10,467 research outputs found

    Reliable Multicast in Heterogeneous Mobile Ad-hoc Networks

    Get PDF
    In disaster scenarios, communication infrastructure could be damaged orcompletely failed. Mobile Ad-hoc Networks (MANETs) can be used to substitutefailed communication devices and thus to enable communication. As group communicationis an important part in disaster scenarios, multicast will be used to addressseveral nodes. In this paper, we propose our new reliable multicast protocol RMDA(Reliable Multicast over Delay Tolerant Mobile Ad hoc Networks). We introducean efficient group management approach and a new method for reliable multicastdelivery over Delay Tolerant Networks. We show, that our protocol is adaptive todifferent kinds of MANETs, e.g. with or without clusterheads, respectively. Forthose without, we use our name resolution over adaptive routing approach

    Reliable multicast in heterogeneous mobile ad-hoc networks

    Get PDF
    In disaster scenarios, communication infrastructure could be damaged or completely failed. Mobile Ad-hoc Networks (MANETs) can be used to substitute failed communication devices and thus to enable communication. As group communication is an important part in disaster scenarios, multicast will be used to address several nodes. In this paper, we propose our new reliable multicast protocol RMDA (Reliable Multicast over Delay Tolerant Mobile Ad hoc Networks). We introduce an efficient group management approach and a new method for reliable multicast delivery over Delay Tolerant Networks. We show, that our protocol is adaptive to different kinds of MANETs, e.g. with or without clusterheads, respectively. For those without, we use our name resolution over adaptive routing approach

    Reliable Multicast in Mobile Ad Hoc Wireless Networks

    Get PDF
    A mobile wireless ad hoc network (MANET) consists of a group of mobile nodes communicating wirelessly with no fixed infrastructure. Each node acts as source or receiver, and all play a role in path discovery and packet routing. MANETs are growing in popularity due to multiple usage models, ease of deployment and recent advances in hardware with which to implement them. MANETs are a natural environment for multicasting, or group communication, where one source transmits data packets through the network to multiple receivers. Proposed applications for MANET group communication ranges from personal network apps, impromptu small scale business meetings and gatherings, to conference, academic or sports complex presentations for large crowds reflect the wide range of conditions such a protocol must handle. Other applications such as covert military operations, search and rescue, disaster recovery and emergency response operations reflect the mission critical nature of many ad hoc applications. Reliable data delivery is important for all categories, but vital for this last one. It is a feature that a MANET group communication protocol must provide. Routing protocols for MANETs are challenged with establishing and maintaining data routes through the network in the face of mobility, bandwidth constraints and power limitations. Multicast communication presents additional challenges to protocols. In this dissertation we study reliability in multicast MANET routing protocols. Several on-demand multicast protocols are discussed and their performance compared. Then a new reliability protocol, R-ODMRP is presented that runs on top of ODMRP, a well documented best effort protocol with high reliability. This protocol is evaluated against ODMRP in a standard network simulator, ns-2. Next, reliable multicast MANET protocols are discussed and compared. We then present a second new protocol, Reyes, also a reliable on-demand multicast communication protocol. Reyes is implemented in the ns-2 simulator and compared against the current standards for reliability, flooding and ODMRP. R-ODMRP is used as a comparison point as well. Performance results are comprehensively described for latency, bandwidth and reliable data delivery. The simulations show Reyes to greatly outperform the other protocols in terms of reliability, while also outperforming R-ODMRP in terms of latency and bandwidth overhead

    MENU: multicast emulation using netlets and unicast

    Get PDF
    High-end networking applications such as Internet TV and software distribution have generated a demand for multicast protocols as an integral part of the network. This will allow such applications to support data dissemination to large groups of users in a scalable and reliable manner. Existing IP multicast protocols lack these features and also require state storage in the core of the network which is costly to implement. In this paper, we present a new multicast protocol referred to as MENU. It realises a scalable and a reliable multicast protocol model by pushing the tree building complexity to the edges of the network, thereby eliminating processing and state storage in the core of the network. The MENU protocol builds multicast support in the network using mobile agent based active network services, Netlets, and unicast addresses. The multicast delivery tree in MENU is a two level hierarchical structure where users are partitioned into client communities based on geographical proximity. Each client community in the network is treated as a single virtual destination for traffic from the server. Netlet based services referred to as hot spot delegates (HSDs) are deployed by servers at "hot spots" close to each client community. They function as virtual traffic destinations for the traffic from the server and also act as virtual source nodes for all users in the community. The source node feeds data to these distributed HSDs which in turn forward data to all downstream users through a locally constructed traffic delivery tree. It is shown through simulations that the resulting system provides an efficient means to incrementally build a source customisable secured multicast protocol which is both scalable and reliable. Furthermore, results show that MENU employs minimal processing and reduced state information in networks when compared to existing IP multicast protocols

    Multicast broadcast services support in OFDMA-based WiMAX systems [Advances in mobile multimedia]

    Get PDF
    Multimedia stream service provided by broadband wireless networks has emerged as an important technology and has attracted much attention. An all-IP network architecture with reliable high-throughput air interface makes orthogonal frequency division multiplexing access (OFDMA)-based mobile worldwide interoperability for microwave access (mobile WiMAX) a viable technology for wireless multimedia services, such as voice over IP (VoIP), mobile TV, and so on. One of the main features in a WiMAX MAC layer is that it can provide'differentiated services among different traffic categories with individual QoS requirements. In this article, we first give an overview of the key aspects of WiMAX and describe multimedia broadcast multicast service (MBMS) architecture of the 3GPP. Then, we propose a multicast and broadcast service (MBS) architecture for WiMAX that is based on MBMS. Moreover, we enhance the MBS architecture for mobile WiMAX to overcome the shortcoming of limited video broadcast performance over the baseline MBS model. We also give examples to demonstrate that the proposed architecture can support better mobility and offer higher power efficiency

    A Novel Scalable Multicast Mesh Routing Protocol for Mobile ad hoc Networks

    Get PDF
    In recent years the use of portable and wireless equipment is becoming more widespread, and as in many situations communication infrastructure might not be available, wireless networks such as Mobile Ad Hoc Networks (MANETs) are becoming increasingly important. A mobile ad hoc network is a collection of nodes that exchanges data over wireless paths. The nodes in this network are free to move at any time, therefore the network topology changes in an unpredictable way. Since there is no fixed infrastructure support in mobile ad hoc networks, each node functions as a host and a router. Due to mobility, continuous change in topology, limited bandwidth, and reliance on batteries; designing a reliable and scalable routing protocol for mobile ad hoc networks is a challenging task. Multicast routing protocols have been developed for routing packets in mobile ad hoc networks. Existing protocols suffer from overheads and scalability. As the number of senders, groups, and mobility speed increases, the routing overhead and the packet collision increases, and therefore the packet delivery ratio decreases. Thus none of the existing proposed multicast routing protocols perform well in every situation. In this study a novel multicast routing protocol for ad hoc networks is proposed. It is an efficient and scalable routing protocol, and named Network Sender Multicast Routing Protocol (NSMRP). NSMRP is a reactive mesh based multicast routing protocol. A central node called mesh sender (MS) is selected periodically from among the group(s) sender(s) to create one mesh in order to be used in forwarding control and data packets to all multicast group(s) member(s). One invitation message will be periodically flooded to all group(s) member(s) by MS to join the group(s). The proposed routing protocol is evaluated by simulation and compared with a well known routing protocol. The results are analyzed and conclusions are drawn

    Development of a Reliable Multicast Protocol in Mobile Ad Hoc Networks

    Get PDF
    Mobile ad hoc network is a collection of mobile nodes forming dynamic and temporary network. The mobile nodes work in collaborative nature to carry out a given task. It can receive and transmit data packets without the use of any existing network infrastructure or centralized administration. Multicasting is among the pertinent issues of communication in such networks. The reliable delivery of multicast data packets needs feedback from all multicast receivers to indicate whether a retransmission is necessary. The Feedback Implosion Problem (FIP) states that reliable multicast in ad hoc networks suffers from redundant feedback packets, loss, duplication, and out-of-order delivery of data packets. To carry out this task, several reliable multicast protocols have been proposed to reduce the number of feedback packets from the receiver nodes. This is achieved by placing the responsibility to detect packet loss and initiating loss recovery timer on the receiver nodes which is complemented by feedback suppression. The initiating loss recovery timer depends on the number of hops between the nodes. As the dynamic nature of the number of hops between the nodes in ad hoc networks is unstable the loss recovery timer become inaccurate. Thus, the inaccuracy of the loss recovery timer, in return, causes extra overhead and more delays. The main objectives of this research are to enhance the FIP and decrease the recovery delays in reliable multicast protocol for mobile ad hoc networks using suggested approaches. First, the Source Tree Reliable Multicast (STRM) protocol adopting a novel technique to select a subset of one-hop neighbors from the sender node as its Forward Servers (FS). The key idea behind selecting this subset one-hop neighbors is to forward the retransmitted lost data packets and to receive the feedback packets from the receiver nodes. Second, proposed two algorithms to improve the performance of the STRM protocol. The first algorithm is developed to avoid the buffer overflow in the FS nodes. This is achieved by managing the buffer of the FS nodes; by selecting the FS nodes depending on the empty buffer size it has and reducing the amount of feedback sent from the receiver nodes to their FS node. The second algorithm is developed to decrease the number of duplicated packets in the multicast members in the local group. This is achieved by sending the repair packets only to the member that has requested it. The FS in the local group should create a dynamic and temporary sub group whose members are only the members that requested the retransmission of the repair packet. The approaches were tested using detailed discrete-event simulation model which was developed encompassing messaging system that includes error, delay and mobility models to characterize the performance benefits of the proposed algorithms in comparison to ReMHoc protocol. Our approaches achieve up to 2.19% improvement on average packet delivery ratio, 3.3% on requested packets, and 46% on recovery latency time without incurring any additional communication or intense computation

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    Reliable machine-to-machine multicast services with multi-radio cooperative retransmissions

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11036-015-0575-6The 3GPP is working towards the definition of service requirements and technical solutions to provide support for energy-efficient Machine Type Communications (MTC) in the forthcoming generations of cellular networks. One of the envisioned solutions consists in applying group management policies to clusters of devices in order to reduce control signaling and improve upon energy efficiency, e.g., multicast Over-The-Air (OTA) firmware updates. In this paper, a Multi-Radio Cooperative Retransmission Scheme is proposed to efficiently carry out multicast transmissions in MTC networks, reducing both control signaling and improving energy-efficiency. The proposal can be executed in networks composed by devices equipped with multiple radio interfaces which enable them to connect to both a cellular access network, e.g., LTE, and a short-range MTC area network, e.g., Low-Power Wi-Fi or ZigBee, as foreseen by the MTC architecture defined by ETSI. The main idea is to carry out retransmissions over the M2M area network upon error in the main cellular link. This yields a reduction in both the traffic load over the cellular link and the energy consumption of the devices. Computer-based simulations with ns-3 have been conducted to analyze the performance of the proposed scheme in terms of energy consumption and assess its superior performance compared to non-cooperative retransmission schemes, thus validating its suitability for energy-constrained MTC applications.Peer ReviewedPostprint (author's final draft
    corecore