553 research outputs found

    Modelling Net Primary Productivity and Above-Ground Biomass for Mapping of Spatial Biomass Distribution in Kazakhstan

    Get PDF
    Biomass is an important ecological variable for understanding the responses of vegetation to the currently observed global change. The impact of changes in vegetation biomass on the global ecosystem is also of high relevance. The vegetation in the arid and semi-arid environments of Kazakhstan is expected to be affected particularly strongly by future climate change. Therefore, it is of great interest to observe large-scale vegetation dynamics and biomass distribution in Kazakhstan. At the beginning of this dissertation, previous research activities and remote-sensing-based methods for biomass estimation in semi-arid regions have been comprehensively reviewed for the first time. The review revealed that the biggest challenge is the transferability of methods in time and space. Empirical approaches, which are predominantly applied, proved to be hardly transferable. Remote-sensing-based Net Primary Productivity (NPP) models, on the other hand, allow for regional to continental modelling of NPP time-series and are potentially transferable to new regions. This thesis thus deals with modelling and analysis of NPP time-series for Kazakhstan and presents a methodological concept for derivation of above-ground biomass estimates based on NPP data. For validation of the results, biomass field data were collected in three study areas in Kazakhstan. For the selection of an appropriate model, two remote-sensing-based NPP models were applied to a study area in Central Kazakhstan. The first is the Regional Biomass Model (RBM). The second is the Biosphere Energy Transfer Hydrology Model (BETHY/DLR). Both models were applied to Kazakhstan for the first time in this dissertation. Differences in the modelling approaches, intermediate products, and calculated NPP, as well as their temporal characteristics were analysed and discussed. The model BETHY/DLR was then used to calculate NPP for Kazakhstan for 2003–2011. The results were analysed regarding spatial, intra-annual, and inter-annual variations. In addition, the correlation between NPP and meteorological parameters was analysed. In the last part of this dissertation, a methodological concept for derivation of above-ground biomass estimates of natural vegetation from NPP time-series has been developed. The concept is based on the NPP time-series, information about fractional cover of herbaceous and woody vegetation, and plants’ relative growth rates (RGRs). It has been the first time that these parameters are combined for biomass estimation in semi-arid regions. The developed approach was finally applied to estimate biomass for the three study areas in Kazakhstan and validated with field data. The results of this dissertation provide information about the vegetation dynamics in Kazakhstan for 2003–2011. This is valuable information for a sustainable land management and the identification of regions that are potentially affected by a changing climate. Furthermore, a methodological concept for the estimation of biomass based on NPP time-series is presented. The developed method is potentially transferable. Providing that the required information regarding vegetation distribution and fractional cover is available, the method will allow for repeated and large-area biomass estimation for natural vegetation in Kazakhstan and other semi-arid environments

    Spatial analysis and modelling of fire severity and vegetation recovery on and around Mt Cooke, south-western Australia

    Get PDF
    The South Western Australian Floristic Region (SWAFR) is an area with high biodiversity and species endemism. Numerous granite outcrops within the area provide specialised ecosystems for these endemic plants that are under threat by changes to the fire regime. This study reviews a fire on Mt Cooke in 2003. Using remote sensing and GIS, the fire is studied in relation to vegetation and fire indices to assess the fire severity and studies if the topography affected the fire severity. The vegetation recovery is monitored for ten years post-fire to assess recovery rates

    Desertification

    Get PDF
    IPCC SPECIAL REPORT ON CLIMATE CHANGE AND LAND (SRCCL) Chapter 3: Climate Change and Land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystem

    Forest Fire Risk Prediction

    Get PDF
    Globally, fire regimes are being altered by changing climatic conditions and land use changes. This has the potential to drive species extinctions and cause ecosystem state changes, with a range of consequences for ecosystem services. Accurate prediction of the risk of forest fires over short timescales (weeks or months) is required for land managers to target suppression resources in order to protect people, property, and infrastructure, as well as fire-sensitive ecosystems. Over longer timescales, prediction of changes in forest fire regimes is required to model the effect of wildfires on the terrestrial carbon cycle and subsequent feedbacks into the climate system.This was the motivation to publish this book, which is focused on quantifying and modelling the risk factors of forest fires. More specifically, the chapters in this book address four topics: (i) the use of fire danger metrics and other approaches to understand variation in wildfire activity; (ii) understanding changes in the flammability of live fuel; (iii) modeling dead fuel moisture content; and (iv) estimations of emission factors.The book will be of broad relevance to scientists and managers working with fire in different forest ecosystems globally

    ESA - RESGROW: Epansion of the Market for EO Based Information Services in Renewable Energy - Biomass Energy sector

    Get PDF
    Biomass energy is of growing importance as it is widely recognised, both scientifically and politically, that the increase of atmospheric CO2 has led to an enhanced efficiency of the greenhouse effect and, as such, warrants concern for climate change. It is accepted (IPCC 2011 and just recently in the draft version of the IPCC 2013 report) that climate change is partly induced by humans notably by using fossil fuels. For reducing the use of oil or coal, biomass energy is receiving more and more attention as an additional energy source available regionally in large parts of the world. Effective management of renewable energy resources is critical for the European and the global energy supply system. The future contribution of bioenergy to the energy supply strongly depends on its availability, in other words the biomass potential. Biomass potentials are currently mainly assessed on a national to regional or on a global level, with the bulk biomass potential allocated to the whole country. With certain biomass fractions being of low energy density, transport distances and thus their spatial distribution are crucial economic and ecological factors. For other biomass fractions a super-regional or global market is envisaged. Thus spatial information on biomass potentials is vital for the further expansion of bioenergy use. This study, which is an updated version of a study carried out in 2007 in frame of the ENVISOLAR project, analyses the potential use of Earth Observation data as input for biomass models in order to assessment and manage of the biomass energy resources especially biomass potentials of agricultural and forest areas with high spatial resolution (typical 1km x 1km). In addition to a sorrow review of recent developments in data availability and approaches in comparison to its 2007’ version, this study also includes a review on approaches to directly correlate remote sensing data with biomass estimations. An overview of existing biomass models is given covering models using remote sensing data as input as well as models using only meteorological and/or management data as input. It covers the full life cycle from the planning stage to plant management and operations (Figure 1). Several groups of stakeholders were identified

    A review of potential methods for monitoring rangeland degradation in Libya

    Get PDF
    Natural and human factors exert a profound impact on the degradation of rangelands, human effects being the most significant factor in increasing the severity of deterioration. This occurs through agricultural expansion at the expense of rangelands, and with the number of domestic and wildlife animals exceeding the natural carrying capacity. This raises concerns about the ongoing sustainability of these land resources, as well as the sustainability of traditional pastoral land practices. Rangelands require effective management, which is dependent upon accurate and timely monitoring data to support the assessment of rangeland deterioration. Natural rangelands provide one of the significant pillars of support for the Libyan national economy. Despite the important role of rangeland in Libya from both economic and environmental perspectives, the vegetation cover of Libyan rangeland has changed adversely qualitatively and quantitatively over the past four decades. Ground-based observation methods are widely used to assess rangeland degradation in Libya. However, multi-temporal observations are often not integrated nor repeatable, making it difficult for rangeland managers to detect degradation consistently. Field study costs are also significantly high in comparison with their accuracy and reliability, both in terms of the time and resources required. Remote-sensing approaches offer the advantage of spanning large geographical areas with multiple spatial, spectral and temporal resolutions. These data can play a significant role in rangeland monitoring, permitting observation, monitoring and prediction of vegetation changes, productivity assessment, fire extent, vegetation and soil moisture measurement and quantifying the proliferation of invasive plant species. This paper reviews the factors causing rangeland degradation in Libya, identifying appropriate remote-sensing methods that can be used to implement appropriate monitoring procedures

    Remote Sensing of Savannas and Woodlands

    Get PDF
    Savannas and woodlands are one of the most challenging targets for remote sensing. This book provides a current snapshot of the geographical focus and application of the latest sensors and sensor combinations in savannas and woodlands. It includes feature articles on terrestrial laser scanning and on the application of remote sensing to characterization of vegetation dynamics in the Mato Grosso, Cerrado and Caatinga of Brazil. It also contains studies focussed on savannas in Europe, North America, Africa and Australia. It should be important reading for environmental practitioners and scientists globally who are concerned with the sustainability of the global savanna and woodland biome

    Advances in Remote Sensing and GIS applications in Forest Fire Management: from local to global assessments

    Get PDF
    This report contains the proceedings of the 8th International Workshop of the European Association of Remote Sensing Laboratories (EARSeL) Special Interest Group on Forest Fires, that took place in Stresa, (Italy) on 20-21 October 2011. The main subject of the workshop was the operational use of remote sensing in forest fire management and different spatial scales were addressed, from local to regional and from national to global. Topics of the workshops were also grouped according to the fire management stage considered for the application of remote sensing techniques, addressing pre fire, during fire or post fire conditions.JRC.H.7-Land management and natural hazard

    Proceedings of the 6th International Workshop of the EARSeL Special Interest Group on Forest Fires Advances in Remote Sensing and GIS Applications in Forest Fire Management Towards an Operational Use of Remote Sensing in Forest Fire Management

    Get PDF
    During the last two decades, interest in forest fire research has grown steadily, as more and more local and global impacts of burning are being identified. The definition of fire regimes as well as the identification of factors explaining spatial and temporal variations in these fire characteristics are recently hot fields of research. Changes in these fire regimes have important social and ecological implications. Whether these changes are mainly caused by land use or climate warming, greater efforts are demanded to manage forest fires at different temporal and spatial scales. The European Association of Remote Sensing Laboratories (EARSeL)’s Special Interest Group (SIG) on Forest Fires was created in 1995, following the initiative of several researchers studying Mediterranean fires in Europe. It has promoted five technical meetings and several specialised publications since then, and represents one of the most active groups within the EARSeL. The SIG has tried to foster interaction among scientists and managers who are interested in using remote sensing data and techniques to improve the traditional methods of fire risk estimation and the assessment of fire effect. The aim of the 6th international workshop is to analyze the operational use of remote sensing in forest fire management, bringing together scientists and fire managers to promote the development of methods that may better serve the operational community. This idea clearly links with international programmes of a similar scope, such as the Global Monitoring for Environment and Security (GMES) and the Global Observation of Forest Cover/Land Dynamics (GOFC-GOLD) who, together with the Joint Research Center of the European Union sponsor this event. Finally, I would like to thank the local organisers for the considerable lengths they have gone to in order to put this material together, and take care of all the details that the organization of this event requires.JRC.H.3-Global environement monitorin
    • …
    corecore