119 research outputs found

    Fast high-resolution metabolite mapping in the rat brain using 1H-FID-MRSI at 14.1T

    Full text link
    Magnetic resonance spectroscopic imaging (MRSI) enables the simultaneous non-invasive acquisition of MR spectra from multiple spatial locations inside the brain. While 1H-MRSI is increasingly used in the human brain, it is not yet widely applied in the preclinical settings, mostly because of difficulties specifically related to very small nominal voxel size in the rodent brain and low concentration of brain metabolites, resulting in low signal-to-noise ratio SNR. In this context, we implemented a free induction decay 1H-MRSI sequence (1H-FID-MRSI) in the rat brain at 14.1T. We combined the advantages of 1H-FID-MRSI with the ultra-high magnetic field to achieve higher SNR, coverage and spatial resolution in the rodent brain, and developed a custom dedicated processing pipeline with a graphical user interface: MRS4Brain toolbox. LCModel fit, using the simulated metabolite basis-set and in-vivo measured MM, provided reliable fits for the data at acquisition delays of 1.3 and 0.94 ms. The resulting Cram\'er-Rao lower bounds were sufficiently low (<40%) for eight metabolites of interest, leading to highly reproducible metabolic maps. Similar spectral quality and metabolic maps were obtained between 1 and 2 averages, with slightly better contrast and brain coverage due to increased SNR in the latter case. Furthermore, the obtained metabolic maps were accurate enough to confirm the previously known brain regional distribution of some metabolites. The acquisitions proved high repeatability over time. We demonstrated that the increased SNR and spectral resolution at 14.1T can be translated into high spatial resolution in 1H-FID-MRSI of the rat brain in 13 minutes, using the sequence and processing pipeline described herein. High-resolution 1H-FID-MRSI at 14.1T provided reproducible and high-quality metabolic mapping of brain metabolites with significantly reduced technical limitations.Comment: Dunja Simicic and Brayan Alves are joint first author

    Automatic Placement of Outer Volume Suppression Slices in MR Spectroscopic Imaging of the Human Brain

    Get PDF
    Spatial suppression of peripheral regions (outer volume suppression) is used in MR spectroscopic imaging to reduce contamination from strong lipid and water signals. The manual placement of outer volume suppression slices requires significant operator interaction, which is time consuming and introduces variability in volume coverage. Placing a large number of outer volume saturation bands for volumetric MR spectroscopic imaging studies is particularly challenging and time consuming and becomes unmanageable as the number of suppression bands increases. In this study, a method is presented that automatically segments a high-resolution MR image in order to identify the peripheral lipid-containing regions. This method computes an optimized placement of suppression bands in three dimensions and is based on the maximization of a criterion function. This criterion function maximizes coverage of peripheral lipid-containing areas and minimizes suppression of cortical brain regions and regions outside of the head. Computer simulation demonstrates automatic placement of 16 suppression slices to form a convex hull that covers peripheral lipid-containing regions above the base of the brain. In vivo metabolite mapping obtained with short echo time proton-echo-planar spectroscopic imaging shows that the automatic method yields a placement of suppression slices that is very similar to that of a skilled human operator in terms of lipid suppression and usable brain voxels.Publicad

    Manifold Learning in MR spectroscopy using nonlinear dimensionality reduction and unsupervised clustering

    Get PDF
    Purpose To investigate whether nonlinear dimensionality reduction improves unsupervised classification of 1H MRS brain tumor data compared with a linear method. Methods In vivo single-voxel 1H magnetic resonance spectroscopy (55 patients) and 1H magnetic resonance spectroscopy imaging (MRSI) (29 patients) data were acquired from histopathologically diagnosed gliomas. Data reduction using Laplacian eigenmaps (LE) or independent component analysis (ICA) was followed by k-means clustering or agglomerative hierarchical clustering (AHC) for unsupervised learning to assess tumor grade and for tissue type segmentation of MRSI data. Results An accuracy of 93% in classification of glioma grade II and grade IV, with 100% accuracy in distinguishing tumor and normal spectra, was obtained by LE with unsupervised clustering, but not with the combination of k-means and ICA. With 1H MRSI data, LE provided a more linear distribution of data for cluster analysis and better cluster stability than ICA. LE combined with k-means or AHC provided 91% accuracy for classifying tumor grade and 100% accuracy for identifying normal tissue voxels. Color-coded visualization of normal brain, tumor core, and infiltration regions was achieved with LE combined with AHC. Conclusion Purpose To investigate whether nonlinear dimensionality reduction improves unsupervised classification of 1H MRS brain tumor data compared with a linear method. Methods In vivo single-voxel 1H magnetic resonance spectroscopy (55 patients) and 1H magnetic resonance spectroscopy imaging (MRSI) (29 patients) data were acquired from histopathologically diagnosed gliomas. Data reduction using Laplacian eigenmaps (LE) or independent component analysis (ICA) was followed by k-means clustering or agglomerative hierarchical clustering (AHC) for unsupervised learning to assess tumor grade and for tissue type segmentation of MRSI data. Results An accuracy of 93% in classification of glioma grade II and grade IV, with 100% accuracy in distinguishing tumor and normal spectra, was obtained by LE with unsupervised clustering, but not with the combination of k-means and ICA. With 1H MRSI data, LE provided a more linear distribution of data for cluster analysis and better cluster stability than ICA. LE combined with k-means or AHC provided 91% accuracy for classifying tumor grade and 100% accuracy for identifying normal tissue voxels. Color-coded visualization of normal brain, tumor core, and infiltration regions was achieved with LE combined with AHC. Conclusion The LE method is promising for unsupervised clustering to separate brain and tumor tissue with automated color-coding for visualization of 1H MRSI data after cluster analysis

    Methodological consensus on clinical proton MRS of the brain: Review and recommendations

    Get PDF
    © 2019 International Society for Magnetic Resonance in Medicine Proton MRS (1H MRS) provides noninvasive, quantitative metabolite profiles of tissue and has been shown to aid the clinical management of several brain diseases. Although most modern clinical MR scanners support MRS capabilities, routine use is largely restricted to specialized centers with good access to MR research support. Widespread adoption has been slow for several reasons, and technical challenges toward obtaining reliable good-quality results have been identified as a contributing factor. Considerable progress has been made by the research community to address many of these challenges, and in this paper a consensus is presented on deficiencies in widely available MRS methodology and validated improvements that are currently in routine use at several clinical research institutions. In particular, the localization error for the PRESS localization sequence was found to be unacceptably high at 3 T, and use of the semi-adiabatic localization by adiabatic selective refocusing sequence is a recommended solution. Incorporation of simulated metabolite basis sets into analysis routines is recommended for reliably capturing the full spectral detail available from short TE acquisitions. In addition, the importance of achieving a highly homogenous static magnetic field (B0) in the acquisition region is emphasized, and the limitations of current methods and hardware are discussed. Most recommendations require only software improvements, greatly enhancing the capabilities of clinical MRS on existing hardware. Implementation of these recommendations should strengthen current clinical applications and advance progress toward developing and validating new MRS biomarkers for clinical use

    Noise-reduction techniques for 1H-FID-MRSI at 14.1T: Monte-Carlo validation & in vivo application

    Full text link
    Proton magnetic resonance spectroscopic imaging (1H-MRSI) is a powerful tool that enables the multidimensional non-invasive mapping of the neurochemical profile at high-resolution over the entire brain. The constant demand for higher spatial resolution in 1H-MRSI led to increased interest in post-processing-based denoising methods aimed at reducing noise variance. The aim of the present study was to implement two noise-reduction techniques, the Marchenko-Pastur principal component analysis (MP-PCA) based denoising and the low-rank total generalized variation (LR-TGV) reconstruction, and to test their potential and impact on preclinical 14.1T fast in vivo 1H-FID-MRSI datasets. Since there is no known ground truth for in vivo metabolite maps, additional evaluations of the performance of both noise-reduction strategies were conducted using Monte-Carlo simulations. Results showed that both denoising techniques increased the apparent signal-to-noise ratio SNR while preserving noise properties in each spectrum for both in vivo and Monte-Carlo datasets. Relative metabolite concentrations were not significantly altered by either methods and brain regional differences were preserved in both synthetic and in vivo datasets. Increased precision of metabolite estimates was observed for the two methods, with inconsistencies noted on lower concentrated metabolites. Our study provided a framework on how to evaluate the performance of MP-PCA and LR-TGV methods for preclinical 1H-FID MRSI data at 14.1T. While gains in apparent SNR and precision were observed, concentration estimations ought to be treated with care especially for low-concentrated metabolites.Comment: Brayan Alves and Dunja Simicic are joint first authors. Currently in revision for NMR in Biomedicin

    Advanced parallel magnetic resonance imaging methods with applications to MR spectroscopic imaging

    Get PDF
    Parallel magnetic resonance imaging offers a framework for acceleration of conventional MRI encoding using an array of receiver coils with spatially-varying sensitivities. Novel encoding and reconstruction techniques for parallel MRI are investigated in this dissertation. The main goal is to improve the actual reconstruction methods and to develop new approaches for massively parallel MRI systems that take advantage of the higher information content provided by the large number of small receivers. A generalized forward model and inverse reconstruction with regularization for parallel MRI with arbitrary k-space sub-sampling is developed. Regularization methods using the singular value decomposition of the encoding matrix and pre-conditioning of the forward model are proposed to desensitize the solution from data noise and model errors. Variable density k-space sub-sampling is presented to improve the reconstruction with the common uniform sub-sampling. A novel method for massively parallel MRI systems named Superresolution Sensitivity Encoding (SURE-SENSE) is proposed where acceleration is performed by acquiring the low spatial resolution representation of the object being imaged and the stronger sensitivity variation from small receiver coils is used to perform intra-pixel reconstruction. SURE-SENSE compares favorably the performance of standard SENSE reconstruction for low spatial resolution imaging such as spectroscopic imaging. The methods developed in this dissertation are applied to Proton Echo Planar Spectroscopic Imaging (PEPSI) for metabolic imaging in human brain with high spatial and spectral resolution in clinically feasible acquisition times. The contributions presented in this dissertation are expected to provide methods that substantially enhance the utility of parallel MRI for clinical research and to offer a framework for fast MRSI of human brain with high spatial and spectral resolution

    SLOW: A novel spectral editing method for whole-brain MRSI at ultra high magnetic field.

    Get PDF
    PURPOSE At ultra-high field (UHF), B1 + -inhomogeneities and high specific absorption rate (SAR) of adiabatic slice-selective RF-pulses make spatial resolved spectral-editing extremely challenging with the conventional MEGA-approach. The purpose of the study was to develop a whole-brain resolved spectral-editing MRSI at UHF (UHF, B0  ≥ 7T) within clinical acceptable measurement-time and minimal chemical-shift-displacement-artifacts (CSDA) allowing for simultaneous GABA/Glx-, 2HG-, and PE-editing on a clinical approved 7T-scanner. METHODS Slice-selective adiabatic refocusing RF-pulses (2π-SSAP) dominate the SAR to the patient in (semi)LASER based MEGA-editing sequences, causing large CSDA and long measurement times to fulfill SAR requirements, even using SAR-minimized GOIA-pulses. Therefore, a novel type of spectral-editing, called SLOW-editing, using two different pairs of phase-compensated chemical-shift selective adiabatic refocusing-pulses (2π-CSAP) with different refocusing bandwidths were investigated to overcome these problems. RESULTS Compared to conventional echo-planar spectroscopic imaging (EPSI) and MEGA-editing, SLOW-editing shows robust refocusing and editing performance despite to B1 + -inhomogeneity, and robustness to B0 -inhomogeneities (0.2 ppm ≥ ΔB0  ≥ -0.2 ppm). The narrow bandwidth (∼0.6-0.8 kHz) CSAP reduces the SAR by 92%, RF peak power by 84%, in-excitation slab CSDA by 77%, and has no in-plane CSDA. Furthermore, the CSAP implicitly dephases water, lipid and all the other signals outside of range (≥ 4.6 ppm and ≤1.4 ppm), resulting in additional water and lipid suppression (factors ≥ 1000s) at zero SAR-cost, and no spectral aliasing artifacts. CONCLUSION A new spectral-editing has been developed that is especially suitable for UHF, and was successfully applied for 2HG, GABA+, PE, and Glx-editing within 10 min clinical acceptable measurement time

    Spectral estimation with spatio-spectral constraints for magnetic resonance spectroscopic imaging

    Get PDF
    Magnetic resonance spectroscopic imaging (MRSI) is a promising tool to acquire in vivo biochemical information, and spectral estimation (quantification) of MRSI data is an important step towards quantitative studies. Although a large body of work has been done on spectral estimation over the past decades, it remains challenging due to model nonlinearity and extremely low signal-to-noise ratio (SNR). Building on the existing methods which effectively incorporate spectral prior knowledge in the form of basis functions, this work addresses the spectral estimation problem by incorporating both spectral and spatial prior information. Specifically, we jointly estimate the spectra over all the voxels of interest, incorporating prior spatial information in a regularization framework. The effectiveness of the proposed method has been evaluated using both simulated and experimental data. A theoretical analysis based on Cramer-Rao Bound is proposed to further assess the performance improvement of the proposed method over state-of-the-art methods. The proposed spectral estimation method should prove useful in various MRSI studies.Ope
    corecore