28 research outputs found

    Reliable averaging for the primal variable in the Courant FEM and hierarchical error estimators on red-refined meshes

    Get PDF
    A hierarchical a posteriori error estimator for the first-order finite element method (FEM) on a red-refined triangular mesh is presented for the 2D Poisson model problem. Reliability and efficiency with some explicit constant is proved for triangulations with inner angles smaller than or equal to pi/2. The error estimator does not rely on any saturation assumption and is valid even in the pre-asymptotic regime on arbitrarily coarse meshes. The evaluation of the estimator is a simple post-processing of the piecewise linear FEM without any extra solve plus a higher-order approximation term. The results also allows the striking observation that arbitrary local averaging of the primal variable leads to a reliable and efficient error estimation. Several numerical experiments illustrate the performance of the proposed a posteriori error estimator for computational benchmarks

    Reliable averaging for the primal variable in the Courant FEM and hierarchical error estimators on red-refined meshes

    Get PDF
    A hierarchical a posteriori error estimator for the first-order finite element method (FEM) on a red-refined triangular mesh is presented for the 2D Poisson model problem. Reliability and efficiency with some explicit constant is proved for triangulations with inner angles smaller than or equal to π/2 . The error estimator does not rely on any saturation assumption and is valid even in the pre-asymptotic regime on arbitrarily coarse meshes. The evaluation of the estimator is a simple post-processing of the piecewise linear FEM without any extra solve plus a higher-order approximation term. The results also allows the striking observation that arbitrary local averaging of the primal variable leads to a reliable and efficient error estimation. Several numerical experiments illustrate the performance of the proposed a posteriori error estimator for computational benchmarks

    Cartesian grid FEM (cgFEM): High performance h-adaptive FE analysis with efficient error control. Application to structural shape optimization

    Full text link
    More and more challenging designs are required everyday in today¿s industries. The traditional trial and error procedure commonly used for mechanical parts design is not valid any more since it slows down the design process and yields suboptimal designs. For structural components, one alternative consists in using shape optimization processes which provide optimal solutions. However, these techniques require a high computational effort and require extremely efficient and robust Finite Element (FE) programs. FE software companies are aware that their current commercial products must improve in this sense and devote considerable resources to improve their codes. In this work we propose to use the Cartesian Grid Finite Element Method, cgFEM as a tool for efficient and robust numerical analysis. The cgFEM methodology developed in this thesis uses the synergy of a variety of techniques to achieve this purpose, but the two main ingredients are the use of Cartesian FE grids independent of the geometry of the component to be analyzed and an efficient hierarchical data structure. These two features provide to the cgFEM technology the necessary requirements to increase the efficiency of the cgFEM code with respect to commercial FE codes. As indicated in [1, 2], in order to guarantee the convergence of a structural shape optimization process we need to control the error of each geometry analyzed. In this sense the cgFEM code also incorporates the appropriate error estimators. These error estimators are specifically adapted to the cgFEM framework to further increase its efficiency. This work introduces a solution recovery technique, denoted as SPR-CD, that in combination with the Zienkiewicz and Zhu error estimator [3] provides very accurate error measures of the FE solution. Additionally, we have also developed error estimators and numerical bounds in Quantities of Interest based on the SPR-CD technique to allow for an efficient control of the quality of the numerical solution. Regarding error estimation, we also present three new upper error bounding techniques for the error in energy norm of the FE solution, based on recovery processes. Furthermore, this work also presents an error estimation procedure to control the quality of the recovered solution in stresses provided by the SPR-CD technique. Since the recovered stress field is commonly more accurate and has a higher convergence rate than the FE solution, we propose to substitute the raw FE solution by the recovered solution to decrease the computational cost of the numerical analysis. All these improvements are reflected by the numerical examples of structural shape optimization problems presented in this thesis. These numerical analysis clearly show the improved behavior of the cgFEM technology over the classical FE implementations commonly used in industry.Cada d'¿a dise¿nos m'as complejos son requeridos por las industrias actuales. Para el dise¿no de nuevos componentes, los procesos tradicionales de prueba y error usados com'unmente ya no son v'alidos ya que ralentizan el proceso y dan lugar a dise¿nos sub-'optimos. Para componentes estructurales, una alternativa consiste en usar procesos de optimizaci'on de forma estructural los cuales dan como resultado dise¿nos 'optimos. Sin embargo, estas t'ecnicas requieren un alto coste computacional y tambi'en programas de Elementos Finitos (EF) extremadamente eficientes y robustos. Las compa¿n'¿as de programas de EF son conocedoras de que sus programas comerciales necesitan ser mejorados en este sentido y destinan importantes cantidades de recursos para mejorar sus c'odigos. En este trabajo proponemos usar el M'etodo de Elementos Finitos basado en mallados Cartesianos (cgFEM) como una herramienta eficiente y robusta para el an'alisis num'erico. La metodolog'¿a cgFEM desarrollada en esta tesis usa la sinergia entre varias t'ecnicas para lograr este prop'osito, cuyos dos ingredientes principales son el uso de los mallados Cartesianos de EF independientes de la geometr'¿a del componente que va a ser analizado y una eficiente estructura jer'arquica de datos. Estas dos caracter'¿sticas confieren a la tecnolog'¿a cgFEM de los requisitos necesarios para aumentar la eficiencia del c'odigo cgFEM con respecto a c'odigos comerciales. Como se indica en [1, 2], para garantizar la convergencia del proceso de optimizaci'on de forma estructural se necesita controlar el error en cada geometr'¿a analizada. En este sentido el c'odigo cgFEM tambi'en incorpora los apropiados estimadores de error. Estos estimadores de error han sido espec'¿ficamente adaptados al entorno cgFEM para aumentar su eficiencia. En esta tesis se introduce un proceso de recuperaci'on de la soluci'on, llamado SPR-CD, que en combinaci'on con el estimador de error de Zienkiewicz y Zhu [3], da como resultado medidas muy precisas del error de la soluci'on de EF. Adicionalmente, tambi'en se han desarrollado estimadores de error y cotas num'ericas en Magnitudes de Inter'es basadas en la t'ecnica SPR-CD para permitir un eficiente control de la calidad de la soluci'on num'erica. Respecto a la estimaci'on de error, tambi'en se presenta un proceso de estimaci'on de error para controlar la calidad del campo de tensiones recuperado obtenido mediante la t'ecnica SPR-CD. Ya que el campo recuperado es por lo general m'as preciso y tiene un mayor orden de convergencia que la soluci'on de EF, se propone sustituir la soluci'on de EF por la soluci'on recuperada para disminuir as'¿ el coste computacional del an'alisis num'erico. Todas estas mejoras se han reflejado en esta tesis mediante ejemplos num'ericos de problemas de optimizaci'on de forma estructural. Los resultados num'ericos muestran claramente un mejor comportamiento de la tecnolog'¿a cgFEM con respecto a implementaciones cl'asicas de EF com'unmente usadas en la industria.Nadal Soriano, E. (2014). Cartesian grid FEM (cgFEM): High performance h-adaptive FE analysis with efficient error control. Application to structural shape optimization [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/35620TESI

    A posteriori Error Estimators based on Duality Techniques from the Calculus of Variations

    Get PDF
    A theoretical framework is presented within which we can systematically develop a posteriori error estimators for a quite general class of variational statements, involving a linear operator and two convex functionals. We merely require, that the linear operator be coercive and the corresponding functional be uniformly convex. As the second functional may be arbitrary, the theory can also cover constrained variational formulations. Two applications are discussed in detail: the Dirichlet Problem and the Obstacle Problem. A number of technical issues is considered, which pertain to the evaluation of the proposed error bounds using finite element methods: Inter alia a novel non-conforming discretisation scheme for the dual formulation is analysed. The resulting algebraic problem may be solved by a new preconditioned relaxation method, for which a proof of convergence is supplied

    Éléments finis hp adaptatifs avec contraction d’erreur garantie et solveurs multi-niveaux inexacts

    Get PDF
    We propose new practical adaptive refinement algorrithms for conforming hp-finite element approximations of elliptic problems. We consider the use of both exact and inexact solevsr within the established framework of adaptive methods consisting of four concatenated modules : SOLVE, ESTIMATE, MARK, REFINE. The strategies are driven by guaranteed equilibrated flux a posteriori error estimators. Namely, for an inexact approximation obtained by an (arbitrary) iterative algebraic solver, the bounds for the total, the algebraic, and the discretization errors are provided. Our hp-refinement criterion hinges on from solving two local residual problems posed on patches of elements around marked vertices selected by a bulk-chasing criterion. They respectively emulate h-refinement and p-refinement. One particular feature of energy error in the next adaptative loop step with respect to the present one. Numerical experiments are presented to turns out to be excellent, with effectivity indices close to the optimal value of one. In practice, we observe asymptomatic exponential convergence rates, in both the exact and inexact algebraic solver settings. Finally, we also provide a theoretical analysis of the proposed strategies.Nous proposons de nouveaux algorithmes de raffinement adaptatif pour l'approximation des problèmes elliptiques par la méthode des éléments finis hp. Nous considérons des solveurs algébriques exacts puis inexacts au sein du cadre générique des méthodes adaptatives consistant en quatre modules concaténés: RESOLUTION, ESTIMATION, MARQUAGE, RAFFINEMENT. Les stratégies reposent sur la construction d'estimateurs d'erreur a posteriori par flux équilibrés. Notamment, pour une approximation inexacte obtenue par un solveur algébrique itératif (arbitraire), nous prouvons une borne sur l'erreur totale ainsi que sur l'erreur algébrique et l'erreur de discrétisation. La structure hiérarchique des espaces d'éléments finis hp est cruciale pour obtenir la borne supérieure sur l'erreur algébrique, ce qui nous permet de formuler des critères d'arrêt précis pour le solveur algébrique. Notre critère de raffinement hp repose sur la résolution de deux problèmes résiduels locaux, posés sur les macro-éléments autour des sommets du maillage qui ont été marqués. Ces derniers sont sélectionnés par un critère de type bulk-chasing. Ceux deux problèmes résiduels imitent l'effet du raffinement h et p. Une caractéristique de notre approche est que nous obtenons une quantité calculable qui donne une borne garantie sur le rapport entre l'erreur d'énergie (inconnue) à la prochaine étape de la boucle adaptative et l'erreur actuelle (i.e. sur le facteur de réduction d'erreur). Des simulations numériques sont présentées afin de valider les stratégies adaptatives. Nous examinons la précision de notre borne sur le facteur de réduction d'erreur qui s'avère être excellente, avec des indices d'efficacité proches de 1. En pratique, nous observons des taux de convergence asymptotiquement exponentiels, aussi bien dans le cadre de la résolution algébrique exacte que dans celui de la résolution inexacte.Enfin, nous menons une analyse théorique des stratégies proposées

    Numerical Methods for Partial Differential Equations

    Get PDF
    These lecture notes are devoted to the numerical solution of partial differential equations (PDEs). PDEs arise in many fields and are extremely important in modeling of technical processes with applications in physics, biology, chemisty, economics, mechanical engineering, and so forth. In these notes, not only classical topics for linear PDEs such as finite differences, finite elements, error estimation, and numerical solution schemes are addressed, but also schemes for nonlinear PDEs and coupled problems up to current state-of-the-art techniques are covered. In the Winter 2020/2021 an International Class with additional funding from DAAD (German Academic Exchange Service) and local funding from the Leibniz University Hannover, has led to additional online materials such as links to youtube videos, which complement these lecture notes. This is the updated and extended Version 2. The first version was published under the DOI: https://doi.org/10.15488/9248

    Adaptive mesh simulations of compressible flows using stabilized formulations

    Get PDF
    This thesis investigates numerical methods that approximate the solution of compressible flow equations. The first part of the thesis is committed to studying the Variational Multi-Scale (VMS) finite element approximation of several compressible flow equations. In particular, the one-dimensional Burgers equation in the Fourier space, and the compressible Navier-Stokes equations written in both conservative and primitive variables are considered. The approximations made for the VMS formulation are extensively researched; the design of the matrix of stabilization parameters, the definition of the space where the subscales live, the inclusion of the temporal derivatives of the subscales, and the non-linear tracking of the subscales are formulated. Also, the addition of local artificial diffusion in the form of shock capturing techniques is included. The accuracy of the formulations is studied for several regimes of the compressible flow, from aeroacoustic flows at low Mach numbers to supersonic shocks. The second part of the thesis is devoted to make the solution of the smallest fluctuating scales of the compressible flow affordable. To this end, a novel algorithm for h−h-refinement of computational physics meshes in a distributed parallel setting, together with the solution of some refinement test cases in supercomputers are presented. The definition of an explicit a-posteriori error estimator that can be used in the adaptive mesh refinement simulations of compressible flows is also developed; the proposed methodology employs the variational subscales as a local error estimate that drives the mesh refinement. The numerical methods proposed in this thesis are capable to describe the high-frequency fluctuations of compressible flows, especially, the ones corresponding to complex aeroacoustic applications. Precisely, the direct simulation of the fricative [s] sound inside a realistic geometry of the human vocal tract is achieved at the end of the thesis.Esta tesis investiga métodos numéricos que aproximan la solución de las ecuaciones de flujo compresible. La primera parte de la tesis está dedicada al estudio de la aproximación numérica del flujo compresible por medio del método multiescala variacional (VMS) en elementos finitos. En particular, se consideran la ecuación de Burgers unidimensional descrita en el espacio de Fourier y las ecuaciones de Navier-Stokes de flujo compresible escritas en variables conservativas y primitivas. Las aproximaciones hechas para plantear la formulación VMS son ampliamente investigadas; el diseño de la matriz de parámetros de estabilización, la definición del espacio donde viven las subescalas, la inclusión de las derivadas temporales de las subescalas y el seguimiento no lineal de las subescalas son particularidades de la formulación que se analizan para cada una de las ecuaciones consideradas. Además, se incluye la adición de difusión artificial local en forma de técnicas de captura de choque. La precisión de las formulaciones se estudia para varios regímenes del flujo compresible, desde flujos aeroacústicos a bajos números de Mach hasta choques supersónicos. La segunda parte de la tesis está dedicada a hacer asequible la solución de las escalas fluctuantes más pequeñas del flujo compresible. Con este fin, se presenta un algoritmo novedoso para el refinamiento hh de las mallas de física computacional usadas en computación distribuida en paralelo. Además, se demuestra la solución en superordenadores de algunos casos de prueba del refinamiento de mallas. También se desarrolla la definición de un estimador de error explícito a posteriori que se puede usar en las simulaciones adaptativas de refinamiento de malla de flujos compresibles; la metodología propuesta emplea las subescalas variacionales como una estimación de error local que induce el refinamiento de la malla. Los métodos numéricos propuestos en esta tesis son capaces de describir las fluctuaciones de alta frecuencia de los flujos compresibles, especialmente los correspondientes a aplicaciones aeroacústicas complejas. Precisamente, la simulación directa del sonido consonántico fricativo [s] dentro de una geometría realista del tracto vocal humano se demuestra al final de la tesis

    Finite element simulation of additive manufacturing with enhanced accuracy

    Get PDF
    Tesi en modalitat de compendi de publicacionsThis thesis develops numerical methods to improve the accuracy and computational efficiency of the part-scale simulation of Additive Manufacturing (AM) (or 3D printing) metal processes. AM is characterized by multiple scales in space and time, as well as multiple complex physics that occur in three-dimensional growing-in-time geometries, making its simulation a remarkable computational challenge. To this end, the computational framework is built by addressing four key topics: (1) a Finite Element technology with enhanced stress/strain accuracy including the incompressible limit; (2) an Adaptive Mesh Refinement (AMR) strategy accounting for geometric and solution accuracies; (3) a coarsening correction strategy to avoid loss of information in the coarsening AMR procedure, and (4) a GCodebased simulation tool that uses the exact geometric and process parameters data provided to the actual AM machinery. In this context, the mixed displacement/deviatoric-strain/pressure u/e/p FE formulation in (1) is adopted to solve incompressible problems resulting from the isochoric plastic flow in the Von Mises criterion typical of metals. The enhanced stress/strain accuracy of the u/e/p over the standard and u/p FE formulations is verified in a set of numerical benchmarks in iso-thermal and non-isothermal conditions. A multi-criteria AMR strategy in (2) is used to improve computational efficiency while keeping the number of FEs controlled and without the strictness of imposing the commonly adopted 2:1 balance scheme. Avoiding this enables to use high jumps on the refinement level between adjacent FEs; this improves the mesh resolution on the region of interest and keeps the mesh coarse elsewhere. Moving the FE solution from a fine mesh to a coarse mesh introduces loss of information. To prevent this, a coarsening correction strategy presented in (3) restores the fine solution in the coarse mesh, providing computational cost reduction and keeping the accuracy of the fine mesh solution accuracy. Lastly, design flexibility is one of the main advantages of AM over traditional manufacturing processes. This flexibility is observed in the design of complex components and the possibility to change the process parameters, i.e. power input, speed, waiting pauses, among others, throughout the process. In (4) a GCode-based simulation tool that replicates the exact path travelled and process parameters delivered to the AM machiney is developed. Furthermore, the GCode-based tool together with the AMR strategy allows to automatically generate an embedded fitted cartesian FE mesh for the evolving domain and removes the challenging task of mesh manipulation by the end-user. The FE framework is built on a high-performance computing environment. This framework enables to accelerate the process-to-performance understanding and to minimize the number of trial-and-error experiments, two key aspects to exploit the technology in the industrial environment.Esta tesis tiene como objetivo desarrollar métodos numéricos para mejorar la precisión y eficiencia computacionales en simulaciones de piezas fabricadas mediante Manufactura Aditiva (MA), también conocida como Impresión 3D. La manufactura aditiva es un problema complejo que involucra múltiples fenómenos físicos, que se desarolla en múltiples escalas, y cuya geometría evoluciona en el tiempo. Para tal fin, se plantean cuatro objetivos: (1) Desarrollo de una tecnología de elementos finitos para capturar con mayor precisión tanto tensiones como deformaciones en casos en el que el material tiene comportamiento isocórico; (2) Una estrategia de adaptividad de malla (AMR), que busca modificar la malla teniendo en cuenta la geometría y los errores en la solución numérica; (3) Una estrategia para minimizar la aproximación numérica durante el engrosamiento (coarsening) de la malla, crucial en la reducción de tiempos de cómputo en casos de piezas de grandes dimensiones; y (4) Un marco de simulación basado en la lectura de ficheros GCode, ampliamente usado por maquinaria de impresión en procesos de manufactura aditiva, un formato que no sólo proporciona los datos asociados a la geometría, sino también los parámetros de proceso. Con respecto a (1), esta tesis propone el uso de una formulación mixta en desplazamientos /deformación-desviadora / presión (u/e/p), para simular la deposición de materiales con deformación inelástica isocórica, como ocurre en los metales. En cuanto a la medición de la precisión en el cálculo de las tensiones y las deformaciones, en esta tesis se realiza un amplio número de experimentos tanto en condiciones isotérmicas como no isotérmicas para establecer una comparativa entre las dos formulaciones mixtas, u/e/p y u/p. Con respecto a (2), para mejorar la eficiencia computacional manteniendo acotado el número total de elementos finitos, se desarrolla una novedosa estrategia multicriterio de refinamiento adaptativo. Esta estrategia no se restringe a mallas con balance 2:1, permitiendo así tener saltos de nivel mayores entre elementos adyacentes. Por otra parte, para evitar la pérdida de información al proyectar la solución a mallas más gruesas, se plantee una corrección en (3), que tiene como objetivo recuperar la solución de la malla fina, garantizando así que la malla gruesa conserve la precisión obtenida en la malla fina. El proceso de manufactura aditiva se distingue por su gran flexibilidad comparándolo con otros métodos tradicionales de manufactura. Esta flexibilidad se observa en la posibilidad de construir piezas de gran complejidad geométrica, optimizando propiedades mecánicas durante el proceso de deposición. Por ese motivo, (4) se propone la lectura de ficheros en formato GCode que replica la ruta exacta del recorrido del láser que realiza la deposición del material. Los ingredientes lectura de comandos escritos en lenguaje Gcode, multicriterio de adaptividad de malla y el uso de mallas estructuradas basadas en octrees, permiten capturar con gran precisión el dominio discreto eliminando así la engorrosa tarea de generar un dominio discreto ad-hoc para la pieza a modelar. Los desarrollos de esta tesis se realizan en un entorno de computación de altas prestaciones (HPC) que permite acelerar el estudio de la ejecución del proceso de impresión y por ende reducir el número de experimentos destructivos, dos aspectos clave que permiten explorar y desarrollar nuevas técnicas en manufactura aditiva de piezas industriales.Postprint (published version

    Multiphysics simulations: challenges and opportunities.

    Full text link
    corecore