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Abstract 

The Internet of Things (IoT) infrastructure is a conglomerate of electronic devices interconnected through the 

Internet, with the purpose of providing prompt and effective service to end-users. Applications running on an IoT 

infrastructure generally handle sensitive information such as a patient’s healthcare record, the position of a 

logistic vehicle, or the temperature readings obtained through wireless sensor nodes deployed in a bushland. 

The protection of such information from unlawful disclosure, tampering or modification, as well as the 

unscathed presence of IoT devices, in adversarial environments, is of prime concern. In this paper, a descriptive 

analysis of the security of standards and technologies for protecting the IoT communication channel from 

adversarial threats is provided. In addition, two paradigms for securing the IoT infrastructure, namely, common 

key based and paired key based, are proposed.  
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INTRODUCTION 

Internet-of-things (IoT) has emerged as a term to aptly describe the end-to-end platform for sustaining a device-

to-Internet-to-device communication model. These large set of electronic devices form the core of an IoT 

infrastructure, to support every day user activity for a plethora of applications. The evolution of the Internet, 

attributed primarily to advances in communication bandwidth accompanied with rapid development of diverse 

user-specific applications, has sustained a progressive march towards introduction of efficient electronic devices 

to facilitate our daily activity. These set of devices constituting an IoT architecture are tiny (can generally fit 

into a consumer’s pocket with ease), and exhibit features that help facilitate smooth and convenient 

user/business-activity on the go. Some of these devices include RFID tags, wireless sensors and mobile phones. 

Through the IoT infrastructure, end-users control applications required for: remote transmission of emails, blood 

pressure monitoring and transmission to a remote healthcare facility and remote transmission of the 

geographical position of a truck carrying goods to its destination. 

Moreover, rapid advances in processing and communication capabilities of these small devices over the last 

decade, has made communication over longer distances with imposed real-time constraints, realisable. The 

interaction of these IoT devices with legacy systems requires efficient and secure usage of the Internet 

communication infrastructure. As a result, not only can IoT devices establish and use remote communication to 

convey a status report of a particular event or activity, but can also provide end-users with a higher level of 

confidence in the privacy and authenticity of all services provided therein. The level and procedure to provide 

privacy and security to an IoT infrastructure will vary in diversity, description, as well as complexity, depending 

upon the IoT devices in use. For instance, a mobile phone connected through a 3G communication channel to 

the Internet will implement a different set of protocols for securing the channel, as opposed to a resource-

constrained RFID tag, that will invariably have a customised version of a resource-demanding secret-key 

verifier. 

In Fig. 1, the IoT infrastructure consisting of a set of heterogeneous IoT devices along with their respective 

communication channels is illustrated.  
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Figure 1.The IoT network infrastructure with an illustration of the standards/protocols used. 

 

 

SECURITY FOR WIRELESS SENSOR NETWORKS 
 

A Wireless Sensor Network (WSN) is defined as a collection of resource-constrained devices called sensor 

nodes reporting their individual readings in the form of sensory data to a high-performance base station 

(Masayuki et al., 2006). Under the context of the IoT infrastructure, such networks will serve several 

applications such as environmental monitoring, structural health monitoring, security, reconnaissance, and early 

warning applications. WSN nodes have an on-board processor (such as an ATMEGA 128-bit microcontroller), 

wireless communication capability (such as 802.15.4), a sensing module, and memory (around 128 KB of Flash 

and 8KB of RAM) (Rutlidge, 2008). The gateway is responsible for managing, coordinating, and scheduling 

operations of sensor nodes. Contemporary sensor nodes are capable of providing Advanced Encryption Standard 

(AES)-based encryption and decryption of the communication channel between the node and its gateway. 

Considering the limited radio range of sensor nodes, the gateway must be located within close proximity of the 

sensor nodes so as to reduce the overhead associated with wireless transmissions over longer distances.  

Some of the most common attacks against wireless sensor networks, as may also be present in other networks, 

exploit vulnerabilities that may fall under one of the four security threat categories. Eavesdropping of sensory 

data, transmitted from a sensor node to its base station is a very common threat in these networks. The purpose 

of such an activity is to unlawfully access sensitive data associated with a particular event or phenomenon in 

nature. For instance, the geophysical location of a truck carrying goods from one logistic location to another, 

upon disclosure may provide unfair advantage to competitors.  Privacy of all sensor network communication can 

be achieved through the use of a secret-key based mechanism, wherein all sensor node-base station pairs will 

possess a shared secret key.  In such a scenario, all data transmitted from a sender to the receiver needs to be 

encrypted using symmetric key encryption based on a standard algorithm such as AES, and subsequently 

decrypted at the receiver's end using the same shared key.   
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An alternative to the above scheme is to use public key cryptography, wherein each sensor node as well as the 

base station will possess a pair of keys, namely, public and private, for data encryption and decryption. Such a 

scheme will demand greater processing power to support operations such as modular exponentiation of large 

prime numbers. As a result, tiny sensor nodes will suffer from rapid consumption of battery life. Advances in 

processing technology, accompanied with the potential to harness the availability of renewable sources of 

energy such as solar power, are alleviating concerns associated with sensor battery life in contemporary times. 

The integrity of sensory data may be affected due to the presence of an adversary in close vicinity of a sensor 

network. The adversary may tamper with sensory data with the purpose of misleading information stakeholders, 

connected to a base station, in effect causing losses (possibly catastrophic in nature). For instance, a network of 

sensors deployed to monitor a bush fire, if compromised, may generate incorrect readings to deceive the base 

station, by portraying normal environmental conditions. In addition, an adversary may also inject malicious data 

into the sensor-to-base station communication channel, again with mal intentions. An effective approach 

towards verification of message origin and integrity is to use message authentication codes (MACs). A MAC is 

a hash of a simple concatenation of the message to be transmitted with a secret key shared between the sender 

and the receiver. A standard hash function such as MD-5 or SHA-1 would serve the purpose. A message is thus 

appended with the MAC, and sent to the destination, where the MAC of the received message is recomputed 

and compared with the received MAC, for verification. 

A message appended with the current time of the day or a fresh nonce (random number) before transmission, 

will also prevent a replay attack, wherein a stale message is replayed by the adversary, again to mislead 

information stakeholders, such as firefighters, awaiting advice from the base station.  

Jamming attacks (Sun et al., 2007) are launched by an adversary to incapacitate the sensor to base station 

communication channel from carrying signals. A jammer generates collisions on the communication channel in 

order to disrupt routine message communication. The purpose of such an attack is primarily sabotage, wherein 

the attacker attempts to prevent the base station from receiving actual readings from the sensor network. For 

instance, the blood pressure of a hypertensive patient may be prevented from being transmitted to the nearest 

base station, for subsequent rendering to a remote healthcare facility. A common practice in thwarting jamming 

attacks is to use random time slots for transmission of data, and random frequency hopping, so as to keep the 

attacker guessing, and to prevent it from disrupting signals. 

 

RFID TAG SECURITY 
A passive RFID tag has no processing power, but rather stores the ID of the tag in a particular format such as a 

barcode, readable by an RFID reader. Active RFID tags are battery-powered, and can read from a distance of up 

to hundred feet, and are therefore more versatile as compared to their passive counterparts. However, RFID tags 

operate at 100 Khz with on-chip RAM of 8Kbytes (Abe et al., 2006). Such limited resources are generally 

insufficient to hold and process large exponents required for public key cryptography. 

The primary concern in providing security to RFID devices is the scarcity of computational and communication 

resources available on the device. Moreover, RFID tags do not have enough on-chip real-estate to accommodate 

large numbers of logic gates, necessary for real-time computation of complex key generation/verification 

activity. For instance, a typical public key-based encryption using NtruCrypt on an RFID tag will require the 

processing capability of 3000 logic gates, and will use a large portion of the available tag battery (if it is an 

active tag), or will incur a long delay in acquiring power passively from an RFID reader. It may also be worth 

noting that an encumbered usage model of these devices will affect their marketability, and in effect cause the 

technology to lose pace of growth.    

Apart from encryption of all RFID tag data, authenticity of the tag itself is of utmost concern, to ensure 

uniqueness of user identity and thus secure access to other resources such as RFID readers. RFID tags may 

possess a unique collection of identifiers known as pseudonyms, which may be used on a rotating basis by the 

tag (Juels, 2006). An authorised tag reader, subject to a priori correspondence with the tag for exchange of 

pseudonyms, can identify these tags without much hassle. A possible malicious attack against such a scheme 

may involve the eavesdropping of RFID-to-RFID tag reader communication, over a period of time, to 

reconstruct the entire pseudonym set from a given tag, for possible reuse by the attacker, at a later stage. Data 

encryption through the use of either public-private key pairs or through symmetric keys will help counter the 

threat. However, the limit on the key lengths for due sustenance of cryptographic operations on RFID resources, 

exposes such devices to dictionary and brute-force attacks.  

 

MOBILE DEVICE SECURITY 

 
Mobile devices such as phones and personal digital assistants (PDAs) have become the present-day norm for 

information sharing and communication. The security of such devices can be categorised into two – social and 

technology-dependant. A mobile device is only as secure as the perception of its owner. Most mobile devices do 
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not have a passkey lock, and generally hold plaintext information. Such information may include private 

telephone numbers, bank account details (of less-careful users), and other personal information such as 

messages. A phone handed over heedlessly by its owner to another user, will have all its information exposed. A 

mobile device may also be utilised for providing real-time video footage of a patient in need of remote 

monitoring and health tips, to possibly recover from a health hazard. Such information is sensitive, and may also 

prove to be catastrophic to the patient, if compromised or tampered with, by an adversary. However, to preclude 

such incidents from taking place, the communication channel standards used for mobile communications such 

as the Global System for Mobile Communications (GSM) and Code Division Multiple Access (CDMA), have 

in-built mechanisms for data encryption and device authentication.  

The GSM service provides stream cipher support for encrypting all data that is communicated between a 

subscriber and a service provider (mostly a gateway). Some of the encryption techniques such as the A5/1 

cipher of the GSM service have been hacked, using known plaintext attacks, wherein an attacker generates a 

large set of plaintext messages, and uses the encryption algorithm to encrypt these messages (Bouska and 

Drahansky, 2008). A large set of these plaintext message-ciphertext pairs will help the attacker construe the 

secret key, or to accurately guess the encryption algorithm, by mere observation of a pattern in the collected 

data. 

 

BLUETOOTH SECURITY 

 
Bluetooth is a wireless technology standard for facilitating exchange of data over short distances. Bluetooth 

technology provides for security at the link layer, to support key management, user authentication, and data 

encryption (Yan et al., 2008). For any two Bluetooth-enabled devices to communicate securely, a pairing 

procedure is carried out before actual communication begins. Earlier versions of Bluetooth (< v2.1) required 

each device to enter the same PIN code on a device keypad, to successfully establish a connection. These 

devices were therefore hardcoded with fixed PINs such as ‘1234’ to establish an inter-device connection without 

user intervention. Devices enabled with Bluetooth v2.1 and above use the Secure Simple Pairing (SSP) 

procedure, which is secured through PKI. One of four pairing procedures may be used for this purpose: a) 

Security mode 1, as such no user interaction is enforced, and a device automatically generates a PIN based on 

factory-level specifications, and establishes communication with another Bluetooth device in the vicinity. Head-

sets are generally reliant on this mode, b) Security mode 2, a numeric comparison of PIN codes entered by the 

users on the keypads of two devices that wish to communicate with each other, is performed, to establish a 

connection, c) Security mode 3, a device generates a PIN and transmits it securely to a second device, for 

display to the user, whereupon the user punches the same PIN onto a Bluetooth keypad for accomplishing 

mutual authentication, and d) Security mode 4, considered to be more secure than the other three approaches, 

uses a side-channel of communication (Near Field Communication) to exchange aspects of a secret (shared in 

this case), that is subsequently used by both devices for establishing a secure communication channel. All data 

communication post establishment of a connection is secured using public key cryptography. 

Security mode 1 of Bluetooth does not provide protection against a man-in-the-middle attack, where an attacker 

can guise as user A and attempt to establish a connection by replaying a captured message (containing the 

encrypted PIN), directed from user A to user B, and thereupon hijacking all communication intended from user 

B to user A, without being traced. The ability of a security mode to ensure mutual authentication is therefore 

mandatory in ensuring the security of the Bluetooth communication protocol. The applications of Bluetooth in 

the context of the IoT infrastructure are in abundance primarily because of its convenient usage and minimal 

user intervention. For example, a travelling patient with a history of diabetes can have his or her blood sugar 

level tested using a Bluetooth-enabled mobile device, which can transmit the readings to a mobile reader at any 

healthcare checkup point at airports, train stations or even inside airplanes. Further communication of the 

readings from the device reader to a remote healthcare facility can be initiated upon a simple and automatic 

analysis of the readings by the device reader. 

 

WI-FI SECURITY 

 
While Bluetooth technology is intended for mobile devices and their interconnectivity, Wi-Fi is intended for 

establishing wireless local area networks on a larger scale, and provides users with on-the-fly connection to the 

Internet, through a device called the hotspot. Wi-Fi uses the Wi-Fi Protected Access (WPA and WPA2) 

standards to provide security to all communication channels. By default, Wi-Fi operates in an encryption-free 

mode (Lehembre, 2006). Therefore, unless an application service provider such as an online-banking server 

provides a secure communication channel (using HTTPS), it is not recommended to communicate passwords 

and other sensitive information through a Wi-Fi connection (as is also a rule of thumb for regular wired 

networks). Once enabled, WPA protects the Wi-Fi communication channel by generating a new key to protect 
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each data packet transmitted from a device to the hotspot. The protocol generates keys based on passphrases 

entered by the user, for providing data encryption, message authentication code generation and verification, and 

mutual authentication. It may thus be noted that the security of the communication channel is very much 

dependant on the level of complexity of the passphrase chosen by a user. A simple passphrase may lead to a 

convenient compromise by an attacker, to launch attacks such as data capture, message replay, and data 

modification/erasure.  

The Wi-Fi standard provides a very comfortable in-house network for a user to access the Internet. Wi-Fi 

hotspots are also available inside airplanes and at most airports and borders. A handicapped patient can remotely 

access the Internet from the comfort of his or her bed using a Wi-Fi connection. A device such as a sensor or an 

RFID tag connected to the patient’s body, can transmit a reading securely to a Wi-Fi hotspot, for subsequent 

relay of the digitised record of the patient’s readings to a remote healthcare facility. As a result, necessary 

support can be rendered if needed, or the patient may be advised on the dosage of medication to be taken, in a 

timely manner. 

 

PARADIGMS FOR PROVISIONING SECURITY IN AN IOT INFRASTRUCTURE 
 

A proposed paradigm for provisioning IoT security is to delegate all security-related operations to resource-rich 

Internet gateways and IoT device readers. The gateway in effect can follow standard public key or symmetric 

key cryptography for securing the communication channel between the source and the destination network. 

However, such an approach will not provide security for the IoT device-gateway communication channel. In 

Figure 2, a simple paradigm for providing a two-step approach for securing the IoT infrastructure is proposed. 

All devices with larger sets of information processing resources available to them are referred to as facilitators 

(includes gateways, RFID readers, base stations, etc). All communication between the IoT devices and the 

facilitators is secured using a shared key K1. In particular, data is encrypted using the key Kdf, and is transmitted 

alongside a message authentication code (MAC), where a MAC is the hash of the concatenation of the message 

to be transmitted, with a secret key shared between the sender and the receiver, using a standard hash function 

such as MD-5 or SHA-1. A message is thus appended with the MAC, and sent to the destination, where the 

MAC of the received message is recomputed and compared with the received MAC, for verification of message 

integrity and for authentication of the data source. Existing protocols such as Zigbee already have in-built data 

encryption procedures to secure the IoT device to intermediate facilitator communication channel. 

A similar approach is followed to securely transmit data between the diverse facilitators through the Internet, 

albeit using a different key represented as K2. The scheme used for data encryption and integrity check will 

depend on the capabilities of the device in question. For instance, a tiny RFID tag with limited processing 

capability will use symmetric encryption and smaller length keys, as opposed to a facilitator, which can use 

public key cryptography for ensuring communication channel security.  

In Figure 3, an alternative paradigm towards securing the IoT is proposed, wherein all devices possess a distinct 

key to identify themselves in a global context, achievable only through the use of the IPv6 protocol. The IPv4 

protocol is presently used for Internet communication. With growing number of Internet users, it is foreseen that 

unique IP addresses for devices connected to the Internet will eventually exhaust. As opposed to 32-bit 

addresses used by the IPv4 protocol, the IPv6 protocol, long overdue for deployment, will have 128-bits for 

addressing, to generate a total of 3.4 x 10
38

 distinct Internet addresses (Caicedo, 2009). With the growth of the 

IoT infrastructure gathering steam, it is anticipated that unique identification of devices across the world, based 

on their IP addresses will be realisable in the near future.  
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Fig.2: A device-to-intermediary-to-device security paradigm for the IoT infrastructure. 

 
Technological gaps or vulnerabilities in the contemporary IPv4 Internet architecture will also be experienced by 

end-users of the IoT infrastructure. It is therefore mandatory for having the resilience of such networks 

leveraged in time to accommodate these large set of electronic devices, which will inevitably dominate the 

market space in the near future. Such an infrastructure will place high demands on security, to be facilitated by 

the stakeholders (service providers). Therefore, the need for providing a coherent and effective end-to-end 

security mechanism applicable at the IoT infrastructure level, by mutual agreements and consortiums between 

the stakeholders of this vital infrastructure, cannot be understated. 

 

{Msg}K1 , H {Msg || K1}

K1 : An end-to-end key shared between two or more IoT devices, 

uniquely possessed across the Internet.

RFID 

Tag

Internet Gateway

Base Station

Storage Area 

Network

Sensor Node

RFID 

Tag

Sensor 

Node
Mobile Device

RFID Reader

Internet Gateway

Base Station

RFID Reader

INTERNET

 

 

Figure 3.An end-to-end secure channel for the IoT infrastructure (subject to availability of a unique key within 

each IoT device). 
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CONCLUSION 
 

In this paper, a security assessment of technologies and standards of theIoT infrastructure were elaborated upon. 

As can be construed, the diversity in the range of devices that constitute an IoT, and the supported protocols, 

encumber the task of securing the end-to-end IoT communication channel. Two paradigms to secure an IoT 

infrastructure, namely, single key-based and two-step based, were proposed. The success of the IoTdepends on 

the close-knit coordination between all stakeholders for agreeing upon a standard approach towards securing the 

entire IoT infrastructure. A large set of diverse and independent security standards will encumber the process of 

securing the IoT infrastructure. It is therefore anticipatedthat a cumulative effort of all stakeholders of an IoT 

infrastructure will produce an effective ground for deployment of secure IoT-based services, to ascertain a 

convenient and safe end-user experience. 
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