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ABSTRACT

Magnetic resonance spectroscopic imaging (MRSI) is a promising tool to

acquire in vivo biochemical information, and spectral estimation (quantifi-

cation) of MRSI data is an important step towards quantitative studies.

Although a large body of work has been done on spectral estimation over the

past decades, it remains challenging due to model nonlinearity and extremely

low signal-to-noise ratio (SNR). Building on the existing methods which ef-

fectively incorporate spectral prior knowledge in the form of basis functions,

this work addresses the spectral estimation problem by incorporating both

spectral and spatial prior information. Specifically, we jointly estimate the

spectra over all the voxels of interest, incorporating prior spatial information

in a regularization framework. The effectiveness of the proposed method

has been evaluated using both simulated and experimental data. A theo-

retical analysis based on Cramér-Rao Bound is proposed to further assess

the performance improvement of the proposed method over state-of-the-art

methods. The proposed spectral estimation method should prove useful in

various MRSI studies.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

MRSI is a unique, non-invasive tool to acquire in vivo physiological infor-

mation without using molecular probes or radionuclide tracers. MRSI inte-

grates the capability of conventional MRI and MR spectroscopy to obtain

spatially resolved spectra, which have proved to be valuable biochemical in-

formation about the imaging subject. For example, MRSI can be used to

study metabolism and to understand various physiological processes [1]; it

can also be used for the detection, diagnosis, and treatment of diseases [2, 3].

One critical step for in vivo applications of MRSI is to extract quantitative

information from the spatially resolved spectra through spectral estimation

(also know as the quantification of MRSI). However, the inherent low sensi-

tivity of MR techniques and the resulting low SNR make spectral estimation

for MRSI a challenging problem.

A simple and still widely used spectral estimation method is to perform

spectral integration, but its practical use is often limited to MRSI experi-

ments with high SNR and the quantification of molecules without overlap-

ping spectral components. For better quantification reliability, especially

for low SNR MRSI data, model-based analysis is often preferred. Exist-

ing model-based methods usually exploit spectral prior knowledge by incor-

porating spectral bases into the forward model, and determine the model

parameters by maximum likelihood estimation, which significantly improve

spectral estimates over classical spectral integration methods [4, 5, 6, 7, 8, 9].

However, limited work has been done to exploit the spatial characteristics of

metabolite distributions (e.g., smoothness or transform sparsity) during the

estimation [10]. In particular, state-of-the-art methods (e.g., LCModel [6],

and QUEST [8] method) perform spectral estimation of MRSI data voxel by
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voxel and the estimated spectral parameters still have large variances. This

work hence addresses the spectral estimation problem by incorporating both

spectral and spatial prior information, which can significantly reduce the de-

gree of freedom of the parameter space and achieve better tradeoff between

bias and variance.

1.2 Main Results

This thesis proposes a novel method to address the spectral estimation prob-

lem for MRSI. The main contributions are summarized as following.

1. We reformulate the spectral estimation problem as a maximum like-

lihood estimation with regularization. The new formulation enables

the incorporation of both spectral prior information and spatial prior

information. Specifically, spectral prior information is imposed in the

forward signal model in the form of spectral basis functions obtained

from quantum simulation, and spatial prior information is absorbed

into the regularization term. As a result, we quantify the spectra from

all the voxels, instead of quantifying the spectra voxel by voxel inde-

pendently as in existing methods.

2. Since all the voxels are quantified simultaneously, the resulting opti-

mization problem from the proposed estimation formulation is com-

putationally challenging. An efficient two-step algorithm to solve this

large-scale nonlinear least-squares problem is provided, which makes

use of the limited-memory BFGS (L-BFGS) and the alternating direc-

tion method of multipliers (ADMM).

3. A performance characterization based on Cramér-Rao bound (CRB)

analysis for the proposed method is carried out, which shows the theo-

retical benefits of incorporating spatial constraints in terms of reducing

estimation variance. Monte Carlo simulations are performed to validate

the consistency between empirical performance and theoretical predic-

tion.

4. The effectiveness of the proposed method is evaluated via both sim-

ulated and experimental data. Comparison with one of the state-of-
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the-art methods, QUEST [8], is provided to demonstrate the improved

performance provided by the proposed method.

1.3 Organization

The rest of the thesis is organized as follows. Chapter 2 firstly introduces

some theoretical foundations for this work, including least-squares methods

and estimation theory in the Bayesian framework, followed by a brief review

of MRSI and existing spectral estimation methods. In chapter 3, we focus

on describing the proposed method, from data preprocessing, to formulation

that incorporates both spectral and spatial prior information, to the algo-

rithm that solves the resulting optimization problem. Results (from both

simulation data and experimental data) are shown in chapter 4 to evaluate

the effectiveness of the proposed method, from which the significant improve-

ment of spectral estimation will be presented. Finally, we discuss another

possible method of imposing spatial prior information in chapter 5. We also

carry out a theoretical performance analysis of the proposed method, which

has been validated by Monte Carlo simulations.

3



CHAPTER 2

PRELIMINARIES

In this chapter, we firstly introduce some necessary concepts in least-squares

(LS) methods and parameter estimation theory which are fundamental sig-

nal processing theories for analyzing MRSI data. Then a brief introduction

of MRSI is provided, followed by a review of existing works related to the

analysis of MRSI data.

2.1 Least-squares Methods

2.1.1 Linear Vector Spaces, and Hilbert Spaces

Linear least-squares methods are usually applied in general linear vector

spaces, which are defined as following.

Definition 2.1 (Linear Vector Spaces (LVS)[11]). A linear vector space is a

set X defined over a field of scalars F with two operations: + : X ×X 7→ X ,

and · : F×X 7→ X such that ∀a,b, c ∈ X and ∀α, β ∈ F

1. a + b = b + a

2. (a + b) + c = a + (b + c)

3. ∃0 ∈ X s.t. a + 0 = a

4. α · (β · a) = (αβ) · a

5. α · (a + b) = α · a + α · b

6. (α + β) · a = α · a + β · a

7. 0 · a = 0, and 1 · a = a

4



The elements of X are called vectors. Note Cn is a special case of LVS,

where all the vectors are tuples of complex numbers. Definition 2.1 is in fact

a generalization of Cn. This generalization allows us to represent much more

real world relationships, which makes vector spaces an extremely useful tool

[11].

Within an LVS X , there are two important concepts: linear dependency,

and basis.

Definition 2.2 (Linearly Dependent). A subset S ⊂ X is linearly dependent

if ∃{s1, . . . , sn} ⊂ S and ∃α ∈ Cn, s.t.
∑n

i=1 αisi = 0 and α 6= 0.

Definition 2.3 (Basis of an LVS). A subset S ⊂ X is said to be the basis of

X if

1. The elements of S are linearly independent.

2. The Span{S} = X , where span is the set of all possible linear combi-

nations of elements of S.

Note for any LVS X , such a subset S always exists and has the same cardi-

nality, which is called the dimension of X [11].

The convenience of using basis {s1, . . . , sn} for an LVS X is that ∀x ∈ X ,

there always exists a unique set of scalars, αi ∈ F, i = 1, . . . , n, such that∑n
i=1 αisi = x. The scalar vector α = [α1, . . . , αn]T is called the coordinate

of x. Therefore, we can represent any LVS by a coordinate system, which

makes it much easier to analyze general linear vector spaces.

Before we introduce the definition of Hilbert spaces, which are a special

kind of LVS, we need to define vector norms and inner products:

Definition 2.4 (Vector Norms). A norm of a vector in X is such a mapping

‖ · ‖ : X 7→ R that ∀x,y ∈ X and ∀α ∈ F

1. ‖x‖ ≥ 0, with equality if and only if x = 0.

2. ‖x + y‖ ≤ ‖x‖+ ‖y‖

3. ‖αx‖ = |α|‖x‖

An LVS associated with a definition of norm is called a normed vector

space (NVS).
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Definition 2.5 (Inner Products). An inner product is such a mapping <

·, · >: X × X 7→ F that ∀x,y, z ∈ X and ∀α ∈ F,

1. < x + y, z >=< x, z > + < y, z >

2. < αx,y >= α < x,y >

3. < x,y >= (< y,x >)∗, where “∗” denotes complex conjugate

4. < x,x >≥ 0 with equality if and only if x = 0.

An LVS associated with a definition of inner products is called an inner

product space (IPS). A fact is that
√
< x,x > follows the definition of a

norm. Therefore, it is usually called the induced norm.

Definition 2.6 (Hilbert Spaces). An LVS X is called a Hilbert space if it

is associated with an inner product, and it is complete, i.e., any Cauchy

sequence converges to a vector x ∈ X , in the sense of the induced norm.

2.1.2 Linear Inverse Problems, and Orthogonality Principle

Linear inverse problems (i.e., solving x from b by the linear relationship

A(x) = b) are frequently encountered in reality, the solutions to which often

do not exist due to the noise disturbance in b (and sometimes also in A).

Therefore, people sometimes solve linear inverse problems by solving the

following least-squares problem instead.

x̂ = arg min
x
‖A(x)− b‖. (2.1)

This problem has been readily solved in the conventional LVS (i.e., Rn or Cn),

but in a generalized LVS, the problem is generally difficult. Fortunately, if A
is a bounded linear operator between two Hilbert spaces, and the range space

of A is complete, we can solve Eq. (2.1) using the so-called orthogonality

principle [11]. Before entering it, we need to bring up some basic concepts

in Hilbert spaces, such as bounded linear operators, range spaces, adjoints,

and the orthogonality principle.

Definition 2.7 (Bounded Linear Operators). A linear operator A is a map-

ping defined over two linear vector spaces and a scalar field F, A : X 7→ Y,

such that

6



1. If A(x) = y, then ∀α ∈ F, A(αx) = αy.

2. If A(x1) = y1 and A(x2) = y2, then A(x1 + x2) = y1 + y2.

A linear operator is called bounded if both X and Y are associated with norms

(say, ‖ · ‖X and ‖ · ‖Y), and ∃α ∈ R s.t. ‖A(x)‖Y ≤ α‖x‖X holds true for all

x ∈ X .

Definition 2.8 (Adjoints of linear operators). Let X and Y be two LVS each

associated with an inner product < ·, · >X and < ·, · >Y . The adjoints of a

linear operator A : X 7→ Y is a linear operator A∗ such that ∀x ∈ X and

∀y ∈ Y, < A(x),y >Y=< x,A∗(y) >X .

Definition 2.9 (Range Spaces and Null Spaces of Linear Operators). The

range space of a linear operator A : X 7→ Y is R(A) = {y ∈ Y : ∃x ∈
X , s.t. A(x) = y}. The null space is N (A) = {x ∈ X : A(x) = 0}.

Theorem 2.1 (Orthogonality Principle [11]). Let S be a subspace of an IPS

X . Then ∀x ∈ X , finding x̂ ∈ S such that

‖x̂− x‖ ≤ ‖y − x‖, ∀y ∈ S

is equivalent to finding x̂ ∈ S such that

x̂− x ∈ S⊥,

where S⊥ ≡ {x ∈ X :< x, s >= 0,∀s ∈ S}. Furthermore, if S itself is a

Hilbert space, then such a x̂ ∈ S can always be found and is unique.

Therefore, according to the orthogonality principle, we can handle the

problem in Eq. (2.1) by seeking for a vector x̂ ∈ X such that A(x̂) − b ∈
R(A)⊥ = N (A∗) [11], i.e., A∗(A(x̂)) = A∗b. IfA∗A is a one-to-one mapping,

then

x̂ = (A∗A)−1A∗b (2.2)

solves problem in Eq. (2.1). More generally,

x̂ = A†b,

where “†” denotes the Moore-Penrose pseudoinverse.

7



The evaluation of Eq. (2.2) usually requires the calculation of a matrix

inverse, i.e., the inverse of A∗A, where A is the matrix representation of A.

In practice, we usually solve the linear equation

A∗Ax = A∗b,

instead of directly calculating the matrix inverse, which might be expensive.

However, when the matrix size is very large, an exact solution may still be too

difficult to resolve due to the ill-conditioning of the problem. A numerical

approximation is desired in this case. Specifically, x can be obtained by

solving the following convex optimization problem

x̂ = arg min
x

1

2
x∗A∗Ax− b∗Ax.

Then various convex optimization algorithms can be applied, e.g., gradient

descent, conjugate gradient (CG) descent, and Newton’s method.

2.1.3 Nonlinear Inverse Problems, and the Variable
Projection Method

General inverse problems are to solve x when measurement b is obtained

through a general function f(·) (i.e., is not necessary to be linear), and can

be expressed as

x̂ = arg min
x
‖f(x)− b‖. (2.3)

It is generally difficult to solve such a problem, but if function f(·) is a

mixture of linear functions and nonlinear functions, the variable projection

method can then be applied to improve the estimation performance. Specif-

ically, separate x into two parts, x1 and x2, such that the function f(·) is

nonlinear in x1 and linear in x2, i.e.,

f(x) = Ax1(x2),

where Ax1(·) is a linear operator dependent on parameter x1. This kind

of problems in which the variables separate into two categories, linear and

nonlinear, is ubiquitous in practice. In the scope of spectral estimation of

MRSI data, it is a very important technique to reduce the degree of freedom

8



of variables and reduce the variances of estimates.

The motivation behind the variable projection method is to simplify the

nonlinear optimization problem by ruling out the linear parts. If x1 is per-

fectly known, then by the solution to linear LS problems (Eq. (2.2)), we can

project the measurement b onto the range space of Ax1 and get

x̂2 = A†x1
b.

If we can substitute the expression above into Eq. (2.3), then we get the

following problem instead.

x̂1 = arg min
x1

‖Ax1(A†x1
b)− b‖, (2.4)

x̂2 = A†x̂1
b. (2.5)

In Eq. (2.4), although the problem is still nonlinear, there are fewer parame-

ters to solve. In Eq. (2.5), it is simply a projection operation. Therefore, the

original nonlinear optimization problem is turned into two relatively simpler

subproblems by the variable projection method. Fortunately, the validity of

such a substitution is supported by theorems proved by Golub and Pereyra

in [12].

Theorem 2.2 (“Equivalence” of the Two Functionals [12]). Assume that the

range space of Ax1(·) has a constant dimension for all x1 in an open set Ω.

1. If x̂1 is a critical point (or a global minimizer in Ω) of Eq. (2.4), and

x̂2 = A†x̂1
b, (2.6)

then (x̂1, x̂2) is a critical point of Eq. (2.3) (or a global minimizer for

x1 ∈ Ω).

2. If (x̂1, x̂2) is a global minimizer of Eq. (2.3) for x1 ∈ Ω, then x̂1 is a

global minimizer of Eq. (2.4) in Ω. Furthermore, if there is a unique

x̂2 among the minimizing pairs of Eq. (2.3), then x̂2 must satisfy (2.6).

Theorem 2.2 provides a theoretical guarantee that

1. Solving a local minimum for Eq. (2.4) and (2.5) also yields a local

minimum for Eq. (2.3),

9



2. The global minimum(s) for Eq. (2.4) is consistent with the global min-

imum(s) for Eq. (2.3),

which makes the variable projection method extremely useful in practice.

2.2 Basics of Parameter Estimation

The spectral estimation of MRSI data is a specific topic for which we estimate

the spectral parameters of the MRSI signal model. Therefore, some param-

eter estimation theories are necessary. In this section, we will provide some

basics of statistical parameter estimation, including the biases and variances

of estimators, performance evaluation of estimators, and several common

estimation methods.

2.2.1 Bias, Variance and Efficiency of Estimators

Let x ∈ X (e.g., Rn, or Cn) be the parameter vector we need to estimate, Y

be the measurement, which is a random process, and x̂(Y) be the designed

estimator to estimate x from Y, which is also a random process because of

its dependence on Y. The performance of x̂(Y) is often evaluated by its bias

and variance.

Definition 2.10 (Bias). The bias of an estimator x̂ is defined as

b(x̂) = x− E [x̂(Y)] .

If b(x̂) = 0, then we call x̂ an unbiased estimator.

Definition 2.11 (Variance). Assume x is an n dimensional vector, then the

variance of x̂i, i = 1, 2, . . . , n, is defined as

V ar(x̂i) = [Cov(x̂(Y))]ii,

where

Cov(x̂(Y)) = E
[
(x̂(Y)− E [x̂(Y)])(x̂(Y)− E [x̂(Y)])T

]
,

is the conventional covariance matrix of x̂.

10



The statistical dependence of Y on x can be described by a cumulative

distribution function F (y; x) = P{Y ≤ y} (or, if Y is a continuous random

variable, px(y)). This underlying dependence between the measurement and

the parameters to estimate determines how “difficult” the estimation problem

will be, i.e., the variance of any estimator is bounded from below by the so-

called Cramér-Rao bound (CRB) [13].

Theorem 2.3 (Cramér-Rao Bound). Given parameter x, measurement Y,

and statistical dependence described by the probability distribution function

px(y). For any unbiased estimator x̂(Y), the following inequality holds.

V ar(x̂(Y)) ≥ J−1(x),

where

V ar(x̂(Y)) = E[(x− x̂(Y))(x− x̂(Y))T ] (2.7)

is the error covariance matrix of x̂, and

J(x) = E
[
5xlnfY(Y|x)(5xlnfY(Y|x))T

]
(2.8)

is the so-called Fisher Information in Y about the parameters in x.

The Cramér-Rao bound is very useful in estimation theory, since it provides

an approach to evaluating the performance of an unbiased estimator.

Definition 2.12 (Efficient Estimators). An unbiased estimator is efficient

if it reaches its CRB, which means CE(x̂)− J−1(x) = 0.

Note an efficient estimator does not necessarily exist.

If we know beforehand that the parameter x lies in a lower dimensional

subspace of the whole parameter space, and incorporate this prior knowledge

into the estimation process, the estimator might actually achieve lower vari-

ance than the Cramér-Rao bound indicates. However, the conventional CRB

does not take the constraints into account. As a result, the corresponding

CRB is too “pessimistic”, and the achievable estimator variance can even be

lower (better) than the CRB. Given this situation, we can directly derive the

so-called constrained CRB [14] using the Chapman-Robbins bound [15].

Theorem 2.4 (Chapman-Robbins Bound). Given a parameter x ∈ Rk, as-

sume the measurement data Y ∈ Rn have a probability distribution fx(y).
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Then for any estimator X̂(Y), the following inequality holds true.

Σ(X̂) ≥ [δmx]T

(
E

[[
δfx

fx

] [
δfx

fx

]T])†
[δmx],

where Σ(X̂) is the covariance matrix of X̂(Y), mx ≡ E[X̂], “†” denotes the

Moore-Penrose pseudoinverse,

δmx ≡
[

mx+v1 −mx

‖v1‖
, . . . ,

mx+vp −mx

‖vp‖

]T
,

and

δfx(y) ≡
[
fx+v1

(y)− fx(y)

‖v1‖
, . . . ,

fx+vp(y)− fx(y)

‖vp‖

]T
,

where v1, . . . ,vp ∈ Rk are p arbitrary vectors. Again this bound can be im-

proved by achieving the supremum of the right-hand side over all possible

v1, . . . ,vp.

It can be seen that the Chapman-Robbins bound (by taking the supremum

over all possible deviations) is at least as sharp as the CRB (by taking the

derivatives) [15], but it is also more difficult to compute in general. But it

is a very important theoretical result from which we can derive the following

constrained Cramér-Rao bound.

Theorem 2.5 (Constrained Cramér-Rao Bound). Let the parameter x to

be estimated lie in a constrained space X ⊂ Rk. Let v1, . . . ,vp be p linear

independent vectors with sufficiently small lengths such that x + vi ∈ X , i =

1, . . . , p. Assume the measurement data Y ∈ Rn have a probability distri-

bution fx(y). Then for any estimator X̂(Y) with mean mx, the following

inequality holds true:

Σ(X̂) ≥ lim sup
x+vi∈X ,‖vi‖→0

i=1,...,p

Bc,

where Bc is the defined as the Chapman-Robbins bound over v1, . . . ,vp. If

some additional conditions hold (see [14]), then

Σ(X̂) ≥ [∇xmx]TA[ATJA]†AT [∇xmx],

where A is any matrix whose column space is the same as span{v1, . . . ,vp},
and J is the Fisher information matrix.

12



Based on the constrained CRB, one can characterize the performance of

an estimator given sparsity constraint [16] or low-rank constraint [17], etc.

2.2.2 Maximum Likelihood Estimation

A maximum likelihood (ML) estimator is to find an estimator which maxi-

mizes the likelihood function px(y):

x̂ = arg max
x

px(y),

or

x̂ = arg max
x

ln px(y), (2.9)

which conceptually is to give the “most possible” estimate of x given y.

The maximum likelihood estimator is commonly used in practice when no

prior distribution of x can be assumed. For example, the linear inverse

problems, which we introduced in section 2.1, are usually formulated as least

squares problems. The reason behind this formulation can be explained by

the maximum likelihood estimation: if we assume A(x) + N = Y ∈ Rm,

where N ∼ N (0, σ2Im), then

px(y) =
1√

(2π)m
exp

(
−1

2
(y −A(x))T (y −A(x))

)
,

or

ln px(y) = −1

2
‖A(x)− y‖ − m

2
ln 2π.

Since the term −m
2

ln 2π is a constant and does not change for different x,

the ML estimate for x can be reformulated as

x̂ = arg min
x
‖A(x)− y‖, (2.10)

which is identical to Eq. (2.3). Therefore, the least squares solution to x is

actually a maximum likelihood estimator given Gaussian noise perturbation.

A fact is that all ML estimators have these two properties [13]:

1. Asymptotically unbiased, i.e., limN→∞ b(x̂) = 0;

2. Asymptotically efficient, i.e., limN→∞ E [(xi − x̂i(Y ))2] = [J−1]ii(x);
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where N is the total number of observations. These two asymptotical prop-

erties provide us with a theoretical guarantee for the performance of ML

estimators.

2.2.3 Bayesian Estimation

In the maximum likelihood estimation, parameter x is treated as an unknown

constant vector. In practice, however, we sometimes can treat it as a realiza-

tion of a certain random variable X, the distribution of which, p(x), is usually

referred as a priori knowledge of x. If we can obtain a priori knowledge be-

forehand, it can be built in our estimator, and achieve better performance,

which is called the Bayesian estimation.

In Bayesian estimation, since the parameter is not a constant anymore,

the performance against a specific x is not that insightful anymore. Instead,

the expectation of a given cost function, `(x, x̂), is used to evaluate the

performance, i.e.,

x̂(Y) = arg min
x̂

E [`(X, x̂(Y))].

Using the Bayes rule, i.e., px(y)p(x) = p(x|y)p(y), we have

E [`(X, x̂(Y))] =

∫
`(x, x̂)px(y)p(x)dxdy

=

∫
p(y)dy

∫
`(x, x̂)p(x|y)dx

,
∫
`(x̂|y)p(y)dy,

where `(x̂|y) is the so-called posterior cost function. Therefore, the Bayes

estimation is actually to minimize the posterior cost:

x̂(y) = arg min
x
`(x|y).

The cost function `(x, x̂), for instance, can be ‖x − x̂‖2
2, or ‖x − x̂‖1, by

minimizing the expectation of which, we get the so-called minimum mean

squared error (MMSE) estimator, or minimum mean absolute error (MMAE)
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estimator. Particularly, if

`(x, x̂) = 1{‖x−x̂‖≤ε} =

1 if ‖x− x̂‖ ≤ ε

0 otherwise
,

then as ε→ 0, the corresponding estimator is

x̂ = arg max
x

p(x|y),

which is known as the maximum a posterior (MAP) estimator. By the Bayes

rule, we can also write a MAP estimator as

x̂ = arg max
x

ln px(y) + ln p(x). (2.11)

In Eq. (2.11), if X is uniformly distributed over a specific subset of X , then

p(x) would be a constant and can be safely dropped. In that case, it is

identical to the ML estimator Eq. (2.9). Therefore, the ML estimator can

also be treated as a MAP estimator when uniform distribution was assumed

as a priori.

2.3 MRSI and Related Work

Spectroscopy in general is the study of the interaction between matter and

electromagnetic radiation. MR spectroscopy (MRS), specifically, is a kind of

spectroscopy study of the interaction between nuclei and magnetic fields. It

has become one of the most versatile forms of spectroscopy (de Graaf [1]),

since the discovery by Proctor and Yu [18], and Dickinson [19] that nuclei

from the same kind of atom absorb energy at different resonance frequencies,

by virtue of what later came to be called chemical shift effects. The chemical

shift effects are related to the chemical environment of the nuclei. Therefore,

multiple chemicals can be detected and differentiated using the MR spec-

troscopy method. Compared to MR spectroscopy in the early days, modern

MRS is a combination of pulse excitation and Fourier transform (Ernst and

Anderson [20]). The acquired spectra can then be represented as

ρ(f) =

∫
ρ(t)e−j2πftdt, (2.12)
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where different chemical shifts form different peaks in the frequency domain,

as shown in Fig. 2.1.
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Figure 2.1: Example spectra and molecular structures of N-acetyl aspartate
(NAA), creatine, and myo-inositol, three common metabolites in the human
brain.

Conventional magnetic resonance imaging (MRI) focuses on obtaining “body”

images through imaging the hydrogen protons in the human body. Resulting

images with various kinds of contrast can provide very useful physiology in-

formation, including anatomical structures and tumors (Fig. 2.2). In MRI,

the spatial localization was made possible by using magnetic gradients [21].

The acquired image is modeled as

ρ(x) =

∫
ρ(k)ej2πk·xdk, (2.13)

where ρ(k) is the measurement in the so-called k-space (i.e., spatial frequency

domain), and k =
∫
γ−G(t)dt can be controlled through gradient G(t).

MR spectroscopic imaging (MRSI) is an integration of conventional MRI

and MRS, where both spatial information and spectral information are an-

alyzed. These spectra provide physiological information of the local tissue

in a heterogeneous sample, like the brain or the heart. To interpret MRSI

data quantitatively, it is usually necessary to estimate those parameters with

underlying physical or physiological meanings from the measurement.

Mathematically, MRSI can be viewed as a spectral estimation problem
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Figure 2.2: Example MRI images of the brain (left) and heart (right).

formulated as

d(x, t) =

∫
ρ(x, f)ej2πftdf + n(x, t), (2.14)

where d(x, t) is the measured data in the spatiotemporal domain, ρ(x, f) is

the desired localized spectrum, and n(x, t) represents additive white Gaussian

noise. The main challenge for interpreting MRSI lies in the extremely low

SNR.

Over the past few decades, researchers have made significant efforts to

address this spectral estimation problem. There are two primary categories

of existing spectral estimation methods for MRSI: nonparametric methods

and parametric methods. An early nonparametric method was to perform

the Fourier transform, that is,

ρ̂(x, f) =

∫
d(x, t)e−j2πftdt.

The corresponding metabolite “intensity” at spatial location x would then

be simply measured as the area beneath the corresponding peak in ρ̂(x, f).

In high-SNR scenarios, the Fourier transform method is useful and efficient;

however, the SNR is often so low in practice that the peak locations cannot

even be identified within a spectrum.

Common parametric approaches rely on a damped complex sinusoidal

model for MRSI signals [22, 23]:

ρ(x, f) =

∫ ( L∑
l=1

al(x)zl(x)t

)
e−j2πftdt,
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or in the time-domain,

ρ(x, t) =
L∑
l=1

al(x)zl(x)t, (2.15)

where al(x) is the concentration of the l-th peak at location x, and zl(x) are

usually called the poles of the linear predictable signal,

zl(x) = e−θl(x)−j2πfl(x),

where θl(x), and fl(x) are the damping factor, and resonance frequency,

respectively. Plug Eq. (2.15) in Eq. (2.14), we get

d(x, t) =
L∑
l=1

al(x)zl(x)t + n(x, t).

This model motivates the application of linear prediction–based methods

for spectral estimation, such as LPSVD [22], HSVD [23], and HLSVD [24].

Let dx[m] denote d(x,m∆t), i.e., the discretized time sequence at loca-

tion x. Then the LPSVD method, for instance, says that ∀x, dx[m],m =

0, 1, . . . ,M − 1(M > L), satisfies the following equation:
dx[L− 2] dx[L− 3] · · · dx[0]

dx[L− 1] dx[L− 2] · · · dx[1]
...

...
. . .

...

dx[M − 2] dx[M − 3] · · · dx[M − L]



β1

β2

...

βL

 =


dx[L− 1]

dx[L]
...

dx[M − 1]

 ,

from which we can determine the linear prediction coefficients β1, . . . , βL in

the least squares sense (Eq. (2.2)), or in the total least squares sense. Rooting

the polynomial equation

zL + β1z
L−1 + · · ·+ βL−1z + βL = 0

yields estimates of the poles in (2.15). The linear parameters (i.e., al(x))

can then be determined by projecting d(x, t) onto the subspace spanned by

{zl(x)t}Ll=1. By using a parametric model, linear prediction–based meth-

ods can perform better spectral estimation than nonparametric methods.

However, an inherent drawback of those methods is their limitation in in-
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corporating prior knowledge (despite the existence of some variants of linear

prediction methods that can impose some special forms of prior knowledge,

e.g., [25, 26]). This limitation strongly prohibits linear prediction methods

from being applied to low-SNR scenarios, which is often the case in practice.

Therefore, state-of-the-art methods usually take advantage of the spectral

basis functions, and estimate the spectral parameters in the maximum like-

lihood sense.
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CHAPTER 3

METHOD

3.1 Data Preprocessing

In 1H-MRSI, the desired metabolite signals are usually overwhelmed by wa-

ter and lipid signals due to the huge abundance of hydrogen protons and lipid

protons in the human body. Besides, macromolecular signals also generate

wavy baselines (i.e., spectral components with a broad line width), which

makes it more difficult to separate out the metabolite signals. These con-

taminating signals are usually called the nuisance signals in spectral estima-

tion of 1H-MRSI. Effectively removing nuisance signals as well as protecting

desired metabolite signals is very important for practical 1H-MRSI.

Another practical issue for MRSI is the spatial inhomogeneity of magnetic

fields. Since field inhomogeneity brings additional line shape distortions to

the observed spectra, we will also need to correct it in the preprocessing step.

3.1.1 Water and Lipid Removal

A common procedure to remove water and lipid signals is to apply suppres-

sion pulses during the data acquisition process. For example, the chemical-

shift selective saturation (CHESS) pulses suppress water by selectively sat-

urating signals within a certain frequency band that is assumed to be where

water signals reside [27, 28]; the outer-volume-suppression (OVS) [29, 30] can

be applied to suppress lipid signals. However, due to some practical issues

(e.g., field inhomogeneity), the effectiveness of these suppression techniques

is strongly limited, and the residual water and lipid signals still overwhelm

the desired metabolite signals so that postprocessing techniques are usually

needed for further nuisance removal [22, 23, 31].

In this work, we propose to use the Union-of-Subspaces (UoSS) model [32]
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as a postprocessing method. The UoSS modeling of an MRSI experiment is

given by

ρ(x, t) =

PM∑
p=1

uM,p(x)vM,p(t) +

PW∑
p=1

uW,p(x)vW,p(t) +

PL∑
p=1

uL,p(x)vL,p(t),

where v(t) is the temporal basis, u(t) is the spatial coefficients, and subscripts

“M”, “W”, and “L” represent metabolite, water, and lipid, respectively. The

UoSS model exploits the partial separability [33, 34] of medical images, which

decouples the determination of temporal basis and spatial coefficients, and

enables more efficient nuisance removal schemes.

The determination of temporal bases v(t) is achieved through constructing

the Casorati matrix, i.e.,

C(ρ) =


ρ(x1, t1) ρ(x1, t2) · · · ρ(x1, tM)

ρ(x2, t1) ρ(x2, t2) · · · ρ(x2, tM)
...

...
. . .

...

ρ(xP , t1) ρ(xP , t2) · · · ρ(xP , tM)

 ,

and then performing a singular value decomposition (SVD) truncation to

obtain its principal right eigenvectors as temporal bases. This process is

performed for water, lipids, and metabolites individually. In practice, we

retrieve the temporal bases from a calibration dataset with high temporal

resolution, i.e., the chemical shift imaging (CSI) dataset.

Given the retrieved temporal bases VM , VW , and VL, we determine the

spatial coefficients via the following optimization problem.

Û = arg min
U
‖d− F{UV̂H}‖2

2 + λR(U),

where d is the vector form of the (k,t)-space measurement, F is the for-

ward model transforming (x,t)-space data to (k,t)-space, which is usually

the discrete Fourier transform (DFT), V̂ = [VM ,VW ,VL] is a stack of all

the estimated temporal basis, and R(U) = ‖U‖2
F is a regularization term for

spatial coefficient U. Once we obtain Û, the corresponding water and lipid

signals can be removed from the data.
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3.1.2 Baseline Removal

In 1H-MRSI, there are many MR measurable metabolites containing useful

information, as well as some macromolecules. These macromolecular signals

usually have a broader spectral line width (baseline), so that they overlap

with most of the metabolites, making the estimation of metabolite signals

very ill-conditioned [35, 36, 37]. There are many methods to remove the

baselines in practice [6, 7, 8, 9, 38, 39]. Here we use the so-called “Subtract”

method [8], which uses smooth functions to model the baseline signals.

After water and lipid removal, the residual signal at each spatial location

can be modeled as

ρ(t) = ρM(t) + ρB(t),

where “M” and “B” denote metabolite and baseline, respectively. Since

baselines have broad line widths, they decay much faster than the metabolites

in the time domain. The Subtract method takes advantages of this property

by assuming

ρ(t) ≈ ρM(t), t ≥ t0,

where t0 is a selected time point after which the baselines are below the

noise flaw. Then by estimating ρM(t) from ρ(t), t ≥ t0, using a parametric

model, we can recover ρ̂M(t), t < t0, by extrapolation. Then “subtract” the

recovered metabolite signal,

r(t) = ρ(t)− ρ̂M(t),

from which we can perform a curve fit to r(t) using either smoothing splines

or other smooth functions (e.g., wavelets). The fitted curve is the estimated

baselines, ρ̂B(t), which can be readily removed from ρ(t).

3.1.3 Field Inhomogeneity Correction

The field inhomogeneity comes from

1. Instrumental imperfection;

2. Interference by the imaging object.
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MRS signals are acquired in the so-called k-space, which is a Fourier trans-

form of the x-space:

d(k, t) = Fx{
N∑
n=1

an(x)e−θn(x)te−j2π∆f(x)tϕn(t)}+ ξ(k, t),

where Fx is the Fourier transform applied to x, ∆f(x) is the inhomogeneous

magnetic field map, and ξ(k, t) is the thermal noise (assumed to be white

Gaussian). In practice, only a finite number of k-space points can be covered.

If the center rectangular of k-space is covered, a most commonly used recon-

struction (i.e., reconstruction from k-space to x-space) method is to perform

the inverse Fourier transform, which yields

d(x, t) =
N∑
n=1

an(x)e−θn(x)te−j2π∆f(x)tϕn(t) ∗x w(x) + ξ̃(x, t), (3.1)

where “∗x” represents the convolution operation in spatial domain, w(x) is

the so-called point spread function brought by finite coverage of the k-space

(i.e., k-space truncation), and ξ̃(x, t) = ξ(x, t)∗xw(x). In the one-dimensional

case, specifically, if the k-space is covered from −km/2 to km/2, then

w(x) = sinc(kmx),

which obviously has infinite spatial support. Because of this convolution

operation, signals from the surrounding spatial locations will also make con-

tributions to a location x, and the original spectrum at location x is distorted.

There exist multiple approaches to correct this field inhomogeneity effect

[40, 41, 42]. Here we resort to another experiment specifically designed to

acquire the field inhomogeneity map, and treat that field map as a priori.

Then the conjugate phase (CP) algorithm [41] is used to correct the field

inhomogeneity.

3.2 Spectral Estimation for MRSI

The spectral estimation has been a longstanding problem for quantitatively

interpreting MRSI data. Along with those practical issues, such as strong
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nuisance contamination, wavy baselines, and B0 field inhomogeneity, its main

challenges are the large overlaps between peaks originating from different

metabolites, and the extremely low SNR.

By taking quantum mechanics and molecular structures into consideration,

we are able to acquire prior information of the spectra of different metabo-

lites in the form of spectral constraints, so that overlapping peaks can be

separated into different metabolites, which provides more robustness against

low SNR. To further improve the estimation robustness, we propose to in-

corporate spatial constraints as well, since in real biological samples, the

spectral parameters always have spatial correlations that can be exploited in

estimation.

3.2.1 Spectral Constraints

State-of-the-art methods (e.g., VARPRO [4], LCModel [6], Young et al. [7],

QUEST [8], and AQSES [9]) have proposed to impose spectral constraints

in the form of spectral basis functions. This is motivated by the fact that

within one spectrum ρ(x, f), different spectral components (i.e., peaks) orig-

inating from the same metabolite should be related to each other in terms of

their concentration ratios, phases, damping factors, and frequency locations.

For example, Fig. 3.1 shows the spectra of several typical metabolites, from

which we can clearly see that the concentration ratios and frequency locations

are fixed. Compared to Eq. (2.15), which treats every spectral component

separately, ρ(x, t) can be modeled using basis functions instead:

ρ(x, t) =
N∑
n=1

an(x)e−θn(x)tϕn(t), (3.2)

where ϕn(t) is the so-called basis function for the n-th metabolite, which can

be accurately obtained beforehand using quantum simulation (for example,

GAVA [43]) or in vitro experiments. The spectral basis functions can be

expressed as

ϕn(t) =
Ln∑
l=1

αl,ne
jβl,ne−j2πfl,nt,

where Ln is the number of spectral components in the spectrum of the n-th

metabolite, and αl,n, βl,n and fl,n are the spin density ratio, relative phase,
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and resonance frequency of its l-th peak. Obviously, the introduction of ba-

sis functions ϕn(t) greatly reduces the dimension of the parameter space,

and helps improve spectral estimation. For instance, one major problem of

treating every peak separately in a spectrum is the overlapping of peaks in

the frequency domain, but by introducing full spectra, we might still distin-

guish two overlapping peaks if their corresponding metabolites have different

peaks at other chemical shifts. From the perspective of optimization, incor-

porating ϕn(·) is equivalent to imposing equality constraints over the spectral

parameters, and the parameter search space is constrained in a much lower

dimensional subspace. From the perspective of estimation, the resulting esti-

mation problem becomes less ill-conditioned since overlapping peaks can be

differentiated by their corresponding peaks at other chemical shifts.

Figure 3.1: Example basis functions [1] and molecular structures of NAA,
creatine, and myo-inositol, three common metabolites in the human brain.

The discretized MRSI measurement d(x, t) at spatial location xp and time

instant tq for p = 1, · · · , P , and q = 1, · · · , Q, from a sample with N metabo-

lites can be expressed as

d(xp, tq) = ρ(xp, tq) + ξpq, (3.3)
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where ρ(x, t) is defined in Eq. (3.2), and ξpq represents measurement noise

(often assumed to be white Gaussian). Note that we have assumed perfect

removal of nuisance signals and field correction here.

For notation convenience, Eq. (3.3) can be written in a vector-matrix form

as

dp = K(θp)ap + ξp, p = 1, · · · , P, (3.4)

where dp contains all the measured data at location xp put in a vector form,

i.e.,

dp =


d(xp, t1)

d(xp, t2)
...

d(xp, tQ)

 ,
and similarly, ap and ξp are the concentration vector and noise vector, re-

spectively. K(θp) is the model matrix with θp containing all the nonlinear

unknown parameters (i.e., θn(xp)) at location xp as defined in (3.2), i.e.,

K(θp) =


e−θ1(xp)t1ϕ(t1) e−θ2(xp)t1ϕ(t1) · · · e−θN (xp)tNϕ(t1)

e−θ1(xp)t2ϕ(t1) e−θ2(xp)t1ϕ(t2) · · · e−θN (xp)tNϕ(t2)
...

...
. . .

...

e−θ1(xp)t1ϕ(tQ) e−θ2(xp)t1ϕ(tQ) · · · e−θN (xp)tNϕ(tQ)

 .

The goal of spectral estimation in MRSI is to determine ap and θp from

dp. This is done in existing methods by solving the following optimization

problems (or maximum likelihood estimation problems for Gaussian noise,

as we introduced in Eq. (2.10)):

(âp, θ̂p) = arg min
ap,θp
‖dp −K(θp)ap‖2

2, (3.5)

for p = 1, 2, · · · , P . In the absence of any spatial constraints, the above

estimation problems can be solved independently for each p, and various

nonlinear LS algorithms can be applied.
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3.2.2 Spatial Constraints

In contrast to the existing methods, we propose to solve these estimation

problems described in Eq. (3.5) by imposing spatial constraints as well as

spectral constraints on both ap and θp. Let d =
[
dT1 , dT2 , · · · , dTP

]T
, a =[

aT1 , aT2 , · · · , aTP
]T

, and

K(θ) =


K(θ1)

. . .

K(θP )

 .
Then we can reformulate the spectral quantification problem as a joint esti-

mation problem in a regularization framework:

(â, θ̂) = arg min
a,θ
‖d−K(θ)a‖2

2 + R(a,θ), (3.6)

where R(a,θ) is a penalization functional to absorb spatial regularizations.

Note we can also view Eq. (3.6) as a MAP estimator (see Eq. (2.11)), where

R(a,θ) = − ln p(a,θ),

and p(a,θ) is the assumed prior distribution of parameter a and θ. There-

fore, R(a,θ) is not only a penalizing term, but also a representation of prior

knowledge of the probability distribution of parameters. In practice, we have

various prior information, such as tissue edges, transform sparsity, and spa-

tial smoothness, so R(a,θ) can be purposely designed to absorb these prior

information, further improving the spectral estimation performance.

In the present study, we focus on imposing smoothness constraints. This

is motivated by the fact that in most MRSI data obtained from biological

samples, spatial distributions of spectral parameters (e.g., T ∗2 relaxation time

and metabolite concentration) within a tissue are rather smooth. There exist

various ways to impose smoothness, for example, `2 regularization, wavelet

sparsity, and total variation. Specifically, we propose to impose spatial con-

straints on θ and a by

R(a,θ) =
N∑
n=1

R(n)(a,θ),
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where superscript “(n)” represents the n-th metabolite, and

R(n)(a,θ) = λn‖Wθθ
(n)‖2

2 + ηn‖Wa{a(n)}‖1,

where λn and ηn are both regularization parameters. Therefore, the proposed

formulation is

(â, θ̂) = arg min
a,θ
‖d−K(θ)a‖2

2 +
N∑
n=1

λn‖Wθθ
(n)‖2

2 +
N∑
n=1

ηn‖Wa{a(n)}‖1.

(3.7)

The weighting matrix Wθ (derived from one or multiple references such as

anatomic images) is used to preserve edges. Explicitly, this smoothness-based

regularization functional is defined in the same way as in [44]:

‖Wθθ
(n)‖2

2 =
P∑

p1=1

∑
p2>p1
p2∈Ωp1

wp1,p2|θ(n)
p1
− θ(n)

p2
|2, (3.8)

where wp1,p2 is a positive weighting coefficient, Ωp1 is the set of all the voxels

that are in the adjacent neighbor to voxel p1, and θ
(n)
p is the p-th nonlinear

parameter for the n-th metabolite, p = 1, . . . , P, n = 1, . . . , N . The weighting

coefficients wp1,p2 can be derived from one or multiple reference images (see

[44] for details). Conceptually, the coefficient should be large in smooth

areas (to promote smoothness), and be small around edge areas (to preserve

edges). Finally, Wa is a sparsifying operator, e.g., the wavelet transform, or

total variation (TV) transform, which all promote spatial smoothness in a.

Here we have chosen Wa to be the second order total generalized variation

(TGV) transform [45]:

‖Wa{u}‖1 = min
p1,p2

α0‖∇u− p‖1 + α1

4∑
j=1

‖(E(p))j‖1, (3.9)

where α1, α2 > 0 are two regularization parameters. The operators ∇ and E
are given by

∇u =

[
∂xu

∂yu

]
,

E(p) =

[
∂xp1

1
2
(∂yp1 + ∂xp2)

1
2
(∂yp1 + ∂xp2) ∂yp2

]
,
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where ∂x and ∂y denote the finite difference along x and y direction, respec-

tively. Next we will discuss how to solve Eq. (3.7) efficiently.

3.3 Algorithm

The problem in Eq. (3.7) is a large-scale, joint estimation problem with non-

linearity. To solve it in practice, we propose to solve the nonlinear parameter

θ firstly, then fix it and solve the linear parameter a. Specifically, we sequen-

tially solve the following two problems:

(ã, θ̂) = arg min
a,θ

1

2
‖d−K(θ)a‖2

2 +
N∑
n=1

λn‖Wθθ
(n)‖2

2, (3.10)

â = arg min
a

1

2
‖d−K(θ̂)a‖2

2 +
N∑
n=1

ηn‖Wa{a(n)}‖1, (3.11)

where in Eq. (3.10), ã is obtained along with θ̂, but θ̂ is fixed for Eq. (3.11),

while ã can be the initial value for â.

3.3.1 Proposed Algorithm-Step 1

To solve the problem in Eq. (3.10), we can use the variable projection strategy

to reduce the number of parameters, which is to solve the following problem

instead.θ̂ = arg minθ
1
2
‖d−K(θ)K(θ)†d‖2

2 +
∑N

n=1 λn‖Wθθ
(n)‖2

2,

ã = K(θ̂)†d.
(3.12)

The reason that we can reformulate Eq. (3.10) into Eq. (3.12) can be sum-

marized as the following theorem.

Theorem 3.1 (“Equivalence” of Eq. (3.10) and Eq. (3.12)). Assume that

the range space of K(θ) has a constant dimension for all θ in an open set

Θ ⊂ RL×N .

1. If θ̂ is a critical point (or a global minimizer in Θ) of Eq. (3.12), and

ã = K(θ̂)†d, (3.13)
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then (θ̂, ã) is a critical point of Eq. (3.10) (or a global minimizer for

θ̂ ∈ Θ).

2. If (θ̂, ã) is a global minimizer of Eq. (3.10) for θ̂ ∈ Θ, then θ̂ is a

global minimizer of Eq. (3.12) in Θ. Furthermore, if there is a unique

ã among the minimizing pairs of Eq. (3.10), then ã must satisfy (3.12).

Conceptually, the reformulation of Eq. (3.10) into Eq. (3.12) follows the

variable projection strategy: to represent the linear term by its closed-form

solution as if the nonlinear term is fixed. Theorem 3.1 is an immediate

extension of Thm 2.2 with regularization on the nonlinear term, and can be

proved in a similar way (see Appendix A for details).

The joint quantitation problem in (3.12) is still much larger than the in-

dividual quantitation problems in (3.5), so it is desirable to solve them effi-

ciently. The problem in (3.12) is a weighted `2-norm regularized nonlinear

least-squares problem, which can be solved using a quasi-Newton method

where only gradient evaluation is required. We used the limited memory

Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [46] to solve (3.12)

because of its computational efficiency and relatively low memory usage. The

gradient of (3.12) can be derived as follows. Let a(θ) = K(θ)†d, and

f1(θ) =
1

2
‖d−K(θ)a(θ)‖2

2, f2(θ) =
N∑
n=1

λn‖Wθθ
(n)‖2

2

Then the gradient desired is simply the sum of ∇f1 and ∇f2 by the linearity

of gradient. It is easier to obtain ∇f2:

∇f2 = 2
N∑
n=1

λnW
∗
θWθθ

(n).

As for ∇f1, we have

∇f1 = (
∂K

∂θ
a + K

∂a

∂θ
)∗ (K(θ)a(θ)− d) , (3.14)

where ∂a/∂θ is yet to be determined. Since a(θ) = (K(θ)∗K(θ))−1K(θ)∗d,

we have

K(θ)∗K(θ)a(θ) = K(θ)∗d.
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Taking derivatives to both sides, we have

(
∂K

∂θ
)∗Ka + K∗

∂K

∂θ
a + K∗K

∂a

∂θ
= (

∂K

∂θ
)∗d,

i.e.,

K∗K
∂a

∂θ
= (

∂K

∂θ
)∗d− (

∂K

∂θ
)∗Ka−K∗

∂K

∂θ
a,

from which we can obtain ∂a/∂θ by solving the equation.

Note in the gradients obtained above, ∇f1 is constituted by complex num-

bers since d and K(θ) are constituted by complex numbers. In gradient

based optimization algorithms, the parameter updates will also be complex

numbers. However, the parameter θ should be real in practice (e.g., T2 relax-

ation constants are real), and this constraint is not taken into consideration

in the algorithm above. To address this issue, we treat the real part and

imaginary part of complex numbers separately. Let

r1(θ) = d−K(θ)a(θ), r̃1 =

[
Re{r1}
Im{r1}

]
, f̃1 =

1

2
‖r̃1‖2

2.

Then f1 ≡ f̃1, and

∇f̃1 =

[
Re{∇f1}
Im{∇f1}

]
, (3.15)

where ∇f1 is defined in Eq. (3.14). Using (3.15) as gradient, the constraint

that θ is real can thus be incorporated.

3.3.2 Proposed Algorithm-Step 2

After θ̂ is estimated, we then solve the `1-norm regularized least-squares

problem in (3.11) using a so-called alternating direction method of multipliers

(ADMM) [47]. For the following problem,

min
x,z

f(x) + g(z),

s.t. Ax+Bz = c,

the ADMM is to construct

L(x, z; y) = f(x) + g(z) +
µ

2
‖Ax+Bz − c− y‖2

2,
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and iteratively solve the following subproblems,
x(k+1) = arg minx L(x, z(k); y(k)),

z(k+1) = arg minz L(x(k+1), z; y(k)),

y(k+1) = y(k) + γ(c− Ax(k+1) −By(k+1)).

It is shown that under certain convex assumptions, if µ > 0 and 0 < γ <
√

5+1
2

, the algorithm above converges [47]. For simplicity, we firstly present

the algorithm for the case thatWa{·} in (3.11) is a linear operator of a (e.g.,

the wavelet and TV transform) and can thus be represented by a matrix

form, i.e.,Wa{a(n)} = Waa
(n). As proposed by Guo et al. [48], we introduce

an auxiliary variable u, so that (3.11) is equivalent to

min
a,u

1

2
‖d−K(θ̂)a‖2

2 +
N∑
n=1

ηn‖u(n)‖1, (3.16)

s.t. u(n) = Waa
(n), for n = 1, . . . , N,

where again, the superscript “(n)” represents the n-th metabolite. Obviously,

we can now use ADMM to solve Eq. (3.16). Let

L(a,u; ũ) =
1

2
‖d−K(θ̂)a‖2

2 +
N∑
n=1

[
ηn‖u(n)‖1 +

µn
2
‖Waa

(n) − u(n) − ũ(n)‖2
2

]
.

Then we can iteratively solve the following subproblems,
u(k+1) = arg minu L(a(k),u; ũ(k)),

a(k+1) = arg mina L(a(k),u(k+1); ũ(k)),

ũ(k+1) = ũ(k) + γ(u(k) −Waa
(k)).

That is,

u(n,k+1) = arg min
u(n)
‖u(n)‖1 +

µn
2ηn
‖Waa

(n,k) − u(n) − ũ(n,k)‖2
2, ∀n, (3.17)

a(k+1) = arg min
a
‖d−K(θ̂)a‖2

2 +
N∑
n=1

µn‖Waa
(n) − u(n,k+1) − ũ(n,k)‖2

2,

(3.18)

ũ(n,k+1) = ũ(n,k) + γ(u(n,k) −Waa
(n,k)), ∀n, (3.19)
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where (n) and (k) represent the metabolite index and iteration index respec-

tively.

Subproblem (3.17) can be solved explicitly using shrinkage. In the scalar

case, the shrinkage problem is to minimize

f(x) =
1

2
(x− x′)2 + λ|x|,

and the minimizing value of x is

shrink(x′, λ) = x′max (1− λ

|x′|
, 0).

In the vector case as in (3.17), u(n,k+1) can be solved entry-by-entry:

u(n,k+1) = shrink(Waa
(n,k) − ũ(n,k), ηn/µn), ∀n = 1, . . . , N,

where

shrink(v, η) = v. ∗max (1− η./|v|, 0).

Subproblem (3.18) is a large-scale quadratic optimization problem, and

can be readily solved by standard convex optimization tools. Therefore, for

linear Wa, we can summarize the algorithm as follows.

Algorithm 1 The ADMM algorithm for solving (3.11) for linear Wa{·}

1: Input: measurement d, nonlinear parameter estimate θ̂, convergence cri-
teria H, spatial regularization parameters {ηn}Nn=1, ADMM parameters
γ and {µn}Nn=1.

2: Initialization: a(0), u(0), and ũ(0)

3: while H not satisfied do
4: for j = 1 : N do
5: u(j,k+1) ← shrink(Waa

(j,k) − ũ(j,k), ηj/µj)
6: end for
7: a(k+1) ← solve (3.18) using the conjugate gradient descent algorithm
8: for j = 1 : N do
9: ũ(j,k+1) ← ũ(j,k) + γ(u(j,k) −Waa

(j,k))
10: end for
11: end while
12: Output: ak+1 as the solution to Eq. (3.11).
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3.3.3 Extension to TGV

The algorithm above is for linear Wa{·}. Next we show that it can also be

extended to the case that Wa{·} represents the TGV transform. Plug TGV

(3.9) into (3.11):

(â, p̂) = arg min
a,p

1

2
‖d−K(θ̂)a‖2

2 + α0

N∑
n=1

ηn‖∇a(n) − p(n)‖1

+ α1

N∑
n=1

ηn

4∑
j=1

‖(E(p(n)))j‖1. (3.20)

We can see that the optimization functional is not linear in a, so Algorithm

1 does not apply immediately. However, let

ã =

[
a

p

]
, d̃ =

[
d

0

]
, K̃(θ̂) =

[
K(θ̂)

0

]
,

and

Ẽj(ã(n)) = (E(p(n)))j, j = 1, 2, 3, 4.

Then we can reformulate (3.20) as

ˆ̃a = arg min
ã

1

2
‖d̃− K̃(θ̂)ã‖2

2 +
N∑
n=1

ηn‖W̃ã(n)‖1, (3.21)

where

W̃ã(n) =


α0∇,−α0I

α1Ẽ1

...

α1Ẽ4

 ã(n).

Comparing Eq. (3.21) with Eq. (3.11), we can see that when Wa{·} is TGV,

Algorithm 1 can still be used after the simple reformulation introduced in

(3.21).
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CHAPTER 4

RESULTS

The effectiveness of the proposed quantification method is demonstrated via

both simulation and experimental results. In this chapter, we will describe

the setup of both the simulation and in vivo experimental datasets, and show

the spectral estimation results by the proposed method in comparison to one

of the state-of-the-art methods.

4.1 Simulation

4.1.1 Setup

A realistic 2-dimensional MRSI simulation dataset for the human brain was

generated for our analysis. The synthetic model used in simulation was

d(x, t) =
6∑

n=1

an(x)e−R2,n(x)tϕn(t) + n(x, t).

Six common metabolites, NAA, creatine (Cre), choline (Cho), glutamate

(Glu), myo-inositol (mI), and glutamine (Gln), were used. True metabolite

distributions (an) are shown in Fig. 4.1, which were designed such that they

are smooth within each type of tissue, but different across different types of

tissues (gray matter, white matter, and cerebrospinal fluid), so that spatial

smoothness can be exploited. The ratios between metabolites was adjusted

based on literature values from [1]. The true R2 map is shown in Fig. 4.2,

which is piece-wise constant. The corresponding spectral basis functions,

ϕn(t), were obtained by quantum mechanics simulation (GAVA [43]) and

shown in Fig. 4.3. The spectral integration of the simulated dataset is shown

in Fig. 4.4a. White Gaussian noise was also added to the dataset (Fig. 4.4b)

to mimic practical thermal noise, with three typical spectra at different SNR
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levels shown in Fig. 4.4c.

Figure 4.1: True spatial distributions of metabolites used in simulation.

Figure 4.2: True spatial distributions of the R2 values used in simulation.

4.1.2 Results

We have evaluated the performance of the proposed method and compared

it with QUEST [8], a standard method used in practice. As is done in other
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Figure 4.3: Spectral basis functions of the six metabolites used to
synthesize the simulation dataset.

(a) (b) (c)

Figure 4.4: (a) Spectral integral of the synthesized dataset; (b) spectral
integral after adding white Gaussian noise; and (c) representative spectra,
with their locations indicated by the red dots in (b).
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state-of-the-art frequency-domain methods (LCModel [6], etc.) and time-

domain methods (AQSES [9], etc.), QUEST performs spectral quantification

voxel by voxel using a set of pre-determined spectral bases without incorpo-

rating spatial constraints.

Figure 4.5 shows a comparison of the typical quantification results for

NAA, Cre, Cho, Glx (Glutamate+Glutamine) and mI using QUEST and

the proposed method, respectively, on the simulation MRSI dataset. The

quantification problem is fundamentally a parameter estimation problem.

To better illustrate the estimation performance, Fig. 4.6 shows the synthetic

spectra from the true spectral parameters and the estimated parameters for

one spatial location.

Figure 4.5: True metabolite distributions, metabolite distributions
estimated by QUEST and by the proposed are shown in three rows,
respectively. Because of the inherent difficulty in separating Glu from Gln,
the conventional way is to show Glx (Glu+Gln) instead. Note the
significant improvement of the proposed over QUEST.
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Figure 4.6: Spectral estimation results at some typical points are shown in
(a)-(d). For both QUEST and the proposed, the difference between the
true spectrum and the estimated spectrum is shown under the estimated
spectrum. The right two columns represent the fitting residuals of two
methods.

4.2 In Vivo Experiment

4.2.1 Setup

Some representative in vivo results are shown here to demonstrate the ef-

fectiveness of the proposed method in practice. The MRSI data were ac-

quired from a healthy volunteer on a Siemens 3 Tesla MRI scanner with a

2-dimensional bipolar echo-planar spectroscopic imaging (EPSI) sequence.

The readout bandwidth was 100 kHz, the echo time was 30 ms, the echo

spacing was 1.42 ms, and the nominal resolution was approximately 5 mm

(field-of-view 220 mm × 220 mm, matrix size 48 × 48). The position infor-

mation (OVS bands, shimming volume, slice position, etc.) is summarized

in Fig. 4.7.

4.2.2 Results

Figure 4.8 shows the magnetic field map obtained from a calibration scan,

which determines the field inhomogeneity based on the phase evolution over

time of water signals. A polynomial interpolation was also performed to
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Figure 4.7: Setup for the in vivo experiment.

improve “bad” estimation regions where water signals were weak (e.g., bone

regions). The estimated R2 maps for NAA, Cre, and Cho are shown in

Fig. 4.9, and the quantified concentration maps are also shown in Fig. 4.10.

Note that the QUEST results showed significant spatial variations (indicating

large estimation variance), which were reduced by the proposed method.

Figure 4.8: The magnetic field map (Hz) acquired from a calibration scan.
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Figure 4.9: The estimated R2 map by QUEST (top) and the proposed
method (bottom).

Figure 4.10: The estimated concentration map by QUEST (top) and the
proposed method (bottom).
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CHAPTER 5

DISCUSSION

From Fig. 4.5, we can see that the estimated concentration maps by QUEST

were very noisy (large spatial variations); the proposed method significantly

reduced the estimation variance. Obviously, the proposed method has smaller

estimation error than QUEST when compared with the ground truth. In

Fig. 4.6, both methods had residuals close to the noise floor (columns 4 and

5), indicating comparable performance in terms of data fitting. However,

the spectrum from QUEST parameters showed noticeable errors, which were

significantly reduced by the proposed method (due to the spatial constraint).

The performance improvement by the proposed method is further validated

by in vivo experimental data.

In this chapter, we will also discuss one straightforward method of imposing

spatial constraints and its disadvantages. Then we provide a theoretical

analysis of how much improvement the proposed method can achieve.

5.1 Direct Denoising

One simple idea to apply spatial constraints is to denoise the estimates of a

state-of-the-art method by enforcing the spatial smoothness constraint:

â = arg min
a

β

2
‖a− ã‖2

2 + R(a), (5.1)

where ã denotes the current estimation of a by a state-of-the-art method

(here we used QUEST as well). As indicated by Fig. 5.1, such a straightfor-

ward method can help reduce the noise, but it also introduces some blurring

artifacts, and the estimates may also be biased due to non-Gaussianity of

the noise in the QUEST estimates. The proposed method overcomes these

problems, and perhaps more importantly, the performance of the proposed
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method can be much more easily characterized, as we will discuss in the next

section.

VARPRO Proposed VARPRO+Denoising 

Figure 5.1: Estimated concentration maps of metabolite Glx
(Glutamate+Glutamine) using QUEST, denoising of QUEST and the
proposed method, respectively, based on the same in vivo MRSI dataset as
shown in Fig. 4.10. Note the improved performance of the proposed method
over the straightforward denoising method.

5.2 Performance Evaluation

Performance analysis of a spectral estimation method is strongly desired in

practical applications. In this section, we propose to use the constrained

Cramér-Rao bound theory to characterize the performance of the proposed

method. Specifically, in the proposed method, spatial prior information is in-

corporated in the form of `1-norm regularization, which can be seen as a con-

vex relaxation of the `0-norm. The estimation variance can thus be bounded

by the constrained Cramér-Rao bound (CRB). Additionally, by comparing

the constrained CRB (characterizing the proposed joint spectral estimation

method) with the conventional CRB (characterizing point-by-point spectral

estimation methods), we can predict how much improvement the proposed

method can achieve by incorporating spatial prior information. In this sec-

tion, the theoretical analysis is also validated by Monte Carlo simulations.

5.2.1 Theory

It is well known that if the concentration a in (3.16) satisfies a certain level of

transform sparsity, then a solution to (3.16) is also a solution to the following
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equality constrained optimization problem:

â = arg min
a

1

2
‖d−K(θ̂)a‖2

2,

s.t. ‖Waa
(n)‖0 = M (n), for n = 1, . . . , N.

or more compactly,

â = arg min
a

1

2
‖d−K(θ̂)a‖2

2, (5.2)

s.t. ‖Wa‖0 = M,

where W and M have obvious definitions. Assuming the estimation of θ

is accurate (i.e., θ̂ = θ), the performance of the proposed method can be

characterized by calculating the constrained CRB [16, 49] of the estimator

in (5.2), which is a lower bound on the variance of the estimated parameters

that reside in a constrained space.

For simplicity, assume that a is real and W is invertible. The total variance

for â in (5.2) is bounded as [49]∑
i

Var(âi)constrained ≥ Tr(A[ATFA]−1AT ), (5.3)

where F is the Fisher information matrix (see Appendix B for the deriva-

tion of F), and A is selected to be those columns of W−1 corresponding

to the support of Wa. In comparison, the estimator in (3.5) has no spar-

sity constraint (as in state-of-the-art methods which perform quantification

point-by-point); its performance can be characterized by the unconstrained

CRB, which can be obtained by letting A be an identity matrix:∑
i

Var(âi)unconstrained ≥ Tr(F−1). (5.4)

In the analysis above we have assumed θ to be accurate. However, in

practice, θ̂ is a random variable dependent on noise realization, and cannot

be exact the same with θ. In this case, we absorb the model discrepancy

caused by ∆θ = θ − θ̂ into an additional noise term. The resulting total

noise thus has a larger variance. Therefore, we adjust corresponding CRB

according to the new noise variance.
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5.2.2 Validation

In this section, we perform corresponding Monte Carlo simulations to validate

the constrained CRB and conventional CRB proposed above. We will firstly

describe the simulation setup, and then show the results from Monte Carlo

simulations.

Setup

A simulated dataset was designed for Monte Carlo simulations. We per-

formed a wavelet transform to the concentration maps used in section 4.1,

truncated out the principal non-zero entries, and then performed an inverse

wavelet transform to create the true concentration maps used to generate the

dataset, so that the ground truth of a is indeed transform sparse. The rest

of the simulated dataset remains the same as the one used in section 4.1.

The Monte Carlo simulations were carried out as follows. White Gaus-

sian noise was added to the simulated dataset, and then spectral estimation

was performed (either using the proposed method or using a state-of-the-art

method as baseline). The same procedure was performed for 100 times, and

the additive noise was guaranteed to be independent from time to time. We

can then obtain an estimate of the variance of âi for all i from the 100 â’s.

To further analyze the characteristics of the proposed method at different

sparsity levels, several sets of Monte Carlo simulations were carried out, each

of which corresponded to a simulated dataset with concentration maps trun-

cated using different thresholds in the transformed domain. Note sparsity

level is defined as the proportion of non-zero terms of Wa in (5.2) in the

following discussion. A higher sparsity level here indicates more non-zero

entries.

Results and Discussion

To begin with, we assume that θ̂ = θ. Figure 5.2 shows the consistency

between CRB and Monte Carlo simulations for the case where QUEST was

used as the spectral estimation method. It is as expected since given true θ,

the estimation of a is simply a linear LS problem. Moreover, since QUEST

is a point-by-point quantification method, the estimation variance of â does
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not depend on the transform sparsity level of a, which is also reflected in

Fig. 5.2. As for the proposed method, results are shown in Fig. 5.3, from

which we can observe that if Wa is sparser, the constraint becomes more

effective, and yields lower estimation variance.

Figure 5.2: The total variance of â using QUEST given true θ. We can see
that the unconstrained CRB (blue) is rather consistent with Monte Carlo
simulation (red).

Figure 5.3: The total variance of â using the proposed method given true θ.
We can see that the estimation variance increases as Wa becomes more
dense (higher sparsity level).

We define the ratio between the constrained CRB in (5.3) and the uncon-

strained CRB in (5.4) to describe the theoretical improvement when using

spatial sparsity constraints for quantitation:

R =
Tr(F−1)

Tr(A[ATFA]−1AT )
. (5.5)
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Therefore, when true θ is used, the improvement of incorporating spatial

constraints is shown in Fig. 5.4. We can see that the improvement is larger

for smaller sparsity level, and the improvement is roughly 1/sparsity level.

Note for very small sparsity levels, the mismatch between CRB analysis and

Monte Carlo simulation becomes increasingly large, because the basis pursuit

by any practical algorithm might not be perfect. In practice, we need to

Figure 5.4: Blue line: the improvement R of the proposed method over
QUEST given true θ. Red line: real improvement obtained from Monte
Carlo simulation.

consider the inaccuracy of using θ̂ instead of θ. Using the method described

in the previous section, we carried out same comparisons as we did for using

true θ, as shown in Fig. 5.5. As expected, the improvement obtained by

incorporating sparsity constraint increases as the sparsity level decreases.
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(a) The total variance of â using
QUEST given estimated θ̂. Note the
total variance is much larger than that
using the true θ (Fig. 5.2), because of
the nonlinearity of the problem.

(b) The total variance of â using the
proposed method given estimated θ̂.

(c) Blue line: the improvement R of the
proposed method over QUEST given
estimated θ̂. Red line: real improvement
obtained from Monte Carlo simulation.

Figure 5.5: Performance analysis when θ̂ is not perfect.

48



CHAPTER 6

CONCLUSION

The practical use of spectral estimation for MRSI has long been limited by

the inherently low sensitivity of NMR techniques and model nonlinearity.

Although state-of-the-art methods have effectively imposed spectral prior

information, various readily available spatial prior information is not incor-

porated in estimation. In this thesis, we present a novel method to address

this problem. The proposed method jointly estimates the spectra from all

voxels, and enforces spatial smoothness and transform sparsity of spectral

parameters. Both simulated and experimental results showed the improved

performance of the proposed method. We can summarize the conclusion as

follows.

1. Spectral estimation for MRSI can be improved by incorporating spatial

prior information, e.g., smoothness or transform sparsity.

2. The performance of the proposed method can be theoretically charac-

terized by the constrained Cramér-Rao bound. The sparser the spec-

tral parameters (in the transformed domain), the lower the estimation

variances that can be expected.

Therefore, the proposed method should prove useful for spectral estimation

in various MRSI studies.
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APPENDIX A

THE PROOF OF THEOREM 3.1

In this chapter, we reiterate Theorem 3.1 as follows. Let

r(c,α) = [y −Φ(α)c,Wα] ,

and

r2(α) =
[
y −Φ(α)Φ(α)†y,Wα

]
,

where c ∈ Rm, α ∈ Rp, y ∈ Rk, Φ : Rp 7→ Rm×k, and W ∈ Rm×n. It is

equivalent to show the “equivalence” between the following two optimization

problems.

(ĉ, α̂) = arg min
c,α
‖r(c,α)‖2

2 (P1)α̂ = arg minα ‖r2(α)‖2
2

ĉ = Φ(α̂)†y
(P2)

Next we follow the original proof of variable projection (where W = 0) pro-

vided by Golub and Pereyra (1973) [12], and make necessary modifications.

Before proving Theorem 3.1, we need to firstly introduce the following lemma,

which was also provided by [12].

Lemma A.1. Let A− be an n × m matrix function such that AA−A = A

and (AA−)T = AA−. Then

DPA = PA⊥(DA)A− + (PA⊥(DA)A−)T , (A.1)

where D represents a more general derivative in Banach spaces (the so called

Fréchet derivative).

Proof of Lemma A.1. Since PA is a projector onto the subspace of A, we
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have

PAA = A.

Therefore,

DA = D(PAA) = (DPA)A+ PA(DA),

(DPA)A = DA− PA(DA) = PA⊥(DA). (A.2)

We can see that the A− here is a generalization or relaxation of the Moore-

Penrose pseudo-inverse of A. It can be verified that AA− is also a valid or-

thogonal projector onto the subspace of A. Moreover, because of the unique-

ness of a projector, we have PA = AA−. Because projectors are idempotent,

we have P 2
A = PA, and then

DPA = D(P 2
A)

= (DPA)PA + ((DPA)PA)T

= (DPA)AA− + ((DPA)AA−)T . (A.3)

Then by using (A.2), we have the result of (A.1).

As PA⊥ = I − PA, we easily have DPA⊥ = −DP , which is useful in the

proof following. And we should also notice that if A− is replaced by A† in

(A.1), the result remains unchanged.

Proof of Theorem 3.1.

1. As we only consider an open set Ω for α, the critical points are only

those with zero gradient. Hence, to show that the critical points of

(P1) and (P2) coincide, we need to find their corresponding gradients

to begin with.

Since ‖r2(α)‖2
2 = ‖PΦ⊥(α)y‖2

2 + ‖Wα‖2
2, by the chain rule of gradient,

we have

1

2
∇‖r2‖2

2 = yTPΦ⊥(DPΦ⊥)y + WTWα

= −yTPΦ⊥ [PΦ⊥(DΦ)Φ† + (PΦ⊥(DΦ)Φ†)T ]y

+WTWα. (A.4)
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Because PΦ⊥(α)(Φ
†)T = (Φ†)T −ΦΦ†(Φ†)T = 0, the expression above

can be simplified to

1

2
∇‖r2(α)‖2

2 = −yTPΦ⊥(DΦ)Φ†y + WTWα. (A.5)

Similarly, for ‖r(c,α)‖2
2, we have

1

2
∇‖r(c,α)‖2

2 =

[
−(y −Φc)T (DΦ)c + WTWα

−(y −Φc)TΦ

]
,

which comes from taking gradient with respect to α and c, respectively.

If we let c = Φ†y as in (P2), then

1

2
∇‖r(Φ†y,α)‖2

2 =

[
−(y −ΦΦ†y)T (DΦ)c + WTWα

−(y −ΦΦ†y)TΦ

]
.

Given the fact that I − ΦΦ† = PΦ⊥ , orthogonal projectors are sym-

metric (i.e., PΦ⊥ = P T
Φ⊥

), and PΦ⊥Φ = 0, the gradient above can be

further simplified as

1

2
∇‖r(Φ†y,α)‖2

2 =

[
−yTPΦ⊥(DΦ)Φ†y + WTWα

0

]

=

[
1
2
∇‖r2(α)‖2

2

0

]
.

Thus, if α̂ is a critical point of (P2), and ĉ = Φ†(α̂)y, then (ĉ, α̂) is a

critical point of (P1) as well.

2. Next we need to show that the global minimizer of these two problems

coincide. Assume α̂ is a global minimizer of (P2), and ĉ is calculated

as Φ(α)†y. Then obviously, ‖r2(α̂)‖2
2 = ‖r(ĉ, α̂)‖2

2.

Suppose that there exists (c∗,α∗), α∗ ∈ Ω, s.t. ‖r(c∗,α∗)‖2
2 < ‖r(ĉ, α̂)‖2

2.

Because (P2) takes an extra step to minimize over c, we have ‖r2(α)‖2
2 ≤

‖r(c,α)‖2
2, ∀α, c. Then it follows that ‖r2(α∗)‖2

2 ≤ ‖r(c∗,α∗)‖2
2 <

‖r(ĉ, α̂)‖2
2 = ‖r2(α̂)‖2

2. But this is contradictory to the fact that α̂

was a global minimizer of (P2). So the hypothesis is not valid, and

(ĉ, α̂) is also a global minimizer of (P1).
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Conversely, if (ĉ, α̂) is a global minimizer of (P1) and letting c∗ =

Φ†(α̂)y, then ‖r2(α̂)‖2
2 = ‖r(c∗, α̂)‖2

2 ≤ ‖r(ĉ, α̂)‖2
2. Since ‖r(ĉ, α̂)‖2

2 is

a global minimizer, it has to be equal sign in the inequality. Assume

∃α′ 6= α̂ such that ‖r2(α′)‖2
2 < ‖r2(α̂)‖2

2. Let c′ = Φ†(α′)y. Then

‖r2(α′)‖2
2 = ‖r(c′,α′)‖2

2 < ‖r2(α̂)‖2
2 = ‖r(ĉ, α̂)‖2

2, which is contradic-

tory to the fact that (ĉ, α̂) is a global minimizer of (P1). Therefore, α̂

is a global minimizer of (P2) as well. Furthermore, if ĉ is unique, then

it must be the same as c∗ = Φ†(α̂)y, because r(c∗, α̂) = r(ĉ, α̂).
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APPENDIX B

DERIVATION OF THE FISHER
INFORMATION MATRIX

Since the parameters at different spatial locations are disjoint, the derivation

of the Fisher information matrix (FIM) F in Eq. (5.3) can be decomposed

into deriving the FIM for each spatial point. Therefore, we only discuss how

to derive the FIM for a single voxel MRSI signal model in this chapter. The

discretized signal model for a single voxel can be expressed as follows.

s[m] = eiφ0
N∑
n=1

an(TE)ϕn,TE [m]ψn,dn [m] + ξ[m], (B.1)

m = 0, 1, . . . ,M − 1,

where m is the time index, ξ[m] ∼ N(0, σ2) is a complex Gaussian noise, φ0

is a zero-order term phase, an(TE) is a real positive amplitude assumed to

exponentially decay with respect to TE:

an(TE) = cne
−TE/T2,n , (B.2)

and ϕn,TE [m] and ψn,dn [m] are metabolite basis functions and signal decay

functions, respectively, defined as

ϕn,TE [m] =
Ln∑
l=1

αl,n(TE)e−iβl,n(TE)e−i2πfl,n(TE)m∆t, (B.3)

ψn,dn [m] = e−m∆t/dn . (B.4)

In the above formulations, T2,n is a metabolite-dependent relaxation constant,

dn is a real lineshape parameter and ∆t is the sampling time. αl,n(TE),

βl,n(TE) and fl,n(TE) are relative amplitude, phase and frequency of the l-th

resonance of the n-th metabolite which can all be determined from quantum

mechanical simulations. The parameter vector that we are going to estimate
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is

θ = [a1, . . . , aN , d1, . . . , dN , φ0]T . (B.5)

B.1 Entrywise Derivation of CRB

Since ξ(t) is a complex white Gaussian noise, the likelihood function of

s[m],m = 0, . . . ,M − 1 is

L(s[m]) =
1

(πσ2)M
e−
|ξ[m]|2

σ2 ,

⇒ lnL(s[m]) = const− 1

σ2

M−1∑
m=0

|ξ[m]|2, (B.6)

where ξ[m] ∼ N(0, σ2). Using the result that ∂‖z‖2
∂α

= z(∂z
∗

∂α
) + z∗( ∂z

∂α
) =

2Re{z(∂z
∗

∂α
)} where z ∈ C, α ∈ R, we have

∂lnL

∂θk
= − 1

σ2

M−1∑
m=0

{
ξ[m]

∂ξ∗[m]

∂θk
+ ξ∗[m]

∂ξ[m]

∂θk

}
, (B.7)

where

ξ∗[m] = s∗[m]− e−iφ0
N∑
n=1

an(TE)ϕ∗n,TE [m]ψ∗n,dn [m],

(
∂ξ[m]

∂ak
)∗ =

∂ξ∗[m]

∂ak
= −e−iφ0ϕ∗k,TE [m]ψ∗k,dk [m], (B.8)

(
∂ξ[m]

∂dk
)∗ =

∂ξ∗[m]

∂dk
= −e−iφ0ak(TE)ϕ∗k,TE [m]

∂ψ∗k,dk [m]

∂dk
, (B.9)

(
∂ξ[m]

∂φ0

)∗ =
∂ξ∗[m]

∂φ0

= ie−iφ0
N∑
n=1

an(TE)ϕ∗n,TE [m]ψ∗n,dn [m], (B.10)

k = 1, 2, . . . , N.

By Eq. (2.8), we have

Fp,q(θ) = Eξ

[(
∂lnL

∂θp

)(
∂lnL

∂θq

)]
. (B.11)
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In calculating that, we will need the expectation of ξ∗[m1]ξ[m2] and ξ[m1]ξ[m2],

∀m1,m2 = 1, . . . ,M . For white Gaussian noise, it is easy to get

Eξ{ξ∗[m1]ξ[m2]} =

σ2, for m1 = m2

0, for m1 6= m2

(B.12)

Eξ{ξ[m1]ξ[m2]} = 0, for m1 6= m2.

To handle ξ[m]ξ[m], we firstly decompose it into real variables:

ξ[m] = ξr[m] + iξi[m], (B.13)

where ξr[m], ξi[m] ∼ N(0, σ
2

2
) and are independent with each other. Then

Eξ{ξ[m]ξ[m]} = Eξ{ξ2
r + 2iξrξi − ξ2

i } = Eξ{ξ2
r − ξ2

i } = 0.

Therefore,

Eξ{ξ[m1]ξ[m2]} = 0,∀m1,m2 = 1, . . . ,M. (B.14)

Taking (B.12) and (B.14) into consideration, the entries of the Fisher Infor-

mation matrix is

Fp,q(θ) =
1

σ4
Eξ

{
M−1∑
m1=0

[
ξ[m1]

∂ξ∗[m1]

∂θp
+ ξ∗[m1]

∂ξ[m1]

∂θp

]
M−1∑
m2=0

[
ξ[m2]

∂ξ∗[m2]

∂θq
+ ξ∗[m2]

∂ξ[m2]

∂θq

]}

=
1

σ4
Eξ

{
M−1∑
m=0

[
ξ[m]ξ∗[m]

∂ξ∗[m]

∂θp

∂ξ[m]

∂θq
+ ξ∗[m]ξ[m]

∂ξ[m]

∂θp

∂ξ∗[m]

∂θq

]}

=
1

σ2

M−1∑
m=0

[
∂ξ∗[m]

∂θp

∂ξ[m]

∂θq
+
∂ξ[m]

∂θp

∂ξ∗[m]

∂θq

]

=
2

σ2

M−1∑
m=0

Re

{
∂ξ∗[m]

∂θp

∂ξ[m]

∂θq

}
. (B.15)

(B.16)
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Substituting (B.8), (B.9) and (B.10) into (B.15), we get for ∀p, q = 1, . . . , N

Fap,aq(θ) =
2

σ2

M−1∑
m=0

Re
{
ϕ∗p,TE [m]ψ∗p,dp [m]ϕq,TE [m]ψq,dq [m]

}
, (B.17)

Fdp,dq(θ) =
2

σ2

M−1∑
m=0

Re

{
apaqϕ

∗
p,TE

[m]
∂ψ∗p,dp [m]

∂dp
ϕq,TE [m]

∂ψq,dq [m]

∂dq

}
, (B.18)

Fφ0,φ0(θ) =
2

σ2

M−1∑
m=0

Re

{
N∑

n1=1

N∑
n2=1

an1an2ϕ
∗
n1,TE

[m]ψ∗n1,dn1
[m]ϕn2,TE [m]ψn2,dn2

[m]

}
,

(B.19)

Fap,dq(θ) =
2

σ2

M−1∑
m=0

Re

{
aqϕ

∗
p,TE

[m]ψ∗p,dp [m]ϕq,TE [m]
∂ψq,dq [m]

∂dq

}
, (B.20)

Fap,φ0(θ) = − 2

σ2

M−1∑
m=0

Im

{
ϕ∗p,TE [m]ψ∗p,dp [m]

N∑
n=1

anϕn,TE [m]ψn,dn [m]

}
, (B.21)

Fdp,φ0(θ) = − 2

σ2

M−1∑
m=0

Im

{
apϕ

∗
p,TE

[m]
∂ψ∗p,dp [m]

∂dp

N∑
n=1

anϕn,TE [m]ψn,dn [m]

}
. (B.22)

Here we have got the entries of Fp,q(θ) above its diagonal, and the rest of the

entries are the conjugate transpose of the upper triangular part.

F(θ) =

 Fa,a Fa,d Fa,φ0

FH
a,d Fd,d Fd,φ0

FH
a,φ0

FH
d,φ0

Fφ0,φ0

 . (B.23)

B.2 Matrix Derivation of CRB

In deriving the CRB entrywisely, we see the formulations are much compli-

cated due to a large number of summations. Here we show an alternative way

of calculating F which takes advantage of the matrix derivatives. Rewrite

the signal model in matrix form.

s = eiφ0Za + ξ, (B.24)
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where Zm,n = ϕn,TE [m]ψd,dn [m], m = 0, . . . ,M − 1, n = 1, . . . , N and

s =


s[0]

s[1]
...

s[M − 1]

 , a =


a1

a2

...

aN

 ,d =


d1

d2

...

dN

 , ξ =


ξ[0]

ξ[1]
...

ξ[M − 1]

 .

(B.25)

Then the likelihood function is

lnL(s) = const− 1

σ2
‖ξ‖2. (B.26)

⇒ ∇θlnL = − 1

σ2
(JHξ + (JHξ)∗), (B.27)

where J is the Jacobian matrix of ξ over θ.

J =
∂ξ

∂θ

= [ ∂ξ
∂a

∂ξ
∂d

∂ξ
∂φ0

]

= [ −eiφ0Z −eiφ0DA −ieiφ0Za ], (B.28)

where

D = [ ∂Z1

∂d1
. . . ∂ZN

∂dN
], (B.29)

A =


a1 0 · · · 0

0 a2 · · · 0
...

...
. . .

...

0 0 · · · aN

 . (B.30)

By (2.8) and (B.27), we have

F = E
[
(∇θlnL) (∇θlnL)H

]
=

1

σ4
E
[
(JHξ + (JHξ)∗)(ξHJ + (ξHJ)∗)

]
=

2

σ2
Re{JHJ}. (B.31)
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Using (B.28), we have

Fa,a(θ) =
2

σ2
Re{ZHZ}, (B.32)

Fd,d(θ) =
2

σ2
Re{AHDHDA}, (B.33)

Fφ0,φ0(θ) =
2

σ2
Re{aHZHZa}, (B.34)

Fa,d(θ) =
2

σ2
Re{ZHDA}, (B.35)

Fa,φ0(θ) = − 2

σ2
Im{ZHZa}, (B.36)

Fd,φ0(θ) = − 2

σ2
Im{AHDHZa}. (B.37)

Finally

F(θ) =

 Fa,a Fa,d Fa,φ0

FH
a,d Fd,d Fd,φ0

FH
a,φ0

FH
d,φ0

Fφ0,φ0

 . (B.38)
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