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In the past couple of years, the oil and gas industry is aiming to reduce it’s day-to-

day costs due to reasons such as reduction in oil prices, mass overproduction and so on. 

This has the Oil and Gas industries aiming for innovative ways to reduce costs and 

minimize nonproductive time. In order to accomplish this goal, oil companies need to 

improve and control measurements with more reliable but relatively cheaper systems. One 

of the methods is using Internet-of-Things (IoT) based monitoring systems which can help 

in remote monitoring. IoT is offering better solutions for oil and gas companies to reduce 

potential failures and downtime by achieving a better and faster method to acquire 

information efficiently. A real-time stream of data can minimize the need for human 

intervention in the oil field in case of a catastrophe by reducing the risk of a hazard, saving 

time, and increasing the environmental pollution control. IoT can be a vital transformation 

for the Oil and Gas industry. The aim of this thesis is to validate and prove that IoT 

solutions can be feasible in the oil industry specifically in the pipe leak detection solution 

,by building a prototype that operates on low power communication protocol (LoRa®) and 

conducting experimental procedures on an actual pipe using water instead of oil due to 

practical difficulty of using oil for the experiment. 
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Chapter 1 Introduction 
 

1.1 The Internet of Things 

The Internet of Things is defined as a network of interconnected things, in 

whicheach connected device can communicate with each other wirelessly.  IoT-based 

solutions provide real-time decisions, boost performance, and improves product quality. 

Deploying IoT sensors across the operational field has the potential to improve the 

efficiency in upstream, midstream, and downstream operations. Today most oil and gas 

companies employ personnel to react to problems in tank levels, collecting pressure and 

flow rates from sensors used in oil wells, on an hourly basis to respond to potential issues. 

In such scenarios, the speed of operation gets delayed and time to react for potential 

problems is increased. With the deployment of IoT sensors across the machinery, a huge 

amount of data generated through these sensors enable remote monitoring of the operation 

and improve the overall performance of the system. 

The oil and gas industry supply chain can be divided into three main sectors: 

Upstream, Midstream, and Downstream. The Upstream sector is associated with 

exploratory drilling and production of potential crude oil, hydrocarbon reserves, and 

natural gas. The Midstream sector is associated with transportation of crude oil from 

production wells to refineries via pipelines, trucks, and tanks, which is then delivered to 

the downstream sector that is responsible for the process of refining the crude oil. At the 

downstream sector, the products are derived from crude oil and natural gas to be marketed 

and distributed. IoT based solution can take a major role in improving these sectors 

particularly in the Midstream sector ranging from detecting the physical presence of oil 

and gas pipelines, pipeline leak detection, and monitoring pressure variation in tanks, 

pipelines, and wells remotely. 

IoT-based systems can reduce the cost of operations in several ways. The most 

important is the implementation sector, where the implementation cost for IoT based 

solutions is relatively cheaper than other common solutions. Real-time monitoring, 
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decision-making capabilities, acquiring data wirelessly and immediately receiving this data 

to the cloud makes it far superior and will help decrease the probability of failure that 

causes non-productive time. These capabilities can result in more revenue for the Oil and 

Gas industry. 

1.2 Role of Communication Protocols in IoT 

Nevertheless, implementing an IoT-based monitoring system specially in the rural 

areas and deserted oil fields require the sensor nodes to be battery powered and works for 

extended period of times without requiring a battery change or maintenance and in the 

same manner require a great wireless communication medium which has long range, better 

obstacle penetration, and long-distance reception. Most of the common communication 

standards available cannot fit this task entirely. Local area network solutions like Wi-Fi 

can be a great solution for indoor and short-range applications. Bluetooth and Zigbee work 

for even shorter-range applications. However, all these solutions have a disadvantage of 

poor coverage and short distance communication capabilities, and also can consume power 

which makes them unreliable for application the needs to operate on batteries for several 

years. Moreover, cellular networks are ubiquitous and have a long range, but the problem 

of draining the battery rapidly makes it unsuitable for an application that requires to be 

battery powered. Low power WAN has long range, low cost, and long battery life but it is 

not good for high data rates. However, to create a leak detection system,, there is no need 

for a large stream of data, short and small messages measured in bytes containing the raw 

measurement separated by seconds can fit the task. Consequently, Low Power WAN like 

LoRaWAN® can be used to build a leak detection system and can accomplish the goal. 

One of the advantages of this network is that it enables sensors to be further apart especially 

in outdoor communication as it has a range that exceeds 5 miles. Figure 1.1 depicts the 

advantages and disadvantages of each category. 
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Figure 1.1. The advantages and disadvantages of communication protocols 

Implementing the IoT solution in the mid-stream can improve the quality of 

operation by analyzing the acquired data from the field using LoRaWAN® enabled sensors 

ranging from Flow Meters, pressure, and temperature sensors. These sensors can measure 

raw data, and the data acquired can be sent through LoRaWAN® network to the cloud 

where it can be analyzed, and intelligence plus decision-making capability can be added at 

the front end. Besides, LoRa® protocol is a bi-directional communication standard which 

offers the ability to send downlink data to the nodes; this will offer versatility and mobility 

for the designed application. While the security is a must, LoRaWAN® offers end to end 

security such as encrypted payloads and additional security keys to protect the integrity 

and usability of the network. 

1.3 Oil Leak Detection 

Oil leaks can occur from pipe corrosion, expansion due to heat, high pressure, faulty 

connections or several other reasons. Oil Leak detection systems cannot predict a leak 

occurring before it happens, can however limit potential damage and reduce the risk of oil 

spills. The system needs to react as soon as possible when a leak occurs and should have 

the ability to localize the leak. The timing is very important to consider a leak detection 

system to be effective because the sooner the leak is detected, the less damage the oil spill 

can impact on the environment and less money can be spent on cleaning up the spill. The 

total impact of oil spills is catastrophic, and it can cost a fortune to clean up. While the 
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common methods used to collect data at remote locations are feasible solutions, it is not 

cost effective and requires human intervention in case a leak occurs, where other methods 

involve operators to react to a certain issue and collect the data manually. In this case, the 

response time will be very slow and can cost companies time and money to fix the problem. 

Companies can decrease their application response time with a Leak Detection system that 

deploys IoT technology with an analytics platform that utilizes machine learning 

algorithms as a central output that can produce the desired result and identifies the problem 

in real time. Moreover, IoT based systems can promote safety which is a very essential 

aspect in the oil field by reducing the manual tasks involving collecting data in hazardous 

locations. 

1.4 Smart-Detect System Overview 

The proposed novel solution consists of sensing nodes with the communication 

protocol, LoRa®, which is short for low power long range protocol. LoRa® based sensors 

are a great solution for connecting distant battery-based sensors due to excellent range and 

low power consumption. Because it uses the 915 MHz part of the spectrum, it has great 

coverage and penetration capability. This cost-effective protocol is integrated along with 

flow-meter and temperature sensors to form the Smart-Detect sensing nodes. Figure 1.2. 

shows an overview of the proposed Smart-Detect system. 

Figure 1.2 illustrates the working mechanism for which the data is acquired from 

the sensors, the basic introduction for the system should start by defining the 

communication protocol. LoRa® standard is the physical layer for the wireless 

communication utilized to create a long-range interface. For low power communication, 

many wireless standards use frequency shift keying (FSK) modulation to attain low power 

communication. However, in order to achieve low power communication with extended 

range, LoRa® is designed to utilize chirp spread spectrum modulation which has the 

peculiar of FSK modulation but vitally increases the range of communication. Chirp spread 

spectrum modulation has been used for a couple of decades such as in military 

communications and outer space transmission. Because it has a low power and long-range 

capability the chirp spread spectrum was embedded in the design of the LoRa® protocol. 

The advantages of chirp-based modulation are that it operates below the noise floor which 
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allows it to be more robust to interference and noise. Additionally, it has ability to have 

simultaneous occupation on the same channel in the same time without interference by 

using the Adaptive Data Rate (ADR) where two different channels can operate on different 

data rates that allows them to not interfere with each other creating an increase in the 

capacity of number of LoRa® gateways that can be utilized. The LoRaWAN® network 

server is responsible for managing the data rate setting and the output transmission power. 

The system starts with event producers where sensors gather raw analog parameters from 

the pipe and send it to the microcontroller, and the microcontroller has a LoRa® 

Transceiver which can relay LoRaWAN® messages over the LoRa® radio protocol these 

messages are sent in the form of packets to the gateway. These packets then forward by the 

gateway in the concentrator level. 
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Figure 1.2. Overview of Smart-Detect system 
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The gateway is hardware that can be connected to any network. Some are connected 

by ethernet; others use WiFi or even GPRS connections to the Internet. This backhaul 

connection enables the gateway to forward the packets to the Network server where it can 

be processed. The network server (The Things Network) has a Router, Broker and Handler. 

The Router is responsible for scheduling transmissions and administrating the gateway’s 

status. Each Router is connected to one or more Brokers. In the network server, the Broker 

is the most crucial part to couple a device to an application, forward uplink payloads to the 

right application and forward downlink payloads to the correct Router. The Handler uses 

Message Queuing Telemetry Transport (MQTT) protocol which is designed for wireless 

connection when the requirement is to send and receive small data packets, and the network 

bandwidth is limited. It has the potential to handle the data of one or more applications by 

connecting to a broker and acquiring the registered applications and devices information. 

Besides, the Handler is responsible for encryption, decryption and forwarding the payloads 

to the application level. From The Things network (TTN) the gathered data can be stored 

or processed by integrating TTN with a specific cloud solution depending on the nature of 

the proposed application. Nevertheless, a cost-effective solution is preferred for 

experimenting and designing a prototype application, at which point (TTN) was integrated 

with Node-RED a programming tool developed by IBM to offer the ability to connect 

hardware devices and online services in the form of a flow where range of nodes can be 

deployed to create a JavaScript functions making it a simple way to forward data to The 

Things Speak platform. The Things Speak is an IoT cloud developed by MathWorks in 

which IoT sensors can be deployed to monitor and procure a real-time analysis of the data 

by adding machine learning algorithms (ML) in the form of MATLAB® codes at the cloud 

edge to add smart decision-making capability to the application. The Machine Learning 

algorithms premise is to build a statistical model to add accuracy for predicting an output 

without explicit programming, which is essential to design a reliable Leak Detection 

system to obtain faster reaction time and accurate results. 

So far, the LoRa® technology, built by LoRa® Alliance is relying on unlicensed 

spectrum to provide the communication for IoT services. The free part of the spectrum is 

open source and help developers innovate new ideas on lower cost. However, by the next 

couple of years more deployed applications can cause more interference and congestions 
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which might encourage the LoRa® Alliance for licensing the spectrum for a more reliable 

network. 

1.5 Organization of Thesis 

 This thesis is divided into five chapters. Chapter 1 is an introduction to the Internet 

of Things and a brief overview of its importance in today’s world. Chapter 2 gives an 

intensive literature survey about conventionally used methods for leak detection. Chapter 

3 provides information about the communication protocol and the experimental setup of 

the proposed system. Chapter 4 contain the acquired data and the analysis of the results. 

Finally, discussion of the results also the conclusions and future work ideas are presented 

in Chapter 5. 
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Chapter 2 Literature Survey 
 

This thesis undertakes the design and development of a novel solution of using IoT 

sensors and machine learning algorithm to build an IoT based leak detection system using 

low power communication medium.  

A comprehensive literature survey on leak detection techniques, the identification 

of the occurrence of oil spills, the use of different communication protocols enabled sensors 

in the oil and gas sector, and the machine learning (ML) solutions for building a leak 

prediction model. All the mentioned solutions that are widely used are discussed in this 

chapter.  

The literature survey of various ways of leak detection such as inverse transient 

analysis, time domain analysis, frequency domain analysis, and the negative pressure 

method. Also, the techniques of oil spill detection like microwave remote sensing, imaging 

and the use of wireless sensors to monitor the oil spill. Lastly, the introduction of various 

communication protocols enabled sensors implemented in the oil and gas sector and the 

integrated solutions of machine learning statistical models. All are discussed in the later 

sections of this chapter followed by the limitations of these techniques.  

2.1 Leak Detection Methods 

The propositions and hypothesis introduced by researchers to detect leakage 

instantaneously and the various approaches to tackle the problem from different aspects 

are presented in the upcoming section. 

Hardware-based methods of leak detection have been studied in [1] by using a 

controller called sliding motion, and two pressure sensors mounted on both ends of the 

pipe. When a trajectory slides on the surface of the pipe, a response is received when a 

fault occurs, or the motion on the sliding surface is not stable in addition to undertaking 

further analysis by finding the difference between expected values and sensor readings. 
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 Frequency domain pressure signal analysis was conducted in [2] in which by using 

the wavelet transform the leak reflected pressure wave could be found and this can indicate 

the leak location. Time domain analysis was studied in [3] by analyzing the opening and 

closing of a valve and the results are then transformed by using Fast Fourier transform to 

the frequency domain. The discrepancy in the frequency response was obtained by 

analyzing the amplitude of resonant pressure in case of a leak and no leak.  

An experimental model was built by implementing Wavelet Discrete Transform of 

the resulted vibration signal using vibration sensors have been studied in [4]. A method 

where vibration sensors generate a series of vibration signals detected by another vibration 

sensors located at the location of the pipe then a processor process and determine the 

average power of the signal over a predetermined time. A method based on a negative 

pressure wave to detect the presence of natural gas in a pipe was developed in [5]. The 

signal generated from the negative pressure wave phenomena occur in case of a leak is 

collected from the pressure sensors that are installed at both ends of the pipeline, and further 

analysis was determined.  

Leak detection by using optical fiber temperature measurements based on Raman 

scattering method in heating pipes was the focus of [6]. The leakage causes a rise in 

temperature of the soil around the pipe; this increase in temperature helps indicate the 

occurrence of the leakage. Finally, a Review on various methods for leak detection with 

pressure measurements and the advantages and disadvantages of each method were studied 

in [7]. Methods such as hydrostatic pressure testing, inverse transient analysis, transient 

steady state, transient damping, inverse resonance, pressure-flow deviation, negative 

pressure wave, and pressure residual vector method. 

2.2 Oil Spill Detection Methods 

 Researchers are aiming to find a solution for post leakage occurrence to limit the 

effect and causes that may pollute the environment and could cost companies a fortune to 

clean up the oil spill. The various oil spill detection methods conducted by many 

researchers will be discussed below. Offshore oil spill monitoring and detection method 

was discussed in [8]. This paper is focused on building an offshore petroleum cyber-
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physical system (CPS), which is based on simulation to find the approximate location of 

the leak source using data from remote multi-sensing technology. 

[9] proposed a new High-resolution COSMO - SkyMed Aperture Radar (SAR) 

images technology which is a better version of high-resolution SAR for oil spills automatic 

detection. This method improves the ability to detect the spills in small basins and near 

coast which resolves issues that encountered the previous technology. [10] has developed 

a wireless sensor device that can sense, process, and transmit the location and thickness 

information of an oil spill. The wireless sensor node was placed on oil tankers and offshore 

drills; it can be thrown into a spill after it happens. The research suggested two approaches, 

first was a light sensor array which can sense the variation in intensity and the propagation 

of light in a specific medium. The second was conductivity array which depends on sensing 

the conductivity of the medium difference; for instance, seawater has high electrical 

conductivity while oil has low electrical conductivity. 

[11] recommended a prediction system based on a feedback control system which 

was founded on the theory of Dynamic Data Drive Application System (DDDAS). The 

system enables a combination of monitoring and simulation of oil spills. In this system, oil 

spill detection can be achieved by using numerical modeling and remote sensing data, 

where multiple simulations of different scenarios of various remote sensing approaches can 

help improve the accuracy of the prediction. 

[12] suggested measuring the radiation emitted from the objects using Microwave 

radiometer. The research depicts the ability of the antenna to sense the radiant energy from 

the oil spill when in the position of the line of sight to the object. The discrepancy of 

brightness temperature between the contaminated seawater with surrounding clean water 

can indicate the oil spill by analyzing the quantifiable imagery of pre-defined volumes of 

mineral types of the oil spill on the sea surface.  

  [13] proposed a novel methodology in which the measurement of the extent and 

thickness of oil spills over the sea surface is conducted using a Special Sensor Microwave 

Imager (SSM/I) and Advanced Microwave Scanning Radiometer for EOS (AMSR-E) 

satellite. This is done in order to find some a relation between brightness temperature at 

various frequencies to distinguish the contaminated locations from the clean ones. 
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 [14] researched Multitemporal optical remote sensing images and their ability to 

give more insight into oil spill detection. Analysis of these images gives more thorough 

and precise results. [15] proposed a methodology using laser fluorosensors to monitor and 

sense the oil spill. Laser flurosensors like Scanning Laser Environmental Airborne 

Fluorosensor (SLEAF) has the characteristic of distinguishing the oil from the background 

which can be either water, ice, or snow. The data from the sensor then can be analyzed in 

real-time by a real-time geographic information system (GIS) to detect the spill. 

[16] employed the developed model of oil-water contrast by using imaging system 

called Video-Rate Infrared (IR) Multispectral imaging system making use of the difference 

in solar heating and thickness of oil sleek and water. The implemented system aims to 

achieve better accuracy at a lower price. [17] have researched real-time monitoring of oil 

spillage in the marine environment using an optical fiber-based sensor. This sensor can be 

employed remotely and can detect minor variations of oil adulteration levels within the 

water.  

2.3 Various Communication Protocols Deployed in the Industrial and Oil & 

Energy Sector 

In order to investigate a new communication protocol to fulfill the purpose, a 

literature survey must be held to examine the various communication mediums 

implemented by several researchers in the industrial, oil, and energy sector. Related 

research work is introduced in the section below. A new Wireless Geophone Network is 

presented by [18] to replace the conventional on-shore cable networks used in seismic 

exploration in which geophones are used to measure the backscattered field waves. [19] 

suggested the need to deploy wireless sensors underwater to monitor the production 

process in order to control and manage the flow of production and prevent potential 

failures. 

[20] conducted a study on deploying Wireless Sensor Networks to remotely 

monitor reservoirs, equipment conditions and pipelines to detect natural gas leaks, 

corrosion, and H2S. An experiment was held using Zigbee wireless sensor network in 

industrial applications by [21] to enhance and provide better management for industrial 

automation facilities. 



13 
 

An innovative approach to managing unnecessary excessive waste of power was 

employed by [22] using LoRa® based Smart metering Technology to remotely monitor the 

user consumption and to provide the right amount of power based on the consumption to 

meet the demand of users. A monitoring system for Renewable energy based on LoRa® 

Technology was introduced by [23]. The idea is to construct a cost-effective system to 

monitor energy use IoT enabled sensors and IoT clouds. 

[24] researched creating a LoRa® architecture that enables electric vehicles to 

communicate with charging stations. The charging station is powered by renewable energy 

source and integrated with long-range communication protocol that enables them to update 

the users of the current status of energy storage and occupancy of other electric vehicles. 

[25] developed an underground wireless sensor network to monitor the pipeline condition 

called Smart-Pipes. It is based on monitoring the pressure of the pipeline using Force 

Sensitive Resistor (FSR) technology. The researcher anticipated the need for low power 

wireless sensor node to detect the leak. As a result, the design was tested and developed in 

the field and laboratory. 

A Hall Effect Flow-Meter sensor was used by [26] to control and monitor the water 

flow from a web server. The researchers aimed to build a pipe network and examine the 

way a leak affect the readings of the flow rate. This paper proposed in [27] aims to monitor 

and gather data from oil refineries using a more robust version of Supervisory Control and 

Data Acquisition systems (SCADA). SCADA systems have many wires connected 

actuators and sensors, also equipped with a special computer architecture that uses 

networked data transmission, remote terminal units, PID controllers, and programmable 

logic devices.  The Researcher approach was to simulate the system in order to receive 

real-time information about oil pipelines and tanks. Furthermore, reducing the time 

required to respond to malfunctions and faults.  

2.4 Machine Learning 

The evolution of the internet of things in recent years helped boost the popularity 

of machine learning. Machine learning can create analytical models that enable algorithms 

to learn from the data acquired from IoT devices continuously. Several algorithms can 

solve different problems; each algorithm has different characteristics that with the right 
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approach and the knowledge of the mathematical foundation behind each algorithm the 

task can be accomplished. Before the implementation of machine learning, an analyst must 

analyze the problem and identify the type of algorithm to use. Accordingly, supervised and 

unsupervised learning describes two ways that a machine learning algorithm acts on a set 

of data. The main difference is that in supervised learning the expected output is known. 

The algorithm gives a relationship between the input and the output, or simply the ability 

of the algorithm to learn from the training data and the process is to guide it to obtain the 

right output. In contrast in unsupervised learning, the output is unknown and with no 

available training data set. Unsupervised learning can solve complex problems only with 

the availability of input data, which gives the computer the ability to learn by itself. In leak 

detection applications the input data and the expected labeled output data are available by 

experimentation or by simulation. Hence the supervised learning can be more suited for 

this kind of applications. Algorithms that lie under the supervised learning category such 

as Linear Regression, Support vector machine, Logistic Regression, and Anomaly 

Detection, all have the potential to be successfully implemented. Logistic Regression and 

Support Vector Machine are classification algorithms while Linear Regression and 

Anomaly Detection are Regression algorithms or algorithms that rely on prediction. To 

build a predictive model that depends on the real-time acquisition of data and add some 

intelligence to the application of leakage detection, researchers explored several supervised 

learning algorithms to achieve the target. The different mentioned algorithms used for this 

sort of application are mentioned in the next section. 

[28] presented a model that introduces a way to detect and locate leaks in pipelines 

using simulated data from flow and pressure sensors acquired from EPANET software, in 

which Artificial Neural Network (ANN) and Support Vector Machines (SVM) were 

modeled, and resulted outputs were compared to illustrate the advantages and 

disadvantages of each model. 

[29] has conducted another Research to implement the Support Vector Machines 

(SVM) classification model in order to detect leakage in water distribution network using 

simulated data from EPANET software. [30] took a different approach by implementing 

the Moving Windows least square support vector machine algorithm (MWLS-SVM) model 
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in addition to the negative pressure wave method for leakage detection. The model 

constitutes of improving the training speed of the training set by applying the sum of square 

errors.  

Furthermore, the next section consists of literature survey regarding using logistic 

regression to build a model that construct a binary hypothesis based on similarity to detect 

changes between objects. In [31] the researchers utilized logistic regression to compare the 

detected objects in the image and the database information. Using the maximum likelihood 

method, the parameters of logistic regression were estimated to obtain the similarity 

between the database and the synthetic aperture radar images (SAR). 

2.5 The Limitations and Disadvantages of Different Conventional Methods 

Used for Leak Detection 

All the mentioned leak detection methods that were proposed by researchers even 

though they have many advantages however various limitations face most of these 

methods, for instance, using the sliding trajectory cannot give a precise result in addition 

to high cost when considering pipelines that go for miles. Other methods like frequency 

domain analysis, time domain analysis, and negative pressure wave all these studies depend 

on simulated data but cannot be proven to be feasible to achieve fast reaction time in 

practice. Moreover, all these methods would require personnel to react to the problem in 

case a leak was detected. Other researchers have used vibration sensors and temperature 

optical fiber that sense the increase in the soil temperature to detect leaks. These methods 

may be affected by external factors that would generate wrong results and can set false 

leakage alarms. Furthermore, the main idea of exploring new solutions for this problem is 

to reduce the cost. However, this goal has not been fulfilled with these methods. 

Nevertheless, the need for researchers to explore different solutions post leakage is 

a must to limit the damage and reduce pollution. Yet, all the mentioned ways for spill 

detection can be feasible, and spills can be detected using various imaging and 

fluorosensors methods. Nonetheless, this is only can limit the effects of the spill, and it is 

not an essential way of avoiding the catastrophe.  
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Next, employing wired/wireless sensors actuators can be effective to acquire data 

remotely and to generate data that can help companies have a better idea about the situation 

in the field. The extensive literature survey shows that these sensors are useful in the 

industrial and oil & energy sectors can help optimize and enhance these fields. Although 

many studies about the used communication protocol have drawbacks, for example, Zigbee 

requires sensors to be few meters apart because of the range limitation, and high-power 

consumption making applications that must be battery powered difficult to achieve with 

this kind of technology.  

Most companies have the financial capability to use SCADA to acquire data from 

the field and can help determine the variation of pressure in the pipeline but due to the 

requirement of SCADA that range from implementing network data transmission and using 

a different type of controllers can be very costly for all companies. Because SCADA can 

provide real-time data, but it does not have the feature of decision capability. As a result, 

researchers are aiming to figure up a way of implementing intelligence to this system, but 

this will only add up the cost to the process. The limitations of implementing different 

algorithms for this specific application will be discussed in the next chapter 
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Chapter 3 System-level Design of Smart-Detect 
 

3.1 System-level overview of Smart-Detect  

The proposed novel solution is called Smart-Detect which is based on LoRa® 

technology. The next section will discuss the mechanism of how payloads are sent through 

the LoRa® Network and received at the Thingspeak cloud. Figure 3.1 illustrates the flow 

of data including the encryption and the decryption process embedded in LoRaWAN®. 

 

Figure 3.1. The encryption and decryption process of payloads in LoRaWAN® 

In the Smart-Detect system, the sensors are soldered and connected to the used 

microcontroller board (mDoT) Which is an ARM Cortex M4 type. The used sensors are ½ 

inch Hall effect Flow-meter and a Temperature sensor BME280. All acquire payloads are 
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binary data, and the MCU then processes this data and relays to the Universal 

Asynchronous Receiver/Transmitter (UART) which is serially sent to the mDoT. The 

mDot are equipped with a LoRa® antenna where encrypted payloads then transmitted to 

the used LoRa® Gateway (Multitech Conduit). The encryption Process is particular and 

will be activated in each end-device, for functionality there are two ways to enable end-

devices to join the network securely, the first process usually handled by the Network 

Server called the over-the-air activation (OTAA) which is used in this system. The second 

called Activation by Personalization (ABP) where the keys are directly stored in the end 

device. The OTAA require end-devices to follow certain steps for the successful joining of 

the network, the successful attempt of joining the network require end nodes to be set up 

with particular security keys beforehand to begin the joining process. The used Network 

Server (The Things Network) is responsible for personalizing and providing the following 

keys, an AES-128 key (AppKey), the application identifier (AppEUI), and the unique end-

device identifier (DevEUI). The device sends a MAC (media access control) request to the 

server called join request. The join request consists of AppEUI and DevEUI. If the device 

is permitted, and the process is not interrupted by any error the Network Server (TTN) 

should respond with a join-accept and provide the end-device with the following 

information a device address (DevAddr), an application identifier (AppEUI), a network 

session key (NetKey), and an application session key (AppKey).  

The LoRaWAN® network is designed to provide versatility to make the user 

choose and manage different applications on various servers. Because it is an open source 

platform the user has a choice of which Network Server he wants to use, he can access the 

Gateway and install a new program for the chosen packet forwarder. The packet forwarder 

is a program that interacts with the end devices and manages the transmission of packets 

in the LoRa® network. In this application the packet forwarder was changed instead of 

using Multi-tech original packet forwarder, the TTN packet forwarder was configured in 

the Gateway to receive all the packets in the Things Network. Figure 3.2 illustrates the 

Network Server used (TTN). 
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Figure 3.2. The Network Server (TTN) 

 

After the activation, the Network server should receive all payloads from the end 

device. TTN shows the raw payload in base64 hex-format for convenience. This format 

can be decoded by using javascript code in the TTN, or it can be decoded in the application 

server. TTN has a great platform to monitor the coming data, but it cannot be used to act 

or save the data. However, it provides the users the ability to integrate their applications 

with different cloud platforms such as Cayenne, Amazon web server, Thingspeak, and 

others. Smart-detect system is implemented to build a prototype for testing purpose so the 

need for low-cost solution to store data is needed, so the Thingspeak platform is chosen to 

fulfill the purpose, but in order to integrate TTN with Thingspeak, a connection must be 

established by using a middleware connection server called Node-Red. The Node-Red 

provides an easy way to decode payload messages and to connect platforms using 

JavaScript palettes by establishing a desired flow to receive data at the desired end. Figure 
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3.3 depicts the flow in which data is preprocessed and transmitted to the Thingspeak 

platform. 

Figure 3.3. The Node-Red flow for integrating TTN with Thingspeak 

In this flow, the connections are made by selecting the palette that uses MQTT 

broker.  The MQTT broker enables the connection with the Network server by inputting 

the required keys in order to receive the forwarded packets from the desired end device. 

As mentioned, the Things Network shows the payload as Base64 hex-format, so the code 

has been written to generate a decryption function palette that is used to decode the payload 

messages to text. The Json palette converts between JSON string and JavaScript object. 

Usually nodes can have multiple sensors such as the temperature sensor, BME280 that is 

used to sense temperature, humidity, and biometric pressure, and all three readings are sent 
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in one packet to reduce the amount of bandwidth that will be consumed ,so The split palette 

is used to split this payload message to separate the stream of messages with the next palette 

converting them to JSON fields to be read by the Thingspeak palette.  

The Thingspeak is about creating a real-time channel with inputting different fields 

so the data in this channel will be updated constantly if the application is powered on. The 

Thingspeak provide developers with the ability to test applications by graphing and 

visualizing the upcoming data fields in charts and provide the ability to save and act on the 

data by writing a MATLAB code to generate the desired output in real-time. Figure 3.4 

shows the Thingspeak used channels. 

Figure 3.4. Thingspeak created channels 
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3.2 Data Acquisition using Smart-Detect “Things” 

Before discussing the best-fit machine learning (ML) algorithm that provides the 

most accurate results. The need for defining the working mechanism of the sensors and the 

platform used for programming the Microcontroller is discussed in the next section. 

The used ½ inch Hall-effect flow sensor measures the magnetic fields using a wheel 

speed sensor (RPM). It is composed of Hall Effect sensor and a permanent magnet which 

are placed near a rotating disk. The gap between the sensor and the teeth of the disk is very 

small so each time a tooth passes near the sensor by the force of the water, it changes the 

surrounding magnetic field which will generate an electrical square wave pulse with each 

revolution. These readings are processed in the microprocessor to compute the water flow 

data by analyzing the wheel rotation count. The processing phase of this sensor node can 

be accomplished by writing a C/C++ program in the ARM Mbed OS. The Mbed OS is a 

platform for the Internet of things which includes the required attributes to design and 

develop a program that is based on ARM Cortex-M Microcontrollers that includes 

connectivity, drivers, and a program that can be designed to achieve more outputs from the 

sensor. In Smart-Detect System a C/C++ has been developed to compute the flow rate of 

the water as follows: 

Let K be the pulses per second per liter/min 

     *    F: pulse frequency (1iter/s), 

     *    Q: flow rate (liter/min), 

     *    P: sensor pulses  

     *    T: time since last measurements (s). 

     *    C: capacity in liter/min  

     *   Each sensor comes with different specifications, for this sensor the Capacity is 50 

l/min and   the K factor is 7.5 Hz per liter/min 

      K = F / Q                                                                                                                                   (3.1) 

      F= P/T                                                                                                                                      (3.2)  

      Q = (P / T) / K (l/min)                                                                                                              (3.3)   

The Volume can be calculated by: 

      V = Q / C (liter)                                                                                                                               (3.4) 
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The mentioned attributes such as current flow rate, current volume, total flow rate, 

and total volume are all considered to be features in constructing the Machine Learning 

algorithm. The accuracy of the readings needs to be on point. As a result, a calibration was 

conducted on the flow meter by changing the correction factor as follows: 

Average correction rate = k-factor / corrections over time * total time                         (3.5) 

This can be done by installing the flow meter at the end of a pipe and conducting 

trials where each time an observation an must be made for instance by filling a bottle of 

known capacity and checking how much error the volume readings of the flow meter is 

showing. By setting a correction factor at each trial, the total error would be reduced, and 

the readings can be accurate. 

Another Sensor used in the Smart-Detect system which is the BME 280. It is 

composed of three sensors that measure the pressure, humidity and temperature. A program 

also has been written to acquire data from the sensor, in the Mbed OS. However, the only 

temperature has been chosen tan o be acquired and considered to be a feature for 

monitoring purpose of water temperature, and the measurement unit is in Celsius. After the 

debugging, Process, the program can be compiled and can be loaded in the mDot 

microcontroller using the Universal Developer Kit, taking in consideration configuring the 

LoRa® connectivity drivers and installing the right keys to have a successful pairing with 

the Network Server. 

3.3 Data Analytics for the Smart-Detect system  

A predictive model is based on analysis and the ability of a system to learn from 

data and to make decisions with minimal human intervention, also, to independently 

adapting when exposed to a new set of data. In consideration of building an accurate 

predictive model, the observation is needed for data types and features that can help to 

decide which method is the best solution for the problem. 

Three different approaches have been taken in order to solve the problem of leakage 

detection. At first, the Support Vector Machine (SVM) algorithm, where the concept is to 

use to classify the leak from the non-leak data based on a hyperplane, was deployed. This 

will require gathering real data or using simulation data and labeling the data for instance 
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with one being the (non-leak) and zero is being the (leak), by finding the right hypothesis 

a decision boundary can separate the two classes. Training this data using SVM should 

indicate if a leak happens when applying a set of test data. However, after experimental 

trials, it can be noted that SVM is better for classification if the occurring leakage is large. 

SVM can falsely identify the leakage if the leak is very small because SVM, in this case, 

will classify all data as normal (negative) in other words if the trained data is further apart 

SVM can easily separate them with a decision boundary.  

In contrast, anomaly detection works better for identifying anomalies or events that 

are significantly different from the majority of the data or when training data a few 

anomalies exist among large regular data points this can occur in case a small leak happens. 

As a result, a second approach using anomaly detection was conducted, gathering data in 

normal condition and then introducing the smallest leak in the pipe with labeling the data 

in the same manner as the first method. In practice, the anomaly detection is based on 

computing the probability of the trained data where high probability data will be the 

majority and can be called non-anomalies. Furthermore, by setting a boundary value where 

any newly introduced data that is outside the boundary can be indicated as an anomaly and 

with lower probability values. This approach is useful especially by training the data with 

the smallest leak scenario for guarantying even if a large leak was introduced; the newly 

tested data will be categorized as an anomaly (leak). Although this sounds promising, but 

by setting trials an error can occur when the water in the pipe normally jerks back and 

causing a sudden flow that may introduce a flowrate that is larger than the normal. In this 

case, the anomaly detection model will categorize this data point as an anomaly as well, 

causing it to falsely identify an occurrence of leakage. The final approach that was used is 

Binary Logistic Regression. This method is used as classifier also, where an output value 

can be modeled as non-leak (one) or leak (zero). The concept behind the method is that the 

algorithm assumes a distribution from the trained data where it can compute a set of 

coefficients called (Regression beta values) by using the maximum likelihood estimation. 

The beta coefficient values dictate the outcome of the predictor. Subsequently, if the beta 

coefficient is not statistically significant, the variable does not essentially predict the 

outcome. More simply, the error in the probabilities predicted by the model compared to 
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those in the data is minimized by the beta values. More about these methods will be 

discussed in the next section.  

3.4 Data Analytics using Support Vector Machines (SVM) 

The goals of SVM are separating data of two or more classes with a hyperplane. 

The idea behind SVM is to maximize the margin between the hyperplane and the closest 

data points; this means that the optimal hyperplane will have the biggest margin. SVM 

hyperplane can be a line that separate two separable data, the hyperplane can be represented 

mathematically as a vectorized linear equation: 

                                 𝜔 + 𝑥 . 𝑏 = 0                                                                                (3.6) 

The hyperplane then is used to predict by: 

                      ℎ(𝑥𝑖) = {
+1, 𝑖𝑓  𝜔 + 𝑥 . 𝑏 ≥ 0
−1, 𝑖𝑓 𝜔 + 𝑥 . 𝑏 < 0

                                                                 (3.7) 

 

The point below the line will be classified as -1 and the point above the line will be 

classified as +1. However, how the best fit hyperplane is chosen, the answer is there are 

many methods to find the optimal separating hyperplane which maximizes the margin of 

the training data in SVM using optimization kernels like linear and Gaussian kernels. 

In the approach used in this thesis, the SVM was used to classify the leak from non-

leak data. A hyperplane was chosen to separate the two classes using the linear kernel, and 

the results were optimal in case the model was trained with marginally large leak data as 

shown in Figure 3.5. However, when small leak data was used to train the model, it was 

difficult to separate the two classes because a small leak can have similar data values as 

non-leak. 
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Figure 3.5. Using SVM to separate two classes 

 

3.5 Data Analytics using Anomaly Detection   

Anomaly detection is a technique that is called outliers used to identify anomalies 

that do not conform to expected behavior; this method seemed like a perfect fit to the 

problem of leak detection. The normal behavior is the water running in the normal flow 

with few anomalies when the flow spikes down where a small leak is occurring. There are 

many methods to find the outliers but, in this thesis, the normal distribution method was 

implemented.  

The model should predict if a certain data point is anomalous as following: 

                               (𝑥𝑖) = { 
𝑎𝑛𝑜𝑚𝑎𝑙𝑦, 𝑖𝑓 𝑃𝑥(𝑡𝑒𝑠𝑡) <  𝜀 

𝑛𝑜𝑛𝑎𝑛𝑜𝑚𝑎𝑙𝑦, 𝑖𝑓 𝑃𝑥(𝑡𝑒𝑠𝑡) ≥ 𝜀
                                          (3.8)                                                  

Anomaly detection model can be developed from un label data as it can indicate the 

probabilities of training data points using the Gaussian distribution by finding the mean 
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and the variance of the training data, the P(x) then can be computed by computing the 

Gaussian probability. 

Figure 3.6. Anomaly detection 

It can be explained from Figure 3.6 and by observing the computed value of P(x) 

that any data point newly introduced data point with higher probability is indicated as non-

anomalous (P(x) < ɛ) and data points with lower probability is indicated as an anomaly 

(P(x) ≥ ɛ). In other words anything inside the decision boundary is with higher probability, 

and any data point outside the decision boundary is with lower probability, where the 

decision boundary is constructed by setting a threshold value (ɛ). 

In this thesis this approach was used as shown in Figure 3.6 the model successfully 

indicates the anomalies that are outside the red circle, the problem was that there are certain 

points that indicate higher pressure which occurs occasionally from sudden flow, these 

points shouldn’t be flagged as anomalies, as a result this problem will produce errors in the 

prediction. 
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3.6 Data Analytics using the Logistic Regression Model  

Logistic Regression is simply the logic transformation of linear regression. The 

algorithm came upon the need to solve the problem that is facing linear regression when 

the output response needed is binary. Because in linear regression prediction of 

probabilities usually is greater than one or less than one (negative), this can affect the 

accuracy of the prediction. Therefore, this transformation will constrain the predicted 

probabilities to lie between 0 and 1. 

                                           𝑙𝑜𝑔𝑖𝑡(𝑃) = 𝑙𝑛 (
𝑃

1−𝑃
)                                                            (3.9) 

where: 

• P is the probability of occurrence of event Y, 𝑃(𝑌 = 1|𝑋) 

• (
P

1−P
) is the odds ratio 

Logistic regression computes parameters called beta coefficients (b) to predict a logit 

transformation of the probability of occurrence and the X’s are the features that can be used 

to construct the algorithm. 

                         𝑙𝑜𝑔𝑖𝑡(𝑃) = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋3 + ⋯ + 𝑏𝑘𝑋𝑘                            (3.10) 

Hence, the estimated probability is computed in the following equation: 

                                            𝑃 =
1

1+𝑒−𝑙𝑜𝑔𝑖𝑡(𝑃)                                                                 (3.11) 

This function is called the sigmoid function, and it looks like the following figure. 
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Figure 3.7. The Sigmoid function 

The sigmoid function can map all real numbers into the range between 0 and 1. In 

logistic regression sigmoid function turns the output into a probability which has a 

range between 0 and 1, where the high probability is denoted as positive numbers, and 

lower probabilities are denoted as a negative number. Alternatively, in another case an 

optimal cutoff is chosen for example (P=0.5) where P ≥ 0.5 classified as 1 (positive 

class) otherwise 0 (negative class). 

Furthermore, instead of choosing parameters that minimize the sum of squared 

errors (as in linear regression), logistic regression uses maximum likelihood estimation 

(MLE) where parameters are chosen based on the maximum likelihood of the training 

examples if the beta coefficient is not statistically significant the variable does not 

essentially predict the outcome. 

In (MLE) the log-likelihood function is computed first by: 

              𝐿𝐿(𝑏) = ∑ 𝑦(𝑖)𝑛
𝑖=1 𝑙𝑜𝑔 𝜎(𝑏𝑇 𝑥(𝑖)) + (1 − 𝑦(𝑖)) 𝑙𝑜𝑔 [1 − 𝜎(𝑏𝑇 𝑥(𝑖))]              (3.12) 

Where:  

The likelihood of independent training values is: 
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𝐿(𝑏) = ∏ 𝑃(𝑌 = 𝑦(𝑖)|𝑋 = 𝑥(𝑖))

𝑛

𝑖=1

 

And 

𝑃 = σ(𝑏𝑇𝑥(𝑖))  according to the likelihood of Bernoulli 

The function in equation (3.8) must be maximized but it's simpler to convert it to a 

negative log likelihood to turn it into a cost function that can be minimized as illustrated 

in equation (3.9): 

 

                  𝐽(𝑏) = − ∑ 𝑦(𝑖)𝑛
𝑖=1 𝑙𝑜𝑔 𝜎(𝑏𝑇 𝑥(𝑖)) + (1 − 𝑦(𝑖)) 𝑙𝑜𝑔 [1 − 𝜎(𝑏𝑇 𝑥(𝑖))]       (3.13) 

 

The gradient descent is used to minimize the cost function and can be accomplished 

by taking the partial derivative of the cost function and updating the beta values until 

the slope of the gradient converges to zero.  

 

                       
𝜕𝐽(𝑏)

𝜕𝑏𝑗
= ∑ [ 𝑦(𝑖)𝑛

𝑖=1 − 𝜎(𝑏𝑇 𝑥(𝑖)) ] 𝑥𝑗
(𝑖)

                                          (3.14) 

 

To arrive at the local maximum, small steps must be taken in the direction of the 

gradient by constantly updating the beta values on every iteration as following: 

 

                         𝑏𝑗
𝑛𝑒𝑤 =  𝑏𝑗

𝑜𝑙𝑑 + 𝛼 . ∑ [ 𝑦(𝑖)𝑛
𝑖=1 − 𝜎(𝑏𝑇 𝑥(𝑖)) ] 𝑥𝑗

(𝑖)
                                (3.15) 

 

Where α is the step size or the learning rate. 
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Chapter 4 Implementation and Validation of Smart-Detect System 

 

4.1 Validation of LoRaWAN® for the Smart-Detect System  

The extended range that LoRaWAN® presumably have, and the high expectation 

of communication coverage must be tested beforehand to validate the use of the network 

for a specific IoT application. 

In order to test whether LoRaWAN® network is the best solution for this IoT 

application prototype or proof-of-concept, a site survey was conducted using a device that 

helps consumers test their application concept before implementation. This device called 

the mDot box which is illustrated in the figure 4.1. 

 

 

 

 

 

 

 

 

Figure 4.1. The mDot box 

With a site survey, data were gathered at various power levels and data rates to 

check the reliability of the proposed technology. The survey was conducted in the lab 

wherein each room as shown in Figure 4.2 a survey data was gathered to check how far the 

communication coverage can deliver a good index without degrading. The house 

simulation in the figure was created to illustrate the distance between each simulated 

location of a sensor node and the LoRaWAN® gateway router. 
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Figure 4.2. The simulation graph of the locations of each sensor node 

Data were gathered in the same approximate distance from the router to the sensors 

nodes as shown in Figure 4.2. All surveys were done for each room that has LoRaWAN® 

End Device. Data gathered from one such node (Bath 1) was analyzed using MATLAB®. 

Table 1 shows data gathered from the node in Bath 1 in the figure. The MATLAB® Code 

that was utilized in this system is included in Appendix A. 

 The purpose of the survey is to test the reliability of LoRaWAN® 

network. Figure 4.3 illustrates the results of the survey conducted using different 

transmission power and data rates to compute the Signal to noise ratio (SNR) which is the 

difference in decibels between the received signal and the background noise measured in 

decibels milliwatts (dBm). Whereas Figure 4.4 illustrates the Received signal strength and 

the margin. 
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Table 4.1. Survey data gathered from the node in Bath 1  

 

 

Number of 

Surveys Margin RSSI SNR in dbm Data Rate Power 

1 25 -74 7.5 0 2 

2 26 -71 7.2 0 8 

3 24 -65 7.5 0 14 

4 26 -65 7.7 0 20 

5 21 -69 7 1 2 

6 24 -71 7.7 1 8 

7 23 -69 8 1 14 

8 24 -75 7.5 1 20 

9 21 -66 6.5 2 2 

10 20 -65 7.7 2 8 

11 21 -71 7 2 14 

12 20 -70 8 2 20 

13 14 -67 6.7 3 2 

14 16 -63 6.5 3 8 

15 17 -71 6.5 3 14 

16 17 -69 5.7 3 20 

17 0 -61 6.5 4 2 

18 0 -61 6.7 4 8 

19 0 -63 6.7 4 14 

20 0 -62 7.2 4 20 
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Figure 4.3. Margin vs. Received signal strength index 

 

Figure 4.4. Transmission Power vs. SNR 
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Observing the Received Signal Strength Indicator (RSSI) in Table 1 and comparing 

it with the standard acceptable signal strength showing below. It shows that RSSI from 

Table 1 lay in the range of very good signal strength. This indication can give a good insight 

into the validation of the network to be implemented in the IoT based oil detection system. 

Table 4.2. RSSI standard range 

-30 dBm Amazing  

-67 dBm Very Good 

-70 dBm Okay 

-80 dBm Not Good 

-90 dBm Unusable  

 

4.2 System Level Simulation (EPANET) 

EPANET is a public open source software used for modeling water distribution 

networks. The goal behind it is to perform a simulation of water behavior and hydraulics 

within pipe networks. Before building a prototype of the system in the lab. A simulation of 

the project is required to test and learn if the design will generate the expected output and 

to validate how accurate the practical flow meter readings would be, by comparing it to the 

flow rate generated by the simulation model. Standard compatibility between simulation 

and experiment is always preferred. In this project, a small network was built in EPANET 

software to build a virtual prototype that potentially can mimic the desired physical 

experiment. The prototype consists of two ½” Galvanized steel 5 feet pipe each connected 

in series by a steel fitting. The first End is connected to the sink; the sink is supplied by the 

water from the water storage tank where the water reservoir fills it. The other end is 

simulated to fill an empty reservoir for the sake of the experiment. 
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Before start creating the model, a few coefficients and options must be set. First, the pipe 

roughness coefficient was changed to use the Hazen-William coefficient (C) which has to 

be taken in the account as it can affect the readings. The Hazen-William coefficient for 

Galvanized steel is 120. Also, the Flow rate unit was changed to Liter/Minute (LPM). All 

shown Below.   

Figure 4.5. EPANET options for different coefficient selections 

Furthermore, it is essential to change the system units beforehand to assure the accuracy of 

the model as shown below. 

 

 

 

 

 

 

Figure 4.6. EPANET options for different unit selections 

In the normal condition where there is no leak, the simulated model is depicted as follows. 

Figure 4.7. EPANET Non-leak Model 
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The model was created in essence of virtually simulating the amount of water flow 

the lab sink receives. Thus, only after the illustrated point (The sink) in the previous figure 

is viable for this experiment. The analysis options must be taken into consideration for Pipe 

4 and Pipe 5 such as length of the pipe, pipe roughness, and pipe diameter, as follows: 

 

 

Figure 4.8. The simulation results of the flowrate in pipe 4 and 5 

The table of results from the created model illustrated below shows that the flowrate 

in Pipe 4 and Pipe 5 in normal condition is 6.08 l/min, with length of pipes are 5 feet and 

diameter is 0.5”. 
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Table 4.3. EPANET normal flow results 

 

Leakage can be created in EPANET either by adding extra demand of water at a 

specific node to simulate the leak or by finding the corresponding emitter coefficient in the 

network and change it to get the desired magnitude of leakage. In the previous model, a 

leakage was produced after the node between Pipe 4 and Pipe 5 causing the flowrate in 

Pipe 5 to be reduced. The following table of results illustrates the flowrate for each pipe. 

The created model shows that the flow rate in Pipe 4 is 6.08 l/min, while Pipe 5 has a flow 

rate of 5.08 l/min caused by the leak in the node between Pipe 4 and 5. 

Table 4.4. EPANET leakage results 

 

Link ID Length 

Ft 

Diameter 

In 

Roughness Flow 

LPM 

Status 

Pipe 1 40 2 120 87.65 Open 

Pipe 2 5 0.5 120 -12.35 Open 

Pipe 4 5 0.5 120 6.08 Open 

Pipe 3 40 2 120 -121.57 Open 

Pipe 5 5 0.5 120 6.08 Open 

Pipe 6 2 0.5 120 6.08 Open 

Pump 9 #N/A #N/A #N/A 87.65 Open 

Link ID  Length 

Ft 

Diameter 

In 

Roughness Flow 

LPM 

Status 

Pipe 1 40 2 120 88.34 Open 

Pipe 2 5 0.5 120 -11.66 Open 

Pipe 4 5 0.5 120 6.08 Open 

Pipe 3 40 2 120 -110.27 Open 

Pipe 5 5 0.5 120 5.08 Open 

Pipe 6 2 0.5 120 5.08 Open 

Pump 9 #N/A #N/A #N/A 88.34 Open 
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4.3 Data Acquisition and Processing for the proposed Smart-Detect system 

In order to test the proposed design, a hardware prototype was built that consist of two ½” 

Galvanized pipes 5 feet each connected using a ½” steel fitting, both are connected to a 

water fountain by a hose. Moreover, a valve was connected to the middle fitting between 

the two pipes, in order to simulate a leak during the experiment. The end of the pipe is 

connected to a flowmeter, and a temperature sensor both soldered into a microcontroller 

(mDot) with LoRa® enabled antenna. The following figures show the setup of the 

prototype. 

Figure 4.9. Prototype setup for the proposed IoT-based Smart-Detect framework (1). 
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Figure 4.10. Prototype setup for the proposed IoT-based Smart-Detect framework (2). 
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Figure 4.11. Prototype setup for the proposed IoT-based Smart-Detect framework (3) 



42 
 

In this experiment, a set of data was gathered in the normal condition (no leak) like 

illustrated below, where water is running at full pressure through the pipes, and the data 

acquisition is taken in this fashion for a couple of hours. 

 

Figure 4.12. Water running at full pressure (middle valve is closed) 

As mentioned in Chapter 3 there is a process in which the data is acquired when 

using LoRaWAN® network. The next section discusses the procedure of how the data was 

acquired from the prototype. 

 

Figure 4.13. The LoRaWAN® Gateway and the microcontroller 
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The previous figure depicts the used microcontroller which is called mDot  

(MTDOT-915-X1P-SMA-1) together with the Multiconnect® Conduit® gateway. The 

mDot is mounted on a Multiconnect mDot Developer Kit (MDK), this is needed for 

programming the mDot, where Mbed OS is utilized to write and debug the program to 

acquire data and send it through the LoRaWAN® network, next the Conduit® gateway 

forward the data to the network server (TTN). Before uploading the program to the 

microcontroller, the connection should be established with the sensors (Flowmeter and 

BME280), the pins should be connected to the right sockets and the use of pull-up resistors 

(10Kohms) between the input voltage and the pin required to trigger a specific signal is 

essential. The next figure illustrates the established connections. 

 

Figure 4.14. Sensor node with attached flowmeter and temperature sensor 

The Mbed OS is used here to include the libraries of the two sensors plus including 

the LoRa® connection driver, where keys are inputted in the LoRa® Library of the Mbed 

OS. These keys are provided from the network server (TTN) upon creating an application 

on the platform using OTAA as mentioned in section 3.1 in the previous chapter. The 

following figures show the Mbed OS and TTN platforms. Also, part of the program that 

was utilized in this system, is included in Appendix B. 

https://www.semiconductorstore.com/cart/pc/viewPrd.asp?idproduct=50693
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Figure 4.15. The Mbed OS Platform 
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Figure 4.16. The Things Network platform 

 

The TTN platform shows the specific location of the gateway on the map in 

addition to the keys required to connect to this specific device. After a successful 

configuration, the network server was receiving encoded payloads from the 

microcontroller as illustrated in the figure below. The raw data from the sensors are 

received in base64 hex-format almost 17 seconds apart. This raw data will be converted in 

Node-Red and will be forwarded to the Thingspeak platform as mentioned in chapter 3.  
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Figure 4.17. The received encoded payloads in TTN 

This created flow help preprocess the data to be received in real time without errors 

to the Thingspeak platform, also provides a simple way to check the data by using a 

debugger as shown below. 

 

 

Figure 4.18. Node-Red flow for forwarding data to Thingspeak 

 

In Thingspeak a channel was created to gather the data for the non-leak condition, 

in which data was received and plotted in real time as shown below. 
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Figure 4.19. The received data from the sensor node in real time 

 

Totally around 600 data points were gathered when the water was running at full 

pressure for a couple of hours. The data were examined and crosschecked with the 

simulated data from EPANET in section 4.1 to make sure that the sensor is not producing 

wrong readings. The following table illustrates part of the gathered data. 
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Table 4.5. Non-Leak Data generated from the Smart-Detect system 

 

 

 

Time Stamp Current  

Flow-Rate 
Current 

Volume 
Total Flow Total 

Volume 

Temperature 

'13-Dec-2018 13:37:03' 5.816 0.116 5.925 4.266 23.18 

'13-Dec-2018 13:37:20' 5.928 0.119 5.921 6.039 23.22 

'13-Dec-2018 13:37:37' 5.928 0.119 5.921 7.816 23.25 

'13-Dec-2018 13:37:55' 5.928 0.119 5.921 9.592 23.31 

'13-Dec-2018 13:38:12' 5.928 0.119 5.922 11.37 23.36 

'13-Dec-2018 13:38:30' 5.928 0.119 5.923 14.926 23.42 

'13-Dec-2018 13:38:47' 6.039 0.121 5.924 16.826 23.47 

'13-Dec-2018 13:39:04' 5.816 0.116 5.915 18.928 23.51 

'13-Dec-2018 13:39:21' 5.816 0.116 5.91 20.921 23.58 

'13-Dec-2018 13:39:39' 5.928 0.119 5.907 22.919 23.58 

'13-Dec-2018 13:39:56' 5.592 0.112 5.898 25.006 23.57 

'13-Dec-2018 13:40:14' 5.592 0.112 5.879 26.927 23.56 

'13-Dec-2018 13:40:31' 5.704 0.114 5.865 28.972 23.52 

'13-Dec-2018 13:40:48' 5.816 0.116 5.859 30.938 23.49 

'13-Dec-2018 13:41:06' 5.816 0.116 5.857 32.917 23.44 

'13-Dec-2018 13:41:23' 5.816 0.116 5.855 35.016 23.38 

'13-Dec-2018 13:41:40' 5.816 0.116 5.854 37 23.34 

'13-Dec-2018 13:41:58' 5.816 0.116 5.854 38.986 23.29 

'13-Dec-2018 13:42:15' 5.928 0.119 5.854 41.095 23.23 

'13-Dec-2018 13:42:32' 5.928 0.119 5.854 43.086 23.19 

'13-Dec-2018 13:42:50' 5.816 0.116 5.848 45.032 23.16 

'13-Dec-2018 13:43:07' 5.48 0.11 5.831 46.996 23.11 

'13-Dec-2018 13:43:24' 5.704 0.114 5.823 48.911 23.09 

'13-Dec-2018 13:43:42' 5.816 0.116 5.82 50.87 23.06 

'13-Dec-2018 13:43:59' 5.816 0.116 5.819 52.957 23.03 

'13-Dec-2018 13:44:16' 5.704 0.114 5.818 54.926 23.03 

'13-Dec-2018 13:44:34' 5.816 0.116 5.818 57.015 23.03 

'13-Dec-2018 13:44:51' 5.816 0.116 5.817 58.986 23.02 

'13-Dec-2018 13:45:09' 5.816 0.116 5.816 60.952 23 

'13-Dec-2018 13:45:26' 5.704 0.114 5.815 63.034 22.98 

'13-Dec-2018 13:45:43' 5.592 0.112 5.81 64.953 22.97 

'13-Dec-2018 13:46:01' 5.704 0.114 5.804 66.861 22.95 

'13-Dec-2018 13:46:18' 5.704 0.114 5.801 68.913 22.94 

'13-Dec-2018 13:46:35' 5.816 0.116 5.799 70.868 22.93 

'13-Dec-2018 13:46:53' 5.704 0.114 5.798 72.823 22.93 

'13-Dec-2018 13:47:10' 5.592 0.112 5.789 74.798 22.93 

'13-Dec-2018 13:47:28' 5.704 0.114 5.786 76.726 22.93 

'13-Dec-2018 13:47:45' 5.704 0.114 5.784 78.663 22.93 

'13-Dec-2018 13:48:02' 5.816 0.116 5.782 80.716 22.92 
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For convenience, another channel was created in Thingspeak for leakage data, in which the 

smallest leak was created as shown below, and another 600 data points were gathered 

where a portion of them are shown in Table 4.2. 

Figure 4.20. The leak created by marginally opening the middle valve 

 These set of data were combined in MATLAB® to be used to train the Logistic 

Regression Model. In supervised learning, the algorithm teaches itself to learn from 

the labeled data. Thus, in this case, the training data should be labeled as one in case of a 

non-leak and zero in case of a leak. So, after obtaining a labeled dataset, the logistic 

regression model can be applied to train the data in order to predict the label for the new 

upcoming unlabeled data. As mentioned in Chapter 3 beta coefficient have to be evaluated 

in logistic regression, but before training the model feature selection is a crucial step for 

the effective algorithm. an analyst must decide how many features and how integral the 

feature can contribute to the output. For this experiment, two features have been selected 

from the data like Current Flowrate and Current Volume. Whereas Temperature data are 

used only for monitoring the water temperature and could not be used as a feature. Due to 

the constant variant nature stemming from the change in the temperature of the pipes cause 

by weather variation. As a result, the logistic regression equation will be represented as 

following:   

 𝑙𝑜𝑔𝑖𝑡(𝑃) = 𝑏0 + 𝑏1 ∗  𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐹𝑙𝑜𝑤𝑟𝑎𝑡𝑒 + 𝑏2 ∗  𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑉𝑜𝑙𝑢𝑚𝑒                            (4.1) 
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The program that was utilized in this system, is included in Appendix C. 

 

Table 4.6. Leak Data generated from the Smart-Detect system 

Time Stamp Current  

Flow-Rate 

Current 

Volume 

Total Flow Total 

Volume 

Temperature 

'14-Dec-2018 15:38:59' 5.704 0.114 5.805 2.438 30.02 

'14-Dec-2018 15:39:16' 5.704 0.114 5.791 4.169 29.75 

'14-Dec-2018 15:39:34' 5.704 0.114 5.768 5.883 29.14 

'14-Dec-2018 15:39:51' 5.704 0.114 5.748 7.587 29.05 

'14-Dec-2018 15:40:08' 5.816 0.116 5.748 9.312 29.14 

'14-Dec-2018 15:40:26' 5.704 0.114 5.746 11.032 29.06 

'14-Dec-2018 15:40:43' 5.704 0.114 5.752 14.495 29.23 

'14-Dec-2018 15:41:01' 5.592 0.112 5.75 16.329 28.93 

'14-Dec-2018 15:41:18' 5.592 0.112 5.731 18.338 28.76 

'14-Dec-2018 15:41:35' 5.704 0.114 5.723 20.259 28.59 

'14-Dec-2018 15:41:52' 5.704 0.114 5.722 22.201 28.36 

'14-Dec-2018 15:42:10' 5.704 0.114 5.722 24.263 28.95 

'14-Dec-2018 15:42:27' 5.704 0.114 5.72 26.198 28.36 

'14-Dec-2018 15:42:45' 5.704 0.114 5.716 28.238 27.59 

'14-Dec-2018 15:43:02' 5.704 0.114 5.715 30.175 27.59 

'14-Dec-2018 15:43:19' 5.592 0.112 5.714 32.114 27.63 

'14-Dec-2018 15:43:37' 5.704 0.114 5.714 34.168 27.6 

'14-Dec-2018 15:43:54' 5.704 0.114 5.712 36.103 27.57 

'14-Dec-2018 15:44:11' 5.704 0.114 5.711 38.033 27.53 

'14-Dec-2018 15:44:29' 5.704 0.114 5.709 40.08 27.17 

'14-Dec-2018 15:44:46' 5.704 0.114 5.708 42.01 26.93 

'14-Dec-2018 15:45:03' 5.704 0.114 5.706 43.938 26.45 

'14-Dec-2018 15:45:21' 5.704 0.114 5.705 45.985 26.46 

'14-Dec-2018 15:45:38' 5.704 0.114 5.706 47.927 26.71 

'14-Dec-2018 15:45:56' 5.704 0.114 5.707 49.877 26.85 

'14-Dec-2018 15:46:13' 5.816 0.116 5.709 51.948 26.98 

'14-Dec-2018 15:46:30' 5.704 0.114 5.711 53.908 27.09 

'14-Dec-2018 15:46:47' 5.816 0.116 5.713 55.988 27.18 

'14-Dec-2018 15:47:05' 5.816 0.116 5.715 57.954 27.24 

'14-Dec-2018 15:47:22' 5.704 0.114 5.718 59.923 27.28 

'14-Dec-2018 15:47:40' 5.48 0.11 5.717 61.972 27.34 

'14-Dec-2018 15:47:57' 5.704 0.114 5.713 63.871 27.45 

'14-Dec-2018 15:48:14' 5.704 0.114 5.711 65.792 27.6 

'14-Dec-2018 15:48:32' 5.704 0.114 5.711 67.848 27.72 

'14-Dec-2018 15:48:49' 5.592 0.112 5.71 69.778 28.55 

'14-Dec-2018 15:49:06' 5.592 0.112 5.708 71.686 27.83 

'14-Dec-2018 15:49:24' 5.592 0.112 5.705 73.711 27.27 

'14-Dec-2018 15:49:41' 5.704 0.114 5.704 75.637 27.46 

'14-Dec-2018 15:49:59' 5.592 0.112 5.703 77.56 27.24 
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4.4 Experimental Results  

By using the machine learning toolbox in MATLAB, the model was built, and data 

was read directly from the created Thingspeak Channels. Running the code section 

regarding the training process, the results showing below illustrates the computed Beta 

coefficients from the training process. 

 

mdl =  Generalized linear regression model: logit(y) ~ 1 + x1 + x2 

Distribution = Binomial 

 

Estimated Coefficients: 

 

Estimate         SE         tStat           pValue 

________    ______    _______    _________ 

 

(Intercept)     -11.496      4.2463    -2.7073        0.0067832 

x1                 -771.94      388.06    -1.9892        0.046675 

x2                   17.46       7.2602      2.4049        0.016179 

 

 

1200 observations, 1197 error degrees of freedom 

Dispersion: 1 

Chi^2-statistic vs. constant model: 37.6, p-value = 6.96e-09 

 

 

Results show that:                                  𝑏0= −11.496 

                                                               𝑏1 = −771.94 

𝑏2 = 17.46 

 
 

Regression coefficients are the average change of the response variable in 

association with the predictor variable. In the above results, it can be observed that the 

negative coefficient implies that the odds when the class = 0 are lesser than the odds in 

case that variable = 1.  This is sensible since the introduced leak is very small ,hence most 

values of flow rate will be approximately close except for a few spikes associated with the 

drop in the flowrate which indicates the occurrence of the leak. The combined training data 

that was used in this model was visualized using Tableau by plotting x1 vs x2 to illustrate 

the proximity of the values between leak and no leak. Figure 4. 3 depicts the scatter plot of 

the data.  
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Figure 4.21. Visualization of data in Tableau (Flowrate vs Volume) 

Furthermore, the p-value for the overall model should be less than the common 

value 0.05 this would indicate that at least one of the independent variables contributes to 

the prediction of the outcome. A low p-value indicates that there is a meaningful addition 

to the model. In contrast a large p-value indicate that changed in the response are not 

associated with the predictor variable. In the results it can be noted that the predictor 

variables of x1 and x2 which are (current flowrate and current volume) are significant 

because they both have p-values less than 0.05. However, the p-value of the intercept is 

greater than the common value of 0.05 which indicate that is not statistically significant. 

Whereas the overall p-value is less than 0.05 (6.96e-09) which indicates good results. The 
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next result is known as the goodness of fit or Chi-Squared statistic which is a measure of 

how well the independent variables affect the outcome. In this case the result was 37.6.  

Figure 4.22. The decision boundary of the created Logistic Regression model and the Residuals 

The figure illustrates the hyperplane which separates the two classes, when the 

probability is above 0.5 according to the decision boundary for instance P ≥ 0.5 it classifies 

the class as 1 (non-leak) and when P < 0.5 it classifies the class as 0 (leak). Also, it shows 

the residuals which is the difference between the observed label (y) and the label (ypred) 

predicted by the model.  

After Training the model is time to test whether the model can predict or produce 

the right outcome. The constructed MATLAB® code should be copied to the Thingspeak 

to test it in real time. As mentioned before a third channel was created in Thingspeak for 
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testing. The upcoming figures shows the results in real time of the system predicting the 

outcome in three different cases. 

 

 

 

 

 

 

 

 

Figure 4.23. The predicted real time results in three cases (no water, no leak, leak) 
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Chapter 5 Discussion and Conclusion 
 

5.1 Discussion 

The best way to predict the effectiveness of the proposed design is to conduct 

sufficient amount of trials and observe the system reliability, by creating different scenarios 

in which different sizes of leaks are introduces and checking whether the system produce 

the right outcome each time. By calculating the misclassification error which is how many 

times the system predicts the wrong output in comparison to predicting the right output, 

this procedure can indicate the overall efficiency of the system.  

First Trial: 

Table 5.1. First prediction trial for testing the Smart-Detect system 

Entry_ID 

Current 

Flow-Rate 

Current 

Volume 

Projected 

Prediction 

Middle 

Valve 

Actual 

Prediction 

1 0 0 

No water 

running Closed 

'no water 

running' 

2 0 0 

No water 

running Closed 

'no water 

running' 

3 0 0 

No water 

running Closed 

'no water 

running' 

4 0 0 

No water 

running Closed 

'no water 

running' 

5 0 0 

No water 

running Closed 

'no water 

running' 

6 0 0 

No water 

running Closed 

'no water 

running' 

7 0 0 

No water 

running Closed 

'no water 

running' 

8 6.039 0.121 No leak Closed 'No leak' 

9 6.039 0.121 No leak Closed 'No leak' 

10 6.039 0.121 No leak Closed 'No leak' 

11 6.039 0.121 No leak Closed 'No leak' 

12 5.928 0.119 No leak Closed 'No leak' 

13 5.928 0.119 No leak Closed 'No leak' 

14 5.928 0.119 No leak Closed 'No leak' 

15 5.928 0.119 No leak Closed 'No leak' 

16 5.928 0.119 No leak Closed 'No leak' 

17 5.928 0.119 No leak Closed 'No leak' 



56 
 

18 5.592 0.112 Leak Open 5% 'Leak' 

19 5.592 0.112 Leak Open 5% 'Leak' 

20 4.697 0.094 Leak Open 10% 'Leak' 

21 4.362 0.087 Leak Open 10% 'Leak' 

22 4.474 0.089 Leak Open 15% 'Leak' 

23 3.914 0.078 Leak Open 25% 'Leak' 

24 3.914 0.078 Leak Open 25% 'Leak' 

25 3.914 0.078 Leak Open 25% 'Leak' 

Second Trial: 

Table 5.2. Second prediction trial for testing the Smart-Detect system 

Entry_ID 

Current 

Flow-Rate 

Current 

Volume 

Projected 

Prediction 

Middle 

Valve 

Actual  

Prediction 

1 0 0 

No water 

running Closed 

'no water 

running' 

2 0 0 

No water 

running Closed 

'no water 

running' 

3 0 0 

No water 

running Closed 

'no water 

running' 

4 0 0 

No water 

running Closed 

'no water 

running' 

5 0 0 

No water 

running Closed 

'no water 

running' 

6 0 0 

No water 

running Closed 

'no water 

running' 

7 5.928 0.119 No leak Closed 'No leak' 

8 6.039 0.121 No leak Closed 'No leak' 

9 5.928 0.119 No leak Closed 'No leak' 

10 5.928 0.119 No leak Closed 'No leak' 

11 5.928 0.119 No leak Closed 'No leak' 

12 5.928 0.119 No leak Closed 'No leak' 

13 5.816 0.116 No leak Closed 'No leak' 

14 5.816 0.116 No leak Closed 'No leak' 

15 5.816 0.116 No leak Closed 'No leak' 

16 5.816 0.116 No leak Closed 'No leak' 

17 5.592 0.112 Leak Open 5% 'Leak' 

18 5.592 0.112 Leak Open 5% 'Leak' 

19 5.816 0.116 Leak Open 10% 'No leak' 

20 5.145 0.103 Leak Open 10% 'Leak' 

21 5.033 0.101 Leak Open 15% 'Leak' 

22 4.586 0.092 Leak Open 20% 'Leak' 

23 4.586 0.092 Leak Open 20% 'Leak' 

24 4.474 0.089 Leak Open 25% 'Leak' 

25 4.474 0.089 Leak Open 25% 'Leak' 
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Two trials have been conducted, at first the water wasn’t running and in this case 

the algorithm correctly indicate that there is no water running in the pipe, and after the 

water is opened to the full pressure the algorithm correctly predict that there is no leak, 

finally after a leak is introduced the valve is opened marginally and in each case the 

algorithm correctly predict a leak in most trials. From the above trials it can be noted that 

the system has an overall efficiency of 98% since there is only one misclassification. 

5.2 Conclusions  

Most commonly used techniques for leak detection depend on simulation which can 

produce great results. However, the variation of the medium pressure and the influence of 

the outer environment can severely affect these sorts of applications. These nonlinearities 

can’t be produced in a computer simulation, due to these factors a practical approach is 

needed for better control and precision. Proving that this technology can be used to 

practically implement leakage detection system with a good efficiency can open a new 

window towards research and innovation in this direction, because it is not just about 

getting the right outcome this system overcomes several drawbacks that faced the 

researchers before, drawbacks like communication range and coverage, cost, reaction 

speed, real rime monitoring, and the battery life. The later drawback was mostly the core 

problem because this application has to be battery powered, and a low power 

communication protocol that keeps the battery from draining up in a short period of time 

is needed. LoRaWAN® solve most of these problems as shown in this conducted 

experiment.  

In this section a further explanation of how an IoT based system like the used system 

in this research can overcome the mentioned drawbacks. Firstly, in section 4.1 a wide 

explanation and an experiment was introduced to show the coverage capability and the 

performance of added range of LoRaWAN® technology, an outdoor range that exceeds 5 

miles and up to 10 miles. While in deep in-building penetration it has a range of 1 to 3 

miles.  

The cost of implementing this system is relatively cheap as compared to other utilized 

systems in the oil field sector. The utilization of LoRaWAN® that operates in the 915 MHZ 

part of the spectrum merely cost nothing at least from regulator point of view, there is no 
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license fees at all although the technology itself requires a certain cost, but that cost is not 

very great when spread across many devices. 

Moreover, as observed from the results the reaction time can be very fast mostly 20 

seconds and can be reduced if a direct integration with a well-known cloud was 

implemented, clouds like IBM Cloud, Amazon Web services, or Microsoft Azure and 

other. Usage of Virtual Server Instances of these clouds can add more cost to the system. 

However, the system results can be considered real time as the outcome was predicted 

while the system is acquiring data in real time. The real time detection and fast reaction 

time are essential in constructing a feasible leak detection system. 

The battery life is important for leak detection system. Battery life depends on many 

variables, including data rate, transmit power and duty cycle. A low power communication 

protocol like LoRaWAN® help retain the battery life and reduce the consumption of power 

due to low data rate. Furthermore, developers introduced further enhancements in the 

LoRa® enabled microcontroller firmware which is called auto sleep feature, a power 

optimization scheme that allows the microcontroller to automatically stop and go to sleep 

mode after an uplink transmission ends and in between two receive windows, this 

additionally increase the battery life which makes it operate for several years. 

Finally, the versatility and ease of use of this technology offers an extra capability that 

might save cost and effort of constructing a machine learning model for leak localization. 

Because each sensor node can be registered in the network server, the location of each 

sensor node can be known. For more precision a GPS can easily be integrated with the 

sensor node where the location of a leak can be indicated. 

5.3 Future work 

Many different adaptations, tests, and experiments can further improve the system for 

instance further improvement in the test setup can be made by introducing different leaks 

in the pipe in various locations and with different sizes. In addition, adding more sensors 

like pressure sensor and trying different pipe diameters with different materials, can 

increase the number of features used in gathering the data used to train the model, 

additionally training the model with different water pressure. all mentioned approaches can 
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produce a more powerful algorithm for leak detection. Moreover, an extension of the 

proposed system is to build a mobile application or a web service that can alarm the user 

in case a leak occurs, which is an important aspect in building an IoT based system. Another 

approach can be suggested is using statistical approaches to generate more data by using 

Monte-Carlo simulation. 
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Appendix A: The analysis of survey data in MATLAB® 
 

A=dlmread('bathdata.txt'); 

power4=A(1:4,11); 

power3=A(5:8,11); 

power2=A(9:12,11); 

power1=A(13:16,11); 

power0=A(17:20,11); 

datarate=A(:,10); 

SNR0down=A(17:20,9); 

SNR1down=A(13:16,9); 

SNR2down=A(9:12,9); 

SNR3down=A(5:8,9); 

SNR4down=A(1:4,9); 

RSSIdown=-1*A(:,8); 

margin=A(:,7); 

Gateway=A(:,6); 

figure (1) 

plot(power4,SNR4down) 

hold on 

plot(power3,SNR3down) 

hold on 

plot(power2,SNR2down) 

hold on  

plot(power1,SNR1down) 

hold on  

plot(power0,SNR0down) 

xlabel('Transmission Power') 

ylabel('Signal to Noise Ratio in dbm') 

xlim([2 20]) 

ylim([0 10]) 

legend('DR=4','DR=3' ,'DR=2' ,'DR=1','DR=0')  

figure (2) 

plot(margin) 

hold on  

plot(RSSIdown) 

xlim([1 20]) 

xlabel('Number of Surveys') 

ylabel('Margin vs RSSI') 

legend('Margin','RSSI') 
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Appendix B: The code used for acquiring data from the flowmeter 
 

 

#include "FlowMeter.h"  

#include "RawSerial.h"  

int main() {  

                  InterruptIn* pulseInput = new InterruptIn(XBEE_DIO0);  

                  FlowMeter* flowMeter = new FlowMeter(pulseInput);  

                  RawSerial* debugSerial = new RawSerial(USBTX,USBRX); 

                  while (true) {  

                  debugSerial->printf("Flowrate: %.3f\n",flowMeter->getCurrentFlowrate()); 

 } 

 return 0; 

 } 
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Appendix C: Logistic Regression model in MATLAB® 
 

% Read non-leak data from Thingspeak channel 

 

data=thingSpeakRead(641423,'ReadKey','ACXT1MEWNON7B8EQ','Fields',[1:5],'Num

Points',600,'OutputFormat','table'); 

X1=data(:,3); X2= data(:, 2); 

X3=data(:, 6); 

  

X=[X1 X2]; 

 

% Read leak data from Thingspeak channel 

  

data2=thingSpeakRead(654254,'ReadKey','8Z05YRHBBV3C71T7','Fields',[1:5],'NumPo

ints',600,'OutputFormat','table'); 

z1=data2(:,3); z2= data2(:, 2); 

z3=data2(:, 6); 

  

z=[z1 z2]; 

X=table2array(X); 

Z=table2array(z); 

y2 = ones(600, 1); 

y1=zeros(600,1); 

y=vertcat(y1,y2); 

G=vertcat(X,Z); 

  

% Training the model 

mdl = fitglm(G,y,'Distribution','binomial'); 

 

% Channel created for real time Testing 

[L,timestamps,chInfo]=thingSpeakRead(677317,'ReadKey','75BOG66LMMEUMTA7','F

ields',[1:5],'NumPoints',25,'OutputFormat','table'); 

L1=L(:,3);L2= L(:, 2); 

L3=L(:, 6); 

  

L=[L1 L2]; 

l=table2array(L); 

 

ypred = predict(mdl,l); 

  

figure(1); 

 pos = find(y==1); neg = find(y == 0); 

% Plot  

plot(G(pos, 1), G(pos, 2), 'k+','LineWidth', 2, ... 

'MarkerSize', 7); 

plot(G(neg, 1), G(neg, 2), 'ko', 'MarkerFaceColor', 'y', ... 
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Appendix C (Continued) 

 

'MarkerSize', 7); 

 T = zeros(size(ypred));  % Make another array to fill up... 

 

% classify using the computed Probability   

 if l==0 

    R=sprintf('no water running') 

 else 

for ii = 1:length(ypred) 

    if any(ypred(ii)>= .5) 

       R=sprintf('no leak') 

  

    else 

       R=sprintf('leak') 

  

    end 

end 

 end 

 

figure(2); 

plotResiduals(mdl,'probability'); 
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