26 research outputs found

    Prospects of peer-to-peer SIP for mobile operators

    Get PDF
    Tämän diplomityön tarkoituksena on esitellä kehitteillä oleva Peer-to-Peer Session Initiation Protocol (P2PSIP), jonka avulla käyttäjät voivat itsenäisesti ja helposti luoda keskenään puhe- ja muita multimediayhteyksiä vertaisverkko-tekniikan avulla. Lisäksi tarkoituksena on arvioida P2PSIP protokollan vaikutuksia ja mahdollisuuksia mobiilioperaattoreille, joille sitä voidaan pitää uhkana. Tästä huolimatta, P2PSIP:n ei ole kuitenkaan tarkoitus korvata nykyisiä puhelinverkkoja. Työn alussa esittelemme SIP:n ja vertaisverkkojen (Peer-to-Peer) periaatteet, joihin P2PSIP-protokollan on suunniteltu perustuvan. SIP mahdollistaa multimedia-istuntojen luomisen, sulkemisen ja muokkaamisen verkossa, mutta sen monipuolinen käyttö vaatii keskitettyjen palvelimien käyttöä. Vertaisverkon avulla käyttäjät voivat suorittaa keskitettyjen palvelimien tehtävät keskenään hajautetusti. Tällöin voidaan ylläpitää laajojakin verkkoja tehokkaasti ilman palvelimista aiheutuvia ylläpito-kustannuksia. Mobiilioperaattorit ovat haasteellisen tilanteen edessä, koska teleliikennemaailma on muuttumassa yhä avoimemmaksi. Tällöin operaattoreiden asiakkaille aukeaa mahdollisuuksia käyttää kilpailevia Internet-palveluja (kuten Skype) helpommin ja tulevaisuudessa myös itse muodostamaan kommunikointiverkkoja P2PSIP:n avulla. Tutkimukset osoittavat, että näistä uhista huolimatta myös operaattorit pystyvät näkemään P2PSIP:n mahdollisuutena mukautumisessa nopeasti muuttuvan teleliikennemaailman haasteisiin. Nämä mahdollisuudet sisältävät operaattorin oman verkon optimoinnin lisäksi vaihtoehtoisten ja monipuolisempien palveluiden tarjoamisen asiakkailleen edullisesti. Täytyy kuitenkin muistaa, että näiden mahdollisuuksien toteuttamisten vaikutusten ei tulisi olla ristiriidassa operaattorin muiden palveluiden kanssa. Lisäksi tulisi muistaa, että tällä hetkellä keskeneräisen P2PSIP-standardin lopullinen luonne ja ominaisuudet voivat muuttaa sen vaikutuksia.The purpose of this thesis is to present the Peer-to-Peer Session Initiation Protocol (P2PSIP) being developed. In addition, the purpose of this thesis is to evaluate the impacts and prospects of P2PSIP to mobile operators, to whom it can be regarded as a threat. In P2PSIP, users can independently and easily establish voice and other multimedia connections using peer-to-peer (P2P) networking. However, P2PSIP is not meant to replace the existing telephony networks of the operators. We start by introducing the principles of SIP and P2P networking that the P2PSIP is intended to use. SIP enables to establish, terminate and modify multimedia sessions, but its versatile exploitation requires using centralized servers. By using P2P networking, users can decentralize the functions of centralized servers by performing them among themselves. This enables to maintain large and robust networks without maintenance costs resulted of running such centralized servers. Telecommunications market is transforming to a more open environment, where mobile operators and other service providers are challenged to adapt to the upcoming changes. Subscribers have easier access to rivalling Internet-services (such as Skype) and in future they can form their own communication communities by using P2PSIP. The results show that despite of these threats, telecom operators can find potential from P2PSIP in concurrence in adaptation to the challenges of the rapidly changing telecom environment. These potential roles include optimization of the network of the operator, but as well roles to provide alternative and more versatile services to their subscribers at low cost. However, the usage of P2PSIP should not conflict with the other services of the operator. Also, as P2PSIP is still under development, its final nature and features may change its impacts and prospects

    An interoperable and secure architecture for internet-scale decentralized personal communication

    Get PDF
    Interpersonal network communications, including Voice over IP (VoIP) and Instant Messaging (IM), are increasingly popular communications tools. However, systems to date have generally adopted a client-server model, requiring complex centralized infrastructure, or have not adhered to any VoIP or IM standard. Many deployment scenarios either require no central equipment, or due to unique properties of the deployment, are limited or rendered unattractive by central servers. to address these scenarios, we present a solution based on the Session Initiation Protocol (SIP) standard, utilizing a decentralized Peer-to-Peer (P2P) mechanism to distribute data. Our new approach, P2PSIP, enables users to communicate with minimal or no centralized servers, while providing secure, real-time, authenticated communications comparable in security and performance to centralized solutions.;We present two complete protocol descriptions and system designs. The first, the SOSIMPLE/dSIP protocol, is a P2P-over-SIP solution, utilizing SIP both for the transport of P2P messages and personal communications, yielding an interoperable, single-stack solution for P2P communications. The RELOAD protocol is a binary P2P protocol, designed for use in a SIP-using-P2P architecture where an existing SIP application is modified to use an additional, binary RELOAD stack to distribute user information without need for a central server.;To meet the unique security needs of a fully decentralized communications system, we propose an enrollment-time certificate authority model that provides asserted identity and strong P2P and user-level security. In this model, a centralized server is contacted only at enrollment time. No run-time connections to the servers are required.;Additionally, we show that traditional P2P message routing mechanisms are inappropriate for P2PSIP. The existing mechanisms are generally optimized for file sharing and neglect critical practical elements of the open Internet --- namely link-level security and asymmetric connectivity caused by Network Address Translators (NATs). In response to these shortcomings, we introduce a new message routing paradigm, Adaptive Routing (AR), and using both analytical models and simulation show that AR significantly improves message routing performance for P2PSIP systems.;Our work has led to the creation of a new research topic within the P2P and interpersonal communications communities, P2PSIP. Our seminal publications have provided the impetus for subsequent P2PSIP publications, for the listing of P2PSIP as a topic in conference calls for papers, and for the formation of a new working group in the Internet Engineering Task Force (IETF), directed to develop an open Internet standard for P2PSIP

    Integrating Wireless Sensor Networks and Mobile Ad-hoc NETworks for enhanced value-added services

    Get PDF
    In some situations where the standard telecommunication infrastructure is not available, Mobile Ad hoc NETworks (MANETs) can be deployed to provide the required communication. These networks are established "on the fly" without a need for prior communication organization and are composed of autonomous mobile devices, such as cell phones, PDAs or laptops. In similar conditions, such as in emergency response operations, integrating MANETs and Wireless Sensor Networks (WSNs) can notably enhance the MANET participant's end-user experience. WSNs sense and aggregate ambient information, such as physiological, environmental or physical data related to a nearby phenomenon. The integration, which provides end-user availability to WSN required information, is feasible via gateways. However, when the ambient information collected by WSNs is intended for applications residing in MANETs, centralized and fixed gateways are not practicably feasible. This is mainly due to ad-hoc nature, lack of centralized control and constraints on the end-user devices that are used in MANETs. These devices are usually limited in power and capacity and cannot host centralized gateways. In this thesis we exploit the integration of WSN and MANET in order to provide novel value-added services which enhance the end-user experience of MANET participants. Motivating scenarios are introduced, background information is presented, requirements are derived and the state of the art regarding the integration of WSN with existing networks, including MANETs, is evaluated. Based on the evaluation, none of the existing solutions satisfies all of our derived requirements. Therefore, we propose an overall two-level overlay architecture to integrate WSNs (with mobile sinks) and MANETs. This architecture is based on the distributed gateway and applications which form the P2P overlays. Overlays are application-layer networks which are created on top of the exiting MANET. To interconnect gateway and application overlays we derive corresponding requirements and evaluate the existing approaches. Since none of these approaches fulfills all of our requirements, we propose protocols, mechanisms and design corresponding modules for the interconnection of overlays. Finally we refine our overall architecture based on the interconnection aspects. As a proof of concept, we implement a prototype for the inter-overlay information exchange. This implementation is based on SIP extensions and uses two existing P2P middlewares. We also simulate our prototype using Oversim simulation tool and collect experimental results. Based on these results, we can see that our architecture is a valid and promising approach for interconnecting different P2P overlays and can be deployed to provide the overall solution for WSN and MANET integrated system

    Prototyping a peer-to-peer session initiation protocol user agent

    Get PDF
    The Session Initiation Protocol (SIP) has in recent years become a popular protocol for the exchange of text, voice and video over IP networks. This thesis proposes the use of a class of structured peer to peer protocols - commonly known as Distributed Hash Tables (DHTs) - to provide a SIP overlay with services such as end-point location management and message relay, in the absence of traditional, centralised resources such as SIP proxies and registrars. A peer-to-peer layer named OverCord, which allows the interaction with any specific DHT protocol via the use of appropriate plug-ins, was designed, implemented and tested. This layer was then incorporated into a SIP user agent distributed by NIST (National Institute of Standards and Technology, USA). The modified user agent is capable of reliably establishing text, audio and video communication with similarly modified agents (peers) as well as conventional, centralized SIP overlays

    Peer to Peer Information Retrieval: An Overview

    Get PDF
    Peer-to-peer technology is widely used for file sharing. In the past decade a number of prototype peer-to-peer information retrieval systems have been developed. Unfortunately, none of these have seen widespread real- world adoption and thus, in contrast with file sharing, information retrieval is still dominated by centralised solutions. In this paper we provide an overview of the key challenges for peer-to-peer information retrieval and the work done so far. We want to stimulate and inspire further research to overcome these challenges. This will open the door to the development and large-scale deployment of real-world peer-to-peer information retrieval systems that rival existing centralised client-server solutions in terms of scalability, performance, user satisfaction and freedom

    Distributed Information Systems and Data Mining in Self-Organizing Networks

    Get PDF
    The diffusion of sensors and devices to generate and collect data is capillary. The infrastructure that envelops the smart city has to react to the contingent situations and to changes in the operating environment. At the same time, the complexity of a distributed system, consisting of huge amounts of components fixed and mobile, can generate unsustainable costs and latencies to ensure robustness, scalability, and reliability, with type architectures middleware. The distributed system must be able to self-organize and self-restore adapting its operating strategies to optimize the use of resources and overall efficiency. Peer-to-peer systems (P2P) can offer solutions to face the requirements of managing, indexing, searching and analyzing data in scalable and self-organizing fashions, such as in cloud services and big data applications, just to mention two of the most strategic technologies for the next years. In this thesis we present G-Grid, a multi-dimensional distributed data indexing able to efficiently execute arbitrary multi-attribute exact and range queries in decentralized P2P environments. G-Grid is a foundational structure and can be effectively used in a wide range of application environments, including grid computing, cloud and big data domains. Nevertheless we proposed some improvements on the basic structure introducing a bit of randomness by using Small World networks, whereas are structures derived from social networks and show an almost uniform traffic distribution. This produced huge advantages in efficiency, cutting maintenance costs, without losing efficacy. Experiments show how this new hybrid structure obtains the best performance in traffic distribution and it a good settlement for the overall performance on the requirements desired in the modern data systems

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions

    Controlling P2P File-Sharing Networks Traffic

    Full text link
    Since the appearance of Peer-To-Peer (P2P) file-sharing networks some time ago, many Internet users have chosen this technology to share and search programs, videos, music, documents, etc. The total number of P2P file-sharing users has been increasing and decreasing in the last decade depending on the creation or end of some well known P2P file-sharing systems. P2P file-sharing networks traffic is currently overloading some data networks and it is a major headache for network administrators because it is difficult to control this kind of traffic (mainly because some P2P file-sharing networks encrypt their messages). This paper deals with the analysis, taxonomy and characterization of eight Public P2P file-sharing networks: Gnutella, Freeenet, Soulseek, BitTorrent, Opennap, eDonkey, MP2P and FastTrack. These eight most popular networks have been selected due to their different type of working architecture. Then, we will show the amount of users, files and the size of files inside these file-sharing networks. Finally, several network configurations are presented in order to control P2P file-sharing traffic in the network.García Pineda, M.; Hammoumi, M.; Canovas Solbes, A.; Lloret, J. (2011). Controlling P2P File-Sharing Networks Traffic. Network Protocols and Algorithms. 3(4):54-92. doi:10.5296/npa.v3i4.1365S54923

    Distributed Algorithms for Location Based Services

    Get PDF
    Real-time localization services are some of the most challenging and interesting mobile broadband applications in the Location Based Services (LBS) world. They are gaining more and more importance for a broad range of applications, such as road/highway monitoring, emergency management, social networking, and advertising. This Ph.D. thesis focuses on the problem of defining a new category of decentralized peer-to-peer (P2P) algorithms for LBS. We aim at defining a P2P overlay where each participant can efficiently retrieve node and resource information (data or services) located near any chosen geographic position. The idea is that the responsibility and the required resources for maintaining information about position of active users are properly distributed among nodes, for which a change in the set of participants causes only a minimal amount of disruption without reducing the quality of provided services. In this thesis we will assess the validity of the proposed model through a formal analysis of the routing protocol and a detailed simulative investigation of the designed overlay. We will depict a complete picture of involved parameters, how they affect the performance and how they can be configured to adapt the protocol to the requirements of several location based applications. Furthermore we will present two application scenarios (a smartphone based Traffic Information System and a large information management system for a SmartCity) where the designed protocol has been simulated and evaluated, as well as the first prototype of a real implementation of the overlay using both traditional PC nodes and Android mobile devices

    Conformance testing of peer-to-peer systems using message traffic analysis

    Get PDF
    Peer-to-Peer architectures are used by a large number of distributed systems; however, the challenges such as maintaining a reliable and stable peer-to-peer network can make such networks undesirable for distributed systems. Peer-to-peer architectures are designed to be executed on systems with diverse hardware configurations, distant geographic locations, and varied, unpredictable Internet connectivity that make the software testing process difficult. This research defines a method for conformance testing peer-to-peer content distribution systems called “Method for Conformance Testing by Analyzing Message Activity” (MCTAMA). MCTAMA uses a common representation for describing the behavior of nodes during both design and deployment. ATAMA generates, evaluates and filters test cases that help determine variation between the expected and observed behaviors. The focus on message traffic allows MCTAMA to be used at multiple stages of development and deployment while not being affected by the variations in the operating environment, availability of source code or the capabilities of a monitoring mechanism. As a part of MCTAMA, this research includes a method for combining sequence diagrams to create a description of the expected behavior of nodes in the system
    corecore