19 research outputs found

    Reliable geocasting for random-access underwater acoustic sensor networks

    Get PDF
    a b s t r a c t Reliable data delivery for underwater acoustic sensor networks is a major concern in applications such as surveillance, data collection, navigation, and ocean monitoring. Geocasting is a crucial communication primitive needed to support these applications, which consists in transmitting one or multiple consecutive data packets -all carrying an atomic message -to nodes located in a certain geographic region. In this article, two versions of a distributed, reliable, and efficient underwater geocasting solution (based on different degrees of neighbor information) are proposed for underwater networks whose acoustic modems use random-access Medium Access Control (MAC) protocols. By jointly considering the position uncertainty of nodes as well as the MAC and routing functionalities, packet transmissions are prioritized and scheduled so to maximize link reliability while limiting the end-to-end geocasting delay. Moreover, a simple yet effective timer-based mechanism is designed to limit the number of transmissions by selecting only a subset of neighbors for packet forwarding. Performance is evaluated and compared via thorough simulations against existing geocasting solutions tuned for the underwater environment that were originally designed for terrestrial wireless networks

    Improving Geo-casting by Combining Any-cast and Hovering Information

    Get PDF
    Geocasting is a variation on the notion of multicasting in which messages are deliver to the nodes residing in a specific area. This paper proposed a novel geocast protocol based on any-cast and hovering information in order to improve the performance by balancing load between server and local nodes. Thus proposed technique has two phases for geocasting, 1) any-cast from source to geocast region and 2) distribution of messages using hovering information. Our results has shown that using hovering information and creating replicas for geocasting messages we can reduce the overhead of broadcasting messages several time that helps in reducing the bandwidth

    Green Communication for Underwater Wireless Sensor Networks: Triangle Metric Based Multi-Layered Routing Protocol

    Full text link
    [EN] In this paper, we propose a non-localization routing protocol for underwater wireless sensor networks (UWSNs), namely, the triangle metric based multi-layered routing protocol (TM2RP). The main idea of the proposed TM2RP is to utilize supernodes along with depth information and residual energy to balance the energy consumption between sensors. Moreover, TM2RP is the first multi-layered and multi-metric pressure routing protocol that considers link quality with residual energy to improve the selection of next forwarding nodes with more reliable and energy-efficient links. The aqua-sim package based on the ns-2 simulator was used to evaluate the performance of the proposed TM2RP. The obtained results were compared to other similar methods such as depth based routing (DBR) and multi-layered routing protocol (MRP). Simulation results showed that the proposed protocol (TM2RP) obtained better outcomes in terms of energy consumption, network lifetime, packet delivery ratio, and end-to-end delay.This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah (under grant no. DF-524-156-1441). The authors, therefore, gratefully acknowledge DSR for the technical and financial supportKhasawneh, AM.; Kaiwartya, O.; Lloret, J.; Abuaddous, HY.; Abualigah, L.; Shinwan, MA.; Al-Khasawneh, MA.... (2020). Green Communication for Underwater Wireless Sensor Networks: Triangle Metric Based Multi-Layered Routing Protocol. Sensors. 20(24):1-23. https://doi.org/10.3390/s20247278123202

    Review on Localization based Routing Protocols for Underwater Wireless Sensor Network

    Get PDF
    Underwater Wireless Sensor Network (UWSN) can enable many scientific, military, safety, commercial and environmental applications. Majority of the network models has been introduced for the deployment of sensor nodes through routing schemes and methodologies along with different algorithms but still the design of routing protocol for underwater environment is a challenging issue due to distinctive characteristics of underwater medium. The majority of the issues are also needed to fulfill the appropriate approach for the underwater medium like limited bandwidth, high bit error rates, propagation delay, and 3D deployment. This paper focuses the comparative analysis of the localization based routing protocols for UWSN. This comparative analysis plays a significant attention to construct a reliable routing protocol, which provides the effectual discovery of the route between the source node and the sink node. In addition this comparative analysis also focuses the data packets forwarding mechanism, the deployment of sensor nodes and location based routing for UWSN in different conditions

    Methodology for the Perseverance to Node Mobility Issues in Underwater Sensor Network (UWSN)

    Get PDF
    Now a days, Wireless Sensor Network (WSN) is effecting each and every area of life. Underwater Sensor Network (UWSN) is a great development in WSN. UWSN is the foremost research area because of its advantages in seismic monitoring, study of flora and fauna, defense services, weather monitoring, pollution monitoring etc. UWSN is experiencing many challenges in its deployment, routing, communication due to terrible underwater environment. One major challenge is the use of acoustic signal because in UWSN we cannot use radio signals. Some other limitations are propagation delays, larger distance, 3D architecture, node mobility due to water etc. In this paper we have reviewed various existing methods for node mobility based on vector, AUV, path and clusters and proposed a new approach for communication in underwater environment by giving solution to the node mobility issue in 3D based deployment. Proposed approach is using Euclidean distance formula and OSPF dynamic routing, executed and compared with previous algorithms with significant improvement

    Underwater Resurrection Routing Synergy using Astucious Energy Pods

    Get PDF
    The accomplishment of sustainable communication among source and destination sink node is a rigors challenge and even establishing bodacious communication link between these nodes is nothing short of a miracle because data routes are governed by the underwater environment. Energy consumption has a significant influence as all active devices rely on the battery. As cost-effective data packet transmission is established as a norm, no charging or replacement can be achieved. Hop link evaluation and shrewd connection discovery by way of a resurrecting linking element were just a genuinely grim task, and only feasible to create the extra powered energy pods (URR-SAEP) that had never been carried out before after detailed study. After packet transfer, the sensor node performs the link inspection process, and when a link is deemed shaky at less than or equivalent to 50 percent of capacity, the target node incorporates its residual capacity status and returns it to the source node that attaches other unoptimizable energy pods to improve only the targeted node link from 50 percent to 90 percent. Performance evaluation using NS2 with Aqua-Sim 2.0 simulator has been obtained comparing with DBR and EEDBR protocols in terms of point-to-point delay, Packet dissemination ratio, Network lifespan and Energy Diminution

    Delay Tolerance in Underwater Wireless Communications: A Routing Perspective

    Get PDF

    A performance simulation tool for the analysis of data gathering in both terrestrial and underwater sensor networks

    Get PDF
    Wireless sensor networks (WSNs) have greatly contributed to human-associated technologies. The deployment of WSNs has transcended several paradigms. Two of the most significant features of WSNs are the intensity of deployment and the criticalness of the applications that they govern. The tradeoff between volume and cost requires justified investments for evaluating the multitudes of hardware and complementary software options. In underwater sensor networks (USNs), testing any technique is not only costly but also difficult in terms of full deployment. Therefore, evaluation prior to the actual procurement and setup of a WSN and USN is an extremely important step. The spectrum of performance analysis tools encompassing the test-bed, analysis, and simulation has been able to provide the prerequisites that these evaluations require. Simulations have proven to be an extensively used tool for analysis in the computer network field. A number of simulation tools have been developed for wired/wireless radio networks. However, each simulation tool has several restrictions when extended to the analysis of WSNs. These restrictions are largely attributed to the unique nature of each WSN within a designated area of research. In addition, these tools cannot be used for underwater environments with an acoustic communication medium, because there is a wide range of differences between radio and acoustic communications. The primary purpose of this paper is to present, propose, and develop a discrete event simulation designed specifically for mobile data gathering in WSNs. In addition, this simulator has the ability to simulate 2-D USNs. This simulator has been tailored to cater to both mobile and static data gathering techniques for both topologies, which are either dense or light. The results obtained using this simulator have shown an evolving efficient simulator for both WSNs and USNs. The developed simulator has been extensively tested in terms of its validity and scope of governance

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications
    corecore