
For Peer Review

1 

 

Manifold Learning in MR Spectroscopy using  

Nonlinear Dimensionality Reduction and Unsupervised Clustering  

Guang Yang, Felix Raschke, Thomas R. Barrick, and Franklyn A. Howe 

Neurosciences Research Centre, Cardio-vascular and Cell Sciences Institute, 

St. George’s University of London, London, UK. 

 

 

Main Body Word Count: 4293 

Abstract Word Count: 200 

 

Running Head: Manifold Learning in MRS using Nonlinear DR and Unsupervised Clustering 

 

Corresponding author: Guang Yang 

Email: gyang@sgul.ac.uk 

Phone: (0044) 020 8725 5120; Fax: (0044) 020 8725 2950 

Address: Room 31b, Neurosciences Research Centre, Cardio-vascular and Cell Sciences 

Institute, St George's, University of London, Cranmer Terrace, London, SW17 0RE. 

 

KEYWORDS: Pattern recognition; Dimensionality reduction; Laplacian Eigenmaps; Magnetic 

resonance spectroscopy; Magnetic resonance spectroscopic imaging. 

 

 

Page 1 of 72

Magnetic Resonance in Medicine

Magnetic Resonance in Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

2 

 

ABSTRACT 

PURPOSE: To investigate whether non-linear dimensionality reduction improves unsupervised 

classification of 
1
H MRS brain tumour data compared to a linear method.  

METHODS: In-vivo single voxel 
1
H MRS (55 patients) and 

1
H MRSI (29 patients) data were 

acquired from histopathologically diagnosed gliomas. Data reduction by Laplacian eigenmaps 

(LE) or independent component analysis (ICA) was followed by k-means clustering or 

agglomerative hierarchical clustering (AHC) for unsupervised learning to assess tumour grade 

and for tissue type segmentation of MRSI data.  

RESULTS: An accuracy of 93% in classification of glioma Grade-II and Grade-IV, with 100% 

accuracy in distinguishing tumour and normal spectra, was obtained by LE with unsupervised 

clustering, but not with the combination of k-means and ICA. With 
1
H MRSI data LE provided a 

more linear distribution of data for cluster analysis and better cluster stability than ICA. LE 

combined with k-means or AHC provided 91% accuracy for classifying tumour grade and 100% 

accuracy for identifying normal tissue voxels. Colour-coded visualisation of normal brain, 

tumour core and infiltration regions was achieved with LE combined with AHC.  

CONCLUSION: The LE method is promising for unsupervised clustering to separate brain and 

tumour tissue with automated colour-coding for visualisation of 
1
H MRSI data after cluster 

analysis. 

ABBREVIATIONS: PCA: principal component analysis; ICA: independent component 

analysis; PR: pattern recognition; DR: Dimensionality reduction; LE: Laplacian Eigenmaps; 

MRS: magnetic resonance spectroscopy; MRSI: magnetic resonance spectroscopic imaging. 
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INTRODUCTION 

Gliomas are the most common type of primary brain tumour and accurate diagnosis of tumour 

grade is necessary for appropriate treatment and prognosis. Histopathological characterisation 

from a surgical biopsy carries risk (1,2) and can be problematic due to tumour heterogeneity 

(1,3,4). Conventional MRI provides limited accuracy in defining tumour heterogeneity and 

infiltration boundaries and 
1
H magnetic resonance spectroscopic imaging (MRSI) is being 

investigated for its clinical potential to aid non-invasive diagnosis (5). The manual interpretation 

and analysis of large multivoxel 
1
H MRSI datasets is difficult and time-consuming hence 

automated pattern recognition (PR) methods are being investigated for tumour classification (6–

9). PR of MRSI data has shown promise in objectively delineating tumour boundaries and 

defining infiltrative growth patterns in gliomas (10,11) and nosologic images (3,12) used to 

summarise the presence of various tissue types and lesions in a single colour coded image 

overlay on to conventional MRI. 

Prior to PR, dimensionality reduction (DR) is needed, which provides a mathematical mapping 

of high dimensional data into a lower dimensional representation. In particular, lower 

dimensional representations ideally should be obtained without substantial loss in discriminative 

information, while maximally preserving overall data geometry. Consequently, points which are 

in close proximity in the original high-dimensional space are mapped to adjacent locations in the 

low-dimensional space (13). PCA and ICA are well-known linear DR techniques that have been 

applied to 
1
H MRS data, but there are assumptions in their application. Firstly, PCA will not 

extract the true variance from a non-Gaussian distribution of data. Secondly, ICA requires input 

data to be linear, independent and non-Gaussian. ICA can outperform PCA as the underlying 

probabilistic model is more powerful and is sensitive to higher-order statistics allowing superior 
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identification of data concentrations in n-dimensional space (14). In contrast, nonlinear DR 

techniques (15–20) can unfold high-dimensional data that provide class separation where linear 

methods often fail. 

In this study, we focus on the application of the nonlinear Laplacian Eigenmaps (LE) method for 

DR of 
1
H MRS brain tumour data with an aim to aid diagnosis and determine regions of potential 

tumour infiltration. LE-DR was chosen due to its simplicity of implementation and its 

robustness, to outliers and noise (20). We use unsupervised learning based k-means and 

agglomerative hierarchical clustering (AHC) methods to form 3 clusters (nominally representing 

normal tissue, potential infiltration and tumour core) determined from the eigenvalues of the DR 

output. SVS and MRSI results obtained by LE-DR are compared with those obtained using 

PCA+ICA. We investigate the extent to which the non-linear LE-DR method provides improved 

classification for generation of colour-coded maps of tumour core, infiltration and normal tissue 

compared to conventional linear DR. 
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METHODS 

All MR data were acquired using a GE Signa Horizon 1.5T MR system (GE Healthcare, 

Milwaukee, WI, USA) equipped with 22 mT/m gradients and a quadrature head coil. Study 

participants gave written informed consent in accordance with local ethics procedures. Biopsy or 

resected tumour tissue samples were available to confirm histological tumour diagnosis 

providing a “ground truth” classification. 

 

Single Voxel MRS: Subjects and Data Acquisition  

SV MRS (SVS) data were acquired from adult brain tumour patients at St George's, University 

of London as part of the INTERPRET and eTUMOUR EU projects (data are web-accessible by 

permission for download from http://solaria.uab.es/eTumour/). In total N = 55 tumour MR 

spectra were obtained. This included 24 Grade-II tumours (2 oligodendrogliomas, 3 

oligoastrocytomas, 3 fibrillary astrocytomas, 4 gemistocytic astrocytomas and 12 diffuse 

astrocytomas) and 31 Grade-IV (glioblastoma). To create a dataset of normal brain single voxel 

spectra, 79 spectra were extracted from MRSI data of 3 healthy volunteers, which had 

compatible TR/TE parameters (full acquisition details as defined in the next Section) and these 

data were interpolated to the same spectral resolution as the SVS tumour data.  The final dataset 

comprised N = 134 individual spectra (Table 1). 

All SVS tumour data were acquired at short Echo Time (TE) using the GE developed point-

resolved spectroscopic sequence protocol (Repetition Time (TR) 	= 	2000ms, TE	 = 	30ms, 
2048 data points with 2500Hz bandwidth). Voxels for MRS were positioned according to the 

clinical MRI of each patient, to predominantly include viable tumour tissue and avoid areas of 

pure necrosis. Each spectrum was referenced to both NAA at 2ppm (search region 2.20ppm −
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1.80ppm) and Cho at 3.21ppm (search region 3.30ppm − 3.12ppm) for chemical shift 

alignment. In addition, each spectrum was truncated to 4.0ppm − 0.2ppm containing M = 198 

data points representing the majority of metabolic information (Figure 1(a)). 

 

MRSI Chemical Shift Imaging (CSI): Subjects and Data Acquisition 

Our thirty 
1
H MRSI data were obtained from 29 patients with glial tumours: Grade-II (2 

oligoastrocytomas, 2 gemistocytic astrocytomas and 6 diffuse astrocytomas); Grade-III (1 

anaplastic oligoastrocytoma and 6 anaplastic astrocytomas) and Grade-IV (1 gliosarcoma and 12 

glioblastomas). For one patient diagnosed with an anaplastic astrocytoma post-surgical resection 

MRSI data were acquired 15 weeks after the initial scan, and both pre- and post-surgery scans 

were included in the study. 

MRSI data were acquired using the GE PROBE-SI protocol (TR	 = 	2000ms, TE	 = 	30ms, 512 

data points and 1000Hz bandwidth) with outer volume suppression and a 16×16 phase-encoded 

matrix. A 15mm thick axial plane was selected through the centre of the tumour mass with a 

selection volume for MRSI that included the tumour bulk and surrounding tissue while avoiding 

the skull. MRSI data were pre-processed by zero-filling prior to 2D Fourier transformation to 

produce a 32×32 matrix of voxels with in-plane spatial resolution of 6.875mm. In addition, zero-

filling was applied to each free induction decay signal in the Fourier domain, interpolating the 

original 512 data points to 2048. This provided high-resolution spectra while preserving relative 

metabolite signal intensities. 

A total of N = 2097 voxels were extracted from the MRSI data, but 132 voxels (6%) were 

excluded due to poor water suppression and misalignment (i.e., signals unable to be referenced 

as aforementioned) leaving N = 1965 voxels remaining (Table 1). Spectral data were limited 
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(4.0ppm− 0.2ppm) and the phased real part used for further analysis. Each MRSI spectrum 

consisted of M = 498 data points (Figure 1(h)). 

 

Pattern Recognition 

Dimension Reduction 

An in-house Matlab program (Matlab 2013a, Mathworks, Natick, USA) was developed for 

processing, analysis, and display for the MR spectra. All SVS or MRSI spectra were stored as a 

2D matrix, � ∈ ℝ�×�, where � = (s , s", … , s�) contains each spectrum as a column vector 

s$ ∈ ℝ�. The column vectors were normalised, 

1) s$∗ = &'
(∑ &'*+,*

		∀. ∈ /1,2, … , N0	 
to form the matrix �∗ ∈ ℝ�×�, in which N is the number of the spectra and M is the number of 

the data points of each spectrum. 

We have implemented the LE method (20), which assumes that data points lie on a smooth 

manifold that is a hyper-surface in high-dimensional space. In particular, LE computes a low-

dimensional representation of the data that preserves local neighbourhood information and 

reflects the geometric structure of the manifold. Subsequently, a weighted adjacency graph G 

with N nodes was constructed, in which each node represents a single spectrum in the dataset. To 

achieve this, the k-nearest neighbours method (k-NN) was applied to determine connectivity 

between the nodes according to the Euclidean distance in ℝ�. Weights of connected edges was 

defined using a heat kernel,  

2) 234 = 5exp8−	9&:∗;&<∗9=+ > 		if	s3∗	and	s4∗	are	connected0																	otherwise															 	.	 
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The Laplacian matrix, J	 = 	K	 − 	2, was constructed in which 2 is the adjacency matrix 

defined in Equation 2) with corresponding degree matrix, K33 = ∑ 2344 . Based on standard 

spectral graph theory the matrix transformation, L ∈ ℝ�×� where L = (y , y", … , y$) maps the 

weighted adjacency graph G to a low-dimensional space where connected nodes remain close 

together. This map is given by, 

3) arg	minO ∑ Py3 − y4P"34 234	, 
and provides heavy 234 penalties if neighbouring nodes s3∗ and s4∗ are mapped to be far apart. 

Minimisation of Equation 3) attempts to ensure that if s3∗ and s4∗ are close then the mappings 

y3 	and y4 are similar. Furthermore, as K33 = ∑ 2344 , 234 is symmetric and J	 = 	K	– 	2, we can 

derive the following, 

4) 	arg	minO ∑ Py3 − y4P"34 234 	= arg	minO ∑ Ry3" + y4" − 2y3y4T34 234 
																																																																															= arg	minO R∑ y3"K33 +3 ∑ y4"K44 − 2∑ y3y4234344 T	 

																																																										= arg	minO (2yUJy) ≡ arg	minO Tr(LUJL) ; 
therefore, the minimisation problem may be simplified to 

5) arg	minO Tr(LUJL) 	subject	to		LUKL = [ 
J is positive semi-definite thus the vector y that minimises the objective function is given by the 

minimum eigenvalue solution to the generalised eigenvalue problem (with respect to 

eigenvalues, \) as follows, 

6) Jy = \Ky	. 
The constraint LTKL = [ prevents collapse onto a subspace of dimension less than ] − 1 with 

the solution provided by the eigenvectors with the smallest non-zero eigenvalues (20). 
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For our LE-DR with further unsupervised clustering framework, we have no separate training 

dataset to optimise the two parameters (^ in the k-NN algorithm and _ in the heat kernel 

function) in LE-DR. Recent studies have shown that ^ ≈   a] is suitable for various applications 

(21,22) and that, _ can be set according to the mean distance between graph neighbours that is 

widely used in various nonlinear DR methods (23–25). Therefore, we set ^	 = 	12 and _ = 0.45 

for N = 134 SVS, and ^ = 200 and _ = 0.52 for N = 1965 MRSI. 

Our comparison for the LE-DR method is ICA, a linear blind source separation technique used to 

identify individual signals from mixtures (26), which in our study may resemble spectral patterns 

of the tissue-subtypes in each MRS voxel (11). We employed the ‘fastICA’ package 

(http://research.ics.aalto.fi/ica/fastica), which implements a fast fixed-point algorithm in Matlab 

(27). Spectra were first normalised and mean-centred and then PCA applied prior to ICA to limit 

the number of ICs generated and to provide “whitening” of the data. Pre-processing the data 

using PCA enhances ICA performance by discarding small trailing eigenvalues and reduces 

computational complexity for the fastICA iterative algorithm by minimising pairwise 

dependencies (28). In addition, PCA also de-correlates the input mixing data, and the remaining 

higher-order dependencies can be separated by ICA. Whitening ensures that all dimensions are 

treated equally a priori before the application of ICA. Three PCs were then derived as this is the 

expected number of stable components in the glioma MRS dataset (11). 

 

Unsupervised Learning Based Clustering 

k-means is one of the most popular iterative-descent clustering methods (29). In our 

implementation the sum of absolute differences was used as the dissimilarity measurement, with 

each centroid representing the component-wise mean of the points in that cluster. Cluster number 
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was set to b̂ = 3 under the assumption of the existence of three tissue classes representing 

normal brain, infiltrative tumour (Grade-II for the SVS analysis) and high-grade/necrotic tissue 

(Grade-IV for the SVS analysis). 

For AHC the Euclidean distance was used as a pairwise dissimilarity measure. A bottom-up 

paradigm was used to recursively merge pairs of clusters into a single cluster at each level (30). 

Pairs were merged based on the smallest inter-group dissimilarity. 

 

Data Analysis 

SVS Data Analysis 

PCA+ICA and LE were applied to the SVS dataset and each spectrum was assigned a spectral 

classification label according to their ranked eigenvalues. Mean eigenvector spectra and variance 

were then calculated for identification of the tissue types represented by each spectral class.  

k-means and AHC methods were used to segment the 3D eigenspace for each DR method. 

Quantitative validation was provided by mean silhouette values (31). For each k-means or 

hierarchical cluster, the cluster label was defined according to the metabolic characteristics of the 

mean cluster spectrum. Clustering performance was evaluated by accuracy, sensitivity, 

specificity and balanced error rate (BER) (32) computed with respect to “ground truth” 

histopathological diagnosis for each patient. 

 

MRSI Data Analysis 

The above analysis was also applied to the MRSI data. Results were visualised using colour 

overlays (green—normal, blue—infiltrative, red—high-grade/necrotic) on conventional MRI to 
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allow assessment of classification results in the absence of histopathological ground truth for all 

voxels in the MRSI dataset. 

Since we have a small number of MRSI datasets for each tumour grade, and the components 

derived by data reduction will depend on the input dataset, we propose a take-one-out method for 

the MRSI analysis as an added estimate of the stability of the overall process of tissue 

segmentation by data reduction and clustering. This is unlike the standard leave-one-out process, 

and assesses the consistency of data clustering (in the absence of definitive tissue classification 

for every MRSI voxel) rather than the accuracy of classification. Cluster stability (CS) was 

defined as the percentage difference between classification labels of all MRSI voxels before and 

after one patient dataset was removed prior to the DR and clustering procedure. CS was 

computed separately for each tissue segment c ∈ /1,2,30 such that, 

7) CSf = ∑ g(hi,f)$i × 100	wherehi 	j(k̂, c) = m0	if	j(k) = c = 	j(k̂)1	if	j(k) = c ≠ 	j(k̂)	, 
where j(k) is the voxel classification that is computed from the entire MRSI dataset and j(k̂) is 

the voxel classification computed over the set of MRSI voxels k̂ ∈{1,2,…,.i} after removal of 

one patient. Clustering performance was evaluated by CS and BER, which was computed by 

comparing colour overlays with histopathological diagnosis for each patient. 
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RESULTS 

Dimensionality Reduction 

Figure 1 shows eigenvector results represented as spectra for DR by PCA+ICA (Figure 1(b)-(d)) 

and LE (Figure 1(e)-(g)) for SVS data and for MRSI data (Figure 1(i)-(n)). Common spectral 

features were observed for the eigen-decomposed spectra derived by both DR techniques for 

both datasets. Eigenvector 1 (Figure 1(b), (e), (i), and (l)) shows characteristic NAA, tCr, tCho 

and mI peaks in proportions typical of normal brain tissue. Eigenvector 3 (Figure 1(d), (g), (k), 

and (n)) shows the absence of NAA and includes large lipid/macromolecules signals at 1.3 and 

0.9 ppm, which are characteristic of tumour core with necrotic regions in high-grade tumours. 

Eigenvector 2 shows elevated mI and reduced NAA for all DR results (Figure 1(c), (f), (j), and 

(m)) and is likely associated with the presence of glial cells and neuronal cell loss found in 

infiltrative tumour regions. For the PCA+ICA analysis there is also elevated tCho (Figure 1(c) 

and (j)). Eigenvector 2 shows less consistency across all analyses, but has characteristics that can 

be associated with Grade-II gliomas and regions of tumour infiltration. Overall there appears to 

be more consistency between the two spectroscopic datasets for the eigenvectors derived by LE-

DR than by PCA+ICA. 

 

SVS Data Cluster Analysis 

Figure 2(a)-(d) shows eigenvalue scatter plots coloured according to cluster group (normal brain 

tissue—green, Grade-II—blue, Grade-IV—red). Cluster group assignment is based on the 

similarity of their mean metabolite spectra (Figure 2(e)-(p)) to the known spectra of normal brain 

and the mean spectra of gliomas of different grades as found in other brain tumour studies 

(33,34) and also shown for the current single voxel data in Figure 3(a) to (c). For the purpose of 
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labelling, Figure 2(i) is also assigned as Grade-II, although it closely resembles normal brain 

spectra there is slightly elevated tCho and the presence of a small lactate doublet, both of which 

are Grade-II characteristics. The scatterplots show that LE-DR increases the separation between 

tissue classes by unfolding the data into a more linear distribution compared to PCA+ICA. This 

particularly affects the combination of PCA+ICA with k-means, which does not make such a 

clear separation of the metabolic characteristics of normal tissue and low-grade tumours as 

shown by the mean and standard deviation spectra (Figure 2(e) and (i)).  

Both clustering methods have significantly lower mean silhouette widths after PCA+ICA than 

LE-DR (Wilcoxon signed-rank test o < 0.001, Table 2) indicating the presence of data outliers. 

Better clustering after LE-DR is potentially attributable to unfolding of the original high-

dimensional data into a more linear low-dimensional data structure.  

Smaller classification errors were obtained for k-means clustering by LE than by PCA+ICA, 

whereas low classification errors were found for AHC after both DR techniques (Table 2). 

Normal spectra were only misclassified by the combination of k-means clustering and 

PCA+ICA. The improved classification by k-means after LE-DR is indicated by higher 

sensitivity and specificity for classification of normal and Grade-II tumours (Table 4). 

The mean and standard deviation spectra for the tissue classes according to histopathologically 

classification of a biopsy are shown in Figure 3(a)-(c) and are similar to the spectra derived from 

all the DR and cluster analyses except for that by PCA+ICA with k-means (Figure 2(i)). 

Examples of outlying spectra are identified for normal tissue (Figure 3(d)), Grade-II 

gemistocytic astrocytoma (Figure 3(e)) and Grade-IV glioblastoma (Figure 3(f)). The normal 

spectra are generally well clustered in the LE-DR eigenspace (Figure 3(g)), even for a normal 

spectrum with low-grade characteristics of elevated choline to creatine due to the rising baseline 
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from poor water suppression (Figure 3(d)). Inconsistency between diagnosis and classification is 

found in the Grade-II and Grade-IV cases. Here the outlying Grade-II spectrum (Figure 3(e) and 

(h)) has high-lipid components and is misclassified as Grade-IV. The Grade-IV glioblastoma 

spectrum (Figure 3(f) and (i)) has no lipid component and is misclassified as Grade-II. 

 

MRSI Data Cluster Analysis 

Eigenvalue scatter plots Figure 4(a)-(d) show the LE method to provide a more linear 

distribution of eigenvalues than the PCA+ICA method in accordance with the SVS data (Figure 

2(a)-(d)). For each DR technique both k-means and AHC methods show similar clustering 

characteristics (as seen by comparing Figure 4(a) and (c) or Figure 4(b) and (d)). Mean spectra of 

the clusters for all four methods show similarities for normal tissue characteristics (Figure 4(e)-

(h)) and high-grade necrotic core (Figure 4(m)-(p)) as found using SVS data (Figure 2(e)-(h) and 

Figure 2(m)-(p)). Differences in mean spectra are found in the cluster potentially attributable to 

low-grade tumour characteristics (PCA+ICA Figure 4(i) and (k); LE-DR Figure 4(j) and (l)). 

Here the PCA+ICA mean spectra have a slight reduction in NAA and elevation in tCho more 

likely associated with Grade-II tumour infiltrative regions. The LE-DR mean spectra has a 

greater elevation in tCho, greater reduction in NAA and presence of lipid and macromolecules 

peaks (1.3 and 0.9ppm) and so would be associated with infiltration that also includes some 

high-grade tumour regions. For the purposes of labelling we refer to this as the tumour 

infiltration cluster. 

Visualisation of AHC results overlain on conventional MRI allowed the anatomical locations of 

segmented tissue types to be visually assessed. Six exemplary cases are illustrated in Figure 5 

consisting of 2 Grade-II (1 diffuse astrocytoma Figure 5(a) and (g); 1 gemistocytic astrocytoma 
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Figure 5(b) and (h)), 2 Grade-III (anaplastic astrocytomas) and 2 Grade-IV (glioblastomas). For 

7 out of the 30 MRSI datasets, PCA+ICA misclassified normal tissue voxels that were distant 

from or contralateral to the main lesion as tumour (Table 3) for k-means (data not shown) and for 

AHC (Figure 5).  

To provide an assessment of the accuracy of AHC techniques for correctly identifying patients 

with low-grade (Grade-II) or high-grade (Grade-III and IV) tumours, each patient MRSI colour 

map was considered to represent high-grade tumour if any voxel was coloured red (i.e., high-

grade/necrotic core) and low-grade if only coloured blue or green (i.e., the infiltration cluster). 

Good accuracy and low BER (better than for the SVS data) was achieved for all analysis 

combinations for Grade-II vs. Grade-IV classification (Table 3). However, the inclusion of 

Grade-III in the high-grade group reduced classification performance (Table 3). Cystic regions in 

Grade-II and Grade-III cases are graded as high-grade by PCA+ICA (Figure 5(a) and (d)) due to 

the presence of lactate, which is effectively misinterpreted as a lipid component in the data 

reduction. This is in contrast to LE-DR, where all cystic regions are clustered and classified as 

infiltration regions. Hence there is a higher BER for Grade-II vs. IV classification with 

PCA+ICA than for LE-DR (Table 3). Conversely the grading of cystic regions in some Grade-III 

as high-grade by PCA+ICA (Figure 5(d)) provides slightly higher classification accuracy 

compared to LE-DR for Grade-II vs. Grade-III and Grade-IV (Table 3).  

The best performance across all measures (Table 2 and Table 3) was achieved by LE-DR with 

AHC. In general, this provides anatomically reasonable classification of low-grade regions 

within (Figure 5(h)) or up to the edge of the T2-weighted MRI abnormality (Figure 5(g)). For 

high-grade tumours there is generally a core region (red) surrounded by an infiltrative (blue) 

margin that extends beyond the post-gadolinium T1-weighted margin (Figure 5(k)) or lies within 
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the T2-weighted hyper-intense region (Figure 5(l)). Grade-III tumours were mixed in terms of 

these characteristics (Figure 5(i) and (j)). 
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DISCUSSION 

In this study we have developed a new metric to qualitatively and quantitatively characterise 

brain tissue of patients into normal, tumour infiltration, and tumour core segmentations using a 

nonlinear one-step DR by LE on 
1
H MRS data. Overall, our results suggest that an LE-DR+AHC 

framework provides improved tissue classification compared to conventional linear PCA+ICA 

with k-means methods. The classification results of the SVS analysis also suggest the visual 

segmentations provided by MRSI colour overlays for necrotic tumour core and infiltration have 

validity (Figure 5(g)-(l)). 

A limitation of the current MRSI study is that in-vivo multiple-voxel data has no 

histopathological validation available on a voxel-by-voxel basis. The gold standard of brain 

tumour diagnosis is histopathological analysis of a biopsy, with the highest grade tumour cells 

determining the clinical grade and subsequent patient treatment. However, this may not fully 

represent the average tumour characteristic over large MRS voxels. Consequently, errors in 

“ground truth” may affect classifier derivation and accuracy evaluation (35). With our 

unsupervised classification we have found that for both SVS and MRSI data LE-DR provides a 

natural clustering of spectra that agrees well with the clinical and histopathological diagnosis of 

Grade-II and Grade-IV gliomas and to the anatomical extent of these tumours by MRI (Figure 5). 

The apparent Grade-II regions surrounding a Grade-IV core (Figure 5(k) and (l)) have been 

observed in other MRSI studies (3,11). Partial volume of high-grade tumour core with 

surrounding infiltrative tumour will lead to a continuum of spectral characteristics; hence with 

unsupervised clustering of the MRSI data there is some mixing of the Grade-II and high-grade 

necrotic spectra (Figure 4(j) and (l)) with LE-DR. However, this appears less of a problem in 
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terms of classification and characterisation (Table 3) than the effects of partial volume mixing of 

Grade-II and normal tissue when using PCA+ICA data reduction (Figure 4(i) and (k)). 

Classification of Grade-III tumours remains a challenge due to heterogeneous tumour 

characteristics. In this study we assumed the existence of three distinct tissue components. In a 

preliminary study (data not shown) 4 LE components were tested, but provided no added benefit 

in tumour tissue classification, with the additional sub-class representing partial volume of grey 

and white matter regions. 

Although we may expect a linear signal path from tissue metabolite concentration to MRS signal 

intensity and that spectra from mixed tissue types will add in linear proportion, our results 

suggest benefits for application of nonlinear data analysis techniques. In the presence of large 

heterogeneity found in tumours and adjacent brain tissue there is no reason to suppose simple 

linear functions will provide the best relationship between MR spectrum (visual data) and tissue 

class (world state) (36). The LE method provides very narrow eigenvector spectral peaks for 

normal brain components (Figure 1(e)) and broader peaks for tumour (Figure 1(f) and (g)) in 

contrast to PCA+ICA (Figure 1(b)-(d)). This suggests that LE-DR is potentially detecting factors 

associated with nonlinear effects in metabolite line shape in tumour tissue. Nonlinear effects also 

occur due to distortions in relative metabolite peak heights for peripheral MRSI voxels due to 

chemical shift artefacts; however, in the current study these were reduced by excluding outer 

edge voxels of the MRSI volume. Variations in metabolite line-width and nonlinear variations in 

peak height may be caused by heterogeneity of tumour tissue. Necrosis, fibrosis, oedema and 

haemorrhage may all contribute to microscopic magnetic field inhomogeneities at the cellular 

level and cause larger scale heterogeneity across the MRSI volume and spectrum distortions. 
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The LE-DR method appears to unfold the MRS data to a more linear data structure than 

PCA+ICA. A consequence of this is a more linear geometry for data clustering that leads to 

better cluster stability following LE-DR than compared PCA+ICA. It is apparent that LE-DR 

unfolds the MRS data into a structure of spectral characteristics form normal brain to high-grade 

tumour characteristics that provides improved classification accuracies and lower error rates.  

Our classification accuracies of 93% with SVS and 91% with MRSI for distinguishing Grade-II 

from Grade-IV tumours compares well to other PR analyses. Classification accuracy of 93% has 

been obtained by combining long-echo and short-echo spectra (37); however, this would be 

difficult to routinely achieve due to time constraints. A more recent approach used Non-negative 

Matrix Factorisation (NMF) to accomplish the DR task for SV tumour spectra (38); however, 

NMF methods converge to local minima and various initialisations provide different DR and 

thus require an elaborate initialisation scheme (38). Ortega-Martorell et al. reached 22% BER 

with long echo SVS and 7% BER with short echo SVS for supervised classification of Grade-II, 

Grade-IV and normal spectra (38). In contrast, our unsupervised learning framework, which 

requires minimum parameter manipulation and no extra supervised training procedure, obtained 

best classification accuracy for LE-DR+AHC with an 11% BER for SVS and 8% BER for MRSI 

data. Further work with a more supervised approach to defining the clusters from LE-DR should 

achieve improved classification, but needs validation such as with appropriately localised biopsy 

classification (39) or from longitudinal studies to confirm the presence of tumour infiltration and 

grade from tumour growth characteristics and patient outcome (40).  
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CONCLUSIONS 

This work presents a threefold contribution to automated analysis of brain tumour 
1
H MRS data. 

Firstly, to the best of our knowledge this is the first time a nonlinear DR method has been 

applied to MRSI data. Secondly, we have demonstrated a one-step DR using nonlinear LE in 

comparison to ICA (which relies on data pre-processing using PCA). LE-DR reduces the risk of 

loss of relevant data features and leads to better classification accuracy and clustering stability 

measures. Thirdly, promising brain tissue segmentations have been achieved using LE-DR with 

unsupervised clustering of the data. Clustering using k-means or hierarchical algorithms and 

colour visualisation techniques indicate the possible benefits for the nonlinear LE-DR method in 

determining different MRS characteristics for low- and high-grade gliomas and for identifying 

infiltration into normal brain tissue. With further validation these techniques could aid targeted 

biopsies and improve surgical and radiotherapy planning. 

 

Page 20 of 72

Magnetic Resonance in Medicine

Magnetic Resonance in Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

21 

 

Table 1 

Number of Subjects Studied 

Dataset Grade II Grade III Grade IV Normal In total 

Experiment 1: SV MRS 24 0 31 3 58 

Experiment 2: MRSI 10 7 13 0 30 

Number of MRS Voxels Analysed 

Dataset From Grade II From Grade III From Grade IV From Normal In total 

Experiment 1: SV MRS 24 0 31 79 134 

Experiment 2: MRSI 722 509 734 0 1965 
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Table 2 

Test 
k-means Clustering  AHC 

PCA+ICA LE PCA+ICA LE 

Silhouette Analysis (SVS) 0.4±0.3 0.6±0.2 0.5±0.2 0.6±0.2 

Tumour vs. Normal Classification (SVS) 67% 100% 100% 100% 

Classification Accuracy / BER (SVS) 60% / 30% 93% / 11% 93% / 11% 93% / 11% 
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Table 3 

Test 
k-means Clustering  AHC 

PCA+ICA LE PCA+ICA LE 

Cluster Stability (MRSI) 10%±19% 2%±1% 5%±2% 1%±1% 

Normal tissue misclassified as GII (MRSI) Yes (7/30) No Yes (7/30) No 

GII vs. GIV Accuracy / BER (MRSI) 91% / 9%  91% / 8% 91% / 9%  91% / 8% 

GII vs. (GIII + GIV) Accuracy / BER (MRSI) 77% / 20%  73% / 20% 77% / 20%  73% / 20% 
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Table 4 

k-means Clustering Predicted Group Membership Sens. and Spec. 

    Nor GII GIV Total Sens. Spec. 

PCA+ICA 
Brain Tissue 

Types 

Nor 35 44 0 79 44% 100% 

GII 0 21 3 24 88% 54% 

GIV 0 7 24 31 77% 97% 

LE 
Brain Tissue 

Types 

Nor 79 0 0 79 100% 100% 

GII 0 24 0 24 100% 91% 

GIV 0 10 21 31 68% 100% 

Hierarchical Clustering Predicted Group Membership Sens. and Spec. 

    Nor GII GIV Total Sens. Spec. 

PCA+ICA 
Brain Tissue 

Types 

Nor 79 0 0 79 100% 100% 

GII 0 21 3 24 88% 95% 

GIV 0 6 25 31 81% 97% 

LE 
Brain Tissue 

Types 

Nor 79 0 0 79 100% 100% 

GII 0 21 3 24 88% 95% 

GIV 0 6 25 31 81% 97% 

 

Page 24 of 72

Magnetic Resonance in Medicine

Magnetic Resonance in Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

25 

 

ACKNOWLEDGEMENT 

This work was supported by Cancer Research UK project, grant number C1459/A13303, and 

data was obtained during the EU FP7 eTUMOUR project. 

 

 

 

Page 25 of 72

Magnetic Resonance in Medicine

Magnetic Resonance in Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

26 

 

REFERENCES 

1. Hall WA. The safety and efficacy of stereotactic biopsy for intracranial lesions. Cancer 

1998;82:1749–1755. 

2. Favre J, Taha JM, Burchiel KJ. An analysis of the respective risks of hematoma formation in 

361 consecutive morphological and functional stereotactic procedures. Neurosurgery 

2002;50:48–56. 

3. De Edelenyi FS, Rubin C, Estève F, et al. A new approach for analyzing proton magnetic 

resonance spectroscopic images of brain tumors: nosologic images. Nat Med 2000;6:1287–1289. 

4. Jackson RJ, Fuller GN, Abi-Said D, Lang FF, Gokaslan ZL, Shi WM, Wildrick DM, Sawaya 

R. Limitations of stereotactic biopsy in the initial management of gliomas. Neuro. Oncol. 

2001;3:193–200. 

5. Howe FA, Opstad KS. 1H MR spectroscopy of brain tumours and masses. NMR Biomed. 

2003;16:123–131. 

6. Tate AR, Majós C, Moreno A, Howe FA, Griffiths JR, Arús C. Automated classification of 

short echo time in in vivo 1H brain tumor spectra: A multicenter study. Magn. Reson. Med. 

2003;49:29–36. 

7. Devos A, Lukas L, Suykens JAK, et al. Classification of brain tumours using short echo time 

1H MR spectra. J. Magn. Reson. 2004;170:164–175. 

8. Simonetti AW, Melssen WJ, De Edelenyi FS, van Asten JJ A, Heerschap A, Buydens LMC, 

De Edelenyi FS. Combination of feature-reduced MR spectroscopic and MR imaging data for 

improved brain tumor classification. NMR Biomed. 2005;18:34–43. 

9. Georgiadis P, Kostopoulos S, Cavouras D, Glotsos D, Kalatzis I, Sifaki K, Malamas M, 

Solomou E, Nikiforidis G. Quantitative combination of volumetric MR imaging and MR 

spectroscopy data for the discrimination of meningiomas from metastatic brain tumors by means 

of pattern recognition. Magn. Reson. Imaging 2011;29:525–535. 

10. De Edelenyi FS, Simonetti, F. A, Postma WG, Huo R, Buydens LMC. Application of 

independent component analysis to 1H MR spectroscopic imaging exams of brain tumours. Anal. 

Chim. Acta 2005;544:36–46. 

11. Wright AJ, Fellows G, Byrnes TJ, Opstad KS, McIntyre DJO, Griffiths JR, Bell BA, Clark 

CA, Barrick TR, Howe FA. Pattern recognition of MRSI data shows regions of glioma growth 

that agree with DTI markers of brain tumor infiltration. Magn. Reson. Med. 2009;62:1646–1651. 

Page 26 of 72

Magnetic Resonance in Medicine

Magnetic Resonance in Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

27 

 

12. Luts J, Laudadio T, Idema AJ, Simonetti AW, Heerschap A, Vandermeulen D, Suykens JAK, 

Van Huffel S. Nosologic imaging of the brain: segmentation and classification using MRI and 

MRSI. NMR Biomed. 2009;22:374–390. 

13. Lee JM. Riemannian Manifolds: An Introduction to Curvature. Springer, New York; 1997. 

14. Bartlett MS, Movellan JR, Sejnowski TJ. Face recognition by independent component 

analysis. Neural Networks, IEEE Trans. 2002;13:1450–1464. 

15. Schölkopf B, Smola A, Müller K-R. Nonlinear component analysis as a kernel eigenvalue 

problem. Neural Comput. 1998;10:1299–1319. 

16. Tenenbaum JB, De Silva V, Langford JC. A Global Geometric Framework for Nonlinear 

Dimensionality Reduction. Science. 2000;290:2319–2323. 

17. Law MHC, Jain AK. Incremental nonlinear dimensionality reduction by manifold learning. 

Pattern Anal. Mach. Intell. IEEE Trans. 2006;28:377–391. 

18. Roweis ST, Saul LK. Nonlinear Dimensionality Reduction by Locally Linear Embedding. 

Science. 2000;290:2323–2326. 

19. Saul LK, Roweis ST. Think globally, fit locally: unsupervised learning of low dimensional 

manifolds. J. Mach. Learn. Res. 2003;4:119–155. 

20. Belkin M, Niyogi P. Laplacian Eigenmaps for dimensionality reduction and data 

representation. Neural Comput. 2003;15:1373–1396. 

21. Chen L, Tsang IW, Xu D. Laplacian Embedded Regression for Scalable Manifold 

Regularization. IEEE Trans. Neural Networks Learn. Syst. 2012;23:902–915. 

22. Wu R, Yu Y, Wang W. SCaLE: Supervised and Cascaded Laplacian Eigenmaps for Visual 

Object Recognition Based on Nearest Neighbors. 2013 IEEE Conf. Comput. Vis. Pattern 

Recognit. 2013:867–874. 

23. De Silva V, Tenenbaum J. Global versus local methods in nonlinear dimensionality 

reduction. Adv. Neural Inf. Process. Syst. 2003:721–728. 

24. Charpiat G, Faugeras O, Keriven R, Maurel P. Distance-based shape statistics. Acoust. 

Speech Signal Process. 2006;5:925–928. 

25. Luxburg U. A tutorial on spectral clustering. Stat. Comput. 2007;17:395–416. 

26. Hyvärinen A, Karhunen J, Oja E. Independent component analysis. John Wiley & Sons; 

2004 pp. 1–11, 287–289. 

Page 27 of 72

Magnetic Resonance in Medicine

Magnetic Resonance in Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

28 

 

27. Hyvärinen A, Oja E. A fast fixed-point algorithm for independent component analysis. 

Neural Comput. 1997;1492:1483–1492. 

28. Draper BA., Baek K, Bartlett MS, Beveridge JR. Recognizing faces with PCA and ICA. 

Comput. Vis. Image Underst. 2003;91:115–137. 

29. MacKay D. Chapter 20. An Example Inference Task: Clustering. In: Information Theory, 

Inference and Learning Algorithms. Cambridge University Press; 2003. pp. 284–292. 

30. Press W, Teukolsky S, Vetterling W, Flannery B. Section 16.4. Hierarchical Clustering by 

Phylogenetic Trees. In: Numerical Recipes: The Art of Scientific Computing. New York: 

Cambridge University Press; 2007. pp. 868–881. 

31. Rousseeuw PJ. Silhouettes: A graphical aid to the interpretation and validation of cluster 

analysis. J. Comput. Appl. Math. 1987;20:53–65. 

32. Chen Y, Lin C. Combining SVMs with various feature selection strategies. In: Guyon I, 

Nikravesh M, Gunn S, Zadeh LA, editors. Feature Extraction: Foundations and Applications. 

Springer Berlin Heidelberg; 2006. pp. 315–324. 

33. Tate AR, Underwood J, Acosta DM, et al. Development of a decision support system for 

diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra. 

NMR Biomed. 2006;19:411–434. 

34. Opstad KS, Ladroue C, Bell BA, Griffiths JR, Howe FA. Linear discriminant analysis of 

brain tumour 1H MR spectra: a comparison of classification using whole spectra versus 

metabolite quantification. NMR Biomed. 2007;20:763–770. 

35. Yang G, Raschke F, Barrick TR, Howe FA. Classification of Brain Tumour 1H MR Spectra : 

Extracting Features by Metabolite Quantification or Nonlinear Manifold Learning? In: 

Biomedical Imaging (ISBI), 2014 IEEE 11th International Symposium on. IEEE. ; 2014. pp. 

1039–1042. 

36. Prince SJD. Computer vision: models, learning and inference. 1st ed. Cambridge University 

Press; 2012. pp. 145–147. 

37. García-Gómez J, Tortajada S, Vidal C. On the use of long TE and short TE SV MR 

spectroscopy to improve the automatic brain tumor diagnosis. Technical Report, Katholieke 

University Leuven; 2007; pp. 1–25. 

38. Ortega-Martorell S, Lisboa PJG, Vellido A, Julià-Sapé M, Arús C. Non-negative matrix 

factorisation methods for the spectral decomposition of MRS data from human brain tumours. 

BMC Bioinformatics 2012;13:38. 

39. McKnight TR, von dem Bussche MH, Vigneron DB, Lu Y, Berger MS, McDermott MW, 

Dillon WP, Graves EE, Pirzkall A, Nelson SJ. Histopathological validation of a three-

Page 28 of 72

Magnetic Resonance in Medicine

Magnetic Resonance in Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

29 

 

dimensional magnetic resonance spectroscopy index as a predictor of tumor presence. J. 

Neurosurg. 2002;97:794–802. 

40. Wald LL, Nelson SJ, Day MR, et al. Serial proton magnetic resonance spectroscopy imaging 

of glioblastoma multiforme after brachytherapy. J. Neurosurg. 1997;87:525–534. 

 

  

Page 29 of 72

Magnetic Resonance in Medicine

Magnetic Resonance in Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

30 

 

Figure and Table Captions 

Figure 1: Summary of pre-processed data and derived DR eigenvectors for SVS (a-g) and MRSI data (h-n). All pre-

processed SVS and MRSI spectra are showed overlain in (a) and (h), respectively. For the SVS data, (b-d) show the three 

eigenvector components obtained after application of PCA+ICA and (e-g) are the three eigenvector components 

associated with the LE solution. For MRSI data analysis, the three independent components obtained after application of 

PCA+ICA are illustrated (i-k) with the three eigenvector components associated with the LE solution (l-n). The 

eigenvectors for each analysis are displayed in order for the tissue class they appear to represent: Eigenvector 1—normal 

brain; Eigenvector 2—Grade-II or infiltration; Eigenvector 3—Grade-IV or necrotic tissue. All spectra are displayed 

with a 0 to 4ppm x-axis and the spectra truncated to 0.2 – 4ppm as used in the analysis. 

Figure 2: SVS data clustering results (a-d) and mean spectra for the various clusters (e-p). Scatter plots show the results 

of k-means (a and b) and agglomerative hierarchical clustering (c and d) when applied to the PCA+ICA (a and c) and LE-

DR (b and d). Colour coding of the scatter plots is according to the tissue class most likely associated to the mean spectra 

of each cluster (e-p) with: green—normal brain tissue; blue—Grade-II; red—Grade-IV. Mean (solid red curve) and one 

standard deviation (dashed green curves) spectra are illustrated below each scatter plot. All spectra are displayed with a 0 

to 4ppm x-axis and the spectra truncated to 0.2 – 4ppm as used in the analysis. 

Figure 3: Assessment of the LE-DR clustering of the SVS experiment with respect to the clinical and histological based 

“ground truth”. Mean (solid red curve) and standard deviation spectra (dashed green curves) are shown for: (a) 79 

normal; (b) 24 Grade-II; and (c) 31 Grade-IV classes. Panels (d-f) show non-typical cases of: (d) a normal spectrum with 

a Grade-II feature of elevated Cho to Cr ratio due to baseline distortion; (e) a Grade-II tumour spectrum with prominent 

Grade-IV features; and (f) a Grade-IV tumour spectrum with no lipid signals and therefore Grade-II characteristics. 

These atypical spectra are indicated within the LE-DR scatter plot (g), which is colour coded according to ground truth 

labels: green—normal brain tissue; blue—Grade-II; red—Grade-IV. Image (h) shows a FLAIR image of Grade-II case 

(e). Image (i) shows the T2-weighted image of Grade-IV case (f). The planned SVS location is shown by red box in both 

cases. All spectra are displayed with a 0 to 4ppm x-axis and the spectra truncated to 0.2 – 4ppm as used in the analysis. 

Figure 4: The MRSI data clustering results (a-d) and mean spectra for the various clusters (e to p). Scatter plot show the 

results of k-means (a and b) and agglomerative hierarchical clustering (c and d) when applied to the PCA+ICA (a and c) 

and LE-DR (b and d). Colour coding of the scatter plots is according to the tissue class most likely associated to the mean 

spectra of each cluster (e to p) with: green—normal brain tissue; blue—infiltrative tumour; red—high grade 

tumour/necrotic core. Mean (solid red curve) and one standard deviation (dashed green curves) spectra are illustrated for 

the clusters underneath each scatter plot. All spectra are displayed with a 0 to 4ppm x-axis and the spectra truncated to 

0.2 – 4ppm as used in the analysis. 

Figure 5: RGB overlays on conventional images showing the tissue group assigned to the spectrum in each MRSI voxel 

after agglomerative hierarchical clustering of the complete MRSI dataset. The top row illustrates results using PCA+ICA 

and the bottom row shows results using LE-DR data. Two Grade-II cases (left two columns), two Grade-III cases (middle 

two columns), and two Grade-IV cases (right two columns) are shown. Colour coding is: green—normal brain; blue—

infiltrative tumour; red—high-grade/necrotic tumour. Non-coloured voxels within the MRSI grid were removed by our 

quality control criteria. 
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Table 1: Summary of the number of patients studied and the number of spectroscopic voxels analysed for each tissue 

class. For the SVS experiment, we applied our methods to 55 SV tumour spectra combined with 79 normal spectra 

derived from the MRSI data of 3 normal controls. For the MRSI experiment, we applied our method to 1965 2D CSI 

spectra derived from Grade-II, Grade-III and Grade-IV patients. No extra normal control data were added into the 

MRSI analysis because the rectangular 2D CSI grid included enough contralateral normal voxels from the tumour 

patients.    

Table 2: Summary evaluation of all the methods for SVS data (55 patients with 55 tumour spectra plus 79 spectra 

extracted from 3 healthy controls using MRSI). Bold text indicates the best performer or best performers if all equal. 

Table 3: Summary evaluation of all the methods for MRSI data (30 patient cases with 1965 voxels). Bold text indicates the 

best performer or best performers if all equal. 

Table 4: Summary of the quantitative validation of clustering techniques on DR results in the SVS experiment with 

respect to histopathological ground truth. Nor: normal brain tissue; GII: Grade-II tumour tissue; GIV: Grade-IV tumour 

tissue; Sens.: sensitivity; Spec.: specificity. 
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Figure 1: Summary of pre-processed data and derived DR eigenvectors for SVS (a-g) and MRSI data (h-n). 
All pre-processed SVS and MRSI spectra are showed overlain in (a) and (h), respectively. For the SVS data, 
(b-d) show the three eigenvector components obtained after application of PCA+ICA and (e-g) are the three 

eigenvector components associated with the LE solution. For MRSI data analysis, the three independent 
components obtained after application of PCA+ICA are illustrated (i-k) with the three eigenvector 

components associated with the LE solution (l-n). The eigenvectors for each analysis are displayed in order 
for the tissue class they appear to represent: Eigenvector 1—normal brain; Eigenvector 2—Grade-II or 

infiltration; Eigenvector 3—Grade-IV or necrotic tissue. All spectra are displayed with a 0 to 4ppm x-axis and 

the spectra truncated to 0.2 – 4ppm as used in the analysis.  
34x14mm (600 x 600 DPI)  
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Figure 2: SVS data clustering results (a-d) and mean spectra for the various clusters (e-p). Scatter plots 
show the results of k-means (a and b) and agglomerative hierarchical clustering (c and d) when applied to 
the PCA+ICA (a and c) and LE-DR (b and d). Colour coding of the scatter plots is according to the tissue 

class most likely associated to the mean spectra of each cluster (e-p) with: green—normal brain tissue; 
blue—Grade-II; red—Grade-IV. Mean (solid red curve) and one standard deviation (dashed green curves) 
spectra are illustrated below each scatter plot. All spectra are displayed with a 0 to 4ppm x-axis and the 

spectra truncated to 0.2 – 4ppm as used in the analysis.  
60x47mm (600 x 600 DPI)  
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Figure 3: Assessment of the LE-DR clustering of the SVS experiment with respect to the clinical and 
histological based “ground truth”. Mean (solid red curve) and standard deviation spectra (dashed green 

curves) are shown for: (a) 79 normal; (b) 24 Grade-II; and (c) 31 Grade-IV classes. Panels (d-f) show non-
typical cases of: (d) a normal spectrum with a Grade-II feature of elevated Cho to Cr ratio due to baseline 
distortion; (e) a Grade-II tumour spectrum with prominent Grade-IV features; and (f) a Grade-IV tumour 
spectrum with no lipid signals and therefore Grade-II characteristics. These atypical spectra are indicated 
within the LE-DR scatter plot (g), which is colour coded according to ground truth labels: green—normal 

brain tissue; blue—Grade-II; red—Grade-IV. Image (h) shows a FLAIR image of Grade-II case (e). Image (i) 

shows the T2-weighted image of Grade-IV case (f). The planned SVS location is shown by red box in both 
cases. All spectra are displayed with a 0 to 4ppm x-axis and the spectra truncated to 0.2 – 4ppm as used in 

the analysis.  
24x28mm (600 x 600 DPI)  
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Figure 4: The MRSI data clustering results (a-d) and mean spectra for the various clusters (e to p). Scatter 
plot show the results of k-means (a and b) and agglomerative hierarchical clustering (c and d) when applied 
to the PCA+ICA (a and c) and LE-DR (b and d). Colour coding of the scatter plots is according to the tissue 

class most likely associated to the mean spectra of each cluster (e to p) with: green—normal brain tissue; 
blue—infiltrative tumour; red—high grade tumour/necrotic core. Mean (solid red curve) and one standard 
deviation (dashed green curves) spectra are illustrated for the clusters underneath each scatter plot. All 
spectra are displayed with a 0 to 4ppm x-axis and the spectra truncated to 0.2 – 4ppm as used in the 

analysis.  
60x47mm (600 x 600 DPI)  
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Figure 5: RGB overlays on conventional images showing the tissue group assigned to the spectrum in each 
MRSI voxel after agglomerative hierarchical clustering of the complete MRSI dataset. The top row illustrates 

results using PCA+ICA and the bottom row shows results using LE-DR data. Two Grade-II cases (left two 

columns), two Grade-III cases (middle two columns), and two Grade-IV cases (right two columns) are 
shown. Colour coding is: green—normal brain; blue—infiltrative tumour; red—high-grade/necrotic tumour. 

Non-coloured voxels within the MRSI grid were removed by our quality control criteria.  
86x36mm (600 x 600 DPI)  
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