14,938 research outputs found

    Multi-sensor Cloud Retrieval Simulator and Remote Sensing from Model Parameters

    Get PDF
    In this paper we describe a general procedure for calculating synthetic sensor radiances from variable output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint, the algorithm takes explicit account of the model subgrid variability, in particular its description of the probability density function of total water (vapor and cloud condensate.) The simulated sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies.We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products). We focus on clouds because they are very important to model development and improvement

    Equivalent Sensor Radiance Generation and Remote Sensing from Model Parameters

    Get PDF
    In this paper we describe a general procedure for calculating equivalent sensor radiances from variables output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint the algorithm takes explicit account of the model subgrid variability, in particular its description of the probably density function of total water (vapor and cloud condensate.) The equivalent sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies. We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products.) We focus on clouds and cloud/aerosol interactions, because they are very important to model development and improvement

    Implications of whole-disc DSCOVR EPIC spectral observations for estimating Earth's spectral reflectivity based on low-earth-orbiting and geostationary observations

    Get PDF
    Earth’s reflectivity is among the key parameters of climate research. National Aeronautics and Space Administration (NASA)’s Earth Polychromatic Imaging Camera (EPIC) onboard National Oceanic and Atmospheric Administration (NOAA)’s Deep Space Climate Observatory (DSCOVR) spacecraft provides spectral reflectance of the entire sunlit Earth in the near backscattering direction every 65 to 110 min. Unlike EPIC, sensors onboard the Earth Orbiting Satellites (EOS) sample reflectance over swaths at a specific local solar time (LST) or over a fixed area. Such intrinsic sampling limits result in an apparent Earth’s reflectivity. We generated spectral reflectance over sampling areas using EPIC data. The difference between the EPIC and EOS estimates is an uncertainty in Earth’s reflectivity. We developed an Earth Reflector Type Index (ERTI) to discriminate between major Earth atmosphere components: clouds, cloud-free ocean, bare and vegetated land. Temporal variations in Earth’s reflectivity are mostly determined by clouds. The sampling area of EOS sensors may not be sufficient to represent cloud variability, resulting in biased estimates. Taking EPIC reflectivity as a reference, low-earth-orbiting-measurements at the sensor-specific LST tend to overestimate EPIC values by 0.8% to 8%. Biases in geostationary orbiting approximations due to a limited sampling area are between −0.7% and 12%. Analyses of ERTI-based Earth component reflectivity indicate that the disagreement between EPIC and EOS estimates depends on the sampling area, observation time and vary between −10% and 23%.The NASA/GSFC DSCOVR project is funded by NASA Earth Science Division. W. Song, G. Yan, and X. Mu were also supported by the key program of National Natural Science Foundation of China (NSFC; Grant No. 41331171). This research was conducted and completed during a 13-month research stay of the lead author in the Department of Earth and Environment, Boston University as a joint Ph.D. student, which was supported by the Chinese Scholarship Council (201606040098). DSCOVR EPIC L1B data were obtained from the NASA Langley Research Center Atmospheric Science Data Center. The authors would like to thank the editor who handled this paper and the two anonymous reviewers for providing helpful and constructive comments and suggestions that significantly helped us improve the quality of this paper. (NASA Earth Science Division; 41331171 - key program of National Natural Science Foundation of China (NSFC); 201606040098 - Chinese Scholarship Council)Accepted manuscrip

    Earth observations from DSCOVR EPIC instrument

    Full text link
    The National Oceanic and Atmospheric Administration (NOAA) Deep Space Climate Observatory (DSCOVR) spacecraft was launched on 11 February 2015 and in June 2015 achieved its orbit at the first Lagrange point (L1), 1.5 million km from Earth toward the sun. There are two National Aeronautics and Space Administration (NASA) Earth-observing instruments on board: the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards and Technology Advanced Radiometer (NISTAR). The purpose of this paper is to describe various capabilities of the DSCOVR EPIC instrument. EPIC views the entire sunlit Earth from sunrise to sunset at the backscattering direction (scattering angles between 168.5° and 175.5°) with 10 narrowband filters: 317, 325, 340, 388, 443, 552, 680, 688, 764, and 779 nm. We discuss a number of preprocessing steps necessary for EPIC calibration including the geolocation algorithm and the radiometric calibration for each wavelength channel in terms of EPIC counts per second for conversion to reflectance units. The principal EPIC products are total ozone (O3) amount, scene reflectivity, erythemal irradiance, ultraviolet (UV) aerosol properties, sulfur dioxide (SO2) for volcanic eruptions, surface spectral reflectance, vegetation properties, and cloud products including cloud height. Finally, we describe the observation of horizontally oriented ice crystals in clouds and the unexpected use of the O2 B-band absorption for vegetation properties.The NASA GSFC DSCOVR project is funded by NASA Earth Science Division. We gratefully acknowledge the work by S. Taylor and B. Fisher for help with the SO2 retrievals and Marshall Sutton, Carl Hostetter, and the EPIC NISTAR project for help with EPIC data. We also would like to thank the EPIC Cloud Algorithm team, especially Dr. Gala Wind, for the contribution to the EPIC cloud products. (NASA Earth Science Division)Accepted manuscrip

    Science Writers' Guide to Terra

    Get PDF
    This guide was produced for science writers and the media and provides research profiles, as well as extensive background and contact information for NASA’s Terra spacecraft. Terra’s launch marked a new era of comprehensive monitoring of the Earth's atmosphere, oceans and continents from a single space-based platform. Data from the five Terra instruments are creating continuous, long-term records of the state of the land, oceans and atmosphere. Together with data from other satellite systems launched by NASA and other countries, Terra will inaugurate a new self-consistent data record that will be gathered over the next 15 years. Educational levels: Informal education

    Evaluation of Landsat-8 and Sentinel-2A Aerosol Optical Depth Retrievals Across Chinese Cities and Implications for Medium Spatial Resolution Urban Aerosol Monitoring

    Get PDF
    In urban environments, aerosol distributions may change rapidly due to building and transport infrastructure and human population density variations. The recent availability of medium resolution Landsat-8 and Sentinel-2 satellite data provide the opportunity for aerosol optical depth (AOD) estimation at higher spatial resolution than provided by other satellites. AOD retrieved from 30 m Landsat-8 and 10 m Sentinel-2A data using the Land Surface Reflectance Code (LaSRC) were compared with coincident ground-based Aerosol Robotic Network (AERONET) Version 3 AOD data for 20 Chinese cities in 2016. Stringent selection criteria were used to select contemporaneous data; only satellite and AERONET data acquired within 10 min were considered. The average satellite retrieved AOD over a 1470 m1470 m window centered on each AERONET site was derived to capture fine scale urban AOD variations. AERONET Level 1.5 (cloud-screened) and Level 2.0 (cloud-screened and also quality assured) data were considered. For the 20 urban AERONET sites in 2016 there were 106 (Level 1.5) and 67 (Level 2.0) Landsat-8 AERONET AOD contemporaneous data pairs, and 118 (Level 1.5) and 89 (Level 2.0) Sentinel-2A AOD data pairs. The greatest AOD values (>1.5) occurred in Beijing, suggesting that the Chinese capital was one of the most polluted cities in China in 2016. The LaSRC Landsat-8 and Sentinel-2A AOD retrievals agreed well with the AERONET AOD data (linear regression slopes > 0.96; coefficient of determination r(exp 2) > 0.90; root mean square deviation < 0.175) and demonstrate that the LaSRC is an effective and applicable medium resolution AOD retrieval algorithm over urban environments. The Sentinel-2A AOD retrievals had better accuracy than the Landsat-8 AOD retrievals, which is consistent with previously published research.The implications of the research and the potential for urban aerosol monitoring by combining the freely available Landsat-8 and Sentinel-2 satellite data are discussed

    Aerosol Data Sources and Their Roles within PARAGON

    Get PDF
    We briefly but systematically review major sources of aerosol data, emphasizing suites of measurements that seem most likely to contribute to assessments of global aerosol climate forcing. The strengths and limitations of existing satellite, surface, and aircraft remote sensing systems are described, along with those of direct sampling networks and ship-based stations. It is evident that an enormous number of aerosol-related observations have been made, on a wide range of spatial and temporal sampling scales, and that many of the key gaps in this collection of data could be filled by technologies that either exist or are expected to be available in the near future. Emphasis must be given to combining remote sensing and in situ active and passive observations and integrating them with aerosol chemical transport models, in order to create a more complete environmental picture, having sufficient detail to address current climate forcing questions. The Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) initiative would provide an organizational framework to meet this goal

    Generating global products of LAI and FPAR from SNPP-VIIRS data: theoretical background and implementation

    Full text link
    Leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR) absorbed by vegetation have been successfully generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) data since early 2000. As the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard, the Suomi National Polar-orbiting Partnership (SNPP) has inherited the scientific role of MODIS, and the development of a continuous, consistent, and well-characterized VIIRS LAI/FPAR data set is critical to continue the MODIS time series. In this paper, we build the radiative transfer-based VIIRS-specific lookup tables by achieving minimal difference with the MODIS data set and maximal spatial coverage of retrievals from the main algorithm. The theory of spectral invariants provides the configurable physical parameters, i.e., single scattering albedos (SSAs) that are optimized for VIIRS-specific characteristics. The effort finds a set of smaller red-band SSA and larger near-infraredband SSA for VIIRS compared with the MODIS heritage. The VIIRS LAI/FPAR is evaluated through comparisons with one year of MODIS product in terms of both spatial and temporal patterns. Further validation efforts are still necessary to ensure the product quality. Current results, however, imbue confidence in the VIIRS data set and suggest that the efforts described here meet the goal of achieving the operationally consistent multisensor LAI/FPAR data sets. Moreover, the strategies of parametric adjustment and LAI/FPAR evaluation applied to SNPP-VIIRS can also be employed to the subsequent Joint Polar Satellite System VIIRS or other instruments.Accepted manuscrip
    • …
    corecore