inliers. Later, this method has been adopted by Zibetti and Mayer [205].
A different approach is that one of Shum and Szeliski [173]. Instead of detecting moving

object in the scene, they perform local alignment using optical flow after the global align-
ment.
However, the presented approaches work on raw video, but as we are working in the
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compressed domain. Thus, outlier rejection schemes based on motion information will not
give satisfying results for MPEG motion vectors as they are very noisy. Therefore, we use a
moving object detection method based on the work of Manerba [104] which we will present
in Section 3.2.3. This approach is based on an outlier rejection of P-frame motion vectors
and a color segmentation of I-frames that are merged together to extract moving objects in
I-frames.

3.1.5 Illumination Correction

Often illumination changes can be observed between the images of the same scene. Al-
though the registration is accurate, seams appear in themosaic due to photometric variations
across image boundaries. Traditional mosaicing methods tempt to eliminate such seams dur-
ing blending e.g. blending the different images using a Laplacien pyramid [17, 77]. However,
the original factors causing that boundary seams were not considered.

Recent methods focus on the correction of illumination conditions by modeling the illu-
mination changes. Pinel [144] and Nicolas [128] use a linear model of the luminance compo-
nent to correct illumination changes for each pair of images. Only the pixels at the contours
of the intersection of the two images are considered for the computation of the parameters
of the linear model as shown in Figure 3.5.

Figure 3.5: Region of the computation of the linear model for illumination correction [144].

The method of Capel [21, 24], referred to as photometric registration, considers two sources
of photometric difference: (i) automatic camera adjustments such as automatic gain control,
white balance or exposure, and (ii) illumination changes due to variation in the ambient light
level or daylight level, or due to relative motion between the scene and the light source. The
model treats each of the R, G and B colour channels independently. Within each channel, the
variation between two images is modelled as a linear transformation, having two parame-
ters: a multiplicative term ι and an additive term κ. The transformation can be written in
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vector from as [21]:
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 (3.15)

where (R1, G1, B1)
T is the pixel in the reference image and (R2, G2, B2)

T the pixel in the
image to be corrected.
After geometric alignment, the colours of the corresponding pixels in the two images

may be used to directly estimate the parameters of the colour transformation between them.
Treating each channel separately, the estimation procedure for ι and κ is clearly a simple
line-fit to the intensities of corresponding pixels (i1, i2). However, at many pixels, the dif-
ference in intensities, i1 − i2, cannot be explained by the linear photometric model. The
model-outliers arise from various sources: saturation at the low or high end of the pixel in-
tensity range, specularities or occlusions, shadows. Thus, its is important that the line-fitting
algorithm is robust to these outliers. To this end, Capel proposes in [21] to use the MSAC
(M-estimator SAmple Consensus) algorithm [192] which is a variation of the RANSAC algo-
rithm. Instead of counting the number of inliers, as RANSAC does, MSAC determines the
likelihood of the data given the proposedmodel parameters according to a simple robust M-
estimator. For each point the (i1, i2)n, the distance dn to the proposed line (ι, κ) is computed,
and the overall cost associated with the solution is given by [21]:

C =
∑

n

ρ(d2
n) (3.16)

where

ρ(d2) =

{
d2 if d2 < λd

λd otherwise
(3.17)

Capel chose the threshold λd as 1.96σ so that Gaussian inliers are only incorrectly classified
as outliers 5%, assuming that σ is around 5 “grey-levels”. In the final step, the parameters
are refined by performing orthogonal regression on the MSAC inliers.
Hasler and Süsstrunk [67] propose a method for colour correction between images that

were not captured under controlled conditions i.e. with varying white-point and exposure,
and unknown colour rendering algorithms. They assume that the camera performs for each
individual image an exposure and white balancing analysis, followed by a tone mapping
through the Opto-Electronic Conversion Function (OECF) that is constant for the image se-
quence.
The work of Kim and Hong [85] is close that one of Hasler and Süsstrunk [67]. Instead of

using only pairwise local relations as in [85], Kim andHong propose a global approach using
multiple images. The camera parameters and scene radiances are estimated simultaneously
in a single framework. In order to estimate parameters robust to outliers such as misaligned
pixels or moving objects in the overlapping region, they used a Huber-type skipped mean
estimator [60].
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Zhao [212] proposes a method to correct significant and complicated illumination
changes. He shows that existing robust estimation techniques that treat pixel intensity varia-
tion due to illumination changes as outliers do not offer a good solution in case of significant
illumination changes. Therefore, a shape-from-shading framework is proposed based on an
illumination model.

3.1.6 Blending

The final stage in the mosaic construction is to combine the images in their overlapping
regions. A simple approach is a temporal averaging of the intensity values of the aligned
images mentioned by Nicolas [129]. Then, the mosaicM is computed as:

M(p) = µ(p,K)

K∑

k=1

Î(p, k) (3.18)

where Î(p, k) are the aligned images and µ(p,K) = 1
|p| with |p| as the number of available

pixels at position p. This method is working well if the alignment is accurate and no moving
objects are present in the scene, otherwise burring and ghost artefacts may appear.
Instead, temporal median filtering can be used which tends to eliminate moving objects

which could appear blurred in the mosaic. Dupuy and Benois-Pineau [37] proposed a 1D
mosaicing approach, where the median filtering allowed for the removal of object. In the 2D
image domain the pixel values of the mosaic are given by:

M(p) = mediank=1,...,K(Î(p, k)) (3.19)

The use of median filtering is justified as the moving objects crossing a pixel represent
outliers in the sequence of background pixels. As the median filter is robust up to 50%
outliers, this is a simple and direct method of object removal. A drawback of temporal
median filtering is that it is computationally very expensive, requiring a sort operation for
every pixel in the mosaic image, which can become very expensive when large numbers of
overlapping images are involved.
Therefore, moving objects can be directly excluded from the blending by using outlier

rejection maps. Denoting Ob(k) as the outlier rejection maps, the blending can be done by a
temporal averaging as:

M(p) = µ(p,K)
K∑

k=1

Ob(k)Î(p, k) (3.20)

with

Ob(k) =

{
1 if p belongs to the background

0 if p belongs to a moving object
(3.21)

In fact, a pixel is only blended into the mosaic if Ob(k) = 1.
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Additionally, weighting functions may be associated with the input images. Capel [21]
mentions feathered blending where the weighting function decreases with the distance of a
pixel from the image center aiming at ignoring alignment inaccuracies near image bound-
aries. An example weighting function is a bi-quadratic function [21]:

f(x, y) =
(
1 −

(
x − w

2

))(
1 −

(
y − h

2

))
(3.22)

where w and h are, respectively, the width and height of the image. Further weighting
functions have been suggested by Nicolas [129] such as a weighting function that minimises
the temporal delay or that maximises the mosaic resolution.
A different approach is the cut and pastemethod of Peleg et al. [140, 142]. In order to avoid

blurring due to inaccurate alignment, only one of the input images is selected to represent a
region in the mosaic. Pixel values in the mosaic are taken from a single image whose center,
after alignment, is closest to the corresponding pixel as illustrated in Figure 3.6. The reasons
are that the alignment is usually better at the center than at the image borders and the image
distortion is minimal at the center of the images.

Figure 3.6: Cut and paste for mosaic blending [139].

Recently, super-resolution techniques have been used for mosaic blending by Mann and
Picard [106], Zomet and Peleg [215], Capel and Zisserman [22], and Altunbasak and Patti[4].
We will focus on super-resolution techniques in the Chapter 3.

3.2 Construction of Mosaics fromMPEG-1/2 Compressed Streams

Here, we present our approach for the construction of mosaics from MPEG-1/2 compressed
streams. In this work we address the problem in its totality. Taking compressed video as
input, the system has to produce the mosaic whatever is the complexity of the scene. Hence,
the overall method has to contain the following steps illustrated in Figure 3.7:

1. Data extraction: DC images and motion compensation vectors of P-frames are extracted
from the compressed stream. Aswe stated in Chapter 2, DC images are a source of low-
resolution signal (intra frame for I-frames or inter frame for P-frames). Macroblock
motion vectors of P-frames convey motion information. Thus, data extraction consists
in partial decoding of the stream to extract this data.

2. Registration: The motion compensation vectors are used in a motion estimation scheme
in order to register the DC images of I-frames in a reference coordinate system.
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3. Moving object detection: Based on the registration moving objects are detected in the
sequence of DC images of I-frames. This allows the removal of moving objects in order
to create a static background mosaic. Some objects can be reinserted in the mosaic
afterwards.

4. Illumination correction: The sequence of DC images of I-frames is illumination corrected
to reduce seams in the mosaic.

5. Blending: First, the registered and illumination corrected DC images of I-frames are
blended into a global frame excluding the detected moving objects to construct the
static background mosaic. Second, some objects are inserted in the mosaic.

6. Post-processing: In a last step, post-processing is applied to the mosaic in order to fill
holes due to the exclusion of objects in the blending, to remove eventual artefacts and
to obtain a more realistic object insertion.

In the following we will explain each of these steps.

Data
extractionstream

Compressed
Registration

Moving object
detection

PostprocessingMosaic Blending
Illumination
correction

Figure 3.7: Global scheme of the mosaic construction.

3.2.1 Data Extraction

The extraction of data from MPEG-1/2 compressed video is the first step in Figure 3.7. The
mosaic construction is mainly based on the use of DC images of I-frames as input sequence
for the mosaic construction. DC images of I-frames serve as input sequence for the mosaic
construction. P-frame motion vectors are used for the estimation of global motion. Further-
more, we use DC images of the encoded P-frame motion compensation error in a confidence
measure for the motion models estimated from P-frame motion. In the case of low-quality
MPEG motion vectors, we can decide based on this confidence measure, if a motion model
estimated from these vectors has to be corrected or not. As an alternative solution to the
correction, the motion models can also be reestimated using DC images of P-frames.
The extraction of (P-frames motion vectors, DC images of I-frames, DC images of the

motion compensation error of P-frames) is realised by the same MSSG decoder [121]. The
computation of DC images of P-frames and the data extraction were described in Section 2.2.
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3.2.2 Registration

In order to register the kth frame of the video sequence in the coordinate system of the
mosaic, a geometric transformation T(k, r) has to be defined from the kth frame of the
video sequence to the reference frame of the mosaic which is the rth frame in the se-
quence. We propose computing this transformation using motion information from the
compressed stream. As we use only I-frames for the mosaic construction, the geometric
transformation T(k, r) is the concatenation of pair-wise frame-to-frame global motion mod-
els θk,k−1, θk−1,k−2, . . . , θr+1,r in backward direction or θ−1

k,k+1, θ
−1
k+1,k+2, . . . , θ

−1
r−1,r in forward

direction. Taking into account the roughness of motion vectors in the compressed stream
and their sparseness along the time, the motion estimation scheme we propose comprises
three steps:

1. The estimation of backward global affine motion models for pairs of time-successive
frames where motion vectors are available in the compressed stream. These pairs are
I/P and P/P. For the sake of computational efficiency we use only primary motion
vectors of P-frames while B-frame motion vectors are skipped.

2. The interpolation of motion models, when motion vectors are not available i.e. for
P/I-pairs.

3. The correction or reestimation of low-quality motionmodels estimated from inaccurate
compressed motion vectors.

We will now explain the estimation of the global motion models using P-frame motion
vectors. To this end, we use the method proposed by Durik and Benois-Pineau [38].

Robust Motion Estimator for P-Frames

We consider two main types of motion in a scene: the motion of the objects and the global
motion of the scene content. The latter is principally due to the motion of the camera or to
the change of focus. Here, we are interested in global camera motion in order to define the
geometric transformations for the mosaic construction.
We use the six-parameter affine model to describe global camera motion. According to

[72], the approximation of instantaneous image motion of a general 3D scene can be approx-
imated by an 2D parametric motion model under the following conditions associated with
the scene geometry and/or camera motion: (i) the scene is planar, (ii) when the 3D scene is
sufficiently distant from the camera, or when the deviations from a planar scene surface are
small relative to the overall distance of the scene from the camera, (iii) the camera under-
goes a pure rotational motion or when the camera translation is negligible, (iv) the camera
zooms in or out. Nevertheless, in [38, 187] the six-parameter affine model is proved to be
sufficiently rich to characterise motion observed in an image plane of video. According to
this model, θ, the elementary motion compensation vector d = (dx, dy)

T at the pixel position



3.2 – Construction of Mosaics from MPEG-1/2 Compressed Streams 37

p = (x, y)T is expressed as:

d(p, θ) =

{
dx = a1 + a2(x − x0) + a3(y − y0)

dy = a4 + a5(x − x0) + a6(y − y0)
(3.23)

where a1, . . . , a6 are the global motion parameters of the camera, and (x0, y0)
T denotes the

reference point which is here the image center. In the case of MPEG motion prediction,
(x, y)T corresponds to the center of a macroblock in the current image. Then, the motion
compensation vector d points from the center of the macroblock to its position in the anchor
frame.
The motion estimator proposed in [38] is based on a multi-resolution scheme which uses

at each multi-resolution level a weighted least square estimation in order to minimise a ro-
bust functional of motion residuals (Tukey estimator [130]). The objective of the estimator is
to minimise the residuals r between the the MPEGmotion vectors d and their estimation d̂:

ri = di − d̂i (3.24)

A robust estimation is identical with a good outlier rejection scheme. This is not possible
by a hard limit rejection method. For this purpose the Tukey function is chosen. It is a cost
function which provides the possibility to minimise the residuals and to limit the influence
of the outliers continuously. The Tukey function ̺ is defined as:

̺(r, λ̺) =

{
r6

6 − λ2
̺r

4

2 +
λ4

̺r
2

2 if ‖r‖ < λ̺
λ6

̺

6 otherwise
(3.25)

with λ̺ as a threshold.
Then (3.25) is minimised by a classical weighted least square estimation. The influence

of the Tukey function is approximated by weights which are computed from its derivative.
Thus, the cost function can be written as:

∑

i

̺(ri) =
∑

n

1

2
wir

2
i (3.26)

A necessary condition for the minimisation is that the derivatives of the error measure
(3.26) with respect to each component aj of θ are null:

∑

i

̺′(ri)
∂ri

∂aj
=
∑

i

wiri
∂ri

∂aj
= 0, 1 ≤ j ≤ 6 (3.27)

The derivative of the Tukey function ̺′ is defined as follows:

̺′(r, λ̺) =

{
r(r2 − λ2

̺)
2 if ‖r‖ < λ̺

0 otherwise
(3.28)

The Tukey function and its derivative are depicted in Figure 3.8.
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Figure 3.8: The Tukey estimator: (a) Tukey’s biweight function ̺ and (b) its derivative ̺′

(λ̺ = 2).

Thus, the weights are given by:

wi =
̺′(ri)

ri
(3.29)

Based on a common formulation of the least square optimisation problem, the linear
model (3.23) can be written in general matrix form:

Z = Hθ + V (3.30)

where Z are the measured motion compensation vectors, H is the observation matrix con-
taining the macroblock centers, θ is the vector of the motion parameters and the vectorV is
the measurement noise. Then, the vector of the motion parameters can be estimated by the
weighted least squares estimation as:

θ̂ = (HT WH)−1HTWZ (3.31)

We denote N as the number of motion vectors. So, the matrices and vectors from (3.30)
and (3.31) are constructed in the following way:

θ̂ is the 6 × 1 column vector of the estimated parameters from (3.23):

θ̂ = (a1, a2, a3, a4, a5, a6)
T (3.32)

Z is the 2N × 1 column vector of the measures, here this are the MPEG compensation
vectors:

Z = (dx,1, . . . , dx,N , dy,1, . . . , dy,N )T (3.33)
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H is the 2N × 6 observation matrix:

H =




1 x1 y1 0 0 0
...
...

...
...
...

...
1 xN yN 0 0 0

0 0 0 1 x1 y1
...
...

...
...
...

...
0 0 0 1 xN yN




. (3.34)

W is the 2N × 2N diagonal matrix of the weights:

W =




w1 0 · · · · · · 0

0 w2
. . .

...
...
. . . . . . . . .

...
...

. . . w2N−1 0

0 · · · · · · 0 w2N




(3.35)

where wi are obtained by the derivative of the Tukey function (3.29).
The robust estimator incorporates three steps of outlier rejection. In the first step mac-

roblocks on the image borders and intra-coded macroblocks are rejected explicitly. The
MPEG motion estimation method does not provide good results for the macroblocks on
the image borders. Thus, the border rows and columns are excluded from the estimation.
In the case of intra-coded macroblocks the MPEG block matching algorithm did not find the
matching macroblock in the anchor picture. They are marked as intra-coded in the bitstream
and a zero motion compensation vector is encoded. It is important to reject them before the
estimation since the zero value of the motion vector does not mean that there is no motion
and thus tampers the estimated model.
The second step is an implicit outlier rejection in the multi-resolution process based on

the Tukey function. Vectors with weights (3.29) equal zero are rejected directly. Then, for the
remaining vectors the weights are recomputed and thresholded. If the weight of a vector is
smaller than a predefined threshold, the motion vector is rejected as an outlier. Then, the
remaining vectors are considered for the estimation 3.31. The weight expresses the accuracy
of a MPEG motion vector according to the estimated model.
According to [38], the constant λ̺ in the Tukey function (3.25) is chosen as follows:

λl
̺ =





∞ if l = 1

C̺ · σl if l = 2
C̺σl+λl−1

̺

2 otherwise

(3.36)

where σl is the standard deviation of the residuals at the multi-resolution level l, and C̺ is
a constant in the interval [2, 3]. At the lowest multi-resolution level all weights are set to 1.
This means that all vectors are accepted without outlier rejection for the first estimation of
the global motion model. This corresponds to an infinite value of the constant λ̺ in (3.25).
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In addition the motion vectors are separated into four groups. Two groups are created
separating dx and dy . Each of them is subdivided in two groups regarding if the estimated
vector is greater or smaller than the corresponding MPEG vector. This fine scheme allows
the efficient filtering of MPEG motion vectors of strong magnitude occurring in flat areas,
on occluding borders and in uncovered areas. For each group the σ value is different, that
is why they are processed separately in the outlier rejection scheme. This implies the com-
putation of four constants λ̺, one for each group. Finally, a motion vector is rejected as an
outlier if at least one of its coordinates is rejected.
The third step is an optional filtering of the outlier maps as they are very noisy after the

multi-resolution. Based on the assumption that a non outlier macroblock with a majority of
outliers in the neighborhood is likely to be an outlier too, a median filter is applied only to
non outlier macroblocks.
Figure 3.9 shows an example of the robust estimator. The first row shows a P-frame

(Figure 3.9(a)) and its anchor frame (Figure 3.9(b)) of the “Hiragasy” sequence (see Fig-
ure 3.27(c)). The extracted MPEG motion vectors are shown in Figure 3.9(c). We can no-
tice that they are very noisy, mainly on macroblocks belonging to the objects and the image
borders. Figure 3.9(d) shows the motion vectors obtained with the estimated motion model
which describes well the motion of the camera between the two frames. The corresponding
binary outlier rejection mask in Figure 3.9(e) was obtained by thresholding the weightswi of
the last multi-resolution level. Typically, we use a threshold equal 0.

Extrapolation of the Motion Parameters for I-Frames

In order to compute the geometric transformation from an I-Frame to the reference frame,
we compute the motion models for the I and P-Frames between them. However, the mo-
tion model for an I-Frame can not be estimated with the method presented above since it
is intra-coded. Hence, we propose to extrapolate the motion parameters from the previous
P-Frames. Here, the previous P-Frames means the P-Frames up to the last I-Frame i.e. we
consider the P-Frames in a GOP. The advantage of an extrapolation, on the contrary to an
interpolation, is that we can take into account the possibility of a strong change in motion
e.g. a shot boundary. In this case, the interpolation of a model for an I-frame would cause
an erroneous smoothed motion as illustrated in Figure 3.10.
We extrapolate each motion parameter aj , 1 ≤ j ≤ 6, of the affine model (3.23) separately

by a linear regression. The linear regression problem for the extrapolation of the motion
parameters at I-frames is formulated as follows. Assuming that the time between succes-
sive I-frames is short enough to consider continuous and linear motion, we approximate a
straight line for each set of motion parameters aj(q), 1 ≤ q ≤ Q, in a GOP with Q as the
number of P-frames in the GOP. Thus, we suppose that for each motion parameter aj the
following linear model is satisfied:

aj(q) = γj + ηj · q (3.37)

with γj , ηj as the parameters of the straight line for the jth motion parameter. According to
this model, the predicted motion parameter for the I-frame corresponds then to aj(Q + 1)
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(a) (b)

(c) (d)

(e)

Figure 3.9: Global motion estimation for a P-frame of the “Hiragasy” sequence
CERIMES-SFRS R© : (b) The P-frame, (a) its reference frame, (c) the encoded MPEG motion
vectors, (d) the motion vectors consistent to the estimated motion model, (e) the outlier map
(outliers are marked in white).
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Figure 3.10: Extrapolation versus interpolation in the case of a strong motion change on an
I-frame: the black arrow corresponds to the extrapolated motion model and the grey arrow
corresponds to the interpolated motion model.

This assumption of a linear camera model is reasonable as it is restricted to only one GOP
which is usually of 0.5 seconds duration. Furthermore, we assume that the camera motion
along the whole sequence can be approximated by a piecewise linear model.
To estimate the parameter vector lj = (γj , ηj)

T , we use aweighted least square estimation
similar to Equation (3.31):

lj = (HT
l WlHl)

−1HT
l WlZl,j (3.38)

Zl,j is the Q × 1 column vector of the measures:

Zl,j = (aj(1), · · · , aj(Q − 1), aj(Q))T (3.39)

Hl is the Q × 2 observation matrix according to the time line of the measures:

Hl =




1 1
...

...
1 Q − 1

1 Q




(3.40)

Wl is the Q × Q diagonal matrix of the weights:

Wl =




wl,1 0 · · · · · · 0

0 wl,2
. . .

...
...

. . . . . . . . .
...

...
. . . wl,Q−1 0

0 · · · · · · 0 wl,Q




(3.41)

The objective of the weights wl,q is to counterbalance inaccurate MPEG encoder motion esti-
mations. Therefore, we use the encoded motion compensation error of P-frames. In fact, if
the motion estimation of the MPEG encoder was inaccurate the motion compensation error
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is strong, if it was accurate this error will be weak. This behaviour can be observed by calcu-
lating the mean low frequency energy of the motion compensation error. Thus, we use the
DC image of the motion compensation error for the mean low frequency energy computa-
tion.
Let us denote DCerr(q) the DC image of the motion compensation error for the P-frame

at time q. For its computation we consider only inter macroblocks that are consistent with
the estimated motion model, so called motion inliers, otherwise the macroblocks are likely
to belong to a moving object. Thus, the mean low frequency energy E is:

E(q) =
1

|D(q)|
∑

p∈D(q)

DCerr(p, q)2 (3.42)

where D(q) is the set of pixels in the DC image corresponding to motion inliers in the qth
P-frame and |D(q)| its cardinality.
Then, E is used as a confidence measure for the accuracy of the motion model estimated

from the MPEG motion vectors and we introduce it in the weight computation:

wl,q =
1

E(q)
(3.43)

The weights are then normalised in [0, 1] as:

wl,q =
wl,q

maxj=1,...,Q wl,j
(3.44)

The model of Equation (3.37) requires at least two measures, i.e. two P-frames, in order
to approximate a straight line. It can happen that less P-frames are available due to frame
loss or an unusual encoding. If only one P-frame is available, a solution might be to repeat
its motion. If no P-frame is available, zero motion might be used. These situations have to
be detected when the MPEG stream is parsed. Nevertheless, this approach seams too much
simplified, since in the case of mosaicing the frame superposition is most likely not accurate
enough. A more appropriate solution is to reestimate motion e.g. using the method we will
present below.
Figure 3.11 shows two examples for the extrapolation of a motion parameter in the GOP

according to (3.37). The GOP structure in the sequence is IBBPBBPBBPBBPBB with
four P-frames. The measures in Figure 3.11(a) are noisy with varying weights. The motion
parameter of the third P-frame holds the smallest weight i.e. the MPEG encoder motion esti-
mation was quite inaccurate, thus its influence to the straight line is weak. In Figure 3.11(b)
only one measure, that one of the second P-frame, differs. Its MPEG encoder motion estima-
tion was very inaccurate and the weight is close to 0. Thus, this measure has no influence to
the straight line which finally interpolates the other accurate measures.
We are aware that in this analysis of quality of motion estimation we do not consider

the number of intra-coded macroblocks in the stream. Our assumption is that intra-coded
macroblocks are really outliers in the motion estimation process and that at least some intra-
coded block are available.
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Figure 3.11: Extrapolation of the motion parameters in a GOP: The graphs (a) and (b) show
respectively an example of a linear regression straight line for a motion parameter. x = 5

corresponds to the predicted value.

Motion Correction for P-Frames

It is very important to exactly superimpose the images in mosaicing methods, otherwise
ghost artefacts can appear. To obtain an exact superposition we need very accurate motion
models in the computation of T(k). As stated above, the DC error energy E of a P-frame
(3.42) is an indicator of the quality of the MPEG motion compensation and thus of the esti-
mated model (3.31). If E is high for a P-frame, the motion model θ̂ is most likely erroneous
and needs to be corrected. In the linear regression of Equation (3.38), we use E as a con-
fidence measure for the accuracy of the motion model estimated from the MPEG motion
vectors. Here, we use it as well for the decision if a motion model of a P-frame has to be
corrected or not. The correction means that the values of the motion parameters obtained
from encoded motion vectors (3.31) will be abandoned and replaced by the values on the
straight line (3.37).
We propose a decision rule based on the online mean value of E in the sequence:

if E(t) >
CE

t

t∑

τ=0

E(τ) then aj(t) = γj + ηj · q (3.45)

where CE is a constant, and q the position of the current P-frame in the GOP. We determined
experimentally the value of CE which is usually in the range [1, 5] depending on the char-
acteristics of the sequence. This decision rule means that if the error energy of the current
image varies significantly with respect to the mean value, then the encoded motion vectors
were not accurate and the estimated motion model has to be corrected.

Motion Reestimation for P-Frames

The motion correction presented above is insufficient if a strong motion change occurs. To
this end, we propose reestimating the motion by the gradient descent method. The objective
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thereby is to estimate the motion vector field that minimises the error between the motion
compensated image using this motion vector field and the image itself. We minimise this
error in theDC domain using theDC image of the P-frame instead of the completely decoded
frame.
In this work, we follow the region-based motion estimation of Wu [204]. Indeed, the

low-resolution DC image can be considered as a region of dominant motion, that one of
the camera. Consequently, we consider only motion inliers to obtain a region of dominant
camera motion in the DC image. This method was developed in the Master thesis [52]. In
the following, we present this method to estimate the affine six-parameter model.
The error criterion to be minimised is the mean square error (MSE) computed on the

motion inliers (following the global camera motion):

MSE(t) =
1

|D(t)|
∑

p∈D(t)

DFD(p,d)2 =
1

|D(t)|
∑

p∈D(t)

(I(p, t) − I(p + d, t − 1))2 (3.46)

with DFD as the displaced frame distance, p = (x, y)T a pixel and d = (dx, dy)
T the associ-

ated motion vector consistent with the model (3.23).
Denoting θ̃ = (a1, . . . , a6)

T as the parameter vector of the motion model to estimate, it
will be optimised for the DC frame (excluding motion outliers) in order to obtain the optimal
motion compensation vectors d(θ̃). We estimate θ̃ by the iterative gradient descent scheme:

θ̃i+1(t) = θ̃i(t) − M

2 · |D(t)|G
i (3.47)

with

Gi =
∑

p∈D(t)




∂
∂a1
DFD(p,di)2

...
∂

∂a6
DFD(p,di)2


 (3.48)

where Gi is the vector of gradients of the error function (3.46), θ̃i(t) is the estimation of the
parameter vector at the ith iteration, di is the optimised motion vector with respect to θ̃i(t),
andM is the gain matrix related to θ̃i(t).
DevelopingGi we obtain:

∂

∂aj
DFD(p,di)2 = 2 ·DFD(p,di) · ∂

∂aj
DFD(p,di), 1 ≤ j ≤ 6 (3.49)

Using the definition of the DFD:

∂

∂aj
DFD(p,di) = − ∂

∂aj
I(p + di, t − 1)

= − ∂

∂x
I(p + di, t − 1) · ∂

∂aj
(x + dx)

− ∂

∂y
I(p + di, t − 1) · ∂

∂aj
(y + dy) (3.50)
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Since the motion compensation vectors are a function of the parameters aj , Gi can be
expressed explicitly. Assuming that:

∂

∂x
I(p, t − 1) = ∇Iy(p, t − 1)

∂

∂y
I(p, t − 1) = ∇Ix(p, t − 1) (3.51)

where∇Ix and ∇Iy are respectively the spatial gradients in x and y-direction.
Then, we obtain:

∂

∂a1
DFD(p,di) = −∇Ix(p + di, t − 1)

∂

∂a2
DFD(p,di) = −(x − x0) · ∇Ix(p + di, t − 1)

∂

∂a3
DFD(p,di) = −(y − y0) · ∇Ix(p + di, t − 1)

∂

∂a4
DFD(p,di) = −∇Iy(p + di, t − 1)

∂

∂a5
DFD(p,di) = −(x − x0) · ∇Iy(p + di, t − 1)

∂

∂a6
DFD(p,di) = −(y − y0) · ∇Iy(p + di, t − 1) (3.52)

Finally, Equation (3.47) can be expressed as:

θ̃i+1(t) = θ̃i(t) − 1

|D(t)|
∑

p∈D(t)

M ·DFD(p,di) ·Fi (3.53)

with

Fi = −




∇Ix(p + di, t − 1)

(x − x0) · ∇Ix(p + di, t − 1)

(y − y0) · ∇Ix(p + di, t − 1)

∇Iy(p + di, t − 1)

(x − x0) · ∇Iy(p + di, t − 1)

(y − y0) · ∇Iy(p + di, t − 1)




(3.54)

The gain matrixM is that of Cafforio [127]:

M =
1

‖∇Ix(p + di, t − 1)‖2 + ‖∇Iy(p + di, t − 1)‖2 + C2
M




ε1 0 0 0 0 0

0 ε2 0 0 0 0

0 0 ε3 0 0 0

0 0 0 ε4 0 0

0 0 0 0 ε5 0

0 0 0 0 0 ε6




(3.55)
with CM as a constant depending on the noise, and ε1, ε6 = 0.1 and ε2, ε3, ε4, ε5 = 0.001. We
chose the gain values of the translational parameters higher than these of the affine param-
eters in order to obtain a fast convergence of the method. This can be explained by the fact
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that a1, a4 represent directly pixel displacements, while the others represent ratios and have
typically very small values.
As the gradient descent method is very likely to converge to a local minimum and not to

the global minimum, depending on the initial values of θ̃0, we use the motion parameters of
the straight line (3.37) as a first approximation to θ̃. Thus:

θ̃0 = (γ1 + η1 · q, γ2 + η2 · q, γ3 + η3 · q, γ4 + η4 · q, γ5 + η5 · q, γ6 + η6 · q)T (3.56)

where γj , ηj are the parameters of the straight line to approximate aj , and q is the index of
the current P-frame in the GOP.
The algorithm stops either if a fixed number of iterations is achieved (i = 6 in our case)

or if the following error criterion is satisfied:
∣∣MSEi −MSEi−1

∣∣
max

(
MSEi,MSEi−1

) < 0.1 (3.57)

Figure 3.12 shows the MPEG motion vectors and the motion vectors after the correction
for a frame extracted from a zoom sequence in the TRECVID 2005 video data. The MPEG
compensation vectors (Figure 3.12(e)) are very noisy, so that the robust global motion es-
timator can not fit an appropriate motion model and detects a static camera, although the
zoom can be clearly observed in the difference image Figure 3.12(d). Using the decision rule
from Equation (3.45) with CE = 4.0, we detect this erroneous motion model and correct it.
The motion vectors obtained with the corrected model are shown in Figure 3.12(f) which
correspond to the observed zoom.

Concatenation of Motion Models in a Global Geometric Transformation

When the motion models have been calculated for the sequence, they need to be inverted
depending on the choice of reference frame and then concatenated in order to obtain the ge-
ometrical transformationT(k, r) from the kth frame to the coordinate system of the reference
frame, the rth frame.
When compensating by motion the kth frame for mosaic construction, we use motion

compensation vectors pointing from the mosaic into the kth frame. This avoids holes in
the mosaic as for each pixel position in the mosaic a pixel value is available pointed by the
motion vector.
The estimatedmotionmodels are computed at macroblock basis and thus expressmotion

at full-resolution of the video. Thus, for the use on DC images, the motion models have to
be scaled. As the estimated motion models are backward, the motion compensated position
of a pixel p of the kth frame in the previous frame is according to (3.23):

p̂(p, k − 1) = p− z ·T(k) + A(k)p (3.58)

with

T =

(
a1

a4

)
and A =

(
a2 a3

a5 a6

)
(3.59)
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Figure 3.12: Example of reestimating a motion model for a P-frame: (a) and (c) the first and
last frame of the zoom sequence, (b) the P-frame with an erroneous motion model, (d) the
difference image of (b) and is reference frame, (e) theMPEGmotion compensation vectors of
the frame (b), (f) the motion compensation vectors after the motion correction of the frame
(b). This sequence was extracted from the TRECVID 2005 corpus for low-level feature ex-
traction.



3.2 – Construction of Mosaics from MPEG-1/2 Compressed Streams 49

where T is the matrix of the translational parameters of the motion model, A is the matrix
of the affine parameters of the motion model, and z the scale factor of the model model. In
order to scale the full-resolution motion models to the DC domain z has to be chosen as 1/8.
Depending on the choice of the reference frame, the motion models of the image in the

future of the reference frame have to be inverted before concatenating them in the geometri-
cal transformation. The forward motion vector pointing from the image at time t − 1 to the
image at time t can be obtained from the backward motion model as:

p̂−1(p, t − 1) = (A(t) + E)−1(p − T(t)) (3.60)

where E is the identity matrix.
Finally, the geometrical transformation of the kth image to the rth frame, the reference

frame, can be computed as:

T(p, k, r) =





p̂−1(. . . p̂−1(p̂−1(p, r + 1), r + 2), . . . k) if k > r

p̂(. . . p̂(p̂(p, r), r − 1), . . . k) if k < r

p if k = r

(3.61)

The color value of the decimal position in the frame is bilinearly interpolated similar to
Equation (2.14). In the following, we will use the notation T(k) instead of T(k, r) in cases if
the choice of the reference frame can be neglected.

Comparison with Other Motion Estimation Tools

In order to assess the performance of ourmotion estimationmethodwith respect to common
methods, we chose:

• Motion2D: The Motion2D software [113] estimates 2D parametric motion models be-
tween two successive images. It can handle several types of motion models includ-
ing the six-parameter affine model. The estimation method is based on a robust
multi-resolution scheme where an error functional is minimised using an iterative
reweighted least square method.

• Proesmans+LSF: We used the implementation of Proesmans’s et al. optical flow al-
gorithm [146] which is available at [131]. This is essentially a multi-scale, anisotropic
diffusion variant of Horn and Schunk’s algorithm. In [110], it is shown that this al-
gorithm performs well in comparison to common optical flow estimation algorithms.
Afterwards, we calculate a least square fit (LSF) of the motion vectors to determine the
corresponding six-parameter affine model.

In order to compare the performance of our method in the compressed domain with the
twomethods for raw video, we compute theMSE ofmotion compensations with each model
on the decoded full-resolution frames. We compute the MSE only on the luminance compo-
nent as this is the case in standard motion estimation approaches. Here, motion compensa-
tion is performed at temporal I/P-resolution. Figure 3.13 visualises the graphs of the MSE
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Figure 3.13: Mean square error (MSE) of the motion compensation error for 35 I/P-Frames
of the sequence “Tympanon”, respectively, without motion compensation (MSE0), for the
GME, Motion2D and Proesmans+LSF motion estimation.

without motion compensation (MSE0) and with motion compensation for the three methods
respectively versus the frame number. As it can be seen from Figure 3.13 GME which uses
motion vectors from the MPEG stream and a correction of the motion model gives on aver-
age the same quality as Motion2D in the pixel domain. As both of them are based on a robust
estimator of Tukey [130] and so incorporate an outlier rejection scheme, they outperform the
Proesmans+LSF method. In this experiment, we chose CE = 1.25 for the motion correction
(3.45) whereas 3 of 35 frames have been corrected. In all cases we obtain a lower MSE with
the model correction than without it.
The comparison of the motion parameter values in Figure 3.14 shows that GME and

Motion2D estimated parameters are very close. Some discrepancies are observed for the
motion parameters a1 and a4. For a1 the frames 5, 15, 25 and 30 and for a4 the frames 5, 15,
and 20 are concerned. These frames are I-Frames where the motion has been extrapolated.
In contrast to this, Proesmans+LSF shows some noisy values, but the principal difference
appears in the parameter a4 which describes the vertical movement of the camera. Its value
never exceeds 15 pixels, whereas GME andMotion2D show values higher than 20. Although
we used 4 multi-resolution levels like for Motion2D, this method seems to be limited in case
of large camera motions.
These experiments show that the use of MPEG motion vectors is justified despite their

noisiness. The time figures are strongly in favor of GME. Without counting the decoding
time it takes 0.615 seconds for processing 60 I/P-Frames with respect to 21.664 seconds
for Motion2D, and 75 minutes for Proesmans+LSF. These times were measured on an In-
tel Pentium 4 3.00GHz processor on the sequence “Tympanon” CERIMES-SFRS R© (see Fig-
ure 3.27(a)). This ratio of computational time is typical for other sequences we processed.
As illustrated in Figure 3.7 our mosaicing method consists of several steps. A method for

the registration of the image of the sequence fromMPEG-1/2 compressed video was shown
above. Then, in the next section, we present a method for the extraction of moving objects in
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Figure 3.14: (a)–(f) Graphs of the motion parameters aj for the GME, Motion2D and Proes-
mans+LSF motion estimation, respectively, for the sequence “Tympanon”.
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the sequence which is the next step in Figure 3.7.

3.2.3 Moving Object Detection

As shown in Figure 3.15 ghost artefacts can appear when moving objects are not excluded
from the mosaic blending. The sequence of DC images corresponding to this mosaic is
shown in Figure 3.27(c). Thus, the second step of the mosaic construction (see Figure 3.7) is
the detection of moving objects in the video sequence. The objective hereby is to avoid ghost
artefacts by introducing masks in the blending process defining if a pixel will contribute to
the mosaic or not. We describe below how these masks are obtained.

Figure 3.15: Mosaic with ghost artefacts when moving objects are not excluded from the
blending for the sequence “Hiragasy”.

Methods presented in literature exclude moving objects from the blending based on out-
lier rejection schemes. Intensity residual based schemes compare typically the current frame
with a warped background image. For instance, the method proposed in [198], detects mov-
ing object by subtracting a warped background image from the current frame (see Equa-
tion 3.11). To construct an initial background image, the authors assume that the first two
frames of the sequence do not contain moving objects. This is a very restrictive assump-
tion and it is not often hold for broadcast video. Thus, we consider using a method based
on motion vectors, namely motion vectors extracted from the compressed stream. This has
two drawbacks. The encoded motion vectors are very noisy so that a simple outlier rejec-
tion scheme would not give satisfying results, e.g. see Figure 3.9 (outlier borders are not
really objects). We need to detect moving objects at I-frame basis, but no motion vectors
are available in the compressed stream for I-frames. Therefore, we propose using a moving
object detection based on Manerba [104]. This method combines a motion analysis and out-
lier rejection of P-frame motion vectors with a color segmentation of I-frames. Finally, the
color and motion information are merged together at I-frame basis to extract the foreground
objects. The reader can find more details in [104]. Here, we resume briefly the method.
The method [104] uses the same robust motion estimator (see Section 3.2.2) to extract

macroblocks with local motion. They are characterised in Equation (3.31) by weights equal
or close to zero. Thus, when thresholding theseweights a binarymask of outliermacroblocks
is obtained as shown in Figure 3.9(e). In this example some outliers appear on the top border
in direction of the camera motion (a tilt up). These outliers correspond to new macroblocks
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entering into the frame, thus there are no corresponding macroblocks in the reference frame
and noisy motion vectors result in this region as other macroblocks are referenced. In order
to filter the outliers on the frame border, the estimated camera motion model θ is used. By
warping the anchor frame onto the current frame, the geometry of the region entered into
the frame can be determined. If outliers are present in this region, they are assumed to be
caused by the camera motion and are not further considered for the object mask.
Repeating this for each P-frame in the shot a first guess of objects in each P-frame results.

As each mask is obtained independently from the others, they remain noisy in time. There-
fore, a 3D filtering is applied to smooth the detection along the time. A 3D volumetric mask
of a GOP is constructed. Then, 3D morphological filtering is applied in order to eliminate
noise, i.e. isolated macroblocks that, although following the global motion, do not represent
a foreground object. Once noise and outliers due to camera motion have been filtered out, a
3D region growing algorithm is applied in order to smooth the object mask along the time.
The extracted motion masks for P-frames are a good guess of the object shape in P-

frames, but this is not sufficient for a robust object extraction. Therefore, this information
is merged with a color segmentation of DC images of I-frames. As motion masks are only
available for P-frames, the motion mask OM for an I-frame is obtained by spatially interpo-
lating the motion masks of the neighbouring P-frames:

OM(x, y, t) = min(D.OM(x, y, t − 1),D.OM(x, y, t + 1)) (3.62)

where D is the morphological dilation operator with a 4-connected structural element of
radius 1. In this way the approximate position and shapes of the objects in the I-frame are
obtained.
Using the color information of DC images of I-frames, the object shapes can be refined. A

prefiltering using a partial reconstruction filter is applied to the DC images in order to reduce
the noise in the DC image. In [104], a morphological color segmentation was developed, but
it tends to oversegment the images. Therefore, it was replaced by the hierarchical color
segmentation method of Fuh et al. [50]. A result of the color segmentation is shown in
Figure 3.16.

(a) (b)

Figure 3.16: Result of the color segmentation of a frame of the sequence “Comportements1”:
(a) a DC image, (b) the obtained segmentation for this image.

If the motion mask of the I-frame is superimposed with the color segmentation, it hap-
pens that a region of the color segmentation is not completely included in the motion mask.
If the ratio of the pixels of a region included in the mask with respect of the total number of



54 Chapter 3 – Construction of Mosaics from the Compressed Stream

the pixels in the same region exceeds a threshold, typically 80%, the whole region is consid-
ered to be a part of the object.
Once the objects are extracted, it is often necessary to delete flat zones belonging to the

background. In these zones the MPEG motion estimation typically fails and noisy motion
vectors result. Thus, macroblocks belonging to a flat region are likely to be associated with
motion vectors that do not follow the camera motion and so are erroneously detected as
moving objects. As these zones are characterised by a very low color gradient, the average
gradient energy of the region per macroblock is used to eliminate such false detections. If
the average gradient energy drops below a predefined threshold the region is declared as a
flat zone and is excluded.
Due to the low resolution of the frames or the lack of relative motion between the camera

and the objects, detection errors may occur. In order to avoid miss-detections the results of
neighbouring frames can be taken into account to filter the objects along the time. Therefore,
objects are tracked along the sequence of I-frames. To do this, motion is estimated for each
detected object in the current I-frame and then forward projected onto the succeeding I-
frame. This projection is performed recursively along the P-frames between them.
The object is assumed to undergo affine motion described by Equation (3.23). Themotion

model for an object in a P-frame is obtained by a least square estimation using the encoded
MPEG motion vectors of macroblocks belonging to the object:

θ̂O = (HT
OHO)

−1
HT

OZO (3.63)

The vector ZO is formed by the MPEG motion compensation vectors of the object, HO are
the corresponding macroblock centers, and θ̂O is the same backward six-parameter affine
model describing the object motion. In order to estimate a motion model for I-frames, in
[104] an interpolation of the parameters of the neighbouring P-frames was proposed. Here,
we extrapolate the motion parameters of the P-frames in the previous GOP by a least square
estimation (similar to Equation (3.38), but the weights are set to 1).
Then, the motion models are inverted and the object is recursively forward projected. If

the projection result overlaps with a detection of the succeeding I-frame, the object is identi-
fied for the considered pair of frames. In this way, the object labels are propagated, starting
from the first I-frame, along the sequence establishing a correspondence between the same
object in different frames.
Under the assumption that an object can not appear and disappear during a short se-

quence of frames, the sequence of objects at temporal I-frame resolution is filtered in time in
order to find the object even if the motion based detection failed. Using the reconstructed
object trajectory the shape of an object can approximated by a conic function in the frames
where the object was not detected. Therefore, a kind of tube is reconstructed where each sec-
tion provides the object position in the frame along the time. Using the assumption that the
object trajectory is linear, the tube is represented by a quadric function in a three dimensional
space (2D + t):

ν11x
2 + ν22y

2 + ν12t
2 + ν12xy + ν13xt + ν23yt + ν14x + ν24y + ν34t + ν44 = 0 (3.64)
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with νij as the parameters of the quadric.
Finally, merging the color and the cross section of the tube the object shape can be ob-

tained. An example is shown in Figure 3.17. The labels of the two persons are propagated
along the sequence. Even after the lost of the persons in the sixth and seventh frame, the
persons are identified in the eighth frame. The shapes of the lost objects for the sixth and
seventh frame are approximated by the tube.

(a)

(b)

(c)

(d)

Figure 3.17: Results of the moving object detection: (a) The sequence of DC images of
I-frames “Aquaculture1” extracted from the documentary “Aquaculture en méditeranée”
CERIMES-SFRS R©, (b) the object masks after the tracking, (c) the reconstructed tube, (d) the
objects approximated by the tube.

The resulting object label masks Ol are of the form:

Ol(p) =

{
l if p belongs to a moving object

0 if p belongs to the background
(3.65)

where l > 0 is the label of the object.
Thresholding these masks, we obtain a characteristic function of the background:

Ob(p) =

{
1 if p belongs to the background

0 if p belongs to a moving object
(3.66)

These mask will be used in the following to exclude moving objects in the illumination cor-
rection and in the blending.
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3.2.4 Illumination Correction

Illumination changes in the image sequence can be due to different viewing points of the
scene, a change of global illumination conditions of the scene, occlusions between the scene
and the lighting source and the sensor characteristics. This can cause seems in the mosaic
at the image borders and the region where moving objects have been excluded (e.g. see
Figure 3.22(d)). Hence, illumination correction is the third step in Figure 3.7.
We assume a linear model for illumination changes between two images like in [144, 128].

Assuming that the kth frame in the sequence is corrected with respect to the rthe frame, the
linear model is:

Y(k) = ι · Y(r) + κ (3.67)

whereY denotes the luminance component of the image, and ι and κ are the parameters to
adjust contrast and brightness. This is in contrast to [21] where a linear model for the RGB
components is assumed (see Equation (3.15)), but considering only the luminance compo-
nent is more robust.
In [144, 128] only the pixels at the contours of the intersection of the two images are

considered for the computation of the parameters ι and κ as shown in Figure 3.5. In the case
of DC images which are of very small size this number of pixels might not be sufficient for
a robust estimation. Thus, we consider the entire intersection. The main problem here is
to exactly superimpose the two images as the linear model is very sensitive to estimation
errors. First, moving objects can not be superimposed by the estimated model. Second, due
to the strong aliasing of DC images, edges and textures may not be superimposed exactly
even if the geometric transformation is accurate. Therefore, we need a robust estimation
scheme with an efficient outlier rejection. To realise this:

• We reject in advance pixel correspondences belonging to moving objects.

• We reject in advance pixel correspondences belonging to edges and textures.

• We use a weighted least square estimation with an outlier rejection based on the Tukey
function similar to that of the motion estimation.

Let p̂ = (x̂, ŷ) be the motion compensated coordinates of the pixel p obtained through
the geometric transformation T(k, r). Then, the intersection of the imagesY(k) and Y(r) is
given by:

Y∩ = {(pi, p̂i) | pi ∈ Y(k) & p̂i ∈ Y(r)} (3.68)

We use the background function of Equation (3.66) to exclude pixel correspondence be-
longing to moving objects. We obtain:

Y∩,O = {(pi, p̂i) | pi ∈ Ob(k).Y(k) & p̂i ∈ Ob(r).Y(r)} (3.69)

where Ob(k) and Ob(r) define, respectively, the background of the kth and rth image.
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In order to determine if a pixel p ∈ Y(k) corresponds to an edge or texture in Y(r), we
compute the norm of Roberts gradient as:

‖∇rY(p̂, r)‖ = |Y(⌊x̂⌋, ⌊ŷ⌋, r) − Y(⌈x̂⌉, ⌈ŷ⌉, r)| + |Y(⌊x̂⌋, ⌈ŷ⌉, r) − Y(⌈x̂⌉, ⌊ŷ⌋, r)| (3.70)

with ⌊·⌋ as the floor and ⌈·⌉ as the ceil operator.
By thresholding the norm of the Roberts gradient, the pixel correspondences belonging

to edges or textures can be determined. Excluding them we obtain:

Y∩,O,∇ = {(pi, p̂i) | pi ∈ Ob(k).Y(k) & p̂i ∈ Ob(r).Y(r) & ‖∇rY(p̂i, r)‖ < λ∇} (3.71)

with λ∇ as the threshold. We choose λ∇ = 12.75 which corresponds to 5% of the grey level
range. Based on this reduced pixel set we can now define our robust estimation.
We use a weighted least square estimation to estimate the vector L = (ι, κ)T:

L = (HT
LWLHL)−1HT

LWLZL (3.72)

DenotingN = |Y|∩,O,∇ as the number of pixels in the restrained intersection set, the matrices
and vectors are constructed as:

ZL is the N × 1 column vector of the measures:

ZL = (Y(p0, k),Y(p1, k), · · · ,Y(pN−1, k))T (3.73)

HL is theN × 2 observation matrix:

Hl =




Y(p̂0, r) 1

Y(p̂1, r) 1
...

...
Y(p̂N−1, r) 1




(3.74)

where the luminance valueY(p̂i, k) is obtained by bilinear interpolation.
WL is theN ×N diagonal matrix of the weights as in Equation (3.35) where the weights

are computed by the derivative of the Tukey function as defined in Equation (3.28):

wL,i =
̺′(rL(pi), λ̺)

rL(pi)
(3.75)

with λ̺ = 5. We determined its value experimentally. Here, the residuals are:

rL(pi) = Y(p, k) − (ι ·Y(p̂i, r) + κ) (3.76)

In order to obtain a first guess of ι and κ, we compute a least square estimation i.e. all the
weights are set to 1. Then a weighted least square estimation is performed using the weights
as defined in Equation (3.75).
Despite the robust estimation scheme, small estimation errors may appear as the model

of Equation (3.67) may be violated due to noise. In order to test the performance of this
method, we created the test images of Figure 3.18 with ι = 1 and κ = 40. Our first test
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was to shift the image of Figure 3.18(b) in order to simulate aliasing and registration er-
rors. The graphs of the estimated parameters ι and κ for different shift sizes are shown in
Figures 3.19(a) and 3.19(b). We observe that for a shift size greater than 1, the parameter ι de-
creases and the parameter κ increases obtained by the least square estimation. This, means a
reduced contrast at the expense of a high brightness offset. Nevertheless, the aberrant values
are rejected in the weighted least square estimation and the correct values of ι and κ result.
In this example, we obtain a robustness of the method until a shift size of 4.5. For shift sizes
lager than 4.5 the matrixHT

LWLHL is not invertible as all the weights are near zero.

(a) (b) (c)

Figure 3.18: Test images for the luminance correction: (a) and (b) the test images, (c) result
of the luminance correction of (b) after adding noise of the variance 0.001.

The second test consist in adding noise to both test images (Figures 3.18(a) and 3.18(b)).
The graphs of Figures 3.19(c) and 3.19(d) show, respectively, the values ι and κ for different
noise variances. We observe that the obtained results are very close for the least square esti-
mation and the weighted least square estimation. ι decreases and κ increases as the imaging
model is violated by the noise. Nevertheless, for small noise variances the estimation error
is small and the difference is not perceptible. This can be observed in Figure 3.18(c) which
shows the luminance corrected image for a noise variance of 0.001.
Considering now an image sequence that has to be corrected, there is the question about

the reference image for illumination correction. If the image sequence is long, generally there
is no intersection of all images of the sequence. One possibility is to choose one reference im-
age and then to correct recursively the neighbouring frames as illustrated in Figure 3.20(a).
The problem hereby is that estimation errors are propagated as shown in Figure 3.21(a) re-
sulting in a lost of contrast along the sequence.
In order to minimise the propagation of estimation errors, we propose correcting all im-

ages of the sequence with respect to the chosen reference image if the intersection is non
empty. If there is no intersection with the reference image, we choose the nearest image to
the reference which has a non empty intersection with the current image as reference frame.
This produces a kind of hierarchy as illustrated in Figure 3.20(b). The sequence corrected
with this scheme is shown in Figure 3.21(b) where the error propagation is limited and is
thus not visible.
Figure 3.22(a) shows a sequencewith a strong luminance change. Themosaic constructed
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Figure 3.19: Graphs of the estimation of luminance parameters: (a) and (b) are the graphs
for the parameters ι and κ, respectively, in case of shifts, (c) and (d) are the graphs for the
parameters ι and κ, respectively, in case of noise.

......

(a)

... ... ...

(b)

Figure 3.20: Luminance correction of an image sequence: (a) recursively, (b) hierarchically.
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(a)

(b)

Figure 3.21: Example of luminance correction for the sequence “Chancre1” extracted from
the documentary “Le chancre coloré du platane” CERIMES-SFRS R© : (a) recursively, (b) hi-
erarchically. The eighth frame was chosen as the reference.
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(a)

(b)

(c)

(d) (e)

Figure 3.22: Example of luminance correction for the sequence “Aquaculture2” extracted
from the documentary “Aquaculture en méditeranée” CERIMES-SFRS R© : (a) The original
sequence, (b) the object masks, (c) the illumination corrected sequence with the first image
as reference, (d) the mosaic using the sequence in (a), (e) the mosaic using the sequence in
(b).
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from this sequence is shown in Figure 3.22(d). The object of the first frame was reinserted
in the mosaic. We observe seams at the image borders and spurious irregularities where
objects have been excluded. The sequence shown in Figure 3.22(c) has been illumination
corrected with respect to the first image of the sequence. We observe a lost in contrast of the
objects along the sequence as the illumination correction has been computed for the back-
ground. Nevertheless, this has no impact to the mosaic construction as only the background
is blended into the mosaic. Note that the third object has been approximated by the tube.
The mosaic constructed from the illumination corrected sequence is shown in Figure 3.22(e).
We observe much less artefacts than in Figure 3.22(d). We mention here that for this se-
quence, motion has been estimated using the Motion2D software [113]. The reason is that
the encoded MPEG motion vectors are continuously very noisy due to the large flat zones
and thus we obtain no satisfying results with our motion estimation method. We show this
example in order to demonstrate that our method can handle strong illumination changes if
motion was estimated accurately.
When the input sequence is illumination corrected, the frames now can be blended into

the mosaic. This is the next step in Figure 3.7.

3.2.5 Blending

Blending is the fifth step in our global scheme for mosaic construction (see Figure 3.7).
Hence, in this section we describe our blending method which takes into account moving
objects. First, we construct the backgroundmosaic using the characteristic background func-
tionwhich defines for each framewhich pixels belong to the background andwill be blended
into themosaic. Second, some of the objects are blended afterwards into the backgroundmo-
saic to obtain a complete description of the video sequence. However, the premise thereby
is that the object masks are accurate i.e. that the objects were accurately segmented by the
moving object detection described above. Thus, we will propose a method to deal with the
matter if an object was not well segmented.
We use a simple approach for the mosaic blending based on a temporal average of the

aligned images [129]:

M = µ(K)
K∑

k=1

T(k).I(k) (3.77)

where T(k) is the geometric transformation from the image I(k) to the mosaic M , K is the
number of images I(k) in the sequence, and µ(p,K) = 1

|p| with |p| as the number of available
pixels at position p.
As we showed above, when using a temporal mean ghost artefacts can appear in the

mosaic due to moving objects. Therefore, we use the background function of Equation (3.66)
in the blending process. Introducing this function in Equation (3.77), we obtain:

M = µ(K)
K∑

k=1

T(k) [Ob(k).I(k)] (3.78)
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where Ob(k) is the characteristic background function. A pixel is only blended into the
mosaic if Ob(p, k) = 1. As we are working with RGB color images Equation (3.78) is applied
to each color component.
This blending method supposes that the object masks are accurate. Nevertheless, in DC

video sequences due to the low resolution and insufficient difference of objects’ and back-
ground motions, segmentation errors often occur. For the method to be able to handle such
real situations, a specific processing has to be proposed for inaccurate object segmentations.

Processing for Inaccurately Segmented Objects

It happens that the moving objects are not well segmented by the method presented above.
Such an example is shown in Figure 3.23(a). In order to avoid possible artefacts due to
the fact that the object is not entirely excluded from the mosaic blending, we propose two
methods.
The first approach is a dilation of the object mask. The dilated object mask is shown in

Figure 3.23(b). The problem here is that the pixel contributions in the mosaic are limited and
so holes can appear in the mosaic or the size of existing holes can increase. To this end, we
propose a method to fill holes in the mosaic in the next section.
The second approach is to use a temporal median in the blending in the corona around

the excluded objects instead of the temporal mean. This approach is costlier than the first
approach as median filtering is inherently a costly task. The corona around the object, as
shown in Figure 3.23(c), is obtained by subtracting the dilated object mask from the original
object mask. Then, all the coronas are warped to the mosaic by the geometric transforma-
tions and blended together. Amask is obtained which determines the pixels where temporal
median filtering is applied.

(a) (b) (c)

Figure 3.23: Example of an inaccurate segmented object of the sequence “Hiragasy”: (a) The
inaccurate segmented object, (b) the object with a dilated mask (1 pixel), (c) the object corona
(1 pixel width).

Figure 3.24(a) shows a mosaic where some objects have not been accurately segmented
and ghost artefacts appear. The result obtained with a dilated mask is shown in Fig-
ure 3.24(b) and the results obtained with median filtering is shown in Figure 3.24(c). Fig-
ure 3.24(d) illustrates the regions where temporal median has been applied for the blending.
It can be observed that the mosaic is noisy in the regions where median filtering has been
applied as themean value smoothsmuchmore than themedian. Thus, we retain the dilation
of the object masks as it is additionally less costly.
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(a) (b)

(c) (d)

Figure 3.24: Example of processing for inaccurately segmented objects for the sequence “Hi-
ragasy”: (a) The mosaic obtained with the original masks, (b) the mosaic obtained with
dilated masks (1 pixel), (c) the mosaic obtained with a region-wise temporal median, (d) the
map of combined object coronas (1 pixel) indicating where the temporal median has been
applied. We increased the contrast of (a), (b) and (c) for a better visualisation.
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Insertion of an Object in the Mosaic

The blending approach presented above, creates a mosaic of the scene background. If we
come back to the goal of this work which is the mosaic construction to visualise a video
scene, the background mosaic alone is not sufficient. The image overview has to summarise
all elements of the visual content. Thus, we blend some objects into this background mosaic
in order to obtain a complete description of the video sequence. There are different ap-
proaches to construct such a “complete” mosaic. Depending on the approach, the reference
frame is chosen. We distinguish:

• Background centered approach: The reference frame is chosen depending on the cam-
era motion e.g. in case of a zoom the most contracted image is chosen in order to avoid
the oversampling of the image sequence.

• Object centered approach: The reference frame corresponds to the frame where the
objects are the best represented. This avoids the motion estimation and compensation
of the objects which is a delicate task if the object is small or if the motion is complex.

Here, we focus on the object centered approach and we choose the frame with the best seg-
mented objects as reference frame. We consider the objects in this frame as the represen-
tative objects of the scene and blend them directly into the mosaic. The choice of the best
segmented objects is a subject of study by itself. Several criteria can be used to determine
the quality of object segmentation [25]. In the present work, we suppose that the best seg-
mented object has been already selected and focus on its insertion and improvement of the
visual quality of the mosaic.

3.2.6 Postprocessing

In some cases, postprocessing is necessary in order to improve the visual quality of the mo-
saic (the last step in Figure 3.7). First, holes can appear in the mosaic due to the exclusion of
objects during the blending. In this case, we propose interpolating the lacking pixels from the
neighbourhood. Second, even when an illumination correction has been applied to the in-
put sequence, slight seams may still appear in the mosaic on the borders of the background
masks where objects have been excluded. Likewise, the dilation of the object mask may not
be sufficient to entirely exclude an object in case of a very inaccurate segmentation. Thus,
artefacts can appear. To this end, we propose applying a simple spatial median filtering in the
mosaic on the borders of the background masks. Third, the insertion of an object causes typi-
cally seams at the borders of the object. To obtain a more realistic insertion of the object, we
propose applying a mean filter on the object borders.

Interpolation of Holes

When excluding objects from the blending, it can happen that holes in the mosaic appear
as shown Figure 3.25(a). To this end, we present a simple method for the detection and
interpolation of holes.
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A mask of the holes in the mosaic can be created straightforward during blending. If no
pixel is available at the position p, i.e. µ(p,K) = 0 then a hole appears at p in the mosaic
and is marked in the mask. An example of such a mask is shown in Figure 3.25(b).

(a) (b)

(c) (d)

(e) (f)

Figure 3.25: Interpolation of holes for the sequence “Hiragasy”: (a) The mosaic with holes,
(b) the mask of the detected holes, (c) the computed bounding box (white) for a hole, (c) the
interpolated mosaic, (d) a zoom on region determined by the bounding box of (c), a zoom
on the same region in the interpolated mosaic (d).

Here, we propose interpolating missing pixel values from the pixels in the neighborhood
of a hole. Despite such an interpolation is nowadays subject of various research works on
texture filling and sophisticated methods have been proposed [11], we will use a conven-
tional least square estimation. Indeed, the holes are usually not very large, thus a linear
model taking into account the possible gradient of luminance can be sufficient. Thus, the
missing pixel values can be selected on a plane. For each color component, the value of a
pixel p = (x, y) in a hole will be approximated as:

M(x, y, c) = ξc · x + υc · x + χc, c = R,G,B (3.79)

where ξc, υc, χc are the parameters of the plane.
To chose the available pixel values for the estimation of the plane parameters, we de-

termine the bounding box of a hole as illustrated in Figure 3.25(c). Figure 3.25(e) shows a
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zoom on the region determined by the bounding box. These pixels are used to interpolate
the missing pixels.
The least square estimation is formulated to estimate the parameter vector P =

(ξc, υc, χc)
T as:

P =
(
HPHT

P

)−1
HT

PZP (3.80)

Denoting V as the number of valid pixels in the bounding box, the matrices are con-
structed as follows:

ZP is the V ×1 vector of themeasureswhich are here the values of one colour components
of the valid pixels in the bounding box:

ZP =




M(x1, y1, c)
...

M(xV , yV , c)


 (3.81)

HP is the 3 × V observation matrix containing the pixel indices of the valid pixels in the
bounding box corresponding to ZP:

HP =




x1 y1 1
...

...
...

xV yV 1


 (3.82)

Finally, the missing pixels values can be predicted as the values on the plane. The interpo-
lated mosaic is shown in Figure 3.25(d) and a zoom on the interpolated region is shown in
Figure 3.25(f).

Median Filtering for Artefact Reduction in the Background

The dilation of the object masks may not be sufficient to entirely exclude an object in case of
a very inaccurate segmentation. Thus, seams can appear at the borders of the background
masks where objects has been excluded from the blending. We propose applying a spatial
median filter in order to remove these seams on the background mask borders. However, a
simple median filter can create false colors as the color components are treated separately. In
order to avoid this, the median filter can be replaced by a vector median as proposed in [27].
To determine the regions where the median filter has to be applied, we compute for

each object a corona and combine the warped coronas in a map similar to that one shown
in Figure 3.24(d). In contrast to Figure 3.23(c), we enlarge the corona to filter inside the
region of removed object as well as illustrated in Figure 3.26(b). The coronas are obtained
by subtracting the dilated object mask from the eroded object mask. We then apply in the
indicated regions a 3 × 3 spatial median filter on each color component.

Mean Filtering for Object Insertion

As shown in Figure 3.26(a) the insertion of an object in the mosaic can cause seams at the
borders of the inserted object. In order to smooth these seams and thus to obtain a more
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realistic insertion of the object, we propose applying a 3 × 3 mean filter in the corona of the
inserted object as illustrated in Figure 3.26(b).
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Figure 3.26: Mean filtering of the mosaic: (a) Mosaic without mean filtering on the border of
the inserted object for the sequence “Hiragasy”, (b) corona of an object for filtering.

3.3 Results

In this section we present some results obtained with the proposed mosaicing method. The
DC images of the test sequences are shown in Figure 3.27. Here, we suppose that the shot
changes have already been detected in the video. We will present a method for the shot
change detection onMPEG-1/2 compressed video in Chapter 7. Then, for each shot a mosaic
can be constructed giving a global view of the scene with the representative objects inserted.
These mosaics provide an approximate information on the scene content, the foreground
objects in the scene, and the motion of the camera. We evaluate visually the quality of the
mosaics with regard to the dynamic scene content.
The first sequence, “Tympanon”, represents a static scene with a tilt up and a small zoom

in of the camera. Thus, no object extraction, and no postprocessing has been applied for the
mosaic construction. The mosaic is shown in Figure 3.28(a).
The second sequence, “Comportements1”, represent a scene with one moving object and

a small pan left of the camera. In this case, we apply the full method (see Figure 3.7). The
resulting mosaic is shown in Figure 3.28(b).
The third sequence, “Hiragasy”, represents a complex scene with a camera tracking two

persons. As shown in Figure 3.23(a) some objects are not accurately segmented, but due
to the dilation of the object masks the artefacts in the background mosaic are reduced (see
Figure 3.24(b)). Finally, the remaining artefacts are eliminated by the median filter in the
postprocessing step. The insertion of the object is also satisfying, the borders observable in
Figure 3.26(a) has been removed by the mean filtering. In addition, holes have been interpo-
lated as shown in Figure 3.25. We state that the overall results is visually satisfying.
The computational times for these sequences are shown in Table 3.1. They were obtained

on an Intel Pentium 4 3.00GHz processor using a non optimised C++ code and the VXL im-
age library [200]. These computational times are very attractive. The videos are encoded at
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(a) Tympanon

(b) Comportements1

(c) Hiragasy

Figure 3.27: DC image test sequences: (a) A shot extracted from the documentary “La
joueuse de Tympanon” CERIMES-SFRS R©, (b) a shot extracted from the documentary “Com-
portements alimentaires des hommes préhistoiriques” CERIMES-SFRS R© and the corre-
sponding dilated masks Ob(k), (c) a shot extracted from the documentary “Hiragasy”
CERIMES-SFRS R© and the corresponding dilated masks Ob(k).
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(a) Tympanon (b) Comportements1 (c) Hiragasy

Figure 3.28: Mosaics for the sequences of Figure 3.27 CERIMES-SFRS R©.

30 fps with a GOP size of 15 frames. Then a sequence of 12 I-frames e.g. the “Tympanon” has
a duration of 6s. Hence, our computational times are almost 3 times real time which allows
to create the video summary in a fast way. Unfortunately, the computations are not real time.
This is mainly due to the non-optimised data extraction. For instance, the motion estimation
for the sequence “Tympanon” takes only 0.615s. This means that the data extraction takes
6.551s using the MSSG decoder [121], but this step can be optimised.

Another time consuming task in the mosaic construction is the computation of the global
geometric transformations (see Equation (3.61)). According to this equation, for each pixel
the motion models between the current image and the reference image have to be concate-
nated. Hence, for long sequences, the computational time for the concatenation will take a
significant ratio of the mosaic construction time. Therefore, there is a difference of circa 8s
for the computational time (2) between the sequence “Comportements1” which consists of
6 frames and the other two sequences, “Tympanon” and “Hiragasy”, which consists of 12
frames.

Sequence No. I-frames (1) (2) (3)
Tympanon 12 7.166s 13.545s 20.711s
Comportements1 6 6.161s 3.114s 9.275s
Hiragasy 12 8.326s 10.022s 18.348s

Table 3.1: Computational times for the sequences of Figure 3.27: (1) the computational time
for data extraction, motion estimation and object extraction, (2) the computational time for
concatenation of the motion models in the geometric transformations, illumination correc-
tion, blending and postprocessing, (3) the total computational time.

The mosaics shown in Figure 3.28 represent the scene content in an appropriate way
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without artefacts due to illumination changes or inaccurate object segmentations, but they
may seem of too low resolution for the user. Additionally, they suffer from blur and aliasing
artefacts due to the nature of DC images. Therefore in the next chapter, we present a method
to increase the resolution and to improve the visual quality of the mosaic in terms of blur
and aliasing.

3.4 Conclusion

In this chapter we presented a framework for the construction of low-resolution mosaics
from MPEG-1/2 compressed video. The proposed method gives a complete solution to vari-
ous problems which can be encountered in real video: inaccuracy of motion vectors in the
compressed stream, illumination changes, the presence of moving objects and difficulties in
their segmentation. The principal points of this method are: a deep study and elaborated
solution for the computation of geometric transformations for image registration. Here, re-
maining in the framework of recursive approach, we propose a solution to limit error prop-
agation and inaccuracy; a full solution for blending, including the seamless removal and
insertion of objects, luminance correction and filling holes.
The principal steps of the method are: First, DC images of I-frames, DC images of P-

frames, DC images of the motion compensation error of P-frames, and motion vectors of
P-frames are extracted from the compressed stream. Second, the global camera motion is
estimated from P-frames motion vectors. Nevertheless, this is not sufficient to obtain a com-
plete motion trajectory in the sequence. Therefore, the motion parameters are extrapolated
in a GOP to predict the motion parameters for I-frames. It happens that the encoded mo-
tion vectors are inaccurate. We detect the concerned frame based on the DC images of the
motion compensation error of P-frames and propose a method either to correct the motion
model or to reestimate the motion model on the DC images of P-frames. Here, we stress that
such a thorough study of motion from compressed streams with its refinement has not been
proposed in literature to our knowledge. Then, the motion models are concatenated in a
geometric transform for each DC image of the sequence. Third, the estimated global camera
motion is then used in a moving object detection method where it is combined with a color
segmentation of the DC images of I-frames. Fourth, the estimated global camera motion is
used in a robust illumination correction method for the DC images of I-frames. Therein, we
exclude the detected moving objects from the computation as they cause estimation errors.
Fifth, the illumination corrected DC images of I-frames are blended into the backgroundmo-
saic. Moving objects are excluded from the blending using the result of the moving object
detection. Our mosaic construction allows not only the removal of moving objects, but also
the reinsertion of objects. At least, post-processing is performed to close holes and remove
eventual seams in the mosaic.
The proposed method is almost fully automatic, except the choice of the best segmented

objects to be inserted in the mosaic and thus the reference frame for the registration of the
image sequence. This is in focus of future work.
The time performance is promising. We obtain almost three times real time which allows
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the fast construction of a video summary. Moreover, these computational times can still
be reduced by optimising computations such as the data extraction or the concatenation of
motion models.
Nevertheless, the obtained mosaics presented in this chapter are of very low resolution

and are degraded by blur and aliasing artefacts due to the nature of DC images. To visualise
the scene content the userwould prefer a higher resolution and a better visual quality. There-
fore, we will present in the next chapter a super-resolution method for the mosaic blending.
This allows to increase the resolution of the mosaic and to improve the visual quality.
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Chapter 4
Super-Resolution

The easiest way to create an image with a higher resolution is a simple interpolation for
example a bilinear interpolation or a bicubic interpolation. Digital images are degraded by
aliasing and a loss of high frequencies. Therefore, the construction of an image with a higher
resolution just by interpolation will not produce a satisfying result.
One solution to increase spatial resolution is to reduce the pixel size of the imaging sys-

tem. However, as the pixel size increases the amount of light available decreases. Noise is
generated that degrades the image quality severely. Hence, there exists the limitation of the
pixel size reduction. The current sensor technology has almost reached this level.
Super-resolution reconstruction is a promising signal processing approach to overcome

the inherent resolution limitations of low-resolution imaging systems. An high-resolution
image (or sequence), the so called super-resolution image (or sequence), is obtained from a
sequence of observed low-resolution images. The major advantage of this approach is that
it may be cost less and the existing imaging systems can be still used.
Super-resolution reconstruction is used in a wide range of applications where multiple

frames of the same scene can be obtained. One application is to reconstruct high quality
video stills for printing or frame freeze. A typical single frame in video signal is generally of
poor quality and is not suitable e.g. for hard-copy printout. Synthetic zooming of a region
of interest is another important application in surveillance, forensic, medical, and satellite
imaging. For forensic or surveillance purposes it is often needed to magnify objects in the
scene such as faces or the licence plate of a car. In biomedical imaging most of the acqui-
sition systems (MRI, CT, ultrasound, microscopes ...) are limited in resolution quality and
higher resolution images are helpful for a doctor to make a correct diagnosis [94, 53]. Super-
resolution can be used in satellite imaging applications such as remote sensing or LANDSAT,
to improve the resolution of a target considered. Another application is the standard con-
version of the video signal e.g. from NTSC to HDTV. Super-resolution has also been applied
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for demosaicking of a sensor [92, 48], to reduce artefacts of compressed video [57], and to
deinterlace video [136]. As we mentioned in Section 3.1, super-resolution reconstruction can
be used for mosaic blending as well.
The premise for super-resolution reconstruction is a sequence of low-resolution images

captured from the same scene, shifted with sub-pixel precision. If the low-resolution images
are shifted by integer units, then each image contains the same information, and thus there is
no new information that can be used for super-resolution reconstruction. To obtain different
looks at the same scene, some relative scene motion must exist from frame to frame. The
scene motions can occur due e.g. to the motion of the camera or the movement of local
objects. If these motions are known or can be estimated with sub-pixel precision, the super-
resolution reconstruction is possible by combining these low-resolution images as shown in
Figure 4.1.

Reference low-resolution image

Figure 4.1: Principle of super-resolution: At the left three low-resolution images captured
from the same scenewith sub-pixel shifts that can be combined in the super-resolution image
at the right.

During the acquisition of a digital image, there is a loss of spatial resolution caused by
optical distortions (out of focus, diffraction limit,...), motion blur due to the limited shutter
speed, noise that occurs within the sensor, and the pixel size in the sensor. Thus, the digital
low-resolution image suffers from blur, noise and aliasing artefacts. Therefore, the super-
resolution algorithm covers restoration techniques to produce a high quality image from
noisy, blurred and aliased images.
In Chapter 3, we presented a complete framework to construct mosaics from the

MPEG-1/2 compressed stream (see Figure 3.7). The resulting mosaics are of very low-
resolution and are degraded by blur and aliasing artefacts. Hence, in this chapter we pro-
pose a super-resolution algorithm for the blending of themosaic (step five in Figure 3.7). The
objective is to increase the resolution of the mosaic and to improve its visual quality. This
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requires an additional steps for the mosaic construction which is the estimation of the blur
in the acquired images.
This chapter is organised as follows. We review in Section 4.1 common super-resolution

reconstruction techniques for raw and compressed video, and also methods for the esti-
mation of blur. Then, we present in Section 4.2 our super-resolution method for mosaic
blending. In this section, we develop a newmethod for the estimation of blur and its appro-
priate restoration. Section 4.3 shows some results of the proposed method. We conclude the
proposed method in Section 4.4.

4.1 State of the Art

The several super-resolution reconstructionmethods presented in literature differ in the type
of reconstruction method, the assumed observation model which relates the low-resolution
images with the super-resolution image, the domain (spatial or frequency) in which the al-
gorithm is applied, the acquisition of the low-resolution images, the estimation of the blur
and the sub-pixel motion. In the following, we give a brief overview of existing super-
resolution reconstruction methods for raw and compressed video and focus then on blur
estimation techniques. Borman and Stevenson [13, 14, 15] and Park et al. [133] have already
presented some good reviews on super-resolution techniques for raw video. A review on
super-resolution techniques for compressed video is given by Segall et al. [164].

4.1.1 Modelling of the Imaging Process

Considering the desired super-resolution image F , an observation model can be formulated
relating each low-resolution imageG to the super-resolution image through the imaging pro-
cess. There are several ways to model the imaging process. In general three kinds of imaging
operations are considered: warping, blurring, and decimating. There are different assump-
tions on the order of them. One is that warping is followed by blurring and decimating as
illustrated in Figure 4.2(a). For instance, this kind of model has been used by Irani and Peleg
[75], Zhao and Sawhney [214], Hardie et al. [63], and Baker and Kanade [7], Elad and Feuer
[41]. The second assumption is that blurring is followed by warping and decimating as illus-
trated in Figure 4.2(b). This kind of model has been used by Patti and Altunbasak [135], Ur
and Gross [197], and Chiang and Boult [30]. Both models are physical as the blur may come
after warp when it is dominated by the camera blur, but it may also occur before the warp if
the atmosphere is the major blurring source [202]. According to Wang and Qi [202] the first
model coincides with the imaging blurring process when the camera blur is dominant, but
it is usable only if the motion of the super-resolution sequence is known a-priori. When the
motion has to be estimated from the low-resolution images, using this model may cause a
systematic error. The use of the second model is more appropriate, and leads to better per-
formance. They show that if imaging blur is spatio-temporally shift-invariant, and image
motion purely translational both models have no distinction.
Although, there are some different considerations on the observation model, these mod-
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Warping Blurring Decimating +F (n) G(m)

V (m)

(a)

Decimating +Blurring WarpingF (n) G(m)

V (m)

(b)

Figure 4.2: Two kinds of imaging assumptions for super-resolution reconstruction [202]: (a)
The warping-blurring model, (b) the blurring-warping model.

els can be unified in a simple matrix vector form as the low-resolution pixels are defined as
a weighted sum of the related super-resolution pixels. Assuming that each blurred image
is corrupted by additive noise, the observation model can be represented without loss of
generality as [133]:

G(k) = H(k)F + V(k) (4.1)

where G(k) is the vector of kth LR image, F the vector of the desired HR image, H(k) the
matrix of the weights representing blurring, motion and subsampling, andV(k) is the vector
of stochastic uncorrelated noise. Then, the pixels of each low-resolution image are related to
the pixels in the super-resolution through the observationmodel (4.1). Inverting the problem
for the reconstruction of F we obtain an ill-posed inverse problem as the resulting set of
equation is undetermined. The problem is that amultiplicity of possible solutions exist given
a set of low-resolution observations. A solution is to constrain the solution space according
to a-priori knowledge on the super-resolution image. Hence, we describe in the following
the main super-resolution techniques with respect to this general observation model (4.1)
and for certain methods we will develop the observation model.

4.1.2 Frequency Domain Methods

Frequency domain methods represent a major class of super-resolution methods. They are
based on the shifting property of the Fourier transform, the aliasing relationship between the
continuous and the discrete Fourier transform, and the fact that the signal is band-limited.
Using these properties, aliased discrete Fourier coefficients are related to samples of the con-
tinuous Fourier transform. The super-resolution image is then recovered by an inverse dis-
crete Fourier transform.
The frequency domain method of Tsai and Huang [194] is the seminal work for super-

resolution reconstruction. They derived a system of equations that describes the relationship
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between low-resolution images and the desired super-resolution image by using the rela-
tive motion between the low-resolution images. Let F (x, y) denote the continuous super-
resolution image and F(u, v) be its continuous Fourier transform. Then, F (x, y) is shifted by
global translations:

F (x, y, k) = F (nx + ∆xk, ny + ∆yk) (4.2)

where∆xk and∆yk are the components of translation in x and y-direction, respectively, and
1 < k < K. The shifted images are then impulse sampled yielding K observed images
Fk(mx,my)withmx ∈ {0, 1, . . . Mx} andmy ∈ {0, 1, . . . My}:

Fk(mx,my) = F (mxTx + ∆xk,myTy + ∆yk) (4.3)

where Tx and Tx are the sampling periods in x and y-direction. The continuous Fourier
transform of the scene F(u, v) and the discrete Fourier transforms of the shifted and sampled
images Fk(mx,my) are related via aliasing [14]:

Fk(mx,my) =
1

TxTy

∞∑

mx=−∞

∞∑

my=−∞
Fk

(
2πmx

TxMx
+

2πmx

Tx
,
2πmy

TyMy
+

2πmy

Ty

)
(4.4)

Then, using the shifting property of the continuous Fourier transform [14]:

Fk(u, v) = exp
(
2πi(∆xku + ∆ykv)

)
F(u, v) (4.5)

If F (x, y) is bandlimited, there exist Lx, Lx such that |F (x, y)| = 0 for |x| ≥ (Lxπ/Tx), |y| ≥
(Lyπ/Ty). Assuming that F (x, y) is bandlimited, the shifting property (4.5) can be used to
rewrite the aliasing relationship (4.5):

Fk(mx,my) =
1

TxTy

Lx∑

mx=0

Ly∑

my=0

exp

(
2πi

[
∆xk

(
2πmx

TxMx
+

2πmx

Tx

)
+ ∆yk

(
2πmy

TyMy
+

2πmy

Ty

)])

· F
(

2πmx

TxMx
+

2πmx

Tx
,
2πmy

TyMy
+

2πmy

Ty

)
(4.6)

This relationship can be written in matrix form [14]:

G = ΦF (4.7)

where G is a K × 1 column vector with the kth element of the discrete Fourier Transform
coefficients of Fk(mx,my) of the observed images Fk(nx, ny), F is a LxLy × 1 column vector
with the samples of the unknown continuous Fourier Transform F(u, v), Φ is a K × L1L2

matrix which relates the discrete Fourier Transform of the observed low-resolution images
to the samples of the continuous super-resolution image. Thus, the reconstruction of the
desired super-resolution image requires to determine Φ by solving the system of equations
for F and then using the the inverse discrete Fourier Transform to obtain the reconstructed
image. Since the matrix Φ requires knowledge of the translation parameters∆xk,∆yk, these
parameters are estimated before reconstruction.
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Several extensions of the method [194] have been proposed. Tekalp et al. [189] include
sensor blur and observation noise. Then, the equivalent of Equation (4.6) is solved using a
least square approach. A recursive least squares solution for Equation (4.6) was proposed
by Kim et al. [87] where all the low-resolution images are assumed to have the same blur
and the same noise characteristics. Kim and Su [88] further developed the earlier work
[87] to consider different blurs and for each low-resolution image. Tikhonov regularisation
is adopted to overcome the ill-posed problem resulting from zeros in the blur operator. A
discrete cosine transform basedmethodwas proposed by Rhee and Kang [151]. By replacing
the discrete Fourier transform through a discrete cosine transform computationally efficient
reconstruction is achieved. They also adopt regularisation to compensate for ill-posedness
in the case of insufficient subpixel information or inaccurate motion information.
The advantage of frequency domain methods is their theoretical simplicity and low com-

putational complexity. A drawback is that they are limited to the linear shift invariant case
i.e. motion, blur and downsampling are space invariant. This means for motion that only
global translational motion is allowed. In addition, it is difficult to include spatial domain
a-priori knowledge for regularisation due to the lack of data correlation between the spatial
and frequency domain.

4.1.3 Regularised Approach

Generally, super-resolution reconstruction is an ill-posed problem because of an insufficient
number of low-resolution images and ill-conditioned blur operators. Therefore, the regu-
larised approach adopts procedures to stabilize the inversion of the ill-posed inverse prob-
lem. Traditionally, regularisation has been described from both the algebraic and the statis-
tical perspectives. In both cases, regularisation takes the form of constraints on the space of
possible solutions often independent of the measured data.

Deterministic Approach

The deterministic approach accomplishes regularisation by adding penalty terms in the cost
function. For example this can be in form of a Lagrangian J(λ) [8]. The problem is then
formulated to find:

min

[
J(λ) =

K∑

k=1

|G(k) − H(k)F|2 + λ ‖CF‖2

]
(4.8)

where G(k) is the vector of kth LR image, F the vector of the desired HR image, and the
matrixH(k) represents upsampling, blur, and warping. The first term

∑K
k=1 |G(k) − H(k)F|2

of (4.8) expresses the fidelity of the super-resolution image to the observed data. The second
term λ ‖CF‖2 is regularisation termwhere the operatorC is generally a high pass filter. This
is essentially a smoothness constraint which suggests that most images are naturally smooth
with limited high-frequency activity, and thus it is appropriate to minimize the amount of
high-pass energy in the restored image. λ represents the Lagrange multiplier, referred to
as the regularisation parameter, that controls the trade-off between fidelity to the data and
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smoothness on the solution. Choosing λ could be donemanually or automatically e.g. by the
cross-validation method of Nguyen et al. [125]. Larger values of λ will lead to a smoother
solution. This is usefulwhen only a small number of low-resolution images are available (the
problem is underdetermined) or the fidelity of the observed data is low due to registration
errors and noise. On the other hand, if a large number of low-resolution images are available
and there is only less noise, a small λ will lead to a good solution. The minimisation of (4.8)
leads to the following iteration [133]:

Fi+1 = Fi + λ2

[
K∑

k=1

HT(k)
(
G(k) − H(k)Fi

)
− λCTCFi

]
(4.9)

where λ2 represents the convergence parameter.
Hong et al. [70] proposed a multichannel regularised super-resolution method in which

the regularisation functional is used to calculate the regularisation parameter without any
prior knowledge at each iteration step. In [64], Hardie et al. define an observation model
which incorporates knowledge of the optical systemand the sensor blur. The high-resolution
image is formed by minimising the regularised cost function which is based on the ob-
servation model. Farsiu et al [47, 48] propose an alternate fidelity term based on the L1

norm. They also propose a robust regularisation term which provides robust performance
while persevering the edges. Shechtman et al. [167, 168] developed a space-time super-
resolution method by combining several input sequences of different space-time resolution.
This method allows a reduction of spatial artefacts such as motion blur by increasing the
temporal resolution. A steerable space-time regularisation term is introduced in the super-
resolution reconstruction which applies smoothness only in directions within the space-time
volume where the derivatives are low.

Stochastic Approach

From a statistical perspective, regularisation is incorporated as a-priori knowledge about
the solution. Thus, using a maximum a-posteriori (MAP) estimator a much richer class of
regularisation functions emerges.
Given the observation model in Equation (4.1) the MAP approach seeks the estimate F̂

for which the a-posteriori probability Pr (F |G(k)) is maximum:

F̂ = arg max
F

Pr(F |G(1), . . . , G(K)) (4.10)

where F is the unknown super-resolution image and G(K) the low-resolution observations.
Applying Bayes’ rule yields:

F̂ = arg max
F

[
Pr(G(1), . . . , G(K)|F ) Pr(F )

Pr(G(1), . . . , G(K))

]
(4.11)

Since the maximum F̂ is independent of G(1), . . . , G(K) [14]:

F̂ = arg max
F

[Pr(G(1), . . . , G(K)|F ) Pr(F )] (4.12)
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Taking the logarithmic function, the MAP optimisation problem can be expressed as [14]:

F = arg max {ln Pr(G(1), . . . , G(K)|F ) + ln Pr(F )} (4.13)

The term ln Pr(G(1), . . . , G(K)|F ) is the log-likelihood function and Pr(F ) the a-priori den-
sity of F . Since Equation (4.1), the log-likelihood function is determined by the pdf of the
noise. The specific form of ln Pr(F ) depends on the prior being used. In [21] a good overview
on common image priors is given. Often Markov random field (MRF) priors are used as the
prior term Pr(F ). Thus Pr(F ) can be expressed by a Gibbs distribution which has the form
[133]:

Pr(F ) =
1

Z
exp (−U(F )) =

1

Z
exp

(
−
∑

c∈S

ϕc(F )

)
(4.14)

where Z is a normalising constant, U is an energy function, ϕc is a potential function that de-
pends only on the pixel values located with in the clique c, and S denotes the set of cliques.
By defining ϕc as a function of the image derivative, U measures the cost cause by the ir-
regularities of the solution. Commonly, an image is assumed to be globally smooth which
is incorporated into the estimation problem through a Gaussian prior. With the Gaussian
prior, the potential function takes quadratic form ϕc(F ) = (D(n)F )2 where D(n) is the nth
order difference. This penalises the high-frequency components severely and as a result the
solution becomes oversmoothed. However, if a potential function is modelled which less pe-
nalises the large difference in F , an edge-preserving super-resolution image can be obtained.
If the error between frames is assumed to be independent and noise is assumed to an

independent identically distributed zero mean Gaussian distribution, the optimisation prob-
lem can be expressed as:

F = arg min

[
K∑

k=1

‖G(k) − H(k)F‖2 + α
∑

c∈S

ϕc(F )

]
(4.15)

where α is the regularisation parameter. It can be shown that Equation (4.8) is equal to a
MAP estimate if a Gaussian prior is used in Equation (4.15) [133].
The super-resolution reconstruction from a low-resolution image sequence using a MAP

method was proposed by Schultz and Stevenson [159, 160]. They extended their earlier
work on Bayesian MAP image interpolation for improved definition to the problem of
super-resolution image reconstruction. Assume that K odd low-resolution frames are ob-
served, G(mx,my, k) with k ∈

{
r − K−1

2 , · · · , r, · · · , r + K−1
2

}
and mx ∈ {1, 2, · · · ,Mx},

my ∈ {1, 2, · · · ,My}. The objective is to reconstruct a super-resolution image F (nx, ny, r)

with nx ∈ {1, 2, · · · , ςMx}, ny ∈ {1, 2, · · · , ςMy} and ς ∈ Z, coincident with G(mx,my, r)

the center frame in the observed image sequence. The subsampling model for center frame
which models the spatial integration of light intensity over the sensor in the detector array
is:

G(mx,my, r) =
1

ς2

ςmx∑

nx=ςmx−ς+1

ςmy∑

nx=ςmy−ς+1

F (nx, ny, r) (4.16)
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This relationship can be expressed in matrix notation as:

G(r) = H(r)F(r) (4.17)

where H(r) ∈ R
MxMy×ς2MxMy is the subsampling matrix relating the super-resolution image

F(r)with the observed frameG(r). The remaining observed imagesG(k), k 6= r, are related
to F(r) through motion-compensated subsampling matrices which model the subsampling
of the high-resolution frame and account for object motion between frames:

G(k) = H(k)F(r) + u(k) (4.18)

whereH(k) ∈ R
MxMy×ς2MxMy is the motion-compensated subsampling which relates the kth

low-resolution image to the super-resolution image F(r). The vector u(k) contains pixels
which are not present in F(r), but in F(k) due to object motion. The elements of u(k) are not
known asF(k) is not known. Only the rows ofH(k) for which elements ofG(k) are observed
entirely from motion-compensated elements of F(r) contain useful information. Using only
the rows of useful information, the set of equations can be reduced:

G′(k) = H′(k)F(r) (4.19)

In practice H′(k) is estimated from the observed low-resolution frames G(k) and G(r) by
hierarchical block matching. This results in:

G′(k) = H′(k)F(r) + V(k) (4.20)

whereV(k) represent the error in estimation H′(k).
By assuming a Huber Markov random field for the prior term which is a Gibbs prior

similar to (4.14) and independent identically distributed Gaussian density to represent the
error in estimating the observation model, the MAP estimate of the high-resolution image
given the low-resolution images becomes:

F̂ (r) = arg min
F (r)∈C





∑

x,y

4∑

1

ϕc(D
(2)(x, y)F ) +

r+ K−1
2∑

k=r−K−1
2

k 6=r

λ(k)
∥∥G′(k) − H′(k)F (r)

∥∥2




(4.21)

subject to

C =
{
F (r) : G(r) = H′(r)F (r)

}
(4.22)

The first term is related to the image model. This prior models piece-wise smooth data and
thus preserves edges. The likelihood of an edge is controlled by the Huber edge penalty
function on the second order difference D(2)F . D(2)F has small values in smooth image
regions and high values at edges. The Huber edge penalty function is defined as:

ϕc(x) =

{
x2 if |x| ≤ α

2α |x| − α2 if |x| > α
(4.23)
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where α is a threshold controlling the size of discontinuities modelled by the prior. The
second term corresponds to the independent identically distributed Gaussian density used
for the observation model error. In (4.21) each frame has an associated confidence parame-
ter λ(k) which represents the confidence in H′(k). To estimate F̂ (r) the gradient projection
method is used. Note that this method includes a constraint set C and is thus not entirely a
MAP method.
Although we do not follow this approach in this research, we find a a common point in

the regularisation where discontinuities i.e. image contours are taken into account. Gener-
ally speaking, MAP super-resolution methods have been intensively studied and we refer
the reader to [63, 103, 69, 7, 205].
The major advantages of the Bayesian methods are the robustness and flexibility in mod-

elling noise characteristics and a-priori knowledge about the solution. Assuming that the
noise process is white Gaussian, a MAP estimation with convex energy functions in the pri-
ors ensures the uniqueness of the solution. Efficient gradient descend methods can be used
to estimate the super-resolution image.
Maximum likelihood (ML) estimation [190, 24] is a special case of MAP estimation where

no prior term is used. Since the use of a-priori information is essential for the solution of ill-
posed inverse problems, MAP estimation is usually used in preference to ML.

4.1.4 Set Theoretic Approach

Set theoretic methods, especially the method of projection onto convex sets (POCS), utilise
a spatial domain model and allow the simple inclusion of a-priori information. Therefore,
convex sets Ci are defined representing desirable super-resolution image characteristics such
as data consistency, positivity, smoothness etc. The super-resolution image is supposed to
be a member of these sets.
A set Ci is convex if the following conditions are satisfied [19]:

Ci 6= ∅ (4.24)

(∀α ∈]0, 1[), (∀(X,Y ) ∈ Ci × Ci) : αX + (1 − α)Y ∈ Ci (4.25)

For example, the positivity constraint on the super-resolution image is represented by [14]:

C+ = {F : F (p) > 0 ∀p} (4.26)

If the constraint sets have a non empty intersection, then a solution that belongs to the
intersection Cs = ∩m

i=1Ci, can be found by alternating projections onto these convex sets.
Therefore, for each convex set a projection operator Pi is defined which projects the estimate
of the super-resolution image onto the surface of the convex set Ci. Then, iteratively pro-
jecting onto the constraint sets the method converges to a solution onto the surface of the
intersection of the constraint sets:

F i+1 = Pm.Pm−1 · · ·P2.P1.F
i (4.27)

where F 0 is an arbitrary starting point.
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The POCS formulation of super-resolution reconstruction was first suggested by Stark
and Oskoui [178]. Their method was extended by Tekalp et al. [189] to include observation
noise. Therefore, a data consistency constrained set (4.1) is defined for each pixel in the
low-resolution images G(m, k):

Cδ0(m, k) = {F (n) : |r(m, k)| ≤ δ0} (4.28)

with

r(m, k) = G(m, k) −
∑

n

F (n)H(m,n, k) (4.29)

where H(k) includes the effects of the sensor blur and δ0 is a bound reflecting the statistical
confidence in the observation. The projection of F (n) onto Cδ0(m, k) is defined as [189]:

P (F (n)) = F (n) +





(r(m,k)−δ0)
P

p
H(m,p,k)2

· H(m,n, k) r(m, k) > δ0

0 −δ0 ≤ r(m, k) ≤ δ0

(r(m,k)+δ0)
P

p
H(m,p,k)2 · H(m,n, k) r(m, k) < −δ0

(4.30)

Patti et al. [137] developed a POCS super-resolution method to consider space varying
blur, non-zero aperture time, non-zero physical dimensions of each individual sensor ele-
ment, sensor noise and arbitrary sampling lattices. Eren et al. [43] extended this method to
the case of multiple moving objects in the scene. To do this, they introduced the concepts of
validity map and segmentation map. The validity map disables projections based on obser-
vations with inaccurate motion estimates, while the segmentation map enables object-based
processing where more accurate motion models can be used to improve the quality of the
reconstructed image. In [135], Patti and Altunbasak propose a POCS-based super-resolution
method where the discretisation of a continuous image formation model is improved to al-
low for higher order interpolation methods. They also modify the constraint sets to reduce
the ringing artefacts near edges.
An alternative approach to POCS was proposed by Tom and Katsaggelos [191] where an

ellipsoid is used to bound the constraint set. The centroid of the ellipsoid is taken as the
super-resolution estimate.
The advantage of POCS based methods is that it is simple and uses a flexible spatial

domain observation model. It allows the powerful inclusion of a priori information. Draw-
backs are the non-uniqueness of the solution, the dependence of the solution on the initial
guess, the slow convergence and high computational costs.

4.1.5 Iterative Backprojections

Simulate and correct methods start from a given estimate of the super-resolution reconstruc-
tion and a model of the imaging process. The imaging process is simulated using the super-
resolution estimate as the input to produce a set of simulated low-resolution observation
images. These images are compared with the actual observation, an error is computed and
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backprojected onto the super-resolution estimate by inverting the imaging process. This is
then used to correct the estimate of the super-resolution image. The process is iterated until
convergence or at least until a stopping criterion is fulfilled.
For a given observation model there is freedom in the choice of the mechanism for back-

projecting the error to correct the super-resolution estimate, as well as the error function to be
minimised. Consider the observation model relating K low-resolution observation images
in Equation (4.1). Given F i an estimate of the super-resolution reconstruction, it is possible
to simulate the low-resolution observation images by applying (4.1) to the super-resolution
estimate F i as:

Gi(k) = H(k).F i (4.31)

The projection operator H(k) comprises blurring, motion and subsampling.
Then, the super-resolution estimate is updated by backprojecting the error between the

simulated low-resolution imagesGi(k) and the observed low-resolution imagesG(k) via the
backprojection operator HBP [13]:

F i+1 = F i + HBP
(
G(k) − Gi(k)

)
(4.32)

= F i + HBP
(
G(k) − H(k).F i

)
(4.33)

TypicallyHBP is designed to approximate the inverse of the projection operatorH . Its choice
affects the characteristics of the solution when there are possible solutions. Therefore, HBP

may be utilised as an additional constrained which represents the desired property of the
solution. The different approaches vary in the choice of the projection and the backprojection
operators.
In [41, 21] is shown that the configuration of Equation (4.32) is a simple error relaxation

algorithm such as steepest descent which minimises a quadratic error. This means that the
iterative backprojection method is similar to a ML (or least squares) method without regu-
larisation.
The initial idea of iterative backprojections was formulated by Peleg et al. [141] where

globally translated images of a static scene are considered. This method was then taken up
by Keren et al. [84] and further developed to a more general global translation and rotation
motion model.
Given the set of low-resolution images G(k), the super-resolution image F can be re-

constructed from the low-resolution sequence. Assuming that the imaging process of the
observed low-resolution images is known, it is possible to simulate the imaging process
with the estimate F i as an approximation to the original scene yielding the simulated low-
resolution images Gi(k). Denoting n a pixel in the super-resolution image and m the low-
resolution pixel, the error between the simulated images at the ith iteration and the original
observed images to be minimised in the iterative scheme is defined as [141]:

ǫi =

K∑

k=1

∑

m

∣∣Gi(m, k) − G(m, k)
∣∣ (4.34)

Then, each pixel n in the current estimate F i is examined. Assuming that the grey level at
the position n is F i(n) = l, then the modifications F i(n) = l − 1 and F i(n) = l + 1 are
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considered. For each of the three pixel values {l − 1, l, l + 1} the corresponding simulated
low-resolution images and the corresponding errors (4.34) are computed. Then, the pixel
value that minimises the error is assigned to F i(n). The process is repeated for each pixel in
the image over several iterations.
The work of [141, 84] was improved in [74]. Irani and Peleg propose an iterative backpro-

jection method similar to that one used in computer aided tomography. The error functional
(4.34) was modified in:

ǫi =

√√√√
K∑

k=1

∑

m

‖G(m, k) − Gi(m, k)‖2 (4.35)

First, motion is estimated which is assumed to be a combination of translation and rotation.
Then, for each super-resolution pixel F (n) all low-resolution pixels determined through the
imaging process which depend on its value are identified. These values are used to update
the super-resolution pixel. The iterative scheme can be expressed as [133]:

F i(n) = F i−1(n) +
∑

m∈Υ(m,k)

HBP (n,m)
(
G(m, k) − Gi(m, k)

)
(4.36)

where Υ(m, k) is receptive field determined by the set {m ∈ G(k) |m is influenced by n ∈
F} and HBP is the backprojection kernel which determines the contribution of the error(
G(m, k) − Gi(m, k)

)
to the super-resolution estimate F i(n).

The same authors extended their work in [75] to improve the resolution of differently
moving objects. The method segments an image into region of homogeneous motion, the
objects, and tracks them along the sequence. Each object is then super-resolved separately.
The imaging process, yielding the observed image sequence G(k) is modelled by:

G(m, k) = S−1
[
B ∗

[
T−1(k).F (n)

]
+ V (k)

]
(4.37)

where G(k) is the observed object in the kth frame, S−1 is the downsampling operator and
T−1(k) the geometric transformation from F to G(k) determined by the 2D motion param-
eters of the tracked object, B is the blurring operator of the sensor, ∗ is the the convolution
operator, and V (k) is an additive noise term. The receptive field Υ of a detector whose out-
put is the pixel G(m) is defined by its center n and its shape. The shape is determined by
the region of support of the blurring operator B and by the geometric transformation T.
Similarly the center n is obtained by T(m, k).
The algorithm starts with an initial guess of the super-resolution image F 0:

F 0 =
1

K

K∑

k=1

T(k).S.G(k) (4.38)

where S is the upsampling operator, T(k) is the geometric transformation from G(k) to F

inverse to T−1, and K is the number of low-resolution images G(k).
Then, the imaging process is simulated to obtain a set of low-resolution images Gi(k)

corresponding to the observed input images Gi(k):

Gi(k) = S−1.B ∗
[
T−1(k).F i

]
(4.39)
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The iterative update scheme is expressed by:

F i+1 = F i +
1

K

K∑

k=1

T(k).HBP ∗
[
S.
[
G(k) − Gi(k)

]]
(4.40)

where HBP is the backprojection kernel determined by B.
Irani and Peleg show that Equation (4.40) converges to the desired solution for 2D affine

motion when the following condition is satisfied:

∥∥δ − B ∗ HBP
∥∥ <

1
1
K

∑K
k=1 ‖T−1(k)‖

(4.41)

with

∥∥T−1(k)
∥∥ =

√
|det(A(k))| (4.42)

where δ is the unity pulse function centered at (0, 0), andA(k) is matrix of affine parameters
of T−1 (see Equation 3.59). The smaller

∥∥δ − B ∗ HBP
∥∥ is, the faster the algorithm converges.

Ideally, if
∥∥δ − B ∗ HBP

∥∥ = 0, then the algorithm converges in one single iteration. This
means that HBP is the inverse kernel of B, which may not exist, or which may numerically
be unstable to compute. Permitting

∥∥δ − B ∗ HBP
∥∥ > 0, allows HBP other than the exact

inverse of B, and therefore increases the numerical instability, but slows down the speed of
convergence. It is demonstrated that given the condition (4.41) the algorithm converges at
exponential rate regardless of the choice of initial guess.
The works of Irani and Peleg [74, 75] are the basis for several iterative backprojection

super-resolution methods. Mann and Picard [106] extended the approach to a perspective
motion model, and Zhao and Sawhney [214] to optical flow. Later, Zhao [212] proposes in-
troducing an illumination model to recover a high-resolution object shape under different
illumination angles. Dekeyser et al. [35] backwarp a spatially interpolated error image in-
stead of computing the receptive field of the low-resolution pixels and modify the update
of the super-resolution estimate which is updated for each frame and not after one pass of
the sequence. Zomet and Peleg [215] derive a modified version of iterative backprojections
using a specific blur kernel for each low-resolution observation and forward warping in the
backprojection stage. The authors further developed their method in [216], where the sum of
images in the update was replaced by a median to improve the robustness of the algorithm.
Greenspan et al. [53] extend the iterative backprojections from 2D to 3D in order to compute
isotropic 3D MRI images from 2D MRI slices.
The advantage of iterative backprojections is that it is easily to understand. This method

enforces that the super-resolution reconstructionmatches the observeddata. Normally, these
algorithms are convergent, but they do not necessarily converge to a unique solution and
may be dependent on the order of pixel updates or the initial guess. In contrast to POCS and
the regularised approach, it is difficult to apply a-priori constraints.
This bibliographical survey is not exhaustive. We can also cite the interpolation from

non-uniformly spaced samples approach [3, 189, 197, 169, 124], the hybrid approach [160, 41],
or the adaptive filtering approach [138, 40, 42].
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4.1.6 Compressed Domain Approach

Super-resolving compressed video provides an additional challenge with respect to tradi-
tional super-resolution methods as other types of observations are available. Video com-
pression methods represent images with a sequence of motion vectors and transform coeffi-
cients. The motion vectors provide a noisy observation of the temporal relationship within
the high-resolution scene. The transform coefficients represent a noisy observation of the
high-resolution intensities. This noise results from more sophisticated processing than the
transitional processing scenario, as compression techniques discard data according to per-
ceptual significance. Typically, super-resolution methods are based on traditional recon-
struction methods such as MAP [28, 54, 58, 57, 163, 109, 165, 132], POCS [55, 134], iterative
backprojections [213], least squares estimation [4], regularised least squares estimation [108],
and interpolation [107], but novel processing methods are adopted. A review on super-
resolution methods for compressed video presented in a Bayesian framework is given in
[164].
The use of compressed video requires an extended observation model as motion com-

pensation, block-based DCT, and quantisation may be modelled in addition to the tradi-
tional imaging process of the camera. Segall et al. [164] define the observation model
for compressed video as follows. Denoting F (x, y, t) the high-resolution time-varying
scene in the image plane coordinate system, where x, y and t indicate horizontal, verti-
cal and temporal locations. The scene is filtered and sampled during acquisition to ob-
tain the discrete sequence G(mx,my, k) where k is an integer time index, 1 ≤ mx ≤
Mx, 1 ≤ my ≤ My . The frames of the sequence G(mx,my, k) are then compressed with
a video compression algorithm resulting in the sequence Gc(mx,my, k). Additionally, mo-
tion vectors d(mx,my, k, r) = (dx(mx, k, r), dy(my, k, r))T are provided that predict a pixel
in G(mx,my, k) from the previously transmitted G(mx,my, r). The low-resolution image
G(mx,my, k) is related to the high-resolution image F (nx, ny, k) by:

G(mx,my, k) = B.S−1.F (nx, ny, k) (4.43)

where B describes the filtering of the high-resolution image and S−1 the downsampling. The
operators B and S−1 model the acquisition system and are assumed to be known. Note, that
the detector noise is not taken into account.
Frames within the high-resolution sequence are also related through time. A transla-

tional relationship between the frames is assumed:

F (nx, ny, k) = F (nx + dx(nx, k, r), ny + dy(ny, k, r), r) + V (nx, ny) (4.44)

where V (nx, ny) account for errors within the model. Noise introduced by the sensor can
also be incorporated into this error term.
During compression the frames are divided into blocks that are encoded either directly

transform-coded using a DCT and quantised, or predicted from a reference frame and the
prediction error is transform-coded and quantised. Hence, the acquired low-resolution
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frame G(k) and its compressed observation Gc(r) are related as:

Gc(k) = DCT−1 [Q [DCT [G(k) − MC(Gc(r),d(k, r), k)]] + MC(Gc(r),d(k, r), k)] (4.45)

where Q represents the quantisation procedure, DCT and DCT−1 are the forward and in-
verse transform operations,MC(Gc(r),d(k)) is the motion-compensated prediction of G(k)

formed by motion compensating previously decoded frame(s), and Gc(r) and d(r) denote
the set of decoded frames and motion vectors that predict Gc(k).
Combining (4.43), (4.44), and (4.45) the relationship between the high-resolution frames

and the low-resolution observations is:

Gc(mx,my, k) = B.S−1.F (nx + dx(nx, k, r), ny + dy(ny, k, r), r) + Ve(mx,my, k) (4.46)

where Ve(mx,my, k) includes the errors introduced during compression, registration, and
acquisition.
In the literature, two types of models for the quantisation noise have been proposed. The

first is formulated in the transform domain following the fact that quantisation errors are
bounded by the quantisation scale factor as:

−S(i)

2
≤ (DCT[Gc(k)])(i) − (DCT[G(k)])(i) ≤ S(i)

2
(4.47)

where (DCT[Gc(k)])(i) denotes the ith transform coefficient of the compressed frame,
(DCT[G(k)])(i) the ith transform coefficient of the acquired frame, and S(i) is the quantisa-
tion scale factor for the coefficient i. It seems reasonable that the recovered high-resolution
image has transform coefficients within the same interval. This quantisation constraint is
used e.g. by Altunbasak et al. [5], Gunturk et al. [54], Patti and Altunbasak [134].
The second model for quantisation noise is constructed in the spatial domain where the

quantisation noise is modelled by a Gaussian distribution. This approximation for quantisa-
tion noise appears e.g. in the work of Chen and Schultz [28], Gunturk et al. [57], Mateos et
al. [108, 109], Segall et al. [163, 165].
The iterative backprojection method of Zhao [212] used a traditional observation model

of the imaging process, but proposes a dynamic masking method in order to limit the influ-
ence of regions to the super-resolution process that are highly degraded due to the compres-
sion error. In [107], Martins and Forchhammer proposed an interpolation technique which
takes into account the encoded picture type and the quantisation step size of the motion-
compensated low-resolution pixels.
Some of these methods are formulated in the spatial domain which requires the full de-

coding of the compressed sequence before applying the super-resolution algorithm [28, 4, 57,
213, 107, 108, 132, 163, 165]. Other methods are directly formulated in the DCT domain re-
lating the super-resolution image with the quantised DCT coefficients [134, 55, 54, 56, 58, 5].
Thus, DCT coefficients are extracted from the compressed flow as low-resolution observa-
tions.
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Most of these methods consider the MPEG motion compensation vectors as too inaccu-
rate for further use. Except the methods presented in [28, 108, 109, 165]. Chen and Schultz
[28] used the encoded motion vectors as an initial estimate in a block-matching algorithm.
The so estimated motion vectors are constrained to be within a region surrounding the ac-
tual subpixel displacement. In [108], Mateos et al. combined the upsampled encodedmotion
vectors with the motion vectors estimated from the high resolution image. The objective is
to improve the estimated motion vectors by forcing them to be close to the one provided by
the encoder. Later, the same authors [109] propose a Bayesian framework to simultaneously
estimate the high-resolution frames from compressed low-resolution video and the motion
relating the high- and low-resolution frames using the motion vectors provided by the en-
coder. To do this, the information on the upsampled encoded motion vectors is included
in the prior for estimating the high resolution motion vectors field. Segall et al. [165] esti-
mate motion using the encoded motion vectors in a Bayesian framework. They model the
accuracy of the encoded motion vectors based on the encoded error residual.

4.1.7 Blur Estimation

As showed in Section 4.1.1 three kinds of imaging operators are considered: warping, blur-
ring, and downsampling. The downsampling operator is straightforward and we realised
it by a bilinear interpolation. We presented a method to compute the warping operator in
the previous chapter (see Section 3.2.2). Thus, the last challenge is the estimation of the blur
operators.
Typically, a blur function in the spatial domain is described by the point spread function

(PSF) [93]. This function describes the impulse response to a point light source at the sensor
of the camera. The PSF can be spatially varying. The difficulty in solving the restoration
problem with a spatially varying blur commonly motivates the use of a stationary model for
the blur. This leads to the following discrete model for a linear degradation caused by blur
and additive noise:

Ĩ(x, y) =

M∑

m=1

N∑

n=1

B(x − m, y − n)I(m,n) + V (x, y)

= B(x, y) ∗ I(x, y) + V (x, y) (4.48)

where I(x, y) is the ideal image of the sizeM × N , Ĩ(x, y) is the degraded image, B(x, y) is
the PSF, ∗ is the 2D convolution operator and V (x, y) represents the additive noise. The noise
is usually assumed to be a zero mean Gaussian distributed, as this effectively models noise
in many different imaging scenarios. The use of linear techniques for solving the restoration
problem is facilitated by using this shift-invariant model (4.48). Wewill focus on the spatially
varying case in the next chapter.
If B is known or estimated, then the direct way to restore the ideal image by linear tech-

niques would be to synthesiseB−1 and convolve with the left hand side of (4.48). Obviously,
B−1 in not directly feasible in spatial domain and also the noise would be amplified. Fur-
thermore, such a convolution operation is computationally demanding. In order to reduce
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the complexity of calculations it is often preferred to work in the frequency domain since the
convolution transforms to a multiplication of spectra:

Ĩ(u, v) = B(u, v)I(u, v) + v(u, v) (4.49)

where Ĩ,I,B, v are the the Fourier transforms of Ĩ , I,B, V , respectively, and u, v are the
coordinates in the transform domain.
The frequency response of the PSF,B, is called the optical transfer function (OTF). It can be

decomposed into the amplitude part, |B|, which is themodulation transfer function (MTF) and
the phase part which is the phase transfer function (PTF). The most frequently used models to
represent shift-invariant image degradations are [8]:

• Linear motion blur is a common result of camera panning or fast object motion. It is
represented by a 1D uniform local averaging of neighbouring pixels in the direction of
motion:

B(ν) =

{
1
L if −L

2 ≤ ν ≤ L
2

0 otherwise
(4.50)

where ν is the directional variable, and L is the length of the blur.

• Atmospheric turbulence blur is common in remote sensing and aerial imaging. The blur
due to log-term exposure though the atmosphere can be modelled by a 2D Gaussian:

B(x, y) = C exp

(
−1

2

(
x2 + y2

σ2

))
(4.51)

where C is a normalising constant ensuring that the blur is of unit volume, and σ2 is
the variance that determines the severity of the blur. A 2D Gaussian blur can also be
used to model the PSF of the camera sensor [75].

• Uniform out-of-focus blur is primarily due to effects at the cameras aperture that result in
a spreading of a point of incoming light across a circle of confusion. A complete model
of the camera’s focusing system depends on many parameters such as the focal length,
the camera aperture size and length, the distance between the object and the camera,
the wavelength of incoming light, and the effects due to diffraction. The knowledge of
these parameters is often not available. When the blur due to poor focusing is large,
the PSF can be approximated as a uniform intensity distribution within a circular disk
of the radius R:

B(x, y) =

{
1

πR2 if
√

x2 + y2 ≤ R

0 otherwise
(4.52)

• Uniform 2D blur is amore severe form of degradation that approximates an out-of-focus
blur:

B(x, y) =

{
1

L2 if −L
2 ≤ x, y ≤ L

2

0 otherwise
(4.53)



4.1 – State of the Art 91

Most of the super-resolution methods presented above are of restricted scope as they
suppose that the PSF is known, but often no knowledge about the imaging system is avail-
able. It is clear that these methods are not suitable for real image processing situations. Blind
super-resolution addresses this problem, but it is still an open challenge [47]. The objective of
blind super-resolution is to estimate the unknown PSF parameters from the measured data.
Many single-frame blind deconvolution algorithms have been suggested [96, 97], but only
few have been incorporated in super-resolution methods. There remains a need for more
research to provide a super-resolution method along with a more general blur estimation
algorithm from aliased images [47]. Nguyen et al. [126] propose a blind super-resolution
method where the PSF and regularisation parameters are computed using the generalised
cross-validation method. In [68], He et al. proposed a MAP framework for joint estimation
of the blur and the super-resolution image. Both are iteratively estimated in a cyclic proce-
dure using two different regularisation parameters, one for the blur operator and one for the
super-resolution image. In [69], He et al. extend this work to parametric blur models. The
best fit blur model and parameters are determined based on a learning set of different blur
types.
In this PhD thesis we are interested in restoring motion blur caused by the motion of the

camera. The particular problem of motion blur in video is that it varies from frame to frame
i.e. the blur direction and its size can vary in each image as they depends on the velocity
of camera motion, the direction of the camera motion, and the aperture time of the camera.
There are two main approaches to blind deconvolution [96, 97]:

• Identifying the PSF separately from the true image, in order to use it later with one of
the known classical image restoration methods. Estimating the PSF and the true image
are disjoint procedures. This approach leads to computationally simple algorithms.

• Incorporating the identification procedure with the restoration algorithm. This merge
involves simultaneously estimating the PSF and the true image, which leads to the
development of more complex algorithms.

Methods of the first class tend to be computationally simpler and are therefore in our in-
terest. Recently several deblurring methods taking into account motion blur have been pre-
sented. For instance, Rav-Acha and Peleg [148] compute the motion direction by performing
one iteration of the algorithm for each angle and the angle which gives the strongest deblur-
ring effect is the angle of the motion blur. Then, they estimate simultaneously the motion
parameters and the size of the blur kernel using a multiresolution Gaussian pyramid. In
[209], Yitzhaky and Kopeika measure the motion direction as the angle where the minimum
of the total intensity of the image derivative is attained. In order to determine the blur extent,
they compute the autocorrelation function of the spatial image derivative in motion direc-
tion. Then, the blur extent corresponds to the distance of theminimum of the autocorrelation
function and its zero-shift center.
Contrary to these methods, in a super-resolution framework where motion has to be esti-

mated for the alignment and warping of the frames the direction of the blur can be obtained
from this estimated motion. This will be our approach.
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4.2 Super-Resolution Mosaic Construction

In this section, we present our contribution to super-resolution mosaicing. The objective
here is to increase the resolution and to improve the visual quality of DC-resolution mosaics.
The method for their construction has been presented in Chapter 3. Therefore, we apply a
super-resolution algorithm to these mosaics. We consider the global scheme illustrated in
Figure 4.3 for the super-resolution mosaic construction. Taking into account our new goal,
i.e. improving the resolution of mosaics, this scheme differs from that one presented in the
previous chapter (Figure 3.7). First, in this chapter we do not consider moving objects as
they require special processing. This will be the focus of the next chapter. Consequently,
the moving object extraction and postprocessing steps are omitted. As we explained above
super-resolution methods incorporate restoration techniques. This requires the estimation
of the blur in the input image sequence. Hence, blur estimation is an additional step in
Figure 4.3. Blending is now accomplished in the super-resolution step. The steps of data ex-
traction, registration and illumination correction have already been described in Chapter 3.
Hence, in the following of this chapter we will address the remaining open issues for the
super-resolution mosaic construction: the estimation of the blur, and the super-resolution
algorithm.

Blur
estimation

Data
extractionstream

Compressed
Registration

Illumination
correctionSuper−resolution

Super−resolution
mosaic

Figure 4.3: Global scheme of the super-resolution mosaic construction.

We chose the iterative backprojection algorithm from Irani and Peleg [75] as reference
method because of its simplicity and fast convergence. We described this method in Sec-
tion 4.1.5. This method was formulated for moving objects i.e. regions of homogeneous mo-
tion. Here, we assume only one region of homogeneous motion which is the entire image.
We first derive our observation model from that one proposed in [75] and then reformulate
the iterative backprojection algorithm.

4.2.1 Modelling of the Imaging Process

Let n = (nx, ny) be a pixel in the target super-resolution image F andm = (mx,my) a pixel
in the available LR image G. In [75], Irani and Peleg model the imaging process as:

G(k) = S−1B ∗
[
T−1(k) [F + V (k)]

]
(4.54)

where S−1 is the downsampling operator, B is the PSF of the sensor, ∗ is the convolution
operator, T−1(k) the geometric transformation from the super-resolution image to the kth
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low-resolution image, and V the additive noise. Irani and Peleg assumed a sensor PSFwhich
is constant for all observations. In contrast to this, we assume linear motion blur which can
vary in each image of the sequence. Thus, we reformulate the observation model as:

G(k) = S−1.B(k) ∗ [T(k). [F + V (k)]] (4.55)

where B(k) is the linear motion PSF of kth frame. Note that F refers in our case to a mosaic.
Having specified our observation model, we now can derive the super-resolution algorithm.

4.2.2 Iterative Backprojections

Based on the observation model (4.55), the low-resolution sequence is simulated at each
iteration i using the current guess of the super-resolution mosaic F i:

Gi(k) = S−1.B(k) ∗
[
T−1(k).F i(k)

]
(4.56)

The result is a set of simulated low-resolution images Gi(k) corresponding to the sequence
of the original low-resolution images G(k). Then, the difference between the simulated low-
resolution images Gi(k) and the input images G(k) is used to update the super-resolution
mosaic:

F i+1 = F i + µ(K)

K∑

k=1

T(k).R(k) ∗
[
S.A(k).

[
G(k) − Gi(k)

]]
(4.57)

where A(k) is a regularisation operator, R(k) is the restoration filter defined by B(k), S is
the upsampling operator by the factor ς (inverse to S−1), and µ(p,K) = 1

|p| with |p| as the
number of available pixels at position p. We realised the upsampling and downsampling
operators, S and S−1, by a bilinear interpolation. Here, we warp a spatially interpolated
error image E(k) = S.A(k).

[
G(k) − Gi(k)

]
byT(k) in the process of backprojection similarly

to Dekeyser et al. [35] instead of computing the receptive field Υ as proposed by Irani and
Peleg (see Equation (4.36)).
The low-resolution observations we use in this work are DC images. They are highly

undersampled and thus suffer strongly from aliasing. Therefore, even if the geometric trans-
formations T are accurately estimated, it is sometimes not possible to exactly superimpose
edges and textures in the mosaic. This can cause artefacts in the mosaic which are amplified
during the iterations of the super-resolution method. Therefore, we add the regularisation
operators A(k) in the backprojection process in order to attenuate the amplification of such
artefacts. This is different to [75] (see Equation (4.40)).
We choose the initial guess F 0 similarly to [75] as:

F 0 = µ(K)
K∑

k=1

T(k).S.G(k) (4.58)

In this work, we are dealing with RGB color images. Therefore, we apply the equations
above to each color component.
In order to determine the maximum number of iterations, we define a stopping criterion

based on the error functional ǫi (4.35) which is minimised by the iterative backprojections.
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In fact, we use the normalised error ǭi between the low-resolution observations and its sim-
ulated versions at the ith iteration:

ǭi =
1

K · M (ǫi)2

=
1

K

K∑

k=1

(
1

M

∑

m

‖(G(m, k) − Gi(m, k))‖2

)
(4.59)

where M is the number of pixels in G(k), and K is the number of frames participating in
the mosaic. Note, we use the vector norm ‖·‖ in the computation of ǭi, as the R, G and B
components are considered in the computation. When ǭi approaches stability or increases,
the maximum number of iterations has been reached. The value ǭi may increase after sev-
eral iterations for several reasons. On the one hand, it can be due to an inaccurate motion
compensation coming from inaccurate motion models or aliasing. On the other hand, it can
be due to ringing artefacts induced in the restoration as we will show below.

4.2.3 Blur Estimation

The origin of blur in DC frames is twofold. On the one hand, the blur comes from full-
resolution frames due to the well studied phenomenon of motion during the exposure time.
To estimate it several methods have been proposed in the literature [59]. On the other hand,
the DC frames represent a low-pass version of the full-resolution frames in the video se-
quence in which the low pass is done locally inside a block of 8 × 8 pixels. Therefore, the
overall blur is a result of these two phenomena. To this end, we propose in this section sev-
eral blur models to describe the real overall blur function. Moreover, we present a method
to estimate the blur parameters from the image sequence itself.

Blur Models

In this work, we focus on three different blur models. We consider:

• Isotropic Gaussian blurwhich models most of the natural blurs.

• Anisotropic Gaussian blur in motion direction which models blur due to randommotion.

• Linear Motion blurwhichmodels motion due to fast object motion or to the fast panning
of the camera.

We will present in the following, for each blur model, the mathematical expression of the
PSF and its frequency response, the OTF, as we will use the OTF in the restoration which is
accomplished in the frequency domain. Furthermore, we show that for these blur models,
only the amplitude part of the OTF, called the MTF, can be used.

Isotropic Gaussian Blur: This blur models most of the natural blurs. The PSF of such a
blur BGauss can be modelled by a 2D Gaussian function:

BGauss2D(x, y, σ) =
1

2πσ2
exp

(
−1

2

(
x2 + y2

σ2

))
(4.60)
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The Fourier transform of a Gaussian function is also a Gaussian [203]. Thus, the OTF
consists only in an amplitude part which is the MTF. Then, the corresponding MTF BGauss

is:

BGauss2D(u, v, σf ) =
1

2πσ2
f

exp

(
−1

2

(
u2 + v2

σ2
f

))
(4.61)

where σf is inversely related to σ. This relation depends on the normalisation factor and will
be derived below.

Anisotropic Gaussian Blur in Motion Direction: Here, we describe the mathematical ex-
pression corresponding to random motion. The PSF of such a blur BGauss can be modelled
by a 2D Gaussian function as:

BGauss(x, y, σx, σy) =
1

2πσxσy
exp

(
−1

2

(
x2

σ2
x

+
y2

σ2
y

))

=
1√

2πσx

exp

(
− x2

2σ2
x

)
· 1√

2πσy

exp

(
− y2

2σ2
y

)

= BGauss(x, σx) · BGauss(y, σy) (4.62)

As we can notice, the Gaussian PSF can be separated in a horizontal and vertical compo-
nent, BGauss(x, σx) and BGauss(y, σy). Thus, the blurred image is:

F̃ = BGauss(x, σx) ∗ (BGauss(y, σy) ∗ F ) (4.63)

For the same reason than above we can only consider the MTF. Thus, the corresponding
MTFBGauss is:

BGauss(u, v, σu, σv) =
1

2πσuσv
exp

(
−1

2

(
u2

σ2
u

+
v2

σ2
v

))

=
1√

2πσu

exp

(
− u2

2σ2
u

)
· 1√

2πσv

exp

(
− v2

2σ2
v

)

= BGauss(u, σu) · BGauss(v, σv) (4.64)

where σu and σv are inverse related to σx and σy, respectively. Similarly to the PSF, the
Gaussian MTF can be separated in a horizontal and vertical component, BGauss(u, σu) and
BGauss(u, σu).

Linear Motion Blur: Our objective is to restore directional motion blur that comes from
the camera motion in video. We assume a constant velocity of the motion since the exposure
time is usually very short.
Let v be the velocity of the motion according to the direction d. Then, the box PSF Bbox

in motion direction for linear motion is:

Bbox(ν) =

∫ T/2

−T/2
δ(ν − vt)dt (4.65)
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where T is the exposure time and ν is the directional variable.
The corresponding MTFBsinc is [59]:

Bsinc(f) =

∣∣∣∣
sin(πvfT )

πvfT

∣∣∣∣ = |sinc(πbf)| (4.66)

with b = vT as the spatial extent of the blur. We compute Bsinc only until the first zero-
crossing since a detail of a size smaller than the blur radius b is unresolvable and undergoes
black-white phase or colour reversal. Thus, Bsinc at frequencies higher than 1/b does not
exist [93].
Now, let us consider a displacement vector d developed as d = ~dx + ~dy where ~dx and ~dx

are the components in xOy orthogonal basis. We suppose that this motion is translational.
Let us denote by α the angle with the x-axis (see Figure 4.5). Then, the 1D motion blur in d

direction can be represented as a composition of two motion blurs in horizontal and vertical
direction:

Bbox(x, y) =

∫ T/2

−T/2
δ (x − v cos(α)t, y − v sin(α)t)dt (4.67)

Here v cos(α) and v sin(α) respectively represent the horizontal and vertical components, vx

and vy, of the velocity v (orthogonal projection). From Equation (4.67) follows:

Bbox(x, y) =

∫ T/2

−T/2
δ (x − vxt) dt ·

∫ T/2

−T/2
δ (y − vyt) dt

= Bbox(x) · Bbox(y) (4.68)

For the case of linear motion degradationwe can replace the OTF by theMTF. The reason
is that here the phase part of the OTF (the PTF) is a linear function and therefore it causes no
degradation, but only translation. Thus, only the amplitude part can be taken into account.
As the PSF is separable in horizontal and vertical direction, we can do similarly for the MTF:

Bsinc(u, v) = |sinc (πbxu)| · |sinc (πbyv)|
= Bsinc(u) · Bsinc(v) (4.69)

where bx = vxT and by = vyT . The sinc MTF in motion direction can thus be represented by
the combination of a horizontal and a vertical sinc function.

Normalisation

Assuming an image spectrumof the size 2N×2N . (We use rectangular spectrawhere the size
2N × 2N is obtained by padding which will be precised later). Then, we need to normalize
the horizontal and vertical components of the MTFs presented above (see Equations (4.61),
(4.64) and (4.69)) with respect to the maximum available frequency 2N . Here, we treat only
the horizontal component of the MTF for the frequencies [0,N − 1]. The second part is
obtained by mirroring the frequencies [0,N − 1] to the frequencies [N, 2N − 1]. The vertical
component is obtained similarly and is then transposed.
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Let us denote the blur extent in the pixel domain b in motion direction, and bx, by its
components in x and y-direction, respectively. In order to obtain σ for the isotropic Gaussian
blur from b (and σx, σy for the anisotropic Gaussian blur from bx, by), we propose to apply the
3σ-property. According to this property, the values within the interval±3σ represent 99.73%
of the Gaussian distribution. We assume that the values of BGauss outside of the interval±3σ

are so small that they do not contribute to the blurring process and could be neglected due
to the discretisation. Thus, we derive σ = b/3 (and σx = bx/3, σy = by/3).
Figures 4.4(a) and (b) show, respectively, the Gaussian in the spatial domain and our

normalisation in the frequency domain. Using the assumption of the 3σ-property, the first
value equal zero of the PSF appears at b = 3σ. From this relation we can estimate σf .

0

1

b = 3σ

(a)

0

1

N
b

(b)

0

1

b

(c)

0

1

N
b

(d)

Figure 4.4: The normalisation of the MTFs: (a) The PSF BGauss and (b) the corresponding
MTF BGauss normalised with respect to the size of the spectrum 2N . (c) The PSF Bbox and
(d) the corresponding MTFBsinc normalised with respect to the size of the spectrum 2N .

Assuming that:
b = 3σ (4.70)

we wish the size of BGauss to correspond to the frequency N for b = 1. As the sigma value
in the frequency domain σf is inversely related to σ:

σf =
Cσ

σ
(4.71)

we can introduce the normalisation by the relation:

3σf = N

σf =
N

3
(4.72)

By fixing b = 1, from (4.70)(4.71) and (4.72) we obtain:

σf =
N

9σ
(4.73)

Thus, the first value equal zero in the frequency domain corresponds according to our nor-
malisation to N/b. In order to not modify the frequency (0, 0) in the blurring or restoration
process, which would cause a luminance change of the image, we normalise the magnitude
of the Gaussian. We divide each value ofBGauss byBGauss(0).
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We normalise the sinc MTF similarly which is shown in Figures 4.4(c) and (d). For a box
of the size b, the first zero ofBsinc appears at the frequency N/b i.e. for b = 1 the size of the
sinc corresponds to the frequency N .

Parameter Estimation

The blur can vary in each image, since it depends on the motion direction, on the velocity,
and on the exposure time. Therefore, we estimate the blur extent from the image itself. In
[59], Hadar et al. proposed the estimation of the blur for translational motion along the x-
axis based on the edge response. The authors assumed an underlying ideal edge model as a
step function U in the horizontal direction:

U(x) =

{
1 if x ≥ 0

0 otherwise
(4.74)

and measured the response of the imaging system in the image plane. In this work we
propose to consider natural edges in the video which are not vertical and measure the edge
response in the arbitrary direction of motion. Chiang and Boult [30] also considered a local
blur estimation of a Gaussian blur parameter, but in gradient direction.
We first locate the edges by computing the first derivative ∇G of the low-resolution im-

age G using the Sobel operator. Then, a non-maxima suppression and a threshold λE are
applied to the gradient magnitude in order to extract significant edges. We obtain the fol-
lowing set of pixels:

E∇ = {m| N(||∇G(m)||) > λE} (4.75)

where N is the function of the non-maxima suppression. We chose the threshold λE with
respect to the root mean square of the gradient magnitude ||∇G||:

λE = CE ·
√√√√√

1

(Mx − 1)(My − 1)

∑

1<mx<Mx−1
1<my<My−1

||∇G(mx,my)||2 (4.76)

whereMx ×My is the size of the low-resolution image, and CE a constant. We determined it
experimentally as CE = 2.
We estimate the blur in the motion direction and consider translational motion. This can

be justified as locally a motion vector can be interpreted as translational motion. The motion
direction d is known from the motion compensation vector for the geometric transforma-
tions T. Thus, our algorithm does not need additional computation in order to determine
the direction of the blur.
We measure the edge response only on the edges which are orthogonal to the motion

direction. Hence, the complex 2D case of arbitrary oriented motion and non-vertical edges
can be considered as a classical model of a horizontal motion and vertical edge described by
Equation (4.65) in motion direction. Therefore, we compute the angle between the gradient
∇G(m) and the motion vector d(m) and retain only the pixels for which the angle is smaller
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Figure 4.5: (a) Edge response in motion direction of a blurred edge, (b) Computation of the
edge response in horizontal and vertical direction.

than the threshold λ∠. We inverted d(m), if ∠(d(m),∇G(m)) > 900 for an easier computa-
tion. Then, d(m) points always in the direction of the local maximum. The resulting pixel
set is:

E∇,⊥ =

{
m ∈ E∇|

∣∣∣∣arccos
(

d(m) · ∇G(m)

||d(m)|| ||∇G(m)||

)∣∣∣∣ < λ∠

}
(4.77)

To choose the threshold λ∠, we can start with a small angle value of ±5◦. Nevertheless, if
the image does not contain a sufficient amount of edges orthogonal to the motion direction,
we increase the threshold. The maximal value we worked with was ±45◦.

For each point of a significant contour we consider a local estimation of the edge re-
sponse. The edges in a blurred image can be considered as a 1D section in motion direction
with form as illustrated in Figure 4.5(a). They are limited by a local minimum and a lo-
cal maximum determining the rise of the edge. In natural images the local minimum and
maximum are caused by artefacts due to the acquisition process, known as Gibbs ringing
phenomenon [51]. In order to not take account for these artefacts in our computation, we
take the 10% to 90%-distance of the local minimum and maximum [176] as the width of the
edge response.

Let m denote the position in the low-resolution image G which indicates the center of
the edge, situated between the local minimum and the local maximum. A discrete straight
line segment on a pixel grid according to the direction d is considered, centered onm. The
local maximum and minimum are searched along the segment in the low-resolution image
G. Then, the 10% and 90%-limits can be determined using the same method.

The edge response in motion direction e(m), m ∈ E∇,⊥, is computed as the euclidean
distance of the 10% and 90%-limits. Its value can be used for the isotropic Gaussian blur, but
for other motion models we need its x and y-components, ex(m) and ey(m). They can be
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determined using trigonometric triangle rules (see Figure 4.5(b)):

cos(α(m)) =
d(m) · (1, 0)T

||d(m)|| (4.78)

sin(α(m)) =
d(m) · (0, 1)T

||d(m))|| (4.79)

ex(m) = |e(m) · cos(α(m))| (4.80)

ey(m) = |e(m) · sin(α(m))| (4.81)

As we suppose that this blur is induced by global camera motion, we compute only one
“global” value of blur parameters per image. Hence, we compute the edge response for the
image as the average of all estimated values:

e =
∑

m∈E∇,⊥

e(m) (4.82)

ex =
∑

m∈E∇,⊥

ex(m) (4.83)

ey =
∑

m∈E∇,⊥

ey(m) (4.84)

A spatial convolution filter of the size l causes an edge response of the size 2l. Hence:

b =
e

2
(4.85)

bx =
ex

2
(4.86)

by =
ey

2
(4.87)

We have now defined the blur extend in the available data, i.e. the low-resolution frame
G(k). Nevertheless, in our observation model (4.55) the blur B is defined for the super-
resolution image corresponding toGwhich necessitates the knowledge of the edge response
in the super-resolution image. Here, we suppose that the edge response increases propor-
tionally to the upsampling factor ς of the super-resolution mosaic and define the blur extend
is the super-resolution frame as:

b̂ =
e

2
· ς (4.88)

b̂x =
ex

2
· ς (4.89)

b̂y =
ey

2
· ς (4.90)

For the sake of simplicity, we use in the following of this chapter the notations b, bx, by for
the blur size in the super-resolution domain.
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4.2.4 Restoration in the Frequency Domain

Having determined the blur function and its parameters, we would like to use it to compen-
sate the degradation from motion by synthesising the restoration filter R. The restoration
can be done in the pixel domain according to (4.57) with R which is the impulse response
of the inverse filter of the PSF B. Contrarily, we can synthesise its transfer function in the
Fourier domain using the MTF R which is the magnitude part of the Fourier transform of
the PSF B. In this section we consider standard restoration filters such as the inverse filter,
the pseudo-inverse filter and the optimum filter which is the Wiener filter for the restoration
filterR.

According to the properties of the Fourier transform the convolution in Equation (4.57)
transforms into a multiplication in frequency domain. Then, the restoration of the difference
image S.A(k)

[
G(k) − Gi(k)

]
becomes:

R(k) ∗ S.A(k)
[
G(k) − Gi(k)

]
= FT−1

(
FT
(
S.A(k)

[
G(k) − Gi(k)

])
· R(k)

)
(4.91)

where FT is the Fourier transform andR(k) is the OTF of the restoration filter R(k).

From the above equation it is clear that the image to be restored has also to be trans-
formed in the frequency domain by a Fourier transform. Implementations of the Fourier
transform are typically optimised for a images of the size 2j × 2j , j ∈ N. Another aspect
is that the Fourier transform assumes a periodic signal. Thus, artefacts can appear on the
image borders when applying an inverse Fourier transform. Therefore, we pad the images
by a mirror to the nearest size 2j × 2j as illustrated in Figure 4.6. The padded image is then
used in the restoration and afterwards cropped to the original images size.

2j

2j

Figure 4.6: Padding of an image to the size 2j × 2j by a mirror.
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Pseudo-Inverse Filter

When the MTF is available, the simplest way to restore an image is inverse filtering. When
synthesising an inverse filter transfer function, the problem is the division by very small
magnitude values which leads to numerical instability.
Instead of dividing by very small magnitude values of the MTFwe suggest to replace the

MTF by a constant value. Thus, a pseudo-inverse filter is synthesised. The pseudo-inverse
filter has good results for cases where the noise power in the image is very low (high signal
to noise (SNR) values).
For the MTF of the isotropic Gaussian (4.61), we can directly synthesise a 2D restoration

filter as:

Rpinv(u, v, b) =

{
1

B(u,v,b) if |B(u, v, b)| > λpinv

λpinv otherwise
(4.92)

whereRpinv is the pseudo-inverse filter and λpinv a threshold.
This filter is discontinuous. Another solution would be to use 1/λpinv if |R(u, v, k)| ≤

λpinv and the pseudo-inverse filter would be continuous. Nevertheless, the threshold λpinv is
usually very small. Thus, using the value 1/λpinv would cause a strong amplification of high
frequency noise. Hence, we retain (4.92) despite its discontinuity as pseudo-inverse filter.
For the anisotropic Gaussian blur and the linear motion blur model, we separated the

MTFs in a horizontal and vertical component (see Equations (4.64) and (4.69)). Hence, we do
similarly for the restoration filter. We compute two 1D restoration filters R(u),R(v) using
B(x),B(y), respectively. First, we restore the lines using R(u) and then the columns using
R(v) as:

Rpinv(u, v, b) = Rpinv(u, bx) · Rpinv(v, by) (4.93)

Wiener Filter

We introduce here the Wiener filter because it is the optimum filter for the case of linear
degradation and additive noise which we suppose for our DC frame formation. The Wiener
filterRWiener is defined as [145]:

RWiener(u, v, b) =
B∗(u, v, b)

|B(u, v, b)|2 + 1/SNR
(4.94)

whereB∗ is the complex conjugate ofB.
For the same reason as above, the restoration is performed separately along the rows and

the columns of the image for the anisotropic Gaussian blur and the linear motion blur model.
Thus, the image restoration in the update process (4.57) is then accomplished according to
(4.91) with:

RWiener(u, v, b) = RWiener(u, bx) · RWiener(v, by) (4.95)
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SNR Estimation: Video frames suffer from noise due to the imaging system. This noise
influences the restoration step. The SNR generally varies for different image sequences since
it strongly depends on the imaging system. Therefore, we need to quickly estimate the noise
from the available video data. Since we only have low-resolution frames in our disposal, we
will estimate the SNR from them. We consider edges as a useful signal. Thus, the SNR for
the image G can be computed as the ratio [145]:

SNR =
h2

σ2
N

(4.96)

where h is the edge height and σ2
N the variance of the noise.

Here, we take h as theminimal gradient magnitude ||∇G|| on the contourswe considered
significant (see Equation (4.75)). To compute the variance of the noise, the usual approach
consists in determining a flat area and computing the variance with respect to the mean
value. We propose to approximate this variance by the mean energy of the gradient on the
complement to the set of significant contours Ē∇:

Ē∇ = {m | ‖∇G(m, k)‖ < λE } (4.97)

Thus:
σ2

N =
1∣∣Ē∇
∣∣
∑

m∈Ē∇

‖∇G(m, k)‖2 (4.98)

where
∣∣Ē∇
∣∣ is the cardinality of the set Ē∇. Such an approach allows avoiding the segmenta-

tion of frames into flat areas which is a costly process.
Figure 4.7 shows a comparison of the restoration filters. For the sake of simplicity we only

show the 1D case. In all examples the same blur size b = 1.5 has been used. We observe that
the Gaussian MTF (Figure 4.7(a)) is narrower than the sinc MTF (Figure 4.7(d)). Hence, the
restoration filters (Figures 4.7(b) and 4.7(c)) using this MTF are narrower than the restoration
filters using the sinc MTF (Figures 4.7(e) and 4.7(f)) and less frequencies will be restored.
The pseudo-inverse filter has a hard cut-off which is here smoother for the Wiener filter, and
amplifies more the frequency before the cut-off. Therefore, the pseudo-inverse filter is likely
to introduce more ringing artefacts than the Wiener filter. In fact, the smoothness of the
cut-off of the Wiener filter depends on the SNR. It is a well known fact that the Wiener filter
performs better in the case of noise, andwhen the SNR is high it approaches the inverse filter.
The disadvantage of theWiener filter is its complexity compared to the pseudo-inverse filter,
because we need to calculate the SNR in the image by the Equations (4.96)–(4.98) which is
a computationally tedious task. The use of the Wiener filter instead of the pseudo-inverse
filter can thus be justified if the noise is sufficiently strong. In Section 4.3, we will discuss
this choice for DC frames taking into account the nature of noise.

Validation of the Blur Estimation and Restoration

We created a synthetic sequence in order to validate our blur estimation and restoration
method. The motion of the synthetic sequence shown in Figure 4.8 is translational along
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Figure 4.7: Comparison of the restoration filters: (a) The 1D Gaussian MTF, (b) pseudo-
inverse filter of (a), (c) the Wiener filter of (a), (d) the sinc MTF, (e) the pseudo-inverse filter
of (d), (f) the Wiener filter of (d).

the x-axis. It was degraded with motion blur using the fspecial function of the MATLAB
software [1]. This function convolves the image with a box function of the size l in the
direction of a given angle. The size of the box function l corresponds to twice the blur size
b. Since no Gibbs ringing artefacts appear in the original sequence, we did not restrain the
edge response to the 10%–90% limits, but took instead the minimum and maximum values
to determine the blur extent. Table 4.1 shows the results we obtained with our method. We
can see that in the case of an odd length l of the box, our estimation is exact and otherwisewe
get an aberration of a half pixel which is due to the discretisation of the convolution kernel.
In case of an even length l, an odd kernel of the size l + 1 is computed with half the weights
on the kernel borders. Using b > 3 in this experiment results in smooth edges which cannot
be detected as the gradient magnitudes drop below the threshold in Equation (4.76).

Figure 4.8: The synthetic test sequence.
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l b

2 1.5
3 1.5
4 2.5
5 2.5

Table 4.1: Results of the blur extent estimation on the synthetic sequence with l as the size of
the box filter and b the estimated blur size.

Figures 4.9(a)–(d) show the super-resolutionmosaics for the sequence of Figure 4.8 using
different combinations of the blur models with the restoration filters. We can observe Gibbs
ringing artefacts in all super-resolution mosaics. This is due to the normalisation of the
filters. If b > 1 then Bsinc contains zeros in the frequencies higher than N/b and BGauss

contains values near zero in the same frequencies. The ringing artefacts are strongest for
the isotropic Gaussian blur model, and they are stronger for the anisotropic Gaussian blur
model than for the linear motion blurmodel sincewith this normalisationBGauss is narrower
thanBsinc and thus suppresses more of the high frequencies as illustrated in Figure 4.7. The
ringing artefacts for the pseudo-inverse filter are stronger than for the Wiener filter due to
an amplification of the middle frequencies and the discontinuity of the filter caused by the
thresholding (4.92).
If we normalise the filters in another way e.g. assuming that b = σ instead of b = 3σ

for the Gaussian filter, we obtain the super-resolution mosaic shown in Figure 4.10 for the
pseudo-inverse filter. Using this normalisation for b = 3 the size of BGauss corresponds to
N . Hence, almost no ringing artefacts appear in the super-resolution mosaic, but it is still
blurred after 10 iterations.
Our results coincide with those presented in [23]. Therein, Capel and Zisserman study

the effects of a poorly estimated PSF. If the PSF is too low-pass, then the super-resolution
image develops ringing artefacts. If the PSF is too high-pass the super-resolution estimate is
blurry.

4.2.5 Regularisation

The process of restoration in general increases the high frequency content of the image. In
case of DC frames it is specifically hold, because we observe the blocking effect due to the
independent averaging of each block. Thus, we expect to get a degradation process due to
aliasing. In order to compensate this process we need to use an antialiasing filter. Therefore,
with regard to the super-resolution process described by Equation (4.57), the aliasing effect
in each DC frame will result in a strong motion compensation error. This is due to the fact
that the geometric transformation T will not lead to an exact superposition of the details in
high frequency areas such as textures and edges. Thus, the difference image G(k) − Gi(k)

will be of high magnitude. Adding this elevated error image to the super-resolution mosaic
will cause artefacts in the super-resolution mosaic amplified at each iteration step.
Thus, we propose the following regularisation operator A. It is based on the weight-
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Super-resolution mosaics for the synthetic sequence after 10 iterations using ς =

2 and b = 3: (a) BGauss2D restored by the pseudo-inverse filter (b) BGauss2D restored by
the Wiener filter, (c) BGauss restored by the pseudo-inverse filter (d) BGauss restored by the
Wiener filter, (e) Bsinc restored by the pseudo-inverse filter, (f) Bsinc restored by the Wiener
filter.
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Figure 4.10: The super-resolution mosaic after 10 iterations with ς = 2 forBGauss restored by
the pseudo-inverse filter using the normalisation b = σ.

ing of the error G(k) − Gi(k) by the gradient magnitude of the low-resolution image G(k).
We determine for each pixel in the simulated image Gi(k) if it corresponds to an edge or a
texture in the low-resolution image G(k). In such pixels the weights have to penalise the
contribution of the pixel values.
In order to exactly relate the pixels in the simulated image Gi(k) to the gradient magni-

tude of the imageG(k), the image of the gradient magnitude undergoes the super-resolution
process. We calculate the magnitude of the Roberts gradient ‖∇rF‖ for the super-resolution
mosaic with respect to the low-resolution image G(k). Thanks to the geometric transforma-
tion T(k), the corresponding position n̂ at higher resolution in a frame of the pixelm in the
mosaic is known. If we divide it by the upsampling factor ς , we obtain the corresponding
decimal position n̂/ς in the low-resolution image G. Then, we can calculate the magnitude
of the Roberts gradients on the luminance component of F (n̂/ς), ‖∇rYF (n̂/ς)‖, according
to Equation (3.70). The gradient magnitude is then compensated according to T and down-
sampled by S−1. We compute the matrix of the weights for antialiasing as the inverse of the
compensated and downsampled gradient magnitude. Therefore, we define the following
penalty function:

Ψ(x, λA) =

{
λA
x if x > λA

1 otherwise
(4.99)

where λA is a threshold. Figure 4.11 depicts the penalty function.
Then, the regularisation operator is computed as:

A(k) = Ψ(S−1.T−1(k). ‖∇rYF‖ , λA) (4.100)

In fact, the threshold λA defines if a certain gradient belongs to an edge or a texture. We
chose the its value as 2.5% of the grey level range.
As we stated above, the restoration in the frequency domain causes ringing artefacts on

the image borders due to the fact that a periodic signal is assumed. In a first step, wemitigate
these artefacts by padding the image using a mirror before the Fourier transform. But, this
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Figure 4.11: The penalty function Ψ.

is not sufficient. Therefore, we set by default the weights of the border rows and columns to
zero.
Figure 4.12 shows a comparison ofmosaics obtainedwith andwithout regularisation. We

observe much more artefacts in the cut-out of the super-resolution mosaic after 20 iterations
without regularisation (Figure 4.12(a)) than in the cut-out of super-resolution mosaic with
regularisation (Figure 4.12(b)).

(a) (b)

Figure 4.12: A cut-out of the super-resolution mosaic of the sequence “Chancre1”
CERIMES-SFRS R© after 20 iterations with ς = 2 using Bsinc restored by the pseudo-inverse
filter: (a) without regularisation and (b) with regularisation.

4.3 Results

We showed in the last chapter, that when a mosaic is constructed from DC images, the res-
olution is too low to give a scene overview and the image quality is not satisfying due to
the strong degradations of the DC images. Therefore, we developed in this chapter a super-
resolution algorithm to increase the resolution and to improve the visual quality of the mo-
saic. Here, we consider that twice the DC-resolution is an appropriate resolution for this
task. Furthermore, we show that increasing DC-resolution mosaics to this target resolution,
is less costly than calculating full-resolution mosaics and downsampling them to this target
resolution. Hence, full decoding of the compressed stream is not required.
Here, we show the results we obtained on broadcasted MPEG-2 compressed video with
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unknown blur parameters. In order to determine the best blur model and its restoration, we
tried all combinations of the blur models with the restoration filters. In order to evaluate the
performance of the different combinations of blur models and restoration filters, we use the
error ǭ (4.59) as a quality measure. All examples are computed with luminance correction
and regularisation except if we indicate the contrary. The size of DC images is 90× 72 pixels
for all test sequences.

Figure 4.13 plots the error ǭ of Equation (4.59) versus the number of iterations for the
sequence “Chancre1” (see Figure 3.21(b)) we obtained with and without regularisation. For
each blur model, the error ǭ of the pseudo-inverse filter decreases and converges faster than
for the Wiener filter. Due to its fine high frequency details such as the leaves, this sequence
is susceptible to aliasing artefacts in the super-resolution process. Thus, after a few itera-
tions the super-resolution process is becoming unstable despite the regularisation and the
error ǭ increases due to the amplification of aliasing and Gibbs ringing artefacts. In this case
the Wiener filter is more robust. Comparing the anisotropic Gaussian MTF BGauss with the
sincMTF Bsinc, the sinc MTF better minimizes the ǭ and the instability appears after more
iterations. The isotropic Gaussian MTF BGauss2D shows very high values and becomes un-
stable after very few iterations. Thus, it does not seem to model appropriately this kind of
blur.

These ǭ values seem relatively high. This can be explained by the fact that there is already
a quite high initial error due to interpolations for decimal coordinates in the motion compen-
sation. The more high frequencies are present in the low-resolution image, the higher is the
initial error as the high frequencies are lost due to these interpolations. For this sequence
with a strong high frequency content, we obtain an initial error ǭ of almost 150. This value
represents only the error induced by the motion compensation of the low-resolution images
without increasing the resolution. If we consider in addition the error due to inaccurate mo-
tion estimation the initial ǭ increases to a value of 261. These values were obtained on the
sequence without luminance correction.

We observe in Figure 4.13(b) that the use of the regularisation increases the values of
ǭ. Nevertheless, according to [150] the MSE and related measures (ǭ is based on the mean
square error) are not necessarily an objectives measures for the visual image quality. This is
confirmed by our results. For instance, the super-resolution process for the isotropic Gaus-
sian seems very unstable for the pseudo-inverse filter as is increases dramatically after few
iterations for the regularised case. But if we compare the regularised after 100 iterations (Fig-
ure 4.14(b)) with the non-regularisedmosaic (Figure 4.14(a)), we observemuch less artefacts.
The super-resolution mosaic forBsinc in combination with the pseudo-inverse filter after 20
iterations is shown in Figure 4.15.

Tests on other sequences, “Chancre2” (Figure 4.16) and “Tympanon” (Figure 3.27(a)),
confirm the ǭ results as illustrated in Figures 4.17 and 4.18. In all experiments, Bsinc min-
imises our quality measure better. If only a small number of iterations are performed which
is our objective, the pseudo-inverse filter is preferable due to a faster decrease and conver-
gence of ǭ and the lower computational complexity. If more iterations are performed, the
Wiener filter should be chosen since it is more robust. Figures 4.19 and 4.20 show the cor-
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Figure 4.13: The error measure ǭ versus the number of iterations for the sequence “Chan-
cre1”: (a) without regularisation, (b) with regularisation.
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(a) (b)

Figure 4.14: The super-resolution mosaic of the sequence “Chancre1” CERIMES-SFRS R©
with ς = 2 using BGauss 2D in combination with the pseudo-inverse filter after 100 itera-
tions: (a) without regularisation, (b) with regularisation.
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(a) (b)

Figure 4.15: The super-resolution mosaic of the sequence “Chancre1” CERIMES-SFRS R©
with ς = 2 using Bsinc in combination with the pseudo-inverse filter and regularisation:
(a) The initial mosaic, (b) the super-resolution mosaic after 20 iterations.

Figure 4.16: Sequence “Chancre2” extracted from the documentary “Le chancre coloré du
platane” CERIMES-SFRS R©.
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responding super-resolution mosaics obtained usingBsinc in combination with the pseudo-
inverse filter and the regularisation.
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Figure 4.17: The error measure ǭ versus the number of iterations for the sequence “Chan-
cre2”.

The regularisation of the mosaic in Figure 4.20, mainly affects the texture in the back-
ground and we obtain an attenuation of the artefacts. The overall results are shown in Ta-
ble 4.2. Therein, the attenuation is computed as the maximum absolute difference of the
color values of the mosaic with and without regularisation:

max
R,G,B

|F (p) − FA(p)| (4.101)

where F is the mosaic obtained without regularisation and FA the mosaic obtained with
regularisation. Figure 4.21 shows the difference image F −FA for the mosaic of the sequence
“Chancre1”.

sequence max attenuation
Chancre1 218
Chancre2 124
Tympanon 228

Table 4.2: The results of the regularisation: maximum level of attenuation of the artefacts in
the RGB channels for the mosaics shown in Figures 4.12(b), 4.19(b) and 4.20(b).

Table 4.3 shows the computational times for the mosaics shown in Figures 4.12(b), 4.19(b)
and 4.20(b). These times were measured on an Intel Pentium 4 3.00GHz processor using a
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Figure 4.18: The error measure ǭ versus the number of iterations for the sequence “Tympa-
non”.

(a) (b)

Figure 4.19: The super-resolution mosaic of the sequence “Chancre2” CERIMES-SFRS R©
with ς = 2 using Bsinc in combination with the pseudo-inverse filter and regularisation:
(a) The initial mosaic, (b) the super-resolution mosaic after 20 iterations.
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(a) (b)

Figure 4.20: The super-resolution mosaic of the sequence “Tympanon” CERIMES-SFRS R©
with ς = 2 using Bsinc in combination with the pseudo-inverse filter and regularisation: (a)
The initial mosaic, (b) the super-resolution mosaic after 25 iterations.

Sequence No. I-frames No. iterations (1) (2) (3)
Chancre1 22 20 24.733s 10m54.859s 11m19.592s
Chancre2 16 20 27.801s 6m29.652s 6m57.453
Tympanon 12 25 7.166s 6m19.1s 6m27.266s

Table 4.3: The computational times for the mosaics shown in Figures 4.12(b), 4.19(b) and
4.20(b): (1) the computational time for data extraction and motion estimation, (2) the com-
putational time for concatenation of the motion models in the geometric transformations,
illumination correction, blur estimation, super-resolution reconstruction, (3) the total com-
putational time.
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Figure 4.21: Attenuation by the regularisation operator for the sequence “Chancre1”: This
image shows the difference between the mosaics obtained without and with regularisation.
A medium grey indicates that no difference; the clearer or darker a region the greater is the
difference.
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non optimised C++ code and the VXL image library [200]. If we compare the computational
times with these of construction of DC-resolution images in Table 3.1 we observe an increase.
For the sequence “Tympanon” the increase comes out to about 6m. We already claimed in the
last chapter that the concatenations to compute the global geometric transformations (3.61)
are a costly task in the mosaic construction. In the super-resolution method the geometrical
transformations are realised at high resolution. Thus, the concatenations are computed for
ς2 more pixels than before. This causes an important increase in computational time. Ad-
ditionally, the succeeding forward and inverse Fourier transforms are costly. Moreover, the
padding of the image to a size of 2j × 2j may produce quite large images and slows down
the the restoration process.
We note that according to [101] the increase of resolution by a factor ς requires in the ideal

situation ς2 frames which corresponds to 4 in our case. In practice as shown in Table 4.3 we
use a higher number of frames.

4.3.1 Limits of the Method

Along the Chapters 3 and 4, we mentioned drawbacks of the method for the construction
of super-resolution mosaics despite its relative simplicity and computational efficiency. The
influence of noise in the restoration process has already been discussed. Here, we stress,
that the main limit of the method is the capacity to correctly estimate motion from MPEG
macroblock optical flow in order to compute the geometric transformations T(k) in Equa-
tion (4.57). This is not the case e.g. for the HD sequence encoded in MPEG-2 (see Figure
4.22(a)) where the camera pans fast. Consequently, most of the macroblocks are intra-coded
and the few remaining motion vectors do not describe the true motion. Thus, the motion
estimated on these vectors is absolutely erroneous. Hence, for the time being we reestimate
themotion using theMotion2D software [113]. Nevertheless, as we presented in Appendix B
for HD video new standards such as H.264/MPEG-4 AVC and H.264/MPEG-4 SVC provide
a better motion estimation. This can be used in the future of this work. The objective here is
to validate our blur estimation and restoration on real data with known blur.
This sequence is strongly degraded bymotion blur due to the fast panning of the camera.

Figure 4.22 shows one blurred frame of the sequence. Using our blur estimation presented
above, we obtained blur sizes bx up to 3.5 pixels in horizontal direction for the HD sequence.
If bx is estimated in the sequence of DC images it averages out to about 7 times smaller than
in the original sequence. Thus our method of computing bx and by (see Equations (4.89)
and (4.90)) using a scale factor is confirmed. Figure 4.23 shows the error values ǭ versus
the number of iterations for the different combinations of the blur models and restoration
filters. Figure 4.24(b) shows the super-resolution mosaic with ς = 2 after 10 iterations. This
is the best result in terms of the ǭ obtained for Bsinc restored by the pseudo-inverse filter.
The computational time for this mosaic is 5m29.576s using 14 I-frames. We also showed the
mosaic without luminance corrections (Figure 4.24(c)) to demonstrate that our luminance
correction can also handle this case.
We also used this sequence to assess the influence of noise in the restoration. In order to

test the influence of noise in the original images with respect to the DC images, we added a
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Figure 4.22: A motion blurred frame of the HD sequence.
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Figure 4.23: The error measure ǭ versus the number of iterations for the HD sequence with
ς = 2.
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(a) (b) (c)

Figure 4.24: (a) The initial super-resolution mosaic for the HD sequence with ς = 2: (a)
The initial mosaic, (b) the mosaic after 10 iterations using Bsinc restored by the pseudo-
inverse filter, (c) the mosaic after 10 iterations using Bsinc restored by the pseudo-inverse
filter without luminance correction.
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zero mean Gaussian noise with variance 0.01 to the original sequence. As can be expected,
the DC image formation by local averaging induces a low-pass effect. The SNR values cal-
culated on the DC images of the noisy sequence, are the same values as for the DC images of
the original sequence, while the SNR in the full-resolution noisy sequence decreases on the
average by a factor 0.6 with this noise. This low-pass effect explains the sufficiency of the
pseudo-inverse filter restoration in this framework.

4.3.2 Comparison with Mosaicing from Raw Video

Here, we compare the results of the proposed super-resolution method with downsampled
full-resolution mosaics in terms of visual quality and computational time for the mosaic
construction. We do not consider the computational time for the motion estimation as above
since we used the same motion models for the construction of all mosaics, but at different
scales. In this test no luminance correction was applied.
In this experiment we used the sequence “Tympanon” shown in Figure 3.27(a). On the

one hand, we computed the super-resolutionmosaics with ς = 2,Bsinc, pseudo-inverse filter
and regularisation for 0, 10 and 25 iterations whereas the first one corresponds to the initial
mosaic of Equation (4.58). On the other hand, we decoded the sequence, computed the full-
resolution mosaics at temporal I/P and I-resolutions, and sampled them down by a factor
4. We used bilinear interpolation to accomplish this. Consequently, all the resulting mosaics
have the same spatial resolution.
The computational times are shown in Table 4.4. As expected the computational times

for the full-resolution mosaics are already high for the temporal I- and I/P-resolutions and
increase dramatically with the increase in temporal resolution. For this reason, we did not
compute the mosaic at the full temporal resolution of the sequence. Here, the costliest opera-
tion for the mosaic construction is the computation of the geometrical transformations at full
resolution as for each pixel the motion models have to be concatenated. The computational
times for the super-resolution mosaics are lower and increase noticeably with the number
of iterations. Hence, the costly operations for super-resolution mosaic construction are the
successive motion compensations and Fourier transforms during the iterations.

Temporal res Initial spatial res No. frames No. iterations Mosaic construction
I/P 720 × 576 60 - 51m16.180s
I 720 × 576 12 - 10m23.485s
I 90 × 72 12 25 6m50.832s
I 90 × 72 12 10 2m46.717s
I 90 × 72 12 0 0m41.322s

Table 4.4: The computational times for the mosaic construction from the sequence “Tympa-
non” CERIMES-SFRS R©.

Figure 4.25 shows the corresponding mosaics. The downsampled full-resolution mo-
saics of Figure 4.25(a) and (b) are slightly sharper and provide more fine details than the
super-resolution mosaics, but this is at the expense of high computational costs. Both super-
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resolution mosaics (Figure 4.25(c) and Figure 4.25(d)) are a little blurred, but nevertheless
provide a good scene overview. In comparison to the initial mosaic of the super-resolution
algorithm (Figure 4.25(e)), we can see that super-resolution algorithm performs well. Visu-
ally there is no difference in detail between the super-resolution mosaic after 25 iterations
and the super-resolution mosaic after 10 iterations, but less ringing artefacts appear in the
latter. Thus, computational time with respect to the 25 iterations determined by the stopping
criterion (4.59) can still be reduced by using a stricter criterion.

4.4 Conclusion

We showed in the previous chapter, that when a mosaic is constructed from DC images, the
resolution is too low to give a scene overview and the image quality is not satisfying due
to the strong degradations of the DC image. For this reason, we proposed in this chapter a
super-resolution algorithm based on iterative backprojections to increase the resolution and
to improve its visual quality of the mosaic. The success of the super-resolution algorithm
mostly depends on the success of estimating the exact motion between successive images
and deriving the correct motion blur in each image.
To this end, we proposed an efficient method to estimate directional blur from a sequence

of DC images. Compared to the solutions known from literature, we proposed a newmethod
for the estimation of motion blur based on the direction of global camera motion and signif-
icant (not always vertical) contours in the image plane. Based on this blur we considered
three degradation filter models: isotropic Gaussian blur, anisotropic Gaussian blur and lin-
ear motion blur (sinc). Our success in estimating the blur size and also the linear motion
MTF allows us to get good results for the super-resolution image. The assumption of linear
motion blurs seems to be justified here because of the short exposure time. We performed
restoration in frequency domain by the well-known pseudo-inverse and Wiener filters. In
the case of a small number of iterations the pseudo-inverse filter performs better than the
Wiener filter as less noise is present in the DC images. However, if several iterations are
performed the Wiener filter is more robust against the amplification of artefacts. The results
of the simulation show that the assumption of linear motion during the exposure time is
correct and by using the sinc MTF in the restoration filter we got the best results in terms of
the error measure ǭ. The assumption of Gaussian MTFs (isotropic and anisotropic) is usually
not correct in case of motion. Therefore, using that function in the restoration filter causes
more degraded images compared to the sinc MTF.
We explicitly introduced a regularisation operator in the restoration process. This regu-

larisation operators is based on the image content and on the knowledge of error formation
by motion compensation.
The motion estimation based on MPEG motion compensation vectors can fail in some

cases. In our example of a HD sequence with a fast camera motion most of the macroblocks
are consistently intra-coded and the few remaining motion vectors do not describe the true
motion in the scene so that the estimated motion model is inaccurate. However, video com-
pression is developing. For instance, the H.264/MPEG-4 AVC video compression standard
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(a) (b) (c)

(d) (e)

Figure 4.25: Mosaics for the sequence “Tympanon” CERIMES-SFRS R© without luminance
correction: (a) the downsampled full-resolution mosaic at temporal I/P-resolution, (b) the
downsampled full-resolution mosaic at temporal I-resolution, (c) the super-resolution mo-
saic after 25 iterations, (c) the super-resolutionmosaic after 10 iterations, (d) the initial super-
resolution mosaic.
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furnishes an improved and more reliable motion estimation.
We obtain an increase in computational time with respect to the mosaics constructed at

DC resolution. Anyhow, these computational times are still interesting for the task of video
summarisation. We showed that the computational times can be reduced by choosing a
stricter stopping criterion or avoiding restoration in the frequency domain.
The main drawback of this method is that moving objects have not been considered.

Moreover, due to restoration in the frequency domain, artefacts can appear in the mosaic.
These drawbacks will be addressed in the next chapter where we present a super-resolution
method restoring the blur in the spatial domain. This allows to restore local blurs due to
moving objects and to decrease the computational costs.
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Chapter 5
Super-Resolution in the Region of

Interest

In the last chapter, we presented a super-resolution method for the restoration of global
blurs. Unfortunately, in video, we observemore complex situations where local blurs appear
in each frame. These blurs can be due to the fast motion of objects, or insufficient lighting that
reduces the shutter-speed of the auto-exposure cameras. Thus, the objective in this chapter
is to restore these local blurs. Therefore, we restore the background and moving objects
separately. This is difficult to realise in the Fourier domain. In addition, the successive
Fourier transforms are costly and may introduce artefacts due to rounding errors. Thus, we
choose to perform the restoration in the spatial domain.
The motion of objects in real video sequences can be very complex. For example consider

the sequence shown in Figure 3.27(b) where a person is walking in the forest. Particularly
in the case of very low-resolution images, which is our case, the objects are typically repre-
sented by only few pixels. For these reasons, its it very difficult to estimate the motion of
moving objects and to superimpose them accurately enough for super-resolution. In con-
trast to [198] where moving objects such as cars with rigid motion are super-resolved or
[75] where 2D parametric motion of objects is assumed, our aim is to propose a generic
method. Therefore, we develop in this chapter a single image method to restore the blur and
to increase the resolution of moving objects and then we derive from this a spatial domain
method to super-resolve the background. Figure 5.1 illustrates our restoration schemewhere
background and moving objects are restored separately. Afterwards, some moving objects
are reinserted into the background mosaic.
The remainder of this chapter is organised as follows. First, we give an overview of

single image spatial domain restoration methods in Section 5.1. Then, we present our ob-
ject restoration and super-resolution methods in Section 5.2. Some results are presented in



126 Chapter 5 – Super-Resolution in the Region of Interest

...

...

...

...

Super−resolution

Single image
restoration

Single image
restoration

Figure 5.1: Separate restoration of the background and moving objects.

Section 5.3. Finally, we conclude our work in Section 5.4.

5.1 State of the Art

An important advantage of iterative restoration techniques is that there is no need to deter-
mine or implement the inverse of a blurring operator [81]. Thus, using this kind of methods
the restoration can be accomplished in spatial domain. The modeling of the image degrada-
tion is straightforward for single image restoration. The degradation model is described by:

Ĩ = BI + V (5.1)

where the vectors Ĩ,I,V represent, respectively, the noisy and blurred image, the original
image, the noise. The matrix B represents the blur operator. Based on this degradation
model, we briefly present in this section the basics of spatial domain restoration techniques.
Further information on these techniques can be found in [78, 8, 81].

5.1.1 Basic Iterative Methods

A class of these algorithms can be derived in a very straightforward way. Based on Equa-
tion (5.1) withV = 0, the original image can be approximated as [81]:

I = I + β(Ĩ − BI) (5.2)

where the vectors Ĩ,I,V represent, respectively, the blurred image, the unknown ideal im-
age, the noise, the matrix B represents the known blur operator, and β is a gain parameter.
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Applying successive approximations an iterative process to estimate I can be built [81]:

Ii+1 = Ii + β(Ĩ − BIi) (5.3)

The earliest reference to this iteration was proposed by Van Cittert [31] where the gain pa-
rameter β equals 1. This algorithm was modified in [78] where Jansson replaced the gain
parameter β with a relaxation parameter that depends on the signal.
Van Cittert stated that the image data Ĩ could be considered as a first approximation of I

[31]:
I = Ĩ + ∆1 (5.4)

Inserting (5.4) in (5.1) and assuming thatV = 0 yields:

Ĩ = BĨ + B∆1 (5.5)

Denoting:
I1 = BĨ (5.6)

Then from (5.5) and (5.6), we obtain:

Ĩ − I1 = B∆1 (5.7)

Assuming that:
∆1 = Ĩ − I1 (5.8)

and inserting in (5.4) yields:

I = 2Ĩ − I1 (5.9)

Then, the approximation can be refined by:

∆1 = Ĩ− I1 + ∆2 (5.10)

Inserting (5.10) in (5.7) yields:

Ĩ − I1 = B(Ĩ − I1) + B∆2 (5.11)

Assuming that:

∆2 = Ĩ− I1 − BĨ − BI1 = Ĩ − 2I1 + I2 (5.12)

with:

I2 = BI1 (5.13)

Inserting (5.12) in (5.10) yields:

∆1 = 2Ĩ − 3I1 + I2 (5.14)
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Then, inserting (5.14) in (5.4), we obtain:

I = Ĩ + 2Ĩ − 3I1 + I2 = 3Ĩ − 3I1 + I2 (5.15)

Applying further approximations the following iterative scheme is finally obtained [78]:

Ii+1 = Ii + (Ĩ − BIi) (5.16)

The above iterative scheme minimises the mean-square error [79]:

MSEi =
∥∥∥Ĩ− BIi

∥∥∥
2

(5.17)

Katsaggelos [81] analysed the converge of the general iterative scheme (5.2) based on the
contraction theoremwhich usually serves as a basis for establishing convergence of iterative
algorithms. By developing Equation (5.2), we obtain:

I = βĨ + (I − βB)Ii (5.18)

According to the contraction theorem the above iteration converges for any initial vector I0

to a unique fixed point I∗, i.e. a point such that:

βĨ + (I − βB)I∗ = I∗ (5.19)

if βĨ + (I − βB) is a contraction. This means that for any I1, I2 the following relation is
satisfied: ∥∥∥

[
βĨ + (I − βB)I1

]
−
[
βĨ + (I − βB)I2

]∥∥∥ ≤ η ‖I1 − I2‖ (5.20)

with η < 1 and ‖·‖ denotes any norm. Since βĨ+(I−βB) is linear, the sufficient convergence
condition results in [81]:

‖I − βB‖ < 1 (5.21)

Considering the L2 norm, then condition (5.20) is equivalent [81] to:

max
j

|Σj(I − βB)| < 1 (5.22)

where |Σj(I − βB)| is the absolute value of the jth singular value of I − βB. Finally, the
necessary and sufficient condition for iteration (5.2) to converge is that [81]:

max
j

|Λj(I − βB)| < 1 or max
j

|1 − βΛj(B)| < 1 (5.23)

where |Λi(A)| is the magnitude of the jth eigenvalue of the matrix A. The problem is that
the matrix B is singular, i.e. B has at least one zero eigenvalue, for various typical distortions
(e.g. motion blur, defocussing, etc.). Then, there exist no value of β for which the conditions
(5.22) and (5.23) are satisfied. In this case βĨ+ (I−βB)may have an infinite number of fixed
points. However, the properties of B can be further restricted without loss of generality [81].
If B is a symmetric, semipositive matrix (all of its eigenvalues are non-negative), then the
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iteration (5.2) converges to the minimum norm solution of Equation (5.1) if the solution and
the projection of I0 onto the null space of B for 0 < β < 2 ‖B‖−1 exist.
Another approach is a least square approach to the solution of Equation (5.1). There, the

following functional is minimised:

min
I
MSE(I) =

∥∥∥Ĩ − BI

∥∥∥
2

(5.24)

A necessary condition for MSE(I) to have a minimum is that its gradient with respect to
I be equal to zero, which results in the equations:

BTBI = BTĨ (5.25)

where the vectors I, Ĩ represent, respectively, the lexicographically ordered original and
blurred image. The matrix B represents the blur.
In [81] it is shown that these equations can be successively approximated according to

the iteration:

Ii+1 = Ii + βBT(̃I − BIi)

= βBTĨ + (E − βBTB)Ii (5.26)

with:

I0 = βBTĨ

and E as the identity matrix. This method is similar to the steepest descend algorithm ap-
plied to MSE(I). Thus, other optimisation techniques can be used to minimise the functional
(5.25).
If the image formation process is modelled in a continuous infinite dimensional space,

B becomes an integral operator and Equation (5.1) becomes a Fredholm integral equation
of the first kind. Then the solution of Equation (5.1) is always an ill-posed problem. This
means that the unique least-squares solution of Equation (5.1) does not depend continuously
on the data, or that the noise in the data results in an unbounded perturbation (noise) in
the solution, or that the generalised inverse of B is unbounded [81]. The integral operator
B has a countably infinite number of singular values that can be ordered with their limit
approaching zero. Since the finite dimensional discrete problem of image restoration results
from the discretisation of an ill-posed continuous problem, the matrix B has (in addition
to possibly a number of zero singular values) a cluster of very small singular values. The
finer the discretisation, the larger the size of B, the closer the limit if the singular values
are approximated. Therefore, although the finite dimensional inverse problem is well posed
in the least squares sense, the ill-posedness of the continuous problem translates it into an
illconditioned matrix B.
The problem of noise amplification can be further explained by using the singular value

decomposition of the matrix B. Then, the minimum least-squares solution I+ of Equa-
tion (5.1) can be written as [81]:

I+ =

r∑

j=1

1

Σj
〈xj , Ĩ〉yj +

r∑

j=1

1

Σj
〈xj ,V〉yj (5.27)
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where Σr are the non-zero singular values of B, with Σ1 ≥ Σ2 ≥ · · · ≥ Σr > Σr+1 = Σr+2 =

... = 0, r is the rank of B, xj,yj are, respectively, the eigenvectors of BBT and BTB, and 〈·, ·〉
denotes the inner product. Since B is an ill-conditioned matrix, some of its singular values
will be close to zero, thus some of the weights 1/Σj are very large numbers. Then, if the
inner product 〈xj ,V〉 is not zero, the noise is amplified.
These methods have weakness due to the following reasons. The noise in Equation (5.1)

was ignored in the restoration algorithms presented above. In addition, the solution of Equa-
tion 5.1 may become an ill-posed problem as shown above. Therefore, several methods have
been proposed to constrain the solution space.

5.1.2 Basic Constrained Methods

A priori knowledge about the solution can be incorporated into the restoration process e.g.
bandlimitness of the image or positivity. A convenient way to express such a priori knowl-
edge is to define a constraint operatorC such that [81] :

I = CI (5.28)

if and only if I satisfies the constraint. Using such a representation for the constraint e.g. the
iteration (5.26) can be written as [81]:

Ii+1 = (βBTĨ + (E − βBTB))CI (5.29)

In generalC represents the concatenation of several constraint operators, which are applied
at each iteration.

5.1.3 Other Methods

As already stated in the last chapter POCS and regularised methods are a more powerful
mean to incorporate a priori knowledge. Thus, they are also popular methods for single
image restoration. For example POCS restoration has been proposed in [210, 166, 207, 19]
and regularised methods in [112, 82]. The principle of these methods was already presented
in the last chapter. As POCS and regularised super-resolution algorithms are in general
derived from single image restoration algorithms and the formulation of the problem in the
last chapter is more generic (see Sections 4.1.3 and 4.1.4). The fact of considering an image
sequence of the size one will result in single image restoration.

5.2 Super-Resolution Mosaic Construction

In this section, we consider the global scheme of Figure 5.2 for the construction of super-
resolution mosaics. Similar to the methods presented in Chapters 3 and 4, the mosaic con-
struction starts with the data extraction from the MPEG-1/2 compressed stream. Then, reg-
istration is performed and moving objects are extracted. These steps have been presented in
Chapter 3. From the moving object detection, label maps are obtained defining the regions
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of homogeneous motion in the image. We use them to estimate locally the blur. Therefore,
we enhance the blur estimation of Section 4.2.3. At the same time, these mask are used in
the luminance correction to exclude moving objects. There is no need to correct illumination
of objects as we only insert the objects of the reference frame in the background mosaic and
the background regions of other frames are corrected with respect to the reference image.
This avoids seams in the backgroundmosaic and adjusts the illumination of the background
mosaic to that in the original frame. Thus, there is no illumination change between the mo-
saic and the inserted objects. The illumination correction was presented in Section 3.2.4. In a
next step the background mosaic and the moving objects are restored separately. To do this,
we developed a new techniquemethod to super-resolve the backgroundmosaic and a single
frame restoration method to increase the resolution of the moving objects. Afterwards, the
background mosaic and the moving objects are combined and postprocessing is applied to
remove eventual artefacts as described in Section 3.2.6.

Data
extractionstream

Compressed
Registration

Moving object
detection

Local blur
estimation

Restoration of 
moving objects

Postprocessing
Super−resolution
mosaic

Super−resolution
of the background

Illumination
correction

Figure 5.2: Global scheme of the mosaic construction.

Most of these step for the mosaic construction were already presented in Chapters 3 and
4. Thus, we focus in the following on the single frame restoration and super-resolution
methods.

5.2.1 Iterative Spatial Domain Restoration Scheme

The restoration and super-resolution methods we propose in this section are based on the it-
erative restorationmethod of [31, 78] presented above (see Equation (5.2)). In order to derive
from this a super-resolution method for local blurs, we reformulate the degradation model
of Equation (5.1) for an arbitrarily shaped region of interest (ROI) considering additionally
the local motion and downsampling. Hence, the ROI in low-resolution image Groi can be
modelled as:

Groi = S−1.Broi ∗ [Troi.Froi + V] (5.30)

where Froi is the region of interest in the high-resolution frame, Broi is the PSF of the ROI,
Troi is the geometric transformation describing the local motion of the ROI, S−1 the down-
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sampling operator, ∗ the convolution operator, andV the noise.
Based on this degradation model, we can derive, from Equation (5.2), a single image

iteration scheme to restore and increase the resolution of a region of interest:

F i
roi = F i−1

roi + T−1
roi .S

(
Groi − S−1

[
Broi ∗

(
Troi.F

i−1
)])

(5.31)

where F i
roi is the region of interest in the super-resolution image at the kth iteration and S

the upsampling operator. The proof is shown in Appendix A.1.
Let us now consider the case of a video sequence ofK low-resolution images where each

frame represents the same ROI Groi(k), 1 ≤ k ≤ K. Then, the following iterative super-
resolution algorithm can be derived from Equation (5.31) (see Appendix A.2):

M i
roi = M i−1

roi + µ(K)

K∑

k=1

T−1
roi (k).S

(
Groi(k) − S−1

[
Broi(k) ∗

(
Troi(k).M i−1

roi

)])
(5.32)

whereM i
roi is the ROI in the super-resolution mosaic at iteration i and µ(p,K) = 1

|p| with |p|
as the number of available pixels at position p. We can notice that this equation is quite sim-
ilar to the super-resolution method presented in the last chapter (see Equation 4.57), but the
restoration operator is absent. Hence, if we can identify the blurring operator, the restoration
is straight forward and does not require the synthesis of a restoration filter.
Another problem of the super-resolution method presented in the last chapter is that the

blurring and restoration operator are defined for the super-resolution image but the PSF of
the super-resolution image is unknown. Our solution was to estimate the blur in a low-
resolution image and derive from it the blur for the corresponding super-resolution image.
Our aim is now to directly use the low-resolution PSF instead of making an assumption on
it for the super-resolution. Thus, it can be shown that (see Appendix A.3):

(S−1.B) ∗ (S−1.F ) =
1

ς
S−1(B ∗ F ) (5.33)

This relation means that convolving the low-resolution image with the low-resolution PSF
equals 1/ς times the downsampled blurred super-resolution image. Thus, 1/ς corresponds
to a normalisation factor and in case of a normalised convolution mask, which is the case in
image processing, this factor can be neglected.
Using this relation we can rewrite the Equations (5.31) and (5.32):

F i
roi = F i−1

roi + T−1
roi .S

(
Groi −

[
(S−1.Broi) ∗

(
S−1.Troi.F

i−1
roi

)])
(5.34)

M i
roi = M i−1

roi + µ(K)

K∑

k=1

T−1
roi (k).S

(
Groi(k) −

[(
S−1.Broi(k)

)
∗
(
S−1.Troi(k).M i−1

roi

)])
(5.35)

Hence, the blur is now defined in the low-resolution domain and there is no need anymore
to assume a linear relation between the blur in the super-resolution image and the blur in
the low-resolution image as in Equations (4.89) and (4.90). Moreover, we obtain a speedup
of the super-resolution algorithm as the convolution is now performed in the low-resolution
domain instead of in the super-resolution domain. Thus, the spatial domain restoration
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(5.34) for a single frame and (5.35) for a mosaic become a good alternative to frequency
domain restoration. Note, that T−1

roi in Equation (5.34) is not used for motion compensation,
but for the estimation of the local blur Broi as we will show below. The super-resolution
algorithm (5.35) can also be used to super-resolvemoving objects if motion can be accurately
estimated for the object e.g. in the case of rigid object motion.
As we are working with DC images, there is also the problem of aliasing. That is, im-

ages can not be exactly superimposed on edges and textures in the super-resolutionmethod.
Thus, a strong motion compensation error Groi(k) −

[(
S−1Broi(k)

)
∗
(
S−1Troi(k)M i−1

roi

)]
re-

sults in these regions. This error amplifies along the iterations and causes spurious artefacts
in the super-resolution mosaic. Hence, we incorporate the regularisation operator A we de-
veloped in Section (4.2.5) in the super-resolution method (5.35):

M i
roi = M i−1

roi + µ(K)

K∑

k=1

T−1
roi (k).S.A(k)

(
Groi(k) −

[(
S−1.Broi(k)

)
∗
(
S−1.Troi(k).M i−1

roi

)])

(5.36)
Additionally to the advantages of using directly the blur operator and lower compu-

tation cost, the restoration of the frame can be locally adapted. Each ROI can be restored
with its own blur operator. We use this property to restore moving objects in video and the
background separately. This need is straightforward. In the general case, the motion of the
camera and the local motion of the objects differ. Thus the blur influence is not the same. In
Section (3.2.3) we presented a method to segment moving objects. After the segmentation
process, we obtain the label masksOl (see Equation (3.65)). Based on these masks, we define
the characteristic function Oroi:

Oroi(p, l) =

{
1 if Ol(p) = l

0 otherwise
(5.37)

where l is the label of the object. We use this function to define the object and the background
ROIs in the low-resolution image:

Groi = Oroi(l).G (5.38)

Additionally, we need to determine the object and background ROIs for the high-resolution
image F . To this end, we apply a nearest neighbour upsampling operator S′ to the charac-
teristic function OR. Thus, the ROIs in the high-resolution image are:

Froi = (S′.Oroi(l)).F (5.39)

To avoid confusion, we denote the objects by roi and the complement set of pixels, the
background, by roi. In order to determine the maximum number of iterations we have to
define a stopping criterion. For the super-resolution method (5.36) we use the error between
the original sequence and the “simulated” sequence similar to (4.59). Thus, the error criterion
is:

ǭi
roi

=
1

K

K∑

k=1

(
1

M

∑

m

Groi(m, k) −
[(

S−1.Broi(k)
)
∗
(
S−1.Troi(k).M i−1

roi

)]
(m)

)
(5.40)
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The maximum number of iterations is achieved if ǭroi converges or increases. Here, we
assume that the maximum number of iterations is necessary to restore the background mo-
saic is also sufficient to restore the moving objects. However, it is possible to define a error
criterion for the moving objects:

ǫi
roi =

1

M

∑

m

Groi(m) −
[
(S−1.Broi) ∗

(
S−1.Troi.F

i−1
roi

)]
(m) (5.41)

We will use these error measures to analyse the convergence of the restoration method.

5.2.2 Estimation of Local Blurs

Image blurs can be grouped in two categories, namely spatially invariant or spatially variant
blurs. In the class of spatially invariant blurs, the blur model does not vary as a function of
position in the observed scene. We assumed this kind of blur model in the last chapter. A
blur is called spatially variant if the PSF is a function of position in the observed scene.
At present only few methods have been presented in literature for the estimation and

restoration of spatially variant blurs. In the work of Trussel and Fogel [193], the image scene
is segmented into regions where the blur is approximated locally to be spatially invariant
and the Landweber iterative algorithm is used for restoration. Themethod presented by Tull
and Katsaggelos [196] allows the blur to vary at each pixel location defined by the estimated
displacement vector field. The blur size for a pixel is directly derived to be proportional
to the displacement vector assuming that the frame rate and acquisition time are known.
Restoration is then performed by a regularised iterative algorithm. In [34], Dai et al. pre-
sented a method to track motion-blurred targets in video. Local motion blurs are identified
by a learning-based scheme and the direction of the motion blur is estimated using steerable
filters. Once the blur direction is estimated, a new motion-blurred template is synthesised
for a given blur length. Then, the blur size is chosen by a line search minimising a simi-
larity criterion between the best match of the tracker and the synthesised template. Nagy
and O’Leary [122] propose a fast restoration algorithm for spatially variant blur. Piece-wise
constant blur functions are assumed which are stitched together by interpolation to obtain a
continuous blur function and restore the image globally. The algorithm proposed by Bascle
et al. [10] estimates the motion blur parameters from the displacement of tracked regions
whereas 2D affine motion of the region is considered. Har-Noy and Nguyen [62] propose a
block-wise region of interest filtering to restore motion blur. A motion vector is computed
for each block in the frame. If then the scale gradient magnitude metric, indicating the blur
strength, is greater than a threshold the block is restored.
On the contrary to [34], we already know the regions of local blurs thanks to the object

masks Ol. We assume like in [193] that the blur in the segmented regions can be locally
approximated by a spatially invariant blur model as presented in Section 4.2.3. We estimate
the blur size based on the method proposed in Section 4.2.3. Similarly to [196] the motion
vector dictates the direction of the blur. For the blur estimation, we distinguish two cases,
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namely the blur estimation for the background and the blur estimation for a moving object.
Thus, we propose a different adaptation of our blur estimation method for both cases.

In order to estimate the blur parameters of the image background, we only take into
account the pixels belonging to the background Groi (see Equation 5.38). for the extraction
of significant edges (see Equation 4.75). Furthermore, the estimation of the edge response
remains the same using the estimated motion of the camera T(k). The result is a locally
constant PSF of the background induced by the camera motion.

In our case of very low-resolution images, objects are typically represented by only few
pixels. Therefore, an edge detection inside the object is not reasonable and we directly use
the boundary of the segmented region Oroi as significant edges. As we only need a rough
guess of the object motion, we used the six-parameter affine model from Equation (3.23) to
determine the motion vector at each pixel of the object boundary. Like above the estimation
of the edge response and the blur size remain the same.

5.2.3 Computation of the Convolution Kernels

Instead of convolving the ROI with a 1D convolution kernel in motion direction which is a
complex and costly, e.g. in [196] bilinear interpolation is used to compute the convolution
in motion direction, we propose here to compute a 2D convolution kernel using the x and
y-components of the blur size, bx and by (see Equations (4.86)) and (4.87)) and compute then
a traditional convolution.

We denoteK as the 2D convolution kernel of the sizeKx×Ky. In the case of the Gaussian
blur model, we determine the kernel size with respect to the 3σ-property (see Section 4.2.3).
For the isotropic Gaussian blur model it is:

Kx = Ky = 2 · ⌈3σ⌉ + 1 = 2 · ⌈b⌉ + 1 (5.42)

and for the anisotropic Gaussian blur model:

Kx = 2 · ⌈3σx⌉ + 1 = 2 · ⌈bx⌉ + 1 (5.43)

Ky = 2 · ⌈3σy⌉ + 1 = 2 · ⌈by⌉ + 1 (5.44)

where ⌈·⌉ is the ceil operator. Note that we have here the multiplication factor 2 as we did
not define b, bx and by symmetrically (see Equations (4.85)–(4.87)).

Kx does not necessarily equal Ky in case of the anisotropic model. Nevertheless, we fix
3 × 3 as the minimum size of the kernel in both cases. We prefer a slightly larger convolu-
tion kernel, therefore also the ceil operator, to avoid a hard cut-off of the convolution kernel.
Then, having determined the size of the kernelK, its valuesK(x, y) are computed by Equa-
tion (4.60) for isotropic Gaussian and by Equation (4.62) for the anisotropic Gaussian. K(x, y)

is normalised afterwards.

In case of linear motion blur the kernel size is computed as:
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Kx = 2 · round(bx) + 1 (5.45)

Ky = 2 · round(by) + 1 (5.46)

(5.47)

We choose 3 × 1 or 1 × 3 as the minimum kernel size depending on whether bx > by or not.
In order to take into account even blur sizes, we set the borders of the kernel to 0.5 as:

K(x, y) =





0.5 if round(bx) even and x = 0 or x = Kx − 1

0.5 if round(by) even and y = 0 or y = Ky − 1

1 otherwise

(5.48)

Then,K(x, y) is normalised.
It happens that bx < 1 and by < 1 in our computations since bx and by are, respectively,

computed as the average of several estimated values (see Equations (4.83) and (4.84)) Thus,
fixing the minimal the kernel size to 3 × 1 or 1 × 3 for the linear motion blur means that we
make the critical assumption that there is a minimal blur of one pixel in horizontal or vertical
direction in the ROI. Using this blur model we can not treat blur sizes smaller than one pixel
due to the discretisation as the linear motion blur is a constant function. This is different for
the Gaussian blur model. As the Gaussian is a continuous declining function, we can handle
blur sizes smaller than 1. This only results in a value near 1 in the center of the convolution
kernel and in small values near 0 at the borders.

5.2.4 Convolution of the Region of Interest

The segmented objects can be of arbitrary formwith irregular boundaries. If the convolution
kernel acts inside the object where all underlying pixels are determined, the convolution can
be performed in the usual way, but the convolution on or near object boundaries needs a
special processing. In this case a varying number of pixels underlying the convolution mask
might be undetermined as they do not belong to the object. Therefore, we choseMPEG-4-like
padding for boundary macroblocks [152] to extrapolate the object in the region of undeter-
mined pixels underlying the convolution mask.
This method first extrapolates pixels of the object boundary horizontally and then verti-

cally as shown in Figure 5.3:

• Undetermined pixels at the object boundary are extrapolated horizontally to fill the
undetermined positions in the same row. If a row is bordered by an object pixel at
only one side, the value of the nearest object pixel is copied to all undetermined pixel
positions. If a row is bordered by two object pixels, the undetermined pixel positions
are filled with the mean value of the two neighbouring object pixels. An example of
the horizontal padding is shown in Figure 5.3(a).

• If there are still undetermined pixels, object pixels including those filled by the first
stage are extrapolated vertically to fill the remaining undetermined pixel positions.
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Columns of undetermined pixels with one object pixel neighbour are filled with the
value of that pixel and columns with two object pixel neighbours are filled with the
mean values of the object border pixels at the top and bottom column. An example of
the vertical padding is shown in Figure 5.3(b).
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(b)

Figure 5.3: Padding for a convolution kernel of the size 7 × 7: (a) Horizontal padding, (b)
vertical padding.

5.3 Results

In this section, we present the results obtained with the method proposed above. We create
a super-resolved background mosaic using the algorithm of (5.36), restore some of the fore-
ground objects by the algorithm (5.34) and combine them with the background mosaic. The
resulting mosaic gives an appropriate scene overview for video summarisation. in contrast
to Chapter 3 the mosaic here are of higher resolution and contrary to Chapter 4 we are able
to process moving objects. Here, we assume also that a zoom factor ς = 2 is sufficient for
an appropriate visualisation of the mosaics. All sequences presented below were processed
according to the global scheme of Figure 5.2. If the processing differs from this scheme, we
mention this explicitly.
We first evaluate the convergence of our algorithm using the error measures (5.40) and

(5.41) and analyse the results in terms of visual quality and computational times. Then, we
compare this method with our frequency domain restoration method of Chapter 3.
Figure 5.5(a) shows the graphs of error measures for the three different PSFs for the

restoration of the background mosaic of the sequence “Comportements2”. The sequence
of DC images is shown in Figure 5.4. The anisotropic Gaussian blur model BGauss minimises
the best the error measure ǭroi. The isotropic Gaussian blur model BGauss2D is close to the
anisotropic Gaussian, but the result of the linear motion blur PSF Bbox is not satisfying. This
is due to the discretisation of the convolution kernel. There, we made the assumption that
at least one pixel blur appears in horizontal or vertical direction. As there is only small blur
in this sequence (b < 1), the blur model is not appropriate and ringing artefacts appear in
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Figure 5.4: Sequence “Comportements2” extracted from the documentary “Comportements
alimentaires des hommes préhistoiriques” CERIMES-SFRS R© and the corresponding dilated
masks Ob(k).

the mosaic. Nevertheless, for all three PSFs the restoration process becomes instable after
several iterations and the error ǭroi increases.

The error measure ǫroi of the restoration of the object is shown in Figure 5.5(b). We
observe the same behaviour of the PSFs: the anisotropic Gaussian performs the best, the
isotropic is close, the linear motion blur is not satisfying as it causes ringing artefacts for the
same reason than above. Contrary to the restoration of the background mosaic convergence
and then stability of the Gaussian PSFs is much better for the object restoration. Figure 5.6
shows the mosaic for isotropic Gaussian PSF (Figure 5.6(b)) and the linear motion PSF (Fig-
ure 5.6(a)) after 100 iterations. As expected in the mosaic restored using the linear motion
PSF strong ringing artefacts appear. The mosaic determined by the stopping criterion is ob-
tained after 12 iterations for isotropic Gaussian is shown in Figure 5.7(b). We can see that
with respect to the initial mosaic (Figure 5.7(a)) (initial background mosaic combined with
bilinearly interpolated object) the restored mosaic (Figure 5.7(b)) is much less blurred and
more high frequency details appear.

These results are confirmed by other test sequences. For instance, we show the results of
the sequence “Comportements1” in Figures 5.8 and 5.9. By processing the sequence ‘”Hira-
gasy”, we meet a particular problem. We have the same behaviour of the PSFs in Figure 5.10,
but the point of increase of ǭroi is already after 2 iterations (see Figure 5.10(a). This resulting
mosaic is shown in Figure 5.11(b). Only less blur was restored during the 2 iterations and we
wish to apply further iterations. The background mosaic after 12 iterations is shown in Fig-
ure 5.12(a). We observe strong artefacts on the borders of the object masks which causes the
increase of ǭroi. However, these artefacts have been removed in the postprocessing step and
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Figure 5.5: The error measure versus the number of iterations for sequence “Comporte-
ments2”: (a) For the background mosaic, (b) for the moving object.
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(a) (b)

Figure 5.6: Super-resolution mosaics for the sequence “Comportements2” after 100 itera-
tions: (a) Linear motion blur PSF, (b) isotropic Gaussian blur PSF.

(a) (b)

Figure 5.7: Super-resolution mosaic for the sequence “Comportements2” for the isotropic
Gaussian blur PSF: (a) The initial mosaic (initial background mosaic combined with the bi-
linearly interpolated object), (b) the mosaic after 12 iterations.
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Figure 5.8: The error measure versus the number of iterations for sequence “Comporte-
ments1”: (a) For the background mosaic, (b) for the moving object.
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(a) (b)

Figure 5.9: Super-resolution mosaic for the sequence “Comportements1” for the isotropic
Gaussian blur PSF: (a) The initial mosaic (initial background mosaic combined with a bilin-
early interpolated object), (b) the mosaic after 5 iterations.

a less blurred mosaic results (Figure 5.12(b)). Hence, in cases where the error ǭroi increases
too early additional iterations can be enforced to restore the background mosaic.
Table 5.1 shows the computational times of the mosaic in Figures 5.7(b), 5.9(b), and

5.12(b). They were obtained on an Intel Pentium 4 3.00GHz processor using a non optimised
C++ code and the VXL image library [200]. These computational times are very interesting,
as there is no important increase with respect to these for the construction of DC-resolution
mosaics. A comparison of computational times is shown in Table 5.2. For the sequence
“Comportements1” the additional computational time is only about 9s to increase the reso-
lution by a factor 2, and about 37s for the sequence “Hiragasy”. This additional computa-
tional time is not linear as it depends on the motion compensations. The larger the camera
motion, the larger is the mosaic and the costlier the motion compensation.

Sequence No. I-frames No. iterations (1) (2) (3)
Comportements1 6 12 6.161s 12.807s 18.968s
Comportements2 10 12 9.421s 25.387s 34.808s
Hiragasy 12 12 8.326s 47.555s 55.881s

Table 5.1: Computational times for the super-resolution mosaics of Figures 5.7(b), 5.9(b),
and 5.12(b): (1) The computational time for data extraction, motion estimation and object
extraction, (2) the computational time for concatenation of the motion models in the geo-
metric transformations, illumination correction, blending and postprocessing, (3) the total
computational time.

5.3.1 Comparison with the Frequency Domain Restoration

In order to compare the spatial domain restoration method with the frequency domain
restoration method presented in the last chapter, we chose two sequences without moving
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Figure 5.10: The error measure versus the number of iterations for sequence “Hiragasy”: (a)
For the background mosaic, (b) the moving object.
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(a)

(b)

Figure 5.11: Super-resolution mosaic for the sequence “Hiragasy” for the isotropic Gaussian
blur PSF: (a) The initial mosaic (initial background mosaic combined with the bilinearly
interpolated object), (b) the mosaic after 2 iterations.
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(a)

(b)

Figure 5.12: Super-resolution mosaic for the sequence “Hiragasy” for the isotropic Gaus-
sian blur PSF after 12 iterations: (a) The background mosaic before postprocessing, (b) the
combined mosaic after postprocessing.
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Sequence (1) (2)
Comportements1 9.275s 18.968s
Hiragasy 18.348s 55.881s

Table 5.2: Comparison of computational times: (1) The total computational time for the DC-
resolution mosaic, (2) the total computational time for the super-resolution mosaic.

objects as the frequency domain restoration was not elaborated for local object restoration.
Hence, we compare the restoration of the background mosaic in terms of error measures,
visual quality and computational time. Here, we assume that the error measures ǭ (4.59) and
ǭroi (5.40) are comparable as both express the error between the the original sequence and a
sequence of simulated images using the estimate of the mosaic at the current iteration.
Figure 5.13 shows a comparison of the error measures for the sequence “Chancre1”. The

minimal error values are for both restoration schemes around 140 where as the error of the
spatial domain restoration method (Figure 5.13(b)) converges faster. The mosaics for both
methods after 20 iterations are shown in Figure 5.14. The mosaic restored in the frequency
domain (Figure 5.13(a)) seems a little bit sharper than the mosaic restored in the spatial
domain (Figure 5.13(b)), but in the same time spurious artefacts appear.
The second sequence we chose for our comparison is the “Chancre3” sequence shown

in Figure 5.15. For this sequence the frequency domain restoration results in lower error
values than the spatial domain restoration (see Figure 5.16). Like in the example above, the
mosaic restored in frequency domain is a little bit sharper and spurious artefacts appear
(Figure 5.17(a)) which is not the case for the mosaic restored in the spatial domain (Fig-
ure 5.17(b)).
The time figures obtained on an Intel Pentium 4 3.00GHz processor using a non opti-

mised C++ code and the VXL image library [200] are strongly in favour of the spatial domain
restoration method (see Table 5.3). Using the spatial domain restoration, we obtain an im-
portant gain in computational time almost 10m for both examples. This is due to the fact that
padding and successive Fourier transforms are omitted. Moreover, the convolution is now
performed at the low resolution instead of at the high resolution which saves additionally
computational time.

5.4 Conclusion

We presented in this chapter a new super-resolution method which performs restoration
in the spatial domain. This method allows taking into account moving objects. Based on
a segmentation of moving objects, the background and moving objects are super-resolved
separately. As it is often impossible to superimpose moving objects accurately enough for
super-resolution, we proposed a new single frame method to increase the resolution and re-
store the moving objects. Consequently, we enhanced the blur estimation method presented
in the last chapter to estimate local blurs in motion direction.
We tested several blur PSFs in our restoration scheme. The best results were obtained for
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Figure 5.13: The error measure versus the number of iterations for sequence “Chancre1”: (a)
Frequency domain restoration, (b) spatial domain restoration.
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(a) (b)

Figure 5.14: The super-resolution mosaics of the sequence “Chancre1” after 20 iterations:
(a) Frequency domain restoration with Bsinc and pseudo-inverse filter, (b) spatial domain
restoration with BGauss.

Method No. I-frames No. iterations (1) (2) (3)
Chancre1

Frequency domain 22 20 24.733s 10m54.859s 11m19.592s
Spatial domain 22 20 24.733s 4m28.798s 4m53.531s
Chancre3
Frequency domain 22 20 19.875s 10m54.926s 11m14.801s
Spatial domain 22 20 19.875s 3m50.631s 4m10.506s

Table 5.3: Computational times for mosaics in Figures 5.14 and 5.17: (1) The computational
time for data extraction, motion estimation, (2) the computational time for concatenation of
the motion models in the geometric transformations, illumination correction, and blending,
(3) the total computational time.



Figure 5.15: The sequence “Chancre3” extracted from the documentary “Comportements
alimentaires des hommes préhistoiriques” CERIMES-SFRS R©.

the anisotropic Gaussian blur whereas the results for the isotropic Gaussian blur were quite
close. Here, the linear motion blur PSF does not seem an appropriate blur model due to the
discretisation of the convolution kernel.
Thismethod addresses the shortcomings of themosaicingmethods proposed in Chapters

3 and 4. Contrary to the method of Chapter 3, the resulting mosaics have a higher resolution
with only a small increase in computational time. Contrary to the method of Chapter 4, this
method allows the processing of local blurs as the restoration is performed in spatial domain.
The mosaics restored by the frequency domain method of Chapter 4 seem slightly sharper,
but less artefacts appear in the mosaics obtained by the method proposed in this chapter. In
comparison to the method of Chapter 4, we obtain an important gain in computational time
as successive Fourier transforms are omitted and convolution is performed at low resolution.
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Figure 5.16: The error measure versus the number of iterations for sequence “Chancre3”: (a)
Frequency domain restoration, (b) spatial domain restoration.
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(a) (b)

Figure 5.17: The super-resolution mosaics of the sequence “Chancre3” after 20 iterations:
(a) Frequency domain restoration with Bsinc and pseudo-inverse filter, (b) spatial domain
restoration with BGauss.
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Chapter 6
Introduction

We presented in Part 1 a complete framework for mosaic construction from MPEG-2 com-
pressed video. The purpose was to create a video summary in a fast way where each shot is
represented by a mosaic image. This can then be used for a fast browsing and indexing of
the compressed video.
However, several further application areas of the mosaicing and super-resolution meth-

ods exist and this is the focus of this part. Our objective is to reuse the methods developed
in Part 1 and apply them in other domains. In particular, we address related indexing tasks,
namely shot boundary detection and dominant camera motion characterisation, and error
concealment.
The detection of shot boundaries is a fundamental task for video indexing. For instance,

we assumed for the mosaic construction that shot boundaries have already been detected.
Lots of shot boundary detection methods for compressed video have been presented in lit-
erature. For instance, Bescós [12] proposes a effective real-time shot boundary detection
method based on the application of a combined set of metrics, like the sum of the squared
luminance difference and the chrominance likelihood ratio, computed at DC images. In
[18], Ćalić and Izquierdo analyse the statistics of the features extracted from the MPEG com-
pressed stream such as the macroblock type for real-time shot boundary detection. Contrar-
ily, the shot boundary detection on I-frames is not the objective per se, but the illustration
how intermediary results of the mosaicing method can be used for this task in order to pro-
pose an integral framework for video indexing.
Furthermore, this shot boundary detection method was adopted in a system combined

with a shot boundary detection on P-frames [38] for the TREC Video Retrieval Evaluation
(TRECVID)1 campaign 2004. Later, we enhanced this system for the TRECVID campaigns
2005 and 2006 and the ARGOS campaign 2006 2. Nevertheless, we do not describe further

1http://www-nlpir.nist.gov/projects/trecvid/
2http://www.irit.fr/recherches/SAMOVA/MEMBERS/JOLY/argos/

http://www-nlpir.nist.gov/projects/trecvid/
http://www.irit.fr/recherches/SAMOVA/MEMBERS/JOLY/argos/
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developments as this is out of scope of this thesis.
Camera motion is defined as a descriptor of a video segment in the MPEG-7 standard. It

expresses which type(s) of camera motion is/are present in the segment among all possible
camera motion types. To this end, Bouthemy et al. [16] proposed method for raw video
which computes affine global motion and then thresholds likelihoods of motion parameters
to robustly characterise camera motion. Based on this, we develop a method to characterise
camera motion for compressed video using the affine global motion computed for image
alignment in the mosaicing method. We present some result obtained in the TRECVID cam-
paign 2005. Moreover, this methods was used with some modifications in the ARGOS cam-
paign 2006 and within the BBC rushes exploitations tasks for TRECVID 2006. For the same
reason than above, we do not describe further developments in this thesis.
When digital video data is transmitted over an error-prone network, parts of the data

might be altered or lost during transmission due to channel noise, congestion or other net-
work errors. As a result, the video images suffer from visual errors. Different approaches
have been proposed to conceal such errors e.g. by exploiting temporal redundancy in video.
Without being exhaustive in the subject, we propose applying our super-resolution mosaic-
ing method at the decoder side to conceal I-frames. A mosaic is constructed during the
decoding of a shot. Then, when a transmission error occurs in the current I-frame, the miss-
ing information can be replaced by the corresponding regions in the mosaic. Zhao [213]
already considered super-resolution for error concealment. However this approach is dif-
ferent from ours, as the frame is concealed by interpolating neighbouring frames and then a
super-resolution method is applied afterwards to improve the resolution of the frame.
The remainder of this part is organised as follows: Chapter 7 shows how intermedi-

ary results of our mosaicing method can be reused for related indexing tasks. We propose
a method for the shot boundary detection on I-frames and method for the characterisa-
tion of camera motion. In Chapter 8 we present our method for error concealment using
super-resolution mosaicing. In addition, we first study and simulate the transmission errors
for MPEG-2 compressed video and compare our results with a spatial error concealment
method.
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Chapter 7
Related Indexing Tasks

In this chapter, we show how various components of the mosaicing process we developed in
this thesis can be applied to video indexing problems. Remaining in the same framework of
MPEG-1/2 compressed video, we present here our contribution to shot boundary detection
and camera motion characterisation. We will also present some results of the TREC Video
Retrieval Evaluation (TRECVID) campaign [175] where we benchmarked our tools.

7.1 Shot Boundary Detection

A shot in post-produced video is a sequence of frames continuously shot by the same cam-
era. Thus, a shot boundary is a discontinuity in the video, so the frames before and after
the shot boundary are typically dissimilar. Hence, to identify shot boundaries, the definition
of similarity between video frames is of primary importance. In the context of the present
research work, we are specifically interested in the detection of shot boundaries in the com-
pressed domain. Therefore, we will briefly present available methods.
Adams et al. [2] use sampled, three-dimensional color histograms in the RGB color space

to compare pairs of frames for real-time shot boundary detection. The method of Sugano et
al. [181] uses the inter-frame luminance difference and the chrominance histogrammatching
of DC images. Shen [170] presents a shot cut detection algorithm using Haussdorf distance
histograms. The Haussdorf distance is obtained by comparing edge points of successive
frames, wherein the edge information is directly extracted from compressed frames. Ćalić
and Izquierdo [18] analyse the statistics of the features extracted from theMPEG compressed
stream such as the macroblock type for real-time shot boundary detection. Haoran et al.
[61] consider the dissimilarity between frames with respect to the type of macroblocks and
incorporate camera motion with the aim of removing false detections. The real-time method
of Lefèvre et al. [99] acts on a frame-to-frame difference of DC images. In order to avoid
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illumination change effects, the colour space is changed from RGB to HSV, where H and
S are used to compare two successive frames. Bescós [12] achieves a real-time operation
using an algorithm based on the application of a combined set of metrics, like the sum of
the squared luminance difference and the chrominance likelihood ratio, computed at DC
images. Ewerth and Freisleben [44] propose an adequate frame difference normalisation for
the shot boundary detection. In [46], Farag and Abdel-Wahab use a neural network to detect
shot boundaries in a DC image sequence. Summarising these methods, we state that a lot of
research has been done using partial information extracted from compressed streams such
as DC images.

In this work, we are interested in a fast and approximate segmentation and interpretation
of multimedia content, which we call “rough indexing” paradigm [105]. Rough indexing
means to segment and interpret the video content in a fast, approximate and user oriented
way. When the target application of video content analysis requires a fine decision, it is not
only necessary to detect e.g. a shot boundary or an object of interest, but also to qualify the
transition effects (progressive or abrupt) between shots or to determine precisely the object
shape in raw video. Such an analysis is very much required for professional applications.
On the contrary to the multimedia professional, common users are not interested in details
such as the type of transition between shots in the video production process. For content
interpretation, they need some high level and very approximate indexes which can be de-
duced from signal features. Relatively to the shot boundary detection task, it means that
only the fact of a change should be detected and not its character.

In this section we show how the registration process of our mosaicing method (see Sec-
tion 3.2.2), together with the similarity measure we introduce, allows for the shot boundary
detection on I-frames in MPEG-1/2 compressed video. The method we propose for the de-
tection of shot changes on I-frames is combined with a shot change detection on P-frames
[38].

Instead of working with original I-frames and decoding the whole image data, we work
in the context of rough indexing paradigm and extract only the luminance DC image for
each I-frame. We discussed the extraction of DC images in Chapter 2. Then, the principle
of our method is to compare DC images of successive I-frames as shown in Figure 7.1. If
their content is similar (we compare the pixels of both images), then they are a part of the
same shot. Otherwise, a shot boundary appears. However, if motion occurs between succes-
sive I-frames, then successive I-frames show a slightly different cut-out of the scene content.
Therefore, we have to take this motion into account, i.e. we compensate the DC image of
the previous I-frame by motion in order to superimpose it with the DC image of current I-
frame. This requires the computation of the global motion trajectory of the whole sequence
as it is the case in the registration process of mosaicing method (Section 3.2.2). Global mo-
tion defines the motion of the main scene content and is principally due to the movement
of the camera or the change of focus. Therefore, the global motion parameters for P-frames
are calculated by the method presented in Section 3.2.2. This motion information is not suf-
ficient to calculate the whole trajectory. Since motion parameters are needed for I-frames as
well, which do not contain motion information, we extrapolate the motion parameters of the
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P-frames in a GOP by a linear regression (see Section 3.2.2). This permits to calculate the
motion parameters for the current I-frame. Thanks to this global motion information, the
geometric transformation of the DC image of the current I-frame and the DC image of the
previous I-frame can be computed by concatenating and scaling the global motion models
between them (see Section 3.2.2). Comparing the corresponding pixels of the DC images,
two consecutive I-frames are matched and their similarity is measured. These values are
then used for shot boundary detection on I-frames.
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Figure 7.1: Overview of the shot boundary detection on I-frames.

7.1.1 Matching of I-Frames

In order to measure the similarity of consecutive I-frames in video taking into account the
motion between these frames, we have now to compensate the DC image of the k − 1th I-
frame, DC(k − 1), onto the DC image of kth I-frame, DC(k). Therefore, we compute the
geometric transformation T(k, k − 1) (see Equation (3.61)). In the computation of this ge-
ometric transformation, when compensating recursively blocks of the kth I-frame onto the
P-frames in a GOP, the situation can be encountered that a block is compensated onto a
position in a P-frame which corresponds to a motion outlier (see Section 3.2.2). In this case
further projection is not possible since motion information for this position is not valid. Thus
pixels belonging to such blocks will not be further considered for the I-frame matching. On
the contrary, a block whose new position is outside of an P-frame is not rejected because
after a few translations it may be found again inside the k − 1th I-frame. This is illustrated
in Figure 7.2.
Themotion-compensatedDC image of the k−1th I-frame, D̂C(k−1), andDC(k) are com-

pared in order to measure the similarity of two successive I-frames. D̂C(k − 1) is obtained
by applying the geometric transformation T(k, k − 1), but the coordinates of the motion-
compensated pixels can be decimal. This can be due to either an estimated decimal motion
vector or the scaling of the global motion models. As a solution, we propose a bilinear
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Figure 7.2: Projection of an block: After 2 translations the block is outside the frame, but
after 2 further translations it return inside the frame and can finally be found in the previous
I-frame.

interpolation to calculate the luminance value at the decimal coordinates according to Equa-
tion (2.14).
Figures 7.3 and 7.4 respectively show one scheme of the I-frame motion-compensation

in the DC image domain. Figure 7.3 visualises a GOP without shot boundary whereas in
Figure 7.4 a cut appears on the kth I-frame. The white boundary at the top of D̂C(k − 1) is
caused by a tilt up. Thus, this part of the image is not present inDC(k−1). The white pixels
covering the people in D̂C(k − 1) correspond to outliers. In this scene, the camera tracks the
people climbing the hill, but it does not move at the same velocity than the people. Thus,
the motion vectors of the people differ from the motion vectors of the background and they
are rejected during the robust motion estimation (see Section 3.2.2). The white boundary in
Figure 7.4 at the right of the projection image is due to a pan right.

P1 P2 P30Pθ1 θ2 θ3 θ4 θ5

T(k, k − 1)

DC(k − 1) DC(k)

D̂C(k − 1)

Figure 7.3: Warping of the frame DC(k − 1) onto DC(k) without cut extracted from the
documentary “Hiragasy” CERIMES-SFRS R©.

Due to the rejection of a block in the case it meets a motion outlier when recursively
projecting it from the current I-frame to the previous I-frames, we obtain an outlier mask,
e.g. the white pixels covering the people in Figure 7.4, which is similar to the object masks
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Figure 7.4: Warping of the frame DC(k − 1) onto DC(k) with shot cut extracted from the
documentary “Hiragasy” CERIMES-SFRS R©.

(3.66) we used in the mosaic construction. The computation of the object masks uses also
the motion outliers in P-frames, but includes a color segmentation of the DC images of I-
frames and are thus more accurate. Hence, the object masks could be used instead, but their
computation is more expensive.
Comparing themotion-compensated image D̂C(k−1) and the imageDC(k) in Figure 7.4

they are visually different. This is opposite to Figure 7.3 where the images D̂C(k − 1) and
DC(k) seem to be quite similar disregarding the outlier pixels. Then, we will present a
method to measure the similarity.

7.1.2 Similarity Measure for Matching DC Images of I-Frames

Here, we address the key issue in the whole method, after matching the DC images of I-
frames we have to decide whether they are similar or not. The usual way to measure simi-
larity between two images consists in computing the MSE (3.46) between D̂C(k− 1) and the
image DC(k) [174].
Under the assumption of ideal motion and the absence of noise, this value should be zero

for the same content of frames. Nevertheless, the computation of this measure for DC frames
is strongly corrupted by high frequency noise observed in DC frames due to subsampling
effects on textured areas or on contrasted edges as we stated in Chapter 3. This is why we
introduce a new similarity measure which privileges the contribution of flat areas and limits
the contribution of textured areas. To this end, we weight the MSE by the inverse DC image
gradient. The objective is to compare flat regions and not edges or textured areas.
For the sake of low computational costs and due to the low resolution of DC frames we

use the Roberts gradient operator as we did in the regularisation operator for the mosaic
restoration (4.100). The gradient is computed just on the pixels of the frame DC(k − 1), con-
tributing to the interpolated pixel value (see Equation (3.70)). The weighted MSE (WMSE)
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associated to the pair of I-frames (k, k − 1) is:

WMSE(k) =
1

|V|
∑

p∈V
Ψ(‖∇DC(p̂, k − 1)‖)2 · (DC(p, k) − T(k, k − 1).DC(p, k − 1))2 (7.1)

where V is the set of the valid pixels and |V| its cardinality. Here, valid pixels are motion
inlier pixels and pixels corresponding to blocks whose motion-compensated position is in-
side the frame DC(k − 1) only. Ψ is the penalty function of the regularisation operator of
Equation (4.99) computed on themagnitude of the Roberts gradient ‖∇rDC(p̂, k − 1)‖ (3.70)
with p̂ as the motion compensated position of p in DC(k − 1). The influence of the penalty
function Ψ is determined by the threshold λA (see Equation 4.99). The smaller the threshold
is, the less of contrast is accepted in the definition of a flat area. When the threshold equals
1, only constant zones in the imageDC(k− 1) are exactly in MSE sense compared with their
corresponding zones in the image DC(k).
Figure 7.5 shows the error images for the examples of Figures 7.3 and 7.4. A medium

grey indicates that there is no difference between the compared pixels. The more the pixel
values differ from a medium grey, the stronger is the error magnitude. Thus, the error im-
age (Figure 7.5(a)) obtained by comparing D̂C(k − 1) and DC(k) from Figure 7.4 is rich in
contrast. The error image of Figure 7.5(b) of the sequence without shot boundary from Fig-
ure 7.3 is more uniform. Anyhow, the textured region of the background is still quite rich in
contrast. On this account, the error image 7.5(c) has been weighted by the penalty function
(4.100) with λA = 12.75. This threshold corresponds to 5% of the maximum absolute error
which is 255 in our case. The resulting error image is much more smoother.

(a) (b) (c)

Figure 7.5: Visualisation of the error between the images D̂C(k−1) andDC(k): (a) The error
corresponding to Figure 7.4, (b) the error corresponding to Figure 7.3, (c) the weighted error
corresponding to Figure 7.3 with λA = 12.75.

7.1.3 Shot Boundary Detection Method for I-Frames

Now, we will apply this new similarity measure to the fundamental problem of shot bound-
ary detection. Having calculated the WMSE values for the whole sequence using Equa-
tion (7.1), a histogram over the WMSE values can be computed to detect shot changes on
I-frames. A shot change on an I-frame causes a high WMSE value and if no shot change ap-
pears the WMSE value is small. Then, a threshold λc can be defined on the x-axis separating
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the WMSE values in the high range associated to shot changes from the others without shot
change (see Figure 7.7). In the ideal case, the threshold corresponds to the typical percentage
of the real shot changes with respect to the pairs of I-frames to compare.
If shot changes are only detected on I-frames, the shot boundary location error can be up

to the size of one GOP. In order to reduce it, we used a specific shot boundary detector for
P-frames [38]. If a shot change appears between two I-frames, on the one hand a P-frame is
generated with a strong motion compensation error and on the other hand a break in mo-
tion occurs. In this case the motion estimation fails and an inaccurate geometric transforma-
tion results. Although, the two I-frames, respectively showing a different scene content, are
matched by the incorrect geometric transformation as illustrated in Figure 7.6. This causes
a high WMSE value and the shot boundary will be detected on the second I-frame DC(k).
Thus, if the change was already detected on the P-frame, an overdetection occurs. Therefore,
the pair of surrounding I-frames will not be considered for shot boundary detection and we
remove the corresponding WMSE values from the histogram.

I P P P P

Shot cut

T(k,k−1)

DC(k)DC(k−1)

I

Figure 7.6: Matching of two I-frames in case if a cut appears on a P-frame between them.

Figure 7.7 shows a histogram for the MPEG-2 compressed documentary “Hiragasy”
CERIMES-SFRS R©. This film consists in 1381 pairs of I-frames with 19 shot changes on I-
frames whereas 81 shot changes on P-frames has been removed from the histogram. The
WMSE values corresponding to the ground truth, i.e. shot changes on I-frames, are marked
on the top of the figure. The WMSE values of I-frames with shot change are in reality not
absolutely separated from the others without shot change. We get a zone of mixture in the
high range of the histogram values where WMSE values corresponding to both, pairs of I-
frames corresponding to shot changes and without shot changes, can be found. In order to
get a low overdetection rate, our aim is to determine the threshold λA (4.100) causing the
smallest zone of mixture.
Our similarity measure will not be efficient in the case of slow progressive changes on

shot boundaries, as the content of successive I-frames risks to be very similar. Thus, just on
the left in the histogram a dissolve is situated. It causes a too small WMSE value and can not
be detected with this method.

7.1.4 Results

To evaluate the results of shot change detection based on the proposed similarity measure,
we use the usual recall and precision metrics with respect to a ground truth preliminary
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Figure 7.7: Histogram over the WMSE values (λA = 12.75) of the film “Hiragasy”
CERIMES-SFRS R©.

defined by a user. The ground truth consists of the frame numbers of all shot boundaries
on I-frames. Here, Recall = c

gt is the percentage of how many shot boundaries have been
detected and Precision = c

d indicates how many overdetections are done, where c is the
number of the correct detected shot boundaries, gt the number of the ground truth and d

the number of all (correct and false) detected shot boundaries. Recall and precision are both
measured in the range of [0, 1], whereas values near to 1 indicate a good result.

The evaluation of the results in the context of rough indexing paradigm is slightly dif-
ferent from classical benchmarking schemes such as used in TRECVID campaign for shot
boundary detection e.g. see [2, 181]. In the case of an “exact” evaluation, not only the pres-
ence of a shot boundary is checked, but also the type of transition (cut or progressive) and
the length of progressive transition. In the rough indexing paradigm, as we state above, the
type of transition does not matter. The essential is the detection of a shot change whatever
its nature is. In this case the ground truth of shot boundaries is constituted of all changes
(cuts and progressive ones). As we separately developed a detector of changes on P-frames
[38], here only shot boundaries on I-frames and neighbouring B-frames are included in the
ground truth.

The method presented above has been testedwith different thresholds λA for the weight-
ing function (4.100). It is chosen corresponding to 1%, 5%, 10% and 25% of the maximum
absolute error which is 255 in our case. In Figure 7.8 the histogram curves for the different
values of the threshold λA and the corresponding choice of the classification thresholds λc

(dotted line) are shown for the same film. Table 7.1 shows the corresponding results eval-
uated with the measures of recall and precision. The classification threshold λc is chosen
empirically according to the smallest WMSE values observed on shot cuts in various films.
If the WMSE value of an I-frame is higher than λc, a shot change is detected on this frame.

In the case of λA = 2.55, that is 1% of themaximum absolute error, the similarity measure
(7.1) is strongly generalised by the local contrast in images. This leads to the homogenisation
of change and not a change cases. For λA = 12.75 and λA = 25.5 which corresponds respec-
tively to 5% and 10% of the maximum absolute error we obtain the best results. According
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(e) λA = 63.75

Figure 7.8: WMSE histogramswith different weighting thresholdsλA for the film “Hiragasy”
CERIMES-SFRS R© : (a) the behaviour of the WMSE as a function of λA, (b)-(e) the different
choices of λc according to λA (see Table7.1).
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λA gt λc d c Recall Precision
2.55 20 306.56 293 19 0.950 0.065
12.75 20 1307.57 149 19 0.950 0.128
25.50 20 1734.87 168 19 0.950 0.113
63.75 20 2131.13 221 19 0.950 0.086

Table 7.1: Results for the film “Hiragasy” CERIMES-SFRS R©.

to the classical edge detection methods, the most of the edges are detected with a threshold
on gradient norms corresponding to 10% of the dynamic range. Then, when the threshold
is chosen smaller than 10% of the dynamic range, edges in images and textured areas are
penalised and not flat areas. If it is chosen higher, the penalisation will concern only highly
contrasted edges which can be very rare on these frames. In this case the behaviour of this
similarity measure will converge to that one of the MSE (3.46).
Table 7.2 shows a summary of the recall and precision results we obtained on several doc-

umentaries (each of them being of 13 min duration) using the same classification thresholds
λc than in Table 7.1, i.e. λc = 1307.57 for λA = 12.75 and λc = 1734.87 for λA = 25.50. The
column gt/all indicates the ground truth i.e. transitions on I-frames (cuts and progressive
ones) with respect to all transitions in the film. It comes out that the precision is quite low for
some films. Furthermore, the general trend as a function of λc and λA is difficult to identify.
In fact, it strongly depends on the penalty function Ψ and on the classification threshold as
well.
A characterisation of these parameters with respect to the nature of the film may amelio-

rate the precision results. According to our observations, in highly textured videos even the
weighted MSE is strong and thus the distinction between a shot change and a continuous
content is difficult.
Another question arises on the precision of the location of a shot boundary in the rough

indexing paradigm. Obviously, the high frame precision is interesting for a content with
very short shots. In the case of an artistic content it happens in the production credits and
cast part. This is usually not relevant for the analysis of the main part of a content item. If
the method for shot boundary detection on I-frames we propose in this paper is combined
with a specific detector for P-frames such as [38], then the absolute error in location of cuts
in a video is limited by the number of B-frames between an I-frame and the closest P-frame.
Otherwise, the precision of the location is limited by the length of the GOP. In the case of dis-
solves, the question is ill-posed for the rough indexing paradigm since we are not interested
in the localisation of dissolve boundaries, but in a content change. This detection is difficult
when successive I-frames are very similar (low dissolve).
To compute the similarity (7.1) between the frames DC(k − 1) and DC(k), we use a

bilinear interpolation of the frame DC(k). This choice is typical for standard schemes of
motion estimation with a subpixel accuracy. It could seem “too precise” in a rough index-
ing paradigm. Thus, we show some results of comparison with the roughest interpolation
scheme “closest integer” in Table 7.3. The detection results are slightly better if the bilinear
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Film gt/all λA Recall Precision
Hiragasy 19/81 12.75 0.950 0.128

25.50 0.950 0.113
La Joueuse de Tympanon (I) 25/134 12.75 0.730 0.633

25.50 0.730 0.650
La Joueuse de Tympanon (II) 62/77 12.75 0.571 0.782

25.50 0.556 0.814
Aquaculture (I) 7/86 12.75 0.750 0.171

25.50 0.750 0.214
Aquaculture (II) 11/82 12.75 0.500 0.452

25.50 0.500 0.727
Nosy Hira 12/75 12.75 0.769 0.076

25.50 0.769 0.072

Table 7.2: Summary of the recall and precision results for some documentaries
CERIMES-SFRS R©.

λA gt λc d c Recall Precision

2.55 20 306.56 287 18 0.900 0.062
12.75 20 1307.57 151 19 0.950 0.125
25.50 20 1734.87 175 19 0.950 0.109
63.75 20 2131.13 233 19 0.950 0.085

Table 7.3: Results for the documentary “Hiragasy” CERIMES-SFRS R© using closest integer
interpolation in the motion compensation.

interpolation is used.

It is difficult to compare the performance of our method with full shot boundary detec-
tion methods such as [2, 181] since they use frames for shot changes for all video frames.
These methods are not relevant with our objective defined by the rough indexing paradigm.
Tables 7.1 – 7.3 show in general a good recall of our method, while the precision remains
low. Generally speaking, the shot detection on I-frames is not an objective per se, but an
illustration how the partial and rough information (noisy motion fields, their corresponding
motion compensation error DC images and DC frames polluted by high frequency noise) can
be used for content segmentation when appropriate similarity measures are proposed. The
same is true for the complexity of the method. If motion is estimated for the whole video, it
can be used as a content descriptor and not only as a mean to compensate the I-frames. The
intent of the method is based on the estimation of global camera motion. If global camera
motion is considered, we can limit the computation of operational costs only by compensa-
tion and similarity measure computation which is of linear complexity Θ(N) with N as the
number of pixels in the DC frames which is 64 times less than in the original images. The
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method performs in average 3 times quicker than the video decoding process, that is 3 times
quicker than real-time on the same PC.

7.1.5 Conclusion

In this section, we presented how the methods developed for the mosaic construction can be
used for video indexing. To this end, we presented a new similarity measure which is based
on the regularisation approach, and a relatedmethod for shot change detection in the context
of rough indexing paradigm. The similarity measure takes into account the degradation of
the data: the motion vector fields are noisy and incomplete due to inaccurate MPEG encoder
motion estimations and the DC frames are corrupted by aliasing effects. Therefore, a robust
global motion estimation method is used and a confidence measure based on the motion
compensation error is incorporated in the extrapolation of the motion parameters. In order
to deal with the aliasing effects of the DC image, we regularise the MSE weighting it by
the local contrast, as we did in the mosaic restoration process, with the aim to favour the
comparison on flat areas and to penalise edges and textured regions.
Our method performs fast since only rough data from the MPEG compressed stream is

extracted. In the evaluation, we obtain mostly quite high values for recall, but the precision
values remain low. The study of the regularisation function and the classification thresh-
old as well can help to ameliorate these results. In addition, an integration of color can be
incorporated to obtain a better precision.
We further developed this shot boundary detection for I-frames method and adopted it

in a system combined with a detection on P-frames for the use in the TRECVID campaigns
2004, 2005 and 2006 1, and in the ARGOS campaign 2006 2. Figure 7.9 shows our results of
the TRECVID 2004 campaign compared to the other participants.

7.2 Camera Motion Characterisation

Digital videos are more and more available and pervasive due to recent progresses in stor-
age, communication, and compression technologies. This consequently implies the increas-
ing need for efficient indexing, browsing, search and retrieval of video archives. Requests for
video material in archives often specify desired or required camera motion. Therefore, cam-
era motion identification was a new task in TRECVID 2005. Given the feature test collection
and the shot boundary reference, all shots needed to be identified in which a certain camera
motion (pan, tilt or zoom) is present. Therefore, we propose classifying the motions in static
camera, pan, tilt, zoom and other camera motions. The presented method is also capable to
identify complexer camera motions which are here combined in the class of other camera
motions. Nevertheless, working within the scope of the TRECVID 2005 camera motion task,
we focus here on the identification of pure motions such as pan, tilt and zoom.

1http://www-nlpir.nist.gov/projects/trecvid/
2http://www.irit.fr/recherches/SAMOVA/MEMBERS/JOLY/argos/

http://www-nlpir.nist.gov/projects/trecvid/
http://www.irit.fr/recherches/SAMOVA/MEMBERS/JOLY/argos/
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Figure 7.9: Recall and Precision for all transitions (cut and progressive) of the TRECVID 2004
campaign. Our results are circled in red.
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The videos in the TRECVID 2005 test collection contained several scenes captured by a
hand-carried camera. Jitter motions of the camera resulted. The main challenge in this task
was then to overcome these jitter camera motions in order to avoid overdetections. Working
on archived or broadcasted content, it is interesting to reuse motion low-level descriptors
contained in compressed streams whatever is their quality. Hence, this was an ideal frame-
work for the application of the methods we developed in this thesis.

The fundamental problem for camera motion characterisation consists in estimating the
camera model. Current methods for camera motion characterisation in MPEG compressed
video generally work on motion compensation vectors or DC images extracted from the
compressed stream. The approach of Cao and Suganthan [20] is based on a neural-network
scheme to characterise the camera motion in shots. They extract and reconstruct frame-by-
frame motion vectors for all frames from the MPEG stream. Sàez et al. [153] estimate global
motion parameters based on the Hough transform. Their method works on DC images ex-
tracted from the compressed stream. Ewerth et al. [45] compute a 3D camera motion model
only processing motion vectors from P-frames. Due to the 3D motion model, the method
allows to distinguish between translation along the x-axis (y-axis) i.e. track (boom), and
rotation around the y-axis (x-axis) i.e. pan (tilt). Since in the TRECVID 2005 camera mo-
tion task any distinction is supposed between track and pan or boom and tilt, these types of
motion belong to the same feature groups. Ngo et al. [123] characterise camera and object
motions by analysing spatio-temporal image volumes. Then, motion is depicted as oriented
patterns in spatio-temporal image slices coming fromDC images. They propose a tensor his-
togram computation in order to represent these patterns. The approach of Doulaverakis et
al. [36] proposes the computation of direction histograms ofMPEGmotion vectors. Depend-
ing on the distribution of the histogram and the number of intra-coded macroblocks, camera
motion is characterised by applying threshold values on the normalised variance of the his-
togram. In [86], Kim et al. present a simple thresholding scheme for the motion parameters
of the affine six-parameter model. The affine six-parameter model is computed from MPEG
motion vectors for each frame, whereas motion vectors for I-frames are interpolated from
P-frames.

Bouthemy et al. [16] compute the 2D affine global motion model in order to characterise
camera motion. Since thresholding on motion parameters is difficult mainly if jitter motions
are present in the scene, thresholding is performed on likelihoods of motion parameters.
This method can not be applied to compressed video. In order to evaluate their method on
compressed video, they decoded MPEG compressed frames. Due to its robustness, we refer
to this method as a basis of our algorithm in the compressed domain.

Figure 7.10 shows the global scheme to characterise the dominant (camera motion) in a
video segment. We use first the affine motion model estimated from the compressed stream
by the method presented in Section 3.2.2 (see the first block of Figure 7.10). Despite the
robust estimation scheme, the resulting motion model parameters are still noisy due to com-
plex motions e.g. due to a hand-carried camera. In addition, they have different meanings
so that simple thresholding in order to find the dominant motion is not possible. There-
fore, we chose a significance test of the motion model parameters based on [16] which is
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the second step in Figure 7.10. This test is formulated as a maximisation of likelihoods sj

associated to two statistical hypotheses. One stands for the significance of the motion pa-
rameters expressing the pure physical camera motion. The second stands for the absence of
the corresponding motion. Thus, the problem is turned into a better controllable problem of
thresholding likelihood-ratios. We suppose that a specific motion is present in the shot if it
is present in all P-frames in a video segment of a sufficient duration. Thus, we segment a
shot into video segments with homogeneous motion (step three in Figure 7.10). We define
a segment of homogeneous motion as a series of consecutive frames where the same motion
parameters are significant. Therefore, we consider the likelihood motion values as a nor-
mally distributed stochastic signal. Based on [16], we apply the Hinkley test on this signal
allowing to detect changes on a temporal mean value of the significance values. Due to this
segmentation, the duration of a detected motion can be determined. If the duration is too
short, then it is considered as a jitter motion and is rejected. Then, we threshold the mean
likelihood values s̄m in a fourth step. Finally, a classification scheme (step five in Figure 7.10)
is applied to the thresholded mean likelihood values ζ̄m of each segment in order to define
the physical character of the motion i.e. "pure" or not. We consider only segments with
pure motions (pan, tilt, zoom) as a detection result. The classification using mean values
eliminates subliminal jitter motions and provides the dominant motion.

Global motion
estimation

Classification

Significance value
computation

Thresholding Motion segmentation

P−Frames
θ̂j sj

s̄mζ̄m

Figure 7.10: The steps of the camera motion characterisation a shot. (The index j is related
to frames andm to homogeneous motion segments in a shot.)

In the following, we address each of these steps. We refer the reader to Section 3.2.2
for the estimation of global camera motion. The camera motion characterisation based on
the estimated global camera motion is discussed below. Section 7.2.1 presents the signif-
icance computation of the motion parameters and the thresholding scheme, Section 7.2.2
the segmentation into segments of homogeneous motion, and Section 7.2.3 the classification
scheme. Some results are analysed in Section 7.2.4. Finally, Section 7.2.5 concludes our work
and outlines our points of interest for future research.

7.2.1 Significance Value Computation of the Motion Parameters

The estimated global motion model parameters (see Section 3.2.2) may still be noisy due to
complex motions e.g. due to a hand-carried camera. This was often the case in the TRECVID
2005 video data. In addition, the parameters in the affine model have different meanings so
that simple thresholding in order to find the dominant motion is difficult. Therefore, we
present a significance test of the motion model parameters based on [16].
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Since we are interested in dominant camera motion, we express the vector of motion
parameters θ = (a1, ..., a6)

T in another basis of elementary motion-subfields as in [16]:

φ = (pan, tilt, zoom, rot, hyp1, hyp2) with

pan = a1 tilt = a4

zoom = 1
2(a2 + a6) rot = 1

2(a5 − a3)

hyp1 = 1
2(a2 − a6) hyp2 = 1

2(a3 + a5)

. (7.2)

This basis is more convenient for the interpretation of the dominant motion in the scene
since its is more related to the physical meaning. In [85], the affine model is transformed into
a similar basis, but they consider only one hyperbolic term defined as a combination of hyp1

and hyp2. Thus, the model (3.23) becomes:

d(p, φ) =

{
dx = pan + zoom · (x − x0) − rot · (y − y0) + hyp1 · (x − x0) + hyp2 · (y − y0)

dy = tilt + zoom · (y − y0) + rot · (x − x0) − hyp1 · (y − y0) + hyp2 · (x − x0)

(7.3)
where (x0, y0)

T denotes the image center.
If the dominant motion is for example a pure panning, the parameter pan is supposed

to be the only non zero. This is the same for tilt, zoom and rot. If the camera is static all
parameters are supposed to be zero. In practice, this is never the case due to noise, estimation
errors or moving objects. In addition, the physical meaning of the parameters is different as
we stated in in Section 3.2.2. Thus, the typical range is not the same. Hence, it is difficult to
propose an appropriate thresholding scheme to decide if a motion feature is present or not.
The significance test from [16] is a statistical approach based on a likelihood ratio test

which turns the problem of direct thresholding into a better controllable problem of thresh-
olding likelihood ratios.
Let us consider two competing hypotheses for each component of φ. The first hypothesis

H0 assumes that the considered component of φ is significant. The second one H1 assumes
that the component is not significant i.e. it equals zero, while the other five parameters are
free. Let φ̂0 and φ̂1 be respectively the motion models corresponding to the hypotheses H0

and H1. The advantage of such a test is that it is independent from the values of the other
parameters which remain free.
The likelihood function f for each hypothesis of the considered component is defined

with respect to the residuals ri = (rx,i, ry,i)
T of Equation (3.24). They are supposed to be

independent, and to follow a zero-mean Gaussian law. The covariance matrices Σl, l = 0, 1

corresponding to the two hypotheses are a-posteriori estimated as:

Σl =

(
σ2

x,l 0

0 σ2
y,l

)
(7.4)

with
σ2

m,l =
1

|D|
∑

i∈D
rm,i(φ̂l)

2, m = x, y (7.5)

where D is the set of motion inliers on which the residuals are computed and |D| denotes its
cardinality.
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The two likelihood functions f for the optimised values of the motion parameters φ̂l are
given by:

f(φ̂l) =
∏

i∈D

(
1

2π
√

det(Σl)
exp

(
−1

2
(rT

i Σ−1
l ri)

))

=
1

(2πσx,lσy,l)|D| exp

(
−1

2

∑

i∈D
(rT

i Σ−1
l ri)

)

=
1

(2πσx,lσy,l)|D| exp (− |D|) (7.6)

In order to estimate the five free parameters for hypothesis H1, we can profit from the
previous estimation of θ̂ i.e. φ̂0 which already furnishes D. Then, a least square estimation
similarly to (3.31) can be used only on macroblock vectors from D. The observation matrix
Hφ corresponding to the parameter vector φ is:

Hφ =




1 0 x1 −y1 x1 y1

...
...
...

...
...

...
1 0 xN −yN xN yN

0 1 y1 x1 −y1 x1

...
...
...

...
...

...
0 1 yN xN −yN xN




. (7.7)

for N observed motion vectors.
In order to set the ith component to zero in the parameter vector φ, we suppress in prac-

tice the ith column in the observation matrixHφ. Thus, the least square equation is:

φ̃ = (H0
TWH0)

−1H0
TWZ (7.8)

where H0 is the reduced observation matrix and φ̃ is the reduced parameter vector which
contains the free five parameters. The matrix W and the vector Z remain the same as in
(3.35) and (3.33).
The ratio s is called the significance value:

s = ln

(
f(φ̂1)

f(φ̂0)

)

= ln

( 1
(2πσx,1σy,1)|D| exp (− |D|)

1
(2πσx,0σy,0)|D| exp (− |D|)

)

= |D| (ln(σx,0σy,0) − ln(σx,1σy,1)) (7.9)

If we assume that σx = σy (this assumption is rather strong, but still if the motion is
homogeneous it is hold), then s becomes:

s = |D|
(
ln(σ2

0) − ln(σ2
1)
)

(7.10)
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where σ2
l is computed on the amplitude of the residuals ri. This, simplification conducts also

to a gain in computational time.
We now aim to use this value for testing the significance of the parameters. Therefore,

our idea is if a motion feature is present in a shot, its corresponding motion parameter is sig-
nificant during a sufficient number of frames. We can not directly use the significance values
for the following reasons. First of all, they can be noisy due to jitter motions. Therefore, we
try to smooth them along the time and take the decision on the temporal mean of the signif-
icance values. Based on this mean, we will segment a shot into subshots of homogeneous
motion (presented below in Section 7.2.2). In order to get a temporal regularity, we inter-
polate the significance values for I-frames. Assuming linear and constant motion, for each
I-frame the significance values of the preceding P-frame are repeated. This is a simplified
approach and it will be a point of future research.
The second source of noise in the significance values are the failures of theMPEG encoder

as it furnishes inaccurate motion vectors. These vectors are considered as outliers by the
robust motion estimator (see Section 3.2.2) and camera motion will be estimated only on a
small part of a frame. Thus, we decide to exclude the frames where the estimation support
is too small. To do this we introduce the confidence measure cD:

cD =
|D|
Dmax

(7.11)

where Dmax is the maximum number of motion inliers i.e. the number of macroblocks in a
frame. If cD is lower than a threshold λD, then the motion estimated on a given P-frame will
not be further considered.
It might also be that the global motion estimation algorithm fails. In order to control the

accuracy of the motion model with respect to the MPEG motion vectors, the variance of the
residuals (3.24) computed on D are used as a second confidence measure cσ. If cσ exceeds a
predefined threshold λσ, the motion estimated on this frame is not further considered either.
Then, to decide which hypothesis has to be selected, the mean significance value s̄ is

computed on a homogeneousmotion segmentM (excluding the frames rejected by the con-
fidence measures cD and cσ) and the following mean log-likelihood test is performed:

s̄ =
1

|M|
∑

s∈M
s

H0

<

>

H1

λs (7.12)

where |M| is the number of frames inM.
If the mean significance value s̄, which is in general negative, is lower than a predefined

threshold λs, then the component at hand is declared to be significant, otherwise it is con-
sidered to be null.
It is obvious that not only one component exceeds the threshold λs because motion in

the scene is mostly a combination of basic motions. It is still possible that one dominant
motion exists and though the omission of its parameter causes a much more higher increase
of the error than in the case of the other remaining significant parameters. Therefore, we
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retain only the components which exceed λs and Cs · min{s̄pan, s̄tilt, s̄zoom, s̄rot, s̄hyp1, s̄hyp2},
Cs ∈ [0, 1].

7.2.2 Segmentation into Segments of Homogeneous Motion

Here, we describe the method for segmenting shots into sequences of homogeneousmotion.
We assume that the likelihood motion values s form a stochastic signal that is normally dis-
tributed. Based on [16], we apply the Hinkley test to the signal allowing to detect changes
on a temporal mean value. These changes delimit the borders of homogeneous motion seg-
ments.
Two tests are performed in parallel to look for downwards or upwards jumps. They are

respectively defined by:

Uk =

k∑

t=0

(
st − s̃ +

δmin

2

)
(k ≥ 0) (7.13)

Mk = max
0≤i≤k

Ui; detection if Mk − Uk > λH (7.14)

Vk =

k∑

t=0

(
st − s̃ − δmin

2

)
(k ≥ 0) (7.15)

Nk = min
0≤i≤k

Vi; detection if Vk − Nk > λH (7.16)

where s̃ is the online mean significance value before the jump, δmin is the minimal jump
magnitude that we want to detect, and λH is a predefined threshold. We perform this test
simultaneously on all mean significance values (s̄pan, s̄tilt, s̄zoom, s̄rot, s̄hyp1, s̄hyp2). If a jump
has been detected on one of the signals, the means s̄ are re-initialised for each signal.
This segmentation allows to know the duration of a certain camera motion. If the dura-

tion is too short, then the segment is considered to represent jitter motion and is rejected.

7.2.3 Camera Motion Classification

When the segments of homogeneous motion are known, finally a classification scheme can
be applied to the thresholded mean significance values ζ̄ of each segment in order to define
the physical character of the motion. We consider only segments with pure motions (pan,
tilt, zoom) as a detection result. The classification using mean values eliminates subliminal
jitter motions and provides the dominant motion.
Table 7.4 shows the classification scheme we used for TRECVID 2005 to deter-

mine the physical meaning of the set of the thresholded mean significance values ζ̄ =

(ζ̄pan, ζ̄tilt, ζ̄zoom, ζ̄rot, ζ̄hyp1, ζ̄hyp2). In this classification, we followed [16]. If a motion seg-
ment of a shot with a sufficient long duration is classified in one of the classes 2, 3 or 4, then
the shot is identified to contain the corresponding motion. Since a zoom is often combined
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ζ̄ camera motion
1 (0, 0, 0, 0, 0, 0) static camera/ no significant motion
2 (ζ̄pan, 0, 0, 0, 0, 0) pan
3 (0, ζ̄tilt, 0, 0, 0, 0) tilt
4 (ζ̄pan, ζ̄tilt, ζ̄zoom, 0, 0, 0) zoom
5 others complex camera motion

Table 7.4: Classification scheme

with a small pan or tilt, it is possible that the pan or tilt parameters are significant as well.
This is also due to inaccurate MPEG motion vectors.
Finally, if successive segments are labelled with the same motion, the segments are

joined. Two segments labelled with the same motion are joined as well if they are separated
by a rejected segment.

7.2.4 Results

For TRECVID 2005, we had several parameters to manipulate. Since no annotation was
available for the development set, we annotated only a few videos for the parameter training.
In addition, if manually annotating it is difficult to decide if the feature is clearly true or not
and if the annotator of the ground truth of the test set will decide in the same manner.
The parameters we use for camera motion characterisation are:

• δmin denotes the minimum jump magnitude that we want to detect in the Hinkley test.

• λH is the peak validation threshold for the Hinkley test.

• λs is the absolute threshold for the significance values.

• Cs is the constant for the relative thresholding of the significance values.

• tmin denotes the minimal motion duration i.e. the minimal number of frames in a valid
homogeneous motion segment.

• λD is the absolute threshold for the confidence measure cD i.e. the minimum size of
the estimation supportD.

• λσ is the absolute threshold for the confidence measure cσ i.e. the accepted maximum
variance of the residuals ri(φ̂0).

Then seven runs (RI-1,..., RI-7) with respectively different parameter settings were sub-
mitted and evaluated by the NIST. The most balanced result (RI-3: 0.912 mean precision and
0.737 mean recall) and the best result for recall as well was obtained for the following pa-
rameter settings: δmin = 100, Cs = 0.3, λs = −30, λH = 0.1, tmin = 15, λσ = 1000000, and
λD = 0.01. The threshold λσ is chosen quite high and λD quite low in order to not reject
too much frames. The best result for precision (RI-2: 0.967 mean precision and 0.541 mean



7.2 – Camera Motion Characterisation 177

recall) are obtained for δmin = 100, Cs = 0.25, λs = −70, λH = 0.1, tmin = 25, λσ = 1000000,
and λD = 0.01.
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Figure 7.11: Precision and recall results for the submissions of all participants in the
TRECVID 2005 camera motion detection task (RI corresponds to LaBRI).

Figure 7.11 shows the precision and recall results for the submissions of all participants in
this TRECVID task. The submission results of the group LaBRI are the black points denoted
as “RI” in the key.
Figure 7.12 shows some results obtained in the run RI-3. It visualises the graphs of the

motion model parameters θ̂, the corresponding significance values s and the online mean
significance values s̄ of the shot labelled as “shot106_136”. This shot is captured by a hand-
carried camera and so contains a lot of jitter motions. The black lines (dotted and solid) in the
graphs indicate the borders of the homogeneousmotion segments. The motion segments we
obtain after the joining of neighboured similar motions and the rejection of too short motion
segments are marked with solid lines. Note that in this shot only the motion segments at
the beginning and the end of the shot have been rejected as too short i.e. jitter motion. The
camera features we detect in this shot are pan, static camera/ no significant motion, tilt and
zoom. The real cameramotion is a pan left followed by a zoom in. Both are correctly detected
and are visualised in Figure 7.13. A lot of jitter motion is present between these two camera
motions. One part is correctly labelled as static camera or non significant motion. The other
part is falsely detected as a tilt. The graphs in Figure 7.12(a) show the motion parameters
which are very noisy. Here no zoom is visible, since the parameters indicating zoom (a2

and a6) have a different meaning than the parameters a1 and a4 respectively responsible for
pan and tilt. If the significance values of the motion parameters are computed, the motions



178 Chapter 7 – Related Indexing Tasks

-30

-25

-20

-15

-10

-5

 0

 5

 10

 15

 29060  29080  29100  29120  29140  29160  29180  29200

frame number

pan static tilt zoom

re
je

ct

re
je

ct

a1
a2
a3
a4
a5
a6

(a)

-250

-200

-150

-100

-50

 0

 50

 29060  29080  29100  29120  29140  29160  29180  29200

frame number

pan static tilt zoom

re
je

ct

re
je

ct
pan

tilt
zoom

rot
hyp1
hyp2

(b)

-250

-200

-150

-100

-50

 0

 50

 29060  29080  29100  29120  29140  29160  29180  29200

frame number

pan static tilt zoom

re
je

ct

re
je

ct

pan
tilt

zoom
rot

hyp1
hyp2
λs

(c)

Figure 7.12: 7.12(a), 7.12(b), and 7.12(c) show respectively the graphs of the estimated affine
global motion parameters θ̂, the corresponding significance values s and the online mean
significance values s̄ for the shot labelled as “shot106_136”.
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(a)

(b)

Figure 7.13: Shot “shot106_136” of the TRECVID 2006 corpus: (a) and (b) show respectively
the first, an intermediary and the last image for the pan and zoom correctly detected in
Figure 7.12.

and mainly the zoom become more clear. However the graphs of the significances values in
Figure 7.12(b) are still quite noisy. This improves after the mean value computation which is
shown in Figure 7.12(c).

7.2.5 Conclusion

In this section we presented another application of our mosaicing method: the characteri-
sation of dominant camera motion and its benchmarking in the TRECVID 2005 campaign.
It is shown that the use of MPEG motion vectors was justified, despite their noisiness, in a
stochastic estimation and decision framework. The main difficulty resulted from the lack of
ground truth for the training of parameters of the proposedmodels. The next step would be
high-level indexing tasks and the use of this motion characterisation tool in this context.
We further used this motion characterisation method with some modifications in the

ARGOS campaign 2006 and within the BBC rushes exploitations tasks for TRECVID 2006.

7.3 Conclusion

In this application chapter we used several components of the proposed mosaicing method
for related indexing tasks: the shot boundary detection on I-frames and the characterisation
of dominant camera motion. In the first case, we used the robust motion estimation from
the compressed stream and the extrapolation of motion for I-frames, in order to warp one I-
frame to another and measure their similarity. Then, we defined a similarity measure based
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on the regularisation operator of the restoration approach. The latter allowed the efficient
comparison in case of textured frames. In the second case, we completed the robust motion
estimation by a temporal filtering and a probabilistic decision-making framework. These
applications show the interest of working on compressed data, when taking into account
their “rough” nature.
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Chapter 8
Error Concealment

In this chapter, we design a possible application of our restoration method for error conceal-
ment, when transmitting compressed video. We stress here that we only show the perspec-
tive of applying our mosaicing method for error concealment, we can not be exhaustive in
the subject. We propose applying our mosaicing method at the decoder side and conceal
a frame by replacing corrupted regions in the frame with the corresponding regions of the
mosaic. The purpose here is not to present a very subtle method. Some powerful method
for temporal error concealment have been already presented [29]. Our objective is to show
that the presentedmosaicing method can be applied within this context. Therefore, we com-
pare our results with a spatial error concealment method. We choose the frequency selective
method of Meisinger and Kaup [111, 83] as it is a reference method in this domain. This
work was developed in the research project [102].
Whenever digital video data is transmitted over an error-prone network, parts of the

data might be altered or lost during transmission due to channel noise, congestion or other
network errors. As a result, the video images suffer from visual errors, whose characteristics
depend on the video coding method employed. To deal with these errors, three different
approaches can be taken.
The first is to avoid the underlying network errors by using network protocols that guar-

antee a correct transmission, like the transmission control protocol (TCP). However, their
reliability is achieved at the expense of speed deficits. The second approach aims at mak-
ing the video coding more resilient to errors. Different kinds of redundancies are added to
the video stream in order to support the correction of the video data in case of transmission
errors or to minimise their effect. A review of these methods can be found in [201], where
they are referred to as forward error concealment techniques. The third approach is to employ
image restoration algorithms in order to approximate the lost data based on the successfully
received data. This is possible by either exploiting the temporal redundancy inherent in a
video, or by estimating lost parts of an image based on their surroundings. These approaches
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are referred to as temporal and spatial error concealment, respectively, and are the main interest
in this work.

In order to study the application of our video restorationmethod in an error concealment
framework we first briefly survey losses in MPEG-2 coded video. Then, we chose a model
of transmission errors and simulate them. Here, without being specialists on networking
we restrict ourselves to classical models. Having simulated the transmission errors, we can
apply our method to recover (partially) such errors.

This chapter is organised as follows. First, the characteristic effects of lost data on
MPEG-2 coded video are examined, and methods to simulate such errors are evaluated in
order to provide a realistic basis for later experiments. Section 8.1 deals with this subject.
Then, we present our error concealment method in Section 8.2. In this section, we also dis-
cuss spatial and temporal error concealment algorithms, placing emphasis on the frequency
selective extrapolation method of Kaup and Meisinger [111, 83]. Furthermore, experiments
examining the quality of our error concealment techniques are conducted and evaluated in
Section 8.3. In addition, we compare our results with the frequency selective extrapolation
method [111, 83]. Section 8.4 closes this chapter by summing up the achieved results and
giving future perspectives.

8.1 Transmission Errors in MPEG-2 Video

The object in this section is the simulation of transmission error for MPEG-2 compressed
video. Therefore, we first precise the type data if transmitting MPEG-2 compressed video.
Then, we present some classical loss models for transmission errors and our choice of loss
models. Based on this, we then describe how we simulate transmission errors for our exper-
iments.

8.1.1 Multiplexing

The term multiplexing denotes techniques to merge several different streams, like an audio
and a video stream, into one stream. In Part 1 of the MPEG-2 standard [116], two distinct
multiplexingmethods are defined. The first one produces so called program streams, intended
to be used in error-free environments like storage. The second method produces transport
streams which are evidently designed for applications that involve some kind of transmis-
sion. Since this work treats transmission errors, we assume that we are always dealing with
transport streams, and program streams can be neglected.

A transport stream is composed of transport stream packets of fixed size. In addition to
4 header bytes, each of these packets contains 184 bytes of payload, that is used to transport
fragments of so called packetised elementary stream (PES) packets [172]. These packets contain
reasonable amounts of audio or video data produced by the appropriate coder, in case of
video data normally an integral number of images. However, no general statement can be
made about which spatial extent is represented by a transport stream packet.
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8.1.2 Loss Models for Transmission Channels

The next question to discuss is how the occurrence of transmission errors can be modelled.
This requires a definition of the term transmission error first. A transmission error is an event
that results in the loss of a minimal, “atomic” amount of data. This could be the loss of a
single bit or a whole packet (e.g. MPEG-2 transport stream or TCP packet), depending on
the transmission channel and protocol employed. In the following, the terms error and loss
will be used synonymously.
To characterise loss patterns for error-prone transmission channels, several models have

been proposed. Here, we consider classical models such as the Bernoulli model, the 2-state
Markov chain model (also known as the Gilbert model), the kth order Markov chain model
and the extended Gilbert model. In case of k = 0 the kth order Markov chain model corre-
sponds to the Bernoulli model and in case of k = 1 it corresponds to the Gilbert model.
Loss models describe the occurrence of errors as a discrete stochastic process {Xt}∞t=1

where Xt is a random variable representing the state of the channel at time t (see [206]).
Possible values are 0 or 1 representing an error-free and an erroneous state respectively. A
finite set of concrete values of Xt for t = 1, . . . , n is known as a realisation of {Xt} and
denoted by {xt}n

t=1.
Practically, all loss models presented here specify error probabilities for Xt, and they

differ in the number of previous states of the channel (xt−1, xt−2, . . .) taken into account for
these probabilities. The order of the Markov process, k, is the number of previous values
of the process on which the current model depends and is a measure of complexity of the
model and has 2k states. Hence, the Bernoulli model which is of order 0 has no states, and
the Gilbert model which is of order 1 has 2 states.

Bernoulli Model

The simplest loss model is the Bernoulli model [206, 80]. It assumes that {Xt} is a Bernoulli
process, meaning that error events are independent of each other. Mathematically spo-
ken, the probability of Xt to be 1 does not depend on any previous state and is always
the same. Therefore, one single parameter r, equivalent to this probability, specifies the
Bernoulli model [206]:

r = P (Xt = 1) =
n1

n
(8.1)

where n1 is the number of times the value 1 occurs in the observed times series {xt}n
t=1, and

n is the number of samples in the time series.

Gilbert Model

Amore elaborate model is the so called Gilbert model [206, 80, 154], which takes into account
the previous state of the channel. As the error probability at time t depends on whether there
was an error at time t−1 or not, two parameters are needed for the Gilbert model. These two
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parameters p and q specify the probability of a transition from an error-free to an erroneous
state and vice versa. The likelihoods of p and q are given by [206]:

p = P (Xt = 1|Xt−1 = 0) =
n01

n0
(8.2)

q = P (Xt = 0|Xt−1 = 1) =
n10

n1
(8.3)

where n01 is the number of times in the observed time series that 1 follows 0, n10 is the
number that 0 follows 1, n0 is the number of 0s in the trace, and n1 is the number of 1s in the
trace. The Gilbert model is illustrated in Figure 8.1.

10

p

1 − p

q

1 − q

Figure 8.1: The Gilbert model [80].

Markov Chain Model

The Bernoulli and Gilbert model are special cases of a more general model, theMarkov chain
model. It is mentioned as an error model in [199, 206]. A Markov chain model of kth order
specifies the error probability at time t depending on the values of the k preceding states
xt−1, . . . , xt−k .
Such a process is characterised by a k × 2 conditional probability matrix Pk whose rows

may be interpreted as probability mass function according to which, the next random vari-
able Xt is generated when the process is in a state xt−k . . . xt−1 [206]:

P (Xt = xt|Xt−1 = xt−1, . . . ,Xt−k = xt−k) = Pk(xt|xt−1, . . . , xt−k) (8.4)

A process {Xt} is a Markov chain of order k, if the conditional probability:

P (Xt = xt|Xt−i = xt−i) (8.5)

is independent of xt−i for all i > k.
Let {xt}n

t=1 be an observed sequence from a Markov source, and b = b1 . . . bk be a given
state of the chain, nba the number of times state b is followed by a value a in the sample
sequence, and nb the number of times state b is seen. Let pba be an estimate of the probability
that xt = a, given that xt−k . . . xt−1 = b. Then pba estimates the state transition probability
from state b to state b2 . . . bk−1a. It is given by [206]:

pba =





nba

nb
if nb > 0

0 otherwise
(8.6)

The Markov model for k = 3 is illustrated in Figure 8.2.
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Figure 8.2: The 3rd order Markov chain model.

Extended Gilbert Model

The Markov chain model is able to model complex error patterns, but the amount of param-
eters necessary is a major drawback. A less complex model is desired for practical use such
as the extended Gilbert model [80, 154]. It is a generalisation of the 2-state Gilbert model
and is based on the assumption that the error probability for Xt only depends on preceding
erroneous states, not on error-free ones.

As a result, only k parameters are necessary to model dependencies on up to k − 1 pre-
ceding erroneous states [154, 80]:

p01 = P (Xt = 1|Xt−1 = 0) =

∑k−1
i=1 oi

n0

p(n−1)n = P (Xt = 1|Xt−1 = 1, . . . ,Xt−n = 1) =

∑k−1
i=n oi∑k−1

i=n−1 oi

(8.7)

where 1 < n < k, n0 is the number of times the value 0 occurs in the trace, and oi is the
occurrence of a loss of the length i (sequence of 1s). Thus, from (8.7) it is clear that the
Gilbert model is a special case of the extended Gilbert model when k = 2. The extended
Gilbert model is depicted in Figure 8.3.

10 2 . . .

p01 p12 p23

p(k−1)(k−1) = 0

1 − p23

1 − p12

k-1

p(k−2)(k−1)

p00 = 1 − p01

1 − p(k−1)(k−1)

Figure 8.3: The extended Gilbert model [80].
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8.1.3 Selection of a Loss Model

The loss models discussed above differ largely in complexity and performance. The
Bernoulli model is known to not approximate well losses [206, 80]. Yajnik et al. [206] exam-
ined the accuracy of the Bernoulli model, the Gilbert model and the Markov chain model.
They found that an Markov chain model of order 2 or greater is necessary to accurately
model losses. Jiang and Schulzrinne [80] evaluate the Bernoulli model, the Gilbert model,
and the extended Gilbert model. The Markov chain model is not included in the compari-
son, since the authors consider it as too complex due to the numerous parameters. The best
results are obtained for the extended Gilbert model.
Thus, we have to decide which loss model we retain to simulate transmission errors. On

one hand, it should realistically model the occurrence of errors, but on the other hand, it
should not be too complex in terms of its parameters. Therefore, the inaccurate Bernoulli
model and the complex Markov Chain model are out of the question.
Moreover, the Gilbert model is easier to configure than the extended Gilbert model, as

it only needs two parameters. Thus, we retain the Gilbert model in order to simulate trans-
mission errors. Since parameters p and q are dependent on the network characteristics, we
chose them as p = 0.001 and q = 0.1. These values can be seen as a rough approximation of
the estimated parameters in [206].

8.1.4 Simulation of Transmission Errors

In the context of actual work we consider the MPEG-2 architecture and the worst case of
error at macroblock basis. We assume that all information for a macroblock has been lost: the
motion vector and the DC coefficients as well. The MPEG-2 architecture allows the limiting
of error propagation due to the partitioning of the macroblocks into slices. Then, if a lost
occurs the following macroblocks up to the end of the slice are lost as well [195]. As the
coding of each individual slice is independent from the others, it will not be propagated
across the slice border. This will be taken into account in our error simulation.
In case of I-frames, Huffman-type coding using codes of variable length is applied to

the quantised DCT coefficients. Hence a single bit error can cause the decoder to loose syn-
chronisation, so that it cannot determine correctly where individual code words begin and
end. That means, that after the occurrence of an error, even correctly received data cannot be
decoded until synchronisation is reestablished. In order to allow a resynchronisation of the
decoder, a certain synchronisation code is included in every slice header. As a consequence,
an error in a video stream will result in a loss of the rest of the affected slice. P-frames and
B-frames suffer twice from transmission errors: (i) errors that directly occur due loss and (ii)
error propagation due to motion compensation. Figure 8.5 illustrates the error propagation
from an erroneous I-frame to the following P-frame. A part of the macroblock pointed by
the motion vector is erroneous. Thus, the compensated region in the P-frame is erroneous as
well.
Nevertheless, in this work we consider only transmission errors in I-frames. Thus, error

simulation of each frame is independent from the others. The extension to P and B-frames is
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Figure 8.4: Slice structure of a frame [114].

in the perspective of future work.

Figure 8.5: Error propagation from an erroneous I-frame to the following P-frame.

Figure 8.6 shows the I-frames of the sequence “Tympanon” corrupted by simulated loss
using the Gilbert model. If a macroblock is lost, all the macroblocks until the end of the slice
are declared to be lost too.

8.2 Error Concealment by Image Restoration

Having simulated transmission errors, we focus now on their concealment. Hence, we
present in this section our method for error concealment in I-frames based on the super-
resolution mosaicing technique presented in Chapter 4. To this end, we review image
restoration methods for error concealment and describe then our approach to this problem.
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Figure 8.6: The simulated loss by the Gilbert model for the sequence “Tympanon”.

8.2.1 State of the Art

An common approach to error concealment is to employ image restoration algorithms in
order to approximate the lost data based on the successfully received data. This is possible
by either exploiting the temporal redundancy inherent in a video, or by estimating lost parts
of an image based on their surroundings. These approaches are referred to as temporal and
spatial error concealment, respectively. In the following, we give first a brief overview of spatial
error concealment techniques, focusing on the method proposed by Meisinger and Kaup
[111, 83] as we will compare our results with this method. Second, we outline temporal
error concealment methods.

Spatial Error Concealment

Spatial error concealment methods aim at reconstructing lost areas of an image based on the
available surrounding data. To obtain an estimation of the lost areas, different approaches
have been taken, including various interpolation techniques, methods that analyse the image
with respect to edges and try to reconstruct them, and solutions in the frequency domain.
Since spatial error concealment does not rely on temporal redundancy, i. e. preceding or
succeeding images from a sequence, it can be applied not only to video, but also to still
images. Here, only a short overview of common spatial error concealment methods is given.
A more extensive review can be found in [201].
Wang and Zhu [201] based their approach on the observation that images predominantly

contain low frequencies and the consequent assumption that pixels in a local neighbourhood
have similar values. They proposed two spatial smoothness constraints between the pixels
of a lost block and a one-pixel border, which assure maximally smooth transitions across the
block boundaries or thewhole lost block. Obviously, this algorithm is suited for monotonous
areas but falls short of reconstructing high frequencies like edges.
The technique of projection onto convex sets (POCS) has been applied to spatial error

concealment by Sun and Kwok [183]. To overcome the problem of edge reconstruction, they
use a Sobel filter to detect edges in the eight neighbouring blocks of a lost block. Then, a
projection operator is chosen according to the results, while a second projection operator re-
alises a range constraint. By alternately projecting an initial guess using these two projection
operators, a reconstruction of a lost block can be obtained in five to ten iterations.
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Unlike the previously mentioned methods, which recover a whole block at once, or par-
allel, a pixel-wise sequential recovery is proposed by Li and Orchard [100]. Once a pixel is
reconstructed, it is used for further error concealment which is performed by an orientation
adaptive interpolation. This technique allows the recovering of important image features
in both high and low frequency areas. The results are convincing, but the computational
complexity of this algorithm is high, since it has to be applied to every lost pixel separately.
Frequency selective extrapolation is a spatial error concealment technique that has been pro-

posed byMeisinger and Kaup [111, 83]. It works on a rectangular image areaL that is formed
by the union of a set of known pixelsA and a set of missing pixels B, as shown in Figure 8.7.
A is called support area while B is called missing area. Then, the basic idea is to approximate
the support area A by a weighted linear combination of basis functions. Using basis func-
tions with extrapolating properties that are defined over the entire area L, the approximation
of A provides an estimation of the missing area B at the same time. Periodic functions such
as the discrete cosine transform (DCT) or discrete Fourier transform (DFT) basis functions
are suited for this domain as they are able to extend a signal periodically.

Support area A
Missing area B

Entire area L = A∪B

Figure 8.7: An illustration of the areas used for frequency selective extrapolation [83].

The approximation of A is realised by a parametric model g that is defined by the basis
functions ϕk,l and their expansion coefficients ck,l:

g(m,n) =
∑

(k,l)∈K
ck,lϕk,l(m,n), (8.8)

where K is the set of all basis functions.
The coefficients ck,l shall be chosen in a way that theyminimise an error criterion, namely

the squared difference between the parametric model and the actual image data denoted by
f in a support area. Using a weighting function:

w(m,n) =

{
ρ(m,n) (m,n) ∈ A
0 (m,n) ∈ B

(8.9)

it is then expressed by:

EA =
∑

(m,n)∈L
w(m,n)

(
f(m,n) − g(m,n)

)2 (8.10)
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ρ can be used to emphasise certain parts of the support area A. If no further weighting is
desired, then it is set to ρ(m,n) = 1.
The commonmethod tominimise the error criterion (8.10) would be setting its derivative

with respect to the coefficients ck,l to zero. However, this method cannot be applied here, as
the number of all basis functions |K|, which is equivalent to the number of coefficients ck,l,
equals the number of pixels in the entire area, |L|, while the number of known pixels |A| is
smaller than |L|. That means we have to deal with an underdetermined problem.
Instead, Meisinger and Kaup proposed to use an iterative technique of successive ap-

proximations. With this technique, the coefficients ck,l can be computed iteratively using
two steps per iteration. First, a basis function is selected, then its corresponding coefficient
is updated, fulfilling the condition that a maximal reduction of the error criterion EA is ob-
tained with these values.
Let gν(m,n) be the parametric model and cν

k,l the coefficient at the νth iteration, then
Equation (8.8) becomes:

gν(m,n) =
∑

(k,l)∈K
cν
k,lϕk,l(m,n) . (8.11)

Initially, all coefficients c0
k,l are equal to zero and consequently the parametric model g

0(m,n)

equals zero as well. Assuming a certain basis function ϕu,v has already been chosen in an
iteration ν, we can express the resulting parametric model for iteration ν + 1 based on the
previous one and the weighted new basis function:

gν+1(m,n) = gν(m,n) + ∆cϕu,v(m,n), (8.12)

where ∆c is the desired coefficient update. It can be obtained by minimizing the new error
criterion:

EA
ν+1 =

∑

(m,n)∈L
w(m,n) (f(m,n) − gν(m,n) − ∆cϕu,v(m,n))2 (8.13)

with respect to∆c.
For the sake of simplicity, the term w(m,n)(f(m,n) − gν(m,n)) is substituted by a new

variable rν
w(m,n) called the weighted residual error. This yields the following equation for

∆c:

∆c =

∑
(m,n)∈L rν

w(m,n)ϕu,v(m,n)
∑

(m,n)∈L w(m,n)ϕu,v(m,n)2
(8.14)

At the end of this step, the coefficient update∆c calculated according to this equation is
applied to the coefficient corresponding to the chosen basis function:

cν+1
u,v = cν

u,v + ∆c (8.15)

The question of which basis function ϕu,v is chosen in an iteration ν also depends on the
error criterion. In order to minimise it, we calculate the difference∆EAν = EAν −EAν+1 and
maximise it. Taking into account that the residual error rν

w is orthogonal to the basis function
ϕu,v to be selected, we obtain:

∆EA
ν = ∆c2

∑

(m,n)∈L
w(m,n)

(
ϕu,v(m,n)

)2
. (8.16)
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Using (8.14), this can be extended to:

∆EAν =

(∑
(m,n)∈L rν

w(m,n)ϕu,v(m,n)
)2

∑
(m,n)∈L w(m,n)

(
ϕu,v(m,n)

)2 . (8.17)

Finally, the index of the basis function is selected by:

(u, v) = argmax(u,v)∆EA
ν . (8.18)

The algorithm terminates when the maximal reduction of the error criterion∆EAν drops
below a certain threshold∆Emin, or after a fixed number of iterations νmax.
So far, the algorithm has been described generally for any class of basis functions with

extrapolating properties. According to Meisinger and Kaup, 2D-DFT basis functions are a
good choice for signal extrapolation in images, as they not only contain horizontal and ver-
tical structures like the 2D-DCT basis functions, but also diagonal ones. Therefore, 2D-DFT
basis functions are chosen for the actual application of the frequency selective extrapolation
principle to the domain of error concealment. The special properties of the 2D-DFT basis
function allow for and require some specialisation of the algorithm which are discussed in
this section.
Using the 2D-DFT basis functions ϕk,l(m,n) = ei2π/Mmkei2π/Nnl withM being the height

and N the width of the area L, the parametric model is rewritten as:

gν(m,n) =
1

2MN

∑

(k,l)∈K

(
cν
k,lϕk,l(m,n) + cν

M−k,N−lϕM−k,N−l(m,n)
)

(8.19)

and the coefficients ck,l become DFT coefficients.
This modification assures that the parametric model provides only real values by utilis-

ing a conjugate complex symmetry that the coefficients fulfil:

ck,l = c̄M−k,N−l (8.20)

ϕk,l(m,n) = ϕ̄M−k,N−l(m,n) (8.21)

Figure 8.8 illustrates the conjugate complex symmetry as well as a reduced search area for
the selection of the basis functions. It is sufficient to choose basis functions from the tagged
area only, because all other basis functions have symmetric counterparts in this area and will
be updated together with them.
Consequently, the error criterion from iteration ν to iteration ν + 1 changes to:

EA
ν+1 =

∑

(m,n)∈L
w(m,n)

(
f(m,n) − gν(m,n) (8.22)

− 1

2MN

(
∆cϕu,v(m,n) + ∆c̄ϕM−u,N−v(m,n)

))2
.
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0
N
2

N − 1

M − 1

M
2

0

cM−k,N−l

ck,l

Figure 8.8: Conjugate complex symmetry and reduced search area (marked in gray) [83].

Taking its derivative with respect to∆c and setting it to zero yields the following:

∆c
∑

(m,n)∈L
w(m,n)ϕu,v(m,n)ϕM−u,N−v(m,n)

+∆c̄
∑

(m,n)∈L
w(m,n)ϕM−u,N−v(m,n)ϕM−u,N−v(m,n) (8.23)

= 2MN
∑

(m,n)∈L
rν
w(m,n)ϕM−u,N−v(m,n) .

∆c is then obtained by solving the above, and the coefficient update is adapted to the real-
valued parametric model as well:

cν+1
u,v = cν

u,v + ∆c (8.24)

cν+1
M−u,N−v = cν

M−u,N−v + ∆c̄ (8.25)

The reduction of the error criterion can be calculated for the special case of 2D-DFT basis
functions by:

∆EA
ν =

1

(2MN)2

(
|∆c|2

∑

(m,n)∈L
w(m,n)ϕu,v(m,n)ϕ̄u,v(m,n) (8.26)

+ℜ{∆c2
∑

(m,n)∈L
w(m,n)

(
ϕu,v(m,n)

)2}
)
,

where the operator ℜ takes the real part of the complex term in braces.
The computation of (8.23) and (8.26) would involve several Fourier transforms and hence

be computationally expansive. Therefore, Meisinger and Kaup also propose a frequency
domain implementation based on the fact that a multiplication of the weighting function
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with the complex exponential ϕu,v is equivalent to a shift of its DFT by u and v:
∑

(m,n)∈L
w(m,n)ϕu,v(m,n)ϕ̄k,l(m,n) = W(k − u, l − v) . (8.27)

Using this equation, (8.23) can be expressed in the frequency domain as:

∆cW(0, 0) + ∆c̄W(2u, 2v) = 2MNR(ν)
w (u, v), (8.28)

yielding a frequency domain formula for the coefficient update when solved for ∆c:

∆c =





MN R
(ν)
w (u,v)
W(0,0) , (u, v) ∈ M

2MN R
(ν)
w (u,v)W(0,0)−R̄

(ν)
w (u,v)W(2u,2v)

W(0,0)2−|W(2u,2v)|2 , otherwise.
(8.29)

∆EAν can also be expressed in the frequency domain:

∆EAν =





2R
(ν)
w (k,l)2

W(0,0) , (k, l) ∈ M

2R
(ν)
w (k,l)2W(0,0)−ℜ{R(ν)

w (k,l)2W̄(2k,2l)}
W(0,0)2−|W(2k,2l)|2 , otherwise.

(8.30)

The case differentiation is necessary due to the conjugate complex symmetry. The setM
contains the four coefficients that are symmetric to themselves:

M = ((0, 0), (0,
N

2
), (

M

2
, 0), (

M

2
,
N

2
)) (8.31)

To complete the frequency domain implementation, the change of the residual error rw
from iteration ν to iteration ν + 1 is computed in the frequency domain by:

R(ν+1)
w (k, l) = R(ν)

w (k, l) − 1

2MN

(
∆cW(k − u, l − v) + ∆c̄W(k + u, l + v)

)
(8.32)

We use this frequency selective extrapolation method in order to evaluate our results.
The algorithm is applied individually to every lost macroblock of an image, line by line from
the top left to the bottom right. At a time, a lost macroblock is considered to be the missing
area B, while a 13 pixel wide border in all directions is used as support areaA. The resulting
entire area L is a square window of 42 × 42 pixels centered around the lost macroblock.
The parameters were chosen according to the fixed parameter set proposed by Meisinger

and Kaup in [111]. The weighting function (8.9) is realised by an isotropic model:

ρ(m,n) = ρ̂

q

(m−M
2

)2+(n−N
2

)2 (8.33)

with ρ̂ = 0.74. If the support area contains unknown regions of the image, which happens
in case of consecutive loss, these regions are excluded from the computation by setting the
corresponding regions of the weighting function to zero. Already concealed macroblocks
are included in the concealment of following macroblocks, but further weighted by 0.1. The
algorithm stops after νmax = 11 iterations or when the error decrease drops below ∆Emin =

15.
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For colour images, Meisinger and Kaup recommend working in the YCbCr colour space,
applying the algorithm to the luminance and the two chrominance channels individually.
Since we used RGB images extracted from the test sequences for our experiments, they had
to be converted back into the YCbCr colour space before the error concealment algorithm
could be applied to every channel.
Figure 8.9 shows an example of this method. Figure 8.9(b) shows the frame with the

simulated loss and Figure 8.9(c) shows the frame concealed by the frequency selective ex-
trapolation of Meisinger and Kaup.

(a) Original (b) Corrupted

(c) Concealed

Figure 8.9: Example of the frequency selective restoration [111, 83] for a frame of the se-
quence “Hiragasy”.

Temporal Error Concealment

Temporal error concealment exploits the temporal redundancies within an image sequence.
More precisely, it tries to find information missing image data in the preceding or succeeding
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frames. So basically, temporal error concealment of a block in an image means to reconstruct
a motion vector that points to the desired area in a reference image.
The simplest solution is to assume a motion vector of 0, i. e. replacing lost image data by

the values found at the same place in the previous image. While this approach works out for
sequences with very little motion, it fails in all other cases.
When working on MPEG video images, P- and B-frames already contain motion vectors.

For amacroblock whosemotion vector is lost, it can be estimated by taking the average or the
median of the available surrounding macroblocks. This method usually provides acceptable
estimations, however, it can only be applied whenmotion vectors are available for an image.
Thus, it cannot be directly applied to I-frames as they do not contain motion vectors.
A more elaborate method is the decoder motion-vector estimation introduced by Zhang

et al. in [211]. Since it is intended to be used for MPEG-2 coded video, it is developed to
conceal 16 × 16 pixel macroblock losses, but the concept could also be applied to errors of
different characteristics. Themain idea of the algorithm is to take a 2 to 8 pixel border around
the lost macroblock and perform a search in the previous image for the best match to this
border, similar to the motion compensation technique used in MPEG-2 coding. The area
surrounded by this best match in the previous image is then taken as an estimation of the
lost macroblock. Decoder motion-vector estimation outperforms the previous methods and
can be computed efficiently when narrowing down the search area.
Another interesting temporal error concealment technique has been proposed by Suh

and Ho [182]. They suggest using optical flow fields in order to estimate motion vectors.
In order to recover the motion vector of the lost block, optical flow fields are computed for
correctly decoded neighbouring macroblocks denoted as OFR in Figure 8.10. Then, taking
the average of the optical flow vectors within the macroblock that is in touch with the lost
macroblock (denoted as MVEB in Figure 8.10) yields the motion vector of the lost block.

Figure 8.10: Regions of optical flow estimation for error concealment [182].

Zhao [213] already considered super-resolution for error concealment. His approach con-
sists in computing flow fields from neighbouring frames to the damaged frame and per-
forming image interpolation to repair the damaged frame. Afterwards, a super-resolution
algorithm is applied to the repaired frame in order to improve its resolution. Nevertheless,
considering super-resolution for error concealment as well, our approach differs from that
of Zhao. We present it below.
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8.2.2 Error Concealment using Super-Resolution Mosaicing

We see the interest of super-resolutionmosaicing for temporal error concealment as it allows
the recovery of meaningful information even if multiple errors occur in successive frames.
In addition, it seems more interesting than spatial error concealment as real information can
be recovered from original frames (in absence of occlusions and a scene change).
Here, we only consider the error concealment of I-frames. However, this work can be

extended to P and B-frames taking into account the error propagation due to motion com-
pensation. Our approach consists in progressively constructing a mosaic during the decod-
ing of a shot. Then, when a transmission error occurs in the current I-frame, the missing
information can be concealed thanks to the constructed mosaic. Lost areas can be replaced
with the corresponding regions in the mosaic.
We consider two different approaches for the mosaic construction. The first approach is

to construct the mosaic from decoded full-resolution I-frames, whereas the second consists
in using only partially decoded I-frames, i.e. DC images, and to increase the resolution by a
factor ς = 8. The resulting mosaic will have the same resolution than the video frames. To
examine the influence of super-resolution, mosaics were created both with 4 iterations of the
super-resolution algorithm of Chapter 4 and without applying any super-resolution at all.
We assume that transmission errors have already been detected. A method for this can

be found in [91]. Thus, we mask out the errors, so that they do not appear in the mosaic.
As long as the loss rate is not too high and the errors are not distributed unfavourable, we
still obtain an almost complete mosaic, as most of the errors in one image are overlapped by
intact parts of the other images.
Hence, to exclude errors from the mosaicing process, we introduce a mask L(k) for each

low-resolution image G(k):

L(x, y) =

{
0 if (x, y) is lost in G(k)

1 if (x, y) is available
(8.34)

Then, the initial guess of the super-resolution mosaic F 0 (4.58) can be computed as:

F 0 = µ(K)

K∑

k=1

T(k).S.L(k).G(k) (8.35)

where G(k) are the observed low-resolution images, S the upsampling operator by a factor
ς , T(k) the geometric transformation from kth low-resolution image to the super-resolution
mosaic, and µ(p,K) = 1

|p| with |p| as the number of available pixels at position p.
The simulation process (4.56) of the low-resolution images remains unchanged as it only

depends on the current guess of the super-resolution mosaic F i:

Gi(k) = S−1.B(k) ∗
[
T−1(k).F i(k)

]
(8.36)

where Gi(k) are the simulated low-resolution images, T−1(k) the geometric transformation
from the super-resolution mosaic to the kth low-resolution image, B(k) is the PSF of the kth
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low-resolution image, ∗ is the convolution operator and S−1 the downsampling operator
inverse to S.
However, the masks L(k) have to be introduced in the backprojection process (4.57):

F i+1 = F i + µ(K)

K∑

k=1

T(k).R(k) ∗
[
S.L(k)

[
G(k) − Gi(k)

]]
(8.37)

where R(k) is the restoration filter defined by B(k).
Note, that contrary to (4.57) we do not use the regularisation operator A (see Sec-

tion 4.2.5) as it was developed for highly undersampled image such as DC images, but
we apply here the super-resolution method to full-resolution and low-resolution frames.
Furthermore, in case of decoded full-resolution I-frames ς = 1 and in case of DC images of
I-frames ς = 8. The computation of the geometric transformations T(k) was presented in
Section 3.2.2. In our experiments, we used the anisotropic Gaussian blur model for the PSF
B(k) and the pseudo-inverse restoration filter for R(k) (see Section 4.2.3).
Contrary to the mosaicing scheme of Chapter 4, we do not perform illumination correc-

tion of the input sequence. Since the mosaic is here constructed progressively this would
mean that illumination correction can only be applied recursively with respect to the previ-
ously decoded I-frame. We showed in Section 3.2.4 that this accumulates estimation errors
so that the result is not satisfying. Moreover, it is preferable in this application to correct
illumination with respect to the frame to be concealed. Thus, a possibility is to adjust the
illumination of the mosaic with respect to that frame. However, a more efficient and less
costly approach is to correct illumination of the patches to be inserted in the frame with
respect to the neighbourhood. This is in the perspective of future work.
Finally, we obtain a concealed image Ḡ(k) by replacing lost regions of G(k) by the corre-

sponding areas in the mosaic:

Ḡ(k) =

{
T−1(k).F where G(k) was erroneous

G(k) otherwise
(8.38)

Using the above modifications of the super-resolution mosaicing method of Chapter 4,
we can produce a mosaic from partially erroneous low-resolution images as illustrated in
Figure 8.11. When the camera is moving fast and a loss appears in the new regions entering
the frame, they cannot be concealed as they are only present in the current frame. Therefore,
we introduce a delay of one I-frame assuming that the next I-frame contains the desired
information. For the sake of computational cost, we did not use the whole shot in our ex-
periments for the mosaic construction. (We showed in Section 4.3.2 that mosaic construction
using full-resolution frames is very costly.) In fact, we used two I-frames in the past and
one I-frame in the future in order to conceal the current I-frame. Hence, we chose the frame
to be concealed as the reference frame for mosaic construction. In this case the geometric
transformation in (8.38) reduces to an identity transform. Another advantage of this choice
of reference frame is that the mosaic is at the same resolution as the frame to be concealed.
This approach is similar to the dynamic mosaicing approach we presented in Section 3.1.
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Figure 8.11: A mosaic constructed of error masks. The dark red frame marks the reference
image.

8.3 Results

Our first experiment consists in using an artificial pattern of isolated block loss as shown
in Figure 8.12. This pattern is useful to study the performance of the error concealment
techniques under “optimal”, isolated loss conditions. Thus, we applied the isolated loss
pattern only to one frame of the sequence “Chancre1” (see Figure 3.21(b)) which has to be
concealed (the reference frame) where as the other frames were intact.

Figure 8.12: The isolated loss pattern.

For the second experiment, we simulated error patterns for the sequences “Chancre1”
and “Tympanon” (Figure 3.27(a)). The corrupted sequences are shown in Figures 8.13 and
8.6, respectively. These error patterns are randomly generated using the error simulation
algorithm presented in Section 8.1 using the Gilbert model with p = 0.001 and q = 0.1.
As an objective measure of concealment quality, we computed the traditional peak signal

to noise ration (PSNR). It is given by [100]:

PSNR = 10 log10
m2

MSE
(8.39)
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Figure 8.13: The simulated loss by the Gilbert model for the sequence “Chancre1”.

where m is the maximal pixel value (usually 255). The MSE (3.46) is computed only on
concealed pixels between the original image I(k) and the concealed image Ī(k).

In the following, we evaluate our results in terms of PSNR and visual quality and
compare them with the frequency selective extrapolation method of Meisinger and Kaup
[111, 83] (see Section 8.2.1).

Figure 8.14 shows a detail of frame 6782 of the sequence “Chancre1”. The isolated loss
pattern (Figure 8.12) was applied to this frame, then the errors were concealed using the
different techniques discussed above.

The concealed blocks are heavily blurred for the super-resolution mosaicing using DC
images (Figure 8.14(f)) due to the high zoom factor. The four iterations of super-resolution do
not improve the image quality significantly (Figure 8.14(e)). That is because super-resolution
as used in this work becomes an ill-posed problem for high zoom factors. Too many pixels
in the super-resolution image have to be reconstructed using too little information available
in the low-resolution sequence. Thus, high frequencies can not be reconstructed. This result
is not satisfying and confirms the assumption that current super-resolution algorithms only
perform well for relatively small zoom factors. For example, Lin and Shum [101] consider
ς = 1.6 as the fundamental limit for practical situations, or ς = 2.5 as an optimistic attempt
under beneficial noise conditions. Therefore, the initial DC resolution is inappropriate for
this task.

On the other hand, super-resolution mosaicing at full resolution produces good results.
Generally, the structure of the content of the lost blocks is reconstructed correctly, already
without any iteration of super-resolution (Figure 8.14(d)). These reconstructions are slightly
blurred, though, because several images are averaged in the mosaicing process. Applying
some iterations of super-resolution solves the problem (Figure 8.14(c)).
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(a) Erroneous

(b) Frequency Selective Extrapolation, PSNR=19.8

(c) Super-Resolution Mosaicing (full resolution, 4 iterations), PSNR=17.5

(d) Super-Resolution Mosaicing (full resolution, 0 iterations), PSNR=17.6

(e) Super-Resolution Mosaicing (DC resolution, 4 iterations), PSNR=16.9

(f) Super-Resolution Mosaicing (DC resolution, 0 iterations), PSNR=16.9

(g) Original

Figure 8.14: A detail of frame 6782 of the Chancre sequence.
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However, there is another obvious problem, concerning the lost blocks in the area of the
right trunk for example (red ellipses in Figures 8.14(c) and 8.14(d)). Due to differences in
luminance between the images used to construct the mosaic, some of the concealed blocks
are brighter than their surroundings. A possible solution for this issue consists in applying
an illumination correction e.g. that one we proposed in Section 3.2.4.
The detail that is concealed using frequency selective extrapolation appears more homo-

geneous to the viewer, as all concealed blocks are of appropriate brightness. Therefore, the
PSNR value is better than for super-resolution mosaicing, but taking a closer look we notice
some blocks containing artefacts. Especially blocks in monotonous regions adjacent to an
object suffer from these artefacts, as they appear when higher frequencies caused by edges
are wrongly extrapolated into monotonous regions (red ellipse in Figure 8.14(b)) .
Having examined optimal, isolated loss conditions, we consider now “real” losses as we

simulated for the sequences “Chancre1” (Figure 8.13) and “Tympanon” (Figure 8.6). The
PSNR values for the concealed I-frames of both sequences are shown in Figures 8.15 and
8.16. As expected the values for error concealment using super-resolution mosaicing with
DC images are poor as high frequencies are not reconstructed. They are below 10dB in most
cases.
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Frequency Selective Extrapolation
Super-Resolution Mosaicing (full resolution, 4 iterations)
Super-Resolution Mosaicing (full resolution, 0 iterations)
Super-Resolution Mosaicing (DC resolution, 4 iterations)
Super-Resolution Mosaicing (DC resolution, 0 iterations)

Figure 8.15: PSNR values for the sequence “Tympanon”.
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Super-resolution mosaicing at full resolution however gives good results in terms of
PSNR. For both sequences, “Tympanon” and “Chancre1”, the average PSNR value is higher
than 20 dB which is better than the frequency selective extrapolation (16.5 dB and 19 dB re-
spectively).
Surprisingly, the PSNR values for mosaicing with 4 iterations of super-resolution are

slightly lower than for mosaicing without any iteration of super-resolution. However, PSNR
values do not always correspond to the quality as perceived by a human viewer [150]. Thus,
we will give actual examples below and analyse them visually.
In contrast to the optimal conditions from the previous example, the situation changes

when it comes to consecutive loss as seen in the detail from the Tympanon sequence shown
in Figure 8.17. Less data is available for the spatial error concealment, as the predecessor
and the successor of a macroblock have also been lost. As the error concealment is applied
macroblock by macroblock anyways, the individual macroblocks are clearly visible within
the two lost rows.
Using super-resolution mosaicing, the reconstructions of the rows are of one piece, thus

no explicit blocking artefacts are visible. The result is better, as well in the high frequency
area around the eyes and in the area of the hand.
When two or more consecutive rows of macroblocks are lost, the results of frequency

selective extrapolation are even worse, as seen in Figure 8.18. Evidently, the reason for this
is that for the concealment of a lost block only three intact and one concealed macroblock are
available. Better results might be achieved by applying the algorithm on the two lost rows
together.
The version using super-resolution mosaicing shows a more convincing result, but re-

veals another problem of the algorithm: The concealed region contains a good reconstruc-
tion, but is slightly displaced. Most likely, this is caused by an inaccurate estimation of the
motion between the images used for mosaicing. In this case the method for motion correc-
tion or motion reestimation we presented in Chapter 3 can be applied.

8.4 Conclusion

We presented in this chapter the application of our super-resolution mosaicing method to
error concealment in I-frames. Therefore, we surveyed classical loss models for transmission
errors. We consider the Gilbert model as sufficient to model transmissions error of MPEG-2
compressed video and simulate them at macroblock basis.
Based on the super-resolutionmethod of Chapter 4, we construct a mosaic from partially

erroneous I-frames. Thanks to temporal redundancy of several frames, the mosaic is likely
to contain the lost information of the current frame. Thus, lost areas can be replaced with
the corresponding regions in the mosaic.
First results are promising. For both test sequences using the super-resolution mosaicing

approach we obtain an average PSNR higher than 20 dB for the concealed regions. These
values are higher than the average PSNR values we obtain for the same sequences using fre-
quency selective extrapolation. Also, in our visual comparison in case of a consecutive loss of
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Figure 8.16: PSNR values for the sequence “Chancre1”.



(a) Erroneous (b) Frequency Selective Extrapolation

(c) Super-Resolution Mosaicing (full resolution, 4 iter-
ations)

(d) Original

Figure 8.17: A detail of frame 2567 of the sequence “Tympanon”.

macroblock the super-resolution mosaicing approach gives better results than frequency se-
lective error concealment. The results are less blocky, and adapt better to the high-frequency
pattern of the image.
Drawbacks of our method are that when motion is not accurately estimated the inserted

patch may be blurred and slightly displaced. A solution is to correct motion by the method
presented in Chapter 3.
Perspectives are numerous. First of all, this error concealment approach for I-frames

can be extended to P and B-frames. Another perspective is the illumination correction of
inserted patches with respect to the neighbourhood in the concealed frame, so that seams
disappear. This can be achieved by the illumination correction method we presented in
Chapter 3. Finally, the extension of this method to moving objects can be considered. To this
end, themoving objects have to be detected e.g. using themethodwe presented in Chapter 3
and super-resolutionmethod of Chapter 5 allowing the processing of objects can be adopted.
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(a) Erroneous (b) Frequency Selective Extrapolation

(c) Super-Resolution Mosaicing (full resolution, 4 iter-
ations)

(d) Original

Figure 8.18: A detail of frame 6692 of the sequence “Chancre1”.
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Chapter 9
Conclusion and Perspectives

In this PhD thesis, we proposed a complete framework for the construction of mosaics from
MPEG-1/2 compressed video. With regard to the visualisation of video, we proposed sum-
marising each shot by a background mosaic where the most representative objects of the
shot are inserted.
In the last decade significant research work has been done in video analysis for mosaic

construction. This can be explained by the fact that they allow for a quick understanding of
a video scene content via interpreting a static image which gives an overview of the content
of a video segment. Mosaic representations of video segments shot by the same camera are a
part of theMPEG-4 video coding standard as they allow an efficient encoding of the scene by
decomposing it into foreground objects and the background mosaic. They are also defined
as a descriptor of a shot in the MPEG-7 standard which can be used for video retrieval.
Mosaicing methods proposed in literature typically perform on raw video, but today an

enormous quantity of video content is already available in compressed form. Up to now
the MPEG-2 standard is the most frequent encoding for video available in archives or com-
ing from broadcast channels. Applying raw video mosaicing methods to compressed video
requires its full decoding. Furthermore, aligning and warping frames in the mosaicing pro-
cess requires the estimation of motion which is a costly operation. Thus, this is performed
after decoding, while motion information was already available in the compressed stream.
Thus, the first motivation of our workwas to reusemotion information from the compressed
stream such as P-frames motion vectors in order to reduce the computational work load. Our
second motivation was that mosaics created from raw or decoded video are too large to dis-
play on the screen without scrolling or downsampling. Thus, they are not appropriate for
video summarisation. To this end, we proposed creating mosaics of a lower resolution using
DC images of I-frames.
For the mosaic construction several steps can be considered. We proposed in this thesis
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a complete framework for mosaic construction from the compressed stream. We gave solutions to
various problems which can be encountered in real video: the inaccuracy of motion vectors
in the compressed stream, illumination changes, the presence of moving objects and diffi-
culties in their segmentation. In addition, computational times are interesting, the method
performs in about 3 times decoding time.

Taking into account the noisiness, sparseness, and inaccuracy of P-frame motion vectors,
we proposed an appropriate scheme to align the DC images of I-frames. Global camera mo-
tion is estimated for P-frames using an robust estimator. However, this is not sufficient to
obtain a complete motion trajectory in the sequence of DC images. Therefore, in case of I-
frames we proposed extrapolating motion parameters from previous P-frames. Moreover, it
happens that encoded motion vectors are inaccurate. We detected the concerned P-frames
based on the DC image of the encoded motion estimation error and proposed a method, re-
spectively, to correct the erroneous motion model or to reestimate it. To our knowledge such
a thorough study of motion from compressed streams with its refinement has not been proposed
in literature.

Another aspect of our mosaicing method is the removal of moving objects. We presented
a method to detect moving objects in the sequence of DC images of I-frames. This allowed
not only the removal of objects to create a background mosaic without artefacts, but also the
posterior insertion of representative objects into the mosaic in order to achieved a complete
description of the sequence. Additionally, we took into account the possibility that moving
objects are not accurately segmented and proposed a solution.

Furthermore, we considered the harmonisation of illumination conditions of the input
sequence in order to avoid seems in the mosaic. Therefore, we proposed a robust method
to correct global illumination changes in DC images sequence. We obtain robustness by ex-
cluding moving objects, edges and textures from the computation, and rejecting outliers. We
showed that the estimation errors can occur yet as the illumination model may be violated
by noise. In order to limit error propagation, we proposed correcting illumination in the
sequence hierarchically.

Nevertheless, the achieved mosaics are of very low resolution and are degraded by blur
and aliasing artefacts due to the nature of DC images. To visualise the scene content the user
would prefer a higher resolution and a better visual quality. Therefore, we presented two
super-resolution methods in this thesis in order to enhance the resolution and to improve the
visual quality of the mosaics.

The first super-resolution method is based on iterative backprojections performing
restoration in frequency domain. We presented several blur models in order to approximate
the unknown blur in DC images: isotropic Gaussian blur, anisotropic Gaussian blur and lin-
ear motion blur. Furthermore, we developed an efficientmethod to estimate the blur parameters
in motion direction and an appropriate restoration scheme. We tested the blur models in com-
bination with the pseudo-inverse filter and the Wiener filter. We obtained the best results for
the linear motion blur in combination with the pseudo-inverse filter.

Due to the strong aliasing of DC images, it may be not possible to exactly superimpose
DC images on textures and edges even if motion is estimated accurately. This causes arte-
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facts in the super-resolution image which amplify along the iteration of the super-resolution
algorithm. For this reason, we incorporated a regularisation operator in super-resolution algo-
rithm which penalises edges and textures in the backprojection process.

Nevertheless, this method has some drawbacks. Due to restoration in frequency domain
only global blur can be restored, but in real video more complex situations are encountered
where local blurs appear e.g. due tomoving objects. Thus, this method does not allow for the
processing moving objects. Additionally, we obtain an important increase in computational
time due to padding and successive Fourier transforms.

The objective of the second super-resolution method was to address the shortcomings
of the first super-resolution method. Thus, restoration was realised in spatial domain al-
lowing the restoration of local blurs. The motion of objects can be very complex and in case
of DC images the objects are typically represented by only few pixels. Hence, its it very
difficult to estimate the motion of objects and to superimpose them accurately enough for
super-resolution. For this reason, we proposed super-resolving the background and restor-
ing moving objects by single image restoration. We tested the different blur model in our
restoration scheme. We obtained the best results for the anisotropic Gaussian blur whereas
the results for the isotropic Gaussian blur were quite close. Here, the linear motion blur PSF
does not seem an appropriate blur model due to the discretisation of the convolution kernel.

We compared both super-resolutionmethods using video sequenceswithout moving ob-
jects. The super-resolution method based in frequency domain restoration performs slightly
better in terms of error measures than the super-resolution method based on spatial do-
main restoration. Nevertheless, much less artefacts appear in the mosaics achieved by the
super-resolution method based on spatial domain restoration. Additionally, we obtain an
important gain in computational time as convolution is performed at low resolution and
successive forward and inverse Fourier transforms are omitted.

In this thesis, we were interested in additional applications of our mosaicing method
namely shot boundary detection, camera motion characterisation, and error concealment.

We used several components of the proposed mosaicing method for related indexing
tasks: the shot boundary detection on I-frames and the characterisation of dominant cam-
era motion. In the first case, we used the robust motion estimation from the compressed
stream and the extrapolation of motion for I-frames, in order to warp one I-frame to another
along the time and measure their similarity. Then, we defined a similarity measure based
on the regularisation operator of our restoration approach. The latter allowed the efficient
comparison in case of textured frames. In the second case, we completed the robust motion
estimation by a temporal filtering and a probabilistic decision-making framework.

We presented the application of our super-resolutionmosaicing method to error conceal-
ment in I-frames. Therefore, we surveyed classical loss models for transmission errors. We
considered the Gilbert model as sufficient to model transmissions error of MPEG-2 com-
pressed video and simulated them at macroblock basis. Based on the super-resolution mo-
saicing method, mosaics were constructed of partially erroneous I-frames. Thanks to tempo-
ral redundancy of several frames, the mosaic is likely to contain the lost information of the
current frame. Thus, lost areas were replaced by the corresponding regions in the mosaic.
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We compared our results with the frequency selective extrapolation method. In our ex-
periments, we obtained an average PSNR higher than 20 dB for the concealed regions which
is higher than the average value obtained by the frequency selective extrapolation method
[111, 83]. Moreover, in case of a consecutive loss of macroblocks the super-resolution mo-
saicing approach gives visually better results than the frequency selective extrapolation. The
results is less blocky, and adapts better to the high-frequency pattern of the image.
We recently started further experiences on biomedical images. We applied our super-

resolution methods to image sequences acquired by Magnetic Resonance Imaging (MRI) in
order to improve the in-plane resolution and restore blur due to organ motions, breathing
and blood supply. First results are promising and show perspectives for further research.
We assumed for the mosaicing method that the choice of the representative objects, i.e.

the best segmented objects, were already selected. Thus, a study of automatic selection of
best segmented objects will be the next step in order to complete the mosaicing method.
High definition (HD) video is the new generation broadcasting system and is getting

more and more popular. In our experiments, we observed that when encoding an HD video
sequence in MPEG-2, motion information can not be recovered as the motion estimation
of MPEG-2 encoder fails. Hence, new compression standards such as H.264/MPEG-4 AVC
have been developed with an improved and more reliable motion estimation. We briefly
outlined in Appendix B later MPEG standards and showed that if appropriate partially de-
coding is realised the presented methods can extended to them. Additionally, in HD video
still the problem of motion blur appears due to nonzero aperture time. Thus, a further per-
spective of this work is the extension of the presented super-resolution mosaicing method
to later MPEG standards such as H.264/MPEG-4 AVC and H.264/MPEG-4 SVC in order to
restore motion blurs.
We presented error concealment as an additional application of our super-resolutionmo-

saicing method without being exhaustive in the subject. Thus, a deeper research in this area
and an extension of the method could be in the perspective of future work. An obvious
extension would be taking into account P and B-frames or moving objects.
Anyhow, further application areas of the presentedmethod can be considered such as the

transmission of video via low bit-rate networks. Only low-resolution frames may be trans-
mitted which are super-resolved at the receiver side in order to recover the full resolution of
the video. Another application may be the restoration/resolution enhancement of regions
of interest and their tracking in video surveillance.
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Appendix A
Spatial Domain Restoration

Here, we present the mathematical derivation of the spatial domain restoration methods
presented in Chapter 5. Both methods are derived from the deconvolution method of Van
Cittert [31] and Jansson [78].
They model the blurred image as:

F̃ (γ) =

+∞∫

−∞

F (x)B(γ − x)dx (A.1)

where F̃ is the blurred image, F the unknown optimal image and B is the PSF.
Then by approximating successively the desired optimal image as:

F (γ) = F̃ (γ) + ∆(γ) (A.2)

the following iterative scheme results:

F k(γ) = F k−1(γ) +


F (y) −

+∞∫

−∞

F k−1(x)B(γ − x)dx


 (A.3)

We showed the derivation of this iterative scheme in Chapter 5.
In the following, we first derive the single image restoration method (5.31) from the

deconvolution method of Van Cittert and Jansson. Then, we derive the super-resolution
method (5.32) from our single image restoration method. Finally, we derive a relationship
between the convolution of a low-resolution image with a low-resolution PSF and the down-
sampled blurred super-resolution image.



A.1 Derivation of the Single Image Restoration Algorithmwith In-
crease of Resolution

In this section, we demonstrate the derivation of the spatial domain restoration method
(5.31) allowing to increase resolution from the successive approximations (A.2). Therefore,
we consider an extended image formation model relating a super-resolution image with a
low-resolution image by incorporating motion and downsampling:
Super-resolution image→ motion→ blur→ downsampling→ low-resolution image
Hence, we can rewrite Equations (A.1) and (A.2) as:

G(y) = S−1

+∞∫

−∞

(T.F (x)) B(γ − x)dx (A.4)

F (γ) = T−1 (S.G(y) + ∆(γ)) (A.5)

where T is the geometrical transformation from the desired super-resolution image F to
the observed low-resolution image G, T−1 is the inverse geometric transformation, S is the
upsampling operator, S−1 is the downsampling operator, and B the PSF.
Inserting (A.5) in (A.4):

G(y) = S−1

+∞∫

−∞

(
T
(
T−1 (S.G(y) + ∆(γ))

))
B(γ − x)dx

= S−1

+∞∫

−∞

(S.G(y) + ∆(x)) B(γ − x)dx

= S−1

+∞∫

−∞

(S.G(y)) B(γ − x)dx + S−1

+∞∫

−∞

∆(x)B(γ − x)dx (A.6)

Denoting:

G1(y) = S−1

+∞∫

−∞

(S.G(x)) B(γ − x)dx (A.7)

and:

∆(γ) =

+∞∫

−∞

∆(x)B(γ − x)dx (A.8)

Then, (A.6) becomes:

G(y) = G1(y) + S−1.∆(γ)

⇔ ∆(γ) = S
(
G(y) − G1(y)

)
(A.9)



Inserting (A.9) in (A.5):

F (γ) = T−1
(
S.G(y) + S

(
G(y) − G1(y)

))

= T−1.S.G(y) + T−1.S
(
G(y) − G1(y)

)
(A.10)

Assuming that:

F 0(γ) = T−1.S.G(y) (A.11)

and:

F 0(γ) = T−1.S.G(y) | T

⇔ T.F 0(γ) = S.G(y) (A.12)

Inserting in (A.7):

G1(y) = S−1

+∞∫

−∞

(
T.F 0(x)

)
B(γ − x)dx (A.13)

Finally, we derive from (A.10):

F k(γ) = F k−1(γ) + T−1.S


G(y) − S−1

+∞∫

−∞

(
T.F k−1(x)

)
B(γ − x)dx


 (A.14)

A.2 Derivation of the Super-Resolution Algorithm with Spatial
Domain Restoration

In this section, we demonstrate the derivation of the super-resolution method (5.32) from
the restoration method (A.14). Thus, we consider now a sequence of low-resolution images
Gi, 1 ≤ i ≤ K and we rewite (A.14) as:

F k
i (γ) = F k−1

i (γ) + T−1
i .S


Gi(y) − S−1

+∞∫

−∞

(
Ti.F

k−1
i (x)

)
Bi(γ − x)dx


 (A.15)

where Fi is the ith super-resolution image, Gi is the ith low-resolution image, Ti is the ge-
ometrical transformation from the Fi to Gi, T−1

i is the inverse geometric transformation, S
is the upsampling operator, S−1 is the downsampling operator, and Bi the PSF of ith low-
resolution image.
For the construction of the mosaicM , we suppose:

M =
1

K

K∑

j=1

Fj (A.16)



Thus (A.15) becomes:

1

K

K∑

j=1

F k
j (γ) =

1

K

K∑

j=1


F k−1

j (γ) + T−1
j .S


Gj(y) − S−1

+∞∫

−∞

(
Tj.F

k−1
j (x)

)
Bj(γ − x)dx






Mk(γ) = Mk−1(γ) +
1

K

K∑

j=1

T−1
j .S


Gj(y) − S−1

+∞∫

−∞

(
Tj.F

k−1
j (x)

)
Bj(γ − x)dx




(A.17)

Assuming that Fi is a cut-out ofM , then TiFi = TiM :

Mk(γ) = Mk−1(γ) +
1

K

K∑

j=1

T−1
j .S


Gj(y) − S−1

+∞∫

−∞

(
Tj.M

k−1(x)
)

Bj(γ − x)dx


 (A.18)

A.3 Relationship between Convolution at Low and High Resolu-
tion

Our objective in this section is to establish the relationship between S−1(B∗F ) and (S−1.B)∗
(S−1.F ) where ∗ is the convolution operator and S−1 is the downsampling operator by the
factor ς .
Considering the PSF B and the super-resolution image F , then the blurred super-

resolution image F̃ is:

F̃ (γ) =

+∞∫

−∞

F (x)B(γ − x)dx (A.19)

Denoting Bς and Fς as the subsamples of B(γ) and F (γ) by the factor ς :

Bς(γ) = B(ςγ) (A.20)

Fς(γ) = F (ςγ) (A.21)

Denoting F̃ς(γ) as the result of the convolution (S−1B) ∗ (S−1F ):

F̃ς(γ) =

+∞∫

−∞

Fς(x)Bς(γ − x)dx

=

+∞∫

−∞

F (ςx)B(ς(γ − x)dx

=

+∞∫

−∞

F (ςx)B(ςγ − ςx))dx

=
1

ς

+∞∫

−∞

F (ςx)B(ςγ − ςx)dςx (A.22)



Replacing y = ςx:

F̃ς(γ) =
1

ς

+∞∫

−∞

F (y)B(ςγ − y))dy

=
1

ς
F̃ (ςγ) (A.23)

Thus:
(S−1.B) ∗ (S−1.F ) =

1

ς
S−1(B ∗ F ) (A.24)

The constant 1/ς corresponds to a normalisation factor and in case of a normalised convolu-
tion mask it can be neglected.
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Appendix B
Other MPEG Video Compression

Standards

We presented in Chapter 2 the popular MPEG-1 and MPEG-2 video compression standards
and explained in this thesis how low-resolution data extracted from these streams can be
used for mosaic construction. However, theMPEG-1/2 standards are progressively replaced
by new compression standards such as H.264/MPEG-4 AVCwhich is specifically promising
for high definition (HD) video broadcast. To this end, we outline in this chapter the succeed-
ing MPEG standards, namely MPEG-4, H.264/MPEG-4 AVC and H.264/MPEG-4 SVC. As
as these standards are built on the structure of MPEG-1/2 coding, they provide the video
data in low-resolution according to their specific architecture and coding algorithms. Our
objective is to show that this work can deal in certain circumstances with these video com-
pression standards or can be extended to them.
The MPEG-4 standard [118], established in 2001, addressed a new generation of multi-

media applications and services, e.g. interactive TV, internet video, and games, where access
to coded audio and video objects might be needed. The MPEG-4 video coding standard, re-
ferred to as MPEG-4 part 2, provides a variety of tools enabling the efficient coding of video
objects and their transmission on error prone networks. Further, MPEG-4 did clearly im-
prove the coding efficiency over earlier standards, as it builds on the coding structure of
MPEG-2, but adding enhanced and new tools within the same coding structure.
In the meantime, while highly interactive multimedia applications have appeared, there

seemed to be an inexhaustive demand for higher compression with a better video quality.
Hence, the H.264/MPEG-4 AVC standard [120] was established in 2003 by the Joint Video
Team (JVT), a joint team of experts from the MPEG and the ITU-T Video Coding Export Group
(VCEG). This standard is referred to as MPEG-4 part 10 by the MPEG, and H.264 by VCEG.
Sometimes is also called Advanced Video Coding (AVC). H.264/MPEG-4 AVC is a new state-



of-the art video coding standard addressing applications such as internet multimedia, wire-
less video, video-on-demand, and videoconferencing, including HD video. It provides sig-
nificantly higher compression than earlier standards.
Currently, Scalable Video Coding (SVC) is a very active research area aiming at the estab-

lishment of the scalable extension of H.264/MPEG-4 AVC. It is called H.264/MPEG-4 SVC
and is a current standardisation project of the JVT. It is mainly designed for networking
applications.
In the following, we present the developments in video compression and outline the

main differences with respect to the MPEG-2 standard. Thus, Section B.1 presents the
MPEG-4 standard, Section B.2 addresses the H.264/MPEG-4 AVC standard and Section B.3
its scalable extension.

B.1 MPEG-4

The MPEG-4 standard includes the coding of natural video and synthetic video which is
referred to as MPEG-4 Visual. Neither MPEG-1 nor MPEG-2 considers synthetic video or
computer graphics for coding. The MPEG-4 standard improves the MPEG-2 standard both
in terms of compression efficiency and flexibility. This is achieved in two ways, by using a
more advanced compression algorithm and providing a number of additional coding tools
such as shape coding, texture coding, and sprite coding. The main features of MPEG-4
are the coding of objects and their scalability. Like MPEG-2 it defines profiles and levels.
Figure B.1 illustrates the structure of the MPEG-4 encoder.
In the following, we outline the principal coding tools and point out some differences

with respect to MPEG-1/2. More information about MPEG-4 video coding can be found in
[152, 39].

B.1.1 Coding Structure

The coding structure of MPEG-4 is like in MPEG-1/2 a hierarchical structure, but it is modi-
fied in order to support object-based coding.
The highest syntactic structure is the video object sequence (VS). It contains 2D or 3D nat-

ural or synthetic objects and their enhancement layers. A video object (VO) corresponds to a
particular 2D object in the scene. It is defined as an arbitrarily shaped region of the video
scene existing during an arbitrary time interval. Each VO can be encoded in scalable or non-
scalable form, represented by the video object layer (VOL). A VO can be encoded using spatial
or temporal scalability, going from coarse to fine resolution. A VO is sampled in time and
the VO at a specific time is called a video object plane (VOP). A VOP is coded by shape coding
and texture coding, which is specified at macroblock and block layer. A collection of VOPs
is called a group of video object planes (GOV). GOVs provide points in the bitstream where
VOPs are encoded independently of each other, and can thus provide random access to the
sequence.
In the special case of a single rectangular VO, all of the MPEG-4 layers can be related
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Figure B.1: The MPEG-4 encoder structure [172].

to MPEG-2 layers. The VS is the same as the VO since in this case a single VO is a video
sequence, the VOL corresponds to the scalable extension, the GOV corresponds to the GOP,
and the VOP corresponds to the frame. The definitions of I-VOP, P-VOP, and B-VOP cor-
respond to the I-frame, P-frame and B-frame. The macroblock and the block are similarly
to MPEG-1/2. In MPEG-4 the macroblock contains shape information, motion information,
and texture information.
Nevertheless, object-based encoding has not really become reality and so the Simple and

Advanced Simple Profile are very popular for rectangular frame coding. We showed above
that if only one rectangular VO is encoded, the MPEG-4 layers can be related to MPEG-2
layer. Thus, in this PhD we could have worked on these profiles with a single rectangular
VO. For more information on MPEG-4 profiles and levels, we refer the reader to [90, 152].

B.1.2 Shape Coding

Shape coding can be in binary mode, where the shape of each object is described by a binary
mask, or in grey scale mode, where the shape is described by an alpha channel allowing
transparency. The binary matrix representing the shape of a VOP is referred to as the binary
mask. Its size is commonly the size of the bounding box of the VOP. In this mask every pixel
belonging to the VOP is set to 255, the others are set to 0. The grey scale shape mask has a
structure similar to that of the binary shape, except that each pixel can take a value in the
range of 0 to 255 indicating the transparency of the pixel. In the scope of this PhD we are not
supposed to work on shape coding, but on rectangular VOPs for the reason of compliance
with MPEG-2. However, our mosaicing method segments frames into the background and



moving objects. Each of them is characterised by a binary mask. Thus, if the shapes are
accurately encoded (the background and the moving objects), the segmentation process in
the mosaicing method can be avoided and the encoded binary masks used instead after
appropriate partial decoding.

B.1.3 Motion Estimation and Compensation

The motion estimation and compensation in MPEG-4 is block-based as in MPEG-1/2, but
provides appropriate modifications for object boundaries. Motion estimation is only per-
formed for macroblocks in the bounding box of the VOP in question. If a macroblock lies
entirely inside of the VOP, motion estimation is performed in the usual way. The block size
in the block matching can be 16× 16 or 8× 8. This results in one motion vector for the entire
macroblock, and one for each of its blocks. For macroblocks that partially belong to the VOP,
motion vectors are estimated using a modified block matching technique. The matching cri-
terion is only computed on the pixels that belong to the VOP. In case the reference block lies
on the VOP boundary, a repetitive padding technique assigns values to pixels outside of the
VOP. The matching criterion is then computed using these padded pixels as well.
If short header mode (a tool to provide compatibility between MPEG-4 Visual and the

H.263 video coding standard) is enabled, block matching is only performed at macroblock
basis. Thus, MPEG-4 motion vectors can also be exploited by our method.

B.1.4 Texture Coding

In case of an intra macroblock, the texture information consists in the luminance and chromi-
nance components. In case of a motion-compensated macroblock the texture information
consists in the residual error remaining after motion compensation. The method for texture
coding is similar to MPEG-2 based on a 8 × 8 block DCT. Macroblocks that are completely
inside the VOP are encoded without modifications. For macroblocks on the boundary of the
VOP, a specific padding process is used to extend the shape into a rectangular macroblock.
Once the block has been padded is it coded similar to an internal block by a 8 × 8 block
DCT. Hence, MPEG-4 follows in case of rectangular VOPs the same principle of block-based
DCT and quantisation as in MPEG-1/2, but MPEG-4 allows for non-linear quantisation of
DC values.
The entropy value of the quantised coefficients in intra blocks can further be reduced by

a prediction from neighbouring blocks. In MPEG-1/2 only the DC coefficient of the current
block is spatially predicted from the DC coefficient of the prior block. In MPEG-4 DC and
AC coefficients are predicted either from the block to the left or the block above as illus-
trated in Figure B.2. The direction of the prediction is selected based on the comparison of
the horizontal and vertical DC gradients of the surrounding blocks A,B, and C. For DC pre-
diction (see Figure B.2(a)) the DC value of the current block (X) is predicted either from the
DC coefficient of the block to the left (A) or the block above (C). For AC prediction (see Fig-
ure B.2(b)), either the coefficients from the first row, or the coefficients from the first column
are predicted from the co-sited coefficients in the selected candidate block.
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Figure B.2: Coefficient prediction in intra blocks [152]: (a) Prediction of DC coefficients, (b)
prediction of AC coefficients.

This is followed by scanning. Three different scan methods exist, a zigzag scan and an
alternate horizontal scan as in MPEG-2, and additionally an alternate vertical scan which is
similar to the the horizontal scan, but applied in vertical direction. The type of DC prediction
determines the type of scan that is performed. If there is no DC prediction, zigzag scan is
applied, if there is DC prediction in horizontal direction, alternate vertical scan is applied,
otherwise alternate horizontal is applied. Finally, run length coding and variable length
coding is performed on the reordered transform coefficients.
As outlined above, MPEG-4 texture coding follows a coding scheme similar to that one

of MPEG-1/2. Applying adequate partial decoding, DC coefficients can be extracted at 8× 8

block basis for the use in our work.

B.1.5 Sprite Coding

An obvious example of sprite coding is a background sprite, also referred to as the back-
groundmosaic. A static sprite is generated before encoding using original VOPs. This sprite
is then used to predict each of the source frames, and the residuals are spatially coded. The
decoder receives the static sprite before the rest of the video segment. Then, the recon-
structed VOPs can be generated easily by warping the sprite with appropriate parameters
and adding the residual error. Sprite-based coding provides a high coding efficiency. It is
very well suited for synthetic objects, but can also be used for objects in natural scenes that
undergo rigid motion.
We can see that MPEG-4 foresees a mosaic-based coding, but these mosaics are con-

structed before encoding the frames. In our work, on the contrary, the mosaic is constructed
at the decoder side.

B.1.6 Scalability

The scalability framework of MPEG-4 includes spatial, temporal and SNR scalability simi-
lar to MPEG-2. The major difference is that MPEG-4 extends the concepts of scalability to be



content based. Thus, scalability is provided on object basis with the restriction that the object
shape has to be rectangular. By using the multiple VOP structure, different resolution en-
hancements can be applied to different parts of the video scene. Therefore, the enhancement
layer may only be applied to a particular object or region of the base layer instead of the
entire base layer. In addition, MPEG-4 supports fine grain scalability enabling the quality of
the sequence to be increased in small steps.

B.2 H.264/MPEG-4 AVC

Unlike MPEG-2 and MPEG-4, the H.264/MPEG-4 AVC standard does not support layered
scalable coding, and further unlike MPEG-4 it does not support object-based coding. The fo-
cus of the standard is on achieving a higher coding efficiency for progressive and interlaced
video. Similar to MPEG-2 or MPEG-4 it includes the concepts of profiles and levels. This
standard follows a similar coding structure as earlier standards but with many important
enhancements including multiframe prediction and variable block size. Figure B.3 illus-
trates the structure of the H.264/MPEG-4 AVC encoder. Here, we only outline the advance-
ments of the H.264/MPEG-4 AVC standard, additional information about this standard can
be found in [147, 152].

B.2.1 Coding Structure

The basic coding structure of H.264/MPEG-4 AVC is similar to that of earlier standards.
Coding is performed picture by picture. Each picture to be coded is partitioned into slices.
In this standard, slices are individual coding units, while pictures can be considered as ac-
cess units. There are three basic slice types: I, P, and B-slices. This is basically an extension
of the I, P and B-frames concept of MPEG-1/2. A special type of frame containing only I-
slices is called instantaneous decoder refresh (IDR) picture. It is defined such that any picture
following an IDR picture does not use pictures prior to the IDR picture as references for
motion-compensated prediction. P-slices consist of macroblocks that can be compressed by
using motion-compensated prediction, but they can also contain intra macroblocks. Mac-
roblocks of P-slices use only one prediction, but unlike previous standards, the pixels used
as reference for motion compensation can either be in the past or in the future. Macroblocks
of a B-slice when using motion-compensated prediction can use two predictions. Unlike ear-
lier standards it is possible to have both predictions in the past or future. In addition, unlike
earlier standards B-slices can also be used as reference for motion prediction by other slices.

B.2.2 Motion-Compensated Prediction

Motion-compensated prediction uses variable block sizes such as 16 × 16, 16 × 8, 8 × 16,
8 × 8, 8 × 4, 4 × 8, and 4 × 4. This is illustrated in Figure B.4. The top row illustrates the
partitions of a 16 × 16macroblock while the bottom row illustrates the partitions of an 8 × 8

block. In the previous standards, for prediction only the immediately previous/succeeding I
or P-frame is used as a reference. H.264/MPEG-4 AVC extends the reference frame selection
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by allowing the encoder to select among a larger number of frames that have been decoded
and stored. The number of reference frames depends on the level of a profile.
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Figure B.4: Macroblock partitioning for motion compensation [147].

H.264/MPEG-4 AVCmotion vectors can be used by our method in the very limited case,
if motion prediction is restricted only to one reference picture at macroblock basis, if there
is at least one picture containing only P-slices (P-frames) between two IDR pictures, and if
P-frames are predicted with respect to the directly preceding P-frame or IDR picture. The
latter is a necessary condition to obtain a continuous motion trajectory in the sequence (see
Chapter 3).

B.2.3 Intra Prediction

Contrary to earlier standards where intra prediction is performed after transform coding,
in H.264/MPEG-4 AVC it is performed in the pixel domain before transform coding. Fig-
ure B.5(a) shows a 4 × 4 block of luminance pixels a, b, . . . p to be predicted. The pixels
A,B, . . . M have previously been encoded and reconstructed and are available to form a
prediction reference. Each of the 16 pixels can be predicted using either DC mode or in one
of the eight directions illustrated in Figure B.5(b). In case of DC prediction an average of 8
pixels, A,B,C,D, I, J,K,L, is used as prediction of each of the 16 pixels. As an alternative
to the 4 × 4 luminance prediction, the entire 16 × 16 luminance component of a macroblock
may be predicted in one operation. Three prediction directions are possible as illustrated
in Figure B.6. The pixels used for prediction belong to the left hand or/and above decoded
macroblock. The DC prediction uses an average of the neighbouring left pixel column (V)
and the above pixel row (H). Each 8 × 8 chrominance component of an intra-coded mac-
roblock is predicted from previously decoded chrominance samples above and/or to the left
similar to the 16 × 16 luminance prediction modes described above.
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Figure B.5: 4 × 4 luminance prediction [152]: (a) Labelling of prediction samples, (b) predic-
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B.2.4 Transform Coding

Unlike earlier standards H.264/MPEG-4 AVC uses 4×4 transform block size instead of 8×8

block size. Further, it does not use the DCT transform but uses a simplified integer ap-
proximation: the high correlation transform (HCT). The 4 × 4 HCT whose transform coeffi-
cients are explicitly specified is perfectly invertible after quantisation contrary to the 8 × 8

floating point DCT transform of the previous standards. The core part of the transform
can be implemented using only additions and shifts. A scaling multiplication (part of the
transform) is integrated into the quantiser, reducing the total number of multiplications. In
H.264/MPEG-4 AVC, the transform coding always uses pixel predictions i.e. the pixel val-
ues in a macroblock are always predicted, either from neighbouring pixels in the same frame
(intra macroblocks) or from pixels in one or two previously decoded reference pictures (inter
macroblocks), and then transform coded.
The extraction of DC coefficients in H.264/MPEG-4 AVC is more complex than for

MPEG-1/2 as the DC value of a block is not directly available due to intra prediction be-
fore transform coding. Given that the HCT is a linear transform, the DC coefficient of the
current block can be obtained by adding the value of its prediction.

B.2.5 Quantisation

Unlike MPEG-2 the current version of H.264/MPEG-4 AVC does not support quantisation
matrices, it assumes a scalar quantiser. The transform coefficient HCT(u, v) is scaled and
quantised in a single operation as:

HCTQ(u, v) = round

(
HCT(u, v) · PF

S

)
(B.1)

where HCTQ(u, v) is the quantised transform coefficient, S the quantiser scale and PF a
factor depending on the position (u, v). The latter describes the scaling operation of the
HCT which is integrated into the quantiser.

B.2.6 Reordering

The zigzag scan of MPEG-2 works only well in the average and can be seen as a combination
of three types of scans, a horizontal scan, a vertical scan an a diagonal scan. Often in natural
images, on a block basis, a predominant preferred direction for scan exists depending on
the orientations of significant coefficients. MPEG-4 uses adaptive scanning to exploit this
property. However in H.264/MPEG-4 AVC fixed scanning similar to MPEG-2 is used: a
4 × 4 zigzag scan for frame macroblocks and 4 × 4 alternate scan for field macroblocks.

B.2.7 Entropy Coding

The H.264/MPEG-4 AVC standard includes two different entropy coding methods. Context
adaptive binary arithmetic coding (CABAC) is a technique to losslessly compress syntax
elements in the video stream knowing the probabilities of syntax elements in a given context,



but is it not supported in all profiles. Context adaptive variable word length coding (CAVLC)
is a lower-complexity alternative to CABAC for the coding of quantised transform coefficient
values. Despite its lower complexity than CABAC, CAVLC is more elaborate and more
efficient than the methods used to code coefficients in earlier standards.

B.2.8 Loop Filter

The loop filter, also called deblocking filter, operates on a macroblock after motion compen-
sation and residual coding in case of inter coding, or after intra prediction and residual cod-
ing in case of intra coding. It operates on the edges of both macroblock and 4× 4 sub-blocks.
The loop filter operation is adaptive in response with several factors such as the quantisa-
tion parameter of the current and neighbouring macroblocks, the magnitude of the motion
vector, and the macroblock coding type, as well as the values of the pixels to be filtered in
both the current and neighboring macroblocks.

B.3 H.264/MPEG-4 SVC

In H.264/MPEG-4 SVC, most of the H.264/MPEG-4 AVC components such as motion-
compensated and intra prediction, transform and entropy coding, and deblocking are used.
The base layer of an H.264/MPEG-4 SVC bitstream is generally coded in compliance with
H.264/MPEG-4 AVC. New tools are added for supporting spatial and SNR scalability.
Thereby, the basic concepts of motion-compensated prediction and intra prediction are used
as in H.264/MPEG-4 AVC. The redundancy between different layers is exploited by addi-
tional inter-layer prediction concepts. The H.264/MPEG-4 SVC encoder structure is illus-
trated in Figure B.7.
An important feature of H.264/MPEG-4 SVC is that scalability is provided at bit-

stream level. A bitstream with a reduced spatial and/or temporal resolution can be sim-
ply obtained by discarding network packets, the so-called NAL units, from the global
H.264/MPEG-4 SVC bitstream that are not required for decoding the target resolution.
In the following, we outline the concepts for temporal, spatial and SNR scalability. For

more information on the current H.264/MPEG-4 SVC development we refer the reader to
[161, 162].

B.3.1 Temporal Scalability

Contrary to earlier standards, the coding and display order of frames is completely decou-
pled in H.264/MPEG-4 SVC. Any frame can be marked as reference frame and used for
motion compensated prediction of following frames independent of the corresponding slice
coding types. This allows the coding of frame sequences with arbitrary temporal dependen-
cies. Thus, temporal scalable bitstreams can be generated by using hierarchical prediction
structures as illustrated in Figure B.8 without any changes to H.264/MPEG-4 AVC. So-called
key frames are coded in regular intervals by using only previous key frames as references.
The frames between two key frames are then hierarchically predicted. The sequence of key
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Figure B.8: Example of hierarchical prediction structure in H.264/MPEG-4 SVC [162].

In addition to enabling temporal scalability, the hierarchical prediction structures pro-
vide an improved coding efficiency compared to classical IBBP coding on the cost of an
increased encoding-decoding delay.

B.3.2 Spatial Scalability

The frames of different spatial layers are independently coded with layer specific motion pa-
rameters for spatial scalability. In order to improve the coding efficiency of the enhancement
layers, additional inter-layer predictions have been introduced: inter-layer motion predic-
tion, inter-layer residual prediction, and inter-layer intra prediction.
The principle of inter-layer motion prediction is to use upsampled base layer motion

information for coding the spatial enhancement layer. The reference frame indices are in-



herited from the lower layer, and the associated motion vectors are scaled and possibly re-
fined. When inter-layer residual prediction is performed, the base layer residual macroblock
is upsampled. Then, the enhancement layer residual is subtracted from the latter so that
the difference is encoded. For inter-layer intra prediction, the reconstructed and upsampled
macroblock of the lower layer is used as a prediction for the current macroblock, so that the
difference is encoded.

B.3.3 SNR Scalability

For SNR scalability, coarse-grain scalability and fine-grain scalability are distinguished.
Coarse-grain scalability is achieved using the concepts for spatial scalability. The only differ-
ence is that for CGS the upsampling operations of the inter-layer prediction mechanisms are
omitted. Fine-grain scalability consists in truncating progressive refinement NAL units at
any arbitrary byte-aligned point, so that the quality of the SNR base layer can be improved.
Therefore, the coding order of transform coefficient levels is modified. Instead of scanning
the transform coefficients macroblock by macroblock, the transform coefficient blocks are
scanned in several paths.
Hence, in H.264/MPEG-4 SVC we found the same situation in the scalable bitstream as

MPEG-2. The base layer motion vectors and DC coefficients can serve as data for our work,
allowing for a fast video analysis and visualisation of content without complete decoding of
the bitstream.
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