304 research outputs found

    Smart aging : utilisation of machine learning and the Internet of Things for independent living

    Get PDF
    Smart aging utilises innovative approaches and technology to improve older adults’ quality of life, increasing their prospects of living independently. One of the major concerns the older adults to live independently is “serious fall”, as almost a third of people aged over 65 having a fall each year. Dementia, affecting nearly 9% of the same age group, poses another significant issue that needs to be identified as early as possible. Existing fall detection systems from the wearable sensors generate many false alarms; hence, a more accurate and secure system is necessary. Furthermore, there is a considerable gap to identify the onset of cognitive impairment using remote monitoring for self-assisted seniors living in their residences. Applying biometric security improves older adults’ confidence in using IoT and makes it easier for them to benefit from smart aging. Several publicly available datasets are pre-processed to extract distinctive features to address fall detection shortcomings, identify the onset of dementia system, and enable biometric security to wearable sensors. These key features are used with novel machine learning algorithms to train models for the fall detection system, identifying the onset of dementia system, and biometric authentication system. Applying a quantitative approach, these models are tested and analysed from the test dataset. The fall detection approach proposed in this work, in multimodal mode, can achieve an accuracy of 99% to detect a fall. Additionally, using 13 selected features, a system for detecting early signs of dementia is developed. This system has achieved an accuracy rate of 93% to identify a cognitive decline in the older adult, using only some selected aspects of their daily activities. Furthermore, the ML-based biometric authentication system uses physiological signals, such as ECG and Photoplethysmogram, in a fusion mode to identify and authenticate a person, resulting in enhancement of their privacy and security in a smart aging environment. The benefits offered by the fall detection system, early detection and identifying the signs of dementia, and the biometric authentication system, can improve the quality of life for the seniors who prefer to live independently or by themselves

    Locomotion Traces Data Mining for Supporting Frail People with Cognitive Impairment

    Get PDF
    The rapid increase in the senior population is posing serious challenges to national healthcare systems. Hence, innovative tools are needed to early detect health issues, including cognitive decline. Several clinical studies show that it is possible to identify cognitive impairment based on the locomotion patterns of older people. Thus, this thesis at first focused on providing a systematic literature review of locomotion data mining systems for supporting Neuro-Degenerative Diseases (NDD) diagnosis, identifying locomotion anomaly indicators and movement patterns for discovering low-level locomotion indicators, sensor data acquisition, and processing methods, as well as NDD detection algorithms considering their pros and cons. Then, we investigated the use of sensor data and Deep Learning (DL) to recognize abnormal movement patterns in instrumented smart-homes. In order to get rid of the noise introduced by indoor constraints and activity execution, we introduced novel visual feature extraction methods for locomotion data. Our solutions rely on locomotion traces segmentation, image-based extraction of salient features from locomotion segments, and vision-based DL. Furthermore, we proposed a data augmentation strategy to increase the volume of collected data and generalize the solution to different smart-homes with different layouts. We carried out extensive experiments with a large real-world dataset acquired in a smart-home test-bed from older people, including people with cognitive diseases. Experimental comparisons show that our system outperforms state-of-the-art methods

    Optimización de los costos y tiempos empleados durante el proceso de monitoreo de pacientes con la enfermedad de Alzheimer, utilizando la tecnología

    Get PDF
    El presente trabajo de investigación se realizó sobre la base de proceso de monitoreo de pacientes con alzhéimer. Para ello, se recopilaron diversas fuentes como testimonios de pacientes y familiares que permitieron identificar las tareas recurrentes en este proceso y los recursos asociados. En el análisis del proceso de monitoreo, se identificó problemas relacionados a los tiempos y costos que se generan. Asimismo, se identificó los signos vitales del paciente que son monitoreados con mayor frecuencia y las personas que intervienen en el monitoreo, los cuales son: cuidador y médico. Por otra parte, se realizo una investigación de las tecnologías que se usan actualmente para el monitoreo. En dichos estudios se establecen los mecanismos de supervisión del paciente; sin embargo, estos no brindan la información suficiente sobre el estado de salud del paciente. Después del análisis del proceso de monitoreo, se realizó una investigación adicional para determinar qué tipo de tecnologías permitiría optimizar este proceso. Asimismo, se definieron las variables de medición para identificar el impacto de la tecnología usada. Con la finalidad de obtener un resultado certero, se recurrió a cuidadores y médicos para saber la percepción respecto a la propuesta.The present research work was carried out on the basis of the monitoring process of patients with Alzheimer's. For this, various sources were compiled such as testimonies from patients and relatives that made it possible to identify the recurring tasks in this process and the associated resources. In the analysis of the monitoring process, problems related to the times and costs generated were identified. Likewise, the vital signs of the patient that are monitored more frequently and the people involved in the monitoring were identified, which are: caregiver and doctor. On the other hand, an investigation of the technologies that are currently used for monitoring was carried out. In these studies, the mechanisms for patient supervision are established; however, these do not provide sufficient information on the patient's health status. After analyzing the monitoring process, additional research was conducted to determine what type of technologies would allow this process to be optimized. Likewise, the measurement variables were defined to identify the impact of the technology used. In order to obtain an accurate result, a survey was conducted with caregivers and doctors to find out their perception of the proposal.Trabajo de investigació

    Progress in ambient assisted systems for independent living by the elderly

    Get PDF
    One of the challenges of the ageing population in many countries is the efficient delivery of health and care services, which is further complicated by the increase in neurological conditions among the elderly due to rising life expectancy. Personal care of the elderly is of concern to their relatives, in case they are alone in their homes and unforeseen circumstances occur, affecting their wellbeing. The alternative; i.e. care in nursing homes or hospitals is costly and increases further if specialized care is mobilized to patients’ place of residence. Enabling technologies for independent living by the elderly such as the ambient assisted living systems (AALS) are seen as essential to enhancing care in a cost-effective manner. In light of significant advances in telecommunication, computing and sensor miniaturization, as well as the ubiquity of mobile and connected devices embodying the concept of the Internet of Things (IoT), end-to-end solutions for ambient assisted living have become a reality. The premise of such applications is the continuous and most often real-time monitoring of the environment and occupant behavior using an event-driven intelligent system, thereby providing a facility for monitoring and assessment, and triggering assistance as and when needed. As a growing area of research, it is essential to investigate the approaches for developing AALS in literature to identify current practices and directions for future research. This paper is, therefore, aimed at a comprehensive and critical review of the frameworks and sensor systems used in various ambient assisted living systems, as well as their objectives and relationships with care and clinical systems. Findings from our work suggest that most frameworks focused on activity monitoring for assessing immediate risks while the opportunities for integrating environmental factors for analytics and decision-making, in particular for the long-term care were often overlooked. The potential for wearable devices and sensors, as well as distributed storage and access (e.g. cloud) are yet to be fully appreciated. There is a distinct lack of strong supporting clinical evidence from the implemented technologies. Socio-cultural aspects such as divergence among groups, acceptability and usability of AALS were also overlooked. Future systems need to look into the issues of privacy and cyber security

    Emerging roles for telemedicine and smart technologies in dementia care

    Get PDF

    Investigation of Low-Cost Wearable Internet of Things Enabled Technology for Physical Activity Recognition in the Elderly

    Get PDF
    Technological advances in mobile sensing technologies has produced new opportunities for the monitoring of the elderly in uncontrolled environments by researchers. Sensors have become smaller, cheaper and can be worn on the body, potentially creating a network of sensors. Smart phones are also more common in the average household and can also provide some behavioural analysis due to the built-in sensors. As a result of this, researchers are able to monitor behaviours in a more naturalistic setting, which can lead to more contextually meaningful data. For those suffering with a mental illness, non-invasive and continuous monitoring can be achieved. Applying sensors to real world environments can aid in improving the quality of life of an elderly person with a mental illness and monitor their condition through behavioural analysis. In order to achieve this, selected classifiers must be able to accurately detect when an activity has taken place. In this thesis we aim to provide a framework for the investigation of activity recognition in the elderly using low-cost wearable sensors, which has resulted in the following contributions: 1. Classification of eighteen activities which were broken down into three disparate categories typical in a home setting: dynamic, sedentary and transitional. These were detected using two Shimmer3 IMU devices that we have located on the participants’ wrist and waist to create a low-cost, contextually deployable solution for elderly care monitoring. 2. Through the categorisation of performed Extracted time-domain and frequency-domain features from the Shimmer devices accelerometer and gyroscope were used as inputs, we achieved a high accuracy classification from a Convolutional Neural Network (CNN) model applied to the data set gained from participants recruited to the study through Join Dementia Research. The model was evaluated by variable adjustments to the model, tracking changes in its performance. Performance statistics were generated by the model for comparison and evaluation. Our results indicate that a low epoch of 200 using the ReLu activation function can display a high accuracy of 86% on the wrist data set and 85% on the waist data set, using only two low-cost wearable devices

    Acceptance of ambient assisted living (AAL) technologies among older Australians : a review of barriers in user experience

    Get PDF
    One of the great challenges facing Australian society is that of an ageing population. Amongst the issues involved in this drastic demographic change, the most significant aspect is the demand for older Australians to live independently at home. The development of Ambient Assisted Living (AAL) technologies aims to address this issue. The advancement of AAL applications have been done to support the users with their daily-life activities and health concerns by providing increased mobility, security, safety in emergencies, health-monitoring, improved lifestyle, and fall-detection through the use of sensors. However, the optimum uptake of these technologies among the end-users (the elderly Australians) still remains a big concern. Thus, there is an elevated need to understand the needs and preferences of the seniors in order to improve the acceptance of AAL applications. The aim of this study is to investigate the barriers and perceptions in the use of AAL applications amongst older Australians. Focus groups and quantitative surveys have been conducted to provide a detailed analysis of these impediments. The results show that there are different factors that restrict the use of these technologies along with the fact that elderly people have certain preferences when using them. An understanding of these factors has been gained and suggestions have been made to increase the acceptance of AAL devices. This work gives useful insights towards the design of AAL solutions according to user needs

    Multicohort cross-sectional study of cognitive and behavioural digital biomarkers in neurodegeneration: the Living Lab Study protocol

    Get PDF
    INTRODUCTION AND AIMS: Digital biomarkers can provide a cost-effective, objective and robust measure for neurological disease progression, changes in care needs and the effect of interventions. Motor function, physiology and behaviour can provide informative measures of neurological conditions and neurodegenerative decline. New digital technologies present an opportunity to provide remote, high-frequency monitoring of patients from within their homes. The purpose of the living lab study is to develop novel digital biomarkers of functional impairment in those living with neurodegenerative disease (NDD) and neurological conditions. METHODS AND ANALYSIS: The Living Lab study is a cross-sectional observational study of cognition and behaviour in people living with NDDs and other, non-degenerative neurological conditions. Patients (n≥25 for each patient group) with dementia, Parkinson's disease, amyotrophic lateral sclerosis, mild cognitive impairment, traumatic brain injury and stroke along with controls (n≥60) will be pragmatically recruited. Patients will carry out activities of daily living and functional assessments within the Living Lab. The Living Lab is an apartment-laboratory containing a functional kitchen, bathroom, bed and living area to provide a controlled environment to develop novel digital biomarkers. The Living Lab provides an important intermediary stage between the conventional laboratory and the home. Multiple passive environmental sensors, internet-enabled medical devices, wearables and electroencephalography (EEG) will be used to characterise functional impairments of NDDs and non-NDD conditions. We will also relate these digital technology measures to clinical and cognitive outcomes. ETHICS AND DISSEMINATION: Ethical approvals have been granted by the Imperial College Research Ethics Committee (reference number: 21IC6992). Results from the study will be disseminated at conferences and within peer-reviewed journals

    Emerging roles for telemedicine and smart technologies in dementia care

    Get PDF
    Demographic aging of the world population contributes to an increase in the number of persons diagnosed with dementia (PWD), with corresponding increases in health care expenditures. In addition, fewer family members are available to care for these individuals. Most care for PWD occurs in the home, and family members caring for PWD frequently suffer negative outcomes related to the stress and burden of observing their loved one's progressive memory and functional decline. Decreases in cognition and self-care also necessitate that the caregiver takes on new roles and responsibilities in care provision. Smart technologies are being developed to support family caregivers of PWD in a variety of ways, including provision of information and support resources online, wayfinding technology to support independent mobility of the PWD, monitoring systems to alert caregivers to changes in the PWD and their environment, navigation devices to track PWD experiencing wandering, and telemedicine and e-health services linking caregivers and PWD with health care providers. This paper will review current uses of these advancing technologies to support care of PWD. Challenges unique to widespread acceptance of technology will be addressed and future directions explored.ope
    corecore