2,862 research outputs found

    Networking chemical robots for reaction multitasking

    Get PDF
    The development of the internet of things has led to an explosion in the number of networked devices capable of control and computing. However, whilst common place in remote sensing, these approaches have not impacted chemistry due to difficulty in developing systems flexible enough for experimental data collection. Herein we present a simple and affordable (<$500) chemistry capable robot built with a standard set of hardware and software protocols that can be networked to coordinate many chemical experiments in real time. We demonstrate how multiple processes can be done with two internet connected robots collaboratively, exploring a set of azo-coupling reactions in a fraction of time needed for a single robot, as well as encoding and decoding information into a network of oscillating reactions. The system can also be used to assess the reproducibility of chemical reactions and discover new reaction outcomes using game playing to explore a chemical space

    Trick or Heat? Manipulating Critical Temperature-Based Control Systems Using Rectification Attacks

    Full text link
    Temperature sensing and control systems are widely used in the closed-loop control of critical processes such as maintaining the thermal stability of patients, or in alarm systems for detecting temperature-related hazards. However, the security of these systems has yet to be completely explored, leaving potential attack surfaces that can be exploited to take control over critical systems. In this paper we investigate the reliability of temperature-based control systems from a security and safety perspective. We show how unexpected consequences and safety risks can be induced by physical-level attacks on analog temperature sensing components. For instance, we demonstrate that an adversary could remotely manipulate the temperature sensor measurements of an infant incubator to cause potential safety issues, without tampering with the victim system or triggering automatic temperature alarms. This attack exploits the unintended rectification effect that can be induced in operational and instrumentation amplifiers to control the sensor output, tricking the internal control loop of the victim system to heat up or cool down. Furthermore, we show how the exploit of this hardware-level vulnerability could affect different classes of analog sensors that share similar signal conditioning processes. Our experimental results indicate that conventional defenses commonly deployed in these systems are not sufficient to mitigate the threat, so we propose a prototype design of a low-cost anomaly detector for critical applications to ensure the integrity of temperature sensor signals.Comment: Accepted at the ACM Conference on Computer and Communications Security (CCS), 201

    SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 8: Aerothermodynamics Automation and Robotics (A/R) systems sensors, high-temperature superconductivity

    Get PDF
    Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity

    Oncilla robot: a versatile open-source quadruped research robot with compliant pantograph legs

    Get PDF
    We present Oncilla robot, a novel mobile, quadruped legged locomotion machine. This large-cat sized, 5.1 robot is one of a kind of a recent, bioinspired legged robot class designed with the capability of model-free locomotion control. Animal legged locomotion in rough terrain is clearly shaped by sensor feedback systems. Results with Oncilla robot show that agile and versatile locomotion is possible without sensory signals to some extend, and tracking becomes robust when feedback control is added (Ajaoolleian 2015). By incorporating mechanical and control blueprints inspired from animals, and by observing the resulting robot locomotion characteristics, we aim to understand the contribution of individual components. Legged robots have a wide mechanical and control design parameter space, and a unique potential as research tools to investigate principles of biomechanics and legged locomotion control. But the hardware and controller design can be a steep initial hurdle for academic research. To facilitate the easy start and development of legged robots, Oncilla-robot's blueprints are available through open-source. [...

    DESIGN & IMPLEMENTATION OF A TWO-LEGGED HUMANOID ROBOT

    Get PDF
    Nowadays, the development of robotic field is developing rapidly. The effort in developing a robot that can act and think like human has been done by various parties including the institutions of higher learning and the private company. This paper presents the design and implementation of a two-legged humanoid robot that capable of walking forward and backward. The robot is having a total of five degree of freedom (DOF), which comprises of two DOFon each knee, two DOFon each pelvis and one DOF used as balancing mechanism. These DOF is implemented using servomotors and are controlled using microchip PIC16F877 and PIC16F84A. The most critical part in designing this robot is to achieve its stability especially when it begins to walk. The stability of the structure is solves using the counterweight mechanism. The development of this biped is done stage by stage through developing and modifying the structure, constructing the circuit, programming the controller and combining both the hardware and software part. The results that have been achieved are the stable and rigid structure and the walking motion and it will be discussed in detail in the result part of this report

    LabVIEW Remote Lab

    Get PDF

    Ameliorating integrated sensor drift and imperfections: an adaptive "neural" approach

    Get PDF
    corecore