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Abstract 

The work carried out towards this thesis examines the suggestion that local pre-process-

ing and early classification of high-dimensional sensory signals can be achieved effec-

tively by an artificial neural network (ANN). The multisensor microsystem for a project 

named "Integrated Diagnostics for Environmental & Analytical Systems (IDEAS)" is 

used as an example for this study. Four types of electrochemical sensors are imple-

mented and calibrated. In our testbench experiments, the sensory signals are found to 

experience some stochastic randomness and drift during operation. Therefore, the ANN 

must be adaptive to allow auto-calibration of the sensors. 

Existing ANN algorithms to fuse sensory signals and hardware-amenable neural algo-

rithms are reviewed. The Continuous Restricted Boltzmann Machine (CRBM) is chosen 

as a suitable candidate. The CRBM is further developed in this thesis to facilitate on-

line learning without experiencing Catastrophic Interference (CI) - a known problem in 

associative memory based models. 

The CRBM is examined in two separate simulations. The first simulation evaluates the 

modelling capability of the CRBM while the second simulation focusses on the adapta-

tion of the CRBM to sensor drift in a dynamic environment. The results suggest that the 

CRBM is able to model high-dimensional, non-Gaussian data distributions with over-

lapping areas. The CRBM is also compared favourably, in terms of robustness against 

sensor drift, with trained but subsequently non-adaptive neural models. The thesis also 

investigates the optimal architecture size and learning rate for the CRBM. Finally, the 

limitations of the CRBM are studied. The learning rate is identified as the key factor in 

determining the feasibility of CRBM tracking sensor drift in a dynamic environment. 
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Chapter 1 
Introduction 

1.1 Background and Motivations 

This project brings together sensor integration and neuralcomputation. As the focus 

is on developing a system to deal with early sensor pre-processing, this section will 

provide a brief overview of the sensor technology and the needs to pre-processing. 

1.1.1 Integrated multisensor microsystems 

Since the late 1970s, silicon has been identified as a promising sensor substrate because 

it permits the integration of the sensing element and the signal processing circuit on a 

single chip, and allows batch-fabrication process. The types of transduction available in 

silicon include radiant, mechanical, thermal, magnetic and chemical signal conversion 

from a wide range of measurands (as summarised in Table 1.1). While silicon displays 

sufficient physical effects to most types of measurands, some modification to the silicon 

surface is required to enhance the sensor sensitivity to detect other measurands. For 

example, to make a magnetic field sensor, a thin Nickel-iron layer must be deposited on 

top of the silicon substrate; to create a pH sensor, the metal gate of a silicon field effect 

transistor is replaced by an ion-sensitive membrane that has affinity for protons. 

Typically, the transduction has limited sensitivity and sensor outputs are in analogue 

format, making them particularly susceptive to noise when transmitted through long 

wires. The signal-to-noise ratio (SNR) can be improved considerably by integrating the 

sensor and its signal conditioning circuit onto the same substrate. Such a sensor is better 

known as an "integrated sensor". It achieves better SNR by using local amplification of 

the raw sensor signal. Furthermore, an integrated sensor requires shorter interconnects 

and hence suffers less parasitic capacitance effects. From the manufacturing point of 

view, it is cheaper to package than those that use a separate signal conditioning chip. 

1 
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polarization, phase 
Mechanical 	force, pressure, vacuum, 

flow, tilt, thickness 
Thermal 	temperature, temperature 

gradient, heat, entropy 
Magnetic 	field intensity, flux density, 

permeability 
Chemical 	concentration, toxicity, pH, 

reduction potential 

electric and photomagneto-electric effects 
piezoresistivity, lateral photoelectric and 
lateral photovoltaic effects 
Seebeck effect, temperature dependence of 
conductivity and junction, Nernst effect 
magnetoresistance, Hall and Suhl effects 

ion-sensitive field effect 

Table 1.1: List of signal domains with their examples and physical effects in silicon [2]. 

Moreover, on-chip signal processing available in integrated sensors can also offer the 

following advantages [2]: 

'. Improved sensor characteristics 

Non-linearity; most sensors demonstrate some non-linearity. Using an on-

chip feedback system or a look-up table can improve linearity. 

Cross-sensitivity; most sensors have an undesirable sensitivity to other mea-

surands (e.g. temperature and interfering ions). This can be counteracted 

by incorporating relevant sensors and circuits into the same chip. 

Offset; some sensors do not give a zero output when the readout should be 

zero. The offset can be compensated by using either a bias circuit with some 

laser-trimming resistors or a digital-to-analogue converter (DAC) at the input 

stage of signal amplification. 

Parameter drift; sensor parameters tend to be a function of time This can 

lead to a change in sensitivity, offset, linearity, etc. If an accurate current or 

voltage source is incorporated on-chip, then well defined values of measur-

ands can be generated locally for the purpose of auto-calibration. 

Frequency response; proper feedback methods can increase the sensor oper-

ating bandwidth. 

• Signal conditioning and formatting 

1. Analogue-to-digital conversion; nearly all sensors generate analogue signals. 

2 
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Digital signals have very good noise immunity. Therefore, on-chip analogue-

to-digital conversion is very desirable. 

Impedance transformation; most sensors have high internal impedance. While 

measuring their output voltage directly, some current will inevitably be drawn 

and the actual voltage amplitude will thus be attenuated. Using a buffer at 

the sensor output stage can prevent such problem. 

Output formatting; different sensor principles result in different output for-

mats (conductivity, capacitance, voltage etc.). With on-chip signal process-

ing, it is possible to convert all measurements into one single format, facili-

tating multisensor integration. 

Output averaging; a high bandwidth databus is required when many redun-

dant sensors are used. On-chip electronic circuits can employ a median filter 

to minimise the required bandwidth. 

• High-level signal processing 

Integrating more sophisticated signal processing functions on the transducer chip 

is in parallel to the trend of Very Large Scale Integration (VLSI) technology [3]. 

Functions such as binary classification, pattern recognition and sensor fault detec-

tion can be implemented onto a microprocessor and/or a digital signal processor 

(DSP). A power saving scheme can also be implemented to improve electrical 

energy efficiency. 

In present days, multiple sensors are integrated in the same chip to produce integrated 

multisensor microsystems. Using a huge number of identical/disparate sensors, as in-

spired by biological systems, can improve the microsystem robustness and provide in-

formation on various relevant attributes of a target entity. In addition to multiple inte-

grated sensors, the microsystems also incorporate some micropower integrated circuits 

and, in some cases, wireless communications for a wide range of applications [4]. For 

instance, the Wireless Integrated Network Sensors (WINS) [5] are deployed for surveil-

lance applications in place of more expensive fully-wired systems. Limited by a narrow 

bandwidth, sensor signals are processed locally. Events of interest provoke an alarm to 

a nearby basestation for further decision making. Local data fusion (typically classifica-

tion) uses an artificial neural network (ANN) because it allows data fusion at all levels 

(signal, pixel, feature and symbol) [6]. 

3 
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Another two similar works on ubiquitous low-cost, low-energy sensor arrays are the 

SMARTDUST and the picoNode. Each Dust [7] is built from off-the-shelve components 

(namely, the sensors, the microprocessor and the battery), and packaged into one cubic 

centimeter and powered by an on-chip solar cell or combustion fuel. Dusts communi-

cate to each other via laser or radio frequency (at 916MHz) signals, and the range can 

be over 20m. Likewise, each picoNode [8] has a dimension of one cubic centimeter 

and a weight less than 100g. To be deployable in many hundreds, each picoNode uses 

ultra-low power (less than 100 microwatts) to eliminate the need of frequent battery 

replacement. The communication protocol stack is particularly optimized to minimise 

power dissipation by making a trade-off between the amount of communication and 

computation, as well as minimising the required.overhead. 

As described, integrated multisensor microsystems today, are more complicated than 

ever, and naturally, with increasing number of available measurements, there is a com-

mensurate demand for a new intelligent sensor fusion (1SF) technique. Ideally, this 

technique should be hardware-amenable and compute at a power level in microwatts. 

Additionally, it should be robust against stochastic noise and sensor drift. This thesis 

sets out to search for such technique in the field of ANNs, and apply it in a real-world 

application - the IDEAS. Section 1.1.2 introduces the IDEAS project and defines the 

specifications for the required data fusion. 

1.1.2 IDEAS: the Lab-in-a-Pill 

The Integrated Diagnostics for Environmental & Analytical Systems (IDEAS) project 

is collaborative research undertaken by the Universities of Edinburgh, Glasgow and 

Strathclyde, and the Institute for System Level Integration, Livingston. It aims to bring 

together the Lab-on-a-Chip' and System-on-Chip 2  (SoC) technologies to build powerful 

measurement and monitoring tools for use in environmental and biomedical applica-

tions. The main target application is an ingestible pill (named "Lab-in-a-Pill" (LIAP)) 

capable of traversing the digestive system and sending sensor data to a portable base 

is a technology that intends to integrate complex laboratory sensors and sample-
handling capabilities onto a glass or silicon plate [9]. 

2 SoC is an electronics design methodology that integrates data analysis, instrumentation and commu-
nication capabilities onto a single piece of silicon [10]. The re-use of pre-developed electronic circuit 
modules is an essential component of the SoC concept. 
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Figure 1.1: An artistic illustration of a Lab-in-a-Pill traversing the gastrointestinal tract 
[Photo courtesy of Glasgow University]. 

station worn by the patient. Other potential applications range from environmental 

monitoring and industrial inspections to sensor buoys and localised drug delivery in 

the body. A similar work has been performed by Given Imaging Ltd. in Israel and 

their product is now available in the consumer market, named 'PillCamCapsule En-

doscopy' [11].  Each capsule has miniature colour video cameras on both ends and 

transmits images of the gastro-intestinal (GI) tract to a data recorder worn on a belt 

around the waist of a patient. Once the capsule is removed from the patient, the data 

recorder downloads the video images to a designed workstation, from which the physi-

cian views and assesses the results for diagnosis purpose. 

The IDEAS project involves the design of a capsule and a portable base station system. 

The capsule measures the conditions in a digestive system with an array of integrated 

microelectronics sensors. Compared to ones that are glass based, these silicon sensors 

can be smaller in size and are cheaper to fabricate. However, some (e.g. pH and 

dissolved oxygen sensors) tend to be less stable and reliable because of corrosion on the 

encapsulation layer of their miniature on-chip reference electrode(s). When extended 
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over a length of time, the encapsulation layer will break eventually and result in the 

sensors malfunctioning. 

Moreover, there is a significant variation in some of the sensor intrinsic parameter(s), 

due to the current fabrication process. For instance, the threshold voltage of pH sensors 

from one single batch fabrication can vary from 0.28V to 1.88V Such magnitude of 

variation means that it is difficult to use a generic signal conditioning circuit for all 

(functionally-identical) sensors without compromising the sensor sensitivity, given a 

limited voltage supply. To achieve maximum sensitivity, sensors need to be calibrated 

individually but this is an expensive practice in terms of time and labour. 

Another problem in this particular application is biofouling. Biofouling refers to the 

gradual accumulation of waterborne organisms (such as bacteria and protozoa) on the 

surfaces of engineering structures in water, which contribute to a decrease in the sen-

sory sensitivity. A compelling solution is to incorporate more redundant sensors on 

chip to increase the robustness of the measurements. To minimise the required databus 

bandwidth, binary classification with an ANN is thus adopted as a local data fusion 

approach. 

Based on the aforementioned technical challenges, the specifications for the ANN can 

be summarised as below: 

perform binary classification as a form of data fusion 

ameliorate the imperfection due to instrinsic device variation 

be robust against stochastic noise 

autocalibrate against sensor drift 

operate with analogue signals directly 

consume low electric energy 

require simple computation only and be hardware-amenable 

- 	8. have a small silicon footprint. 
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1.2 Objectives of this study 

At core, this project sets out to explore the suggestion that 

local pre-processing and early classfication of real, high-dimensional, drift-
ing sensory signals can be achieved effectively by a hardware-amenable neural 
system. 

This will be examined in the context of the IDEAS project. It should be equally applica-

ble to other miniature; power-aware multisensor microsystems. 

This project sub-objectives are follows: 

To perform a literature review on available hardware-amenable ANNs and iden-

tify suitable neural system(s) for the aforementioned specifications. Necessary 

modification to the ANN architecture and training methodology will then be pro-

posed. 

To obtain sensor models based on actual calibration together with some buffer 

solutions. This is necessary because real-world measurements are often rare and 

expensive. Having sensor models allows an unlimited amount of available data 

for training and testing the neural system. 

To examine the modelling ability of the proposed neural system with (a) sim-

ple high-dimensional but overlapping clusters (generated from obtained sensor 

models), and (b) non-Gaussian, interleaving two-dimensional clusters (generated 

artificially). Optimization for training will also be examined in terms of system 

size (number of neurons) and training time. 

To examine the adaptivity of the proposed ANN in a dynamic environment where 

the integrated sensors experience stochastic drift. The drifting data will be ob-

tamed through test bench experiment. Limitations of the proposed neural system 

will be identified. 
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1.3 Thesis plan 

This thesis can be generally divided into two parts. The first part, comprising Chapters 

3 and 4, presents the preparatory work for subsequent simulations. This includes the 

derivation of the sensor models and the development of the neural system. Chapters 5 

and 6, as the second part of the thesis, present the simulations with both artificial and 

real datasets. Following the introduction, the contents of the subsequent chapters can 

be summarised as follows: 

• Chapter 2 introduces intelligent sensor fusion and reviews (i) ANNs applied in 

chemical sensor fusion, (ii) current counter-drift approaches and (iii) available 

hardware-amenable neural systems. 

• Chapter 3 first explains the basic operation principles of the integrated sensors, 

then presents the interface circuit designs for the integrated sensors and derives 

the sensor models. 

• Chapter 4 addresses the development of the neural system and explains its train-

ing methodology. Practical issues are also discussed. 

• Chapter 5 presents the binary classification simulations on the sensor models 

and on artificial datasets. The former involves a high-dimensional and overlap-

ping clusters problem, while the latter looks at a non-Gaussian, interleaving two-

dimensional clusters problem. 

• Chapter 6 presents the binary classification simulations on a real drifting dataset. 

As in the previous chapter, two types of cluster problems are examined. Results 

are compared with two benchmarks (both linear and non-linear neural classi-

fiers). 

• Chapter 7 first summarises the work done, then draws some conclusions based 

on the simulation results and eventually proposes several possible progressions of 

this research. 



Chapter 2 
Literature review 

This chapter aims to provide the necessary background to this work and a review of 

relevant literature in order to identify a possible solution to the application (IDEAS) 

problem. Firstly, Section 2.1 introduces the basic concepts and the four different mech-

anisms of intelligent sensor fusion. This thesis proposes to use a "neural" approach as a 

form of data fusion. Therefore, research on applying artifical neural network (ANN) in 

electrochemical sensor fusion is reviewed in Section 2.2. Section 2.3 presents current 

solutions available to the drift problem. The chapter is concluded with a survey on 

available neural hardware in analogue VLSI (aVLSI) technology in Section 2.4. 

2.1 Intelligent sensor fusion 

2.1.1 An introduction 

Integrated sensor processing in this work falls into the study of intelligent sensor fusion 

(1SF). To date, extensive work in ISP has been done primarily in relation to robotics and 

military applications. Example applications include the Honda humanoid robot [12], 

the interactive museum tour-guide robot [13],  an automated air defense system [14] 

and an identification-friend-foe-neutral (IFFN) system [15].  Whilst the actual imple-

mentation may be different, the basic concepts of 1SF are equally applicable to emerging 

biomedical applications such as the IDEAS which incorporates different electrochemical 

sensors in a pill. 

As defined in [16], sensor fusion is a process which autonomously gathers observations 

(e.g. temperature variation, dissolved oxygen concentration and images of a moving 

object) from multiple sensors and combines them into a single, coherent percept. Intel-

ligent sensor fusion allows the sensor fusion mechanism to adapt itself to major environ-

ment changes and sensor malfunctions, and can determine its own sensing strategies for 

observing the percept in order to maintain an efficient use of shared sensing resources. 

we 
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There are three common motivations to introduce any form of 1SF to a sensing system: 

to reduce uncertainty in decision making 

Uncertainty arises in several situations; for instance, when some measurements 

are missing (e.g. occlusions), when the sensor cannot measure all relevant at-

tributes of the entity (e.g. a pH sensor, cannot measure thermal radiation), and 

when the observation is ambiguous (e.g. a change in pH reading may be due to 

thermal variation or actual change in H+  ion concentration). Such uncertainty 

can be reduced by introducing complementary sensors (e.g. a thermocouple in 

this case). Note that however 1SF cannot improve any imprecision due to the 

sensor itself. Imprecision is limited by the sensor intrinsic sensivity [17]. 

to improve robustness in measurement 

In a real world, each measurement is subjected to stochastic noise, sensor drift 

and failure. The noise can be caused by many different sources, for instance, the 

interfering ions due to limited selectivity in an electrochemical sensor, or the high 

frequency coupling noise from a radio frequency (RF) circuit in a monolithic de-

vice. The sensor drift, which is defined as a slow rate of change in a signal output 

value not correlated with changes in the physical parameter [18],  is caused by 

instability in the sensing reference point. These problems are exacerbated in a 

harsh environment where the sensor failure rate is high. By implementing redun-

dant sensors, the chance of obtaining reliable measurements can be improved. 

Furthermore, some form of intelligence can be incorporated to provide the ability 

to adapt to sensor drift and/or allow the performance to degrade gracefully before 

a complete sensor failure. 

to incorporate contextual knowledge 

Several multisensor integration architectures have been proposed in the litera-

ture. Among these, there are the Joint Directors of Laboratories (JDL) model [6] 

and the NAVLAB system [19].  The JDL model includes sensor selection and con-

troller modules to tailor sensing configuration and fusion process in response to 

the current environment. Similarly, the NAVIAB system employes a centralised 

database called the "CODGER" system to structure the information flow from dif-

ferent distributed sensing modules. In essence, these modules/systems are em-

ployed to extract the most accurate information in the presence of the common 

10 
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sensor problems - random noise, drift and failure. 

Driven by recent advancements in microsystem technology, applications of ISP are be-

coming more widespread and interests grow beyond military and robotic based systems. 

At the Center for Wireless Integrated MicroSystems (WIMS, University of Michigan, 

USA), biomedical sensors have been developed for cochlear prosthesis. An array of im-

plantable microelectrodes were used to sense biopotentials and neurochemicals in the 

local nervous system [20].  The simultaneous neural recording was coordinated by a 

controller and the digitised measurement was transferred, via a wireless RF link, to an 

external receiver for further data fusion [21]. 

In contrast to the aforementioned system which employed only a single type of sensor, 

van Putten et al. [22] illustrated an example of local data fusion from four different 

types of sensors to obtain a complete set of attributes of the event of interest - asthma 

and chronic pulmonary diseases (COPDS). Peak expiratory flow, temperature, pressure 

and relative humidity were measured with integrated silicon Micro-Electro-Mechanical 

Systems (MEMS). All measurements were fused through a central module where data 

processing and data storage were performed, before passing them to a display and a 

transmitter. 

Besides biomedical applications, ISP has also been utiuised for indoor environment mon-

itoring, remote sensing and fault detection in machinery. In [23],  Seyama, Sugimoto 

and Miyagi used organic film-coated quartz crystal resonators (QCRs) to measure the 

concentration and the chemical composition of volatile compounds for indoor air mon-

itoring. Principal component analysis (PCA) - a statistical technique - was performed to 

categorise 23 kinds of volatile compounds into three genral classes: alkanes, alcohols 

and aromatic carbons, indicating the behaviour of the occupant (e.g. smoking or having 

cheese) and assisting in welfare treatment (e.g. a baby with a wet nappy) in an indoor 

environment. 

In remote sensing, image fusion [24] plays a vital role in extracting useful information 

from multisource and multitemporal images which are increasing in quantity, due to 

the advancement of modern vision technology. Many techniques have been developed 

to exploit these data. For instance, Bruzzone, Prieto and Serpico [25] used a neural-

statistical approach to classify remotely sensed images. Not only were the spatial fea- 

11 
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tures from multiple sensors considered, but also the temporal correlation at each pixel 

was capitalised to achieve a better classification result. In addition to image fusion at 

pixel level, there are another three levels of fusion, namely signal, feature and symbol 

(see [26] for more details). 

2.1.2 Sensor fusion mechanisms 

In general, there are four types of sensor fusion mechanisms: estimation, classification, 

inference and artificial intelligence methods. Estimation methods use redundant infor-

mation from multiple sensors at their lowest representation level of information (i.e. 

signal or pixel level) to predict the current state of the measurand(s) and to reduce the 

expected variance. Classification methods utilise information from multiple sensors at 

one level higher (i.e. feature level). Key features for dichotomy detection are extracted 

from the measurements and are subsequently compared with priori classes. Moving one 

level even higher, the inference or decision methods fuse measurements in the most ab-

stractive manner. Symbols representing decisions are integrated to increase in truth or 

the probability values of events. Like the classification methods, the inference meth-

ods are used widely in pattern recognition applications. Artificial intelligence methods, 

unlike others, offer a unique way to integrate different measurements at all levels (ie. 

signal, pixel, feature and symbol). Moreover, they can be auto-calibrated against any 

gradual changes in the baselines of priori classes. Example algorithms available in each 

method will be described in brief in the following sections. 

2.1.2.1 Estimation methods 

The simplest method is to take a weighted average Y(t) of the redundant measurements 

{ S 1 , S2 , S, ..., SN} from N number of sensors at a time t. The linear model can be 

defined as: 

Y(t) = 	h(t)S(t). 	 (2.1) 

The parameter hn  is the weight for flth  sensor and EN I  hn  = 1. Intuitively, h should 

be a large value when the sensor provides accurate information. If there is much 

noise in its measurements, a small value should be assigned to h. 

12 



Literature review 

	

0.6 
	

• 	I'' 	
S(t) 

	

0.7 
	 / 	-- - Y(t) 

0.6 

05 

0.4 

0.3 

0.2 

0.1 

r. 
1 	 2 	 3 	 4 	 5 

Measurement value 

Figure 2.1: Distribution plots for measurements taken from two sensors, where the stan-
dard deviation of S(t), 0'2  is greater than the standard deviation of Y(t), ai. 

Another method is the Kalman filter which is more optimized in a statistical sense than 

the weighted average. In this method, measurements are assumed to take the form of 

a white Gaussian distribution. The standard deviation of the distribution reflects the 

accuracy level of the measurements. If the measurements are found to be consistent, 

naturally the Gaussian distribution curve will be sharp with a high amplitude and a 

small variance. This means the measurements are more reliable. Otherwise, a broad-

spread and low-amplitude distribution caused by noisy measurements, quite logically, 

indicates low confidence in these measurements. 

Assuming that the measurand a of interest is changing at a constant speed, then it can 

be modelled as: 

a(t) = Ax a(t— 1)+B x b(t) +w(t) 	 (2.2) 

where A and B are two known transition matrices, b(t) is an input vector, and w(t) is a 

zero-mean random variable. Let 1(t) be the transfer characteristic of a sensor, then its 

measurement can be modelled as: 

S(t) = 4(t)a(t) + v(t) 	 (2.3) 

where v(t) is the zero-mean random measurement noise. The estimate is written in the 
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following form [27,28]: 

Y(t+1) = 

with Kalman gain, K(t) = 

and 	a(t+1) = 

a(t) 	 ______ 
+ 0(t) 	a2  (t) + 0(t) 

Y(t) + K(t) [S(t) - Y(t)] 

a12  (t) 
a?(t) + o(t) 

A(t)cr ? (t)A T (t) + Q(t) 

S(t) (2.4) 

(2.5) 

(2.6) 

(2.7) 

where o-?(t),  o(t) and Q(t) represent the variances of Y(t), S(t) and w(t) respectively. 

The latter two are assumed to be known. Eq.2.4 shows an interesting property of the 

estimate: if new measurement S(t) becomes noisier (i.e. a 2  > a l as in Fig.2.1), the 

filter will automatically ameliorate the effect by reducing the contribution of S(t) into 

the next estimate. Eq.2.5 illustrates that the next estimate Y(t + 1) is optimized by 

minimizing the error, which is the difference between the actual measurement S(t) and 

the current estimate Y(t), also known as the "Innovation". When the measurand a 

has a nonlinear dynamic characteristic, Extended Kalman filter (EKF) can be used. In 

essence, the EKF provides an extra linearisation of a at a stable operating point. 

2.1.2.2 Classification methods 

Parametric template-matching method is widely used in image recognition. This method 

[29] searches for an object by scanning through the entire image pixel by pixel with a 

template, and calculating a normalised correlation value between the template and the 

portion of the search image at that position. The object is assumed to be at the position 

with the highest normalised correlation value. Conventionally, multiple base templates, 

also known as vertex templates, are used to improve the robustness against object de-

formation due to rotation, scaling, distortion and/or environmental changes (e.g. illu-

mination variation). Each vertex template embeds one or more unique features. It is 

assumed that the object can be illustrated by a weighted sum of these carefully selected 

vertex templates. When one particular feature is dominant, its template parameter (i.e. 

weight) will be increased, and vice versa. 

For non-imaging applications, linear discriminant analysis (LDA) is the most basic clas- 

sification method [30].  It classifies an unknown sample X according to its distance d1  

to the priori clusters. In the simpliest form, d1  refers to the distance between the sample 
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Figure 2.2: The unknown input 'o' is classified according to its distances to the nearest 
samples from two priori clusters. 

X and the nearest sample from each priori cluster (see Fig.2.2). However, this simple 

discriminant method will misclassify when there is an odd sample from the wrong clus-

ter located nearer to the sample X than the nearest sample from the correct cluster. A 

more robust method is to take several distance measurements for each cluster and com-

pare their averages. This method is called K—nearest neighbour classification, where 

K is the number of distance measurements. 

Another classification method based on distance measurements is cluster analysis. It 

partitions a dataset into subsets (clusters) such that the data in each subset shares some 

common traits. Cluster analysis can be hierarchical or partitional. With hierarchical 

algorithms, successive clusters are found using previously established clusters, whereas 

partitional algorithms determine all clusters in one go. Hierarchical algorithms can 

be agglomerative (bottom-up) or divisive (top-down). Agglomerative algorithms begin 

with each measurement as a separate cluster and merge them in successively larger 

clusters. Divisive algorithms begin with the whole set and proceed to divide it into 

successively smaller clusters. 
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2.1.2.3 Inference methods 

Bayesian inference is a multisensor data fusion method which is based on the rules of 

probability theory. Given an observation E, the Bayes' theorem calculates the posterior 

probability of a hypothesis H0 with 

P(H0IE) - P(Ho)P(EIH0) (2.8) 
- 	P(E) 

The term P(E) is called the marginal probability of E which is a normalising constant 

and can be calculated as the sum of all ri mutually exclusive hypotheses > P(EH) x 

P(H). The term P(Ho) is called the priori probability of H0  and is updated when 

new observational evidence is available. To fuse multiple observations from several 

disparate/ redundant sensors, their posterior probabilities are congruent multiplied to 

obtain a joint probability for each hypothesis. The hypothesis with the highest nor-

malised joint probability will be regarded as the most probable answer. 

The Bayesian method requires a good knowledge of all possible events. When there is a 

lack of such information, the inference result will understandably become less reliable. 

An alternative approach is to use the Dempster-Shafer theory of reasoning. It assigns 

probabilities to sets of possible subsets rather than a single subset as in the Bayesian 

method. Belief functions which model the probabilities of events take two values - sup-

port and plausibility, where support < plausibility. The former indicates the amount 

of belief that supports the hypothesis directly while the latter sets the upper limit of 

the belief. Belief functions for different observations are integrated according to "Com-

bination of Evidence" [31] to provide a coherent inference. When more supporting 

information becomes available, ignorance will diminish (i.e. plausibility support) 

and the belief will become Bayesian. 

A similar theory to Dempster-Shafer theory has been initiated by Lofti A. Zadeh and is 

called Fuzzy Logic. Each Fuzzy (sub)set is defined by a membership function to group 

different observations. Unlike crisp sets in classical mathematics, Fuzzy sets allow over-

lapping between different sets, where one observation can belong to two sets. Different 

observations from multiple sensors are integrated by simple logical operations such as 

AND, OR and NEGATION. The compositional result is then tranformed by Defuzzfica-

tion into a single number indicating the most possible subset. More information about 
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Defuzzification can be found in [32]. 

2.1.2.4 Artificial Intelligence methods 

In nature, biological systems are capable of sensing and performing pattern recognition 

effortlessly. For instance, a human being can sense immediately if the weather is cold 

or warm, and a fish can distinguish food from a stone in a deep dark sea. Thus, for 

many years, neuroscientists and statisticians have studied and proposed different forms 

of artificial neural network (ANN), in the hope of understanding how the biological 

systems actually work. 

Typically, an ANN comprises layers of processing elements, known as neurons, which 

may be interconnected in various ways. The network is trained to store and recall the 

sensory information in response to different stimuli. The training algorithms are huge in 

variety and can be divided generally into supervised and unsupervised types. Supervised 

training has priori classes pre-defined and uses training rules such as "backpropaga-

tion" to search for a global solution to store the sensory information. ANNs that employ 

supervised training include Multi-Layer Perceptrons (MLP) and Radial Basis Functions 

(RBF). When priori classes are unavailable, unsupervised training algorithms such as 

"Minimizing Kullback-Leibler Divergence" are used. Examples of unsupervised ANNs 

include Kohonen's self-organizing map (SOM), Boltzmann Machine and Adaptive Res-

onance Theory (ART) [33]. 

Different sensor fusion mechanisms are performed at different representation levels of 

information [6].  Estimation methods have been successfully used for signal and pixel 

levels sensor fusion. Classification methods are used at feature level, while inference 

methods are for symbol level sensor fusion. In contrast, artificial intelligence (Al) meth-

ods can perform sensor fusion at all levels because they can be model-free and have 

a sufficient degree of freedom to fit complex non-linear relationships with adequate 

generalisation. Unsurprisingly, they are often considered as the advanced version of 

estimation, classification and inference methods. 
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2.2 ANNs in electrochemical sensor fusion 

To date, the applications of ANNs are vast in variety, primarily in the fields of control and 

pattern recognition. In this section, however, only applications using electrochemical 

sensors, which are of relevance to this research work are discussed. The objective of 

this part of literature review is to examine related works and the latest research trend. 

Table 2.1 shows a list of example applications using ANNs to fuse electrochemical sensor 

signals. 

There are two major sensing systems under this topic: the electronic nose and tongue. 

An electronic nose is defined as an instrument which comprises a sampling system, 

an array of chemical gas sensors with differing selectivity, and a computer with an 

appropriate pattern-classification algorithm, capable of analysing simple or complex 

gases, vapours or odours qualitatively [49].  A similar definition can be applied to an 

electronic tongue, except it analyses liquid samples. The primary aim of these two 

systems is to achieve similar sensing capability, if not better, to human's olfaction and 

taste systems. Inspired by nature, these systems are formed by an increasingly large 

array of sensors, thus local data fusion becomes more attractive and from necessity, 

akin to the situation in the IDEAS project. 

Among the literature, Principal Component Analysis (PCA) is widely used to preprocess 

an array of sensor signals [36,40-44,48]. PCA is a linear transformation technique 

that can be used to select a new coordinate system for the dataset such that the great-

est variance by any projection of the dataset comes to lie on the first axis (then called 

the first principal component, PCi), the second greatest variance on the second axis, 

and so on [50].  An example is illustrated in Fig.2.3. Because sensor signals are often 

not differential in a straight-forward way, PCA is used to extract the key features in the 

dataset. PCA is also used to reduce the data dimension when a large array of sensors 

(either identical or disparate) are used to improve robustness and/or to provide a more 

complete perspective of an entity. There is a similar statistical technique called "Dis-

criminant Function Analysis (DFA)". Unlike PCA however, DFA allows non-orthogonal 

axial feature extraction hence provides better discrimination between clusters in classi-

fication problems [41]. 

One of the most popular ANNs is MLP mainly because of its strength in classification 
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No. Application Sensor Algorithm H/Se Drift Remark 
1 Contaminant identification [341 metal-oxide sensors MLP S no Use complimentary sensors (each with one 

ANN - associative memory/MLP) 
2 Chemical sensing [35] not given Kohonen's SOM S yes Adaptive model. Identify sampling rate to 

ensure trackability of drift 
3 Juice classification [36] metal-oxide and MLP S no PCA to reduce input dimension 

conductivity sensors 
4 Gas identification [371 metal-oxide sensors SOM S yes Adaptive model 
5 Prediction of health of dairy cattle [38] metal-oxide sensors MLP S no Time-dependent MLP 
6 Breath alcohol detection [39] metal-oxide sensors MLP/RBF S no Preprocessed with PCNN or rank-order-filter 
7 Odorant classification [40] conducting polymer sensors GA-supervised MLP S no Dimension reduction by PCA 
8 Gas discrimination in metal-oxide sensors PCAJDFA S no Better result with DFA 

an air-conditioned system [41] 
9 Potato chips and cream classification [42] conductivity and metal- MLP/RBF S no Use PCA to reduce input dimension 

oxide sensors 
10 Classification of the strain and metal-oxide sensors PCA/MLP/LVQ/ S yes Sensor signals are pre-processed 

growth phase of cyanobacteria [43] Fuzzy-ARTMAP O(fline data fusion - not autocalibration 
11 Water quality test [44] conductivity sensors PCA S no 
12 Detection of toxic gases [45] metal-oxide sensors MLP S no 
13 Online water pollution monitoring [46,471 ISFETs Blind source separation S no Plan to implement in MCU/DSP 
14 Characterization of red wine [48] Gas, optical and electro- PCA S no Fusion of three sensory systems 

chemical sensors 

Table 2.1: List of applications using ANN to fuse chemical sensor signals. 
a H/S refers to Hardware/Software implementation 
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Figure 2.3: An example offinding the first and second principal components for two over-
lapping clusters. PCi is perpendicular to PC2. 

and function approximation. It is in essence a static network, yet it can be adapted to 

process dynamic data by the addition of a tapped delay line, forming the Time Delay 

Neural Network [51]. MLP hasbeen applied successfully in many real-world problems, 

ranging from contaminant identification [34] to juice classification [36],  from dairy 

cattle's health prediction [38] to breath alcohol detection [39],  and many more. Obvi-

ously, there are times when other types of ANN are preferred over MLP One example is 

RBF [39,42] which is known tobe more efficient for interpolation and generalization of 

data than MLl when the input data dimension is small. Another example is Kohonen's 

SOM [35] which learns without a teacher. This is particular by important when there 

is no pre-defined priori for clustering problems. Other applied ANNs include Learn-

ing Vector Quantization (LVQ). [43],  Fuzzy-ARTMAP [43] and blind source separation 

[46-48]. 

Thus far, these electrochemical sensor fusions have merely been applied in software 

as it is a fairly straight-forward and rapid development task. Many commercial and 

non-commercial ANN simulators are now widely available 1 , and most are accompanied 

with a good collection of established ANN algorithms. Even non-specialists in the ANN 

'More details in URL: http://www.kd.ac.uk/neuronetlproducts/.  
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field can perform the data fusion. However, such a software-based signal pre-processing 

scheme is often slow in computation and thus performed offline. This is not ideal when 

a real-time signal analysis is required on site. More importantly, it does not capitalize 

the parallelism in ANN, which, in nature, can offer high speed computation in pattern 

recognition applications. 

With emerging applications such as distributed sensor networks, there is a growing in-

terest to translate the ANN algorithms to hardware (microcontroller unit (MCU) and 

digital signal processor (DSP)) [46,47]. Examples of implementation can be found 

commonly in robotic research works but are yet to be seen in electrochemical sens-

ing. Translation to MCU and DSP is comparatively straight-forward due to their rich 

resources. However, it also means the hardware is not power- and silicon area-efficient. 

Therefore, researchers have started building custom hardware for the ANN algorithms 

by using analogue VLSI technology. Examples of such implementation will be reviewed 

in Section 2.4. 

Interestingly, the drift issue has been raised on several occassions but is hardly ever 

addressed (refer to Table 2.1). In [43],  Shin et at. employed offline processing to deter-

mine the growth phase of cyanobacteria in water for up to 40 days. Inevitably, sensor 

drift occurred but it was just treated as noise. No recalibration against drift was per-

formed. The only attempts recorded in literature came from [35,37], where adaptive 

Kohonen's SOMs were used to track a linear drift. Their simulation results highlighted 

the importance of annealing parameter Ka to ensure the two classes were distinguish-

able on a trained SOM, despite the imposed drift. If K was too small, the learning of 

SOM would cease learning at an early stage, probably even before the second class was 

presented. On the other hand, if Ka  was too large, the annealing would be too slow 

and the continuous learning might experience Catastrophic Interference (Cl) 2 . The way 

they reduced the chance of a CI to occur was by feeding the two classes of data alter-

nately into the SOM. Undoubtly, this drift tracking task would be much tougher if only 

a single class of data was available over a long period of time. Since the foremen-

tioned scenario is quite possible, if not typical, it will be considered in the drift tracking 

can be defined as the phenomenon that occurs when later training disrupts results of previous 
training and is characterized by the inability to incrementally learn sets of training patterns. CI is readily 
observed in studies of backpropagation. This phenomenon is also referred to as sequential learning and 
sometimes life long learning [52]. 
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simulations in Chapter 6 later. 

2.3 Counter-drift techniques 

The reasons for drift are unknown dynamic process in the sensor system, e.g. poisoining 

and ageing of the sensor, or environmental changes, e.g. temperature and pressure 

variations. When sensor drift occurs, any subsequent data fusion will be impaired, if 

not impossible. Thus, the study of drift has been important to the sensor community. 

In this section, four general techniques to counteract drift are reviewed. 

2.3.1 Recalibration 

For each measurement, some form of uncertainty is encompassed inherently. There are 

two types of uncertainty, namely systematic errors (bias) and randomness. Repeating 

measurements can eliminate the latter but not the former. Change in bias while the 

environment is assumed to be constant is known as drift. One of the most popular 

techniques to counteract drift is to recalibrate either at pre-defined time intervals or 

when the measurements exceed the pre-defined range [53, 541. In a more complex 

system such as [55],  slow drift is distinguished from noise, sudden failure and changes 

in operating conditions by measuring not only the uncertainty of a measurement, but 

also the sum of uncertainty and the change of uncertainty for repeated measurements. 

Table 2.2 illustrates the characteristics of different sensor errors. 

Traditionally, recalibrating electrochemical sensors is achieved with the use of a refer-

ence buffer [56].  But, such a technique is not suitable for miniature sensor systems. 

It is very difficult to scale-down the physical size of the buffer while ensuring the seal 

for the buffer is tight and no chemical reaction occurs [57].  An alternative recalibra- 

Type of sensor error Uncertainty Sum of uncertainty Change of uncertainty 
Drift not large not small small 
Noise small about zero large 

Sudden failure any large large 
Changes in conditions any medium medium 

Table 2.2: Characteristics of different sensor errors. 
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tion technique is to apply on error correction algorithm. The sensors are continuously 

modelled using hidden variable models [58,59] or Kohonen's SOM [37].  When the 

estimation error differs more than the permitted tolerance, the model parameters are 

updated to compensate for the drift. 

2.3.2 Data filter 

Another counteractive drift technique is to select the best estimation (i.e. one with the 

least drift) from a group of redundant sensors - i.e. a winner-takes-all approach [60]. 

Estimation of sensor signals is achieved with Kalman Filters. The array of sensors are 

divided into groups with overlaps. Each group is trained/modelled by a MLP Output 

from the MLP which gives the least standard deviation (i.e. drift) is then presented 

as the best estimation. The standard deviation is additionally used as an indicator of 

the confidence in the estimations and hence the health of the sensor system. No drift-

correction is attempted in this technique. So, the performance of the sensor system will 

degrade gradually since sensor drift is inevitable in all electrochemical sensors. 

2.3.3 Drift insensitivity 

The third technique is to make the sensor system output signal insensitive to drift. The 

most straight-forward way in achieving this is to perform measurements in differential 

mode [61, 62].  For instance, a pH sensing system employs one ion-sensitive FET (ISFET) 

and one ion-insensitive PET (REFET). The REFET uses buffered hydrogel or parylene 

as an ion-blocking membrane replacing the usual metal gate. Since both ISFET and 

REPET use a common reference electrode, they suffer the same amount of drift. The 

differential output has the drift effect cancelled out, and thus is independent of the drift. 

However, the two sensors suffer from "crosstalk" and hence the differential sensitivity 

is usually small. 

Another way to make the sensor system output signal insensitive to drift is to model 

or predict drift based on historical data. When the reasons for drift are known, it is 

possible to develop mathematical models to compensate for the drift effect [63-65]. 

However, the causes of drift and their influence are normally unknown for electro-

chemical sensors. To resolve this, Sachenko et a! [66] suggested using recurrent neural 
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network (RNN) to predict drift based on short-term historical data. In [67],  a general 

mathematical model was employed instead to fit the drift pattern, and was optimised 

by minimising mean-square error (MSE) recursively. 

Drift effect can also be eliminated by carefully removing it as a feature during data 

fusion. Artursson and Holmin [68,691 employed PCA to extract key features from 

historical data, in which drift was identified as the first principal component. This 

component was then purposedly eliminated from contributing to the operating data 

fusion. Similarly, Lazzerini and Marcelloni [70] adopted a k-nearest neighbour (KNN) 

algorithm to extract features, and supervised fuzzy isodata (SF1) algorithm to select 

features to be fused. Assumed that a rich historical dataset is available, such a technique 

can permanently immunize the sensor system from drift effect. 

2.3.4 Fault isolation 

The fourth technique to counteract drift is to isolate drifting sensors from contributing 

to data fusion. Isolation is required when the standard deviation of the repeated mea-

surements exceeds the permitted range. Drifting sensors are identified by comparing 

the actual sensor output and the estimated output of trained models such as autoasso-

ciative memory [71], fuzzy logic [72],  MLP [73] and PCA [74]. Those with excessive 

estimation errors would be considered as faulty sensors and hence be isolated. 

2.4 Neural Hardware in VLSI Technology 

2.4.1 Introduction 

In recent years, many neural networks have been realised in dedicated hardware to take 

advantage of the natural parallelism in ANN architecture. This parallelism is recognised 

as the enabling feature of our biological systems which allow us (homo sapiens) to 

perform more effective and faster pattern recognition, in spite of all the slow biological 

neurons, than a conventional von Neumann processor. This motivates engineers to 

develop neural hardware which can learn data structure and offer data fusion as in the 

biological systems. 

Generally, there are two types of neural hardware. The first type tries to mimic biolog- 
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ical structures using very simple circuits - usually based on analogue VLSI technology. 

Meanwhile, the second type aims to support ANN as a mathematical tool and is com-

monly implemented in digital platforms (an architectural survey is available at [751). 

Analogue neural hardware often has fixed functions but offers a simple, direct interface 

with the real world. Moreover, it can be achieved in compact layouts with a potentially 

low power requirement [76, 771. On the other hand, digital neural hardware is more 

programmable, easier to communicate with other systems (especially for robust long-

term storage and retrieval of ANN parameters in memory) and exhibits better immunity 

to noise and interference. More recently, hybrid techniques have also been exploited 

[78, 79] to gain the benefits from both technologies - analogue VLSI for data computa-

tion and digital VLSI for data communication and storage. 

2.4.2 Supervised ANN-based hardware 

Several successful implementations of supervised algorithms, mainly of MLI have been 

reported in the literature [78-83]. The implementations are varied by their weight 

adaptation techniques. The three available techniques [84] are: 

off-chip learning, where the neural hardware is not involved in the training pro-

cess. The ANN parameters (known as weights) are trained using a computer with 

high precision. The trained weights are subsequently downloaded onto the neural 

hardware. 

chip-in-the-loop learning, where the neural hardware is involved in feedforward 

propagation only The calculation of new weights is done off-chip on a computer 

and is downloaded onto the neural hardware after each training cycle. 

on-chip learning, where the entire training of the ANN is performed on-chip of-

fering the possibility of adapting to the non-idealities of hardware (e.g. device-

mismatch and non-linear response) and continuous training. 

Early experiments [80,82] show that the training of MLP requires at least 16 bits weight 

accuracy (which translates into a huge chip area). MLP with lower than 16 bits weight 

accuracy will not learn because the weight updates are often less than the quantisa-

tion step which prevents the weights from changing. One proposed solution is to use 
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a "weight perturbation [81]"  algorithm where weights are constantly-updated at a pre-

determined step size. Leong [79] reports that 6 bits weight accuracy is sufficient for the 

training of a MLP - a major improvement from previous MLP implementations with the 

more complex backpropagation [85] as theirs weight adaptation algorithm. 

2.4.3 Unsupervised ANN-based hardware 

Whilst the implementations of MLP are well established, the algorithm itself (MLP) is 

not adequate for applications where no priori classes are being predefined. A more suit-

able solution is to employ an unsupervised ANN, e.g. PCA, SOM, associative memory,  

Cellular Neural Network (CNN) and Boltzmann Machine. Examples of their imple-

mentations can be found in [86-91]. Among all the algorithms, CNN possesses the 

characteristics that suit analogue neural hardware implementation the most. It consists 

of simple generic circuitries as building blocks, which can be replicated many times. 

Moreover, it employs a local connectivity strategy to ease the connectivity complexity 

and also to permit very high speed operations (due to distributed computing). 

Despite all these advantages, CNN like many others (e.g. PCA, SOM and AM) can only 

perform direct transformations (of possibly complex inputs to more "manageable" out-

puts) as in a look-up table. Each input is treated as a discrete variable. The underlying 

relationship (i.e. correlation) between the variables is not exploited as a feature in as-

sisting the detection of dichotomy between two classes of measurements. This type of 

ANN is commonly known as a deterministic network. Its counterpart is a probabilistic 

network, also known as Bayesian belief network. It can model the joint probability dis-

tribution of all variables represented by each sensor node. Such capability makes the 

network more robust against incomplete input data entries (possibly caused by tem-

porary or permanent occlusion of sensing surface), if compared with the deterministic 

ANNs. Other advantages offered uniquely by Bayesian belief networks are detailed in 

[92]. 

The exact inference methods in Bayesian belief networks can become intractable easily 

because their complexity grows exponentially with the number of variables [92-94]. 

Therefore, several approximate inference methods have been developed. Among them, 

there is one which is hardware-amenable, called the Boltzmann Machine. Example 

works that contribute to the VLSI implementation of Boltzmann Machine are [91,95], 
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in which the networks are formed by stochastic binary neurons. The stochasticity is 

achieved by injecting artificially-generated noise (i.e. amplified on-chip thermal noise) 

into each neuron. These Boltzmann Machines have been tested successfully in the 

classic "XOR" problem, a standard benchmark to examine an ANN in a lion-linear clas-

sification problem. 

This type of Boltzmann Machine is however very restricted to binary problems. In 

[96], Chen and Murray demonstrated that binary neurons are not ideally suitable for 

modelling signals in continuous-valued format, a format in which most, if not all, real 

world signals appear in nature. In particular, the binary neurons are poor in modelling 

assymmetrical data distributions. The possible states for a binary neuron are '0' and '1'. 

Assume that a data distribution should be encoded by two hidden neurons with states 

{0,0}, {0,1} and {1,O}. However, simulation result revealed that there could also be 

data generated by state {1,1}, albeit at a low probability [96]. 

Furthermore, the Gibbs sampling method in the network optimization process is time-

consuming. The network must be allowed to settle at equilibrium states before the 

weight updates can be calculated, which is a function of the Kuliback-Leibler divergence 

for the data distributions of the initial and the equilibrium states. This leads to the 

proposal of Minimising Contrastive Divergence (MCD) by Hinton [97].  In the MCD 

learning rule, merely one-step Gibbs sampling is required for weight updates. This 

accelerates the training process. 

In search for a Boltzmann Machine that can process real world signals directly, a new 

variant named "Continuous Restricted Boltzmann Machine (CRBM)" has been devel-

oped [96].  The MCD learning rule is adopted to ensure a faster convergence rate in the 

training process. Additionally, there is no connection between neurons in the same layer 

(visible/hidden), thus reducing the architecture into a simpler form. More importantly, 

the training rules are hardware amenable. Only simple mathematical operations, i.e. 

subtraction and multiplication, are used, which can be easily translated into hardware. 

The MCD learning rule has been implemented using analogue VLSI technology, and the 

neural hardware demonstrates its ability to perform on-chip learning to model simple 

distributions [98,99]. Therefore, the CRBM is a natural choice of ANN for this thesis 

work. 

27 



Literature review 

2.5 Summary 

In this chapter, the concept of intelligent sensor fusion with a formal definition, the 

motivations behind introducing 1SF into a system and some examples of real world 

applications are presented initially. Then, the four types of sensor fusion mechanisms: 

estimation, classification, inference and artificial intelligence are briefly explained. In 

Section 2.2, research using ANNs for electrochemical sensing applications are reviewed. 

Most use an ANN as a mathematical tool in software and are not for the purpose of 

parallel computing. With the emergence of distributed sensor systems such as WINS, 

SMART-DUST and picoNode, it is anticipated that the demand for hardware-amenable 

ANNs will surge. 

In Section 2.3, several counter-drift techniques have been discussed. They are recali-

bration, data filtering, drift insensitivity and fault isolation. In the IDEAS case, historical 

data is unlikely to be available and the number of sensors limited. These restrictions 

present recalibration as the only viable way to counter drift. In particular, unsupervised 

ANNs are of interest because they have the ability to adapt online, thus compensating 

for any experienced drift. In Section 2.4, the field of neural hardware is first intro-

duced. Next, works contributing to the implementation of supervised and unsupervised 

ANNs with dedicated hardware are reviewed. Available options are narrowed down 

and eventually CRBM is identified as possibly the most ideal solution for the applica-

tion. Later in Chapter 4, the CRBM will be examined in more detail and adapted into 

the application. 



Chapter 3 
Sensor models 

There are two parts of preparatory work for the simulations in Chapters 5 and 6. This 

chapter discusses the first part which is the derivation of the sensor models. The second 

part is about the development of the neural system and will be presented in the next 

chapter (Chapter 4). 

In this chapter, four different types of microelectronics sensors, designed and fabricated 

by Erik Johannessen (the sensor expert in the IDEAS team), are introduced. The main 

focus is on the sensor signal conditioning circuits, which are contributed by this thesis, 

because these circuits define the sensitivity and the operating range for the sensors. In 

this study, two generations of control chip design have been implemented onto silicon 

and tested. The subsequent sections explain the design considerations, circuit diagrams, 

physical layouts and test bench results. A discussion on the selection of the final sensor 

model concludes this chapter. 

3.1 Integrated microelectronic sensors 

3.1.1 Introduction 

In the IDEAS project, four types of microelectronic sensor have been incorporated into 

the capsule in order to measure several physiological parameters, namely temperature, 

pH, dissolved oxygen (DO) and conductivity, in the GI tract. The temperature sensor 

measures the body core temperature and provides supplementary information for the 

temperature-dependent sensors. The pH sensor measures the acidity inside the stom-

ach, which in turn can be used to identify the current location of the capsule since var-

ious portions of the digestive system have associated pH values. The dissolved oxygen 

sensor detects the activity of aerobic bacteria within the intestine, while the conductiv-

ity sensor gives an indirect estimation of the intestinal content by measuring the total 

level of dissolved solids (TDS). 
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Figure 3.1: Micrographs of the two sensor chips. SensorChipl comprises the temperature 
(4), pH (1) and conductivity (3) sensors whilst SensorChipll comprises the 
dissolved o.ygen (2) and optional NiCr temperature (5) sensors. 

All four sensors were designed and fabricated on two silicon chips at Bioelectronics 

Research Centre, University of Glasgow: SensorChipl comprises the temperature, pH 

and conductivity sensors; SensorChipil houses the DO sensor and an optional nickel-

chromium (NiCr) resistance thermometer. Fig.3.1 shows the micrographs of the two 

sensor chips. SensorChipl has a dimension of 5.00mm x 4.75mm whilst SensorChipll is 

5.00mm x 5.00mm. The following sections will state the specification of the sensors 

and explain briefly the basic operation of each sensor. The detailed information on the 

sensor fabrication process is reported in [100]. 

3.1.2 Temperature sensor 

The main temperature sensor is a standard PN junction silicon diode, i.e. a narrow n-

channel in a p-type bulk silicon (refer to Fig.3.1). It is based on a research product from 

École Supérieure D'Ingénieurs en Electronique et Electrotechnique (ESIEE), France. 

The operation of the diode as a temperature sensor is defined by the standard equation 
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of the current flowing through a diode [1011: 

I = I8[p1cT - 1] 
	

(3.1) 

where 
I = the reverse saturation current 

q = electron charge (1.6 x 10 19 Coulombs) 

V = the voltage across the diode 

k = the Boltzmann constant (1.38 x 10 -23 JK 1 ) 

T = the ambient temperature in Kelvin. 

When the diode operates in the forward bias mode and I>> I., the "-1" term can be 

dropped and Eq.3.1 can be re-arranged as: 

V= 	(1nI-1nI3 ). 	 (3.2) 

This equation demonstrates that the voltage across the diode is linearly proportional 

to the ambient temperature, if I were held constant. Note that, this biasing current 

I scales the sensitivity of the temperature sensor. It is thus desired to be as large as 

possible in order to achieve high sensitivity, but also to have its upper boundary defined 

by the dynamic range of interest where the linear response lies. 

3.1.3 pHsensor 

The pH sensor is an ion-selective field effect transistor (ISFET) [102], again based on 

the ESIEE's product. Although ISFET is known to be less stable than the glass-based pH 

sensor [103], it has a much smaller footprint and more importantly, it can be fabricated 

using the standard CMOS process [104-108] - the enabling technology that fabricates 

redundant integrated circuit (IC) devices in batch and cost-effectively. 

ISFET is based on the standard PET structure with an insulating layer in the gate region. 

When the ISFET is placed in solutioti, the solid/liquid interface potential E at the gate 

electrode, a function of the ion concentration to be determined, is measured according 

to the Nernst Equation: 

zF ( aOX) 

	 (3.3) 
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E°  denotes the standard electrode potential at ared = aox  of the given redox couple, 

where ared and a,,x  refer to the chemical activities of the ions of interest which appear on 

the reduced and the oxidized sides of the electrode reaction respectively. On the other 

terms in Eq.3.3, R is the gas constant (8.3143J/K - mol), T the absolute temperature 

(in Kelvin), z the number of moles of electrons involved in the electrode reaction, and 

F the Faraday constant (9.65 x 10 4 C/mol). For a pH-ISFET, its sensitivity defined by 

RT/F is 59.15 mV per unit pH at T = 298.15K(25 0 C), and its Nernst equation can be 

re-written as: 

E = E° - 0.05915ln(cH+) + 0.059151n(cre1) 	 (3.4) 

where cH+  represents the concentration of hydrogen ions in the solution and c, the 

concentration of ions in the reference electrolyte. Note that the redox process for a 

silver/silver chloride (Ag/AgCl) reference electrode is A9CI + e Ag + Cl- , thus 

z=1. 

Fig.3.2(a) is a close-up view of the pH-ISFE1 including a miniature on-chip Ag/AgC1 

reference electrode (3 x 10 2mm 2) and a floating gate (15 x 600[Lm 2 ) covered with a 

50nm thick proton sensitive layer of silicon nitride Si 3  N4  for pH detection. They are 

located in an electrolyte chamber (500tm-diameter, 70gm-depth) designed to contain 

0.1M potassium chloride (KC1) gel electrolyte solution to promote a constant concentra-

tion of chloride ions. The chamber is defined in photocurable polyimide and is covered 

by a 50gm thick of cation-selective Nafion® membrane [109], forming a physical bar-

rier between the chamber and the solution in which pH is to be measured. While the 

Nafion® membrane itself is very resist to decomposition, its seal (achieved with epoxy 

resin) is, as found later in the experiment, to be the source of sensor failure. 

3.1.4 Dissolved oxygen sensor 

The DO sensor is a three-electrode electrochemical cell [110]: the counter electrode 

(CE) is a 3-quarter, 200nm thick gold ring covering an area of 1 x 10 1 mm 2  (refer to 

Fig.3.2(b)); the working electrode (WE) comprises a microelectrode array of 57 circular 

gold electrodes (each 10gm in diameter), instead of single electrode with the same area 

size, to reduce response time due to diffusion effects [111]; the reference electrode (RE) 

is made of silver with an area of 1.5 x 10 2 mm 2  and a thickness of 500nm. The three 

electrodes are embedded in a 500gm diameter, lOnL electrolyte chamber defined in 
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Figure 3.2: The electrochemical sensors in close up views: (a) the pH sensor with a ref-
erence electrode (1) and a floating gate (2); (h) the dissolved oxygen sensor 
with a counter electrode (3), a working electrode (4) and a reference electrode 
(5); and (c) the dual-electrode conductivity sensor 

polyimide similar to the ISFET's. The chamber is filled with O.1M KC1 gel electrolyte 

solution and is sealed with a 12im thick, oxygen permeable teflon. 

Fig.3.3(a) depicts an equivalent model of the three-electrode electrochemical cell [1121. 

Both R3  and R52 denote the solution's resistance while RFC  and RFW denote the 

Faradaic resistance of CE and WE respectively. Cc and Cw are the double layer capac-

itors' at CE and WE. Usually, RFC  and R32 are relatively very small [114]. Therefore, 

at direct current (dc) level, the model can be simplified to a two-resistor model (refer 

to Fig.3.3(b)). If the constant bias voltage Vrw = VWE - VRE reaches the redox poten-

tial of DO, the concentration of DO in the solution will be linearly proportional to the 

conductance of Rpw,  thus the change in the current (IrH, = Vr i)/RFW) will reflect the 

change in the concentration of DO accordingly 2 . The control circuit that facilitates the 

electrochemical reaction is called a potentiostat [1151. 

3.1.5 Conductivity sensor 

The conductivity sensor is a pair of direct contact, 5 x 10 4mm2  gold dual electrodes, 

spaced 400im apart from each other. It operates according to the Ohm's Law (V = IR), 

where R is an inverse function of conductivity. To find out the conductivity of a solution, 

1 Double layer capacitor refers to the structure of charge accumulation and charge separation that al-
ways occurs at the interface when an electrode is immersed into an electrolyte solution. The excess charge 
on the electrode surface is compensated by an accumulation of excess ions of the opposite charge in the 
solution. The amount of charge is a function of the electrode potential [113]. 

2The input impedance at RE must be very large to avoid any leaking current into it. 
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Figure 3.3: Dissolved oxygen sensor models. 

a known voltage is applied across the dual electrodes. Commonly, alternating current 

(ac) type voltage source is used to minimise the effect of the faradaic resistance at the 

electrode surfaces (metal/liquid). The current flows between the electrodes, which is 

linearly proportional to conductivity, is then measured. 

3.2 Sensor interface circuits 

3.2.1 Introduction 

The sensor interface circuits, also known as the signal conditioners, filter high frequency 

(> 100kHz) noise and amplify weak sensory signals. The output voltages from each 

sensor channel are then (analogue) multiplexed into single data stream before being 

presented to a 10-b analogue-to-digital converter (ADC) and the digital platform for 

further signal processing. 

The signal conditioners form a major part of the control chip along with the digital 

platform and the optional RF circuits. There are two generations of design being fab-

ricated, namely IDEAS 1 and IDEAS2, granting different circuit and system designs to 

be tested out: in IDEAS 1, the signal conditioner designs are purposely kept as simple 
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as possible, the digital platform is merely a state machine with a low gate count and 

the radio frequency circuit is not implemented on chip; in IDEAS2, the digital platform 

is transformed into a simplified version of the Motorola 6805 central processing unit 

(CPU) and some RF circuits are introduced on chip. 

Both the prototypes are fabricated by austriamicrosystems using a standard 3V, 0.6im 

CMOS technology process with 3-metal and 2-poly layers, via the Europractise IC ser-

vice. The Electronic Design Automation (EDA) tool, to design and simulate the ana-

logue circuit designs, is the Cadence Virtuoso® Custom Design Platform, including the 

Schematic and Layout Editors, Spectre Circuit Simulator and Diva® physical verifica-

tion tools. 

The ADC, digital-to-analogue converter (DAC) and amplifiers used in the control chips 

are taken from the foundary cell library to save design effort and time. The amplifiers 

can operate in a "sleep" mode for power saving purpose. This facility is exploited in all 

the signal amplification stages, except the amplifiers which sense directly, because the 

setup time for certain electrochemical sensors is quite lengthy (> 3mins). 

3.2.2 First prototype: IDEAS1 

3.2.2.1 Interface circuit design specifications 

Generally, a targeted application defines the design specifications for the control chip, 

including the operating frequency, dynamic range and sensory sensitivity. For the IDEAS 

project, the microsystem is designed to be as generic as possible so that it can be ap-

plicable to many different biomedical and industrial applications, albeit with minor 

modifications. Therefore, the dynamic range is maximised such that it is as wide as 

possible whilst achieving an "acceptable" level of sensitivity. The following table lists 

the wishful front-end design specifications for the first generation control chip, IDEAS 1. 

3.2.2.2 System architecture's overview 

IDEAS 1 can be divided into mainly two modules, analogue and digital: the analogue 

module comprises the sensor interface circuits and the multiplexers; the digital module 

comprises a 10-b ADC, a 8-b DAC, a relaxation oscillator, a clock-divider and a state ma- 
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1pe of sensor Operating Dynamic Sensitivity Unit 
frequency (Hz) range 

Temperature <10 0 - 70 ±0.1 °C 
pH <10 1-14 ±0.5 pH 
Dissolved oxygen <10 0 - 10 ±0.1 mgL' 
Conductivity <10 1 - 10 ±0.1 mScm' 

Table 3.1: The front end design specifications for IDFASJ. 
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pH 	H / NI 
ADC 	___ 5t RIT cucwt 

State machme  
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Figure 3.4: Block diagram of IDEAS1 and its interfacing chips. SC refers to signal condi-
tioner 

chine. Fig.3.4 depicts an overview of the entire architecture, including their interfacing 

chips, namely SensorChipl, SensorChipli and the RF chip. 

The choice of having multiplexing prior to analogue-to-digital conversion is made to 

keep the silicon area and power consumption to a minimal. Otherwise, the sensor 

channels will require one area- and power-expensive ADC each, particularly impractical 

in high-dimensional sensing applications. The DAC is used to search for the redox 

potential of the DO's potentiostat during the calibration phase. Once it is determined, 

the DAC's inputs are then fixed to either high or low during the capsule packaging stage, 

and hence the DAC sources a now constant input voltage to the DO signal conditioner. 

In order to minimize the total number of off-chip components, an on-chip oscillator is 

deployed to generate a clock signal which has its frequency subsequently lowered and 

reshaped by the clock divider to become the global clock, tk. With this tdk,  the state 
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machine schedules the measurement steps. Additionally, the state machine also (a) 

performs some power management by sending a "sleep" signal across the chip to power 

down all the "idle" amplifiers, (b) packs the digitised datastream with some redundancy 

(to improve the wireless link's robustness), headers and footers (for recognition purpose 

at the receiving end), and (c) interfaces with the off-chip transmitter. 

3.2.2.3 Design concept 

The core design concept is to implement simple designs with minimal components, 

silicon area and power consumption, with minimal compromise in terms of sensory 

sensitivity. Such a method has very different priorities to standard circuit design prac-

tice, where the usual emphases are placed on the signal's stability and offset correction 

ahead of design complexity and power consumption. In this particular case, compli-

cated circuitry, such as an instrumentation amplifier or a high order low pass filter, will 

not be used. 

Furthermore, complex circuitry does not always promise the best solution. One good 

example is the pH-ISFET signal conditioning. The stability of an on-chip reference 

electrode poses a major challenge upon its integration with the pH sensot, because any 

instability in the reference electrode will result in undesirable sensor drift. One possible 

solution is to use differential measurement with a combination of one ISFET and one 

ion-insensitive REFET (reference field effect transistor). By default, the differential 

sensitivity is small. However, it can be enhanced by: 

reducing the pH-sensitivity of REFET with a buffered hydrogel [116], an ion-

blocking parylene [117] or a polyvinylchloride (PVC) membrane [62], 

increasing the pH-selectivity of ISFET by using inorganic gate material such as 

Ta205  or Si3 N4  [118] instead of Si0 2 , and/or 

using an immobilized enzyme on the gate structure of the PET as an additional 

layer to either select or block ions of interest [119]. 

Incidently, the differential mode of operation is subjected to cross-talk between the two 

transistors if the protons (by-product of the enzyme reaction) diffuse to the REPE1 
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resulting in a false signal. As a result, the single ISFET sensor with an integrated refer-

ence electrode is still the preferred choice, in this case, for its simplicity in the sensor 

interface circuit design. 

3.2.2.4 Circuit designs 

The control chip is powered by two SR44 A9 2 0 batteries thus the power supplies avail-

able are Vdda (+ 1.55V), Gnd (OV) and Vssa (-1.55V). The following describes the 

circuit design for each sensor. 

Temperature sensor There are two stages in this signal conditioner; sensing and am-

plification. In the first stage (refer to Fig.3.5(a)), a constant current is sinking 

through the temperature sensor and the resistor R 1 . The change in the tempera-

ture is effectively affecting the closed-loop gain of the amplifier OP1 and its output 

voltage, which is subsequently amplified by 0P2 according to the predefined dy-

namic range and resolution of the temperature sensor, with careful selection of 

the combination of the bias voltage Vbj a3 , resistors R2  and R3 . 

pH sensor The constant potential across the resistor R 1  provides a constant current 

flowing into the ISFE1 as depicted in Fig.3.5(b). The bias voltage Vbjas  is used 

to adjust the amount of current sinking. The gate voltage is held constant at 

Gnd as a reference point. The output voltage, or more precisely the potential 

across the drain and source electrodes, is left floating in response to the change 

in the IS PET's threshold voltage, a function of the concentration of H+  ions in the 

sensing environment. 

DO sensor As illustrated by Fig.3.5(c), the signal conditioner can be divided into three 

sections, namely the potentiostat, current-to-voltage conversion (I-V) and ampli-

fication. The bias voltage Vbjas  is employed to search for the optimal redox poten-

tial during the calibration stage and then set it constant at the counter electrode 

with respect to the reference electrode: A feedback path formed by 0P2 and R 2  

ensures the stability of the applied potential. The current flowing between the 

reference and working electrodes, a function of DO's concentration in the sensing 

environment/solution, will be detected by 0P3 and converted into voltage for-

mat before being amplified by 0P4. The amplification stage is necessary because 
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Figure 3.5: Sensor conditioner designs. 
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of the high impedance of the solution and the impracticality of implementing a 

huge resistor (R3  > lOOkil) on silicon. The DO sensor's dynamic range of interest 

determines the selection of resistors R4  and R5 . 

Conductivity sensor To maximize the sensitivity of the sensor, the faradaic resistance 

at the electrode surfaces (metal/liquid) must be insignificant if compared with the 

solution's resistance. This is only achievable when the operating frequency is very 

high (> 100kHz) [120-122]. However, such a high frequency demands very high 

sampling rate 3  (> 2MHz) and power consumption to convert the sensory signal 

into digital datastream, therefore it is infeasible in this particular case. Instead, 

the conductivity will be measured at dc level with a simple setup, an inverting 

amplifier, as depicted by Fig.3.5(d). The sensor's dynamic range and sensitivity 

are balanced with the choice of resistor R 1 . 

3.2.2.5 Test bench results 

The IDEAS 1 is fabricated and packaged into the standard 68-pin Ceramic Leadless Chip 

Carrier (CLCC68) chip format for test purposes, with 20 pads for power supplies, 44 

for input/output and 4 unused (thus grounded). The chip is pad-limited and covers a 

silicon area of 4.5mm x 4.5mm. Its micrograph is shown in Fig.3.6 with an associated 

explanatory diagram. 

The chip is tested by the author of this thesis on a laboratory bench with hardwired 

connections between it and the SensorChipl. Note that the SensorChipil is unavailable 

initially due to a severe electrolyte leakage problem with the on-chip reference elec-

trode's chamber. The DO sensor is later tested by Erik Johannessen in oxygen saturated 

water with a standard laboratory potentiostat (Bio analytical Systems, USA). The level 

of DO in the solution is monitored by a standard Clark 02 electrode (Orion Research 

Inc, USA). The correctness in terms of functionality, of the DO signal conditioner, on 

the hand is verified separately. 

During the testing, there is a constant 3mV peak-to-peak (equivalent to one least sig- 

nificant bit (LSB) of the ADC) noise present in the setup. Since the sensors in a harsh 

3 The ADC uses 11 clock cycles to convert an analogue signal into 10-b digital word and the Nyquist 
Sampling Theorem states that the sampling frequency must be greater than twice of the maximum fre-
quency to avoid aliasing. 
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: 

Figure 3.6: The associated explanazy diagram and the micrograph of the IDEAS 1, com-
prising the sensor interface circuits (1), 8-b DAC (2), on-chip oscillator and 
clock divider (3), 10-b ADC (4) and state machine (5). 

environment will suffer larger noise, the second LSB is used for extra on noise margin. 

Hence, it is anticipated that the 10-b ADC has an effective resolution of 8-b. Fig.3.7(a)-

(d) show the calibration results for temperature, pH, DO and conductivity sensors. 

Temperature sensor The forward-biased silicon diode 4  operates with a constant cur-

rent of 15tA. The sensor responds linearly for a dynamic range from 0°C to 

70°C with a sensitivity of 31.5mV/ 1C after the signal amplification stage (refer 

to Fig.3.7(a)). 

DO sensor Fig.3.7(b) depicts the linear response of the sensor within a dynamic range 

from 0 to 8mg/L. A sensitivity of 0.12mgL 1 nA' is achieved with an applied 

working electrode potential of -700mV with respect to the Ag/AgCL reference 

electrode. 

pH sensor The pH-ISFET is calibrated with three standard buffers at pH 4, 7 and 10. As 

illustrated in Fig.3.7(c), the sensor exhibits a linear characteristic over a dynamic 

range from pH 4 to 10 with an average sensitivity of 23.4mV/pH. 

Conductivity sensor The sensor is calibrated with several solid-state resistors, mim-

icking solutions with different conductivity levels. The signal conditioner, as ex-

pected, exhibits a logarithmic performance from 0.05 to lOmS/cm (Fig.3.7(d)). 

4The sensor chip is immersed into a Phosphate Buffered Saline (PBS) tub. 
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Figure 3.7: Calibration results of the sensor conditioners based on five readings per cali-
bration point. 

The calibration results are summarised by the following table in terms of the sensor 

dynamic range, resolution 5  and correlation coefficient 6  (R2). 

T'pe of sensor Dynamic range Resolution Unit R2  
Temperature 0 - 70 +0.4 0 C 82.9% 
pH 4 - 10 +0.64 pH 99.3% 
Dissolved oxygen 0 - 8  ±0.08 mgL' 95.0% 
Conductivity 0.05 - 10 +0.02 mScm 1  99.5% 

Table 3.2: The summary of the IDEASJ calibration results. 

3.2.2.6 Capsule packaging 

The entire microsystem is eventually integrated into a biocompatible capsule which 

has a solid chemical resistant polyether-terketone (PEEK) coating. The microsystem 

includes the two sensor chips, the control chip IDEASJ, a 40MHz transmitter and two 

'The resolution is derived from eight usable bits out of possible 10-b provided by the ADC. 
6 1n this context, the correlation coefficient is a quantity which gives the quality of a least squares fitting 

to the measurements. 
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Figure 3.8: Final packaged capsule in (a) schematic diagram and (b) photograph. This 
first prototype LL4P has its rear cap opened for the inner view of the microsys-
tern. 

SR44 A92 0 batteries. Its dimensions are 16mm x 55mm and its weight is 13.5g. Based 

on test bench results [100], the microsystem consumes 12.1mW of power in continu-

ous mode (the worst case scenario) and the batteries last for 40 hours. Detailed ex-

perimental results on the capsule and the transmitter are reported in [100] and [123] 

respectively. 
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3.2.3 Second prototype: IDFAS2 

3.2.3.1 Interface circuit design specifications 

From the circuit design point of view, IDEAS 1 works as intended. Hence, the design 

specifications in terms of the operating frequency, dynamic range and resolution for the 

interface circuits in IDEAS2 are almost identical to those in IDEAS 1. Two key differences 

between the two generations of control chip are (a) four extra pH sensor channels 

are introduced as redundancy and (b) the resolution of the pH sensor is improved by 

sourcing more current into the ISFET in this second chip. 

3.2.3.2 System architecture overview 

One of the initial objectives in developing this second control chip is to further minia-

turize the capsule packaging by exporing the integration of the analogue, digital and 

RF modules monolithically. In other words, the three modules need to be assembled 

together on the same silicon substrate without any bonding wires, thus reducing the to-

tal number of off-chip components and the packaging cost. Obviously, such integration 

gives raise to the concern of coupling noise between the noisy RF and the noise-sensitive 

analogue modules. To reduce the problem, different physical layout techniques are ap-

plied [124]. To name a few, there are the separation of low resistant power supply 

trees for each module, the implementation of on-chip decoupling capacitors and the 

introduction of guard rings around the noise-sensitive analogue module. 

The second objective is to introduce an extra four pH sensory channels. This facilitates 

the investigation into feature extraction in a high dimensional space in a multisensor 

microsystem. Additionally, it also allows a potential improvement on the robustness 

of the microsystem by having redundancy. Ideally, the failure due to leakage of the 

reference electrolyte in each individual pH channel, the identified bottleneck of the 

microsystem, will now become less fatal. 

The third objective is to replace the simple state machine in the digital platform with 

a modified Motorola 6805 microcontroller that enables the implementation of more 

signal processing functions on chip, at the expense of power consumption and silicon 

area. The fourth and final objective is to implement a direct-sequence spread spectrum 

(DS-SS) encoder which not only can improve the bit error rate (BER) of the wireless 
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Figure 3.9: Block diagram of IDE.4S2 and its interfacing chips. SC refers to signal condi-
tioner 

data transmission [125], but also enable the use of multiple capsules with a single 

receiving base-station [126]. Each DS-SS encoder has a unique code sequence, thus the 

base-station can identify the sources of the received signals. Such coding system can be 

useful in applications such as waste water monitoring systems. 

These four objectives define the specifications for this second generation chip IDEAS2. 

As depicted by Fig.3.9, IDEAS2 interfaces with a third, optional sensor chip, which has 

four pH sensors, similar to the one in SensorChipl. An 8-to-1 multiplexer is introduced to 

fuse the eight sensory channel data into the ADC and the microcontroller. The digitised 

measurement datastream is subsequently fed into the DS-SS encoder. Its output is 

eventually passed to a transmitter circuit and an off-chip antenna. 
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Fig-tire 3.10: Cascode current sink circuit for the pH sensor (ISFET). This scheme offers a 
high output resistance and a constant current over a broad range of output 
voltage Lii. 

3.2.3.3 Circuit designs 

As discussed in Section 3.2.3.1, the temperature, DO and conductivity sensor signal 

conditioners remain the same as in IDEASJ. However, a very different circuit is designed 

for the pH sensor (refer to Fig.3.10) where the ISFET forms as an active load to a 

cascode current sink. This type of current sink has the advantages of large output 

resistance and small non-saturation region in its voltage-current characteristic, resulting 

in a more constant current over a broader range of output voltage V 0 [1].  With the 

reference electrode is tied to GND, the change in the environmental pH level swings 

V0 , proportionally in a linear manner. 

3.2.3.4 Test bench results 

The sensor interfaces, digital platform and transmitter circuit are implemented on a 

4.1mm x 4.1mm mixed signal SoC prototype, including a second ring of lOOILm x 

200itm pads added to facilitate the manual bonding for microsystem prototypes. The 

finished chips are returned from the foundary both as unpackaged dies (Fig.3.11) and 

in 84-pin i-Leaded Ceramic Chip Carrier (JLCC84) packages for test purposes, with 24 

pads for power and 60 for I/O. 

The packaged chip together with the pH and temperature sensors, is calibrated by the 
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Figure 3.11: The associated explanary diagram and the micrograph of the IDEAS2, com-
prising the sensor interface circuits (1), modified Motorola 6805 (2), clock 
divider (3), DS-SS coder (4), 10-b ADC (5) and RF circuit (6). 

author of this thesis with three pH buffers (pH 4, 7 and 10) on a standard test laboratory 

bench. The sink current 'ref  (Fig.3.10) is measured to be 33pA, which translates as an 

improvement in the pH sensor's sensitivity from 23.4mV/pH in IDEASJ to 43mV/pH in 

the new device. However, this also unveils a problem: the ISFETs have widespreading 

intrinsic threshold voltages (0.28V < VthO < 1.88V) due to poor fabrication tolerance. 

Therefore, only a limited number of ISFET samples can respond linearly within the 

broad dynamic range predefined in the specifications of IDEAS2. 

The unpackaged die is integrated as part of the capsule (Fig.3.8) and tested by the 

IDEAS team members as a complete system, including the wireless data link [127]. The 

capsule is immersed into a buffered solution with its pH level monitored by a standard 

pH meter. The capsule measures both the ambient temperature and pH values and 

transmits the data in bit stream to be picked up by a scanning receiver with a im 

range in radius. Upon its arrival, the data is stored immediately into the memory of 

a personal computer (PC). The measurements are then retrieved and displayed on the 

monitor using a custom graphical user interface (GUT) upon the user's request. Samples 

of the measurements are shown in Fig.3.12. 
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Figure 3.12: Measurements taken by the capsule over a period of 25 minutes. For the 
temperature measurements, the capsule was submerged in a 250ml glass 
bottle filled with reverse osmosis water at different temperatures. A thin 
wire K-type thermocouple (Radio Spares, U.K.) was used a reference. For 
the pH measurements, the capsule was submerged in different pH buffers 
and control measurements were performed with a standard lab pH electrode 
(Consort n.y., Belgium). These measurements were sent wirelessly by the 
capsule to an external receiver and a data recorder (i.e. a basestation). 
Graphs show the received signals. 
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3.3 Discussion on sensor model selection 

Actual sensory data are very rare and expensive to obtain. This may be a problem for 

training an artificial neural network. In this work, the calibration result of each sensor 

is mapped to a simple, linear model (y = mx + c). Such models can generated as 

much sensory data as required to achieve good learning in the ANN. More importantly, 

the artificial data allows the author to study and understand the neural system (in 

particular, the CRBM) in the early stage of this thesis work. 

Thus far, four types of sensors have been introduced and reported with their test bench 

results on the two fabricated control chips, IDEAS I and IDEAS2. However, not all sen-

sors provide satisfactory performance results. For instance, the conductivity sensor's 

performance is hampered by the double layer capacitance effect. One way to resolve 

the problem is to excite the sensor with a high frequency ac signal. Yet this requires 

a higher sampling rate in the ADC, which in turn consumes more power. This indi-

rectly suggests that the conductivity sensor may not be suitable for implementation in 

a power-limited multisensor microsystem format, at least in this case. 

Additionally, there is a stability problem in the DO sensor's on-chip reference electrode. 

Experimental results shows that it has a very short lifetime, typically two hours. This is 

unacceptable for the application - digestive tract monitoring system, which commonly 

requires the sensors to be functional over 8 hours. Another issue is found in the widely 

spread intrinsic threshold voltage of the pH sensors which restricts the amount of exci-

tation current allowable for the sensors. Excessive current injection results in non-linear 

response in some pH sensors. 

As a result, the feasible models are merely the temperature and pH sensors in IDEAS 1. 

Calibration results from fabricated sensors [128] show that the temperature sensor's 

output voltage (my) at time t can be expressed by: 

Vt emp (t) = 31.5 x T(t) + T0 + Ttemp (t) + ajemp  Nt emp (t) 	(3.5) 

where 
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T = ambient temperature (°C) 

To 	= -1505.10m\ output voltage at 0°C 

Ttemp 	= general non-linear drift function (my) 

atemp 	= background noise's magnitude (my) 

Ntemp 	= random Gaussian noise with unit magnitude and zero mean. 

The term 1teiip  is added for completeness but is often negligible in application. Simi-

larly, the output voltage (my) of the pH sensor can be modelled by: 

= 18 x T(t) - 23.4 x pH(t) + V0 + TH(t) + aH N,jq(t) 	(3.6) 

where 
pH = logarithmic concentration of H+  ions 

V0  = offset voltage including the intrinsic threshold voltage of the ISFET (mV) 

TpH = general non-linear drift function (my) 

apH = background noise's magnitude (my) 

NH = random Gaussian noise with unit magnitude and zero mean. 

Note that the above equation includes a temperature term with a sensitivity of 18mV/°C. 

The term Tpff  is negligible in the initial static neural training, but it has an important 

role in a dynamic environment (see Chapter 6). 

3.4 Summary 

Firstly, this chapter introduces the basic principles of four different microelectronics 

sensors, namely temperature, pH, DO and conductivity. The sensors are implemented 7  

onto two silicon chips, SensorChipl and SensorChipil. 

Subsequently, the design specifications for the sensor interface circuits are defined. The 

overview of system architecture and design concepts are also presented. In contrast 

to normal practice, design constraints (i.e. the silicon area and power consumption 

of the circuit) have higher priority than the sensor sensitivity itself. For instance, a 

simple current sink (see Section 3.2.3.3) is implemented to excite a pH sensor in place 

of a more commonly-used instrumentation amplifier. Note that an instrumentation 

7The sensors are implemented by Erik Johannessen, University of Glasgow. 
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amplifier requires at least 3 amplifiers and multiple resistors to operate, thus its design 

opposes the design priorities defined in this particular work. 

The sensor interface circuits are designed and integrated with the digital modules 8  

and the transmitter 9  to form a control/communications chip. Two generations of con-

trol chips are fabricated by austriamicrosystems using a standard 0.6im CMOS process 

technology. The chips are both tested on a standard laboratory bench and are used in 

the calibration of the sensors. Experimental results are reported and the circuits are 

working as intended. 

Several problems have been identified in the sensors: the conductivity sensor requires 

more complex signal conditioning and measurand extraction; the DO sensor has a sta-

bility problem in its reference electrode; and the pH sensor has a relatively wide range 

of intrinsic threshold voltage for the 3V microsystems. Thus only the temperature sen-

sor model and the pH sensor model with a lower sensitivity (23.4mV/pH) are usable in 

subsequent neural simulations. The models are extracted from their calibration read-

ings, and each include a drift term. This term will come into play when data classifica-

tion in a dynamic environment is examined in Chapter 6. 

In short, the derivation of two simple but reasonably realistic sensor models (for subse-

quent simulations) has been presented. 

8The digital module is designed and implemented by Lei Wang, University of Glasgow. 
9The RF module is implemented by Mansour Ahmadian, The University of Edinburgh. It is only inte-

grated on the same substrate in IDEAS2. 
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Chapter 4 
Neural system 

With the discussion of the sensor model made in Chapter 3, this chapter looks at the 

other key element in the preparatory work for subsequent simulations - the neural sys-

tem. This system is formed by a Continuous Restricted Boltzmann Machine (CRBM) 

and a Single Layer Perceptron (SLP), as shown in Fig.4.1. The primary role for this 

system is to learn sensory data distributions and distinguish between two data clusters. 

One simple example of its possible applications in the IDEAS project is to provide in-

formation about the current location of the LIAE because various parts of the digestive 

system have associated pH values. 

This chapter provides a formal introduction to CRBM and a brief literature on SLI 

in terms of their individual architectures and learning rules. To fit the neural system 

into the application, which suffers from sensor drift, some unique learning rules and 

methodology are necessary, and hence are proposed here. A discussion on the implica-

tion of such modifications in terms of hardware implementation is provided at the end 

of this chapter. 

4.1 Architecture 

4.1.1 System overview 

The neural system operation can be viewed in two primary stages; unsupervised fea-

ture extraction and supervised (linear) classification. The aim is to render the feature-

extraction stage adaptive and able to present a consistent set of features to the super-

vised classifer in the presence of drift and noise. This is a non-trivial task. When a 

microsystem is monitoring its surrounding environmental parameters, often there may 

be only a single class of data available over a long period of time. The long absence of 

another data class can cause a serious problem for a learning associative memory model 

because of catastrophic interference (Cl). When only a single class of data is presented 
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Figure 4.1: An overview of the neural system and how the signal flows. Fxtracted features 
are represented by the states of the hidden neurons in the CRBM. The switch 
Swi is turned off after the initial learning stage (refer to Section 4.2.1). 

over a long period of time, the model perceives it as a completely new distribution. 

Therefore the model will adapt a new set of parameters to encode this "new" distribu-

tion and "forget" the existence of the previous distributions. Consequently the model 

loses its ability to classify. 

The problem of CI came to light in the 1980's under the study of sudden breakdown in 

Hopfield network [1291 and plasticity/stability dilemma in ART [130]. Connectionist 

network achieves remarkable abilities of generalization and graceful degradation in 

the presence of incomplete information by using a single set of weights as its memory. 

However, McCloskey & Cohen [131] and Ratcliff [132] showed that using only a single 

set of weights is also the root cause of the CI. Many attempts to solve the problem were 

initiated (see [133] for a review) but often required originally learnt patterns which, in 

the real world, were no longer available, and as such could not be added to the set of 

new patterns to be learnt. A major breakthrough occurred in 1995 when Robin [134] 

introduced a simple and elegant technique, named pseudopatterns rehearsal. The idea 

was to re-generate the originally learnt patterns with encoded weights from random 

input vectors and interleave these pseudopatterns with new patterns for the networks 

to learn. Such a technique is however computationally expensive and not ideal for 

power-limited operation. 

Instead, a constrained learning approach is proposed here for this neural system. This 
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approach is motivated by the dual-memory models [135], simulating loosely the hippo-

campal-neo-cortical separation (long- and short-memories). This approach exploits the 

fact that the weights of the hidden bias neuron w2o encode the base line for the (m - 1)-

dimensional training data distributions while the weights of the hidden neurons 

where j = {1, 2, ..., n - 11, describe the fine details of the distributions in a CRBM with 

an m - n architecture [136]. The base line is a time-variant and shifts in proportion to 

the sensor drift. Therefore, it is possible to allocate a short-term memory for w20 and a 

long-term (i.e. permanent) memory for the other weights. In this case, it is assumed 

the distributions have fixed pattern in terms of dispersion and shape. If the system can 	- 

track the shift, then it is possible for it to compensate for the sensor drift. Section 4.2.3 

will explain in details the unique learning rule and methodology that allow the CRBM 

to be adaptive and able to present consistent set of features to the supervised classifier. 

4.1.2 Continuous Restricted Boltzmann Machine 

4.1.2.1 General architecture 

The CRBM is a generative model that is able to perform autonomous feature extraction 

and is based upon Hinton's Products-of-Experts architecture [137]. It has one visible 

and one hidden layer with only inter-layer connection. The visible and hidden neurons 

are connected by weight vectors {W}. Chen and Murray develop the model purposely 

so it can interface with analogue world directly. To do so, continuous valued neurons 

are used in contrary to the binary neurons in RBM [138]. Fig.4.2 shows a CRBM with 

three visible, four hidden and two (permanently 'on') bias neurons, vo and h0. 

4.1.2.2 A continuous stochastic neuron 

Let si and sj represent the states of a visible neuron i and a hidden neuron j respectively, 

and wij = wji the bi-directional weights. The state-probabilities of the neurons are: 

1 + exp(— Ei w 3 S) 

1  
and p(Sj 

= 1) = 1 + exp(— Ej  wjSj)' 	
(4.2) 

p(Sj=l) = (4.1) 
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Figure 4.2: A CRBM with three visible, four hidden and two bias neurons. Each neu-
ron except the bias neurons which are always "1" has a sigmoidal activation 
function where its state s, is confined by —1 < s 2  < + 1. The visible layer 
is connected to the hidden layer via symmetrical weights, i.e. w j  = w3 . 
This graph shows an example weight W34 which connects visible neuron V3 to 
hidden neuron h4 . 

Figure 4.3: A continuous stochastic neuron with four inputs. 

whereby the state of the neuron j. is defined as: 

sj = 	j (wiisi+a.ri(o1)) 	 (4.3) 

with o(x) = °L + (OH - OL) 	
1 

1 + exp(—a3x3) . 
	(4.4) 

where 
cx = noise scaling constant: specific to each (visible or hidden) layer 

Nj  (0, 1) = sampled from unit-magnitude, zero-mean Gaussian noise source 

a3  = noise control parameter: specific to each (visible or hidden) unit. 

The product of a and Nj (0, 1) forms a noise input component in the neuron, providing 
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it a sense of stochasticity. This is required in searching for the optimum model through 

the Gibbs sampling method. The product, n3  = a N(O, 1) governedby the standard 

Gaussian distribution is represented by: 

1 
	

(—n j  
p(flj) = 	exp 	 (4.5) 

In other words, this continuous stochastic neuron is a Gaussian expert. Later in Chap-

ter 5, the implications of this Gaussian nature as well as the magnitude of a, on the 

CRBM learning ability in modelling both Gaussian and non-Gaussian datasets will be 

investigated. 

The çoj (x) is a sigmoidal function with asymptotes at 0L  and 0H.  Commonly, it is set 

to be a tanh function (i.e. the asymptotes 0L  and 0H  are -1 and +1 respectively) so 

that the weight changes during the learning stage, can be in both positive and negative 

directions. Such setting allows the neural model in general to converge to the most 

optimal solution faster than uni-directional adaptation,where 6L  and °H  are fixed at 0 

and +1 or + 2 respectively. 

The parameter a3  controls the slope of the sigmoidal function, and thus the nature 

and the extent of the stochastic neuron behaviour. A small value of a3  leads to an 

almost-linear sigmoidal function, renders input noise 1  negligible and results a neat-

deterministic neuron. On the other hand, a large value of a3  leads towards a step 

function and results an approximately-binary stochastic neuron. 

4.1.2.3 CRBM learning rule 

The CRBM is a type of maximum likelihood model where its training involves modifying 

the parameters in the network to maximize the probability of the network generating 

the data as in the training set. In other words, the network must successfully model 

the probabilities of the training data. The CRBM employs "Minimizing Contrastive 

Divergence (MCD)" [97] as the learning rule for its weight, {w} and noise control 

parameter, {a3 }. 

Before moving on to explain the cost function in the MCD rule, it is important to intro- 

'This input noise is external, not the purposedly-injected n. 
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duce a quantity which measures the difference between two probability distributions p 

and q, called Kuliback-Liebler divergence. It is defined as [139]: 

KL(p,q) 	p(x) log NX) x) ) 
x 

= —p(x)1og(q(x)) + 
S 

= H(p,q)—H(p) 

(4.6) 

>p(x) log(p(x)) 	(4.7) 

(4.8) 

where H(p, q) denotes the cross-entropy of p and q, and H(p) the entropy of p. As 

the cross entropy is always greater than or equal to the entropy, the Kuilback-Leibler 

divergence is non-negative. If the two probability distributions p and q are identical, 

then KL(p, q) = 0. 

The MCD rule aims to minimize the difference between KL(Q ° , Q) and KL(Q', Q°°), 

where Q0  denotes the natural distribution over the visible variables at time zero for 

a Markov chain2 , Q°° the equilibrium distribution over the visible variable after pro-

longed Gibbs sampling3 , and Q' the distribution over one-step reconstruction of the 

data vectors that are generated by one full step of Gibbs sampling. The MCD rule 

differs from minimizing KL(Q°, Q°°), as practised in the log-likelihood maximization. 

Hinton [97] argued that Q 1  is closer to Q°° than  Qo,  thus KL(Q ° , Q°°) > KL(Q', Q) 

and the convergence of the neural model is guaranteed. Since all transitions have non-

zero probability in a Markov chain, when Q0  = Q' (i.e.  Q°  = Q°°), the contrastive 

divergence will be zero and the neural model is perfect. Although the concept of MCD 

is purely based on an intuition, the results from several projects [137, 140-142] tend 

to support it. 

2A Markov chain is a sequence of random values whose probabilities at a time interval depends upon 
the value of the number at the previous time. 

3 Gibbs sampling refers to drawing a sample from the posterior distribution of each variable given the 
current states of the other variables. With CRBM architecture (no intra-layer connection), the weights for 
all the experts can always be updated in parallel because they are conditionally independent. 
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la 

1a 	= 	(s)o—(s)1) 

where 
(x) o 	= expectation value of x at time zero in a Markov chain 

(x) 1 	= expectation value of x after one-step Gibb sampling 

71w 	= learning rate for weights, w ij  

17a 	= learning rate for noise control parameter, a3  

The training procedures wilibe explained in Section 4.2.1. 

(4.9) 

(4.10) 
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The MCD update equations for wij  and a3  are: 

4.1.3 Single Layer Perceptron 

In 1943, McCulloch and Pitts [143] introduced the first neural model, Single Layer 

Perceptron (SLP). A SLP sums up weighted inputs and compares with a threshold, 0 

or —w j , as illustrated by Fig.4.4. Let x i  be the input where i = {1, 2,3, ..., m - 1}, the 

output of the neural model y can be expressed mathematically as: 

y = fh 
[:(WX) 

- o] = fh [ ' (WX)] 	 (4.11) 

where f, is a Heaviside function, 

(x) 
lo : x<0 

fh = 

1 1 : x>0 

The output function only produces a 0 or 1, denoting whether the neuron is on or off 

respectively. 

Each SLP forms a linear discriminating function for two classes of data and is widely 

used as a linear classifier. To illustrate an example, let y = 0 for class A and y = 1 for 

S., 
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Figure 4.4: A single layer perceptron with four inputs. 

class B in a two-dimensional space {x i , x2 1. Thus, for class B data in Eq.4.11, 

wO+wlxl+w2x2 > 0 

W2X2 	—Wo---W1X1 

X2 ~ 	
(-W2) ( W2)  

as illustrated in Fig.4.5. Comparing this to the equation of a straight line (y = mx + c), 

the slope of the line is controlled by w1/w2 and the intercept at x 2 -axis is —wo/w2. 

Therefore, a SLP can discriminate linearly-separable data given a correct set of weights 

{w o , w 1 , w 2 1. 

Next, the learning rule for the SL1 the Widrow-Hoff delta rule [144], is introduced. It is 

modified from the basic Perceptron rule [145]. The Perceptron rule adjusts its weights 

by its input values directly. On the other hand, the delta rule calculates an error term 

z, the difference between the desired output and the weighted sum (i.e. the actual 

output). At each learning epoch, the weights are updated as follows: 

	

Wij  + 1) = w(t) + iL 	 (4.12) 

with 	A = d(t)—y(t) 

1   
d(t) = 	

0 : if input from class A 

1 : if input from class B 

where i denotes the learning rate, d(t) the desired response at time t and y(t) the 

actual output. The derivation of this learning algorithm and the explanation on the 
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convergence in learning can be found in [145]. 

4.2 Methodology 

There are two preparatory, steps to produce a trained neural system that can perform 

stochastic classification and auto-compensate any sensor drift. In the first step, the 

non-linear feature selector (CRBM) is trained, in an unsupervised manner, in order to 

learn the training data distributions. Upon completion, the linear classifier (SLP) is 

trained under supervision to map its inputs (selected features) with their correspond-

ing labels {O, 1}. The neural system can then distinguish two classes of noisy sensory 

data. However, any drift in the data distributions will degrade the accuracy in data 

classification. To overcome this problem, the system must learn online to compensate 

the drift. Therefore this thesis proposes a unique method to do so in Section 4.2.3. The 

entire methodology flow can be summarised by Fig.4.6. 

4.2.1 Training the CRBM 

The CRBM is trained without supervision and in batch '. It has an architecture of 

m : rt, where (m - 1) is the dimension of training data and (n - 1) is the number of 

hidden neurons. The number of features in the training data distributions determines 

4 Batch training only updates weights after all sets of inputs and their targets are presented. In contrast, 
online training allows immediate weight update after each set of inputs and targets is presented. 
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Unsupervised training for CRBM 
with learning wij  I aand a. 

Supervised training for SLP 
with learning wk  

Adaptive stochastic classifier 
with learning w,0and w0  

Figure 4.6: Methodology to train the stochastic neural system. 

n. Although more hidden neurons offer the promise of a better model, Occam's Razor 

suggests that a parsimonious model is likely to be more useful and informative [146]. 

The training is evaluated by examining its 20-step Gibbs samping reconstruction. In 

this context, reconstruction refers to the ability of the model to generate distributions 

similar to the training data distributions, at the visible layer with its current parameters 

(weights) and disregards the initially-fed input data. The procedures to train the CRBM 

are: 

Definew 3 ,i={1,2,...,m-1}andj={1,2,...,n-1},tobetheweightbetween 

visible neuron vi  and hidden neuron h3 , and the bias neurons v0  and h0  have a 

constant input of 1 each. 

Determine empirically a suitable noise scaling constant a-  for each layer. 

Determine empirically suitable learning rates i, and ?7a. 

Initialize wij  by setting them to small random values. 

Clamp the visibile neurons to the training data {X} so s, = X. 

Infer .s3 , the state of each hidden neuron with si  by Eq.4.3. 

Remove the clamp and let the visible neurons run freely. 

Generate ii , a new state for each visible neuron, with s j  as inputs in Eq.4.3. 
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Re-infer .4'j,  the corresponding state of each hidden neuron, with gi as inputs in 

Eq.4.3. 

Adapt the weight w 3  and the noise control paramter a with Eq.4.9 and 4.10 

respectively. 

Repeat steps 5-10 (full one-step Gibbs sampling) until the model can reconstruct 

the visible states similar to the training data. 

4.2.2 Training the SLP 

The SLP is trained under supervision and in batch. It takes the selected features {h3 } 

as inputs, and outputs a label {O, 11 with respect to the inputs at the visible neurons 

{v}. The mean square error (MSE), which is the average of the square of the difference 

between the desired output d(t) and the actual output y(t), is used as a performance 

indicator for the learning. The lower the MSE, the more accurate the data classification. 

The training procedures for the SLP are listed as follow: 

Define Wk(t), k = {1, 2,..., n - 11, to be the weight from input k at time t and the 

bias input, x o  to be always 1. 

Determine a suitable learning rate ik by balancing between the number of learn-

ing epochs required for a convergence and the stability of the final SLP state. A 

large , moves the SLP faster towards the global minima but might oscillate at its 

final state. Conversely, a small 77k  promises a more stable final state but requires 

longer learning epochs. 

Initialize wk(0)  by setting them to small random values. 

Clamp the visible neurons of the CRBM to the training data {X(t)} and the SLP 

to the desired response, d(t). 

Calculate the actual output y(t) with Eq. 4.11. 

Adapt wk(t + 1) with the Widrow-Hoff delta rule (refer to Eq. 4.12). 

Repeat steps 4-6 for a pre-determined number of learning epochs or till a targeted 

MSE is achieved. 
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4.2.3 System in dynamic environment 

Thus far, the discussion is on how to train a system with static data. Next, a novel 

methodology is proposed to allow the system to auto-calibrate itself and avoid CI in a 

dynamic environment. It achieves the aim by: 

Task A allowing the CRBM to be adaptative to the latest distributions (i.e. the original 

distributions plus drift) and re-generating them at the visible layer, and 

Task B ensuring that the CRBM continues to present consistent features to the SLP 

(linear classifier) in order to maintain high accuracy in the classification. 

To accomplish Task A, the weight of the hidden bias neuron wjO needs to be adaptive 

because it encodes the base line for the (m - 1)-dimensional input data distributions. 

The learning rule for w jO is as in Eq.4.9. The Task B, on the other hand, demands the 

weight of the visible bias neuron woj  to be updated because it encodes the thresholds for 

the activities of the hidden neurons, which in turn determine the classification result. 

Incorrect threshold will result misclassification. Simply by updating these thresholds, 

consistent features can be presented to the non-adaptive SLP 

Based on Eq.4.3, it is obvious that an input drift (/.$) will result a corresponding 

change in the hidden neuron state (s,), moving away from the known features to the 

SLP Let wo(t) be the amount of updating required and s(t) denotes the average 

sensor drift in visible neuron vi  at time t. To maintain consistent features as inputs to 

the SL1 

wo(t) = - (w i s(t)) 	 (4.13) 

where w, denotes the weight after the initial CRBM training session in static environ-

ment. Given that the model manages to trace the latest distributions and hence succeed 

in Task A, the drift can be expressed as: 

Ls(t) = io - wo(t). 	 (4.14) 

Substituting Eq.4.14 into Eq.4.13, we have 

'rn-i 

wo (t) = -77"  ( 	Wj[WO - w o (t)]). 	 (4.15) 
\ i=i 
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In the above equation, i has been introduced as a scaling term to prevent the weights 

of the model from getting into saturation, in the event of learning from an instantaneous 

and huge (in magnitude) spiking noise, where 0 < i :!~ 1. 

During operation in a dynamic environment, the system (strictly speaking, it is the 

CRBM) is trained without supervision and online. The model learns the latest distribu-

tion with the following procedures. 

Present the input sensor data to the visible neurons as v(t). 

Infer h3 (t) the corresponding state of each hidden neuron with v(t) in Eq.4.3. 

Generate ii(t) of each visible neuron with h(t) in Eq.4.3. 

4 Infer hT(t) of each hidden neuron with (t) in Eq.4.3. 

Calculate A w ij (t) with Eq.4.9. 

Calculate A woj (t) with Eq.4.15. 

Update the weight wjj(t) with wo(t) and zwo(t). 

The noise control parameter a is held constant, as it is after the initial CRBM learning 

stage. The purpose is to prohibit the model from perceiving the input data (from single 

class) as a new distribution, subsequently adapting to the "new" distribution (single 

cluster) and hence eventually losing its ability to classify. Besides a, the SLP also does 

not learn in this mode of operation. It classifies unknown input data by using the 

weights Wk(TK), where Tk refers to the final SLP learning epoch. The classification 

procedures are listed as below. - 

Set the noise scaling constant cr for hidden layer-to be zero. 

Present the input sensor data X(t) to the visible neurons as v(t). 

Infer h3 (t) the corresponding state of each hidden neuron with v(t) in Eq.4.3. 

Calculate the output y(t) with h(t) in Eq. 4.11. 
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4.3 Discussion on practical issues 

As described in the previous section, some unique training methods and learning rules 

are necessary to equip the neural system with an auto-calibration capability. In this 

section, some practical issues of such methods and rules, in terms of hardware imple-

mentation, are probed. Note that there will be no actual hardware implementation of 

the neural system in this work. The following discussion is provided to highlight several 

important issues, namely the feasibility, cost and potential problems in translating the 

proposed learning rule into hardware. 

The first question for the discussion is: "is this new updating rule (Eq.4. 15) hardware-

amenable?". Failing to comply to this basic requirement will void the effort on the 

development of the CRBM. To answer, it is necessary to look at the type of circuits 

required first. Fig.4.7 depicts a possible circuit mapped from the equation. V is the 

subtraction of w and wjo(t) where i = {1, 2,3, ..., m - 11. The multipliers (M'ult) are 

fed with voltages (V and w) and produce an output current I. The current accum-

mulator sums up all the currents and relays 'sum  as Awoi (t) for a weight update. The 

digital control serves as a scheduler for the weight updating, while the input E adjusts 

the scaling term 1/71c. 

All the modules, namely Sub, Mult, current accumulator and weight updating circuit, 

have been implemented and reported in [147]. With minor modifications, such as 

changing the input for Sub from current-based to voltage and vice versa for the Mult, 

the modules are adequate for this new updating rule. Hence, it is reasonable to suggest 

that the new equation is equally hardware-amenable. 

Obviously, this auto-calibration feature comes at a cost in terms of computational power 

and silicon area. But, a more worrying concern is if the neural system can still adapt 

when the drift velocity is high. In this context, drift velocity refers as the ratio of the 

drift to the sampling time interval. If high drift velocity occurs, the model will have 

difficulties to trace the drift, with a restricted i,, and will lose track eventually. To 

overcome this, one might want to increase r but this makes the model more sensi-

tive to noise. Alternatively, the sampling rate for the sensor data can be increased to 

"reduce" the drift rate indirectly at the expense of more power consumption. 
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Figure 4.7: The block diagram of the updating circuit for Eq.4. 15. 
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4.4 Summary 

In this chapter, a neural system which is a combination of a CRBM and a SLP is first 

proposed. Both general architectures and learning rules of the neural model are intro-

duced. The CRBM is developed initially by Chen and Murray from RBM to be able to 

interface with analogue signals directly. However, often there is only unbalanced, drift-

ing and limited online data available in the application (the IDEAS project). Therefore, 

the CRBM is further developed in this thesis to facilitate an online learning process, with 

special concern on Catastrophic Interference. A new weight updating rule (Eq.4.15) is 

proposed, taking the advantage that the CRBM encodes the base line and fine details 

of the training data distributions differently and in separately controllable parameter 

subsets. 

An unique methodology is outlined by this thesis to train the system sequentially to 

distinguish two classes of data, and to auto-compensate stochastic drift online. Finally, 

some practical issues (hardware-amenability, cost and potential problems) of the new 

learning rule (Eq.4.15) are discussed briefly. Based on the work in [147], the new 

rule is evidentially hardware-amenable and the the auto-calibration is feasible, at the 

expense of extra silicon area and power consumption. 
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Chapter 5 
Classification simulation on sensor 

model and artificial data 

The aim of this chapter is twofold: to explain the basic principles of this "neural" classi-

fication approach and to demonstrate that the proposed neural system is applicable to 

complex, meshed clusters problems. To date, CRBM has been examined with some toy 

data and electrocardiogram (ECG) data in [96].  This chapter wants to take one step 

further and examine it with much complex data in a systematic way. In the first part 

of this chapter, different features in the neural system will be identified in two- and 

multi-dimensional classification problems. The accuracy in classification with different 

levels of dichotomy between two training data clusters will also be studied. The sec-

ond part of this chapter will focus on a more difficult learning problem - non-Gaussian 

clusters with meshed areas, examining with two different datasets. The performance 

of the classification with various numbers of hidden units and training epochs will then 

be studied to provide a guideline for system optimisation. 

5.1 Classification trial one: simple, overlapping clusters 

5.1.1 Two-dimensional (2D) clusters 

The experiment involved one temperature sensor (Si), and one pH sensor (S2) with 

an intrinsic threshold voltage of 0.28V The training data for the neural system (with 

four hidden Units) was generated based on Eq.3.5 and 3.6 in Section 3.3. The condi-

tions for the datasets were arbitrarily set to obtain two simple but overlapping clusters 

(Fig.5.1a), each with 200 samples in a Gaussian distribution. 

The conditions set for class A data (output or label was 'HIGH') were 25°C (in tern- 

perature) and pH 4, while the conditions for class B data (output or labe1was 'LOW') 

were 40°C and pH 10. The CRBM weight wij had a learning rate of 1.0 while the other 
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Figure 5.2: Simulation results on 2D clusters: noise control parameter of visible layer 
A (a), noise control parameter of hidden layer Ab (b), MSE during the SIP 
training stage (c) and the SLP activity to 400 test samples (d). 

layer started to gain values, in particular the first and the fourth hidden units (Hi 

and H4), making them good detectors to distinguish the two data classes (Fig.5.2(b)). 

Fig.5.2(c) depicts the MSE measured in each training epoch for the SLP Decreasing 

from the initial 0.0707 to the final 0.0223 indicates the SIP has learnt well. To prove 

it, a set of test data (200 samples for each class) was generated and fused through the 

learnt model. The corresponding activity of the SIP to this test data is presented in 

Fig.5.2(d). With the final Wk = { 10.9061, -0.6689, -1.4227, 8.50751, the difference in 

the two classes of data was exaggerated hence making the two clusters easily separable. 

Thresholding the output activity at zero sees 100% accuracy in the data classification 

by the neural system. 
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Figure 5.3: Training data for the il -dimensional clusters experiment: (a) temperature 
sensor (Si) and first pH sensor (S2); (b) temperature sensor (Si) and second 
pH sensor (S3); (c) first pH sensor (S2) and second pH sensor (S3). (d)-(f) 
are their corresponding 20-step Gibbs sampling reconstruction data. 

5.1.2 High-dimensional clusters 

The experiment involved one temperature sensor (Si) and ten pH sensors (S2-11). The 

latter had an unique intrinsic threshold voltage each, Vtho = 10.50, 1.20, 0.28, 0.90, 

1.60, 0.40, 1.10, 0.70, 1.88, 0.601. Six hidden neurons were employed to capture the 

features in the training data distributions which were generated by using the sensor 

models in Section 3.3. Class A data was defined by the conditions where temperature 

was 25°C and pH 4, while the class B data was defined where temperature was 40°C 

and pH 10. The learning rates for the CRBM weight w 3  and the other parameters were 

1.0 and 0.1 respectively. The neural system was trained with 200 samples from each 

class, according to the methodology (refer to Section 4.2). The numbers of training 

epoch were 30000 and 5000 for the CRBM and the SLP respectively. 

Fig.5.3(a)-(c) depict the training data distributions in 2D while Fig.5.3(d)-(e) show 

their corresponding 20-step Gibbs sampling reconstruction data distributions. As de-

picted, the CRBM has encoded the training data distributions reasonably well in its 

weight and noise control parameters after 30000 training epochs. Further evidence was 

found in the noise control parameter A 1, recorded over the training period (Fig.5.4(a)). 
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Figure 5.4: Simulation results on multi-directional clusters: noise control parameter of 
visible layer A (a), noise control parameter of hidden layer Ah (b), MSE 
during the SLP training stage (c) and the SLP activity to 400 test samples (d). 

The initial high value (= 6) A was autonomously annealed to less than 1.46. In con-

trast, the noise control parameters Ah for hidden units H3 and H6 were increased to 

relatively more significant values 1.4519 and 1.2986, making them more sensitive to 

the class of input data (Fig.5.4(b) and Table 5.1). The dichotomy was further aug-

mented via the SIP weight wk (Table 5.1). The learnt model was tested with a new set 

of data, 200 samples for each class. Fig.5.4(d) shows the SLP activity with respect to 

the test data. Thresholding at zero, the neural system achieved 100% accuracy in data 

classification. 

Hidden unit 
Parameter Hi 	H2 	H3 	H4 	H5 	H6 
Final A, 
Finalwk  

	

1.0024 	1.0134 	1.4519 	0.9995 	1.0923 	1.2986 

	

1.2154 	-0.7434 	7.9178 	1.6897 	3.3714 	6.8491 

Table 5.1: Simulation results on the final noise control parameterA, and SLP weight Wk. 
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Figure 5.5: Simulation results on dfferent pairs (in pH values) of data clusters in terms 
of classification accuracy. 

Additionally, a series of simulations were run to examine the accuracy of the neural 

system on sensing different pairs (in pH values) of training data distributions. The 

temperature was fixed at a common point (3 7°C) for both clusters. The neural systems 

trained with each pair of data distributions are the same in terms of architecture size, 

noise scaling constants and learning rates. The test result was plotted onto Fig.5.5. As 

expected, the closer the two training data clusters were, the lower accuracy it achieved. 

The accuracy was 75.5% in the worst case where class A = pH 6 and class B = pH 8. 

5.2 Classification trial two: meshed clusters 

5.2.1 Modelling single non-Gaussian data distribution 

This section explores if the neural system can classify 2D meshed data clusters, possibly 

non-Gaussian types. Therefore, it is important to establish and evaluate whether the 

CRBM can model single non-Gaussian data distribution. One example of such distribu-

tion with 392 data samples is shown in Fig.5.6. 

A CRBM with 5 hidden neurons (Gaussian experts) was trained using 1-step Gibbs 

sampling methodology (Section 4.2) for 5000 epochs. The noise scaling constants of 
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Figure 5.6: A non-Gaussian, training data cluster 

both the visible and hidden layers were set to 0.3. The learning rate of all parameters 

was 0.2. Fig.5.7 depicts the evolution of the noise scaling parameter A, with final A 1, 

= {1.5000 2.87461, whilst Fig.5.8 depicts the weight learning. Both figures suggested 

the CRBM has converged to a minima of its cost function. 

However, the reconstruction of the CRBM with the learnt parameters was poor, as il-

lustrated in Fig.5.9(a), indicating that the CRBM has only reached a local minima. 

In this simulation, there are three features to be learnt, namely the curve, the mean 

and the dispersion of the training distribution. As shown, the mean of the reconstruc-

tion was consistent to that of the training data distribution but the curvy feature has 

not been learnt. Obviously, this was due to poor learning in the noise component, 

N,,j = A 1, x a x N(0, 1), in the visible layer. There were two tunable parameters to 

refine the learning, namely the learning rate for A and a. Both could be reduced to pre-

vent the CRBM from being trapped at local minima, but at expense of longer learning 

time. 

Alternately, the learning might be improved with a prolonged Gibbs sampling in each 

learning epoch to allow a better convergence because I Q°°) ~: KL(Q, Q°°) for 

i > 1. Thus, the previous simulation was repeated with a 20-steps Gibbs sampling in 

each learning epoch. In spite of the extra computational time, the reconstruction was 

equally poor (refer to Fig.5.9(b)). In a separate attempt, A was fixed at 0.1 throughout 

the 5000 training epochs. This time, a much improved reconstruction was obtained 
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Figure 5.7: The evolution of the noise scaling parameterA. 
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Figure 5.8: The evolution of each hidden unit weight where w j  refers to the weight be-
tween the visible neuron i and the hidden neuron j. 
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Figure 5.9: Reconstruction for the CRBM with (a) learning A and 1-step Gibbs sam-
pling, (b) learning A 1, and 20-step Gibbs sampling, (c) A,, = 0.1 and 1-step 
Gibbs sampling, (d) A,, = 1.0 and 1-step Gibbs sampling, after 5000 training 
epochs. 

(Fig.5.9(c)). The reason for the improved result was that the noise component N,, 8 , 

which determined the dispersion of the distribution, has been scaled forcefully in this 

case. If A,, was much larger such as 1.0, the reconstruction would have been poorer 

(Fig.5.9(d)). 

What has become apparent was A,, = 0.1 being in close proximity to the global minima 

of the cost function. To prove it, the previous experiment was repeated with (a) A,, ini-

tialised and fixed at 0.1 for the first 5000 training epochs then (b) A,, was free-running 

and its learning rate ii,, was set to 0.01 for the next 5000 training epochs. Such small 

q,, could prevent any unwanted weight saturation due to over-large learning steps. 

Fig.5.10 depicts the simulation result on A,, over the entire training period. Despite the 

initial spike around 5000th  training epoch, A,, settled eventually at approximately 0.115 

for both visible units Si and S2. A smaller ij,, could reduce the amplitude of the oscilla-

tion but at the price of much longer training epochs (> 100000). No significant change 

was observed in the weights and A, of the CRBM in the second 5000 training epochs, 

hence the reconstruction at 10000th  training epoch was similar to that of SOOO,'s. 

From the above simulations, it could be concluded that it is possible for the CRBM to 
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Figure 5.10: Parameter A?, in time series for a CRBM with first fixed then learningA and 
1-step Gibbs sampling. 

encode a non-Gaussian data distribution reasonably well (Fig.5.9(c)), despite all of the 

experts being Gaussian. More importantly, the CRBM must have very small the learning 

rate for A, to avoid trapping at a local minima, and be trained over a long period of 

time to permit it to converge to global minima of its cost function. To speed up the 

simulation process, A, was fixed for subsequent simulations. 

5.2.2 Simulation one 

Two simulations were performed to examine if the neural system could classify 2D 

meshed data clusters. In the first simulation, a CRBM with 7 hidden neurons was 

trained with a 1-step Gibbs sampling for 5000 epochs to encode the training data dis-

tributions with 400 samples for each cluster, as illustrated in Fig.5.11(a). The noise 

scaling constants were fixed at 0.4. Noise control parameter A at the visible layer was 

held constant at 0.1 while noise control parameter Ah at the hidden layer was allowed 

to evolve into feature detectors. All the learning rates were set to 0.2. 

The training data distributions were considerably complex to be modelled by the CRBM, 

especially with common noise control parameters and noise scaling constants, because 

the two clusters had different dispersions and shapes. Fig.5.11 depicts the reconstruc- 
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tion data distributions after the learning stage, which exhibited some resemblance to 

the training data distributions. To quantify the performance, a SLP was trained for 5000 

epochs to linearly classify the response in the CRBM, more precisely the activity of the 

hidden units, with respect to the class of input data: class A data yielded an output of 

"+ 1"; class B data gave an output of"-1". Fig.5.11(c) shows the SIP response to a set 

of test data, 400 samples for each class. Thresholding the response at zero, the trained 

neural system showed a hundred percent of accuracy. 

5.2.3 Simulation two 

To further validate the capability of the neural system, a second set of meshed clusters 

were employed for the similar simulation. This time both training data clusters were 

non-Gaussian (refer to Fig.5.12). Due to the increase in complexity, the CRBM was 

trained for longer time, 20000 learning epochs to be exact. Upon completion, a 20-step 

Gibbs sampling reconstruction was generated as shown in Fig.5.12(b). Repeated as 

before, a SIP was used to evaluate the performance of the non-linear data modelling 

by the CRBM. A high accuracy (99.7416 in test data classification was achieved. The 

result has demonstrated once again the strength of the CRBM in data modelling despite 

of its relatively simple and small architecture. 

5.2.4 Performance evaluation: number of training epoch 

Thus far, the CRBM has demonstrated its ability to model two meshed, non-Gaussian 

data distributions simultaneously. In this and the next section, temporal and spatial 
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Figure 5.11: Simulation one on meshed clusters: (a) training data, (b) reconstruction 
data after 5000 epochs and (c) the SLP activity with respect to a set of test 
data. 
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Figure 5.12: Simulation two on meshed clusters: (a) training data, (b) reconstruction 
data after 20000 epochs and (c) the SLP activity with respect to a set of test 
data. 

ways to optimize the CRBM to model the training data distribution (Fig.5.12(a)) are 

investigated. In this context, it referred to performance evaluation on data classification 

with different numbers of training epochs and with different numbers of hidden units, 

using common noise scaling constants and learning rates. 

A CRBM with 7 hidden units was trained over fourteen different numbers of epochs 

1100, 200, 300, 400, 500, 750, 1000, 2000, 5000, 10000, 20000, 30000, 40000, 

500001. In all the simulations, the learning rate for the noise control parameter at 

the hidden layer was fixed at 0.2, and the noise scaling factor was 0.4 for both visible 

and hidden layers. The noise control parameter at the visible layer was fixed at 0.1 to 

reduce the simulation time. As previous, the modelling performance of the CRBM was 

evaluated by a linear classifier which would be trained for 5000 epochs at a rate of 0.2. 

The Set of simulations was run three times, each with a different learning rate (i 

= 10.01, 0.05, 0.20}) for the CRBM weight. The simulation results were plotted in 

Fig.5.13. When ij = 0.20, the convergence was at the fastest rate, achieving approxi-

mately 100% accuracy within 500 training epochs. However, it did not settle down, it 

oscillated over time due to the large learning step size. In comparison, when i = 0.05, 

the convergence was more stable in spite of the slower rate (achieved 100% accuracy 

only after 1000 training epochs). The slowest, but also the smoothest convergence, 

was achieved at ij = 0.01 as expected. In each learning epoch, the model moved in a 

very small step towards the training data distributions. After 10000 epochs, the model 

eventually achieved 100% accuracy in test data classification. 
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Figure 5.13: The neural system accuracy on data classification with various numbers of 
training epoch. The term 'n' is referred to the learning rate of the CRBM, in 
this diagram. 

5.2.5 Performance evaluation: number of hidden units 

Generally, the number of hidden units required to model the training distributions de-

pended on the complexity. The more features the distributions possessed, the more 

hidden units would be necessary. Previous sections assumed that the CRBM could cap-

ture the key characteristics of the training distributions with 7 hidden units. However, 

the aim, in this section, is to determine the minimum number of hidden units which 

are sufficient to fulfill the application requirement - mapping non-linear, meshed data 

vectors into linearly-separable spaces. 

A CRBM with different numbers of hidden units (= 11, 2,3.....16}) was trained to 

model the data distributions (refer to Fig.5.12(a)) for 20000 epochs. The learning 

rates were all set at 0.2, while the noise control parameter of the visible layer was fixed 

at 0.1 and the noise scaling factors were 0.4. For each model size (or number of hidden 

units), a SLP was trained at a rate of 0.2 for 5000 epochs to provide a quantitative eval-

uation on how well the CRBM has learnt. Subsequently, the trained model was tested 

with a new set of data, 200 samples for each class. These training and testing exercises 

were run three times to affirm the consistency of the simulation results. 
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The simulation results for each model size were captured and plotted in Fig.5.14. As 

expected, the single hidden neuron faced some difficulties to project such complex 

distributions into a linearly separable space. As a result, a poor data classification - 

merely 76.3% accurate was produced. The modelling power was immediately improved 

with the introduction of the second hidden unit, which threby improved the accuracy 

to 96.3%. No significant further improvement was observed, on average, with the third 

addition of hidden unit. Eventually, when the model size was increased to 5 hidden 

units, approximately 100% accuracy was achieved. Further incremental increases in 

the model size has resulted insignificant variation in the accuracy (±0.173%) on test 

data classification. The optimum model size for the pair of training distributions was 

thus five hidden neurons. 
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Figure 5.14: The neural system accuracy on data classification with various numbers of 
hidden neuron. 

5.3 Discussion 

Overlapping clusters are common in pattern recognition applications such as odour de-

tection and electroencephalogram (EEG) classification. The overlap is due to limited 

sensory sensitivity and noisy environment. In [43],  Shin tried three different neural al-

gorithms, namely MLP, Learning Vector Quantization (LVQ) and Fuzzy ARTMA1 to pre-

process the transient response of gas sensors before passing the more linearly-separable 

features as inputs to a PCA to classify. Alternatively, Sarry [41] employed Discriminant 

Factoral Analysis (DFA) to extract the features and then PCA to classify. Other pre- 
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processing techniques employed in the literature are self-organizing maps (SOM) [37], 

Genetic Algorithm (GA) [40],  Wavelet Transform [148] and RBF [149]. While most of 

them provided very promising results, they are in general not suitable for the IDEAS 

project in terms of hardware-amenability as discussed in Chapter 2. 

In Section 5.1, few simulations have been run with CRBM extracting the main features 

in 2-1) and multi-dimensional overlapping data clusters. The data distributions took 

a Gaussian form and were based on the sensor models derived in Chapter 4. The 

simulation results demonstrated that the CRBM could extract the features required to 

allow the subsequent-stage SLP to distinguish the two clusters effectively, achieving 

100% accuracy with test datasets. It has also observed that when more redundant 

sensors were employed, more information could be fused, giving more chances to the 

neural system to detect the dichotomy. As a result, the SLP response to high dimensional 

data clusters was more distinguishable. In short, a higher dimensional sensory system 

is more robust, similar to our own biological systems such as tongue and skin. 

The simulations were then extended to classification problems with non-Gaussian, meshed 

data distributions. The way CRBM encoded a single non-Gaussian data distribution was 

first examined. The noise scaling parameter in the visible layer, A, was identified as 

the key player in the data modelling. When the complexity of the data distribution is 

increased, A must be small in value to ensure that the trained CRBM has encoded the 

segmentation between the clusters and could reconstruct each cluster in high precision. 

Howevei this means that a longer training period is expected before a convergence to 

the global minima of the cost function can be achieved. 

Subsequently, two simulations were run (refer to Section 5.2.2 and 5.2.3), both on non-

Gaussian, meshed data classification problems. The simulation results demonstrated 

that the CRBM could model such distributions and classify the data with high accuracy. 

As expected, the difficulty in attaining 100% accuracy escalates with the complexity of 

the data distributions; evidential in the pair of simulation results. The response of the 

neural system to the two clusters was more distinguishable in the first simulation than 

the second. 

The above simulation results deduced that the neural system could be used as a ro-

bust classifier and it is applicable even for non-Gaussian, meshed data classification 
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problems. The limitations of the model have also been investigated with reference to 

several issues as follows. 

Overlapping/meshed clusters The accuracy in classification of the neural system is 

primarily confined by the training data distributions. When the two clusters are 

overlapping each other or have meshed regions, the performance of the model 

will naturally degrade just like any other computational models. However, as in 

Section 5.1.2, its robustness could be improved by introducing more redundant 

sensors. 

Convergence rate vs stability Section 5.2.4 searched for the number of training epochs 

necessary for the neural system to achieve its aim - 100% accuracy in data classi-

fication. It was observed that large learning rate q allowed faster convergence but 

less stability - i.e. the trained model could not consistently produce full accuracy. 

In contrast, small r, reached the optimum solution much later, possibly 3-4 times 

longer training period, yet the trained model was more stable in reproducing full 

accuracy results. Therefore, it is the trade-off between the convergence rate and 

the stability of the final model. Additionally, it is important to select the right i 

for complex (meshed) data distributions, in particular to keep the model away 

from any local minima during its evolution. More detailed discussion about the 

selection of i could be found in [150]. 

Number of hidden units The simulation results in Section 5.2.5 showed that a "suffi-

cient" number of hidden units must be supplied to secure high accuracy in data 

classification. However, it was not possible to know the optimal number of hidden 

units without the process of trial and error. The sufficiency depends on the num-

ber of features embedded in the data distributions. The higher the number, the 

more hidden units are required to encode them. When there is a lack of hidden 

units, the neural system cannot classify data accurately and consistently. On the 

other hand, when there are too many hidden units, those extra units will either 

compete with the main units 1  for a share of the main features - i.e. a feature may 

be jointly coded by two or more hidden units, or simply be idle, storing no infor-

mation. Although high accuracy in data classification is likely to be guaranteed, 

1 1n this context, the main units refer to those hidden units that encode the main features of the training 
data distributions. 
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having extra hidden neurons is undesirable in terms of hardware implementation 

because they occupy extra silicon area and consume power. 

5.4 Summary 

In the first part of this chapter, the mechanism of the neural system (refer to Chapter 

4) to classify two clusters of data was explained. The first example distributions were 

simple but overlapping in two dimensions, while the second example distributions had 

their dimentionality increased to eleven. Both examples had their data derived from 

the sensor models in Chapter 3, and had Gaussian distributions. Full accuracy in data 

classification for the trained model was recorded. Simulations with different sets of 

environmental conditions were performed in Section 5.1.2. While the two clusters 

(pH 6 and 8) were heavily overlapping each other,. the trained model still managed to 

achieve an accuracy of 75.5%. 

In the second part of this chapter, the neural system was applied to non-Gaussian, 

meshed data classification problems. Two different simulations were run and their 

results illustrated the strong modelling capability of the model. Besides that, the con-

vergence rate and the stability of the model have been investigated in Section 5.2.4, 

and the optimal number of hidden units needed to encode all the features in these. 

particular data distributions was identified (Section 5.2.5). A discussion on the overall 

simulation results concluded this chapter. 



Chapter 6 
Classification simulation on real 

drifting data 

In this chapter, the neural system is applied in a dynamic environment, where stochastic 

sensory drift degrades the data classification. With no control measurements is avail-

able during the drift experiment, supervised neural algorithms are normally unsuitable 

for this application. However, complex compensation scheme can be introduced. An 

example is demonstrated with a MLP in [151]. Another major challenge in this drift ex-

perimentis the absence of data from one of the two classes over a lengthy measurement 

time. Neural algorithms such as Kohonen's SOM [35,37] will face major difficulties to 

balance between learning the drift and avoiding CI. The main objective of this chap-

ter is to demonstrate that a simple neural algorithm such as the forementioned neu-

Ial system (Chapter 4) can auto-calibrate against such drift even in high-dimensional, 

meshed clusters problems without experiencing CI. To do so, the neural system is tested 

in two separate drift trials, one targeted for high-dimensional problems whilst the other 

for meshed clusters problems. Section 6.1 will present the experiment to record real 

drifting data which will be used in subsequent simulations. Sections 6.2 and 6.3 will 

describe the two separate drift trials. From the simulation results, the limitations of the 

neural system will be identified and discussed. 

6.1 Preparation of drifting. dataset 

6.1.1 Experiment setup 

Long term pH measurements were carried out by Erik Johannessen to assess signal 

drift and sensor lifetime in a physiological electrolyte (0.9% saline) solution of pH 7. 

Its ambient temperature was maintained at 36.5°C throughout the experiment by using 

a water bath and having the assay solution continuously stirred and re-circulated by a 

peristaltic pump. Its pH value was closely monitored by a reference pH meter (Consort 
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Figure 6.1: Drift data in time series. Note that the pH-ISFET sensor has a sensitivity of 
-23mV/pH. Thus, for instance, a drift voltage of -163.8mV will result a drift 
of + 7 pH units. 

n.y., Belgium). The signal conditioning circuit for the pH-ISFET was as in Fig.3.5(b) 

and was powered by ±1.55V sources. The AgAgCl reference electrode, representing 

the potential in which the floating gate was referred to, was connected to ground. The 

total duration of the experiment was 21h. 

6.1.2 Example data 

Throughout the experiment, the reference pH meter reported a constant pH value for 

the solution. Therefore, any drift recorded at the output of the signal conditioner would 

be. due to the instability of the AgAgCl reference electrode. Fig.6. 1 illustrates a set of 

measurements in time series with pH 7 calibrated at OM Each drift epoch corresponds 

to lOs of sampling period. 

A gentle but stochastic drift of -8iV/epoch (R2  = 0.9833) was recorded during the first 

6600 drift epochs, in which a total drop of -0.047V occurred. The drift was primarily 

due to the dissolution of AgC1 from the reference electrode. Then, there was a sudden 

drop of voltage. The seal of Nafion® membrane was broken and the reference potas-

sium chloride gel electrolyte solution which was previouslyencapsulated, then leaked 

into the measuring environment, causing a failure in the reference electrode. 
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When the experiment was repeated on other reference electrodes, the drift patterns 

were similar in .general but the seals of the Nafion membrane were broken at different 

time instants due to packaging variation. 

6.2 Drift trial one: High dimensional, simple clusters 

In this trial, the neural system in Chapter 4 was first trained with some static data. The 

trained system was then fed with drifting (dynamic) data, one sample per drift epoch. 

The system was tested with a group of samples at four time intervals, namely the start, 

the 4000th  epoch, the 60001h  epoch and the end of the drift simulation. The weight 

changes in the CRBM were also recorded throughout the experiment for examination if 

the model could auto-compensate sensor drift. 

6.2.1 Simulation dataset 

In this case, the neural system was applied as an adaptive stochastic classifier in a mul-

tisensor microsystem. It had one temperature (Si) and ten pH-ISFET (S2-11) sensors. 

Four reference electrodes (111-4) were used to improve the robustness of the overall 

measurement system and were allocated arbitrarily to different sensors, i.e. Ri for 

S2-8, R2 for S9, R3 for SiO and R4 for Sil. Fig.6.2 depicts the architecture of the 

forementioned microsystem. 

The static dataset used to train the model was similar to that in Section 5.1.2 (refer 

to Fig.5.3(a)-(c)). The two clusters were ovelapping each other and consisted of 200 

samples each. Due to its high dimensionality, they were linearly separable as seen later 

in Section 6.2.2. On the other hand, the dataset used under a dynamic environment 

was based on the drift pattern in Fig.6.3. Each reference electrode displayed different 

drift and failure rates. There were three interesting time intervals over the 7644 drift 

epochs. Before the 40001h  epoch, all sensors except S9 were experiencing minor drift. 

Between the 40001h  and the 6000th  epochs, the reference electrode R3 broke down 

and hence SlO failed. After the 6000th  epoch, all remaining reference electrodes were 

degrading until all the sensors become faulty eventually. Over the whole drift period, 

the temperature sensor Si was assumed to be functioning correctly and in stable. Only 

samples from Class A dataset were available for the model to autocalibrate itself. 

RE 
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Figure 6.3: Drift voltages for the ten pH-ISFETs (S2-11). 
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6.2.2 Simulation result 

Initially, the neural system was trained at 20000 epochs for the CRBM and 5000 epochs 

for the SLP A MSE of 7.400 x 10 was achieved upon the completion of the training, as 

illustrated by Fig.6.4. More discriminative weights of the SL1 i.e. smaller MSE, could 

be achieved by extending the training period. Despite that, a classification accuracy of 

100% was attainable at this stage when the trained system was tested with 200 new 

samples from each class (see Fig.6.6(a)). 

Next, the trained system was fed with the drifting data (Fig.6.3), one drifting sample per 

epoch. Throughout the 7644 drift epochs, the CRBM in the neural system was allowed 

to adapt to the sensor drift as described in Section 4.2.3. The weights of the bias units 

in both visible wo3  and hidden layers w 0  were updated at a rate r of 0.01. Fig.6.5 

depicts the weight changes in wjO for pH-ISFET sensors Si where i = {2, 3, ..., 111. 

The changes correlated to the drift patterns in Fig.6.3, indicating that the model could 

track autonomously the drift. Based on the updated w 0 , corresponding weight changes 

in wq were implemented to ensure the activation of the hidden Units (especially the 

dichotomous detector) were thresholded correctly. Evidently, the model managed to 

score 100% in data classification accuracy when tested at 4000 and 6000  drift epochs 

(Fig.6.6). However, the performance of the model deteriorated drastically near the end 

of the drift simulation, suggesting that the model has broken down completely and 

was then, quite rightly, responding to the input signal as part of a completely new 

data distribution. The drastic performance degradation is caused by the simultaneous 

failures in all the remaining pH-ISFET sensors. 

To highlight the significance of the online unsupervised learning in the neural system, 

trained but subsequently non-adaptive linear (another SLP) and MLP classifiers were 

used as benchmarks. Both were initially trained with the same datasets (without drift) 

as before, but their weights were not updated online during the entire drift period. 

The SLP had a sigmoidal activation function and was batch trained with the Widrow -

Hoff delta rule[144]  for 20000 epochs. The learning rate for its weight was 0.05. 

Fig.6.7(a) illustrates the evolution of the SLP learning in terms of MSE. The learning 

was completed with a final MSE 7.895 x 10. Then the trained SLP was fed with the 

drifting data. When tested with 200 samples from each class, the SLP showed 100% 

FA 
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Figure 6.4: The evolution of the SLP learning in the neural system in terms of MSE. 
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Figure 6.5: The weight changes in the hidden bias unit in response to the sensory drifts in 
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Figure 6.6: The classification accuracy of the neural system at djfferent drift epochs. 

accuracy in data classification at the 4000th  drift epoch. However, the performance 

deteriorated dramastically in subsequent epochs, primarily due to the sudden failure 

of sensor S10 and the relatively large drift experienced by sensor S9. The accuracy 

dropped to 53% when tested at the 6000th  drift epoch. As seen in Fig.6.8(c), the SLP 

was. biased towards class A. Such a result was expected because the two clusters (refer 

to Fig.5.3(c)) had drifted towards the negative quadrants for both axes, according to 

the drift patterns in Fig.6.3. Eventually, both clusters would be on the "original class 

A side" of the hyperplane defined by the weights of the SLI thus resulting the 50% 

classification accuracy. 

Similar results were encountered by the MLP It had an architecture of 7:7:1 and each 

neuron had a sigmoidal activation function. It was initially batch trained with a "back-

propagation" learning rule (based on gradient descent with momentum [152]).  The to-

tal learning duration was 20000 epochs, the learning rate was 0.05 and the momentum 

was 0.9. As foreseen, the MLP achieved a better learning with a final MSE 1.446 x 10 

(refer to Fig.6.7(b)) than the SLP Further evidence is depicted in Fig.6.9(a), when the 
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Figure 6.9: The classification accuracy of the MLP at different drift epochs. 

trained MLP tested with 200 samples from each class. Subsequently, the trained MLP 

was fed with drifting data (Fig.6.3) without any further weight updating (i.e. drift was 

not compensated). For the first 4000 drift epochs, the classification accuracy was still 

100% but there was a sign of degradation in performance. The MLP response to class 

B test data was less saturated to "-1" in Fig.6.9(b) than a. When tested again at the 
60001h drift epoch, the accuracy was down to 58%. Just like the SLI the MLP was 

biased towards class A but quicker. This is probably because the discriminating hyper-

plane is better defined with its weights. The summary on the classification accuracy of 

the above three algorithms at different drift epochs is tabulated in Table 6.1. 

Algorithm 
Accuracy (%) at drift epoch 
Start 	4000th 	6000th jEnd 

 

CRBM+SLP 100.00 100.00 100.00 
100.00 

5
SLP 99.75 53.00 5. 
MLP 100.00 97.75 58.00 50.00 

Table 6.1: Simulation results on the classification accuracy at different drift epochs by 
different algorithms. 

93 



Classification simulation on real drifting data 

6.3 Drift trial two: Two dimensional, meshed clusters 

The previous trial has looked at a high-dimensional, simple yet overlapping clusters 

classification problem, in a dynamic environment. Similar experiments were repeated 

in this trial but with a pair of two-dimensional, meshed clusters. The objective was 

to demonstrate that the scheme - the neural system and its learning methodology - 

proposed in this thesis was also applicable to non-linear classification problems. 

6.3.1 Simulation dataset 

A 6-hidden-unit CRBM of the neural system was fed with two outputs from sensors 

Si and S2. The training dataset in a static environment for these two dimensions was 

similar to that in Fig.5.12(a). The meshed area between the two clusters poised itself 

as a non-linear classification problem. The two sensors had a reference electrode each. 

In this trial, the reference electrodes experienced similar but opposite direction drifts, 

which shared a pattern as in Fig.6.1. The drifts moved the two clusters towards the 

positive quadrant in Si-axis and the negative quadrant in S2-axis such that cluster A 

data would be in the original position of cluster B after T number of drift epochs, where 

T>> 1 and T oc 1/(driftrate). To accentuate the online learning by the CRBM,the drift 

rate used in this simulation was assumed to be six times greater than that in Fig.6.1. 

Similarly to before, only samples from Class A dataset were available throughout the 

entire drift period. 

6.3.2 Simulation result 

The CRBM was first trained, with the forementioned datasets in a static environment 

for 20000 epochs before the SLP for another 5000 epochs. A MSE of 4.800 x iO 

was achieved upon the completion in learning. The trained neural system was able to 

classify in 100% accuracy 200 test samples from each class, as depicted in Fig.6.10(a). 

Subsequently, the model was fed with drifting data from Class A, one sample per epoch. 

The CRBM weights were allowed, in a constrained manner, to be updaied at a rate of 

0.01. After 4000 drift epochs, the updated model was reported to maintain an accuracy 

of 96.28% when it was tested with 200 samples from each class. As time went by the 

drift shifted the data distributions farther away from their original positions in S1/S2- 
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Figure 6.10: The classification  accuracy of the neural system at different drift epochs. 

axes. At the 6000" drift epoch, the model become more biased towards Class B (refer 

to Fig.6.10(c)), as anticipated. When tested with new samples, the model managed 

to classify with 89.83% accuracy. By the end of the drift period, both the reference 

electrodes failed, hence caused, as expected, a huge drop in classification accuracy 

(Fig.6.10(d)). 

To highlight the adaptivity feature of the CRBM, the aboye simulation was repeated 

with another SLP and MLP The SLP was trained in a static environment for 20000 

epochs. With the Widrow-Hóff delta rule, the final MSE was 1.378 x 10_1.  Fig.6.11(a) 

illustrates the SLP activity/response to 200 test samples from each class. The classifi-

cation accuracy was 95.20%, indicating the problem was a non-linear one. Later, the 

trained SLP was fed with the same drifting data as those for the neural system. No 

online learning was allowed during the course of 7644 drift epochs. When tested with 

samples, its classffication accuracy was dropped to 86.53% after 4000 epochs. Refer 

to Fig.6.11(b), the SLP was obviously biased towards Class B. Further temporal drift 

exacerbated the classification accuracy. Evidently, it became 78.80% when the SLP was 
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Figure 6.11: The classfication  accuracy of the SLP at d Werent drift epochs. 

tested after 6000 epochs (Fig.6.11(c)) before it collapsed eventually. 

Next, the same simulation was re-run with a non-linear classifier - a MLP It posssesed 

an architecture of 7:7:1 and each neuron had a sigmoidal activation function. It was 

trained with a backpropagation learning rule (gradient descent with momentum) for 

20000 epochs. The final MSE was 1.102 x 10 and the trained MLP was able to clas-

sify test samples 100% accurate (refer to Fig.6. 12(a)), hence outperforming the single 

SIP The MLP was then examined with the drifting data. After 4000epochs, a classifi-

cation accuracy of 85.66% was recorded when the non-adaptive MLP was tested with 

drift samples As in the SIP case, the MLP was found to• be biasing towards Class B 

(Fig.6.12(b)). Its accuracy degraded further to 74.18% at the 30001h  drift epoch. The 

bias becomes clear in Fig.6.12(d) which shows the classification result at the end of the 

drift period. The MLP output is always below -0.99, thus producing false labels on Class 

A drift data. A summary of the classification accuracy of the three algorithms at four 

different drift epochs is listed in Table 6.2. 

Beside the examination with test samples at different drift epochs, the outputs of each 
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Figure 6.12: The classification accuracy of the MLP at different drtft epochs. 

Algorithm 
Accuracy (%) at drift epoch # 
Start 	4000" 	6000111 	End 

CRBM+SLP 100.00 96.28 89.83 50.37 
SLP 95.20 86.53 78.80 50.00 
MLP 100.00 85.66 74.18 50.00 

Table 6.2: Simulation results on the classification accuracy at dWerent  drift epochs by 
different algorithms. 
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Figure 6.13: The output of each algorithm over the entire drift period. 

algorithm (i.e. CRBM + SLl SLP and MLP) were also recorded over the 7644 drift 

epochs to evaluate the performance of each algorithm. Since merely data from Class 

A was provided, the output should always be "1" ideally. Fig.6.13 shows the response 

at the output stage for each algorithm. The neural system with its online updating 

outperformed the other algorithms as expected. It managed to stay at "1" for the first 

5000 epochs. However, it decreased to lower values as the drift rate increased. This 

was due to the use of fixed learning rate. The limited weight update step restrained 

the model from adapting to the required amount of change. If the drift rate was con-

tinually increased, the difference between the neural system and the actual sensory 

model outputs would increase, and the neural system would eventually fail completely 

as seen at the right end of Fig.6.13(a). Meanwhile the non-adaptive models had their 

responses deteriorated inevitably with the increasing, temporal drift. In comparison to 

the SLl the MLP degraded in a steeper slope, probably because of its better-defined, 

discriminant hyperplane which made it more susceptible to its inputs. 

The above simulations have identified that a fixed learning, rate )w  could be potentially 

problematic for dynamic environments with varying drift rates as commonly found in 

most real world applications. If i << ij, where ij is the optimum learning rate, 

the model will lose track of the drift eventually, causing a major issue for long term 

measurements in particularly. On the other hand, if 71,, >> i, the relatively large 

weight update step size, results in a model which is very susceptible to noise and can 

set the model into oscillation around the optimum solution. In the worst case scenario, 

the over-sized weight update can send the weights straight into saturation, resulting in 

immediate failure of data classification. 
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Therefore, a series of simulations was carried out to demonstrate that different drift 

rates have different rp,. The above simulation with the neural system was repeated with 

different , ranging from 0.001 to 0.100. The simulated drift ranges from —0.8tzV/s to 

—4.8KV/s. In each simulation, the trained neural system was fed with data drifting at 

a specific rate, and the model was updated with a learning rate 17u'.  The drift rate was 

defined by the total drift over the first 6000 epochs. Fig.6.14 depicts the classification 

accuracy of the model at the 60001h  drift epoch with different learning and drift rates. 

Several observations on the figure were made: 

. At low drift rate (-0.81iV/s), the classification accuracy deteriorated with increas-

ing learning rates. The effect was more glaring than of higher drift rates. This is 

due to the oversized weight updates for a relatively gentle but noisy drift. 

. With a fixed learning rate of 0.001, the classification accuracy degraded with the 

increase in drift rate. Higher learning rates were required to improve the accuracy 

for faster drifting data. For example, the optimum learning rate was 0.0075 at 

drift rate of —4 .8 uV/s. 

• Balancing between faster response and robustness against noise is non-trivial in 

the online learning. In contrast to the 100% accuracy achieved at drift and learn-

ing rates of —1.6jiV/s and 0.001, the adaptive model could only score 90.82% in 

accuracy at drift and learning rates of —4.8V/s and 0.0075 respectively. 

6.4 Discussion 

Potentiostatic techniques used in pH sensing are applicable to many other electrochem-

ical analyses. Example applicatio'ns include electronic tongues and noses [153-156]. 

While the sensor fabrication techniques are now well-established, the long-term sta-

bility in reference electrodes remains a challenge. Inevitably, these electrochemical 

sensors suffer from stochastic drift and therefore require constant autocalibration. 

In this chapter, the proposed neural system and its learning methodology were exam-

med in two different trials. The first trial was about high-dimensional, simple yet over-

lapping data classification problem in a dynamic environment. The overlapping was 

due to limited sensivity and noise induced by interfering ions. Four reference electrodes 
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were used to improve the robustness of the system against sensor drift and malfunction. 

While all the pH-ISFET sensors experienced drift at different rates, the neural system 

managed to stay 100% accurate in test data classification for the first 6000 drift epochs. 

Two trained but subsequently nonadaptive neural models, namely SLP and ML1 were 

employed as benchmarks to elucidate the importance of online learning. Both models 

experienced degration in their classification accuracy with the increasing sensor drift. 

By the 60001h  epoch, their classifications were less than 58% accurate. 

In addition, the neural system showed its robustness against sensor failure. Such failure 

was caused by poor sealing of the microreservoir of the reference electrode and occured 

more frequently in harsh environment. Traditionally, a median filter or a fault detectOr 

is required to validate or/and isolate the erroneous measurements [157-159]. In this 

work, the probability of the unknown input data being Class A/B was calculated based 

on the weighted current states of all sensors, arguably a variant of median filters. The 

model would not, understandably, be able to cope with simultaneous malfunction in 

large number of sensors. 

The second trial was a more difficult data modelling problem - meshed clusters. A 

simple linear classifier (i.e. SLP) cOuld only achieve 95.2% in accuracy even after the 

lengthy 20000 training epochs. Fast drifting data (hence larger drift step) was used 

to get a clearer result in the test. The neural system performance in data classifica-

tion was compared with the two benchmarks at three time intervals. The simulation 

results as listed in Table 6.2 proved that (1) the neural system was also applicable to 

non-Gaussian, non-linear classification problems, and (2) it could out-perform once 

again the non-adaptive SLP and 7:7:1 MLP The benchmarks had their boundary planes 

fixed after their initial training stage. Hence, in the dynamic environment, it was not 

surprising that the augmenting drift increased the number of misclassification. 

Admittedly, a MLP with a complex compensation scheme may be adaptive to the sensor 

drift. In [151], the causes of drift are known but their relationship to drift are not clear. 

Therefore, a MLP is used to map the relationship between the causes (i.e. temperature 

and pressure) and the sensor drift, as a compensation scheme. Note that, the MLP 

is pre-trained with all possible scenarios which the sensors will experience, that is not 

always available in most real-world applications. In the absence of such information, 

unsupervised neural algorithms are usually the more favourable options than the su- 
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pervised ones. Furthermore, the drift scenario examined in this chapter is non-trivial. 

The neural system has to learn the drift from one class of data only over a long period 

of time. It is anticipated that models such as Kohonen's SOM will experience CI. This 

will be confirmed in future simulation work. 

From the simulation results, it becomes apparent that the learning rate, which de-

termines the online weight update step size, has a delicate role in ensuring proper 

adaptation is applied. Too high a rate sends the model into oscillation and possibly sat-

uration; too low a rate constraints the adaptation and potentially causes the model to 

lose track of the drift. This is a common problem in online learning when it is applied 

in a changing environment. One possible solution is to use an adaptive learning rate. 

In [160], Amari first proposed the concept of learning of the learning rule. The learning 

rate is trained such that it will be increased to speed up the convergence rate when its 

weights are far from optimal, and be decreased to improve its classification accuracy 

when they are near optimal. While these properties are ideal, the rule is only applicable 

for distance loss function as the cost function of the model to guarantee a convergence 

and no local minima is present. A more general learning algorithm was then proposed 

by Murata et al[161]  which assumed no explicit cost function. This algorithm could 

potentially be applicable to the neural system. 

6.5 Summary 

This chapter first illustrated the experiment conducted for obtaining samples of drifting 

data on a test bench. The data was then used as a representation of a changing envi-

ronment. It was fused through a trained neural system (CRBM + SLP) in two separate 

trials: (a) simple, high-dimensional and overlapping, and (b) 2-dimensional, non-linear 

binary classification problems. During the drift period, the system was allowed to auto-

calibrate itself using the training algorithm and the methodology proposed in Chapter 

4. Importantly, the learning rate for the CRBM was carefully chosen to match the drift 

rate. The simulation results proved that the neural system was effective in tracking the 

imposed sensor drift. This is particularly intriguing because it demonstrates that the 

CRBM can be configured to respond sensibly to incomplete and "unbalanced" real-time 

input data that do not adequately represent the distributions of the training data. 
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Two trained but subsequently non-adaptive benchmarks, namely SLP and MLI were 

used to highlight the importance of the online learning to compensate drift. As ex-

pected, both algorithms were outperformed by the neural system in both trials. Addi-

tionally, the neural system has displayed great robustness against unpredictable sensor 

failure in Section 6.2 and the experiment omitted in this thesis but can be found in 

[162]. Under similar conditions, the SLP and the MLP failed immediately. On the con-

trary, the neural system together with the proposed updating rule managed to recover 

from the sensor failure(s) within a short period of time. This is particularly useful and 

important for the electrochemical sensing applications that form the motivation for this 

study, where robustness in the face of miniature, noisy and unreliable sensors is the 

primary challenge. 

Additionally, the learning rate has been identified as an important determinant of the 

success on drift tracking. A series of simulations on various drift and learning rates was 

carried out. The results showed that the optimum learning rate varied proportionally 

with the drift rate. A compelling solution is to employ an adaptive learning rate. The 

derivation of its learning rule will form part of the future work for this thesis. 
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Chapter 7 
Summary and Conclusions 

In this chapter, a summary of the work done in this thesis is first presented. Sub-

sequently, some conclusions are drawn from the work, with a revisit to the original 

objective of this thesis. The chapter ends with a list of possibilities of future work. 

7.1 Summary 

Fig.7.1 illustrates the research progress in this thesis, starting with some literature re-

views (Chapters 1 & 2), then some preparatory works (Chapters 3 & 4) and finally 

software simulations with real and artificial datasets (Chapters 5 & 6). 

Firstly, the literature review showed that there was a recent technological trend where 

more redundant sensors were being implemented on microsystems as the sensor fabri-

cation techniques advanced. These microsystems were deployed in an emergitig tech-

nology - distributed sensor networks. With limited bandwidth in communications, these 

distributed microsystems must be able to perform local sensor fusion. The project 

'IDEAS' was introduced and the specifications for the neural system were listed. Subse-

quently, three disciplines directly relevant to this study, namely intelligent sensor fusion 

in electrochemical sensing, counter-drift techniques and neural hardware in aVLSI were 

reviewed. 

Before the examination of the proposed 'neutral' solution (i.e. CRBM) as an effective 

sensor fusion mechanism, the sensor models and the neural system needed to be devel-

oped. 

. Sensor models - The motivation to derive sensor models was because real sen-

sor data was usually too expensive to be obtained and might be insufficient for 

training the CRBM. Therefore, significant amount of time was spent on the de-

velopment and the testing of the control chips. Sensor models were derived from 
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Figure 7.1: Flowchart illustrating the research progress in this thesis. 
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the calibrations on each sensor. Problems such as the short lifespan of a refer-

ence electrode and the double layer capacitance effect were experienced in the 

dissolved oxygen and the conductivity sensors respectively. Only the temperature 

and the pH sensors were suitable for subsequent simulations. While attempting 

to excite pH sensors with more current, it was observed that some sensors gave 

non-linear response due to their wide ranging intrinsic threshold voltages. 

. Neural system - The neural system was formed by a CRBM for feature extraction 

and a SLP as a linear classifier. A unique training methodology was proposed and 

outlined. "Dual-memory" configuration was identified as a way that (i) permited 

a permanent encoding of the discriminating feature and (ii) allowed the CRBM 

being adaptive to a changing environment. During the development, a new online 

weight learning rule for the CRBM was formulated. This rule ensured a consistent 

set of features being presented to the non-adaptive SLP It was argued that this 

new rule could be easily implemented based on the existing CRBM hardware. 

This thesis has two main simulations, namely 'modelling' and 'dynamic adaptation' sim-

ulations. 

• On modelling - The objective was to examine if the neural system could model 

complex, high-dimensional data distributions. The term 'complex' referred to sit-

uations where clusters had meshed areas and.were impossible to be separated 

linearly. The simulation was divided into two parts: part I examined simple 

but overlapping high-dimensional Gaussian clusters while part II examined 2D 

meshed non-Gaussian clusters. In part I, 100% accuracy in classification was ob-

tained despite the overlapping between clusters. When input dimension (i.e. the 

number of sensors) increases, there was more information available and unsur-

prisingly the neural system became more robust. In part II, the learning was more 

difficult and few experts (hidden neurons) were needed to represent one non-

Gaussian distribution. Longer training period and slower learning rate were re-

quired to capture the fine details and to escape from local minima while in search 

of the global convergence point. Almost 100% accuracy was recorded in two sep-

arate trials. Additionally, two parameters in the CRBM learning - learning rate 

and number of hidden neurons - were also studied. The simulation result agreed 

with other works in the literature that a slow learning rate could provide a slow 
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but stable convergence while a fast learning rate resulted a fast but noisy con-

vergence (due to over-sized learning steps). The other simulation result showed 

that the minimum number of hidden units required to encode the distributions in 

Fig.5.12(a) was five. 

• On dynamic adaptation - The objective was to examine if the neural system 

• could adapt to sensor drift. Experiments were carried out to obtain real drift 

data, and were used in two trials. Trial 1 had two high-dimensional, overlapping 

Gaussian clusters; two: Trial 2 had two 2D meshed, non-Gaussian clusters. Their 

online adaptation performance was compared with two benchmarks - trained but 

subsequently non-adaptive SLP and MLP In Trial 1, several different drift and 

failure rates were experienced in different sensors. The neural system managed 

to compensate the drift by adjusting its weights in the CRBM. This permitted it 

to sustain high accuracy rate in classification over longer drift period than the 

two benchmarks. Similar results were observed in Trial 2. Finally, a series of 

simulations have been run to study the relationship between the drift and the 

learning rates. 

Based on the forementioned simulation results, some conclusions can be drawn and 

they are described in the following section. 

7.2 Conclusions, 

This thesis examined the suggestion that 

"local pre-processing and early classification of real, high-dimensional, drift-
ing sensory signals can be achieved effectively by a hardware-amenable neural 
system". 

The literature review highlighted an emerging technology - distributed sensor network, 

which has a growing demand in ubiquitous processors to handle local measurement 

results. In this particular case, 'neural' approach as a form of intelligent sensor fusion 

is of interest. There is a long list of available neural networks but few are suitable for 

the application (i.e. the IDEAS project), where (a) drift is inevitable, (b) no reference 
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buffers are available for recalibration, (c) occlusion on sensing surface is common, (d) 

low power and small silicon footprint of neural hardware implementation are essential. 

The ideal solution is an unsupervised, adaptive (i.e. on-chip learning) and probabilistic 

neural algorithm which works with analogue sensory signals directly and is hardware-

amenable. These point to CRBM as the most suitable solution. 

To ease the binary classification (the sensor fusion mechanism in the IDEAS project), the 

most straightforward approach is to maximise the separation between the two clusters 

of data. From a circuit design point of view, this involves increasing the sensitivity 

of the sensors. Two versions of signal conditioning circuits for the pH sensors were 

implemented. They worked as intended. Given that the power rail was restricted to 

3V and the intrinsic threshold voltage of the pH sensors varied significantly, there was 

little that could be done to improve the sensor sensivity, whilst keeping a linear response 

within their dynamic range. Therefore it is compelling to further increase the number 

of redundant sensors to gain more information on the entity of interest. 

The neural system is formed by a CRBM and a SLP The former extracts the important 

features from the training data distributions while the latter performs a binary classi-

fication. Their implementation is already available in aVLSI technology. However, it is 

possible for the neural system to experience Catastrophic Interference because, quite 

often, only a single class of data is available over a lengthy period of time. Therefore, 

a new weight updating rule for the CRBM during operation in a dynamic environment 

was proposed. This rule involves only simple operations (i.e. subtraction and multipli-

cation), hence it should be equally hardware-amenable like other parts of CRBM which 

have been realised in aVLSI technology. 

From the 'modelling' simulations (Chapter 5), the neural system has demonstrated that 

the CRBM has strong modelling capability. Together with a SLI it achieved 100% ac-

curacy in binary classification in simulations involving (i) high-dimensional, overlap-

ping data distributions and (ii) two-dimensional, complex (with meshed areas) non-

Gaussian data distributions. In particular, the latter simulation demanded a non-linear 

model. A linear model such as SLP could not classify completely-correct. 

The selection of two parameters - learning rate and number of hidden units of the CRBM 

- was also studied. The aim was to find (i) the optimum learning rate which could 
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ensure a convergence rate and stability, and (ii) the number of hidden units to keep the 

network size at a minimum. In this particular study (training data as in Fig.5.12(a)), 

the optimum learning rate was 0.05 and the minimum number of hidden units was 

five. These parameters are acknowledgedly case dependent, and are determined by the 

complexity of the training data distributions. 

While the CRBM has demonstrated a strong modelling capability, it is not without any 

weakness. Unlike the original Boltzmann Machine, the CRBM has the noise control fac-

tors for each weight. During the simulations, they tended to compete with the weights 

to encode features in the training data distributions. With more variables such as these 

in use, training a CRBM became more complicated and tricky. A way to solve this "prób-

lem" is to assert some constraints in the learning of the variables. For instance, one can 

lower the learning rate for the noise control factors of hidden layer, hence allowing 

other variables (e.g. the noise control factors of visible layer, and the weights) to store 

most key features of the training data distributions  first. A further study in manag-

ing the learning of these variables is needed to gain more insight into the relationship 

between the variables. 

From the 'dynamic adaptation' simulations (Chapter 6), the neural system has demon-

strated its ability to adapt to changing environment. It was examined in two separate 

trials: (i) high-dimensional, simple data distributions and (ii) two-dimensional, meshed 

data distributions. The neural system showed its ability to compensate sensor drift by 

adjusting its weight using the proposed learning rule. This online updating allowed 

consistent features being presented to the SLP (a binary classifier with fixed weights). 

To highlight this adaptation feature, it was compared with two trained but subsequently 

non-adaptive neural models (SLP and MLP). In both trials, the neural models outper-

formed these two benchmarks. In particular, the neural system demonstrated a good 

robustness against sensor drift at various rates and one sensor failure, making full use 

of multiple reference electrodes (assuming that they experienced different drift and 

malfunction rates). 

Moreover, online learning rate in CRBM was identified as a determinant factor in the 

autocalibration process. As shown in Fig.6.14, different drift rates require different 

learning rates. If the learning rate is set to be higher than the optimum one, the CRBM 

will be more responsive to stochastic noise and possibly send its weights into saturation. 
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On the other hand, if the learning rate is set to be lower than the optimum one, the 

CRBM will slowly but surely lose track of the drift eventually. As drift rate is likely to 

vary with time, using a fixed learning rate is not ideal. One solution is to use an adaptive 

learning rate. 

Supported by the evidence shown in the 'modelling' and 'dynamic adaptation' simula-

tion results, it is finally concluded that the neural system can be an answer to effective 

data fusion in distributed sensor networks, albeit with some weaknesses. Improving 

these weaknesses will be the main task of future work. 

7.3 Future work 

The simulations reveal that there is a lack of full understanding on the relationship 

between weights and noise control factors. Inadequate training methodology results 

in a competition among the variables to encode features in the training distributions. 

The neural system relies wholly on the bias Units in the CRBM to store the baseline 

of the training distributions and the thresholds for the hidden layer, and updates only 

the weights of these bias Units in the dynamic environment. However, if a feature is 

represented by a collection of variables, the proposed autocalibration approach may be 

less effective. A further study on the variables will provide some useful insight on how 

to derive a better training methodology. 

Additionally, the simulations manifest a demand of an adaptive learning rate for the 

neural system to operate more efficiently in a dynamic environment. An oversized 

learning rate results a noise-sensitive neural system while an undersized learning rate 

poses a danger in the CRBM losing track of sensor drift. A general adaptive learning 

rule proposed by Murata [161] is potentially applicable to the CRBM. For a start, one 

needs to integrate the MCD learning rule for the weights into the learning rule of the 

learning rate. Simultaneously, the appropriate values for the algorithm parameters have 

to be determined to ensure stability in the learning. 

The natural next step will be the implementation of the complete neural system in aVLSI 

technology. Issues such as data communication method and memory for short/long 

term will require some considerations. The neural hardware can then be used as a plat-

form, together with a MCU/DSP that has similar 1SF functions, to perform a compar- 
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ative study of different architectural processors in terms of efficiency in performance, 

power and silicon area. The ultimate goal is to exploit the parallelism in the neu-

ral hardware, an area that recently attracts much research interest under a discipline, 

named "neuromorphic engineering". 

Subsequently, the neural hardware should be integrated with multisensor microsystems 

in a distributed network. The neural system has a probabilistic behaviour. Therefore, 

further exploration for applications is required to highlight its robustness against mea-

surement errors caused by occasional/permanent occlusion on sensing surface etc. In 

particular, it is anticipated that such a neural system will flourish in applications where 

the key features to distinguish different data clusters are encoded in the correlation 

between different spatial measurements. 

In this thesis, merely simple, uncompensated MLP was used as a benchmark in the 

'dynamic simulation' simulations. It will be of interest to implement a more complex 

MLP to examine the strengths and the weaknesses of both supervised and unsupervised 

neural algorithms in the forementioned application where no control measurement is 

available. On unsupervised neural algorithms, a further comparison between the pro-

posed neural system and the Kohonen's SOM will be assistive to highlight the strength 

of the proposed neural system in real-world applications where merely one class of data 

is present over a long measurement period. 

Another possible future work is to analyse the capabilities of CRBM. Such analysis will 

be useful to find the limitations of the CRBM and hence inspire further development in 

it. A fully mathematical analysis may be very difficult. Extensive simulations are useful 

alterhatives. 
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Abstract—A novel microelectronic "pill" has been developed 
for in situ studies of the gastro-intestinal tract, combining mi-
crosensors and integrated circuits with system-level integration 
technology. The measurement parameters include real-time 
remote recording of temperature, pH, conductivity, and dissolved 
oxygen. The unit comprises an outer biocompatible capsule 
encasing four microsensors, a control chip, a discrete component 
radio transmitter, and two silver oxide cells (the latter providing 
an operating time of 40 h at the rated power consumption of 12.1 
mW). The sensors were fabricated on two separate silicon chips 
located at the front end of the capsule. The robust nature of the 
pill makes it adaptable for use in a variety of environments related 
to biomedical and industrial applications. 

Index Terms—Microelectronic pill, microsensor integration, 
mobile analytical microsystem, multilayer silicon fabrication, 
radiotelemetry, remote in situ measurements. 

I. INTRODUCTION 

T HE invention of the transistor enabled the first Ta-
diotelemetry capsules, which utilized simple circuits for 

in vivo telemetric studies of the gastro-intestinal (01) tract [1]. 
These units could only transmit from a single sensor channel, 
and were difficult to assemble due to the use of discrete 
components [2]. The measurement parameters consisted of 
either temperature, pH or pressure, and the first attempts 
of conducting real-time noninvasive physiological measure-
ments suffered from poor reliability, low sensitivity, and short 
lifetimes of the devices. The first successful pH gut profiles 
were achieved in 1972 [3], with subsequent improvements in 

Manuscript received January 30, 2003: revised June 8, 2003. This work was 
supported by the Scottish Higher Education Funding Council under Grant RDG 
130. Asterisk indicates corresponding author 

°E. A. Johannessen is with the Department of Electronics and Electrical Engi-
neering, University of Glasgow, Rankine Building, Oakfleld Avenue, Glasgow 
GI 2 8LT, U.K. (e-mail: e.johannessen®elec.gla.ac.uk ). 

L.Wang. L. Cui, D. R. S. Cumming, and J. M. Cooper are with the Depart-
ment of Electronics and Electrical Engineering, University of Glasgow, Rankine 
Building, Glasgow GI2 8LT, U.K. 

T. B. Tang, M. Ahmadian, A. F. Murray. and B. W. Flynn are with the School 
of Engineering and Electronics, University of Edinburgh, King's Buildings, Ed-
inburgh EH9 3JL, U.K. 

A. Astaras and S. P. Beaumont are with the Institute for System Level Inte-
gration, The Alba Centre, Alba Campus, Livingston EH54 7EG, U.K. 

S. W. J. Reid is with the Department of Veterinary Clinical Studies, Univer-
sity of Glasgow, Institute of Comparative Medicine, Veterinary School, Glasgow 
G61 IQH, U.K. and also with the Department of Statistics and Modeling Sci-
ence, University of Slrathclyde, Livingstone Tower, Glasgow 01 IXW, U.K.. 

P. S. Yam is with the Department of Veterinary Clinical Studies, University of 
Glasgow, Institute of Comparative Medicine, Veterinary School, Glasgow G61 
IQH, U.K. 

Digital Object Identifier 10.1 I09ITBME.2003.820370  

sensitivity and lifetime [4], [5]. Single-channel radiotelemetry 
capsules have since been applied for the detection of disease 
and abnormalities in the GI tract [6]–[8] where restricted access 
prevents the use of traditional endoscopy [9]. 

Most radiotelemetry capsules utilize laboratory type sensors 
such as glass pH electrodes, resistance thermometers [101, or 
moving inductive coils as pressure transducers [11]. The rel-
atively large size of these sensors limits the functional com-
plexity of the pill for a given size of capsule. Adapting existing 
semiconductor fabrication technologies to sensor development 
[12]-.[17] has enabled the production of highly functional units 
for data collection, while the exploitation of integrated circuitry 
for sensor control, signal conditioning, and wireless transmis-
sion [18], [19] has extended the concept of single-channel ra-
diotelemetry to remote distributed sensing from microelectronic 
pills. 

Our current research on sensor integration and onboard data 
processing has, therefore, focused on the development of mi-
crosystems capable of performing simultaneous multiparameter 
physiological analysis. The technology has a range of applica-
tions in the detection of disease and abnormalities in medical 
research. The overall aim has been to deliver enhanced func-
tionality, reduced size and power consumption, through system-
level integration on a common integrated circuit platform com-
prising sensors, analog and digital signal processing, and signal 
transmission. 

In this paper, we present a novel analytical microsystem 
which incorporates a four-channel microsensor array for 
real-time determination of temperature, pH, conductivity and 
oxygen. The sensors were fabricated using electron beam and 
photolithographic pattern integration, and were controlled 
by an application specific integrated circuit (ASIC), which 
sampled the data with 10-bit resolution prior to communication 
off chip as a single interleaved data stream. An integrated radio 
transmitter sends the signal to a local receiver (base station), 
prior to data acquisition on a computer. Real-time wireless data 
transmission is presented from a model in vitro experimental 
setup, for the first time. 

Details of the sensors are provided in more detail later, but 
included: a silicon diode [20] to measure the body core temper-
ature, while also compensating for temperature induced signal 
changes in the other sensors; an ion-selective field effect tran-
sistor, ISFET, [21] to measure PH; 5 pair of direct contact gold 
electrodes to measure conductivity; and a three-electrode dcc-
trochemical cell [22], to detect the level of dissolved oxygen 
in solution. All of these measurements will, in the future, be 
used to perform in vivo physiological analysis of the 01-tract. 

0018-9294/04520.00 © 2004 IEEE 
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For example, temperature sensors will not only be used to mea-
sure changes in the body core temperature, but may also iden-
tify local changes associated with tissue inflammation and ul-
cers. Likewise, the pH sensor may be used for the determina-
tion of the presence of pathological conditions associated with 
abnormal pH levels, particularly those associated with pancre-
atic disease and hypertension, inflammatory bowel disease, the 
activity of fermenting bacteria, the level of acid excretion, re-
flux to the oesophagus, and the effect of GI specific drugs on 
target organs. The conductivity sensor will be used to monitor 
the contents of the GI tract by measuring water and salt absorp-
tion, bile secretion and the breakdown of organic components 
into charged colloids. Finally, the oxygen sensor will measure 
the oxygen gradient from the proximal to the distal GI tract. This 
will, in future enable a variety of syndromes to be investigated 
including the growth of aerobic bacteria or bacterial infection 
concomitant with low oxygen tension [23], as well as the role of 
oxygen in the formation of radicals causing cellular injury and 
pathophysiological conditions (inflammation and gastric ulcer-
ation). The implementation of a generic oxygen sensor will also 
enable the development of first generation enzyme linked am-
perometric biosensors, thus greatly extending the range of future 
applications to include, e.g., glucose and lactate sensing, as well 
as immunosensing protocols. 

II. MICROELECTRONIC PILL DESIGN AND FABRICATION 

A. Sensors 

The sensors were fabricated on two silicon chips located at the 
front end of the capsule. Chip 1 [Fig. 1(a), (c), (e)] comprises 
the silicon diode temperature sensor, the pH ISFET sensor and 
a two electrode conductivity sensor. Chip 2 [Fig. 1(b), (d), (f)] 
comprises the oxygen sensor and an optional nickel-chromium 
(NiCr) resistance thermometer. The silicon platform of Chip 1 
was based on a research product from Ecole Superieure D'ln-
genieurs en Electrotechnique et Electronique (ESIEE, France) 
with predefined n-channels in the p-type bulk silicon forming 
the basis for the diode and the ISFET. A total of 542 of such de-
vices were batch fabricated onto a single 4-in wafer. In contrast, 
Chip 2 was batch fabricated as a 9 x 9 array on a 380-sm-thick 
single crystalline 3" silicon wafer with (100) lattice Orienta-
tion, precoated with 300 nm Si3N4, silicon nitride, (Edinburgh 
Microfabrication Facility, U.K.). One wafer yielded 80, 5 x 
5 mm2  sensors (the center of the wafer was used for alignment 
markers). 

1) Sensor Chip 1: An array of 4 x 2 combined tempera-
ture and pH sensor platforms were cut from the wafer and at-
tached on to a 100-1cm-thick glass cover slip using S1818 pho-
toresist (Microposit, U.K.) cured on a hotplate. The cover slip 
acted as temporary carrier to assist handling of the device during 
the first level of lithography (Level]) when the electric connec-
tion tracks, the electrodes and the bonding pads were defined. 
The pattern was defined in S1818 resist by photolithography 
prior to thermal evaporation of 200 nm gold (including an ad-
hesion layer of 15 nm titanium and 15 nm palladium). An ad-
ditional layer of gold (40 nm) was sputtered to improve the ad-
hesion of the electroplated silver used in the reference electrode 
(see below). Liftoff in acetone detached the chip array from the 
cover slip. Individual sensors were then diced prior to their re-at-
tachment in pairs on a 1 00-cm-thick cover slip by epoxy resin 

Fig. I. The microelectronic sensors: (a) schematic diagram of Chip I, 
measuring 4.75 x 5 mm 2 , comprising the pH (ISFET) sensor (1), the 
5 x 104  mm2  dual electrode conductivity sensor (3) and the silicon 
diode temperature sensor (4); (b) schematic diagram of Chip 2, measuring 
5 x 5 mrn2 . comprising the electrochemical oxygen sensor (2) and a NiCr 
resistance thermometer (5). Once integrated in the pill, the area exposed 
to the external environment is illustrated by the 3-mm-diameter circle; (c) 
photomicrograph of sensor Chip I and (d) sensor Chip 2. The bonding 
pads (6), which provide electrical contact to the external electronic control 
circuit, are shown; (e) close up of the pH sensor consisting of the integrated 
3 x 10 mm2  AgIAgCl reference electrode (7), a 500-pm-diameter and 
50—pm-deep, IO-nL, electrolyte chamber (8) defined in polyimide, and the 
15 x 600 pm floating gate (9) of the ISFET sensor; (I) the oxygen sensor 
is likewise embedded in an electrolyte chamber (8). The three-electrode 
eleclrochemical cell comprises the 1 x 10_ 1  mm2  counter electrode (10), a 
microelectrode array of 57 x 10 pm diameter (4.5 x 10 mm 2 ) working 
electrodes (11) defined in 500-nm-thick PECVD Si3N4, and an integrated 
1.5 x 10_2  mm2 AgIAgCl reference electrode (12). 

[Fig. 1(c)]. The left-hand-side (LHS) unit comprised the diode, 
while the right-hand-side (RHS) unit comprised the ISFET. The 
15 x 600 lLin (L x W) floating gate of the ISFET was precov-
ered with a 50-nm-thick proton sensitive layer of Si3N4 for pH 
detection [24]. 

Photocurable polyimide (Arch Chemicals nv., Belgium) de-
fined the 10-nL electrolyte chamber for the pH sensor (above 
the gate) and the open reservoir above the conductivity sensor 
(Level 2). 

The silver chloride reference electrode (3 x 10-2  mm2 ) was 
fabricated during Levels 3 to 5, inclusive. The glass cover slip, 
to which the chips were attached, was cut down to the size of 
the 4.75 x 5 mm2  footprint (still acting as a supporting base) 
prior to attachment on a custom-made chip carrier used for elec-
troplating. Silver (5 /sm) was deposited on the gold electrode 
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defined at by chronopotentiometry (-300 nA, 600 s) after re-
moving residual polyimide in an 02 barrel asher (Electrotech, 
U.K.) for 2 mm. The electroplating solution consisted of 0.2 M 
AgNO3 , 3 M KI and 0.5 M Na2 S203. Changing the electrolyte 
solution to 0.1 M KCI at Level 4 allowed for the electroplated 
silver to be oxidized to AgCl by chronopoteniometry (300 nA, 
300 s). The chip was then removed from the chip carrier prior to 
injection of the internal 1 M KCI reference electrolyte required 
for the Ag I AgCl reference electrode (Level 5). The electrolyte 
was retained in a 0.2% gel matrix of calcium alginate [25]. 

The chip was finally clamped by a 1-mm-thick stainless-steel 
clamp separated by a 0.8-jam-thick sheet of Viton fluoroelas-
tomer (James Walker, U.K.). The rubber sheet provided a uni-
form pressure distribution in addition to forming a seal between 
the sensors and capsule. 

2) Sensor Chip 2: The level I pattern (electric tracks, 
bonding pads, and electrodes) was defined in 0.9 jim UV3 
resist (Shipley, U.K.) by electron beam lithography. A layer of 
200 nm gold (including an adhesion layer of 15 nm titanium 
and 15 nm palladium) was deposited by thermal evaporation. 
The fabrication process was repeated (Level 2) to define the 
5-jam-wide and 11-mm-long NiCr resistance thermometer 
made from a 100-nm-thick layer of NiCr (30-kO resistance). 
Level 3 defined the 500-nm-thick layer of thermal evaporated 
silver used to fabricate the reference electrode. An additional 
sacrificial layer of titanium (20 nm) protected the silver from 
oxidation in subsequent fabrication levels. The surface area 
of the reference electrode was 1.5 x 10-2  mm2 , whereas the 
counter electrode made of gold had an area of 1.0 x 10_1  mm2 . 

Level 4 defined the microelectrode array of the working elec-
trode, comprising 57 circular gold electrodes, each 10 jim in 
diameter,- with an interelectrode spacing of 25 jim and a com-
bined area of 4.5 x iO mm 2 . Such an array promotes electrode 
polarization and reduces response time by enhancing transport 
to the electrode surface [26]. The whole wafer was covered with 
500 nm plasma-enhanced chemical vapor deposited (PECVD) 
Si3N4. The pads, counter, reference, and the microelectrode 
array of the working electrode was exposed using an etching 
mask of SI 818 photoresist prior to dry etching with C2176. The 
chips were then diced from the wafer and attached to separate 
I 00-jim-thick cover slips by epoxy resin to assist handling. The 
electrolyte chamber was defined in 50-jim-thick polyimide at 
Level 5. Residual polyimide was removed in an 02 barrel asher 
(2 mm), prior to removal of the sacrificial titanium layer at Level 
6 in a diluted HF solution (HF to RO water, 1:26) for 15 s. The 
short exposure to HF prevented damage to the PECVD Si3N4 
layer. 

Thermally evaporated silver was oxidized to Ag 1AgCI (50% 
of film thickness) by chronopotentiometry (120 nA, 300 s) at 
Level 7 in the presence of KCI, prior to injection of the internal 
reference electrolyte at Level 8. A 5 x 5 mm2  sheet of oxygen 
permeable teflon was cut out from a 12.5-jim-thick film and at-
tached to the chip at Level 9 with epoxy resin prior to immobi-
lization by the aid of a stainless steel clamp. 

B. Control Chip 

The ASIC was a control unit that connected together the ex-
ternal components of the microsystem (Fig. 2). It was fabricated 
as a 22.5 mm2  silicon die using a 3-V, 2-poly, 3-metal 0.6-jim 

Fig. 2. Photograph of the 4.75 x 4.75 mma  application specific integrated 
circuit control chip (a), the associated explanatory diagram (b), and a schematic 
of the architecture (c) illustrating the interface to external components. MUX 
(four-channel multiplexer), ADC, DAC, and OSC (32-kHz oscillator). 

CMOS process by AUstria Microsystems (AMS) via the Euro-
practice initiative. It is a novel mixed signal design that con-
tains an analog signal conditioning module operating the Sen-
sors, an 10-bit analog-to-digital (ADC) and digital-to-analog 
(DAC) converters, and a digital data processing module. An RC 
relaxation oscillator (OSC) provides the clock signal. 

The analog module was based on the AMS OP05B opera-
tional amplifier, which offered a combination of both a power-
saving scheme (sleep mode) and a compact integrated circuit 
design. The temperature circuitry biased the diode at constant 
current, so that a change in temperature would reflect a corre-
sponding change in the diode voltage. The pH ISFET sensor was 
biased as a Simple source and drain follower at constant cur-
rentwith the drain-source voltage changing with the threshold 
voltage and pH. The conductivity circuit operated at direct cur-
rent measuring the resistance across the electrode pair as an in-
verse function of solution conductivity. An incorporated poten-
tiostat circuit operated the amperometric oxygen sensor with a 
10-bit DAC controlling the working electrode potential with re-
spect to the reference. The analog signals had a full-scale dy-
namic range of 2.8 V (with respect to a 3.1-V supply rail) with 
the resolution determined by the ADC. The analog signals were 
sequenced through a multiplexer prior to being digitized by the 
ADC. The bandwidth for each channel was limited by the sam-
pling interval of 0.2 ms. 

The digital data processing module conditioned the digitized 
signals through the use of a serial bitstream data compression 
algorithm, which decided when transmission was required by 
comparing the most recent sample with the previous sampled 
data. This technique minimizes the transmission length, and 
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is particularly effective when the measuring environment is at 
quiescent, a condition encountered in many applications [27]. 
The entire design was constructed with a focus on low power 
consumption and immunity from noise interference. The dig-
ital module was deliberately clocked at 32 kHz and employed 
a sleep mode to conserve power from the analog module. Sep-
arate on-chip power supply trees and pad-ring segments were 
used for the analog and digital electronics sections in order to 
discourage noise propagation and interference. 

Radio Transmitter 

The radio transmitter was assembled prior to integration in the 
capsule using discrete surface mount components on a single-
sided printed circuit board (PCB). The footprint of the standard 
transmitter measured 8 x 5 x 3 mm including the integrated 
coil (magnetic) antenna. It was designed to operate at a trans-
mission frequency of 40.01 MHz at 20 °C generating a signal 
of 10 kHz bandwidth. A second crystal stabilized transmitter 
was also used. This second unit was similar to the free run-
ning standard transmitter, apart from having a larger footprint of 
10 x 5 x 3 mm, and a transmission frequency limited to 20.08 
MHz at 20 °C, due to the crystal used. Pills incorporating the 
standard transmitter were denoted Type I, whereas the pills in-
corporating the crystal stabilized unit were denoted Type II. The 
transmission range was measured as being 1 meter and the mod-
ulation scheme frequency shift keying (FSK), with a data rate of 
I kbs. 

Capsule 

The microelectronic pill consisted of a machined biocom-
patible (noncytotoxic), chemically resistant polyether-terketone 
(PEEK) capsule (Victrex, U.K.) and a PCB chip carrier acting 
as a common platform for attachment of the sensors, ASIC, 
transmitter and the batteries (Fig. 3). The fabricated sensors 
were each attached by wire bonding to a custom made chip car-
rier made from a 10-pin, 0.5-mm pitch polyimide ribbon con-
nector. The ribbon connector was, in turn, connected to an in-
dustrial standard 10-pin flat cable plug (FCP) socket (Radio 
Spares, U.K.) attached to the PCB chip carrier of the microelec-
tronic pill, to facilitate rapid replacement of the sensors when 
required. The PCB chip carrier was made from two standard 
1.6-mm-thick fiber glass boards attached back to back by epoxy 
resin which maximized the distance between the two sensor 
chips. The sensor chips were connected to both sides of the PCB 
by separate FCP sockets, with sensor Chip I facing the top face, 
with Chip 2 facing down. Thus, the oxygen sensor on Chip 2 had 
to be connected to the top face by three 200-Ism copper leads 
soldered on to the board. The transmitter was integrated in the 
PCB which also incorporated the power supply rails, the con-
nection points to the sensors, as well as the transmitter and the 
ASIC and the supporting slots for the capsule in which the chip 
carrier was located. 

The ASIC was attached with double-sided copper conducting 
tape (Agar Scientific, U.K.) prior to wirebonding to the power 
supply rails, the sensor inputs, and the transmitter (a process 
which entailed the connection of 64 bonding pads). The unit 
was powered by two standard 1.55-V SR44 silver oxide (A9 2  0) 
cells with a capacity of 175 mAh. The batteries were serial con-
nected and attached to a custom made 3-pin, 1.27-mm pitch plug 
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Fig. 3. Schematic diagram (top) of the remote mobile analytical microsyslem 
comprising the electronic pill. The prototype is 16 x 55 mm, weights 13.5g. 
The Type I unit consist of the microelectronic sensors at the front enclosed by 
the melal clamp and rubber seal (1) which provide a 3-mm-diameter access 
channel to the sensors (2). The front section of the capsule, physically machined 
from solid PEEK, is illustrated (3) with the rear section removed to illustrate 
the internal design. The front and rear section of the capsule is joined by a 
screw connection sealed of by a \ritonrubber  0-ring (4). The ASIC conlrol chip 
(5) is integrated on the common PCB chip carrier (6) which incorporate the 
discrete component radio transmitter (7), and the silver oxide battery cells (8). 
The battery is connected on the reverse side of the PCB (9). The Type!! unit is 
identical to the Type! with exception of an incorporated crystal stabilized radio 
transmitter (10) for impruved temperature stability. 

by electrical conducting epoxy (Chemtronics, Kennesaw, GA). 
The connection to the matching socket on the PCB carrier pro-
vided a three point power supply to the circuit comprising a neg-
ative supply rail (-1.55 V), virtual ground (0 V), and a positive 
supply rail (1.55 V). The battery pack was easily replaced during 
the experimental procedures. 

The capsule was machined as two separate screw-fitting com-
partments. The PCB chip carrier was attached to the front sec-
tion of the capsule (Fig. 3). The sensor chips were exposed to 
the ambient environment through access ports and were sealed 
by two sets of stainless steel clamps incorporating a 0.8-cm-
thick sheet of Viton fluoroelastomer seal. A 3-mm-diameter ac-
cess channel in the center of each of the steel clamps (md. the 
seal), exposed the sensing regions of the chips. The rear sec-
tion of the capsule was attached to the front Section by a 13-mm 
screw connection incorporating a Viton rubber 0-ring (James 
Walker, U.K.). The seals rendered the capsule water proof, as 
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well as making it easy to maintain (e.g., during sensor and bat-
tery replacement). The complete prototype was 16 x 55 mm and 
weighted 13.5 g including the batteries. A smaller pill suitable 
for physiological in vivo trials (10 x 30 mm) is currently being 
developed from the prototype. 

III. MATERIAL AND METHODS 

General Experimental Setup 

All the devices were powered by batteries in order to demon-
strate the concept of utilizing the microelectronic pill in re-
mote locations (extending the range of applications from in vivo 
Sensing toenvironmental or industrial monitoring). The pill was 
submerged in a 250-mL glass bottle located within a 2000-mL 
beaker to allow for a rapid change of pH and temperature of the 
solution. A scanning receiver (Winradio Communications, Aus-
tralia) captured the wireless radio transmitted signal from the 
microelectronic pill by using a coil antenna wrapped around the 
2000-mL polypropylene beaker in which the pill was located. 
A portable Pentium III computer controlled the data acquisi-
tion unit (National Instruments, Austin, TX) which digitally ac-
quired analog data from the scanning receiver prior to recording 
it on the computer. 

The solution volume used in all experiments was 250 mL. 
The beaker, pill, glass bottle, and antenna were located within 
a 25 x 25 cm container of polystyrene, reducing temperature 
fluctuations from the ambient environment (as might be ex-
pected within the GI tract) and as required to maintain a stable 
transmission frequency. The data was acquired using LabView 
(National Instruments, Austin, TX) and processed using a 
MATLAB (Mathworks, Natick, MA) routine. 

Sensor Characterization 

The lifetime of the incorporated Ag I AgCI reference elec-
trodes used in the pH and oxygen sensors was measured with 
an applied current of I pA immersed in a 1.0 M KCI electrolyte 
solution. The current reflects the bias input current of the oper-
ational amplifier in the analog sensor control circuitry to which 
the electrodes were connected. 

The temperature sensor was calibrated with the pill sub-
merged in reverse osmosis (RO) water at different temperatures. 
The average temperature distribution over 10 min was recorded 
for each measurement, represented as 9.1 °C, 21.2 °C, 33.5 
°C, and 47.9 °C. The system was allowed to temperature 
equilibrate for 5 min prior to data acquisition. The control 
readings were performed with a thin wire K-type thermocouple 
(Radio Spares, U.K.). The signal from the temperature sensor 
was investigated with respect to supply voltage potential, due 
to the temperature circuitry being referenced to the negative 
supply rail. Temperature compensated readings (normalized to 
23 °C) were recorded at a supply voltage potential of 3.123, 
3.094, 3.071, and 2.983 mV using a direct communication link. 
Bench testing of the temperature sensor from 0°C to 70°C was 
also performed to investigate the linear response characteristics 
of the temperature sensor. 

The pH sensor of the microelectronic pill was calibrated in 
standard pH buffers [28] of pH 2,4,7,9, and 13, which reflected 
the dynamic range of the sensor. The calibration was performed 
at room temperature (23 °C) over a period of 10 mm, with the  

pill being washed in RO water between each step. A standard 
lab pH electrode was used as a reference to monitor the pH of 
the solutions (Consort n.y., Belgium). The pH channel of the pill 
was allowed to equilibrate for 5 min prior to starting the data ac-
quisition. Each measurement was performed twice. Bench test 
measurements from pH 1 to 13 were also performed using an 
identical control circuit to the ASIC. 

The oxygen sensor was bench tested with a standard labora-
tory potentiostat (Bioanalytical Systems, West Lafayette, IN), 
over its dynamic range in phospate buffered saline (PBS) using 
• direct communication link at 23 °C. Cyclic voltammetry with 
• sweep potential from 0.1 to 0.45 V (versus Ag I AgCI) was per-
formed in 1-mM ferroscene-monocarboxylic acid (FMCA) as a 
model redox compound, to test the performance of the micro-
electrode array. A three-point calibration routine was performed 
at oxygen concentrations of 0 mg L 1  (PBS saturated with 2 M 
Na2SO3), 4mg L 1  (PBS titration with 2 M Na2SO3) and 8.2 
mgL' (oxygen saturated PBS solution). The solution saturated 
with dissolved oxygen was equilibrated overnight prior to use. 
The dissolved oxygen was monitored using a standard Clark 
02 electrode (Orion Research Inc., Beverly, MA). The reduc-
tion potential of water was assessed in oxygen depleted PBS, 
to avoid interference from oxygen, at the same time assessing 
the lower potential limit that could be used for maximizing the 
efficiency of the sensor. The voltage was then fixed above this 
reduction potential to assess the dynamic behavior of the sensor 
upon injection of saturated Na2 SO3 in oxygen saturated PBS. 

Transmission 

The pill's transmission frequency was measured with respect 
to changes in temperature. The Type I pill (without crystal) was 
submerged in RO water at temperatures of 1 °C, 11 °C, 23 °C, 
and 49°C, whereas the Type!! pill (with crystal) was submerged 
in temperatures of 2 °C, 25 °C, and 45 °C. The change in fre-
quency was measured with the scanning receiver, and the results 
used to assess the advantage of crystals stabilized units at the 
cost of a larger physical size of the transmitter. 

Dynamic Measurements 

Dynamic pH measurements were performed with the pill sub-
merged in a PBS solution at 23 °C. The pH was changed from 
the initial value of 7.3 by the titration of 0.1 M H2SO4  and 
0.1 M NaOH, respectively. Subsequently, the pH was changed 
from pH 7.3 to pH 5.5 (after 5 mm), pH 3.4 (after 8 mm) to 
pH 9.9 (after 14 mm) and back to pH 7.7 (after 21 mm). A 
standard (bench-top) pH electrode monitored the pH of the so-
lution. The solutions were sampled after the pH change, and 
measured outside the experimental system to prevent electronic 
noise injection from the pH electrode. The temperature channel 
was recorded simultaneously. 

Sensor and Signal Dr(ft 

Long term static pH and temperature measurements were per-
formed to assess signal drift and sensor lifetime in physiological 
electrolyte (0.9% saline) solutions. A temperature of 36.5 °C 
was achieved using a water bath, with the assay solutions con-
tinuously stirred and re-circulated using a peristaltic pump. The 
sensors were transferred from solutions of pH 4 to pH 7, within 
2 h of commencing the experiment, and from pH 7 to pH 10.5, 
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Fig. 4. Temperature sensor: (a) temperature recording over a range from 
9.1 °C to 47.9 'C, represented by digital datapoints; (b) high-resolution plot of 
a temperature change from 49.8 'C to 48.7 'C. The control measurement from 
the thermocouples is presented as solid points with error bars representing the 
resolution of the thermometer. The resolution of the temperature channel was 
noise limited to 0.4 'C. 

after 4 h. The total duration of the experiment was 6 h. Each ex-
periment was repeated twice. 

IV. RESULTS 

The power consumption of the microelectronic pill with the 
transmitter, ASIC and the sensors connected was calculated to 
12.1 mW, corresponding to the measured current consumption 
of 3.9 mA at 3.1-V supply voltage. The ASIC and sensors con-
sumed 5.3 mW, corresponding to 1.7 mA of current, whereas 
the free running radio transmitter (Type I) consumed 6.8 mW 
(corresponding to 2.2 mA of current) with the crystal stabi-
lized unit (Type 11) consuming 2.1 mA. Two SR44 A9 2 0 bat-
teries used provided an operating time of more than 40 h for the 
microsystem. 

A. Temperature Channel Performance 

The linear sensitivity was measured over a temperature range 
from 0 °C to 70 °C and found to be 15.4 mV0C_1.  This am-
plified signal response was from the analog circuit, which was 
later implemented in the ASIC. The sensor [Fig. 4(a)], once in-
tegrated in the pill, gave a linear regression of 11.9 bits0C_ 

(f(T'c) = 11.9 (T0C) - 42.7, R2  = 0.99), with a resolu-
tion limited by the noise band of 0.4 °C [Fig. 4(b)]. The diode 
was forward biased with a constant current (15 gsA) with the 
n-channel clamped to ground, while the p-channel was floating. 
Since the bias current supply circuit was clamped to the negative 
voltage rail, any change in the supply voltage potential would 
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Fig. 5. pH sensor: (a) pH recording in the range of pH 2 to 13, represented by 
digital datapoints; (b) dynamic recording of temperature (I) and pH (2) using 
a direct communication link illustrates the temperature sensitivity of the pH 
channel (16.8 mV' C - '), whereas the temperature channel is insensitive to any 
p11 change. 

cause the temperature channel to drift. Thus, bench test mea-
surements conducted on the temperature sensor revealed that 
the output signal changed by 1.45 mV per mV change in supply 
voltage(f(mV) = -1.45(mV)-I-2584,R 2  = 0.99) with f(mV) 
expressed in millivolts, corresponding to a drift of -21 mV h' 
in the pill from a supply voltage change of -14.5 mV h 1 . 

B. pH Channel Performance 

The linear characteristics from pH 1 to 13 corresponded to 
a sensitivity of -41.7 mV pH t  unit at 23 °C, which is in 
agreement with literature values [21] although the response 
was lower than the Nernstian characteristics found in standard 
glass pH electrodes (-59.2 mV pH' unit). The pH ISFET 
sensor operated in a constant current mode (15 giA), with 
the drain voltage clamped to the positive supply rail, and the 
source voltage floating with the gate potential. The Ag I AgCI 
reference electrode, representing the potential in which the 
floating gate was referred to, was connected to ground. The 
sensor performance, once integrated in the pill [Fig. 5(a)], cor-
responded to 14.85 bits pH' which gave a resolutiOn of 0.07 
pH per datapoint. The calibrated response from the pFI sensor 
conformed to a linear regression (f(pH) = - 14.85 pH + 588, 
R2  = 0.98), although the sensor exhibited a larger responsivity 
in alkaline solutions. The sensor lifetime of 20 h was limited 
by the Ag I AgCI reference electrode made from electroplated 
silver. The pH sensor exhibited a signal drift of -6 mV h 1  
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(0.14 pH), of which -2.5 mV h' was estimated to be due 
to the dissolution of AgCI from the reference electrode. The 
temperature sensitivity of the pH-sensor was measured as 16.8 
mV0C* Changing the pH of the solution at 40 °C from pH 
6.8 to pH 2.3 and pH 11.6 demonstrated that the two channels 
were completely independent of each other and that there was 
no Signal interference from the temperature channel [Fig. 5(b)]. 

Oxygen Sensor Performance 

The electrodes were first characterized using the model 
redox compound FMCA, showing that the oxygen sensor 
behaved with classic microelectrode characteristics [26]. The 
reduction potential of water was subsequently measured at 
-800 mV (Versus the integrated Ag I AgCl) by recording the 
steady-state current in oxygen-depleted PBS, thereby excluding 
any interfering species. 

In order to calibrate the sensor, a three point calibration was 
performed (at saturated oxygen, and with oxygen removed 
by the injection of Na2SO3 to a final concentration of I M). 
The steady State signal from the oxygen saturated solution 
was recorded at a constant working electrode potential of 
-700 mV (versus Ag I AgCl), which was below the reduction 
potential for water. This generated a full-scale signal of 65 nA 
corresponding 8.2 mg 02 L 1 . The injection of Na2SO3 into 
the PBS after 90 s provided the zero point calibration. This 
fall in the reduction current provided corroborative evidence 
that dissolved oxygen was being recorded, by returning the 
signal back to the baseline level once all available oxygen was 
consumed. A third, intermediate point was generated through 
the addition of 0.01 M Na2SO3. The resulting calibration graph 
conformed to a linear regression (f(mgO 2 )= 7.9 (nag 02), 
R2  = 0.99) with f(111902)  expressed in nanoamperes. The 
sensitivity of the sensor was 7.9 nA mg' 02, with the resolu-
tion of 0.4 mg L' limited by noise or background drift. The 
lifetime of the integrated Ag I AgCI reference electrode, made 
from thermal evaporated silver, was found to be to 45 h, with an 
average voltage drift of -1.3 mV h due to the dissolution of 
the AgCI during operation. Both measurements of FMCA and 
oxygen redox behavior indicated a stable Ag I AgCI reference. 

Conductivity Sensor Performance 

The prototype circuit exhibited a logarithmic performance 
from 0.05 to 10 ITS cm which conformed to a first-order re-
gression analysis (f(mS cm - 1) = 165 In(mS cm) + 850, 
R2  = 0.99) with f(mS cm 1 ) expressed in millivolts. The 
sensor saturated at conductivities above 10 mS cm' due to the 
capacitive effect of the electric double layer, a phenomena com-
monly observed in conductimetric sensor systems [29]. 

Control Chip 

The background noise from the ASIC corresponded to a con-
stant level of 3-mV peak-to-peak, which is equivalent to one 
least significant bit (LSB) of the ADC. Since the second LSH 
were required to provide an adequate noise margin, the 10-bit 
ADC was anticipated to have an effective resolution of 8 bits. 

F Transmission Frequency 

Frequency stabilized units were essential to prevent the trans-
mission drifting out of range, particularly if the pill was subject  
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Fig. 6. Recording of p1-I and temperature in vitro using the electronic pill 
suspended in PBS with the pH and temperature presented on the RHS axis: (a) 
the solid line represents the acquired data from the pH sensor, with the dotted 
line representing the real pH as measured using a standard lab pH electrode. 
An increased signal magnitude conesponds to a reduced pH. The initial pH 
7.3 was changed by titrating 0.1 M H2SO4 to pH 5.5 (4 mm) and pH 3.4 
(8 mm), respectively. Adding 0.1 M NaOH returned the pH to 9.9 (14 mm) 
before the final pH of 7.7 (20 mm) was achieved by titrating 0.1 M H2 SO4; 
(b) simultaneous recorded data from the temperature sensor at a constant 
temperature of 23 °C. The negative drift is due to a reduced supply voltage 
from the batteries. 

to a temperature change during operation. The standard Type / 
transmitter exhibited a negative linear frequency change from 
39.17 MHz at I °C to 38.98 MHz at 49 °C, corresponding to 

4kHz0C_1 (f(Toc) = -4x 10-3 (Toc)+39.18,R2  = 0.99) 
with the f(Toc) expressed in Hertz. The narrow signal band-
width of 10 kHz gave a temperature tolerance of only ±1.3°C 
before the signal was lost. In contrast, the Type//transmitter ex-
hibited a positive linear frequency change from 20.07 MHz at 
2°C to 20.11 MHz at 45 °C, corresponding to 0.9 kH Z0C 1  

(f(Toc) = 9 X 10(Toc) + 20.07, R2  = 0.99). Consid-
ering the identical signal bandwidth of 10 kHz, the temperature 
tolerance was increased to +5.5 °C. The transmitter's signal 
magnitude was not affected with the pill immersed in the dif-
ferent electrolyte solutions or RO water, compared to the pill 
surrounded by air only. Tests were also conducted with the pill 
immersed in the large polypropylene beaker filled with 2000 mL 
of PBS without the signal quality being compromised. The elec-
tromagnetic noise baseline was measured to 78 dB of SIN in the 
20 MHz band of the cryital stabilized transmitter. 

G. Dual Channel Wireless Signal Transmission 

Dual channel wireless signal transmission was recorded from 
both the pH and temperature channels at 23 °C, with the pill 
immersed in a PBS solution of changing pH. The calibration 
graphs for the temperature (f(Toc) = 11.9(Toc) -42.7, R2  = 
0.99) and pH channel (f(pH) as  -14.85pH+588,R2  = 0.98) 
were used to convert the digital units from the MATLAB calcu-
lated routine to the corresponding temperature and pH values. 

The signal from the pH channel exhibited an initial offset of 
0.2 pH above the real value at pH 7.3 [Fig. 6(a)]. In practice, the 
pH sensor was found to exhibit a positive pH offset as the solu-
tion became more acidic, and a negative pH offset as the solution 
became more alkaline. The response time of the pH sensor was 
measured to 10 s. The temperature channel was unaffected by 
the pH change [Fig. 6(b)], confirming the absence of crosstalk 
between the two channels in Fig. 5(b). 
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The sensor lifetime was further extended through using a 
three-electrode electrochemical cell for the oxygen sensor, in 
favor of a two-electrode device. A two electrode unit utilize the 
reference electrode as a combined counter and reference unit to 

43 	 channel all the current from the reduction of oxygen. However, 
a three-electrode electrochemical cell bypasses the current flow 

41 	 from the working electrode by incorporating a separate counter 
electrode subjecting the reference electrode only to the bias cur- 

I— 	rent of the input transistor stage of the operational amplifier, to 
which the sensor is connected. Thus, the overall current chan- 

37 
	through the reference was reduced by at least three orders 

of magnitude. This effect is important as it enables a reduction 
as 	in the electrode area and improved long-term stability. 

B. Sensor Performance 

Fig. 7. Long term in vitro pH measurements in response to a changing pH 
from the initial pH 4 to pH 7(2 h) and pH 10.5(4 h) at 36.5 °C: (a) solid line 
represent the recorded data from the pH sensor, with the dotted line representing 
the real pH as measured using a standard lab pH electrode. The average response 
illustrates the long-term drift in the sensor after 6 h. The error bars correspond 
to the standard error of the mean (0 = 2); (b) the drift from the temperature 
sensor is solely based on the supply voltage potential, resulting in a smaller error 
between successive measurements (u = 2). 

Six hour bench test measurements of the pH and tempera-
ture channels in electrolyte solutions, maintained at 36.5 °C, re-
vealed long term drift characteristics of both channels (Fig. 7). 
The sensor exhibited an initial rapid pH response (30 s), with an 
additional equilibration time of 2 h required to transmit the cor-
rect the pH of the solution. The temperature channel [Fig. 7(b)] 
exhibited similar drift characteristics as that found in Fig. 6(b). 

V. DISCUSSION 

All of the components of the sensors and the capsule, exposed 
to the local environment, had to be able to resist the corrosive 
environment in the digestive, tract, and at the same time be non-
toxic'(biocompatible) to the organism. If toxic materials were 
used (such as in batteries and the Ag I AgCI reference elec-
trode), care would need to be taken to prevent leakage from the 
micro-system and into the surrounding environment. 

A. Fabrication 

Thermal evaporation of silver generates a dense metal layer, 
with characteristics closer to bulk metal compared to porous 
electroplated silver. Although electroplating allow for a thicker 
layer of silver to be deposited, the lifetime of a Ag I AgCl 
reference electrode made from 500-nm-thick thermally evapo-
rated silver was compared to a Ag I AgCl electrode made from 
a 5-tim-thick eleètroplated layer. The results clearly demon-
strated the potential of utilizing thermally evaporated silver in 
Ag I AgCI electrodes to extend lifetime by more than 100%. 
However, a protective layer of 20 nm titanium was required to 
prevent oxidation of the silver in subsequent fabrication levels, 
and which had to be removed by immersion in a HF solution. 
Since HF also attacks Si3N 4 , this procedure could not be used 
in Chip I to avoid damage to the thin 50—nm layer of Si3N4 
defining the pH sensitive membrane of the ISFET. In contrast, 
the 500-nm-thick PECVD Si3N4 defining the microelectrode 
al-ray of the oxygen sensor, was tolerant to HF exposure. 

The temperature circuit was sensitive to the supply voltage. 
The n-channel of the silicon diode was clamped to ground, 
whereas the bias current supply circuit was clamped to the 
negative supply rail. Thus, an increase of 7.25 mV ht  (from 
a total 14.5 mV h' from the positive and negative supply 
rail) would reduce the bias current by 0.5%, resulting in a 
diode voltage change of —1.6 mV h' [20]. A potential divider 
circuit clamped between ground and the positive supply rail 
was used to create an offset signal prior to the amplification 
stage. The change in offset signal corresponds to —3.2 mV h 1 , 

resulting in a total signal change of —4.8 mV h prior to 
amplification with a gain of 6.06, resulting in a total change of 
—29.1 mV h'. The theoretical calculation conforms to within 
40% of the experimental result, which can be explained by 
real circuit device tolerances (such as supply voltage effect on 
the operational amplifiers) which deviates from the theoretical 
predictions. 

The pH channel recordings from the pill (Fig. 6) deviated 
from the true value measured with the glass pH electrode, by 
transmitting a pH responsivity below the calibrated value. In 
acidic solutions, this resulted in a pH response slightly above 
the true value, whereas the response in alkaline solutions was 
below the true value. In neutral solutions, the pH channel ex-
hibited an offset of 0.2 units above the real value. The results 
of the long-term measurements conducted in Fig. 7 suggested 
that the recorded values would match the real pH of the solu-
tion if left to equilibrate for 2 h. Thus, the combined effect of 
calibration offset and short equilibration time to a changing pH, 
could explain the signal offset between the measured and real 
pH presented in Fig. 6. The discrepancy between the real and 
recorded value was possibly due to an inherent memory effect in 
the pH sensitive Si3N 4  membrane [30], where the magnitude in 
response to a changing pH depended on the previous pH value. 
The difference between the initial pH measurement and the so-
lution value of pH 4 and 7 (Fig. 7) was comparable to the offset 
magnitudes seen in Fig. 6. 

Considering Fig. 7, the offset recorded for pH 10.5 was due 
to additional factors, such as drift in the reference electrode and 
supply voltage. The potential divider circuit, which clamped the 
drain potential of the ISFET was connected between ground 
and the positive supply rail. Thus, a corresponding change in 
the positive supply rail of —7.25 mV h 1  would result in a 
drain voltage change of —3.6 mV h 1  from the potential di-
vider circuit. The additional drift from the Ag I AgCl reference 
of —2.5 mV h 1  balanced the remaining drift of —6 mV h_t 
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recorded. The additional discrepancy found at pH 10.5 (Fig. 7) 
was most likely a result of long-term signal drift from the inter-
action of proton reactive sites in the bulk of the Si3N4 membrane 
[31], with the drift becoming more predominant in alkaline so-
lutions and at higher temperatures [32]. 

Bench testing of the oxygen sensor proved satisfactory 
operation of the electrochemical cell with a low noise (1% 
of full signal magnitude) and rapid response time of 10 s. 
However, signal resolution was limited to the standard error 
of ±0.4 mg L'. The signal discrepancy was caused by 
contamination or deposits on the working electrode surface, 
which reduced the sensitivity, and by ambient temperature vari-
ation, changing the amount of dissolved oxygen by 2% 0C' 1  

[33]. Cleaning the surface in an 02 barrel asher restored the 
function. However, signal drift was also caused by electrolyte 
penetration of the interface between the PECVD Si3N4 layer 
and the underlying gold working electrode comprising the 
microelectrode array. This represented a more serious problem, 
since it effectively increased the combined surface area of the 
working electrode resulting in an increase in signal magnitude 
at a constant dissolved oxygen level. 

The conductivity sensor is currently being redesigned to ex-
tend the dynamic range. The sensor will be an interdigitated gold 
planar electrode using Si3N4 to prevent the absorption of or -
ganic compounds onto its surface. 

Methods of digital signal processing will be considered after 
data acquisition to improve the performance from each sensor 
with respect to signal drift. In contrast, analog signal algorithms 
(artificial neural networks) will be used in the sensor electronics 
to cancel out the memory effect of the pH sensor, and the reduc-
tion in sensitivity caused by contamination of the sensor surface. 

C. Microsystem 

The temperature tolerance of the radio-transmitter excluded 
dynamic temperature measurements for both the Type land Type 
II pill within the range of the temperature sensor. In order to in-
crease the data collection rate, the potential for signal transmis-
sion at the European Industrial, Scientific and Medical (ISM) 
Standard (433.9 MHz) will be explored [34]. 

The combined power consumption from the microsystem was 
higher than the theoretical predictions made during the design 
process, which considered the implementation of sleep mode 
and the use of an on-off keying (00K) transmitter. In the sleep 
mode, the sensors and analog circuitry were powered up prior to 
data sampling by the digital processing unit, and then turned off. 
A constant power mode was used in the experiments, since both 
the oxygen and pH sensors required time to stabilise (>15 s) 
after being switched on. Thus, the current consumption from the 
ASIC and sensors was measured to 54% above the predicted 1.1 
mA from the system implementing sleep mode. The FSK type 
radio transmitters reduced the load from the ASIC by drawing 
power directly from the batteries rather than the chip, although 
it consumed on average twice the amount of current than a com-
parable 00K type transmitter (calculated to 1 mA). The simu-
lated power consumption of the free running Type I transmitter 
(2.45 mA) was 12% above the measured data due to the reduced 
power consumption at the measured frequency of 39.08 MHz at 
25 °C in contrast to the calculated frequency of 40.01 MHz used 
in the model. The measured current consumption of the crystal  

stabilized Type II unit was comparable to the modeled data. The 
capacity of the enlarged SR44 A9 2 0 cells used as power supply 
units could meet the increased current demand, in contrast to the 
SR26 A92 0 cells originally proposed. 

VI. CONCLUSION 

We have developed an integrated sensor array system which 
has been incorporated in a mobile remote analytical microelec-
tronic pill, designed to perform real-time in situ measurements 
of the GI tract, providing the first in vitro wireless transmitted 
multichannel recordings of analytical parameters. Further work 
will focus on developing photopatternable gel electrolytes and 
oxygen and cationselective membranes. The microelectronic 
pill will be miniaturized for medical and veterinary applications 
by incorporating the transmitter on silicon and reducing power 
consumption by improving the data compression algorithm and 
utilizing a programmable standby power mode. 

The generic nature of the microelectronic pill makes it 
adaptable for use in corrosive environments related to environ-
mental and industrial applications, such as the evaluation of 
water quality, pollution detection, fermentation process control 
and the inspection of pipelines. The integration of radiation 
sensors and the application of indirect imaging technologies 
such as ultrasound and impedance tomography, will improve 
the detection of tissue abnormalities and radiation treatment 
associated with cancer and chronic inflammation. 

In the future, one objective will be to produce a device, anal-
ogous to a micro total analysis system (1iTAS) or lab on a chip 
sensor [35] which is not only capable of collecting and pro-
cessing data, but which can transmit it from a remote location. 
The overall concept will be to produce an array of sensor devices 
distributed throughout the body or the environment, capable of 
transmitting high-quality information in real-time. 
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Adaptive, integrated sensor processing to 
compensate for drift and uncertainty: a stochastic 
'neural' approach 

T.B. Tang, H. Chen and A.F. Murray 

Abstract: An adaptive stochastic classifier based on a simple, novel neural architecture - the 
Continuous Restricted Boltzmann Machine (CRBM) is demonstrated. Together with sensors and 
signal conditioning circuits, the classifier is capable of measuring and classifying (with high 
accuracy) the H + ion concentration, in the presence of both random noise and sensor drift. 
Training on-line, the stochastic classifier is able to overcome significant drift of real incomplete 
sensor data dynamically. As analogue hardware, this signal-level sensor fusion scheme is therefore 
suitable for real-time analysis in a miniaturised multisensor microsystem such as a Lab-in-a-Pill 
(LIAP). 

1 	Introduction 

Rapid progress in both Lab-on-a-Chip (LOC) and, System-
on-Chip (S0C) technologies has encouraged increasing 
interest in electronic health care [1]. Applications have 
ranged from telemedicine to bioanalysis, from patient 
monitoring to implantable devices. In conjunction with 
image scanning [2], several other biomedical instruments 
provide constant monitoring of such essential physiological 
parameters as temperature, pH, oxygen and pressure [3-6]. 

It is clearly desirable that such instruments be integrated 
and thus miniáturised, although it is inherently more 
difficult to extract useful information from what are now 
far more noisy and unstable measurements. With integra-
tion, however, comes the possibility of sensor redundancy 
(multiple sensors of the same or different types). There is, 
therefore, a need for robust, adaptive algorithms for sensor 
fusion and early pre-processing, that can be implemented 
directly in hardware, with low power consumption. In 
particular, algorithms that can process continuous-time, 
analogue sensor signals directly are especially useful [7]. 

This paper investigates the ability of stochastic neural 
computation to fuse multisensor data at signal level under 
conditions of significant sensor drift. Figure 1 shows two 
separate sets of measured, and typical, sensor drift (over 
21 h) in 10 pH-ISFET sensors. The data is obtained by 
measuring the potential of several drifting reference 
electrodes in a neutral (pH 7) buffer over time. The drift, 
which causes the drop in reference potential, is due to the 
dissolution of Aga from the reference electrode [8]. In real 
applications, this drift will destroy the capabilities of the 
sensor system unless regular recalibration, or some form of 
adaptive self-calibration, is introduced. We are interested in 
the latter approach. An adaptive classifier must be able both 
to track sensor drift and to maintain its classification ability 
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in the absence of a complete, representative training set (i.e. 
only data drawn from a sub-class of the full data space are 
likely to be available at one time, under normal operating 
conditions). This is a serious challenge. Without constrained 
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training, most continuously-adaptive systems will simply 
"learn" to model the current distribution, losing the ability 
to model the entire data space completely. Such systems 
thus lose classification ability abruptly and completely. 

In this paper, we describe the adaptive stochastic 
classifier, and discuss training and some important practi-
calities in this aplication. Experimental results that 
demonstrate the feasibility of this approach and compare 
its performance with both linear and nonlinear (multi-layer 
perceptron) classifiers are presented Both are also "neural" 
architectures that can be trained to classify data, but are not 
continuously-adaptive [9]. 

2 Architecture 

The classifier's operation can be viewed in two stages; 
unsupervised feature extraction and supervised (linear) 
classification. Our aim is to render the feature-extraction 
stage adaptive and able to present a consistent set of 
features to the supervised classifier in the presence of drift 
and noise. The Continuous Restricted Boltzmann Machine 
(CRBM) [10] is a generative model that is capable of a form 
of autonomous feature extraction and is based upon 
Hinton's productof-experts architecture [11]. The CRBM 
has one visible layer that passes and receives data to and 
from the outside world and one hidden layer that underpins 
the ability to model the mechanisms that underlie a set of 
data (Fig. 2). This algorithm is specifically designed to 
accept analogue continuous signals and to build from them 
a continuous-valued generative model. 

In the absence of a full physical/chemical/biological 
model, a generative model is a useful statistical (often 
"neural") model that is trained to generate, or to "model" 
data with the same statistical structure as a set of "training 
data". A good generative model mimics both the structure 
and inherent noisiness of real, multi-dimensional data. It is 
usable for classification and novelty detection of unseen 
data drawn from the same physical source as the training 
data, as the model can be viewed as providing an 
"explanation" of the mechanism(s) that generated the data. 

The CRBM thus avoids quantisation and the loss of 
information in, for example, the binary Restricted Bolts- 

[emperature]44—{ signal conditioning circuit 

	

[pH.lsFET 1 	signal conditioning circuit 

	

[PH ISFET 2 	signal conditioning circuit 

	

reference I I 	 • 

	

electrode 1 	 • 

	

[PHI.SFET 10 	: 	signal conditioning Circuit 

reference 
[rode4 

	

sensing environment 	 ASIC  

mann Machine (RBM) [11, 12]. Furthermore, the CRBM's 
simple computation requires only local addition and 
multiplication, and is thus (analogue) hardware amenable 
[10]. The CRBM is trained in an unsupervised manner, 
adapting both its weights (internal model parameters) and 
internal noise sources by minimising contrastive divergence 
[10, Il]. 

The final, output, block of the classifier used in this paper 
is a single layer perceptron (SLP). In our application, there 
is one temperature sensor [13] and 10 pH-ISFET sensors 
[14] which measure the environmental concentration of H 
ions. The temperature sensor monitors the ambient 
temperature, to improve overall system robustness, as the 
pH sensors are also temperature-dependent. The use of 
redundant pH-ISFET sensors aims to improve the overall 
robustness of the classifier. Each sensor output is passed 
directly to a visible unit i in the CRBM. The 11 visible units 
are connected to and from the neuronsj in the hidden layer 
via a symmetrical weight matrix w 6f. In addition, two 
permanently-on bias, or "threshold" units V0  and H0  
encode, in the weights that lead from them, the adaptive 
thresholds, or biases, of the hidden and visible units 
respectively. It will be seen .that much of the modelling 
ability is found in these weights. In the hidden layer, a total 
of 4 hidden units/neurons aim to encode the mechanisms 
behind the sensor data distribution. Smaller numbers of 
hidden units result in poorer models, with too few degrees 
of freedom. Although more hidden units offer the promise 
of a better model, we wish to minimise computation and 
therefore network size. Furthermore, Occam's Razor 
suggests that a parsimonious model is most likely to be 
useful and informative [15]. The activity for each stochastic 
neuron is given by: 

sj=tanh(aj'(wjjst+o'Nj(0, 1))) 	(1) 

where 

s, = input from neuron i 

a1  = noise control parameter: specific to each (visible 
or hidden) unit 

d 
:O0\Wk  

output 

H 
visible layer 	hidden layer 	output layer 

adaptive stochastic dassifier 

Fig. 2 An adaptive stochastic classjfier in a typical multisensor microsystem with 11 visible, 4 hidden, 2 bias and I output units 
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a = noise scaling constant: specific to each (visible or 
hidden) layer 

N(0, I) = sampled from unit-magnitude, zero-mean Gaus-
sian noise source 

There are three sets of learning parameters in the 
classifier. They are the weights w, the noise control 
parameters, a, of the CRBM and the weights wk in the 
output SLP layer. The CRBM parameters are optimised by 
minimising contrastive divergence (MCD) [II] while the 
SLP is trained using the delta rule [16]. 

3 Methodology 

The signal conditioning circuits can be tuned to maximise 
sensor sensitivity and thus the separation of any clusters in 
the sensor data. This facilitates data modelling. However, 
variance in the threshold voltage of the pH-ISFET sensors 
due to the fabrication process means that very few 
integrated sensors of this type can respond linearly across 
the full pH range. A compromise is therefore made between 
sensor sensitivity and linearity that renders these integrated 
sensors slightly nonlinear. The CRBM is fundamentally a 
nonlinear model and is able to deal with at least this level on 
nonlinearity, as will be demonstrated. Based on measure-
ments [17], a particular pH-ISFET sensor, when immersed 
in a solution with pH x, can be modelled as an output 
voltage y=A—Bx (my) with a correlation coefficient' 
R2 =0.98. Typically, A= 1733.66 and B=43.51. Within 
an array of pH-ISFET sensors, threshold voltages vary, the 
constant term A varies, while the sensitivity B remains fairly 
consistent. The temperature sensor can be modelled with an 
output voltage of y = 34.86 T— 125. 10(mv) for temperature 
T with R2  = 0.99. 

Figure 3 shows the training process for the adaptive 
stochastic classifier. Initially, the CRBM is trained with 2 
datasets. Dataset A comprises measurements on a solution 
with a temperature of 37°C and pH 4. Dataset B consists of 

unsupervised training for CRBM 

with learning w,j , a,and a 

supervised training for SLP 

with learning Wk 

adaptive stochastic classifier 

with learning w 0  and w01  

Fig. 3 Sequential training for the adaptive stochastic classifier 

measurements on a solution with a temperature of 37°C 
and pH 10. To facilitate training, the noise scaling constant 
a is set to a value that avoids both the over-fitting that is 
associated with low noise and the complete loss of 
modelling ability that is produced by high noise. Empirical 
experiments lead to optimal values of a of 0.2 for visible 

in this context, correlation coefficient isa quantity which gives the quality of a 

least squares fitting to the measurements.  

units and 0.4 for hidden units. These optimal values are 
problem-dependent. 

The learning rate for the CRBM must also be considered 
carefully. Our empirical "rule of thumb", drawn from 
several CRBM-modelling projects, is to have the visible 
noise control parameters' learning rate q. 10 times that of 
hidden units and weights, t1h  and ha', respectively. This 
encourages autonomous annealing through adaptation of 
the visible layer's noise control parameters a, on a shorter 
timscale than that for adaptation of the weights w and 
hidden noise control parameters a1, to model the detail of 
training data distribution. 

"Greedy training" is used to train the CRBM and SLP 
layers. CRBM training is allowed to reached equilibrium 
and is then stopped. At this stage, the SLP is untrained. The 
SLP is then trained to map the activity of the CRBM 
hidden layer (H0_4, as the input data is presented to the 
visible layer, to the known-correct SLP output classification. 
This training is performed with (a) the visible units clamped 
to datasets A and B in the training set, (b) the output units 
clamped to the corresponding labels and (c) fixed weight w y, 
noise control parameters a, and 0h  The only learning 
parameters are the weights Wk for the output unit. 

After training, the learning rates for all parameters except 
the CRBM bias weights are set to zero. This setting allows 
the classifier to adapt to sensor drift via w02  and suppresses 
the competitive learning in CRBM that would otherwise 
generate a totally new distribution (in this case, one cluster 
instead of two) and hence destroy classification. Secondly, it 
causes the representations (the activities of hidden units) 
that are the extracted "features" passed to the subsequent 
layer to be consistent for a particular dataset in the presence 
of drift. Equation (I) shows that the hidden unit's state s1  
drifts as the sensor output s1  drifts. Therefore, the visible 
bias unit's weight w0j, which encodes the biases for all the 
hidden units, must be allowed to adapt to compensate. Atv 
accounts for a shift in the mean of data distribution, so 

	

wo(t) = W j 	 —wio(t)}) 	(2) 

where istiO and j0. ;v refers to weight after the CRBM is 
trained and before it is exposed to drifting data. Hence the 
weight change for a visible bias unit at time t + I is: 

	

Awo(t + I) = 1w 	(w,{w 10(l + I) - w,o(t)}) 	(3) 

where isO and j96 0. 

4 Experimental results and discussion 

The classifier has been trained with two datasets (each with 
400 samples) using real sensor data. The CRBM and the 
SLP are trained for 3000 and 500 epochs respectively. 
Training results are discussed in section 4.1, while section 
4.2 discusses the classifier's ability to track sensor drift via 
constrained on-line adaptation of the CRBM. The experi-
ment in section 4.2 is conducted by introducing a typical 
pattern of drift to the dataset A and presenting the data to 
the visible units of the CRBM. The data is taken over a 
period of 76440s, sampled at 0.1 Hz. There are therefore 
7644 "drift epochs" in the experiment. Note that no samples 
from dataset B are presented to the classifier for the 
experiment in section 4.2. 

2Experiment [tO] has shown that the hidden bias unit's weights acts as an 
encoder for the mean of the training data distribution. This is due to its state 
(permanently '± I') which allows it to learn faster (with a larger weight change 

dwn) than other hidden units that have near-zero initial states. 
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4. 1 Learning to classify 
Figure 4a and b show 2-dimensional piots of sensor signals 
for V 1  (temperature sensor), V2  (pH-ISFET sensor I) and 
V3  (pH-ISFET sensor 2). Sensor noise causes significant 
overlap between the two clusters in all II dimensions. 
Figure 4c shows the evolution of the CRBM's parameters 
a0  which suggest that training equilibrium is reached within 
3000 training epochs. 

It is a characteristic of the CRBM that the stochastic 
hidden units can adapt to become more or less binary [10]. 
After training, hidden unit H2 , in this particular case, has a 
large noise control parameter (a,, = 2.1) and thus behaves as 
a binary "decision" unit that captures gross structure in the 
data while other hidden units' a, remain approximately I, 
rendering their behaviour more deterministic. More deter-
ministic units are able to model finer detail in the data 
distribution. Similarly, the output unit's weight wk connect-
ing to the hidden unit H2  has increased significantly to 6.2 
after 500 training epochs, as shown in Fig. 4e. 

These parameters hold the clue as to how the CRBM 
models these two Il-dimensional clusters of data. The large 
values imply that the activities of hidden unit H2  and output 
unit are very sensitive to the particular elements in the 
sensor data space. The trained CRBM is then tested with 
two new datasets (400 samples for each sub-class). As 
indicated in Fig. 4f the clear separation between the output 
response for the two datasets yields 100% accurate 
classification by simply thresholding at zero. To investigate 
the classifier's performance further, the above experiment 
has been repeated using solutions with different pH values 
in pairs. Each pair has one acidic and one alkaline solution. 
Figure 5a shows the corresponding output unit's response. 
In the worst case (i.e. small separation between data clusters),  

the first solution (dataset A) has a pH of 6 while the second 
(dataset B) has pH 8. A 2-dimensional plot of sensor outputs 
for visible units V 1  and V2  is shown in Fig. Sb. Despite 
overlap between the data clusters, the CRBM/SLP still 
classifies with 81.75% accuracy, as shown in Fig. 5c and d, as 
the CRBM's ability to model the shape and spread of a data 
cluster captures structure and "shapes" in the data that a 
simple linear or nonlinear classifier alone does not. 

4.2 Tracking sensor drift 
As shown in Fig. Ia, there are three interesting phases in 
this temporal data stream. The first phase ends at the 40001h 
drift epoch where the classifier must adapt to gradual sensor 
drift for each sensor output. The second phase ends at the 

00th  drift epoch when the ninth pH-ISFET sensor (V 0) 

fails catastrophically. Finally, all remaining pH-ISFET 
sensors fail around the 7644w  drift epoch. 

Figure 6a shows the evolution of w jO  which "follows" the 
sensor drift. The CRBM section of the classifier is 
compensating autonomously for the drift. However, around 
the 7644th  drift epoch, there is a major shift in several sensor 
outputs and a failure in classification, indicating that the 
CRBM model has broken down completely and is now, 
quite correctly, responding to the input signal as completely 
new data. This is obviously caused by simultaneous failure 
in all remaining pH-ISFET sensors. 

Figure 6b shows the activity of the output unit as sensor 
drift occurs and the CRBM's constrained adaptation 
responds to the gradual change in sensor activity. Ideally, 
a straight line (output= I) should be obtained, as only 
dataset A is presented. However, any sudden and significant 
increase in the speed of drift will result in a temporary loss 
of accurate classification as the CRBM adapts to take 
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Fig. 4 Learning in the class jfier 
a The training data for visible units V 1  and V2  
b The training data for V 1  and V3  
c The visible noise control parameter a 0  for CRBM over 3000 training epochs 
d The hidden noise control parameter a, for CRBM over 3000 training epochs 
e The weights wk for the output unit in SLP over 500 training epochs 

I The output unit's response with respect to datasets A and B. The learning rates are 0.1 for weight vector and 3 for noise control parameters 
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Fig. 5 Classfler performance over resolution 
a The compiled result for various pairs of solutions 

b The training data for visible units V1 and V2 with first pH = 6 (dataset A) and second pH = 8 (dataset B) 

c The output unit's response for dataset A in the worst case 

d The output unit's response for dataset B in the worst case 
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Fig. 6 Evolution of wo  activity of output unit as sensor dr/i occurs, classifier response at 6000' drfI epoch and MLP classifier response 
rhuing 7644 dr(fI epochs 
a Weight change for hidden bias unit w0 

b The output unit's activity during the 7644 drift epochs 

c The classifier's response to the two datasets at 
fi{ft)oth  drift epoch 

d MLP classifier's output response during the 7644 drift epochs. 

Experiment is carried out based on drift data shown in Fig. Ia 

	

account of the speedier change. This is due to the use of a 	Figure 6c shows its response to two datasets (400 new 

	

constant learning rate for the CRBM- a common problem 	samples for each sub-class) at the 6000th  drift epoch. 100% 

	

for on-line learning in a dynamic environment [18-20]. 	classification accuracy is achieved very simply by thresh- 

	

Otherwise, the classifier is working as intended and well. 	olding the SLP output at zero. 
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• To highlight the significance of the classifier's on-line 
unsupervised learning, trained, but subsequently non-
adaptive, linear (another SLP) and MLP classifiers are 
used as benchmarks. The SLP is trained with the two 
original datasets A and B (i.e. without drift data) for 500 
training epochs. It has a learning rate of 0.10 and a 
sigmoidal activation function. The trained SLP cannot 
classify even the initial data with 100% accuracy, high-
lighting the (modest) inherent noislineainty of the classifica-
tion task. The classification ability subsequently collapses as 
sensor drift occurs. The comparison in performance is 
summarised in Table I. The MLP has 15 hidden and I 
output units. All units have sigmoidal activation function 
and use a back-propagation (BP) gradient descent with 
momentum learning rule [21]. The learning rate is 0.05 and 
the momentum factor is 0.9. The MLP is trained with the 
two original datasets for 20000 learning epochs and achieves 
a mean square error (MSE) of 4.92 x 10 4, before being 

Table 1 Classifiers' output and accuracy at various drift 
epochs for drift data in Fig. la 

Drift epochs 

Parameter Method 4000' 50001h 	. 7644th 

Output Linear 0.78 -0.18 -1.00 

MLP 0.99 0.15 -1.00 

CRBM+SLP 0.98 0.96 1.00 

Accuracy Linear 99.875 68.000 50.000 
1%) 

MLP 	99.625 	77.375 	50.000 

CRBM+SLP 99.875 	95.500 	50.000  

exposed to drifting data. The output unit's activity is 
recorded throughout the drift epochs by Fig. 6d. The 
MLP's classification ability also collapses during sensor 
drift, while the CRBM maintains 95.5% correct classifica-
tion during gentle sensor drift (up to the 6000°' epoch). 
Naturally, all classifiers fail when the sensor activity changes 
dramatically around 7600°' epochs. 

The above experiment is repeated with a second set of 
drift data (Fig. lb) to confirm that the above result is not an 
accident. The datastream is divided into four phases. The 
first ends at the 3500°' drift epoch where the classifier is 
adapting to gradual sensor drift. The second phase ends at 
the 5000th  drift epoch when the first pH-ISFET sensor (1/2) 
fails. The third phase ends at the 6400" drift epoch when 
the tenth pH-ISFET sensor (V1 i)  fails. The remaining drift 
epochs then form the last phase. The experimental results 
are shown in Fig. 7. As in the previous experiment, the 
CRBM/SLP classifier compensates for sensor drift as well 
as sensor failure if sufficient time for adaptive recovery 
is allowed. If several sensors fail simultaneously or within 
a very short time (with respect to the learning rate), 
the CRBM/SLP classifier will fail. Table 2 summarises the 
results of this second experiment, highlighting once 
more the CRBM's ability to "track" sensor drift that 
destroys the performance of other trained, but non-
adaptive, classffiers. 

5 Conclusions 

The implementation of an adaptive classification system has 
been presented in the context of an Il-dimensional 
microsystem application. The results show that a CRBM 
with 4 hidden Units is able to track nonlinear sensor drift 
and to classify noisy sensor data accurately and for far 
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Fig. 7 Evolution of wj,, activity of output unit as sensor drfl occurs, class(fier response at 6400'°  frfl epoch and MLP classifier  response 
during 7644 drfi epochs 
a Weight change for hidden bias unit We during the 7644 drift epochs 
b The output unit's activity during the 7644 drift epochs 
c The classifier's response to the two datasets at the 60001h  drift epoch 
d MLP classifier's output response during the 7644 drift epochs. 
Experiment is carried out based on drift data shown in Fig. lb 
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Table 2 Classifiers' output and accuracy at various drift 
epochs for second set of drift data in Fig. lb 

Drift epochs 

Parameter 	Method 	3500°' 	5000°' 	6400th 

Output 	Linear 	0.87 	0.02 	-0.85 

ML? 	 1.00 	0.59 	-1.00 

CRBM+SLP 0.99 	0.90 	0.92 

Accuracy 	Linear 	99.875 	76.000 	50.750 
1%) 

ML? 	 100.000 	84.250 	50.000 

CRBM+SLP 99.875 	96.500 	98.500 

longer than does a carefully-trained, but non-adaptive 
neural classifier. Most importantly, the CRBM can be 
configured to respond sensibly to incomplete and "un-
balanced" real-time input data that do not adequately 
represent the distribution of the training data. 

We have also studied the classifier's ability to cope with 
major faults in the sensors. It has been tested rigorously 
with noisy real data including sensor outputs that drift at 
diverse rates and with faulty sensor outputs. Under such 
circumstances, both linear and MLP non-adaptive classi-
fiers fail immediately. The CRBM classifier and training 
approach proposed in this paper recovers from major, 
nonlinear drift within a short period of time. This is 
particularly useful and important in the chemical sensing 
application that forms the motivation for this study, where 
robustness in the face of miniature, noisy and unreliable 
sensors is the primary challenge. The work in this paper 
reinforces a more general capability, that a suitable 
generative model with a constrained training process can 
adapt to at least some environmental changes such as sensor 
drift while presenting a consistent (effectively autonomously 
recalibrated) representation of drifting data to subsequent 
layer(s) of processing. 

Although the proposed classifier has only been applied to 
clusters that are only modestly nonlinear, its extension to 
completely nonlinear data distributions is also possible and 
has been examined in the context of artifical data. This 
research work is currently still in progress and will be 
reported in a subsequent paper with real data. 
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Abstract—This paper presents our work toward the integra-
tion of a multisensor microsystem with wireless communication, 
using system-on-chip (SoC) methodology. Four different forms 
of microelectronic sensors have been fabricated on two separate 
5 x 5 mm2  silicon chips measuring p11, conductivity, dissolved 
oxygen concentration, and temperature. The sensors are inte-
grated with a sensor fusion chip comprising analog circuitry for 
sensor operation and signal amplification prior to digital decoding 
and transmission. The microsystem prototype will be packaged in 
a miniature capsule, which measures 16mm x 55 mm including 
batteries and dissipates 6.3 mW for a minimal life cycle of 12 h. 

Index Terms—Laboratory-on-a-chip (LoC), microsystem, mul-
tisensor array, system-on-chip (SoC), wireless communication. 

I. INTRoDUCTION 

T HERE is a considerable interest in the development of 
ultraminiature and low-power multisensor microsystems 

for use in applications such as medical diagnosis [I] and 
environmental monitoring [2]. Industrial applications in water 
purification, wastewater analysis [3],  and radiation control [4], 
[5] also have technologically attractive prospects. Such systems 
must exhibit low-cost production, robustness of use, and 
real-time data processing. While laboratory -on-a-chi p (LoC) 
and system-on-chip (SoC) methodologies are not new, the 
integration of the two technologies poses many new research 
challenges. LoC technology offers low-cost, efficient chemical 
synthesis and the potential for a full-scale biological and 
clinical analysis on a single, miniaturized device [6]. Mean-
while SoC technology offers an implementation methodology 
in which a low-power system comprises a set of optimized 
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Fig. I. Integrated multisensor microsystem for the prototype (block diagram). 

Intellectual Property (IP) blocks that can be designed rapidly 
and economically [7], [8]. 

The integration of LoC and SoC technologies is aided by 
improved digital telecommunication coding techniques such as 
code division multiplexing access (CDMA). In the past, the de-
ployment of conventional distributed monitoring systems was 
hindered by issues conceming the complex installation of com-
munication systems with respect to interface wiring. However, 
it is nowadays possible to achieve a usable signal-to-noise ratio 
(SNR) and thus accurate measurement for a low-power wireless 
sensor microsystem, clearly within spatial limits [9]. 

Since the design that forms the essential component of the SoC 
methodology can easily be integrated with second-generation 
components, it is anticipated that the novel combination of 
circuits, sensors, and methodologies embodied in this first 
implementation will form the basis for future multisensor 
microsystems. 

II. SYSTEM SPECIFICATION 

The main features of the microsystem will in the future 
include an integrated multisensor array, analog signal condi-
tioning circuits, a digital signal processor, a wireless transmitter, 
and a power source (Fig. I). For this prototype, both analog 
signal conditioning circuits and a digital signal processor have 
been implemented as an application-specific integrated circuit 
(ASIC) on a silicon chip. 

A. integrated Multisensor 

In order to address generic issues known to be of interest 
to medicine (for example, the detection of abnormalities by 
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Temperature sensor 	 Optional temperature sensor 	1 mm 

Fig. 2. An optical micrograph of (a) sensor chip 1 comprising the pH, conductivity, and temperature sensor. Sensor chip 2 (b) comprises the oxygen sensor and 
an optional NiCr resistance thermometer temperature sensor used to measure the temperature of the DO solution. 

real-time signal monitoring of the gastro-intestinal (GI) tract 
[10]), four different types of microelectronic sensors have been 
employed. The sensor array consists of a dissolved oxygen 
(DO) sensor [11], [12], a pH-sensitive ion-selective field effect 
transistor (ISFET) [13],  [14], a standard PN-junction silicon 
diode temperature sensor [15],  and a dual electrode direct con-
tact conductivity sensor [16].  The temperature sensor measures 
the body core temperature. However, it is also essential for 
temperature compensation of the other three sensors, since the 
respective parameters are highly temperature-dependent. The 
pH sensor measures the acidity of the stomach, although it 
will also be used to predict the location of the pill within the 
Gl tract, since various portions of the digestive system have 
an associated range of pH values. The conductivity sensor 
measures the total level of dissolved solids and thus provides an 
indirect estimation of the intestinal contents. The oxygen sensor 
will map the activity of aerobic bacteria within the intestine. 
The complete sensor array is fabricated on two 5 x 5 mm 2  
silicon chips. 

The DO sensor, which includes an optional NiCr resistance 
thermometer [Fig. 2(b)], was fabricated on a single chip. The 
sensor consists of a three-electrode electrochemical cell of 
500 pm in diameter and a volume of 7.9 nL. The working 
electrode comprises a microelectrode array of 121 circular 
gold electrodes, each 5 pm in diameter, to reduce response 
time and to prevent diffusion-limited transport to the electrode 
surface. The interelectrode spacing is 20 pm, with a total area 
of the working electrode of approximately 2.5 x 10 m2 . An 
integrated Ag-AgCI electrode (1.5 x 10 -  m2 ) made from 
500-nm-thick evaporated silver, of which 50% was oxidized 
to AgCl in a 1.0 M KCI solution with the aid of chronoamper-
ometry, acts as the reference electrode. The counter electrode 
is made of gold, covering an area of 1.0 x 10 -  m2 . In future 
devices, the electrochemical cell will contain a 0.1 M KCI gel 
(agarose) to promote the constant concentration of chloride 
ions required to maintain a stable potential of the Ag-AgCI 
reference electrode and to prevent leakage to the extemal solu-
tion. The electrolyte chamber will be covered by a 20-pm-thick  

layer of oxygen-permeable teflon, forming a barrier to the 
surrounding medium in which the DO is to be measured. 

The second chip [Fig. 2(a)] is based on a commercial ISFET 
and silicon diode temperature sensor (ESIEE, France). The 
conductivity sensor and a miniaturised Ag-AgC1 reference 
electrode are defined by post lithographic pattern integration. 
The conductivity sensor comprises two gold electrodes with an 
area of 5.0 x 10 1°  m2  each spaced 400 pm apart, which op-
erate in a direct contact mode with the surrounding solution in 
which the conductivity is measured. In contrast, the Ag-AgCl 
reference electrode (1.5 x 10 m2 ) is fabricated in a similar 
manner to the oxygen sensor. Similarly, the ISFET pH sensor 
and its reference electrode are located in a 7.9-nL electrode 
chamber designed to contain a 0.1-M KCI gel electrolyte 
solution to promote a constant concentration of chloride ions 
in the presence of the Ag-.AgCI electrode. In future devices, a 
final 50-pm-thick layer of cation-selective Nafion®  membrane 
will cover the electrode chamber and forms a physical barrier 
between the chamber and the solution in which pH is to be 
measured. 

B. Sensor Fusion 

The third chip in the microsytem is the ASIC. It includes 
the analog signal conditioning circuits for each sensor, analog 
multiplexers, a 10-b analog-to-digital converter (ADC) and 
a digital-to-analog converter (DAC), an oscillator, as well 
as digital modules for microsystem scheduling, coding and 
transmitter control. With minimal compromise in terms of the 
sensitivity of the sensors, the analog circuits aim to minimize 
physical dimensions and power consumption. At first glance, 
some of our design choices would appear at odds with common 
practice that tends toward far more complex circuits such as the 
lock-in amplifier or the instrumentation amplifier. However, 
it is the aim of this project to achieve miniature size and high 
robustness while keeping power consumption and component 
count to a minimum—so the common design priorities have 
been changed. 
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Fig. 3. A schematic illustrating the design of the future microsystem. The components, which comprise the sensors, ASIC, transmitter, and batteries, are attached 
to a PCB platform upon integration in a capsule machined from solid PEEK. The capsule has an outer diameter of 16 mm and a length of 55 mm. 

In this prototype, the microsystem was designed to work 
as a real-time multisensor transducer without local signal 
processing. Although a finite state machine was used for task 
scheduling in the present configuration, it will be replaced by 
a small microprocessor for self-reconfiguration in the future. 
As shown in Fig. 1, this state machine as part of the digital 
platform is timed from a simple RC relaxation oscillator 
without temperature compensation. The timing precision of 
the oscillator is not high, owing to the fabrication tolerance 
of on-chip resistors and capacitors, but this had been foreseen 
and therefore we ensured that it would not have any strong 
adverse effect on our system specifications. Our approach is 
to mix a relatively low signal bandwidth of 1.51 kHz with 
the transmitter's reference frequency of 20 MHz so that there 
is minimal shift (less than 0.01%) in the transmitted signal's 
frequency. The nominal clock frequency of the RC oscillator 
is 24.15 k}lz with a duty cycle of 49.8%. This low clock 
frequency provides an adequate sampling rate whilst keeping 
the dynamic power dissipation acceptably low. 

For future implementation, an analog stochastic classifier 
based on the restricted Boltzmann machine (RBM) [17] will 
be introduced to achieve intelligent sensor fusion. Although 
artificial neural networks (ANN5) are well established in many 
applications, most of the data computation is done through 
soft computing [18]—[20] and the rest is achieved through 
either microcontroller units (MCU) or digital signal processing 
(DSP) that require huge computational power. Unlike the 
Multi-layer Perceptron (MLP) that requires high accuracy 
(12 b) in weight memory [21] and a complex, supervised 
update rule, the RBM design can be implemented easily with 
a simple weight changing circuit [22]. Moreover, the RBM 
designs have demonstrated high reliability in heartbeat analysis 
[22] and hand-writing recognition [23]. 

C. Power Managentent 

Two smart power management strategies have been imple-
mented. The primary strategy is to disable "idle" function blocks  

during different task phases. The second strategy uses a simple 
DSP data compression algorithm to achieve low-power, serial 
bitstream transmission. The algorithm decides when transmis-
sion is required by comparing the most recent sample with the 
previous sampled data. This technique is particularly effective 
when the measuring environment is at quiescence, a commonly 
encountered situation in many applications. 

The algorithm has been tested using an extended data set, 
which comprises 67 cases of 24-h dynamic gastric pH data 
[24]. The raw data have an average kurtosis of 5.3 ± 2.8 and 
an autocorrelation of 0.99 + 0.01. The compression ratio, that 
is defined as the ratio of the raw data stream length to the 
compressed data stream length, is found to be equal to 2.1 ± 0.1 
with a distortion degree of 0.008 ± 0.001 with the given data 
set. If similar conditions apply to the microsystem discussed 
in this paper, a total power saving of approximately 50% for 
the transmitter can be achieved simply by introducing a small 
digital system overhead (< 10%). 

D. Future Wireless Communications 

The wireless Communication IS proposed to be achieved by 
implementing a simple miniature low-power transmitter that 
uses a frequency-shift-keying (FSK) modulation method. The 
transmitter is designed Out of ultraminiaturized discrete com-
ponents, yielding a 5 x 8 x 11 mm3  package. This transceiver 
has a crystal oscillator that is bonded Onto the substrate of the 
printed circuit board (PCB) (Fig. 3). This oscillator provides 
a highly precise carrier frequency that will allow reliable data 
collection at the base station despite the inaccuracy of the 
timing of the ASIC. Preliminary experiments have shown 
that the transmitter has a cover range of 1 m and the received 
signal has an SNR of 78 dB at 20 MHz. A fully integrated 
SoC implementation of a transmitter using standard CMOS 
technology is being developed. 
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Fig. 4. Optical micrograph of the ASIC comprising both analog and digital 
systems. 

E. Packaging 

Interconnection among the sensor chips, the ASIC, and the 
transmitter were designed for wire bonding to a miniature 
PCB or by direct connection to adjacent chips. Future im-
plementations will employ more robust packaging techniques 
such as "flip-chip" bonding. The power source will comprise 
two standard 26-mAh, 1.5-V silver oxide button cells (Seiko 
Microsystems, Japan) and the entire proposed prototype ml-
crosystem will easily fit into a single 16mm x 55 mm capsule 
(Fig. 3) made of polyether-terketone (PEEK). 

Ill. RESULTS AND DiSCussioN 

The ASIC was fabricated using a standard 3-V, 2-poly, 
3-metal, 0.6-jim CMOS technology process. It was received 
both as an unpackaged die format for use in the microsystem 
and in a standard 68-pin package for lab testing purposes 
(see Fig. 4). The chip is pad-limited with a total area of 
4.5 x 4.5 mm2 . There are a total of 16000 gates, 60% of which 
are digital while the remaining 40% form the analog system. 
The ASIC has 64 pads, of which 20 are power pads and 44 are 
110 pads. Approximately 50% of the 110 pads are designated 
for preliminary test purposes of the chip. 

Testing of the ASIC and the sensors was carried Out OD a lab-
oratory test-bench using hard-wired connections to collect data 
that will be transmitted in a wireless fashion in future iterations 
of the device. Figs. 5-7 shows in situ test results from the tem-
perature, conductivity, and pH sensor channels that have been 
completed so far. The correct functionality of the oxygen sensor 
channel has also been verified. The results are summarized in 
Table I. The applied voltages are specified from the ON refer-
ence based on a ± 1.5-V power supply. In the worst case scenario 
whereby all the output data bits are constantly "HIGH," the en-
tire microsystem consumes a total of 2.1 mA of current (refer 
to Table II), which allows the capsule to continuously operate 
for more than 12 h using two 26-mAh A9 20 cells as its power 
supply. 
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Fig. 5. Sensitivity of the temperature sensor as a function of output voltage 
over a linear dynamic range from 0 'C to 70 °C (n = 5). 
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Fig. 6. Responsivity of the conductivity sensor versus output voltage over 
a logarithmic dynamic range from 0.05 to 10 mScm', perfonned with 
prefabricated sensors demonstrating the functionality of the circuit (n = 5). 
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Fig. 7. Sensitivity of the p14 sensor asa function of output voltage over a linear 
dynamic range from p114 to 10 (n = 5). 

Based on the laboratory tests, there is a constant noise level of 
3 mV peak-to-peak (equivalent to one least significant bit (LSB) 
of the ADC) on the ASIC and the sensors. Since the sensors in 
a harsh environment will be noisier, the second LSB is required 
to provide an adequate noise margin. Hence, we anticipate that 
the 10-b ADC has an effective resolution of 8 b. 

Temperature Sensor: The silicon diode (PN-junction) tem-
perature sensor operates linearly within the dynamic range from 
0 ° C to 70°C (see Fig. 5) with a sensitivity of 31.5 mV OC_t 

after signal amplification. The forward-biased diode voltage, as 
a function of temperature, is maintained by a constant bias cur-
rent of 15 j.tA. 
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TABLE I 

SUMMARY OF THE SENSORS' PROPERTIES IN CORRESPONDING CHANNELS 

Channel Dynamic range Cross correlation 	Resolution 
Temperature 0-70 °C 82.9% 	0.4 °C 

Conductivity 0.05— 10 mS cm' 1  99.5% 	0.02 mS cm 
pH pH 4-10 99.3% 	0.64 pH unit 

- 	Dissolved oxygen 0-8.2mg L" 95.0% 	0.08 mg L" 

* The resolution is derived based on eight usable bits Out of the possible 10 b provided by the ADC. 

TABLE II 

SUMMARY OF THE WORST CASE SCENARIO OF THE POWER CONSUMPTION 
POR THE ENTIRE MICROSYSTEM WITH A NOMINAL OPERATING 

VOLTAGE OF3 V (±1.5 V) 

Component 	 Current (mA) 	Power (mW) 
Analogue (excluding AUC) 	0.9 	 2.7 

Digital (including ADC) 	 0.2 	 0.6 

Transmitter 	 1.0 	 3.0 

The transmitter is operating at a duty cycle of 15%. 

Conductivity Sensor: The conductivity measurement 
channel of the chip was tested with prefabricated sensors, 
demonstrating the functionality of the circuit. It exhibited a 
logarithmic performance from 0.05 to 10 mS•cm 1  (Fig. 6), as 
expected. The voltage amplifier circuit (Fig. 8) on the ASIC 
forms the electronic interface and measures the impedance, 
that is inversely proportional to the conductivity, of the sample 
fluid [device under test (DUT)]. The output voltage saturates 
at a conductivity above 10 mS cm'. However, the formation 
of an electric double layer (the build up of charged particles on 
the electrode surface) also affects the sensor's performance. 
Thus, in order to neutralize the effect of the double layer, the 
conductivity sensor will be ultimately driven by alternating 
current. In addition, a dual-electrode, contactless conductivity 
sensor will be used to reduce the effect of faradaic impedance 
[25] and to avoid biofouling at the tradeoff of slower time 
response and poorer detection limits [16]. 

pH Sensor: The response from the single ISFET pH sensor 
exhibited linear characteristics over a dynamic range from 
pH 4 to pH 10 (using standard pH buffers), with an average 
sensitivity of 23.4 mV pH 1  (Fig. 7). However, the stability 
of the miniaturized reference electrode posed a challenge upon 
integration with the pH sensor, as any instability of the reference 
electrode would cause undesirable sensor drift. One possible 
solution is to combine a sensing ISFET and a reference REFET 
transistor with two different pH-sensitive layers (e.g., Ta205 and 
oxynitride/Si3N4), respectively [26].  Although the differential 
sensitivity is small, it can be improved by: 1) reducing the pH 
sensitivity of the REFET with a polyvinylchloride membrane 
[27]; 2) increasing the sensitivity of the ISFET by.enhancing 
the proton affinity of the ion-sensitive membrane; or 3) an 
alternative use of immobilized enzymes on the gate structure 
of the transducer [28].  However, the differential mode of 
operation is subject to "crosstalk" between the two transistors 
if the protons (the by-product of the enzyme reaction) diffuse 

Fig. 8. A vollage amplifier used as an interface circuil for the conductivily 
sensor. The test fluid is modeled as a resistor (DUT) in the currenl bias block. 
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Fig. 9. Sensitivity of the 1)0 sensor versus currenl over a linear dynamic range 
from 0 to 8.2mg L', performed with a standard lab potentioslat demonstrating 
the functionality of the sensor (n = 5). 

to the REFET, resulting in a false signal. Thus, the single 
ISFET sensor with an integrated Ag—AgCl reference is still 
the preferred choice in combination with the simplicity of its 
electronic interface circuit. 

DO Sensor: The DO sensor, which was tested using a 
standard laboratory potentiostat (Bioanalytical Systems, US), 
exhibits a linear response with respect to the DO concentration 
in water over a dynamic range from 0 to 8.2 mg L t  (oxygen 
saturated water at 25 °C). A sensitivity of 0.12 mg 02 nA' 
(Fig. 9) was achieved with an applied working electrode po-
tential of —700 mV with respect to the Ag—AgCI reference. 
Oxygen saturated water was equilibrated in the lab 24 h prior 
to the experiment and oxygen was subsequently removed by 
the chemical titration of the reducing agent Na2SO 4 . The level 
of DO in the solution was monitored by a standard Clark 02 
electrode (Orion Research Inc, US). The oxygen electrodes 
were subject to a 2 ruin 02 plasma clean prior to use, since 
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Fig. 10. Output (voltage) of the transmitter controller versus time at an operating frequency of 24.15 kHz. The output signal is used to modulate the transmitter 
carrier frequency, based on the frequency-shift-keying modulation method. 

any residue on the electrode surface after fabrication degrade 

sensor performance seriously in the electrochemical measure-

ment system. 

Transmission Control: Each packet of transmission data will 

consist of a start-tag (8-b 10 101 010), four sets of sensor data 

(4 x 10-b), 8-b data compression overhead and an end-tag 

(8-b 01010101) in sequence. Each packet will be transmitted 

three times to improve the reliability of the transmission. As 

highlighted in Fig. 10, the start- and end-tags have been 

successfully identified from the bitstream recorded at the 

transmission control node. This bitstream will be fed into 

the transmitter to modulate the transmitter carrier frequency. 

Besides, it is observed that there is no more transmission after 

the first three packets since the test environment remains at 

quiescent. This has hence demonstrated the functionality of 

the compression algorithm. 

IV. CONCLUSION 

An ASIC for a multisensor microsystem has been designed 

and implemented with a microelectronic sensor array and a 

direct communication link. All sensor and circuit components 

operate as intended and are designed to be amenable to 

SoC integration. An SoC design methodology has also been 

developed. Future implementations will lead to further minia-

turization, wireless data transmission, and a more sophisticated 

system specification including greater sensor diversity, sensor 

fusion, and dynamic reconfigurability. 
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