18,965 research outputs found

    AMBIENT LIGHT MONITORING SYSTEM USING INTERNET OF THINGS (IoT)

    Get PDF
    Nowadays, the Internet of Things (IoT) technologies are ubiquitous and widely used by the users to solve their specific everyday life problems related with power usage consumption, environmental condition, automation and many more. An ambient light monitoring system is designed to measure the ambient light intensity or illuminance of particular indoor areas in UTP campus. This system is designed to take the light measurement autonomously and continuously without human involvement. The purpose of this project is to build a scalable IoT system to remotely monitor the ambient light level in real-time inside the indoor areas of the campus that supports multiple sensors with low power consumption. The system is a remote system which is using the concept of Internet of Things (IoT) where the integration of everyday devices and the Internet takes place to provide some specific information and do particular analytics. This project can be considered as a smart indoor environmental monitoring where the ambient light intensity of the indoor surrounding is measured autonomously or without human interference

    The design and deployment of an end-to-end IoT infrastructure for the natural environment

    Get PDF
    Internet of Things (IoT) systems have seen recent growth in popularity for city and home environments. We report on the design, deployment, and use of the IoT infrastructure for environmental monitoring and management. Working closely with hydrologists, soil scientists, and animal behaviour scientists, we successfully deployed and utilised a system to deliver integrated information across these two fields in the first such example of real-time multidimensional environmental science. We describe the design of this system; its requirements and operational effectiveness for hydrological, soil, and ethological scientists; and our experiences from building, maintaining, and using the deployment at a remote site in difficult conditions. Based on this experience, we discuss key future work for the IoT community when working in these kinds of environmental deployments

    Internet of Things (IoT) enabled water monitoring system

    Get PDF
    Water is always a crucial part of everyday life. Due to global environmental situation, water management and conservation is vital for human survival. In recent times, there were huge needs of consumer based humanitarian projects that could be rapidly developed using Internet of Things (IoT) technology. In this paper, we propose an IoT based water monitoring system that measures water level in real-time. Our prototype is based on idea that the level of the water can be very important parameter when it comes to the flood occurrences especially in disaster prone areas. A water level sensor is used to detect the desired parameter, and if the water level reaches the parameter, the signal will be feed in realtime to social network like Twitter. A cloud server was configured as data repository. The measurement of the water levels are displayed in remote dashboard

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efficient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identified synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    The Emerging Internet of Things Marketplace From an Industrial Perspective: A Survey

    Get PDF
    The Internet of Things (IoT) is a dynamic global information network consisting of internet-connected objects, such as Radio-frequency identification (RFIDs), sensors, actuators, as well as other instruments and smart appliances that are becoming an integral component of the future internet. Over the last decade, we have seen a large number of the IoT solutions developed by start-ups, small and medium enterprises, large corporations, academic research institutes (such as universities), and private and public research organisations making their way into the market. In this paper, we survey over one hundred IoT smart solutions in the marketplace and examine them closely in order to identify the technologies used, functionalities, and applications. More importantly, we identify the trends, opportunities and open challenges in the industry-based the IoT solutions. Based on the application domain, we classify and discuss these solutions under five different categories: smart wearable, smart home, smart, city, smart environment, and smart enterprise. This survey is intended to serve as a guideline and conceptual framework for future research in the IoT and to motivate and inspire further developments. It also provides a systematic exploration of existing research and suggests a number of potentially significant research directions.Comment: IEEE Transactions on Emerging Topics in Computing 201

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Securing the Internet of Things Infrastructure - Standards and Techniques

    Get PDF
    The Internet of Things (IoT) infrastructure is a conglomerate of electronic devices interconnected through the Internet, with the purpose of providing prompt and effective service to end-users. Applications running on an IoT infrastructure generally handle sensitive information such as a patient’s healthcare record, the position of a logistic vehicle, or the temperature readings obtained through wireless sensor nodes deployed in a bushland. The protection of such information from unlawful disclosure, tampering or modification, as well as the unscathed presence of IoT devices, in adversarial environments, is of prime concern. In this paper, a descriptive analysis of the security of standards and technologies for protecting the IoT communication channel from adversarial threats is provided. In addition, two paradigms for securing the IoT infrastructure, namely, common key based and paired key based, are proposed

    Smart Environmental Health Monitoring System

    Get PDF
    Pollution is a growing issue these days. It is necessary to analyze environment and keep ichecking for the best future and healthy life. We proposed an Environment Monitoring System that permit us to watch & check live environment in especially areas through Internet of Things (IOT). IoT supports a realtime environmental monitoring system. It plays a crucial role in today’s world through a huge and protracted system of sensor networks concerned to the environment & its parameters. This technique monitors important environmental conditions like temperature, humidity & CO-level using the sensor & then transfer data to the web page. This information is often accessed from anyplace over the internet & then the sensor information is presented as graphical statistics during mobile application. This paper explains & present the implementation & outcome of this environmental system uses the sensors for temperature, humidity, air quality & different environmental parameters of the surrounding space. This data is often used to take remote actions to regulate the conditions. Information is pushed to the distributed storage & android app get to the cloud & present the effect to the end users. The system employs a Node MCU, DHT-11 sensor, MQl35 sensor, which transmits data to WEBPAGE. An Android application is made which accesses the cloud data and displays results to the end users. The sensors interact with microcontroller which processes this information & transmit it over internet. This system is best method for any use in monitoring the environment and handling it because everything is controlled automatically through all the time of the process. The results of this system tells across different field where it was controlled precisely and effectively which further explains that this system easily makes our work easier because of this automatic monitoring system worries about other unexpected climate issues for world

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security
    corecore