51,705 research outputs found

    Improving the Reliability of Decision-Support Systems for Nuclear Emergency Management by Leveraging Software Design Diversity

    Get PDF
    This paper introduces a novel method of continuous verification of simulation software used in decision-support systems for nuclear emergency management (DSNE). The proposed approach builds on methods from the field of software reliability engineering, such as N-Version Programming, Recovery Blocks, and Consensus Recovery Blocks. We introduce a new acceptance test for dispersion simulation results and a new voting scheme based on taxonomies of simulation results rather than individual simulation results. The acceptance test and the voter are used in a new scheme, which extends the Consensus Recovery Block method by a database of result taxonomies to support machine-learning. This enables the system to learn how to distinguish correct from incorrect results, with respect to the implemented numerical schemes. Considering that decision-support systems for nuclear emergency management are used in a safety-critical application context, the methods introduced in this paper help improve the reliability of the system and the trustworthiness of the simulation results used by emergency managers in the decision making process. The effectiveness of the approach has been assessed using the atmospheric dispersion forecasts of two test versions of the widely used RODOS DSNE system

    Joint Research Centre

    Get PDF

    Event-Cloud Platform to Support Decision- Making in Emergency Management

    Full text link
    The challenge of this paper is to underline the capability of an Event-Cloud Platform to support efficiently an emergency situation. We chose to focus on a nuclear crisis use case. The proposed approach consists in modeling the business processes of crisis response on the one hand, and in supporting the orchestration and execution of these processes by using an Event-Cloud Platform on the other hand. This paper shows how the use of Event-Cloud techniques can support crisis management stakeholders by automatizing non-value added tasks and by directing decision- makers on what really requires their capabilities of choice. If Event-Cloud technology is a very interesting and topical subject, very few research works have considered this to improve emergency management. This paper tries to fill this gap by considering and applying these technologies on a nuclear crisis use-case

    "Making Safety Happen" Through Probabilistic Risk Assessment at NASA

    Get PDF
    NASA is using Probabilistic Risk Assessment (PRA) as one of the tools in its Safety & Mission Assurance (S&MA) tool belt to identify and quantify risks associated with human spaceflight. This paper discusses some of the challenges and benefits associated with developing and using PRA for NASA human space programs. Some programs have entered operation prior to developing a PRA, while some have implemented PRA from the start of the program. It has been observed that the earlier a design change is made in the concept or design phase, the less impact it has on cost and schedule. Not finding risks until the operation phase yields much costlier design changes and major delays, which can result in discussions of just accepting the risk. Risk contributors identified by PRA are not just associated with hardware failures. They include but are not limited to crew fatality due to medical causes, the environment the vehicle and crew are exposed to, the software being used, and the reliability of the crew performing required actions. Some programs have entered operation prior to developing a PRA, and while PRA can still provide a benefit for operations and future design trades, the benefit of implementing PRA from the start of the program provides the added benefit of informing design and reducing risk early in program development. Currently, NASAs International Space Station (ISS) program is in its 20th year of on-orbit operations around the Earth and has several new programs in the design phase preparing to enter the operation phase all of which have active (or living) PRAs. These programs incorporate PRA as part of their Risk-Informed, Decision-Making (RIDM) process. For new NASA human spaceflight programs discussion begins with mission concept, establishing requirements, forming the PRA team, and continues through the design cycles into the operational phase. Several examples of PRA related applications and observed lessons are included

    The safety case and the lessons learned for the reliability and maintainability case

    Get PDF
    This paper examine the safety case and the lessons learned for the reliability and maintainability case

    Risk Management in the Arctic Offshore: Wicked Problems Require New Paradigms

    Get PDF
    Recent project-management literature and high-profile disasters—the financial crisis, the BP Deepwater Horizon oil spill, and the Fukushima nuclear accident—illustrate the flaws of traditional risk models for complex projects. This research examines how various groups with interests in the Arctic offshore define risks. The findings link the wicked problem framework and the emerging paradigm of Project Management of the Second Order (PM-2). Wicked problems are problems that are unstructured, complex, irregular, interactive, adaptive, and novel. The authors synthesize literature on the topic to offer strategies for navigating wicked problems, provide new variables to deconstruct traditional risk models, and integrate objective and subjective schools of risk analysis
    • …
    corecore