274 research outputs found

    SMART-DETECT: AN IOT BASED MONITORING SYSTEM FOR OIL LEAK DETECTION

    Get PDF
    In the past couple of years, the oil and gas industry is aiming to reduce it’s day-to-day costs due to reasons such as reduction in oil prices, mass overproduction and so on. This has the Oil and Gas industries aiming for innovative ways to reduce costs and minimize nonproductive time. In order to accomplish this goal, oil companies need to improve and control measurements with more reliable but relatively cheaper systems. One of the methods is using Internet-of-Things (IoT) based monitoring systems which can help in remote monitoring. IoT is offering better solutions for oil and gas companies to reduce potential failures and downtime by achieving a better and faster method to acquire information efficiently. A real-time stream of data can minimize the need for human intervention in the oil field in case of a catastrophe by reducing the risk of a hazard, saving time, and increasing the environmental pollution control. IoT can be a vital transformation for the Oil and Gas industry. The aim of this thesis is to validate and prove that IoT solutions can be feasible in the oil industry specifically in the pipe leak detection solution ,by building a prototype that operates on low power communication protocol (LoRa®) and conducting experimental procedures on an actual pipe using water instead of oil due to practical difficulty of using oil for the experiment

    OIL SPILL MODELING FOR IMPROVED RESPONSE TO ARCTIC MARITIME SPILLS: THE PATH FORWARD

    Get PDF
    Maritime shipping and natural resource development in the Arctic are projected to increase as sea ice coverage decreases, resulting in a greater probability of more and larger oil spills. The increasing risk of Arctic spills emphasizes the need to identify the state-of-the-art oil trajectory and sea ice models and the potential for their integration. The Oil Spill Modeling for Improved Response to Arctic Maritime Spills: The Path Forward (AMSM) project, funded by the Arctic Domain Awareness Center (ADAC), provides a structured approach to gather expert advice to address U.S. Coast Guard (USCG) Federal On-Scene Coordinator (FOSC) core needs for decision-making. The National Oceanic & Atmospheric Administration (NOAA) Office of Response & Restoration (OR&R) provides scientific support to the USCG FOSC during oil spill response. As part of this scientific support, NOAA OR&R supplies decision support models that predict the fate (including chemical and physical weathering) and transport of spilled oil. Oil spill modeling in the Arctic faces many unique challenges including limited availability of environmental data (e.g., currents, wind, ice characteristics) at fine spatial and temporal resolution to feed models. Despite these challenges, OR&R’s modeling products must provide adequate spill trajectory predictions, so that response efforts minimize economic, cultural and environmental impacts, including those to species, habitats and food supplies. The AMSM project addressed the unique needs and challenges associated with Arctic spill response by: (1) identifying state-of-the-art oil spill and sea ice models, (2) recommending new components and algorithms for oil and ice interactions, (3) proposing methods for improving communication of model output uncertainty, and (4) developing methods for coordinating oil and ice modeling efforts

    SCADA and related technologies for irrigation district modernization

    Get PDF
    Presented at SCADA and related technologies for irrigation district modernization: a USCID water management conference on October 26-29, 2005 in Vancouver, Washington.Includes bibliographical references.Overview of Supervisory Control and Data Acquisition (SCADA) -- Total Channel Control™ - The value of automation in irrigation distribution systems -- Design and implementation of an irrigation canal SCADA -- All American Canal Monitoring Project -- Taking closed piping flowmeters to the next level - new technologies support trends in data logging and SCADA systems -- Real-time model-based dam automation: a case study of the Piute Dam -- Effective implementation of algorithm theory into PLCs -- Optimal fuzzy control for canal control structures -- SCADA over Zigbee™ -- Synchronous radio modem technology for affordable irrigation SCADA systems -- A suggested criteria for the selection of RTUs and sensors -- Irrigation canals in Spain: the integral process of modernization -- Ten years of SCADA data quality control and utilization for system management and planning modernization -- Moderately priced SCADA implementation -- Increasing peak power generation using SCADA and automation: a case study of the Kaweah River Power Authority -- Eastern Irrigation District canal automation and Supervisory Control and Data Acquisition (SCADA) -- Case study on design and construction of a regulating reservoir pumping station -- Saving water with Total Channel Control® in the Macalister Irrigation District, Australia -- Leveraging SCADA to modernize operations in the Klamath Irrigation Project -- A 2005 update on the installation of a VFD/SCADA system at Sutter Mutual Water Company -- Truckee Carson Irrigation District Turnout Water Measurement Program -- The myth of a "Turnkey" SCADA system and other lessons learned -- Canal modernization in Central California Irrigation District - case study -- Remote monitoring and operation at the Colorado River Irrigation District -- Web-based GIS decision support system for irrigation districts -- Using RiverWare as a real time river systems management tool -- Submerged venturi flume -- Ochoco Irrigation District telemetry case study -- Uinta Basin Replacement Project: a SCADA case study in managing multiple interests and adapting to loss of storage -- Training SCADA operators with real-time simulation -- Demonstration of gate control with SCADA system in Lower Rio Grande Valley, in Texas -- Incorporating sharp-crested weirs into irrigation SCADA systems

    Comparing Recent Advances in Estimating and Measuring Oil Slick Thickness: An MPRI Technical Report

    Get PDF
    Characterization of the degree and extent of surface oil during and after an oil spill is a critical part of emergency response and Natural Resource Damage Assessment (NRDA) activities. More specifically, understanding floating oil thickness in real-time can guide response efforts by directing limited assets to priority cleanup areas; aid in ‘volume released’ estimates; enhance fate, transport and effects modeling capabilities; and support natural resource injury determinations. An international workshop brought researchers from agencies, academia and industry who were advancing in situ and remote oil characterization tools and methods together with stake holders and end users who rely on information about floating oil thickness for mission critical assignments (e.g., regulatory, assessment, cleanup, research). In total, over a dozen researchers presented and discussed their findings from tests using various different sensors and sensor platforms. The workshop resulted in discussions and recommendations for better ways to leverage limited resources and opportunities for advancing research and developing tools and methods for oil spill thickness measurements and estimates that could be applied during spill responses. One of the primary research gaps identified by the workshop participants was the need for side-by-side testing and validation of these different methods, to better understand their respective strengths, weaknesses and technical readiness levels, so that responders would be better able to make decisions about what methods are appropriate to use under what conditions, and to answer the various questions associated with response actions. Approach: 1) Convene a more in-depth multi day researcher workshop to discuss and develop specific workplan to conduct side-by-side validation and verification experiments for testing oil thickness measurements. 2) Conduct the validation and verification experiments in controlled environments: the Coastal Response Research Center (CRRC) highbay at the University of New Hampshire (UNH); and the Ohmsett National Oil Spill Response Research & Renewable Energy Test Facility

    CITIES: Energetic Efficiency, Sustainability; Infrastructures, Energy and the Environment; Mobility and IoT; Governance and Citizenship

    Get PDF
    This book collects important contributions on smart cities. This book was created in collaboration with the ICSC-CITIES2020, held in San José (Costa Rica) in 2020. This book collects articles on: energetic efficiency and sustainability; infrastructures, energy and the environment; mobility and IoT; governance and citizenship

    From the Editor

    Get PDF

    From the Editor

    Get PDF

    On the Cover

    Get PDF

    From the Editor

    Get PDF
    • …
    corecore