5,577 research outputs found

    Using social robots to study abnormal social development

    Get PDF
    Social robots recognize and respond to human social cues with appropriate behaviors. Social robots, and the technology used in their construction, can be unique tools in the study of abnormal social development. Autism is a pervasive developmental disorder that is characterized by social and communicative impairments. Based on three years of integration and immersion with a clinical research group which performs more than 130 diagnostic evaluations of children for autism per year, this paper discusses how social robots will make an impact on the ways in which we diagnose, treat, and understand autism

    Advanced Bayesian networks for reliability and risk analysis in geotechnical engineering

    Get PDF
    The stability and deformation problems of soil have been a research topic of great concern since the past decades. The potential catastrophic events are induced by various complex factors, such as uncertain geotechnical conditions, external environment, and anthropogenic influence, etc. To prevent the occurrence of disasters in geotechnical engineering, the main purpose of this study is to enhance the Bayesian networks (BNs) model for quantifying the uncertainty and predicting the risk level in solving the geotechnical problems. The advanced BNs model is effective for analyzing the geotechnical problems in the poor data environment. The advanced BNs approach proposed in this study is applied to solve the stability of soil slopes problem associated with the specific-site data. When probabilistic models for soil properties are adopted, enhanced BNs approach was adopted to cope with continuous input parameters. On the other hand, Credal networks (CNs), developed on the basis of BNs, are specially used for incomplete input information. In addition, the probabilities of slope failure are also investigated for different evidences. A discretization approach for the enhanced BNs is applied in the case of evidence entering into the continuous nodes. Two examples implemented are to demonstrate the feasibility and predictive effectiveness of the BNs model. The results indicate the enhanced BNs show a precisely low risk for the slope studied. Unlike the BNs, the results of CNs are presented with bounds. The comparison of three different input information reveals the more imprecision in input, the more uncertainty in output. Both of them can provide the useful disaster-induced information for decision-makers. According to the information updating in the models, the position of the water table shows a significant role in the slope failure, which is controlled by the drainage states. Also, it discusses how the different types of BNs contribute to assessing the reliability and risk of real slopes, and how new information could be introduced in the analysis. The proposed models in this study illustrate the advanced BN model is a good diagnosis tool for estimating the risk level of the slope failure. In a follow-up study, the BNs model is developed based on its potential capability for the information updating and importance measure. To reduce the influence of uncertainty, with the proposed BN model, the soil parameters are updated accurately during the excavation process, and besides, the contribution of epistemic uncertainty from geotechnical parameters to the potential disaster can be characterized based on the developed BN model. The results of this study indicate the BNs model is an effective and flexible tool for risk analysis and decision making support in geotechnical engineering

    Artificial Intelligence in Engineering Management

    Get PDF
    L

    Risk-based maintenance of critical and complex systems

    Get PDF
    Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2016-2017.De nos jours, la plupart des systèmes dans divers secteurs critiques tels que l'aviation, le pétrole et les soins de santé sont devenus très complexes et dynamiques, et par conséquent peuvent à tout moment s'arrêter de fonctionner. Pour éviter que cela ne se reproduise et ne devienne incontrôlable ce qui engagera des pertes énormes en matière de coûts et d'indisponibilité; l'adoption de stratégies de contrôle et de maintenance s'avèrent plus que nécessaire et même vitale. Dans le génie des procédés, les stratégies optimales de maintenance pour ces systèmes pourraient avoir un impact significatif sur la réduction des coûts et sur les temps d'arrêt, sur la maximisation de la fiabilité et de la productivité, sur l'amélioration de la qualité et enfin pour atteindre les objectifs souhaités des compagnies. En outre, les risques et les incertitudes associés à ces systèmes sont souvent composés de plusieurs relations de cause à effet de façon extrêmement complexe. Cela pourrait mener à une augmentation du nombre de défaillances de ces systèmes. Par conséquent, un outil d'analyse de défaillance avancée est nécessaire pour considérer les interactions complexes de défaillance des composants dans les différentes phases du cycle de vie du produit pour assurer les niveaux élevés de sécurité et de fiabilité. Dans cette thèse, on aborde dans un premier temps les lacunes des méthodes d'analyse des risques/échec et celles qui permettent la sélection d'une classe de stratégie de maintenance à adopter. Nous développons ensuite des approches globales pour la maintenance et l'analyse du processus de défaillance fondée sur les risques des systèmes et machines complexes connus pour être utilisées dans toutes les industries. Les recherches menées pour la concrétisation de cette thèse ont donné lieu à douze contributions importantes qui se résument comme suit: Dans la première contribution, on aborde les insuffisances des méthodes en cours de sélection de la stratégie de maintenance et on développe un cadre fondé sur les risques en utilisant des méthodes dites du processus de hiérarchie analytique (Analytical Hierarchy Process (AHP), de cartes cognitives floues (Fuzzy Cognitive Maps (FCM)), et la théorie des ensembles flous (Fuzzy Soft Sets (FSS)) pour sélectionner la meilleure politique de maintenance tout en considérant les incertitudes. La deuxième contribution aborde les insuffisances de la méthode de l'analyse des modes de défaillance, de leurs effets et de leur criticité (AMDEC) et son amélioration en utilisant un modèle AMDEC basée sur les FCM. Les contributions 3 et 4, proposent deux outils de modélisation dynamique des risques et d'évaluation à l'aide de la FCM pour faire face aux risques de l'externalisation de la maintenance et des réseaux de collaboration. Ensuite, on étend les outils développés et nous proposons un outil d'aide à la décision avancée pour prédire l'impact de chaque risque sur les autres risques ou sur la performance du système en utilisant la FCM (contribution 5).Dans la sixième contribution, on aborde les risques associés à la maintenance dans le cadre des ERP (Enterprise Resource Planning (ERP)) et on propose une autre approche intégrée basée sur la méthode AMDEC floue pour la priorisation des risques. Dans les contributions 7, 8, 9 et 10, on effectue une revue de la littérature concernant la maintenance basée sur les risques des dispositifs médicaux, puisque ces appareils sont devenus très complexes et sophistiqués et l'application de modèles de maintenance et d'optimisation pour eux est assez nouvelle. Ensuite, on développe trois cadres intégrés pour la planification de la maintenance et le remplacement de dispositifs médicaux axée sur les risques. Outre les contributions ci-dessus, et comme étude de cas, nous avons réalisé un projet intitulé “Mise à jour de guide de pratique clinique (GPC) qui est un cadre axé sur les priorités pour la mise à jour des guides de pratique cliniques existantes” au centre interdisciplinaire de recherche en réadaptation et intégration sociale du Québec (CIRRIS). Nos travaux au sein du CIRRIS ont amené à deux importantes contributions. Dans ces deux contributions (11e et 12e) nous avons effectué un examen systématique de la littérature pour identifier les critères potentiels de mise à jour des GPCs. Nous avons validé et pondéré les critères identifiés par un sondage international. Puis, sur la base des résultats de la onzième contribution, nous avons développé un cadre global axé sur les priorités pour les GPCs. Ceci est la première fois qu'une telle méthode quantitative a été proposée dans la littérature des guides de pratiques cliniques. L'évaluation et la priorisation des GPCs existants sur la base des critères validés peuvent favoriser l'acheminement des ressources limitées dans la mise à jour de GPCs qui sont les plus sensibles au changement, améliorant ainsi la qualité et la fiabilité des décisions de santé.Today, most systems in various critical sectors such as aviation, oil and health care have become very complex and dynamic, and consequently can at any time stop working. To prevent this from reoccurring and getting out of control which incur huge losses in terms of costs and downtime; the adoption of control and maintenance strategies are more than necessary and even vital. In process engineering, optimal maintenance strategies for these systems could have a significant impact on reducing costs and downtime, maximizing reliability and productivity, improving the quality and finally achieving the desired objectives of the companies. In addition, the risks and uncertainties associated with these systems are often composed of several extremely complex cause and effect relationships. This could lead to an increase in the number of failures of such systems. Therefore, an advanced failure analysis tool is needed to consider the complex interactions of components’ failures in the different phases of the product life cycle to ensure high levels of safety and reliability. In this thesis, we address the shortcomings of current failure/risk analysis and maintenance policy selection methods in the literature. Then, we develop comprehensive approaches to maintenance and failure analysis process based on the risks of complex systems and equipment which are applicable in all industries. The research conducted for the realization of this thesis has resulted in twelve important contributions, as follows: In the first contribution, we address the shortcomings of the current methods in selecting the optimum maintenance strategy and develop an integrated risk-based framework using Analytical Hierarchy Process (AHP), fuzzy Cognitive Maps (FCM), and fuzzy Soft set (FSS) tools to select the best maintenance policy by considering the uncertainties.The second contribution aims to address the shortcomings of traditional failure mode and effect analysis (FMEA) method and enhance it using a FCM-based FMEA model. Contributions 3 and 4, present two dynamic risk modeling and assessment tools using FCM for dealing with risks of outsourcing maintenance and collaborative networks. Then, we extend the developed tools and propose an advanced decision support tool for predicting the impact of each risk on the other risks or on the performance of system using FCM (contribution 5). In the sixth contribution, we address the associated risks in Enterprise Resource Planning (ERP) maintenance and we propose another integrated approach using fuzzy FMEA method for prioritizing the risks. In the contributions 7, 8, 9, and 10, we perform a literature review regarding the risk-based maintenance of medical devices, since these devices have become very complex and sophisticated and the application of maintenance and optimization models to them is fairly new. Then, we develop three integrated frameworks for risk-based maintenance and replacement planning of medical devices. In addition to above contributions, as a case study, we performed a project titled “Updating Clinical Practice Guidelines; a priority-based framework for updating existing guidelines” in CIRRIS which led to the two important contributions. In these two contributions (11th and 12th) we first performed a systematic literature review to identify potential criteria in updating CPGs. We validated and weighted the identified criteria through an international survey. Then, based on the results of the eleventh contribution, we developed a comprehensive priority-based framework for updating CPGs based on the approaches that we had already developed and applied success fully in other industries. This is the first time that such a quantitative method has been proposed in the literature of guidelines. Evaluation and prioritization of existing CPGs based on the validated criteria can promote channelling limited resources into updating CPGs that are most sensitive to change, thus improving the quality and reliability of healthcare decisions made based on current CPGs. Keywords: Risk-based maintenance, Maintenance strategy selection, FMEA, FCM, Medical devices, Clinical practice guidelines

    Uncertainty in Engineering

    Get PDF
    This open access book provides an introduction to uncertainty quantification in engineering. Starting with preliminaries on Bayesian statistics and Monte Carlo methods, followed by material on imprecise probabilities, it then focuses on reliability theory and simulation methods for complex systems. The final two chapters discuss various aspects of aerospace engineering, considering stochastic model updating from an imprecise Bayesian perspective, and uncertainty quantification for aerospace flight modelling. Written by experts in the subject, and based on lectures given at the Second Training School of the European Research and Training Network UTOPIAE (Uncertainty Treatment and Optimization in Aerospace Engineering), which took place at Durham University (United Kingdom) from 2 to 6 July 2018, the book offers an essential resource for students as well as scientists and practitioners

    Expert Systems and Artificial Neural Networks for Spatial Analysis and Modelling: Essential Components for Knowledge-Based Geographical Information Systems

    Get PDF
    Series: Discussion Papers of the Institute for Economic Geography and GIScienc

    Combination of Evidence in Dempster-Shafer Theory

    Full text link

    Optimization of maintenance performance for offshore production facilities

    Get PDF
    Master's thesis in Offshore technologyNew technologies are becoming advanced and complex for offshore production facilities. However this advancement and complexity in technology creates a more complicated and time consuming forensic processes for finding causes of failure, or diagnostic processes to identify events that reduce performance. As a result, micro-sensors, efficient signaling and communication technologies for collecting data efficiently, advanced software tools (such as fuzzy logic, neural networks, and simulation based optimization) have been developed, in parallel, to manage such complex assets. Given the nature and scale of ongoing changes on complexities, there are emerging concerns that increasing complexities, ill-defined interfaces, unforeseen events can easily lead to serious performance failures and major risks. To avoid such undesirable circumstances, „just-in-time‟ measures of performance to ensure fully functional is absolutely necessary. The increasing trend in complexity creates a motivation to develop an integrated maintenance management framework to get real-time information to solve problems quickly and hence to increase functional performance (help the asset to perform its required function effectively and efficiently while safeguarding life and the environment). Establishing “just-in-time” maintenance and repairs based on true machine condition maximizes critical asset useful life and eliminates premature replacement of functional components. This thesis focuses on developing an integrated maintenance management framework to establish „just-in-time‟ maintenance and to ensure continuous improvements based on maintenance domain experts as well as operational and historic data. To do this, true degradation of components must be identified. True level of degradation often cannot be inferred by the mere trending of condition indicator‟s level (CBM), because condition indicator levels are modulated under the influence of the diverse operating context. Besides, the maintenance domain expert does not have a precise knowledge about the correlation of the diverse operating context and level of degradation for a given level of condition indicator on specific equipment. Efforts have been made in here to identify the true degradation pattern of a component by analyzing these vagueness and imprecise knowledge. Key words: effective and efficient maintenance strategy, ‘just-in-time’ maintenance, condition based maintenance, P-F interval

    Dynamic safety analysis of decommissioning and abandonment of offshore oil and gas installations

    Get PDF
    The global oil and gas industry have seen an increase in the number of installations moving towards decommissioning. Offshore decommissioning is a complex, challenging and costly activity, making safety one of the major concerns. The decommissioning operation is, therefore, riskier than capital projects, partly due to the uniqueness of every offshore installation, and mainly because these installations were not designed for removal during their development phases. The extent of associated risks is deep and wide due to limited data and incomplete knowledge of the equipment conditions. For this reason, it is important to capture every uncertainty that can be introduced at the operational level, or existing hazards due to the hostile environment, technical difficulties, and the timing of the decommissioning operations. Conventional accident modelling techniques cannot capture the complex interactions among contributing elements. To assess the safety risks, a dynamic safety analysis of the accident is, thus, necessary. In this thesis, a dynamic integrated safety analysis model is proposed and developed to capture both planned and evolving risks during the various stages of decommissioning. First, the failure data are obtained from source-to-source and are processed utilizing Hierarchical Bayesian Analysis. Then, the system failure and potential accident scenarios are built on bowtie model which is mapped into a Bayesian network with advanced relaxation techniques. The Dynamic Integrated Safety Analysis (DISA) allows for the combination of reliability tools to identify safetycritical causals and their evolution into single undesirable failure through the utilisation of source to-source variability, time-dependent prediction, diagnostic, and economic risk assessment to support effective recommendations and decisions-making. The DISA framework is applied to the Elgin platform well abandonment and Brent Alpha jacket structure decommissioning and the results are validated through sensitivity analysis. Through a dynamic-diagnostic and multi-factor regression analysis, the loss values of accident contributory factors are also presented. The study shows that integrating Hierarchical Bayesian Analysis (HBA) and dynamic Bayesian networks (DBN) application to modelling time-variant risks are essential to achieve a well-informed decommissioning decision through the identification of safety critical barriers that could be mitigated against to drive down the cost of remediation.The global oil and gas industry have seen an increase in the number of installations moving towards decommissioning. Offshore decommissioning is a complex, challenging and costly activity, making safety one of the major concerns. The decommissioning operation is, therefore, riskier than capital projects, partly due to the uniqueness of every offshore installation, and mainly because these installations were not designed for removal during their development phases. The extent of associated risks is deep and wide due to limited data and incomplete knowledge of the equipment conditions. For this reason, it is important to capture every uncertainty that can be introduced at the operational level, or existing hazards due to the hostile environment, technical difficulties, and the timing of the decommissioning operations. Conventional accident modelling techniques cannot capture the complex interactions among contributing elements. To assess the safety risks, a dynamic safety analysis of the accident is, thus, necessary. In this thesis, a dynamic integrated safety analysis model is proposed and developed to capture both planned and evolving risks during the various stages of decommissioning. First, the failure data are obtained from source-to-source and are processed utilizing Hierarchical Bayesian Analysis. Then, the system failure and potential accident scenarios are built on bowtie model which is mapped into a Bayesian network with advanced relaxation techniques. The Dynamic Integrated Safety Analysis (DISA) allows for the combination of reliability tools to identify safetycritical causals and their evolution into single undesirable failure through the utilisation of source to-source variability, time-dependent prediction, diagnostic, and economic risk assessment to support effective recommendations and decisions-making. The DISA framework is applied to the Elgin platform well abandonment and Brent Alpha jacket structure decommissioning and the results are validated through sensitivity analysis. Through a dynamic-diagnostic and multi-factor regression analysis, the loss values of accident contributory factors are also presented. The study shows that integrating Hierarchical Bayesian Analysis (HBA) and dynamic Bayesian networks (DBN) application to modelling time-variant risks are essential to achieve a well-informed decommissioning decision through the identification of safety critical barriers that could be mitigated against to drive down the cost of remediation
    corecore