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Résumé 

De nos jours, la plupart des systèmes dans divers secteurs critiques tels que l'aviation, le pétrole et les soins de 

santé sont devenus très complexes et dynamiques, et par conséquent peuvent à tout moment s'arrêter de 

fonctionner. Pour éviter que cela ne se reproduise et ne devienne incontrôlable ce qui engagera des pertes énormes 

en matière de coûts et d'indisponibilité; l'adoption de stratégies de contrôle et de maintenance s'avèrent plus que 

nécessaire et même vitale.  

Dans le génie des procédés, les stratégies optimales de maintenance pour ces systèmes pourraient avoir un impact 

significatif sur la réduction des coûts et sur les temps d'arrêt, sur la maximisation de la fiabilité et de la productivité, 

sur l'amélioration de la qualité et enfin pour atteindre les objectifs souhaités des compagnies. En outre, les risques 

et les incertitudes associés à ces systèmes sont souvent composés de plusieurs relations de cause à effet de façon 

extrêmement complexe. Cela pourrait mener à une augmentation du nombre de défaillances de ces systèmes. Par 

conséquent, un outil d'analyse de défaillance avancée est nécessaire pour considérer les interactions complexes de 

défaillance des composants dans les différentes phases du cycle de vie du produit pour assurer les niveaux élevés 

de sécurité et de fiabilité.  

Dans cette thèse, on aborde dans un premier temps les lacunes des méthodes d'analyse des risques/échec et celles 

qui permettent la sélection d'une classe de stratégie de maintenance à adopter. Nous développons ensuite des 

approches globales pour la maintenance et l'analyse du processus de défaillance fondée sur les risques des systèmes 

et machines complexes connus pour être utilisées dans toutes les industries. Les recherches menées pour la 

concrétisation de cette thèse ont donné lieu à douze contributions importantes qui se résument comme suit: 

Dans la première contribution, on aborde les insuffisances des méthodes en cours de sélection de la stratégie de 

maintenance et on développe un cadre fondé sur les risques en utilisant des méthodes dites du processus de 

hiérarchie analytique (Analytical Hierarchy Process (AHP), de cartes cognitives floues (Fuzzy Cognitive Maps 

(FCM)), et la théorie des ensembles flous (Fuzzy Soft Sets (FSS)) pour sélectionner la meilleure politique de 

maintenance tout en considérant les incertitudes.  

La deuxième contribution aborde les insuffisances de la méthode de l'analyse des modes de défaillance, de leurs 

effets et de leur criticité (AMDEC) et  son amélioration en utilisant un modèle AMDEC basée sur les FCM. 

Les contributions 3 et 4, proposent deux outils de modélisation dynamique des risques et d'évaluation à l'aide de 

la FCM pour faire face aux risques de l'externalisation de la maintenance et des réseaux de collaboration. Ensuite, 

on étend les outils développés et nous proposons un outil d'aide à la décision avancée pour prédire l'impact de 

chaque risque sur les autres risques ou sur la performance du système en utilisant la FCM (contribution 5).  

Dans la sixième contribution, on aborde les risques associés à la maintenance dans le cadre des ERP (Enterprise 

Resource Planning (ERP)) et on propose une autre approche intégrée basée sur la méthode AMDEC floue pour la 

priorisation des risques. 

Dans les contributions 7, 8, 9 et 10, on effectue une revue de la littérature concernant la maintenance basée sur les 

risques des dispositifs médicaux, puisque ces appareils sont devenus très complexes et sophistiqués et l'application 

de modèles de maintenance et d'optimisation pour eux est assez nouvelle. Ensuite, on développe trois cadres 

intégrés pour la planification de la maintenance et le remplacement de dispositifs médicaux axée sur les risques. 
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Outre les contributions ci-dessus, et comme étude de cas, nous avons réalisé un projet intitulé “Mise à jour de 

guide de pratique clinique (GPC) qui est un cadre axé sur les priorités pour la mise à jour des guides de pratique 

cliniques existantes” au centre interdisciplinaire de recherche en réadaptation et intégration sociale du Québec 

(CIRRIS). Nos travaux au sein du CIRRIS ont amené à deux importantes contributions. Dans ces deux 

contributions (11e et 12e) nous avons effectué un examen systématique de la littérature pour identifier les critères 

potentiels de mise à jour des GPCs. Nous avons validé et pondéré les critères identifiés par un sondage 

international. Puis, sur la base des résultats de la onzième contribution, nous avons développé un cadre global axé 

sur les priorités pour les GPCs. Ceci est la première fois qu'une telle méthode quantitative a été proposée dans la 

littérature des guides de pratiques cliniques. L'évaluation et la priorisation des GPCs existants sur la base des 

critères validés peuvent favoriser l'acheminement des ressources limitées dans la mise à jour de GPCs qui sont les 

plus sensibles au changement, améliorant ainsi la qualité et la fiabilité des décisions de santé. 
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Abstract 

Today, most systems in various critical sectors such as aviation, oil and health care have become very complex 

and dynamic, and consequently can at any time stop working. To prevent this from reoccurring and getting out of 

control which incur huge losses in terms of costs and downtime; the adoption of control and maintenance strategies 

are more than necessary and even vital.  

In process engineering, optimal maintenance strategies for these systems could have a significant impact on 

reducing costs and downtime, maximizing reliability and productivity, improving the quality and finally achieving 

the desired objectives of the companies. In addition, the risks and uncertainties associated with these systems are 

often composed of several extremely complex cause and effect relationships. This could lead to an increase in the 

number of failures of such systems. Therefore, an advanced failure analysis tool is needed to consider the complex 

interactions of components’ failures in the different phases of the product life cycle to ensure high levels of safety 

and reliability.  

In this thesis, we address the shortcomings of current failure/risk analysis and maintenance policy selection 

methods in the literature. Then, we develop comprehensive approaches to maintenance and failure analysis process 

based on the risks of complex systems and equipment which are applicable in all industries. The research 

conducted for the realization of this thesis has resulted in twelve important contributions, as follows: 

In the first contribution, we address the shortcomings of the current methods in selecting the optimum maintenance 

strategy and develop an integrated risk-based framework using Analytical Hierarchy Process (AHP), fuzzy 

Cognitive Maps (FCM), and fuzzy Soft set (FSS) tools to select the best maintenance policy by considering the 

uncertainties. 

The second contribution aims to address the shortcomings of traditional failure mode and effect analysis (FMEA) 

method and enhance it using a FCM-based FMEA model. Contributions 3 and 4, present two dynamic risk 

modeling and assessment tools using FCM for dealing with risks of outsourcing maintenance and collaborative 

networks. Then, we extend the developed tools and propose an advanced decision support tool for predicting the 

impact of each risk on the other risks or on the performance of system using FCM (contribution 5).  

In the sixth contribution, we address the associated risks in Enterprise Resource Planning (ERP) maintenance and 

we propose another integrated approach using fuzzy FMEA method for prioritizing the risks. In the contributions 

7, 8, 9, and 10, we perform a literature review regarding the risk-based maintenance of medical devices, since 

these devices have become very complex and sophisticated and the application of maintenance and optimization 

models to them is fairly new. Then, we develop three integrated frameworks for risk-based maintenance and 

replacement planning of medical devices. 

In addition to above contributions, as a case study, we performed a project titled “Updating Clinical Practice 

Guidelines; a priority-based framework for updating existing guidelines” in CIRRIS which led to the two important 

contributions. In these two contributions (11th and 12th) we first performed a systematic literature review to 

identify potential criteria in updating CPGs. We validated and weighted the identified criteria through an 

international survey. Then, based on the results of the eleventh contribution, we developed a comprehensive 

priority-based framework for updating CPGs based on the approaches that we had already developed and applied 

success fully in other industries. This is the first time that such a quantitative method has been proposed in the 

literature of guidelines. Evaluation and prioritization of existing CPGs based on the validated criteria can promote 
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channelling limited resources into updating CPGs that are most sensitive to change, thus improving the quality 

and reliability of healthcare decisions made based on current CPGs. 

 

Keywords: Risk-based maintenance, Maintenance strategy selection, FMEA, FCM, Medical devices, Clinical 

practice guidelines. 
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1.1 Introduction 

Complex high-technology devices and systems are in growing use in industry, service sectors, and everyday life. 

Their reliability and maintenance is of utmost importance in view of their cost and critical functions. The efficient 

functioning of these systems depends on the smooth operation of many complex systems comprised of several 

pieces of components that provide a variety of products and services. These include manufacturing plants, 

processing plants, hospitals (to provide services), transport systems, communication systems (television, 

telephone and computer networks), utilities (water, gas and electricity networks), and banks (for financial 

transactions) to name a few (Kobbacy & Murthy, 2008). When a complex system fails, the consequences can be 

dramatic. It can result in serious economic losses, affect humans and do serious damage to the environment as, 

for example, the crash of an aircraft in flight, the failure of a sewage processing plant or the collapse of a bridge. 

Through proper corrective maintenance, one can restore a failed system to an operational state by actions such as 

repair or replacement of the components that failed and in turn caused the failure of the system. With effective 

maintenance actions such as preventive maintenance, inspection, condition monitoring, and design-out 

maintenance, depending on the system, the occurrence of failures and their consequences can be reduced to a 

considerable extent.  

Over the last few decades the maintenance of systems has become more and more complex. One reason for this 

is that systems consist of many components which depend on each other. On the one hand, interactions between 

components complicate the modelling and optimization of maintenance. Sometimes, the incident emerges from 

the interaction of major and minor faults which were individually insufficient to have produced this incident. On 

the other hand, variety of subjective/objective factors/criteria should be considered when deciding about best 

maintenance policy for a devices/component. Moreover, there is always uncertainties associated with experts’ 

opinions which are mostly overlooked. It follows that planning accurate and economic maintenance actions is a 

big challenge and an advanced decision support tool is needed to consider all these aspects in maintenance 

planning of complex systems.  

Risk analysis can be used for selection and prioritization of maintenance activities, and risk-based decision 

makings have been given increased attention in recent years. An effective use of resources can be achieved by 

using risk-based maintenance decisions to guide where and when to perform maintenance. The risk-based 

maintenance (RBM) strategy is an effective quantitative approach integrating reliability analysis and risk 

assessment to develop a cost-effective maintenance policy (Khan & Haddara, 2003). The risk-based maintenance 

methodology is broken down into three main modules, see Fig. 1:  

1- Risk determination, which consists of risk identification and estimation, 

2- Risk evaluation, which consists of risk aversion and risk acceptance analysis, and 

3- Maintenance planning considering risk factors. 
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Figure  1-1 Architecture of RBM methodology 

RBM methodology provides a tool for maintenance planning and decision making to reduce the probability of 

failure of equipment and the consequences of failure. The concept of risk-based maintenance was developed to 

inspect the high-risk components usually with greater frequency and thoroughness and to maintain in a greater 

manner, to achieve tolerable risk criteria (Arunraj & Maiti, 2007). The RBM strategy emerged in the 1990s and 

has received increasing attention from researchers in recent years. Khan  and  Haddara (2003)  proposed  a  

complete  framework  for the RBM strategy, in which the probability of the unexpected event was determined 

using fault tree analysis (FTA) and  the  consequences  involved  the  estimation  of  system  performance  loss,  

financial  loss, human  health  loss  and  environmental  and/or  ecological  loss. Arunraj  and  Maiti  (2007)  

reviewed  research  on  RBM  and  risk  assessment technologies. According to this literature review, there are 

several qualitative/quantitative risk analysis tools such as FTA, FMEA, etc. that have been applied in different 

applications. However, these traditional tools are not able to consider complex cause and effect interactions 

between failures/component in risk analysis of complex systems. In addition, no attention has been paid to possible 

dependencies among different criteria for selecting the best maintenance strategy or evaluating failures/risks. 

Considering these interactions and dependencies could lead to more accurate risk analysis and maintenance 

planning, while they are always overlooked. Moreover, Most of the risk analysis approaches are deficient in 

uncertainty and sensitivity analysis (Arunraj & Maiti 2007). By considering these shortcomings in existing risk 
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analysis tools, it is evident that the existing traditional tools are not able to assess the risks/failures in complex 

systems accurately and any decisions based on misleading results may generate non-essential maintenance efforts. 

This misinterpretation will result in the failure to reduce or eliminate significant sources of risk. Last but not least, 

the existing risk/failures analysis tools are not able to predict the impacts of each failure/causes of failure on the 

other failures or on the system performance. Experts need to easily determine how any change in a failure or cause 

of failure will affect the other failure modes while this feature is not available in the traditional risk analysis tools 

such as FMEA. 

This thesis addresses these major shortcomings in traditional risk/failures analysis and maintenance policy 

selection methods and propose several integrated frameworks by considering the level of experience and 

knowledge of experts and depending on the complexity of the system.  The proposed frameworks are sufficiently 

general and could be applied in all critical industries for risk analysis and maintenance planning of complex 

systems. In addition, some of them could be adapted for complex Multi-Criteria Decision Making (MCDM) 

problems such as prioritization or selection issues by making some adjustments. We apply the proposed 

frameworks in variety of applications in order to show their applicability and efficiencies. At the end, as a case 

study in collaboration with Center for Interdisciplinary Research in Rehabilitation and Social Integration 

(CIRRIS), we develop a comprehensive priority-based framework for updating problem of Clinical Practice 

Guidelines (CPGs) by conducting a systematic literature review and international survey and based on our 

proposed frameworks in this thesis. Updating CPGs is a complex process in the lifecycle of CPGs for all healthcare 

organizations and substantial human and financial resources are being expended internationally for updating them. 

In this chapter, we describe the five different problems related to risk analysis and maintenance of complex 

systems we are addressing in this thesis. As updating CPGs is considered as a case study, a brief description of 

CPGs and their updating problem is also presented. A brief review of literature on the existing approaches to 

address the five problems as well as the existing approaches for updating CPGs are also provided in this section. 

The objectives and outlines of the thesis is given at the end of this chapter. The following sub-sections (1.2.1-6) 

describe the five main problems and case study which have been addressed in this thesis. 

1.2. Problem description 

1.2.1. Risk-based maintenance strategy selection (RB-MSS) problem  

Optimum maintenance strategy for a component or machine could have a significant impact on minimizing costs 

and downtime, maximizing reliability and productivity, improving quality and finally reaching the desired goals 

of companies (Karsak, 2001). Maintaining critical machines with poor attention can cause serious damages as 

well as lower utilization and productivity (Braglia, 2013; Murthy, 1999). According to Bevilacqua (2000), 15-70 

percent of production costs of companies are due to maintenance costs. In addition, around 30% of these costs is 

wasted due to inappropriate maintenance policies (Mobley, 2002). Selecting the optimum maintenance strategy 

for a machine or system is a critical and complex task since variety of subjective/objective criteria should be taken 

into account (Arunraj, 2010). Moreover, considering the interrelationships between criteria that affect each other 

mutually makes the decision on optimum maintenance policy very complex. For example, when more money is 

spent on maintenance of a device, the level of risks will be reduced however, the cost effectiveness of a 

maintenance strategy in minimizing the risks has a significant effect in the final prioritization of maintenance 
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strategies (Kumar, 2012). Due to high importance of MSS for all industries, variety of MCDM approaches have 

been applied in the literature. In most cases, AHP or a combination of AHP and some other decision making tools 

are proposed for finding the optimum maintenance policy (Arunraj, 2010; Bevilacqua, 2000; AlNajjara & 

Alsyouf, 2003; Bertolini, 2006; Fouladgar et al. 2012). However, there are some drawbacks associated with these 

methods. First of all, the existing methods are very time consuming and sometimes confusing due to the need for 

answering several pairwise comparison by experts. The more maintenance alternatives and evaluation criteria are 

considered, the more comparisons is needed. In addition, some problems with consistency could arise. With a 

large set of comparisons, it is likely to be less consistent and it can take a long time to identify and fix all the 

inconsistencies. Second of all, the current methods are not able to consider the dependency and feedback effects 

among criteria, while considering the interdependencies could lead to a cost-effective and more accurate 

maintenance policy to organizations. In addition, very few risk-based approaches exist in the literature. Adopting 

a risk-based maintenance (RBM) approach helps in designing an alternative strategy to minimize the risk resulting 

from breakdowns or failures. In addition, is essential in developing cost-effective maintenance policies. Last but 

not least, no attention has been paid to the experience and knowledge level of maintenance experts in MSS. Since 

each expert has different knowledge and experience about the device and maintenance strategies, different weights 

should be assigned to each expert’s opinion. The developed methods are still not able to fully address the existing 

gap in the literature of MSS, since the real industrial environment is much more complicated and several variables 

and factors should be considered and analysed at the same time for making decision about optimum maintenance 

policy (Arunraj & Maiti, 2007). The four specific research questions addressed in this study are as follows: (a) 

Do current MSS approaches consider all aspects of risks in finding optimum maintenance policy for a component 

or device? (b) Do current MSS approaches consider the dependencies between subjective/objective criteria? And 

if so, (c) is the impact of considering these dependencies in final prioritization of maintenance policies for a 

component/device is known? And (d) how can an advanced risk-based MSS method be developed so that it takes 

into account all aspects of risks, the possible dependencies among criteria and uncertainties in real industrial 

environment? 

1.2.2. Enhancing traditional FMEA 

Failure modes and effects analysis (FMEA) is a well-known and extensively used failure analysis method for 

identifying and mitigating potential failures in order to ensure the safety and reliability of components and 

systems. It is widely adopted in different industries such as manufacturing, aviation, healthcare, nuclear and 

services. Traditional FMEA analyses the risk of a component or process using risk priority number (𝑅𝑃𝑁). The 

𝑅𝑃𝑁 is a product of three main criteria; the probability of the occurrence of failure (𝑂), the probability of not 

detecting the failure (𝐷) and the severity/consequences of the failure (𝑆) (𝑅𝑃𝑁 =  𝑂 ×  𝐷 ×  𝑆). This approach 

is simple but not useful for risk analysis of complex systems since it suffers from some major weaknesses as 

follows:  

(1) The relative importance among 𝑂, 𝑆 and 𝐷 is overlooked and the three criteria are assumed to have the same 

importance (Carmignani, 2009; Chang & Cheng, 2011; Chang et al., 2013; Kuei-Hu et al., 2014; Nepal et al., 

2008; Peláez & Bowles, 1996; Sankar & Prabhu, 2001; Seyed-Hosseini et al. 2006; Zammori & Gabbrielli, 2011). 
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(2) The RPN criteria produce many duplicate numbers. This could lead to misclassifying high-risk failures as low 

risk (Carmignani, 2009; Chang & Cheng, 2011; Chang et al., 2013; Kuei-Hu et al., 2014; Seyed-Hosseini et al., 

2006; Xu et al., 2002; Abbasgholizadeh Rahimi et al., 2015; Chin et al., 2008). 

(3) Uncertainties in FMEA teams’ opinions are neglected when scaling the 𝑅𝑃𝑁’s subjective factors (Chang & 

Cheng, 2011; Chang, Chang, & Tsai, 2013; Seyed-Hosseini et al., 2006; Xu et al., 2002; Abbasgholizadeh Rahimi 

et al., 2015). 

(4) Traditional FMEA only considers a single failure, while for a complex system with several components, there 

may be many failures and failure causes (Xiao, Huang, Li, He, & Jin, 2011). 

(5) In complex engineering systems, the relationships and interdependencies among various failure modes (𝐹), 

causes of failures (𝐶𝐹𝑠), the relationships between 𝐶𝐹𝑠 and 𝐹𝑠 and vice versa are overlooked (Carmignani, 2009; 

Xu et al., 2002; Zammori & Gabbrielli, 2011; Nepal et al., 2008; Kuei-Hu et al., 2014; Chin et al., 2008). Many 

failures in critical systems and processes are dynamic and complex since several components interact with each 

other in so complex ways. This could lead to an increase in the number of failures in these systems since the 

failure of a component could lead to a failure of the same or another component or cause of a failure could be the 

cause of other failures. One of the main reasons for propagation of such failures in complex systems is the lack of 

in-depth understanding of the failure interactions and mechanisms. 

(6) The level of experience and knowledge of experts are not considered in ranking failure modes (criticized by 

authors).  

The aforementioned shortcomings crucially limit the efficiency of FMEA method and they could result in wrong 

decisions. Several attempts have been made in the past decade in order to address the shortcomings 1 to 3. 

However, very few authors have addressed the last three shortcomings (4, 5, and 6). There is a need for an 

advanced and powerful failure analysis tool to be able to consider this complexity in failure interactions of 

complex systems. However, the existing failure assessment tools are not able to consider failures interactions. 

1.2.3. Dynamic risk modeling and assessing in complex systems  

Nowadays, most of real-world systems and processes in engineering, manufacturing, healthcare, finance, sales, 

and other fields are complex and dynamic. The risks and uncertainties associated with these systems are often 

composed by several cause and effect relationships in so complex ways. This could lead to an increase in the 

number of failures in these systems if not assessed by an advanced risk assessment tool. Ordinary qualitative/ 

quantitative risk analysis tools such as conventional event fault tree analysis (FTA) or failure mode effects analysis 

(FMEA) methods are designed to illustrate static dependencies among logical variables, and do not consider 

process variables, time, or human behavior (which affect the system dynamic response) (Siu, 1994) and therefore 

could not be applied to risk assessment of these systems. In addition, some advanced modelling techniques such 

as Bayesian networks, Neural networks, etc. are not able to take into account the requirements demanded for risk 

assessment of such complex systems. There is a need for an advanced risk assessment tool which is able to take 

into account this cause and effect relationships among risk factors. 
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1.2.3.1. Dynamic risk modeling and assessing in maintenance outsourcing 

Maintenance outsourcing is a common practice in many industries, such as aviation and medical equipment 

manufacturing. However, there is always some dynamic risks associated with outsourcing. Risk analysis of 

maintenance outsourcing projects is a complex task due to consisting of many risk factors with dependencies 

among them. As mentioned before, ordinary qualitative/ quantitative risk analysis tools such as conventional event 

fault tree analysis (FTA) or failure mode effects analysis (FMEA) methods are designed to illustrate static 

dependencies among logical variables, and do not consider the dependencies among risk factors and therefore 

could not be applied to risk assessment of these systems. In addition, some advanced modelling techniques such 

as Bayesian networks, Neural networks, etc. are not able to take into account the requirements demanded for risk 

assessment of such complex systems. Although there are some studies on maintenance outsourcing risks 

(Welborn, 2007; Bertolini et al. 2004; Gandhi et al., 2012), no attention has been paid to the risk analysis of 

maintenance outsourcing by considering the dependencies among risk factors. Considering the dependencies 

among risk factors could lead to more precise risks analysis and increase the success rate of outsourcing projects.  

1.2.3.2. Dynamic risk modeling and assessing in Collaborative Networks (CNs) 

Collaborative networks (CNs) such as virtual organizations, dynamic supply chains, professional virtual 

communities, collaborative virtual laboratories, etc. are complex systems associated with uncertainties in dynamic 

business environments. This uncertainty and complexity could lead to critical risks which could influence on the 

enterprises’ performance. According to Munyon & Perryman (Munyon & Perryman, 2011), failure rate of 

alliances are estimated between 60% and 70%. Risk evaluation of CNs is a complex and critical task since several 

tangible and intangible risk factors should be considered in this process. In addition, there are always some 

dependencies among risks that can influence each other mutually and these dependencies make the evaluation 

process more complex and challenging. Therefore, an effective method for evaluating the risks is fundamental 

and essential. In recent decade, many problems related to CNs such as partner selection (Hexin & Jim, 2005) 

(Shah & Nathan, 2008) (Jarimo & Salo, 2007), modeling collaboration preparedness assessment (Rosas & 

Camarinha-Matos, 2008), etc. have been investigated. However, very little attention has been paid to the risk 

analysis of collaborative networks by considering the dependencies among risk factors (LI & Liao, 2007) (Zhou 

& Lu, 2012). 

1.2.4. Risk assessment in ERP maintenance 

In recent decades, companies across the world have implemented ERP systems. Proper ERP implementation has 

been a more explored issue. Specifically, numerous papers have presented the critical success factors in these 

projects. But even when the implementation finished satisfactorily, success in ERP adoption is not guaranteed 

(Lopez & Salmeron, 2012). It also depends on the effectiveness process in the post-implementation ERP systems. 

The maintenance of the ERP is necessary to correct and prevent systems risks as well as to enhance its performance 

and adapt continuously to the system (Aloini et al., 2007). A survey about ERP systems shows a growing activity 

in ERP maintenance. This trend has continued in recent years. However, ERP risks studies represent about only 

12% of the ERP research (Salmeron & Lopez, 2010). Nevertheless, this is often managed intuitively and without 

taking into account the existing risks. In contrast, risks management in IT projects is a common practice because 

it decreases failure probability. In this sense, the maintenance managers need to know the importance of all risks 
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by considering the possible interdependencies among them. In spite of this, there is no systematic and easy-to-use 

approach for evaluating and prioritization of potential risks that could affect the maintenance of ERPs. 

1.2.5. Risk-based maintenance and replacement of Medical devices 

Nowadays, safety of advanced medical device and the hazards associated with utilization of them is one of the 

critical issues for healthcare organizations across the world (Florence & Calil, 2007). Degradation in the 

performance of complex medical devices and inadequately maintained medical equipment create an unacceptable 

risk of patient injury. In addition, there are risks of injury to clinical staff from simple, direct hazards, such as 

accidental contact with electrified parts or from mechanical failures within the device (Ridgway, 2009), for 

example defects in ultrasound machines, defective artificial cardiac valves, leakage of insulin pumps, and high 

number of errors in CT scans which leads to patients receiving 10 times the intended dose of radiation in some 

cases (Fries, 2012). Thus, the maintenance and replacement of medical devices is fundamental and it calls for an 

effective and efficient framework to prioritize medical devices for maintenance/replacement activities based on 

key criteria and choose the best maintenance/replacement policy for each device. Although reliability  engineering  

approaches  have  been  successfully  applied  for decades in  different industries  and numerous inspection  and  

optimization  models  are  developed, the application of all these techniques and models to medical devices is new 

(Taghipour et al. 2010). Hospitals, due to possessing a large number of difference devices, can benefit significantly 

if the optimization techniques are used properly in the equipment management processes. Most research  in  the  

area  of  reliability  engineering  for  medical  equipment  mainly  considers  the devices  in  their  design  or  

manufacturing  stage  and  suggests  some  techniques  to  improve  the reliability.  To  this  point,  best  

maintenance/replacement  strategies  for  medical  equipment  in  their  operating context have not been considered. 

So, it is necessary to develop maintenance/replacement planning to minimize frequency and consequences of 

devices failures in healthcare industries.  

1.2.6. Case study: Updating Clinical Practice Guidelines  

As a case study in this thesis, we consider the common problem of updating clinical practice guideline (CPG) in 

all healthcare organizations. A CPG is a document that includes recommendations to assist physicians, healthcare 

practitioners, and patients in making decisions about diagnosis, management, and treatment for specific clinical 

conditions (NGC, 2014). The lifespan of CPGs is limited since new evidences emerge continuously (Aghbasi et 

al., 2014). New information needs to be assessed frequently and CPGs should be updated regularly based on the 

new evidence in order to remain valid (Garcia et al., 2011). Many organizations recommend a full update every 

3-5 years. This could be a waste of the limited resources of organizations since the rate of new evidence for 

different fields is variable (Shekelle et al., 2001). Updating CPGs is a crucial and complex process in the lifecycle 

of CPGs for ensuring their validity and quality (Woolf et al., 1999; Clarck et al., 2006). Substantial human and 

financial resources are being expended internationally for updating existing CPGs (Aghbasi et al., 2014; Woolf et 

al., 1999; Vernooij et al., 2014; Shekelle et al., 2001). According to Shekelle (2001), conducting a systematic 

review in the US Agency for Healthcare Research and Quality (AHRQ) costs approximately $250,000 USD for 

each CPG. Considering the limited resources of organizations, dynamic and fluid environment of CPGs, and 

substantial cost and time needed for updating, it is obvious that updating all CPGs regularly is not feasible. 

Therefore, there must be some validated criteria and a systematic prioritization method in order to prioritize the 
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existing CPGs for updating. Prioritization of existing CPGs for updating is an effective way of ensuring that 

resources are spent in an efficient and effective manner towards the upkeep of the CPGs that are the most relevant 

and of the highest priority (Aghbasi et al., 2014). 

1.3. Thesis objectives  

In this thesis, we address variety of problems related to risk-based maintenance of complex systems including 

risk-based maintenance strategy selection (RB-MSS), enhancing traditional FMEA method, the need for a 

dynamic risk analysis tool, risk-based maintenance and replacement of medical devices, and as a case study, we 

address the common problem of updating CPGs. We propose several systematic/comprehensive methods and 

frameworks in order to improve current maintenance strategies in the critical industries. Our main objective is to 

reduce overall risk in these industries. We intend to look into the challenges that experts are currently facing for 

maintenance management of critical and complex systems. On the other hand, we attempt to propose some models 

and methods that are sufficiently general and can be practically used in all industries.  

The six main objectives of this thesis are as follows: 

1. Improving the current maintenance and replacement activities in critical industries 

2. Improving the existing methods for MSS 

3. Enhancing traditional FMEA method  

5. Proposing an advanced dynamic tool for risk assessment of complex systems 

6. Proposing a comprehensive dynamic framework for updating CPGs 

1.4. Contributions of this Work and methodology 

The contributions of this thesis led to the papers published/submitted in scientific journals or international 

conference proceedings. A brief description of each contribution including the methodology is described in this 

sub-section. This thesis includes twelve contributions presented as articles. 

In the first contribution, we address the shortcomings of current maintenance strategy selection methods and 

develop a risk-based framework using AHP, FCM, and FSS for selecting the best maintenance policy by 

considering uncertainties, level of experience and knowledge of experts, and dependencies among criteria. By 

performing a sensitivity analysis, we demonstrate that considering the complex dependencies among criteria has 

an impact on priority of maintenance policies. In addition, we show that the final priority of maintenance policies 

remained stable in all cases when the weights of the main criteria were increased/decreased for 25 percent. 

The second contribution aims to address the shortcomings of traditional failure mode and effect analysis (FMEA) 

method and enhance it using FCM. This study proposes an innovative framework for analysis of failure modes in 

complex systems by considering the complex interactions among failures and cause of failures.  The proposed 

framework is able to predict the impact of each failure or cause of failure on the other failure modes or on the 

system performance. In addition, it is able to take into account the level of experience and knowledge of experts, 

the uncertainties on failure analysis process, and multiple causes of failures and components. In contributions 3 
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and 4 we first propose a dynamic risk modeling and assessment tool using FCM for dealing with risks of 

maintenance outsourcing and collaborative networks. As an extension of contributions 3 and 4 (contribution 5), 

we generalize the developed tools in contributions 3 & 4 and propose an advanced decision support tool which 

could be applied in any complex system for predicting the impact of each risk on the other risks or on the 

performance of system. The main feature of this tool is the ability to model the behaviour of system and consider 

all the possible interdependencies among risk factors. This tool could help practitioners in critical industries to 

manage the risks of complex systems in a more effective and precise way and offer better risk mitigation solutions. 

In the sixth contribution, we address the associated risks in ERP maintenance and we propose another integrated 

approach using fuzzy FMEA and Grey Relational Analysis (GRA) methods for prioritizing the risks. The 

presented systematic framework is able to consider the interdependencies among risk factors. One of the main 

features of the proposed frameworks and methods in this thesis is that different weights are assigned to criteria 

and also the level of experience and knowledge of experts. In addition, the uncertainties in experts’ opinions are 

taken into account using fuzzy logic techniques.  

In the contributions 7-10, we address the maintenance issue of medical devices, since these devices have become 

very complex and sophisticated and the application of maintenance and optimization models to them is fairly new. 

We first perform a literature review regarding the maintenance of medical devices, Then, we revisit and reassess 

the major criteria and sub criteria that can affect medical devices risk scores. Finally, we develop one 

comprehensive and two integrated frameworks for risk-based maintenance and replacement planning of medical 

devices based on the reassessed criteria/sub-criteria. 

In addition to above contributions, we have performed a project titled “Updating Clinical Practice Guidelines; a 

priority-based framework for updating existing guidelines” in collaboration with CIRRIS which led to two 

important contributions. In the first contribution, we performed a systematic literature review to identify potential 

criteria in updating CPGs. Then, based on the review’s results, we conducted an online survey. The survey was 

sent by email to 83 public and private organizations across the world and 16 authors who have published relevant 

articles on the subject of updating CPGs. We validated and weighed all the identified criteria through an 

international survey. In the second contribution, we developed a comprehensive priority-based framework for 

updating CPGs based on the approaches that we had already developed and applied successfully in other 

industries. This is the first time that such a comprehensive framework has been proposed in the literature of 

guidelines. Evaluation and prioritization of existing CPGs based on the validated criteria and proposed 

quantitative framework can promote channelling limited resources into updating CPGs that are most sensitive to 

change, thus improving the quality and reliability of healthcare decisions made based on current CPGs. By 

implementation of this framework in healthcare, institutes will have a formal and rigorous process for deciding 

which guideline is in urgent need for updating and when a guideline should be updated. 

Conclusion 

In this chapter, we introduced the problems we are addressing, as well as a case study related to updating problem 

of CPGs in healthcare organizations. We also presented the main objectives of the thesis. Finally, the outlines of 

this thesis is provided. The following five chapters present the twelve original contributions of the thesis. 
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Chapter 2. 

An integrated dynamic framework for risk-based 

maintenance policy selection 

 

The second chapter is earmarked to the article entitled “A new risk-based framework for maintenance policy 

selection by integrating FCM, AHP and Fuzzy soft set” submitted in April 2016 to the “International Journal of 

Production Research”. 
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2.1 An integrated dynamic framework for risk-based maintenance strategy selection 

Résumé: La sélection des stratégies de maintenance (SSM) est une tâche critique et complexe de prise de décision 

à critères multiples (PDCM) pour toutes les industries. Diverses approches ont été développées au cours de la 

dernière décennie pour résoudre ce problème. Cependant, peu de recherches sur les SSM dynamiques basés sur 

le risque (RB-MSS) en considérant les incertitudes existent dans la littérature. D'autre part, les critères utilisés 

sont indépendants et ne reflètent pas les relations de cause à effet entre les critères. Cette étude identifie d'abord 

les critères et les politiques de maintenance les plus populaires utilisés pour le SSM en passant en revue la 

littérature et propose ensuite un cadre de sélection de stratégie de maintenance basée sur le risque en intégrant le 

processus d'analyse hiérarchique (PHA), les cartes cognitives floues (CCF) et les outils de la théorie des ensembles 

flous. Ce cadre dynamique fondé sur le risque est non seulement capable de considérer les dépendances complexes 

entre les critères mais aussi de prendre en compte les informations imprécises et les opinions de plusieurs experts 

dans tous les processus décisionnels. Ce cadre est continuellement mis à jour afin de minimiser les risques d'échec 

pour un composant / système. En effectuant une analyse de sensibilité, il a été révélé qu’en considérant les 

dépendances parmi les critères, la priorisation finale des stratégies de maintenance est affectée. Cette 

hiérarchisation est restée stable dans tous les cas où les poids des principaux critères ont été augmentés / diminués 

pour 25 pour cent. Un exemple de cas universitaires est fourni pour illustrer les étapes et l'applicabilité du cadre 

proposé. 

Mots-clés: Maintenance axée sur les risques, Sélection de stratégies de maintenance, Prise de décision à critères 

multiples, Cartes cognitives floues, Ensemble flou, processus d'analyse hiérarchique. 
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2.1 An integrated dynamic framework for risk-based maintenance strategy selection 

Abstract: Maintenance strategy selection (MSS), is a critical and complex multi-criteria decision making 

(MCDM) task for any industries. Various approaches have been developed in the recent decade to tackle this 

problem. However, few researches on dynamic risk-based MSS (RB-MSS) by considering uncertainties exist in 

the literature. On the other hand, the used criteria are independent and don’t reflect the cause and effect 

relationships between criteria. This study first identifies the most popular criteria and maintenance policies used 

for MSS by reviewing the literature and then proposes a risk-based maintenance strategy selection framework by 

integrating the analytical hierarchy process (AHP), fuzzy cognitive maps (FCM), and fuzzy soft set (FSS) tools. 

This dynamic risk-based framework is not only able to considers the complex dependencies between criteria, but 

also takes into account the imprecise information and several experts’ opinions in all decision making process. 

This framework is continuously updated in order to minimize the risks of failures for a component/system. By 

performing a sensitivity analysis, it was revealed that by considering the dependencies among criteria, the final 

prioritization of maintenance strategies are affected. This prioritization remained stable in all cases when the 

weights of the main criteria were increased/decreased for 25 percent. An academic numerical example case is 

included to illustrate the steps and applicability of the proposed framework.  

Key words: Risk-based Maintenance, Maintenance strategy selection, Multi criteria decision making, Fuzzy 

cognitive maps, Fuzzy soft set, Analytical Hierarchy Process. 

1. Introduction 

Optimum maintenance strategy for a component or machine could have a significant impact on minimizing costs 

and downtime, maximizing reliability and productivity, improving quality and finally reaching the desired goals 

of companies (E.E. Karsak, 2001). Maintaining critical machines with poor attention can cause serious damages 

as well as lower utilization and productivity (Marcello Braglia, 2013; Murthy, 1999). According to Bevilacqua 

(Bevilacqua, 2000), 15-70 percent of production costs of companies are due to maintenance costs. In addition, 

around 30% of these costs is wasted due to inappropriate maintenance policies (Mobley, 2002). Selecting the 

optimum maintenance strategy for a machine or system is a critical and complex task since variety of 

subjective/objective criteria should be taken into account (Arunraj N. a., 2010). Due to high importance of MSS 

for all industries, variety of MCDM approaches have been applied in the literature. In most cases, AHP or a 

combination of AHP with some MCDM tools are proposed (Al-Najjar, 2003; Arunraj N. a., 2010; Bevilacqua, 

2000; Bertolini, 2006; Mohammad Majid Fouladgar, 2012). However, there are some drawbacks associated with 

these methods. First of all, the existing AHP-based approaches are very time consuming and sometimes confusing 

due to the need for answering several pairwise comparison by experts. The more maintenance alternatives and 

evaluation criteria are considered, the more comparisons is needed. In addition, some problems with consistency 

could arise. With a large set of comparisons, it is likely to be less consistent and it can take a long time to identify 

and fix all the inconsistencies. Second of all, although several research works have been published on MSS, very 

few of them are risk-based (Kumar Sharma, Kumar, & Maiti, 2012). A Risk-based maintenance (RBM) approach 

could minimize the risk of failures to a great extent and lead to cost-effective maintenance policies. In a risk-based 

maintenance strategy selection (RB-MSS) approach, maintenance strategies are prioritized by assessing the level 

of risk for each failure mode. Zhaoyang et al. (Zhaoyang, 2011) proposed a risk-based method to find the suitable 

maintenance policy in an industrial process in China. At first, the authors calculated the risk score for equipment 
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based on probability of failure and consequences parameters and by using RISKWISE software. They categorized 

the equipment into 5 risk levels based on their risk scores. Then, they applied AHP method and considered four 

criteria to find the best maintenance policy for each equipment. Arunraj and Maiti (Arunraj N. a., 2010) presented 

a risk-based hybrid method consisting of AHP and goal programming (GP) for selecting best maintenance strategy 

in a critical unit of a chemical plant.  

Another issue regarding current MSS approaches is that these approaches are not able to consider the dependency 

and feedback effects among criteria. Considering the interrelationships between criteria that affect each other 

mutually makes the decision on optimum maintenance policy very complex (Jamshidi, Abbasgholizadeh Rahimi, 

Ait-Kadi, & Ruiz, 2015). For example, when more money is spent on maintenance of a device, the level of risks 

will be reduced however, the cost effectiveness of a maintenance strategy in minimizing the risks has a significant 

effect in the final prioritization of maintenance strategies (Kumar Sharma, Kumar, & Maiti, 2012). Considering 

these interdependencies could lead to a cost-effective and more accurate maintenance policy to companies and 

organizations. To the best of our knowledge, no study has addressed this shortcoming and the impact of 

considering the dependencies on the prioritization of maintenance policies are not known yet. Kumar and Maiti 

(2012) are the first and only authors who considered the dependency between two criteria for finding out the best 

maintenance alternative. They evaluated different maintenance strategies based on risk and cost factors and 

considered the dependencies between the two factors using Fuzzy Analytic Network Process (FANP). Despite the 

fact that ANP takes into account the dependencies between criteria, it suffers from some major shortcomings. 

First, the questions for comparing the importance of criteria are sometimes hard and not understandable for experts 

to answer (R. Yu, 2006). Second, ANP is able to consider only the direct dependencies among criteria while there 

could be some indirect dependencies among criteria which are ignored. Third, determining the true ANP structure 

for several criteria is hard since each structure produces a different result (J.W. Lee, 2000).   

The developed methods are still not able to fully address the existing gap in the literature of MSS, since the real 

industrial environment is much more complicated and several variables and risk factors should be considered and 

analysed at the same time in a dynamic environment for making risk-based decisions about optimum maintenance 

policy ( Arunraj & Maiti, 2007). In this paper, we first review the literature regarding the most popular criteria 

and maintenance policies considered in MSS and then propose an integrated dynamic risk-based framework for 

maintenance policy selection using AHP, FCM, and FSS theory in an attempt to overcome these shortcomings. 

This dynamic framework is continuously updated in order to minimize the risks of failures for a 

component/system. The presented framework consists of a three step decision process. In the first step, AHP is 

used to determine the initial criteria weights by comparing the relative importance of each criterion. In the second 

step, FCM as an effective dynamic tool for modeling the behaviour of complex systems is applied to take into 

account imprecise information, uncertainties, and the interrelationships among criteria. FCM has gained an 

increasing attention in the last years and it is being used in different complex decision making problems (Jamshidi, 

Abbasgholizadeh Rahimi, Ait-Kadi, & Ruiz, 2015; Jamshidi, Abbasgholizadeh Rahimi, Ait-Kadi, & Ruiz, 2015; 

Zhi Xiao, 2012; Salmeron, 2010). In order to overcome the FCM method’s dependence for expert advice in the 

reasoning process, we use NHL-DE algorithm to train FCM and obtain the weight of each criterion. Finally, in 

the third step, a modified FSS model is formulated to prioritize the maintenance policies. FSS has gained 

increasing importance in the recent years since it is easy to use and less time consuming and confusing for experts 
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in comparison with hierarchical methods. FSS has a rich potential to be applied in different industries for a variety 

of complex decision makings (Çelik & Yamak, 2013). To the best of our knowledge, no study has adopted the 

combination of AHP, FCM, and FSS in risk- based MSS. Then, in this paper, we firstly integrate and apply these 

decision making tools in RB-MSS. At the end, we perform a sensitivity analysis in order to evaluate robustness 

of the proposed framework and also assess the impact of considering dependencies in prioritization of maintenance 

policies.  

The remainder of the paper is organized as follows. Section 2 provides a scientific literature review about current 

methods, popular criteria, and maintenance policies used for MSS. Section 3 introduces the preliminaries of FCM, 

hybrid algorithms and FSS. The proposed framework is presented in Section 4 and is illustrated using an academic 

example in section 5. The results of sensitivity analysis are reported in section 6. Finally, conclusions and future 

directions are drawn in Section 7. 

2. Maintenance policies 

In order to determine the most popular criteria and maintenance strategies used in MSS, we searched the literature 

(through ScienceDirect, Emerald, IEEE, and Google Scholar databases) from 1995 to 2016 for papers dealing 

with MSS. Publications in languages other than English, textbooks, and doctoral dissertations were not included. 

In addition, we only included papers that report on an approach for MSS by considering some criteria and 

maintenance alternatives. This implies that the papers which only deal with risk analysis methods and their 

improvements were excluded. Through this review, we identified 15 different maintenance policies from 21 

papers (See Fig. 2.1) and it was revealed that the 8 most popular maintenance strategies considered in most of 

papers have been CM, PM, CBM, PDM, TPM, TBM, OM, and RCM, respectively. These policies are described 

in the followings.   

1) Corrective Maintenance (CM): This maintenance is performed only after occurrence of a failure. In this policy, 

only repair or replacement actions are taken, but no action is taken to detect the cause of failure or to prevent 

failure. This policy is usually applied for non-critical equipment since it is very costly for critical equipment 

(Kumar, 2012). CM is also called as breakdown maintenance or failure based maintenance (Bashiri et al., 2011). 

2) Preventive maintenance (PM): This maintenance doesn’t wait for a component to fail and is regularly performed 

in order to lessen the likelihood of component failing and their consequences. PM is more complex than CM since 

it needs maintenance schedule. In addition, it has some difficulties such as insufficient historical data, the need of 

decision support systems, and uncertainties in assessing the time to action (Al-Najjar, 2003). PM can be classified 

as TBM and CBM (Kumar, 2012). 

3) Time-based maintenance (TBM): is a planned maintenance which is implemented at scheduled periodic 

intervals. The periodic intervals are scheduled based on the failure distribution of the equipment. This policy is 

not effective when various factors other than the elapsed time such as environmental and operational conditions 

have an impact on the failure rate of equipment (Kumar, 2012; Arunraj & Maiti, 2010).  

4) Condition-Based Maintenance (CBM): In this strategy, the condition of equipment is monitored for some 

indicators and data are gathered continuously or at certain intervals. The maintenance is done when the gathered 
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data show that one or some indicators are approaching the predefined threshold level (Fouladgar et al., 2012). 

This strategy could be applied for both critical and non-critical equipment however, it is the most cost effective 

maintenance policy for critical equipment (Veldman, 2011). 

5) Predictive maintenance (PDM): In this policy, the equipment failure is predicted at the early stages using 

different methods such as observation, vibration, etc. in order to avoid catastrophic failures. As CBM policy, PDM 

is a cost-effective maintenance strategy since the maintenance is performed only when it is required and then the 

maintenance frequency and downtimes are low. However, it could be costly in the cases that some expensive 

monitoring and specialists are required to analysis the data. 

6) Total productive maintenance (TPM): This maintenance policy requires the active participation of the 

workforce in a plant in order to improve the overall equipment effectiveness (OEE). 

7) Opportunistic Maintenance (OM): is very effective in oil and gas industry. This policy, gives an opportunity to 

maintenance staff to repair or replace the defective or yet non-failed components during the maintenance of other 

components/equipment or in a downtime opportunity in order to prevent future failures (Fouladgar et al., 2012).  

(8) Reliability-centered Maintenance (RCM): In this policy, cost-effective maintenance strategies are determined 

for components based on a failure analysis using FMEA (Failure mode and effect analysis), FMECA, HAZOPS 

(Hazard and operability studies), FTA (Fault tree analysis), or RBI (Risk-based inspection) tools. This policy 

heavily depends on the availability of failure data and there is sometimes difficulties in its implication (Al-Najjar, 

2003).   

 

 

Figure 2.  1 The most popular Maintenance policies considered in MSS 
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Table 2. 1 The criteria and maintenance policies for MSS 

Author Criteria Maintenance policies Application 

Al-Najjar et al. (2003) Failure causes CM, PM, CBM, TPM, RCM, 

TQM 

Paper Mill 

Labib (2004) Failure occurrence, downtime CM, Design out maintenance 

(DOM), CBM, Skill level 

upgrade (SLU), Fixed time 

maintenance (FTM)  

Automotive company 

Khalil et al. (2005) Failure cost CM, PM, CBM, operator asset 

care 

Aero-industry 

Sharma et al. (2005) Failure causes CM, PM, CBM, RCM and 

TPM 

Process industry (Gear) 

Luce, (1999) Production loss, maintenance costs CM, PM Cutting presses for iron 

Okumura and Okino 

(2003) 

Production loss, maintenance costs CBM, TBM, Breakdown 

maintenance (BM) 

Manufacturing system 

Triantaphyllou et al. 

(1997) 

Cost, reparability, reliability, availability - Numerical Example 

Bevilacqua & Braglia 

(2000) 

Cost, damages, applicability, added value CM, PM, OM, CBM, PDM Italian oil refinery 

Bertolini & 

Bevilacqua (2006) 

Failure occurrence, its severity, its 

detectability 

CM, PM, PDM Centrifugal pumps in an oil 

refinery 

Arunraj & Maiti 

(2010) (Arunraj & 

Maiti, 2010) 

Risk of equipment failure, cost of 

maintenance 

CM, TBM, CBM, Shutdown 

maintenance (SM) 

Benzene extraction unit of a 

chemical plant 

 

Ahmadi (2010) 

- Benefit (Business, Planning flexibility, 

maintenance downtime, Procedural 

effectiveness) 

- Cost (Investment, Maintenance cost) 

CM, Functional check, 

Restoration, Discard, 

Incorporation of PHM 

Fuel System of aircraft 

 

Azadivar (2010)  

16 characteristic factors including MTBF, 

Job routing complexity, Resource 

availability, Repair load, Demand urgency, 

Allowed buffer size, etc. 

 

CM, PM, OM, PDM, MTBF-

based 

 

JIT production systems 

 

 

 

Maletic et al. (2014) 

- Equipment and process related measures ( 

OEE, MTTR, productivity, availability, 

breakdown frequencies, quality rate) 

- Financial measures (maintenance and 

production costs, maintenance savings) 

- Health, safety and environment measures 

(number of accidents)  

CM, PM, TPM, RCM, TQM Paper mill company 

Wang et al. (2007)  Safety, Cost, Added-value, Feasibility CM, CBM, TPM, PDM Thermal power plant 

Bashiri et al. (2011) Benefit, Cost, MTBF CM, PM, TBM, CBM, PDM Numerical Example 

Chan & Prakash 

(2012) 

Capital cost, Running cost, downtime, 

Reliability, Capability, Repair load, 

Operator skills, Flexibility, Efficiency, 

Facility utilisation, Resource availability 

TPM, TQM, CBM, PM, FBM Numerical Example 

Cheng & Tsao (2010) Quality and efficiency, Cost and reliability, 

Safety 

CM, PM Rolling stock 

Fouladgar et al. (2012) Cost (Spare part stocks, Personnel wage, 

MTTR, MTBF), Accessibility 

(Technology, Human resource), Risk 

(Product loss, People damage, 

Environmental damage), Added value 

(Product quality, Efficiency, Intrinsic 

safety) 

CM, TBM, CBM, PM, OM Sungun copper mine 

Kumar (2012) Risk of equipment failure, cost of 

maintenance 

CM, TBM, CBM, SM A unit of a chemical plant 

Nezami & Yildirim 

(2012) 

- Business excellence/economic factors 

- Social/human contribution factors 

- Environmental factors 

CM, PM, TPM, RCM, CB, Car manufacturing company 

Pariazar et al. (2008) Safety, Cost, Added-value, Execution 

capability 

CM, PM, OM, CBM, PDM An industrial unit 



21 
 

 

 

2.2. Popular criteria in selecting best maintenance policy  

According to the literature review, variety of criteria have been considered in MSS which some of them are 

quantitative such as MTTR, MTBF, reliability and some are qualitative such as safety and feasibility (See Table 

2.1). Cost-based criteria such as cost of failure, maintenance costs, and production loss have been considered as 

the most important criterion in all of the identified 21 papers (See Fig. 2.2). Apart from the cost-based criteria, 

variety of other criteria have been considered such as safety, downtime, availability, etc. One point that should be 

mentioned is that less attention has been paid to the risk of failure while considering the risk of failures 

simultaneously with other criteria is crucial to the success of maintenance actions in industries. Only two papers 

consider the risk of failure as the main criterion along with cost of maintenance criterion (Arunraj & Maiti, 2010; 

Kumar, 2012). In addition, two papers consider the risk of failures by using Risk Priority Number (RPN) factors 

(Occurrence, Detection and Severity). The evaluating criteria for MSS depend on the organizational goals and 

objectives and could be decided in consensus with field experts. The most popular criteria considered in MSS are 

shown in Fig. 2.2.  

 

 
Figure 2.  2 The most popular criteria considered in MSS 

3. Basic theories 

In the followings, we review briefly some basic concepts of Fuzzy Cognitive Map, Hybrid based Learning 

Algorithms, and fuzzy soft sets which we have applied in our proposed framework. 

3.1 Fuzzy Cognitive Map (FCM) 

FCM is one of powerful decision support tools which was developed by Kosko in 1986 (1986) for modeling the 

behaviors of complex systems. FCM has gained an increasing attention in the recent years due to its simplicity, 

flexibility, applicability and adaptability to a variety of complex problems and has been used in different industries 

and applications including political decision making, fault detection, engineering science, decision analysis, 

medical decision system, and process control (Xiao, 2012). The AHP-based methods for MSS fail to take into 

account the complex interactions and feedbacks which might be present in the system. In order to overcome this 

21

4 4 4 4 3 3 3 2 2 2 2
0

5

10

15

20

25



22 
 

limitation, in this study we apply FCM for considering all dependencies among criteria in MSS. We believe that 

application of FCM in MSS is not reported in the literature to date. Then, in this study we first apply FCM in risk-

based MSS.  

FCMs are designed based on the experience and knowledge of decision makers who know the operation and 

behavior of systems and are employed to represent both subjective and objective data in complex systems. FCM 

represents a complex system through a simple graph and by using some nodes and arcs among nodes. The nodes 

represent the important factors in the system and the directed arcs show the cause-effect dependencies between 

nodes (Xiao, 2012). The figures 2.3 and 2.4 show a simple FCM diagram with 5 nodes and 9 arcs and related 

initial weight matrix, respectively.  Each node (𝐶𝑖) takes value in the interval 𝐴𝑖 ∈ [0, 1], and each weighted arc 

(𝑊𝑖𝑗) takes value in the interval [-1,1]. 

 

Figure 2.  3 An example of FCM graph 
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Figure 2.  4 The initial weight matrix of the above FCM graph 

The sign of each weight between two concepts (+ 𝑜𝑟 −) shows the same or opposite directions of two nodes. For 

example, if an increase in value of concept 𝐶𝑖 will increase the value of concept 𝐶𝑗, it shows that both nodes have 

the same directions and then, the sign of 𝑊𝑖𝑗  should be positive (Papageorgiou, 2014). All the required information 

for designing a FCM graph including the types of nodes, interrelationships between nodes and their directions, 

and initial weights of nodes are heavily based on the experts’ knowledge and experience. Therefore, the selection 

of right experts is an important issue since their opinions affect the results (Elpiniki, 2005).   

Nomenclature 

 

𝐶𝑖            node 𝑖 /concept 𝑖 

𝑊𝑖𝑗          the initial weight between two nodes 𝐶𝑖 and 𝐶𝑗;  

𝑊𝐼𝑛𝑖𝑡𝑖𝑎𝑙    initial weight matrix  

𝑤𝑗𝑖
(𝑘)

        modified weights using NHL algorithm 

𝑊𝑁𝐻𝐿
(𝑘+1)

    updated weight matrix using NHL algorithm 

𝑤𝑖𝑗           the updated weight matrix using NHL-DE  

𝐴𝑖            initial value of the node 𝐶𝑖 

𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙    initial concept vector 

 

 

𝑇𝑖            the mean value of interesting node 𝐷𝑂𝐶𝑖  

𝑣𝑖
(𝑘+1)

    new mutant vector 

𝑤𝑖
(𝑘)

       mutation operator 

𝐹(𝑊)      fitness function 

D = {𝑑1, . . ., 𝑑𝑚},       set of m devices 

C = { 𝑐1, . . ., 𝑐𝑛}         set of n criteria  

P = {𝑃1 , . . . , 𝑃𝑘}         set of k maintenance policies  

𝑓(𝑥)       threshold function 

𝑄ℎ          device-criteria matrix 

𝐶1 

𝐶2 

𝐶5 𝐶4 

𝑊12 𝑊23 

𝑊14 

𝑊52 

𝑊15 𝑊53 

𝑊25 
𝑊24 

𝑊34 
𝐶3 
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𝐶∗           the steady-state concept matrix  

𝐶𝑁
∗           normalized 𝐶∗ matrix 

𝐴𝑖
𝑘+1       the value of concept 𝐶𝑖 at simulation step 𝑘 + 1; 

𝑓             threshold function 

𝐷𝑂𝐶𝑖       Desired Output Concepts for node 𝑖 

𝑤𝑗𝑖
(𝑘)

        the modified weights at iteration step k using 

NHL 

𝜂             learning rate parameter 

𝛾             weight decay parameter 

𝐹1           the first termination function  

𝐹2           the second termination function  

𝐷𝐶ℎ        weighted device-criteria matrix  

𝑅ℎ          criteria-policy matrix 

𝐷𝑃ℎ
∗        device-policy matrix  

𝐷𝑃ℎ𝑖𝑙
∗∗   defuzzified 𝐷𝑃ℎ

∗ 

𝐷𝑃𝑇
∗∗     final policy prioritization matrix 

𝑊ℎ         weight of decision maker h 

CR         values of crossover constant 

𝜇            mutation constant  

𝛾            weight decay learning parameter   
𝜂            learning rate parameter  
𝐷𝑀ℎ      decision maker ℎ         

 

Once the FCM graph is designed by experts and the initial values for each node and the weights between nodes 

are determined, the initial value (𝐴𝑖) of the node 𝐶𝑖  is updated by calculating the influence of all connected nodes 

to 𝐶𝑖 (Kosko, 1997) using Eq. 1. 

 

𝐴𝑖
𝑘+1 = 𝑓(𝐴𝑖

(𝑘)
+ ∑ 𝑊𝑖𝑗𝐴𝑗

(𝑘)
)𝑛

𝑗=1
𝑗≠𝑖

,                                                                                                                                  (1) 

where, 

𝑊𝑖𝑗  shows the initial weight between two nodes 𝐶𝑖 and 𝐶𝑗;  

𝐴𝑖
𝑘+1 is the value of concept 𝐶𝑖 at simulation step 𝑘 + 1; 

𝑓 is a threshold function. The mostly applied threshold functions in the literature are; tangent hyperbolic (𝑓(𝑥) =

𝑡𝑎𝑛ℎ(𝑥)), sigmoid function (𝑓(𝑥)  =  1/(1 + 𝑒−𝜆𝑥)), bivalent function (f(x) = 0 or 1), and trivalent function 

(f(x) = -1, 0 or 1).  

At each simulation step, a new value is produced for each node by Eq. 1 and the iterations end once FCM arrives 

at one of the following three steady state conditions (Papageorgiou, 2014). 

1) The updated concepts’ values are fixed in a point, 

2) Reaching limited state cycle, and 

3) Appearance of chaotic behavior. 

 

In order to overcome the potential convergence of FCM to undesired steady state conditions, some learning 

algorithms such as particle swarm optimization (PSO) (Elpiniki, 2005), Differential Hebbian Learning 

(Papageorgiou, 2004) (Papakostas, 2011), and Simulated Annealing (SA) (Alizadeh et al., 2009) have been 

proposed recently. Learning algorithms are used to update/modify the initial weight matrix and can increase the 

robustness and accuracy of FCM. Three types of learning algorithms proposed in the literature for training FCMs 

are; 1) Evolution-based, 2) Hebbian-based, and 3) Hybrid-based. In this paper, a hybrid-based learning algorithm 

is applied to train FCM since this kind of learning algorithm has been proven to be the most effective and efficient 

(Papageorgiou, 2012; Papageorgiou, 2014).  

3.2 Hybrid based Learning Algorithms  
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Hybrid-based learning techniques are a combination of Evolution-based and Hebbian-based algorithms 

(Papageorgiou, 2012). In this learning technique, the initial weight matrix is updated/modified by using the 

knowledge and experience of experts in a two-step process. Few hybrid-based algorithms have been proposed in 

the literature (Zhu & Zhang, 2008; Ren, 2012; Papageorgiou & Groumpos, 2005). Papageorgiou and Groumpos 

(2005) proposed NHL-DE hybrid algorithm for learning FCMs. This algorithm is consisted of Nonlinear Hebbian 

Learning (NHL) and Differential Evolution (DE) algorithms. They proved the efficiency of this algorithm by three 

experiments. The hybrid-based learning algorithms are more effective in modeling complex systems and have less 

limitations since they inherit the advantageous of both evolution-based and hebbian-based algorithms 

(Papageorgiou, 2014). In this study, we apply NHL-DE algorithm to train the FCM. The two steps for this 

algorithm is explained in the followings. 

3.2.1 First step: NHL algorithm 

This algorithm is based on the fact that all the FCM node are interacting with each other at each iteration and their 

values are changing. The value 𝐴𝑖
𝑘+1 of node 𝐶𝑖, at iteration step k + 1, is calculated through Eq. (2) in which, the 

NHL algorithm computes the impact of interrelated nodes with value 𝐴𝑗 and by considering the modified weights 

𝑤𝑗𝑖
(𝑘)

 at iteration step k (Papageorgiou & Groumpos, 2005).  

𝐴𝑖
𝑘+1 = 𝑓(𝐴𝑖

(𝑘)
+ ∑ 𝑤𝑗𝑖

(𝑘)
𝐴𝑗

(𝑘)
)𝑛

𝑗=1
𝑗≠𝑖

,                                                                                                                                  (2) 

The initial weights between nodes (𝑊𝑖𝑗) are updated at each iteration k and modified weights ( 𝑤𝑗𝑖
(𝑘)

) are derived 

during these interactions. The weight updating rule of the NHL is as follows: 

𝑤𝑗𝑖
(𝑘)

= 𝛾.𝑤𝑗𝑖
(𝑘−1)

+ 𝜂𝐴𝑗
(𝑘−1)

(𝐴𝑗
(𝑘−1)

− 𝑠𝑔𝑛(𝑤𝑗𝑖)𝑤𝑗𝑖
(𝑘−1)

𝐴𝑗
(𝑘−1)

)                                                                                  

(3)           

where 0< 𝜂 <0.1  and 0.9< 𝛾 <1  are the learning rate and weight decay parameters respectively. Experts could 

define some desired regions between [0,1] for some nodes as Desired Output Concepts (DOCs) (Papageorgiou & 

Groumpos, 2005). The DOCs are defined for those concepts which are important for the experts.  

Two termination criteria are used to stop the execution of the NHL algorithm. The first one is based on the value 

of function F1, which is computed as follows: 

𝐹1 = √∑ |𝐷𝑂𝐶𝑖 − 𝑇𝑖|
2𝑚

𝑖=1                                                                                                                                         

(4) 

where; 𝑇𝑖  denotes the mean value of interesting node 𝐷𝑂𝐶𝑖 , and 𝑖 = 1,…𝑚 indicates the number of DOCs. Note 

that the objective is to minimize 𝐹1. The 𝐷𝑂𝐶𝑖  could take values in the interval 𝐷𝑂𝐶𝑖 = [𝑇𝑖
𝑚𝑖𝑛 , 𝑇𝑖

𝑚𝑎𝑥  ]. Therefore, 

the target value 𝑇𝑖  of the 𝐷𝑂𝐶𝑖  is determined as: 

𝑇𝑖 =
𝑇𝑖

𝑚𝑖𝑛+𝑇𝑖
𝑚𝑎𝑥

2
                                                                                                                                                       

(5) 

The second termination value (𝐹2) is calculated based on the variation between the values of 𝐷𝑂𝐶𝑖
(𝑘+1)

 and 

𝐷𝑂𝐶𝑖
(𝑘)

 that should be smaller than the tolerance value 𝑒:  

𝐹2 = |𝐷𝑂𝐶𝑖
(𝑘+1)

− 𝐷𝑂𝐶𝑖
(𝑘)

| < 𝑒 = 0.005,                                           (6) 
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The updated weight matrix (𝑊𝑁𝐻𝐿), is obtained when the two termination functions are met. 

A generic description of the NHL-DE learning algorithm adapted from Papageorgiou and Groumpos (2005) is 

given in Table 2.2. 

Table 2. 2 Generic Model of the NHL-DE Algorithm 

 First stage: Nonlinear Hebbian learning 

Step 1 Read initial weight matrix 𝑊𝐼𝑛𝑖𝑡𝑖𝑎𝑙  and initial concept vector 𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙 

Step 2 Repeat for each iteration k 

Step 3 Calculate 𝐴𝑖
(𝑘+1)

 using Eq. (2) 

Step 4 Update the initial weights (𝑤𝑗𝑖
(𝑘)

) using Eq. (3) 

Step 5 Compute the two termination criteria (𝐹1, 𝐹2)  

Step 6 Until the termination functions are met 

Step 7 Return the final weights 𝑊𝑁𝐻𝐿
(𝑘+1)

to the second stage 

 Second stage: Differential evolution 

Step 1 Create de initial DE population in the neighbourhood of 𝑊𝑁𝐻𝐿
(𝑘+1)

 

Step 2 Repeat for each input concept state (k) 

Step 3 For 𝑖 =  1 to 𝑁𝑃 

Step 4 Make Mutation operator (𝑤𝑖
(𝑘)

) to create Mutant Vector 

Step 5 Make Crossover operator to create Trial Vector 

 

Step 6 

Selection operator 

If F (Trial Vector) ≤ fitness function 𝐹(𝑤𝑖
(𝑘)

), accept Trial Vector 

for the next generation 

Step 7 End For 

Step 8 Until the termination function is met 

 

3.2.2 Second step: DE algorithm 

This step uses the preliminary solution (𝑊𝑁𝐻𝐿
(𝑘+1)

) obtained from step 1 and starts with initial population 𝑁. The 

new mutant vector is generated for each weight vector (𝑤𝑖
(𝑘)

) using the Equation represented below (Papageorgiou 

& Groumpos, 2005): 

𝑣𝑖
(𝑘+1)

= 𝑣𝑖
(𝑘)

+ 𝜇(𝑤𝑏𝑒𝑠𝑡
(𝑘)

− 𝑤𝑖
(𝑘)

+ 𝑤𝑟1 − 𝑤𝑟2),       𝑖 = 1,…𝑁𝑃,                                                                   

(6) 

where 𝜇 > 0 refers to the mutation constant, 𝑤𝑏𝑒𝑠𝑡
(𝑘)

 presents the best population member of the last simulation, 

and 𝑤𝑟1 and 𝑤𝑟2 are two weight vectors which are randomly selected from the population. In order to decrease 

the diversity of the weight vectors, the crossover operator produces the Trial Vector. This trial vector will be 

accepted for the next generation if and only if its value is equal or less than the following fitness function (F). This 

operator ensures that the F starts steadily decreasing at some iterations (Papageorgiou & Groumpos, 2005). 

3.2.3 Fitness Function (F) 

This function is very important in obtaining the best solution in evolutionary learning algorithms since it helps 

define the problem constraints more precisely. The Fitness function proposed for NHL-DE algorithm is as follow 

(Papageorgiou & Groumpos, 2005): 

𝐹(𝑊) = ∑ [|𝐴𝑖
𝑚𝑖𝑛 − 𝐴𝑖| + |𝐴𝑖 − 𝐴𝑖

𝑚𝑎𝑥|]𝑚
𝑖=1                                                                                                                  (7) 
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where 𝐴𝑖, are the updated values of the concepts which are calculated using Eq. (1) and by considering 𝑤𝑗𝑖  matrix. 

𝐴𝑖
𝑚𝑖𝑛 and 𝐴𝑖

𝑚𝑎𝑥 are the minimum and maximum values of the updated concepts (𝐴𝑖) which are already determined 

by  

3.3 Fuzzy soft sets 

Many theories have been proposed in the literature for considering uncertainty in complicated problems such as 

rough set theory, fuzzy set theory, probability, vague sets, etc. However, these theories has some inherent 

drawbacks and limitations due to the inadequacy of the parameterization. To deal with these drawbacks, 

Molodtsov (1999) proposed the concept of a soft set as a general mathematical tool. This theory is being used 

conveniently in several directions. In this paper, FSS theory is applied in the last step of our proposed framework 

for selecting best maintenance policy. A brief definition of a FSS is presented in the following with an example. 

Let  𝐸  be  a  set  of  parameters, 𝑈 be  an  initial  universe and 𝐹𝑆(𝑈)  be the set of all fuzzy sets of  𝑈.  A  pair 

(�̂�{𝐴}, 𝐸)  is  called  a  FSS  over  U,  where  �̂�{𝐴} is  a  mapping  given  by �̂�{𝐴}: 𝐸 → 𝐹𝑆(𝑈) (Maji, Biswas, & Roy, 

2001). 

For example, suppose that  U  be  the  set  of  5  CNC machines  (𝐶𝑁𝐶1, 𝐶𝑁𝐶2, 𝐶𝑁𝐶3, 𝐶𝑁𝐶4, 𝐶𝑁𝐶5)  given  by  

𝑈  =   {𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5}  and  E be  the  set  of  5  criteria  (Price, Quality,  Maintenance requirements, Size, 

spare parts) given by E = {𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5}. In addition, let 𝐴 = {𝑠1, 𝑠2, 𝑠3, 𝑠5} ⊂ 𝐸 be consisting of the criteria 

that company X is interested in buying a CNC machine. The fuzzy soft set (�̂�{𝐴}, 𝐸) can be indicated as the 

collection of the following fuzzy approximations: 

�̂�{𝐴}(𝑠1)={𝑑1=0.2; 𝑑2=0.4; 𝑑3=0.9; 𝑑5=0.7}, 

�̂�{𝐴}(𝑠2)={𝑑2=0.8; 𝑑3=0.1; 𝑑4=0.7}, 

�̂�{𝐴}(𝑠3)={𝑑1=0.6; 𝑑2=0.2; 𝑑3=0.8}, 

�̂�{𝐴}(𝑠5)={𝑑1=0.6; 𝑑2=0.7; 𝑑3=0.5; 𝑑4=0.8}, 

 

Each of the above fuzzy soft sets describes the weights of the criteria for a certain CNC machine.  

 

 

 

 

 

 

Figure 2.  5 A triangular fuzzy number 
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Figure 2.  6 A trapezoidal fuzzy numbers (Çelik & Yamak, 2013) 

It should be highlighted that the elements of the fuzzy soft sets may be taken as fuzzy triangular numbers 

parametrized by a triplet (l, m, u) (Fig. 2.5) or a fuzzy trapezoidal numbers parametrized by a quadruplet (p, q, r, 

s) (Fig. 2.6) (Çelik & Yamak, 2013).  

In the case of fuzzy triangular number, the defuzzification value 𝑡 is calculated using the following Equation: 

𝑡 =
𝑙+𝑚+𝑚+𝑢

4
                                                                                                                                            

(8) 

 

In this paper, we adopt the Çelik’s presented algorithm (Çelik & Yamak, 2013) for medical diagnosis and modify 

it in order to be more effective for our proposed RB-MSS framework. The modified version of this algorithm is 

presented in phase 2 of our proposed framework.  

4. The proposed model and algorithm 

In this paper, we propose a novel integrated framework for selecting the best maintenance policy using AHP, 

FCM, and FSS tools. At first, we use AHP method for determining the relative priorities of the criteria (initial 

concept values) and then, we utilize FCM in order to find the criteria weights (updated concept values) by 

considering the dependencies among them. Finally, an adjusted FSS theory is proposed to prioritize the 

maintenance policies. One of the main advantages of the proposed FSS model is that there is no need for several 

pair vise comparisons for selecting best maintenance strategy. Therefore, it is less time-consuming in comparison 

with other methods such as AHP/ANP. In addition, experts can easily assign the linguistic terms for each 

maintenance policy based on the considered criteria and without getting confused by several pair vise comparison 

questions. 

Considering the variety of criteria applied by different authors for MSS (See Table 2.1) and in order to propose a 

risk-based method, in this paper, “Detection”, “Probability of Failure Occurrence (MTBF)”, and “Failure’s 

consequences” are considered as primary criteria in our model. It should be mentioned that these criteria are the 

three parameters of well-known FMEA method which are multiplied to produce RPN (Jamshidi, 2015). For the 

criterion Failure’s consequences, we consider three sub-criteria as Cost of Failure (CF), Maintenance Cost (MC), 

and Safety (S) in order to consider all aspects of risk in MSS. 

 

The proposed framework for finding the best maintenance policy is illustrated by an algorithm depicted in Figure 

2.8, and its procedure is as follows:  
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Let us assume that there is a set of m devices, D = {𝑑1,𝑑2 ,𝑑3, . . .,𝑑𝑚}, set of n criteria C = {𝑐1, . . ., 𝑐𝑛} related 

to a set of k maintenance policies P = {𝑃1 , 𝑃2, 𝑃3, . . . , 𝑃𝑘}.  

Phase 1: 

Step 1: Establish a group of experts in order to identify the possible maintenance strategies and failure modes/risks 

for each component or device. The five primary criteria for evaluating the maintenance alternatives are D, MTBF, 

CF, MC, and S, as introduced above. In addition to these criteria, some additional criteria could be added 

depending on the goals and objectives of the companies. The additional criteria and maintenance policies are 

identified by experts and the experts should reach consensus on them.   

Step 2: Derive the relative priorities of selected criteria (Initial concept values) using the group AHP method. 

Pairwise comparisons among criteria are made using Saaty’s 9-point scale ranging as shown in Table 2.3.  

Step 3: Establish the FCM diagram in order to show the cause effect relationships among criteria. Experts should 

first reach consensus on the sign and direction of arcs between criteria. In order to determine the level of influence 

of each criterion on the other criteria and vice versa, experts assign linguistic terms for each arc individually. 

Then, the opinions of decision makers are aggregated and defuzzified in order to find the initial influence weight 

(𝑊𝐼𝑛𝑖𝑡𝑖𝑎𝑙). 

Table 2. 3 Saaty’s 9-point scale (Saaty, 1977) 

Importance linguistic terms 

1 Equal importance 

3 Moderate importance 

5 Strong importance 

7 Very strong importance 

9 Extreme importance 

2,4,6,8 Intermediate values 

Step 4: By using NHL-DE algorithm (described in sections 3.2.1-3) and Eq. (1) train the FCM and obtain the 

steady-state concept matrix(𝐶∗) and updated weight matrix (𝑤𝑖𝑗). In our proposed method, we use the following 

sigmoid threshold function.  

 𝑓(𝑥)  =  
1

1+𝑒−𝜆𝑥   (9) 

where 𝜆 > 0 denotes the steepness of 𝑓 (Xiao, 2012). We use this function since our concepts values are in the 

interval [0, 1]. 

Step 5: Normalize the 𝐶∗ matrix and obtain 𝐶𝑁
∗  matrix using the following Equation: 

𝐶𝑁
∗ =

𝐶𝑗

∑ 𝐶𝑗
𝑛
𝑗=1

    ,                  𝐶𝑁
∗ = [𝐶1

∗, 𝐶2
∗, … , 𝐶𝑛

∗]   (10) 

where j= 1,2,…,n corresponds to the criteria. 

Phase 2: 
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After obtaining 𝑤𝑖𝑗 and 𝐶𝑁
∗  matrices, in second phase we introduce an innovative algorithm for selecting optimum 

maintenance policy using FSS and by considering the experience and knowledge level of experts and uncertainties 

in their opinions. 

Step 1- Risk evaluation: Build a fuzzy soft set 𝑄ℎ= (F, D) over C where F is a mapping F: →F(C). The elements 

of this matrix (device-criteria) are fuzzy triplet numbers (d – 1, d, d + 1). The matrix 𝑄ℎ is shown as follow: 

               𝐷     𝑀𝑇𝐵𝐹      𝐶𝐹      𝑀𝐶          𝑆     …     𝑐𝑛 

𝑄ℎ =  𝑑𝑖[�̃�11       �̃�12         �̃�12        �̃�12        �̃�12     …    �̃�1𝑛] 

where i= 1,2,…,m indicates the device number. In order to build this matrix, 𝑛 questions should be asked from 

each expert. Regarding the criterion risk, the following question should be answered by each expert: 

- With regard to identified failure mode, how much is its chance of non-Detection? 

- With regard to identified failure mode, how much is its probability of Occurrence (MTBF)?  

- With regard to identified failure mode, how much is its Cost? 

- With regard to identified failure mode, how much is its Maintenance cost? 

- With regard to identified failure mode, how much does it threaten the Safety of system/staff? 

In order to answer these questions, the following linguistic terms table (Table 2.4) should be provided to each 

expert. In the case of criterion risk, a risk score could also be computed for each component or device and then it 

should be compared to the acceptable risk score for the company or organization. Based on this comparison, a 

linguistic term using should be assigned to the risk criterion by each expert. Questions related to qualitative criteria 

such as safety could be answered directly using Table 2.4. 

Table 2. 4 Fuzzy triplet numbers and linguistic terms 

Terms Fuzzy number  

(�̃�) 

Fuzzy triplet numbers 

(d – 1, d, d + 1) 
Absolute uncertainty (AU) 1̃ (0, 1, 2) 

Very remote (VR) 2̃ (1, 2, 3) 

Remote (R) 3̃ (2, 3, 4) 

Very low (VL) 4̃ (3, 4, 5) 

Low (L) 5̃ (4, 5, 6) 

Moderate (M) 6̃ (5, 6, 7) 

Moderately high (MH) 7̃ (6, 7, 8) 

High (H) 8̃ (7, 8, 9) 

Very high (VH) 9̃ (8, 9, 10) 

Almost certain (AC) 10̃ (9, 10, 10) 

 

 
Figure 2.  7 Fuzzy membership functions for 𝑄ℎ and 𝑅ℎ matrices 
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The fuzzy membership functions for 𝑄ℎ and 𝑅ℎ matrices are shown in Fig. 2.7. This figure is drawn in FuzzyTech 

8.20a Software (http://www.fuzzytech.com/). 

 

Step 2: By multiplying the normalized concept matrix 𝐶𝑁
∗   (obtained from step 5 in phase 1) in 𝑄ℎ matrix, obtain 

the weighted device-criteria matrix (𝐷𝐶ℎ ) as follows: 

𝐷𝐶ℎ =  𝐶𝑁
∗  ×  [�̃�11    �̃�12     …     …     �̃�1𝑛] =  [𝐶𝑁

∗ × �̃�11    𝐶𝑁
∗ × 𝑎̃

12     …     …     𝐶𝑁
∗ × �̃�1𝑛]                      

 

𝐷𝐶ℎ =  [�̃�11   �̃�12   …    …    �̃�1𝑛] 

 

The aim of this step is to consider the importance weight of each criterion in evaluating criteria for each device.  

Step 3:  Maintenance alternatives evaluation based on the identified criteria: Build another fuzzy soft set 𝑅ℎ 

= (G, C) over P, where G is a mapping G: C→F(P). Each element (�̃�𝑖𝑗) of this matrix (criteria-policy) denotes the 

importance of a certain maintenance policy with respect to a criterion. These elements are also taken as fuzzy 

triplet numbers. The matrix 𝑅ℎ is shown as follow: 

               𝑝1      𝑝2     …   …     𝑝𝑘 

𝑅ℎ = 

𝑐1

𝑐2

..
𝑐𝑛

 

[
 
 
 
 
�̃�11 �̃�12 … … �̃�1𝑘

�̃�21 �̃�21 … … �̃�2𝑘

……
�̃�𝑛1

……
�̃�𝑛2

……
…

……
…

⋮
⋮

�̃�𝑛𝑘]
 
 
 
 

 

 

In order to build this matrix, 𝑛 questions should be asked from each expert For example, for the first 5 criteria the 

following questions must be asked from each DM: 

- With respect to criterion Detection (D), how much each of 𝑘 maintenance strategies could better detect the 

failure? 

- With respect to criterion MTBF, how much each of 𝑘 maintenance strategies could better reduce the MTBF? 

- With respect to criterion Cost of failure (CF), how much each of 𝑘 maintenance strategies could better reduce 

the cost of failure? 

- With respect to criterion Maintenance Cost (MC), which one of 𝑘 maintenance strategies costs lower and by 

how much? 

- With respect to criterion Safety, how much each of 𝑘 maintenance strategies could better increase the safety? 

 

In order to answer these questions, Table 2.4 should be provided to the experts.  

Step 4: Perform the transformation operation 𝐷𝐶ℎ
∗⊗𝑅ℎ and obtain the Device-Policy matrix 𝐷𝑃ℎ

∗ as follows: 

                𝑝1      𝑝2     …   …     𝑝𝑘 

𝐷𝑃ℎ
∗ = 𝑑𝑖[𝑓11     𝑓12      …   …     𝑓1𝑘] 

 

where: 

𝑓𝑖𝑙 = (∑ (𝑏𝑖𝑗 − 1). (𝑒𝑗𝑙
𝑛
𝑗=1 − 1), ∑ 𝑏𝑖𝑗  .  𝑒𝑗𝑙

𝑛
𝑗=1 , ∑ (𝑏𝑖𝑗 + 1) .  (𝑒𝑗𝑙 + 1)𝑛

𝑗=1 )                                                              (11) 

where l= 1,2,…,k is the maintenance polices. 

http://www.fuzzytech.com/
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Step 5: By using Eq. (8) defuzzify each element of the matrix 𝐷𝑃ℎ
∗ and obtain the matrix 𝐷𝑃ℎ𝑖𝑙

∗∗  for each DM as 

below:  

𝐷𝑃ℎ𝑖𝑙
∗∗ =  [ʎ̃ℎ𝑖1    ʎ̃ℎ𝑖2    …   …   ʎ̃ℎ𝑖𝑘] 

where h= 1,…, g corresponds to the DMs. 

Step 6: Aggregate all of  𝐷𝑃ℎ𝑖𝑙
∗∗ matrices and obtain matrix 𝐷𝑃𝑇

∗∗ through the proposed procedure in Table 2.5. 

Then, find the best maintenance policy from matrix 𝐷𝑃𝑇
∗∗ which is 𝑀𝑎𝑥 ∑ 𝑊ℎ

𝑔

ℎ=1 ʎ̃ℎ𝑖𝑙 . 

Table 2. 5 Aggregation of 𝐷𝑃ℎ𝑖𝑙
∗∗ matrices for obtaining 𝐷𝑃𝑇

∗∗ matrix 

𝐷𝑃ℎ𝑖𝑙1
∗∗=  𝑊1[ʎ̃ℎ𝑖1    ʎ̃ℎ𝑖2    …   …   ʎ̃ℎ𝑖𝑘]  

𝐷𝑃𝑇
∗∗=[ ∑ 𝑊ℎ

𝑔
ℎ=1 ʎ̃ℎ𝑖1           ∑ 𝑊ℎ

𝑔
ℎ=1 ʎ̃ℎ𝑖2          …      …             ∑ 𝑊ℎ

𝑔
ℎ=1 ʎ̃ℎ𝑖𝑘] 

 

* The parameter 𝑊ℎ (ℎ = 1,… , 𝑔) indicates the weight of decision maker h, which is 

determined based on the knowledge and experience of decision maker. The sum of all 

decision maker’ weights are equal to 1.  

𝐷𝑃ℎ𝑖𝑙2
∗∗=  𝑊2[ʎ̃ℎ𝑖1    ʎ̃ℎ𝑖2    …   …   ʎ̃ℎ𝑖𝑘] 

. 

. 

. 

𝐷𝑃ℎ𝑖𝑙𝑔
∗∗=  𝑊𝑔[ʎ̃ℎ𝑖1    ʎ̃ℎ𝑖2    …   …   ʎ̃ℎ𝑖𝑘] 

 

Figure 2.  8 The steps of the proposed framework 

 

Step 7- Updating risk analysis: This step is performed in order to consider any change in the frequency or safety 

of existing failures or if there is a new failure after implementation of the selected maintenance policy. This step 

allows the continuous update of risks analysis and it leads to continues improvement of maintenance actions. As 

Find the best policy for the device from 𝐷𝑃𝑇
⬚**  matrix  

Assign weights to each DM, aggregate the matrices 𝐷𝑃ℎ𝑖𝑙
⬚ **  and 

obtain 𝐷𝑃𝑇
⬚** matrix

Defuzzify all the elements of the matrix 𝐷𝑃ℎ* and obtain the 

𝐷𝑃ℎ𝑖𝑙
⬚ ** matrix

Perform the transformation operation 𝐷𝐶ℎ⊗ 𝑅ℎ and obtain 
device-policy matrix (𝐷𝑃ℎ*)

Obtain the criteria-policy matrix (𝑅ℎ)

Perform the multiplication operation 𝐶∗ × 𝑄ℎ and obtain the 
weighted device-criteria matrix (𝐷𝐶ℎ)

Obtain the device-criteria matrix (𝑄ℎ)

Normalize matrix 𝐶∗and obtain matrix 𝐶𝑁
∗

Train FCM by using NHL-DE algorithm to obtain the updated weight matrix (𝑤𝑖𝑗) 
and concpet matrix (𝐶∗)

Establish the FCM diagram to indicate the dependencies and feedbacks between 
criteria and obtain 𝑊𝐼𝑛𝑖𝑡𝑖𝑎𝑙

Compare the importance among criteria by using group AHP method and obtain the initial 
concept values

Establish a group of expoerts and identify the evaluation criteria, maintenance 
policies, and failure modes

New failure/ 

change in the 

frequency/ safety of 

existing failures 

Decision for 

Another device 
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shown in Fig. 8, in order to update the risk analysis process, only 𝑄ℎ matrix should be updated in order to assign 

new linguistic values to the criteria and the rest of information will be automatically updated. This is the same for 

maintenance decision making for another component/device. The risk analysis and its updating process could be 

connected to the Computerized Maintenance Management System (CMMS) of the company in order to collect 

the failure data automatically and facilitate the information transfer to the proposed framework.  

5. Numerical Example 

In this section, we illustrate the applicability of the proposed framework with a hypothetical numerical example. 

Suppose that a manufacturer company needs to select the optimum maintenance policy for a critical component. 

According to the explained steps in section 3, the proposed framework is illustrated in the followings. 

 

 

 

Phase 1: 

Step 1: In this numerical example, the five primary criteria introduced in this paper (D, MTBF, CF, MC, and S) 

as well as five maintenance strategies (CM, PM, PDM, CBM, and TBM) are selected by three DMs (DM1, DM2, 

DM3) to be evaluated.  

Step 2: derive the relative importance weight between five criteria using AHP approach. Table 2.3 shows these 

judgment matrices which are evaluated by three DMs. The comparison process is performed in Expert Choice 

software (version 11.1.3238) and the result is shown through Fig. 2.9. 

Table 2. 6 The judgement matrices of the maintenance policy selection’s criteria 

DM1 C1 C2 C3 C4 C5 

C1 1 1/7 4 5 1/9 

C2 7 1 8 6 1/2 

C3 1/4 1/8 1 1/5 1/7 

C4 1/5 1/6 5 1 1/4 

C5 9 2 7 4 1 

 

DM2 C1 C2 C3 C4 C5 

C1 1 1/6 4 6 1/8 

C2 6 1 9 8 1/3 

C3 1/4 1/9 1 1/7 1/7 

C4 1/6 1/8 7 1 1/7 

C5 8 3 7 7 1 

 

DM3 C1 C2 C3 C4 C5 

C1 1 1/5 4 6 1/7 

C2 5 1 8 8 1/3 

C3 1/4 1/8 1 1/5 1/9 

1/6 1/8 5 1 1 1/9 

C5 7 3 9 9 1 

 

 

Figure 2.  9 The relative priorities of the criteria by using AHP method (Initial concept values) 
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Step 3: The FCM graph is depicted in Figure 10 to indicate the influence among criteria. Each expert is asked to 

determine the weight (𝑊𝑖𝑗) on each arc, by assigning linguistic variables using Table 2.4. Table 2.7 shows the 

assigned values by three DMs. Then, the opinions of all DMs are aggregated using the average value of the 

assigned linguistic values (fuzzy triangular numbers (l, m, u)) for each interconnection and the aggregated values 

are defuzzified using Eq. 8. Finally, the defuzzified values are divided by 100 in order to obtain the numeric 

impacts between [-1,1]. 

 

Figure 2.  10 FCM for Risk-based Maintenance Policy Selection 

Table 2. 7 Fuzzifcation and defuzzification process for obtaining initial weight matrix 

 

Node  

1 

 

Node  

2 

 

𝑊𝑖𝑗 

Expert opinions Fuzzifcation  Opinions’ Aggregation  Defuzzif-

ication 

 

Numeric 

impact 

D
M1
 

D
M2
 

D
M3
 

DM1 DM2 DM3 

l m u l m u l m u l m u 𝑙 + 𝑚 + 𝑚 + 𝑢

4
 

D MTBF −𝑊12  H VH AC 7 8 9 8 9 10 9 10 10 8 9 9.66 8.91 -0.089 
D CF +𝑊13  AC H AC 9 10 10 7 8 9 9 10 10 8.33 9.33 9.66 9.16 +0.091 
D MC +𝑊14  M MH M 5 6 7 6 7 8 5 6 7 5.33 6.33 7.33 6.33 +0.063 
D S −𝑊15  VH VH AC 8 9 10 8 9 10 9 10 10 8.33 9.33 10 9.25 -0.092 

MTBF MC −𝑊24  VL R VR 3 4 5 2 3 4 1 2 3 2 3 4 3 -0.03 
MTBF S +𝑊25  VH AC VH 8 9 10 9 10 10 8 9 10 8.33 9.33 10 9.25 +0.092 

CF MC +𝑊34  M M MH 5 6 7 5 6 7 6 7 8 5.33 6.33 7.33 6.33 +0.063 
MC D −𝑊41 L M M 4 5 6 5 6 7 5 6 7 4.66 5.66 6.66 5.66 -0.056 
MC MTBF +𝑊42 AC AC VH 9 10 10 9 10 10 8 9 10 8.66 9.66 10 9.5 +0.095 
MC CF −𝑊43 VH H AC 8 9 10 7 8 9 9 10 10 8 9 9.66 8.91 -0.089 
MC S +𝑊45 AC AC VH 9 10 10 9 10 10 8 9 10 8.66 9.66 10 9.5 +0.095 
S MTBF +𝑊52  MH M L 6 7 8 5 6 7 4 5 6 5 6 7 6 +0.06 
S CF −𝑊53  R VR L 2 3 4 1 2 3 4 5 6 2.33 3.33 4.33 3.33 -0.033 

The initial weight matrix obtained through numeric impacts in Table 8 is shown in the following connection 

matrix: 

𝑊𝐼𝑛𝑖𝑡𝑖𝑎𝑙 =

[
 
 
 
 

0.0 −0.089 +0.091 +0.063  −0.092
0 0.0    0.0      −0.03     +0.092 
0

−0.056
0.8

0.0
+0.095
+0.06

 0.0
−0.089
−0.033

 +0.063
0.0
0

      
 0

+0.095
0.0 ]

 
 
 
 

 

According to the Fig. 2.9, the initial vector with the concept values is: 

c= [0.099, 0.030, 0.299, 0.056, 0.516]; 

In this numerical example, two DOCs have been defined for the concepts 𝐶1 and 𝐶5 with the following desired 

regions: 

0.9 ≤ 𝐶1 ≤ 1,        0.5 ≤ 𝐶5 ≤ 0.8 

Step 4: Update initial weight matrix (𝑊𝐼𝑛𝑖𝑡𝑖𝑎𝑙) and initial concept vector (c) using Equation (1) and NHL-DE 

learning algorithm. To do so, MATLAB version R2012a software was used. For this numerical example, the 

population size is 50 and the values of crossover constant (CR), mutation constant (𝜇), weight decay learning 

+𝑊54 

+𝑊42 
+𝑊43 

+𝑊25 +𝑊24 

+𝑊14 
+𝑊21 

𝐶3 

𝐶1 

𝐶𝑜𝑠𝑡 𝐶4 

+𝑊31 +𝑊12 

𝑊14 

+𝑊51 

−𝑊35 −𝑊52 

+𝑊15 
𝑅𝑖𝑠𝑘 
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parameter (𝛾) and learning rate parameter (𝜂) are 0.5, 0.5, 0.98, 0.04, respectively. 1000 iterations was performed 

for the algorithm. The updated weight matrix is: 

𝑤𝑖𝑗 =

[
 
 
 
 

0.0 0.1656 0.0 0.5602       0.9728
0.2149 0.0 0.0 0.6034       0.1644
0.3639

0.0
0.8411

0.0
0.8537

−.02596

0.0
0.4627

0.0

0.0
0.0

0.7251

−0.3768
0.0
0.0 ]

 
 
 
 

 

As shown in Fig. 2.11, the desired steady state is reached after 8 iterations: 

𝐶∗ = [0.9224    0.8545    0.7734    0.9207    0.6260] 

 

Figure 2.  11 The steady state for 5 criteria after 8 iterations 

Step 5: Normalize the matrix 𝐶∗ and obtain matrix 𝐶𝑁
∗

 using Eq. 10. 

𝐶𝑁
∗  = [0.2251    0.2085    0.1887    0.2247    0.1527] 

 

Phase 2: 

Step 1: Suppose that the three DMs have assigned the following numbers to matrix 𝑄ℎ. 

F (𝐷𝑀1) = {𝐶1/5, 𝐶2/8, 𝐶3/7, 𝐶4/2, 𝐶5/6}, F (𝐷𝑀2) = {𝐶1/4, 𝐶2/7, 𝐶3/9, 𝐶4/5, 𝐶5/6}, F (𝐷𝑀3) = {𝐶1/6, 𝐶2/8, 

𝐶3/8, 𝐶4/5, 𝐶5/6}   

The assigned values for Matrix 𝑄ℎ by three DMs are shown in [1×5] matrices in the second row of Table 2.7.  

 

Step 2: Perform the multiplication operation 𝐶𝑁
∗ × 𝑄ℎ and obtain the weighted device-criteria matrix (𝐷𝐶ℎ) as 

shown in Table 2.7. 

Table 2. 8 The proposed framework’s calculations 

      𝐷𝑀1      𝐷𝑀2 𝐷𝑀3 

𝐶𝑁
∗  (0.2251, 0.2085, 0.1887, 0.2247, 0.1527) 

𝑄ℎ [5̃ 8̃     7̃ 2̃   6̃ ] [4̃ 7̃     9̃ 5̃   6̃ ] [6̃ 8̃     8̃ 5̃   6̃ ] 

𝐷𝐶ℎ  [1.12̃ 1.66̃     1.32̃ 0.44̃   0.9̃ ] [0.90̃ 1.45̃     1.69̃ 1.12̃   0.9̃ ] [1.35̃ 1.66̃     1.31̃ 1.12̃   0.91̃ ] 

 

𝑅ℎ 

[
 
 
 
 
8̃ 6̃ 4 8̃ 4̃
4̃ 6̃ 6̃ 5̃ 4
2̃
7̃
8̃

7̃
6̃
9̃

4̃
4̃
3̃

7̃
5̃
7̃

8̃
5̃
7̃]
 
 
 
 

  

[
 
 
 
 
4̃ 6̃ 7 5̃ 3̃
6̃ 5̃ 7̃ 2̃ 9
2̃
9̃
5̃

8̃
8̃
4̃

5̃
1̃
6̃

6̃
4̃
8̃

6̃
3̃
7̃]
 
 
 
 

  

[
 
 
 
 
6̃ 7̃ 5 3̃ 3̃
6̃ 9̃ 7̃ 4̃ 8
4̃
7̃
6̃

8̃
5
7̃

5̃
3̃
9̃

5̃
4̃
6̃

7
5̃
8̃]
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𝐷𝑃ℎ
∗ [28.80̃ 36.96̃   24.34̃  35.26̃  30.41̃ ] [30.45̃ 38.95̃     31.64̃ 29.44̃   35.82̃ ] [37.52̃ 48.58̃     37.60̃ 28.27 ̃    40.92̃ ] 

𝐷𝑃ℎ𝑖𝑙
∗∗ [29.30  37.46  24.84  35.76  30.91] [30.95  39.45  32.14  29.94  36.32] [38.02  49.08  38.10  28.77  41.42] 

𝐷𝑃𝑇
∗∗ [29.37     𝟑𝟕. 𝟔𝟏       29.32      27.53       33.15] 

 

Step 3: Next, suppose that 𝐷𝑀1 has assigned the following values for matrix 𝑅ℎ: 

G (𝐶1) = {𝑃1/8, 𝑃2/6, 𝑃3/4, 𝑃4/8, 𝑃5/4}, G (𝐶2) = {𝑃1/4, 𝑃2/6, 𝑃3/6, 𝑃4/5, 𝑃5/4}, G (𝐶3) = {𝑃1/2, 𝑃2/7, 𝑃3/4, 𝑃4/7, 

𝑃5/8}, G (𝐶4) = {𝑃1/7, 𝑃2/6, 𝑃3/4, 𝑃4/5, 𝑃5/5}, G (𝐶5) = {𝑃1/8, 𝑃2/9, 𝑃3/3, 𝑃4/7, 𝑃5/7}, 

The above fuzzy soft set (G, C) represents an approximate description by 𝐷𝑀1 for the five criteria and their 

relationship to five policies. The assigned values for matrix 𝑅ℎ by three DMs are presented in Table 2.7. 

Step 4: Perform the transformation operation 𝐷𝐶ℎ
∗⊗𝑅ℎ and obtain the device-policy matrix (𝐷𝑃ℎ

∗) for each DM 

as shown in sixth row of Table 2.7. 

where: 

28.80 ̃ = (18.51, 28.80, 41.09),   36.96 ̃ = (25.83, 39.96, 50.09),     24.34 ̃ = (15.60, 24.34, 35.09),         

35.26 ̃ = (24.42, 35.26, 48.10),             30.41 ̃ = (20.49, 30.41, 42.33),     

30.45 ̃ = (20.04, 30.45, 42.87),     38.95 ̃ = (27.53, 38.95, 52.36),      31.64 ̃ = (21.42, 31.64, 43.86),         

29.44 ̃ = (19.54, 29.44, 41.34),           35.82 ̃ = (25.29, 35.82, 48.35),   

37.52 ̃ = (26.10, 37.52, 50.94),    48.58 ̃ = (35.86, 48.58, 63.31),      37.60̃ = (26.45, 37.60, 50.75),          

28.27 ̃ = (18.43, 28.27, 40.11),              40.92 ̃ = (29.34, 40.92, 54.50),  

The above values are obtained from Eq.11. 

Step 5: Defuzzify the matrix 𝐷𝑃ℎ
∗ and obtain 𝐷𝑃ℎ𝑖𝑙

∗∗ matrices as depicted in the Table 2.7 (row seven).  

Step 6: Using the proposed aggregation method in Table 6, the three matrices have been aggregated in order to 

get the  𝐷𝑃𝑇
∗∗ matrix (last row in Table 2.8). In our numerical example, we set the weights of DMs (𝑊ℎ) arbitrarily 

as 0.15, 0.5, and 0.25. The 𝐷𝑃𝑇
∗∗

 matrix shows that the priority of policies are as P2>P5>P1>P3>P4 and the best 

maintenance policy for the device is second policy (Preventive Maintenance). The same process should be 

performed for finding best maintenance policy for other components/devices. This process would be very easy 

for other components/devices since only 𝑄ℎ matrix should be updated and the rest of information will be 

automatically updated. 

Step 7: This step is performed after implementation of the selected maintenance policy. The risk analysis is 

updated based on any changes in the frequency/safety of existing failures or with the advent of new failures in 

order to minimize the risks and also continuously improve the maintenance activities.  

Through this numerical example, we illustrated the applicability and potential of our proposed dynamic risk-based 

framework as an advanced tool for maintenance strategy selection in different industries. We considered different 

decision makers’ opinions and level of their knowledge and experience in evaluating the importance weights of 

criteria and interrelationships among them and also took into account the associated uncertainties in all decision 

making process. Then, the proposed approach could suggest more accurate and cost-effective maintenance policy. 

The proposed framework in this paper, has also the ability to be applied without considering interrelationships 
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among criteria. This could be useful and less time-consuming for less critical components/systems. Table 2.9 

shows the proposed framework’s calculation process without considering dependencies among criteria. 

6. Sensitivity Analysis 

To ensure that final solution is stable and robust, we additionally applied sensitivity analysis. The aim of this 

sensitivity analysis is to explore how considering dependencies among criteria or any change in the weights of 

criteria affect the priorities of the selected alternatives. In the following three scenarios are presented.  

Scenario 1 

In the first sensitivity analysis, we performed our proposed framework for the same numerical example without 

considering the dependencies among criteria in order to evaluate its impact on the prioritization of maintenance 

policies. Table 2.8 shows the calculation process. Note that in this case we only consider the weights that are 

obtained through AHP method in Fig. 2.9. As it is clear from last row of Table 2.8, the best maintenance policy 

for the device is still second policy. However, the priority of policies have been changed to P2>P5>P4>P3>P1. 

Although the priority of the first two policies (P2, P5) are the same as Table 2.7, the priority of last three policies 

have been completely changed. This proves that considering the dependencies among criteria could significantly 

influence the priority of maintenance policies and as a result this could have an impact on minimizing costs and 

downtime and reaching the desired goals of companies.  

Table 2. 9 The proposed framework’s calculations without considering dependencies among criteria 

      𝐷𝑀1      𝐷𝑀2 𝐷𝑀3 

𝑐 (0.099, 0.030, 0.299, 0.056, 0.516) 

𝑄ℎ [5̃ 8̃     7̃ 2̃   6̃ ] [4̃ 7̃     9̃ 5̃   6̃ ] [6̃ 8̃     8̃ 5̃   6̃ ] 

𝐷𝐶ℎ  [0.49̃ 0.24̃     2.09̃ 0.11̃   3.09̃ ] [0.39̃ 0.21̃     2.69̃ 0.29̃   3.09̃ ] [0.59̃ 0.24̃     2.39̃ 0.29̃   3.09̃ ] 

 

 

𝑅ℎ 
[
 
 
 
 
8̃ 6̃ 4 8̃ 4̃
4̃ 6̃ 6̃ 5̃ 4
2̃
7̃
8̃

7̃
6̃
9̃

4̃
4̃
3̃

7̃
5̃
7̃

8̃
5̃
7̃]
 
 
 
 

  

[
 
 
 
 
4̃ 6̃ 7 5̃ 3̃
6̃ 5̃ 7̃ 2̃ 9
2̃
9̃
5̃

8̃
8̃
4̃

5̃
1̃
6̃

6̃
4̃
8̃

6̃
3̃
7̃]
 
 
 
 

  

[
 
 
 
 
6̃ 7̃ 5 3̃ 3̃
6̃ 9̃ 7̃ 4̃ 8
4̃
7̃
6̃

8̃
5
7̃

5̃
3̃
9̃

5̃
4̃
6̃

7
5̃
8̃]
 
 
 
 

 

𝐷𝑃ℎ
∗ [37.71̃ 34.76̃   21.08̃  33.61̃  27.04̃ ] [33.90̃ 37.03̃     25.51̃ 25.38̃   25.54̃ ] [40.93̃ 43.69̃     34.06̃ 27.24̃   36.53̃ ] 

𝐷𝑃ℎ𝑖𝑙
∗∗ [38.25    35.30    21.62   34.15    27.58] [34.44   37.57    26.05  25.92  26.08] [41.17    44.23  34.60   27.78    37.073] 

𝐷𝑃𝑇
∗∗ [27.64     𝟑𝟗. 𝟓𝟗       33.30      37.62       39.30]  

Scenario 2 

In the second sensitivity analysis, we increased the weight of each criterion 25%. The results of this sensitivity 

analysis is presented in Fig. 2.12. As it is clear from this figure, although the values of  

𝐷𝑃𝑇
∗∗ has been changed, the final prioritization of five maintenance policies has not been changed in any cases. 

This certifies the robustness and effectiveness of the proposed framework. 
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Figure 2.  12 Scenario 2, increasing the weights of criteria for 25% 

Scenario 3 

In the third sensitivity analysis, we decreased the weight of each criterion 25%. The results of this sensitivity 

analysis revealed that decreasing the weight of each criterion for 20% as increasing has no significant influence 

on the priority of the maintenance policies. This sensitivity analysis as scenario 2 certifies the robustness and 

effectiveness of the proposed framework. Due to lack of space the results of this analysis are not shown. 

6. Conclusion and future directions 

In this paper, after a literature review on the most popular criteria and maintenance policies in MSS and also 

shortcomings of current MSS methods, a new integrated framework was proposed using AHP, FCM, and FSS 

tools for finding the best maintenance policy. In the first phase of the proposed framework, group AHP is applied 

to calculate the importance weights of criteria as initial concept values for FCM technique. In the second phase, 

FCM is established to consider the interrelationships between criteria. In order to train FCM, we applied NHL-

DE hybrid algorithm. The hybrid-based learning algorithms are more effective in modeling complex systems and 

have less limitations since they inherit the advantageous of both evolution-based and hebbian-based algorithms. 

Finally, in the third phase of the proposed framework, an innovative algorithm based on Çelik’s FSS model is 

developed for identifying the best maintenance policy by considering the uncertainties.  

Some features makes our proposed framework distinguished from other works; 1) the proposed framework is risk-

based and it is able to take the risk of the component/system failure into account in a dynamic way and by 

considering uncertainties, then it can lead to a safer and more cost-effective maintenance strategy, 2) the 

interrelationships between variety of criteria as well as importance weights of criteria has been considered, and 3) 

The proposed maintenance policy prioritization process using FSS is less time consuming in comparison with 

AHP/ANP-based methodologies due to the fact that there is no need for several confusing pair vise comparisons. 

Depending on integrated FCM-based models as powerful decision support systems, the managers and experts can 

decide more precisely and accurately on the best maintenance policy in complex systems. The proposed approach 

can also be adopted as an advanced multi criteria decision making tool in critical industries such as aviation. 

Nevertheless, the main limitation of FCM-based models is their dependency to the experts’ knowledge. Special 
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attention should be paid to the selection of experts since their opinions could significantly affect the final results 

and could lead to wrong decisions. In future works, we will evaluate the performance of the proposed tool in a 

large-scale practical environment. As a future research topic, this study could be extended in different directions. 

For example, application of other learning algorithms could be considered for training FCM. In addition, 

considering the cause and effect relationships among failure modes and cause of failures in risk analysis process 

could be an interesting future research topic. Finally, development of a user-friendly software based on the 

proposed framework in this study would be very useful in order to streamline the implementation of the proposed 

MSS framework in practice. 
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Chapter 3. Enhancing Failure Mode and Effects 

Analysis 

 

 
The third chapter is dedicated to the following article: 

[1] “Enhancing Failure Mode and Effects Analysis using Fuzzy Cognitive Maps” A. Jamshidi, S. 

Abbasgholizadeh Rahimi, D. Ait-kadi, A. Ruiz, submitted in June 2016 to the journal of “Expert Systems With 

Applications”. 
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3.1. Enhancing Failure Mode and Effects Analysis using Fuzzy Cognitive Maps 

Résumé: Les systèmes actuels hautement complexes dans des industries de pointe telles que l'aviation, le pétrole 

et les soins de santé ont besoin d'un outil avancé d'analyse de défaillance pour considérer les interactions des 

défaillances des composants dans différentes phases du cycle de vie du produit et assurer des niveaux élevés de 

sécurité et de fiabilité. L'Analyse des modes de défaillance et de leurs effets (AMDE) est l'une des méthodes les 

bien connues pour évaluer les défaillances potentielles et a été largement utilisée dans la littérature. Cependant, 

l’AMDE traditionnelle a été critiqué pour certaines lacunes majeures telles que le nombre élevé de doublons et 

son ignorance des interdépendances entre les défaillances. Cet article propose un cadre innovant pour l'analyse 

des modes de défaillance dans les systèmes complexes en intégrant l’AMDE floue et les cartes cognitives floues 

(Fuzzy Cognitive Maps (FCM)). Le cadre proposé permet de considérer les interactions complexes directes / 

indirectes entre les défaillances (F), la cause des défaillances (CF), CF et F, et vice versa, ce qui est utile pour 

prédire l'impact de chaque défaillance ou sa cause sur l’autre mode de défaillance. En outre, il est capable de 

prendre en compte le niveau de l'expérience et la connaissance des experts, les incertitudes et l'information 

imprécise, et les causes multiples des défaillances et des composants. Le cadre proposé est général et peut être 

appliqué dans toutes les industries essentielles pour hiérarchiser les défaillances potentielles et les atténuer. Cette 

étude aidera les experts à trouver l'analyse de défaillance la plus sûre et la plus précise pour les composants 

critiques et les systèmes complexes. Un exemple inspiré du monde réel lié aux pales des turbines d'avions est 

présenté pour illustrer la performance et l'applicabilité du cadre proposé. 

Mots clés: Analyse de mode de défaillance et leurs effets, cartes cognitives floues, numéro de priorité de risque, 

hiérarchisation, systèmes complexes. 
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3.1. Enhancing Failure Mode and Effects Analysis using Fuzzy Cognitive Maps 

Abstract: Current highly complex systems in critical industries such as aviation, petroleum, and healthcare need 

an advanced failure analysis tool to be able to consider failure interactions of components in different phases of 

the product life cycle and ensure the high levels of safety and reliability. Failure Mode and Effects Analysis 

(FMEA) is one of well-known methods for assessing potential failures and has been widely used in the literature. 

However, traditional FMEA has been criticised for some major shortcomings such as high duplication numbers 

and overlooking interdependencies between failures. This paper proposes an innovative framework for analysis 

of failure modes in complex systems by integrating fuzzy FMEA and Fuzzy Cognitive Maps (FCM). The proposed 

framework is able to consider the complex direct/indirect interactions among failures (𝐹), cause of failures (𝐶𝐹), 

𝐶𝐹 and 𝐹, and vice versa, which is useful for predicting the impact of each failure or cause of failure on the other 

failure modes. In addition, it is able to take into account level of experience and knowledge of experts, 

uncertainties and imprecise information, and multiple causes of failures and components. The proposed 

framework is general and can be applied in all critical industries for prioritizing potential failures and mitigating 

them. This study will help experts find the safer and the more accurate failure analysis for critical components 

and complex systems. A real world inspired example related to aircraft turbine rotor blades is presented to 

illustrate the performance and applicability of the proposed framework. 

Key words: Failure mode and effect analysis, Fuzzy cognitive maps, Risk priority number, Prioritization, 

Complex systems. 

1. Introduction 

Many failures in critical systems and processes are dynamic and complex since several components interact with 

each other in so complex ways (Papageorgiou E. , 2014). This could lead to an increase in the number of failures 

in these systems since the failure of a component could lead to a failure of the same or another component or 

cause of a failure could be the cause of other failures. One of the main reasons for propagation of such failures in 

complex systems is the lack of in-depth understanding of the failure interactions and mechanisms. There is a need 

for an advanced and powerful failure analysis tool to be able to consider this complexity in failure interactions of 

complex systems. However, the existing failure assessment tools are not able to consider failures interactions. 

Failure modes and effects analysis (FMEA) is a well-known and extensively used failure analysis method for 

identifying and mitigating potential failures in order to ensure the safety and reliability of components and 

systems. It is widely adopted in different industries such as manufacturing, aviation, healthcare, nuclear and 

services. Traditional FMEA analyses the risk of a component or process using risk priority number (𝑅𝑃𝑁). The 

𝑅𝑃𝑁 is a product of three main criteria; the probability of the occurrence of failure (𝑂), the probability of not 

detecting the failure (𝐷) and the severity/consequences of the failure (𝑆) (𝑅𝑃𝑁 =  𝑂 ×  𝐷 ×  𝑆). This approach 

is simple but it suffers from some major weaknesses as follows:  

(1) The relative importance among 𝑂, 𝑆 and 𝐷 is overlooked and the three criteria are assumed to have the same 

importance (Carmignani, 2009; Chang & Cheng, 2011; Chang, Chang, & Tsai, 2013; Kuei-Hu, Yung-Chia, & 

Yu-Tsai , 2014; Nepal, Yadav, Monplaisir, & Murat, 2008; Peláez & Bowles, 1996; Sankar & Prabhu, 2001; 

Seyed-Hosseini, Safaei, & Asgharpour, 2006; Zammori & Gabbrielli, 2011). 
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(2) The RPN criteria produce many duplicate numbers. This could lead to misclassifying high-risk failures as low 

risk (Carmignani, 2009; Chang & Cheng, 2011; Chang, Chang, & Tsai, 2013; Kuei-Hu, Yung-Chia, & Yu-Tsai , 

2014; Seyed-Hosseini, Safaei, & Asgharpour, 2006; Xu, Tang, Xie, Ho, & Zhu, 2002; Abbasgholizadeh Rahimi, 

Jamshidi, Ait-Kadi, & Ruiz, 2015; Chin, Chan, & Yang, 2008). 

(3) Uncertainties in FMEA teams’ opinions are neglected when scaling the 𝑅𝑃𝑁’s subjective factors (Chang & 

Cheng, 2011; Chang, Chang, & Tsai, 2013; Seyed-Hosseini, Safaei, & Asgharpour, 2006; Xu, Tang, Xie, Ho, & 

Zhu, 2002; Abbasgholizadeh Rahimi, Jamshidi, Ait-Kadi, & Ruiz, 2015). 

(4) Traditional FMEA only considers a single failure, while for a complex system with several components, there 

may be many failures and failure causes (Xiao, Huang, Li, He, & Jin, 2011). 

(5) In complex engineering systems, the relationships and interdependencies among various failure modes (𝐹), 

causes of failures (𝐶𝐹𝑠), the relationships between 𝐶𝐹𝑠 and 𝐹𝑠 and vice versa are overlooked (Carmignani, 2009; 

Xu, Tang, Xie, Ho, & Zhu, 2002; Zammori & Gabbrielli, 2011; Nepal, Yadav, Monplaisir, & Murat, 2008; Kuei-

Hu, Yung-Chia, & Yu-Tsai , 2014; Chin, Chan, & Yang, 2008). 

(6) The level of experience and knowledge of experts are not considered in ranking failure modes (criticized by 

authors).  

The aforementioned shortcomings crucially limit the efficiency of FMEA method and they could result in wrong 

decisions. Several attempts have been made in the past decade in order to address the shortcomings 1 to 3. 

However, very few authors have addressed the last three shortcomings (4, 5, and 6). Since a full review of literature 

regarding the proposed approaches for improvement of traditional FMEA has been carried out recently by Liu, 

Liu, and Liu (2013), in this study we focus in the few papers that have dealt with resolving the aforementioned 

shortcomings, in particular shortcomings 4, 5, and 6. Xu, Tang, Xie, Ho, and Zhu (2002) proposed a fuzzy FMEA 

method, which considers the relationships between failure modes and effects of a turbocharger system. However, 

they didn’t consider the dependencies between causes of failures and failure modes nor the possible connections 

among causes of failures. In order to consider the relationships between failure modes and effects, they proposed 

several fuzzy “if-then rules”. As criticized by several authors, fuzzy rule-based techniques suffer from several 

limitations. For example, large number of rules should be constructed for each RPN model and this requires a vast 

number of judgments and therefore it may be very time-consuming in the case of complex systems (Liu, Liu, & 

Liu, 2013). In addition, some fuzzy if–then rules with different antecedents have the same consequences. Then, it 

is not possible to prioritize the failure modes accurately based on these if–then rules. Seyed-Hosseini, Safaei, and 

Asgharpour (2006) proposed the application of decision making trial and evaluation laboratory (DEMATEL) 

approach in a system FMEA in order to consider indirect relations between components. The major problem with 

this methodology as mentioned by Chang and Cheng (2011) is that when each 𝐶𝐹 is assigned to only one potential 

failure mode, the prioritization results obtained by DEMATEL approach and the traditional 𝑅𝑃𝑁 method are the 

same. To solve this problem, Chang and Cheng (2011) integrated fuzzy ordered weighted averaging (OWA) and 

DEMATEL approach to prioritize the risk of failure. Although this integrated method overcame the problem of 

DEMATEL approach, this approach is very time-consuming and complex. Recently, Chang, Chang, and Tsai 

(2013) proposed an integrated approach using grey relational analysis (GRA) and DEMATEL in order to lower 

the high duplication rate and consider the cause and effect relationships between failure modes and effects in a 
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system. However, none of these studies take into account the relationships between 𝐶𝐹𝑠, 𝐹, 𝐶𝐹𝑠 and 𝐹𝑠 and vice 

versa. Zammori and Gabbrielli (2011) integrated FMECA and analytic network process (ANP) in order to consider 

possible relationships between causes of failure in the criticality assessment (CA). They split 𝑂, 𝑆 and 𝐷 into sub 

criteria which the lowest level contains the causes of failure. The proposed model computes 𝑅𝑃𝑁 scores by 

making several pairwise comparisons. Despite the fact that ANP takes into account the interrelationships between 

causes of failures, it suffers from some major shortcomings. First, the questions for comparing the importance of 

a failure to another are sometimes hard and not understandable for experts to answer (Yu & Tzeng, 2006). For 

example, ‘how the possibility that the ith cause leads to the jth failure is greater than the possibility that the kth 

cause leads to the jth failure? (Zammori & Gabbrielli, 2011). Second, ANP is able to consider only the direct 

dependencies among failure modes and their causes while there could be some indirect dependencies between 

them which are ignored. Third, determining the true ANP structure for several failure modes and causes of failures 

is hard since each structure produces a different result (Lee & Kim, 2000). Besides, performing pair-wise 

comparisons of failure modes and their causes are very time-consuming and almost impossible in the case of 

complex systems.  

FCM is a useful artificial intelligence technique that is used to model the behaviour of complex systems by 

graphical representations and based on experts’ perceptions. It is able to take into account imprecise information, 

uncertainties, and the interrelationships among criteria based on several experts’ opinions (Jamshidi, 

Abbasgholizadeh Rahimi, Ait-Kadi, & Ruiz, 2015). Due to these features, FCM has gained an increasing attention 

and it is being used in different complex decision making problems such as medicine, engineering, information 

technology, prediction (Jamshidi, Abbasgholizadeh Rahimi, Ait-Kadi, & Ruiz, 2015; Xiao, Chen, & Li, 2012; 

Salmeron, 2010). However, direct applications of FCMs to FMEA are extremely scarce in the literature. Peláez 

and Bowles (1996) were the first and only authors who applied scenario-based FCM and min–max inference 

approach to FMEA in order to consider failure interactions and assess the effect of different failure modes on the 

system. However, this approach is very time consuming and infeasible when performing analyses of complex 

systems with several failure causes and effects. In addition, the analysis of the effect of different failure causes on 

the system is only based on the cause and effect relationships between failure modes and the risk scores (𝑅𝑃𝑁) of 

failure causes are not taken into account. Considering the risk score for each failure mode or cause of failure and 

taking into account the failure interactions and dynamic behaviour of system simultaneously, could lead to more 

precise failure analysis process.  

Motivated by abovementioned studies and their shortcomings, this paper proposes a new integrated framework 

by using adjusted FCM and Fuzzy FMEA tools. At first, a fuzzy FMEA model is proposed to determine the initial 

RPI scores for all 𝐶𝐹𝑠. Then, an innovative FCM-based FMEA model is proposed to consider all possible 

relationships including direct/indirect relations between 𝐶𝐹𝑠, 𝐹, 𝐶𝐹𝑠 and 𝐹𝑠 and vice versa by updating the 

initial 𝑅𝑃𝐼 scores. Finally, by using a hybrid learning algorithm, initial values are trained and the most critical 

failure mode and cause of failure are identified. The proposed framework is dynamic and able to predict the effects 

of failure/causes on the other failures/causes or on the system performance. In addition, it takes into account 

uncertainties, imprecise information, and level of experts’ knowledge and experience. The rest of this paper is 

organized as follows. In section 2, the proposed framework is described. Section 3 illustrates the real world 

numerical example. In section 4, the main features of the proposed framework in contrast with other similar 

methods are discussed.  Finally, conclusions are drawn in Section 5. 
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2. The proposed method 

In this paper, FCM is adjusted for a fuzzy Failure Modes and Effects Analysis (FFMEA) method to model the 

behavior of complex systems. At first, a fuzzy FMEA model is proposed to determine the initial 𝑅𝑃𝐼 scores for 

all 𝐶𝐹𝑠. Then, an innovative FMEA-based FCM model is developed to take into account all possible relationships 

between 𝐶𝐹𝑠, 𝐹, 𝐶𝐹𝑠 and 𝐹𝑠 and vice versa. Finally, using NHL-DE hybrid learning algorithm, initial values are 

trained and the most critical failure mode and cause of failure are identified. Pelaèz and Bowles (1996) where the 

first who applied traditional FCM proposed by Bart Kosko (1986) to FMEA for predicting the impact of failures 

on the system operation. In this model, experts assign linguistic terms to all dependencies among concepts/nodes. 

Then, some “what-if” analysis scenarios are developed and in each scenario, a failure is activated. Then, the 

impact of activated failure is calculated using min-max inference approach. The value of activated failures in the 

initial concept vector (𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙) is considered as 1 and for the rest of failures this number is 0. In order to achieve 

precise results, for each failure, all of the possible paths (scenarios) should be taken into account, starting from all 

of failures, and the total effects for each failure should be evaluated to determine their influences on the system 

operation. Although scenario-based FCM is applicable and effective for analysing the impact of activated failures, 

its main drawback is the inherited inability to change scenarios dynamically and therefore it is very time 

consuming and it needs a high simulation time and in the case of complex systems with several failures and causes 

of failures it is almost infeasible to define and simulate all possible scenarios/paths. For example, for evaluating 

the impact of only 16 causes of accidents on 12 major accidents in an Italian refinery, Bevilacqua et al. (2012) 

defined a total of 20336 paths and calculated the total effect for each factor using the mini-max inference approach.  

In this paper, inspired by Pelaèz and Bowles (1996) and Bevilacqua et al. (2012) studies, we propose a new 

framework for analysing the failures of complex systems based on FCM in which, the initial concept values 

(𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙) is updated by using initial weight matrix (𝑊𝐼𝑛𝑖𝑡𝑖𝑎𝑙), Eq. 2, and a learning algorithm until it arrives at one 

of the three steady state conditions. The updated concept values  (𝐶∗) shows the impact of each failure or cause 

of failure on the other failures or on the system performance. The procedure for the proposed framework is as 

follows:  

 

Step 1. Form a panel of experts (𝐸𝑘 ={𝐸1 , 𝐸2, 𝐸3, . . . , 𝐸𝑘}) to identify the potential failures (𝐹𝑖 ={𝐹1,𝐹2 ,𝐹3, . . 

.,𝐹𝑚}) as well as their causes (𝐶𝐹𝑗 ={𝐶𝐹1, 𝐶𝐹2, 𝐶𝐹3, . . ., 𝐶𝐹𝑛}) and effects on the system.  

Step 2. Derive the weights of 𝑅𝑃𝑁 factors (𝑤𝑂, 𝑤𝑆, and 𝑤𝐷) using group AHP method. These weights could be 

different based on organizational goals and objectives and therefore they should be obtained based on the opinions 

of experts in each organization. 

Step3. Calculate the weight of each expert (𝑤𝑘) using one of weighting methods. Various methods for finding the 

weights exist in the literature such as AHP, ANP, ELECTRE, Shannon Entropy, VIKOR, etc. Each organization 

could apply one of these methods depending on the type of criteria (Subjective or Objective) they consider. Some 

criteria such as highest level of education and years of experience could be considered for determining the weight 

of experts. 
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Step 4. In this step, each expert individually assigns linguistic variables (as shown in Table 3.1) for each 𝐶𝐹𝑗 by 

considering three 𝑅𝑃𝑁 factors.  

 

Table 3. 1 Fuzzy ratings for O, S, and D factors 

Occurrence Severity Detection Fuzzy rating 

Very Low (VL) Very Low (VL) Very high (VH) (0, 0, 1.5) 

Low (L) Low (L) High (H) (1, 2.5, 4) 

Moderate (M) Moderate (M) Moderate (M) (3.5, 5, 6.5) 

High (H) High (H) Low (L) (6, 7.5, 9) 

Very high (VH) Very high (VH) Very Low (VL) (8.5, 10, 10) 

 

 
Figure 3. 1 Fuzzy membership functions for O, S, and D factors 

Then, all of the linguistic terms (assigned by different experts to each of RPN factors) are fuzzified using the 

triangular membership functions (indicated in Table 3.1 and Fig. 3.1) and finally defuzzified. This process is 

explained in the followings: 

Let 𝑂𝑖𝑗𝑘, 𝑆𝑖𝑗𝑘 , and 𝐷𝑖𝑗𝑘  be the occurrence, severity, and detection values for failure mode i, cause of failure 𝑗 and 

evaluated by expert 𝑘. In this paper, we have considered the triangular fuzzy membership functions as follows:  

 

𝑂𝑖𝑗𝑘 = (𝐿𝑂𝑖𝑗𝑘 , 𝑀𝑂𝑖𝑗𝑘 , 𝑈𝑂𝑖𝑗𝑘), where 0 ≤ 𝐿𝑂𝑖𝑗𝑘 ≤ 𝑀𝑂𝑖𝑗𝑘 ≤ 𝑈𝑂𝑖𝑗𝑘 ≤ 10  (9) 

𝑆𝑖𝑗𝑘 = (𝐿𝑆𝑖𝑗𝑘 , 𝑀𝑆𝑖𝑗𝑘 , 𝑈𝑆𝑖𝑗𝑘), where 0 ≤ 𝐿𝑆𝑖𝑗𝑘 ≤ 𝑀𝑆𝑖𝑗𝑘 ≤ 𝑈𝑆𝑖𝑗𝑘 ≤ 10  (10) 

𝐷𝑖𝑗𝑘 = (𝐿𝐷𝑖𝑗𝑘 , 𝑀𝐷𝑖𝑗𝑘 , 𝑈𝐷𝑖𝑗𝑘), where 0 ≤ 𝐿𝐷𝑖𝑗𝑘 ≤ 𝑀𝐷𝑖𝑗𝑘 ≤ 𝑈𝐷𝑖𝑗𝑘 ≤ 10   (11) 

The following equations (12-14) are used to aggregate the opinions of experts by considering their weights (𝑤𝑘). 

𝑂𝑖𝑗 =
∑ 𝑂𝑖𝑗𝑘𝑤𝑘

𝑘
𝑘=1

𝑘
 

(12) 

𝑆𝑖𝑗 =
∑ 𝑆𝑖𝑗𝑘𝑤𝑘

𝑘
𝑘=1

𝑘
 

(13) 

𝐷𝑖𝑗 =
∑ 𝐷𝑖𝑗𝑘𝑤𝑘

𝑘
𝑘=1

𝑘
                                                                                    

                                                                                      

(14) 

Equations (15) to (17) are used to obtain the O, S and D values for each cause of failures. 

𝑂𝑗 = ∏ 𝑂𝑖𝑗
𝑚
𝑖=1                                                                                  (15) 

𝑆𝑗 = ∏ 𝑆𝑖𝑗
𝑚
𝑖=1                 (16) 

𝐷𝑗 = ∏ 𝐷𝑖𝑗
𝑚
𝑖=1                   (17) 
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In order to take into account the importance weights of 𝑅𝑃𝑁 factors (O, S and D), a pairwise comparison should 

be done between these factors to obtain 𝑤𝑂, 𝑤𝑆, and 𝑤𝐷. Then, these weights are multiplied  in 𝑂𝑗, 𝑆𝑗, and 𝐷𝑗  

values to obtain the fuzzy membership function 𝜇(𝑅𝑃𝐼𝑗) as follow: 

𝜇(𝑅𝑃𝐼𝑗) = 𝑤𝑂𝜇(𝑂𝑗) + 𝑤𝑆𝜇(𝑆𝑗) + 𝑤𝐷𝜇(𝐷𝑗)                                                                                                      (18) 

The obtained fuzzy membership function for each cause of failure should be defuzzified to obtain crisp numbers. 

To defuzzify a triangular fuzzy number (L, M, U), in this paper the following Equation is applied (Çelik & Yamak, 

2013): 

𝑡 =
𝐿+𝑀+𝑀+𝑈

4
                                                                                                                                 (19) 

Finally, defuzzified risk priority score for each cause of failure (𝑅𝑃𝐼𝑗) is obtained using the following Equation.   

𝑅𝑃𝐼𝑗 = 𝐷𝑂𝑗 × 𝐷𝑆𝑗 × 𝐷𝐷𝑗   (20) 

Step 5. Establish the FCM diagram in order to show all the interactions between 𝐹𝑚 and 𝐶𝐹𝑛 and obtain 𝑊𝐼𝑛𝑖𝑡𝑖𝑎𝑙  

matrix based on experts’ opinions. Experts should first reach consensus on the sign and direction of arcs between 

criteria. In order to determine the level of influence of each criterion on the other criteria and vice versa, experts 

assign linguistic terms (as indicated in Table 3.1 and Fig. 3.1) for each arc individually. Then, the opinions of 

decision makers are aggregated and defuzzified in order to find the initial influence weight (𝑊𝐼𝑛𝑖𝑡𝑖𝑎𝑙). In this 

study, we propose the following 𝑊𝐼𝑛𝑖𝑡𝑖𝑎𝑙  matrix: 

Table 3. 2 The proposed 𝑊𝐼𝑛𝑖𝑡𝑖𝑎𝑙  matrix 

𝐸𝑘 𝐹1 . 𝐹𝑚 𝐶𝐹1 . 𝐶𝐹𝑛 

𝐹1 𝑤𝐹1−𝐹1 . 𝑤𝐹1−𝐹𝑚 𝑤𝐹1−𝐶𝐹1 . 𝑤𝐹1−𝐶𝐹𝑛 

. . . . . . . 

𝐹𝑚 𝑤𝐹𝑚−𝐹1 . 𝑤𝐹𝑚−𝐹𝑚 𝑤𝐹𝑚−𝐶𝐹1 . 𝑤𝐹𝑚−𝐶𝐹𝑛 

𝐶𝐹1 𝑤𝐶𝐹1−𝐹1 . 𝑤𝐶𝐹1−𝐹𝑚 𝑤𝐶𝐹1−𝐶𝐹1 . 𝑤𝐶𝐹1−𝐶𝐹𝑛 

. . . . . . . 

𝐶𝐹𝑛 𝑤𝐶𝐹𝑛−𝐹1 . 𝑤𝐶𝐹𝑛−𝐹𝑚 𝑤𝐶𝐹𝑛−𝐶𝐹1 . 𝑤𝐶𝐹𝑛−𝐶𝐹𝑛 

 

Step 6. Make an initial concept vector (𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙), as follows: 

 

 

 

Note that in this vector the 𝑅𝑃𝐼𝑗 scores are used as initial values of 𝐶𝐹s and the values for 𝐹s are considered to be 

zero. 

Step 7: By using NHL-DE learning algorithm, initial concept vector (𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙), 𝑊𝐼𝑛𝑖𝑡𝑖𝑎𝑙  matrix, and Eq. (2) train 

the FCM and obtain the steady-state concept matrix (𝐶∗). In our proposed method, we have used the following 

sigmoid threshold function: 

 𝑓(𝑥)  =  
1

1+𝑒−𝜆𝑥   (21) 

 𝐹1 𝐹2  . . 𝐹𝑚 𝐶𝐹1 𝐶𝐹2 . . 𝐶𝐹𝑛 

(𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙)               [0 0 0 0 0 𝑅𝑃𝐼1 𝑅𝑃𝐼2 .             . 𝑅𝑃𝐼𝑛] 
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where 𝜆 > 0 denotes the steepness of 𝑓. We use this function since our concepts interval is in [0, 1] range. This 

step will identify the most critical failure mode. 

Step 8: The aim of this step is to identify the most influential 𝐶𝐹𝑗 on the identified critical failure in step 7. To do 

so, make new 𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙 vectors each time by activating only one cause of failure involved in the occurrence of 

identified failure mode in step 7. Note that in each new 𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙 vector, the value of all Fs and CFs are considered 

to be zero except the activated 𝐶𝐹𝑗 which its value is considered as 𝑅𝑃𝐼𝑗 .   

 

 

After making new 𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙 vectors, each of FCMs are trained and finally the most critical 𝐶𝐹𝑗 is identified through 

comparing the values obtained for identified failure mode (in step 7) in each 𝐶∗. 

3. Numerical example 

In this section, we illustrate the performance and applicability of the proposed framework through an academic 

numerical example related to rotor blades of an aircraft turbine. Rotor blades are the major components of an 

aircraft turbine and consist of compressor and turbo rotor blades (Yang, Huang, He, Zhu, & Wen, 2011). These 

components move in high-speed rotation, under the severe load conditions in complex work environments, and 

have the thin-form. Therefore, they are one of the components having the highest failure rates in aircraft turbines. 

Any failure with these blades could affect seriously the overall aircraft turbine reliability and security. Jianping et 

al. (2011) recognized 17 potential failure modes related to rotor blades. According to the explained steps in section 

3, the proposed framework is illustrated in the following.  

Step 1. In this numerical example, five potential failure modes (𝐹1, 𝐹2,  𝐹3, 𝐹4, 𝐹5) and five causes of failures (The 

improper material (𝐶𝐹1), low intensity due to improper heat treatment (𝐶𝐹2), high centrifugal stress due to engine 

overspeed (𝐶𝐹3), the low blade strength due to overtemperature (𝐶𝐹4), and low yield strength caused by the 

improper material and heat treatment technology (𝐶𝐹5)) are taken form Yang, Huang, He, Zhu, and Wen (2011) 

and will be evaluated by three Experts (𝐸1, 𝐸2, 𝐸3). Note that some failure modes have the same causes of failures 

and this increases the complexity of failure analysis. 

Table 3. 3 Failure modes and causes of failures of an aircraft turbine 

Component Failure modes Causes of failures 

 

 

 

 

Compressor rotor blades 

 

Fracture (𝐹1) 

𝐶𝐹1 

𝐶𝐹2 

𝐶𝐹4 

𝐶𝐹5 

Blade tip wear (𝐹2) 𝐶𝐹1 

𝐶𝐹2 

 

Deformation (𝐹3) 

𝐶𝐹3 

𝐶𝐹4 

𝐶𝐹5 

Deflection (𝐹4) 𝐶𝐹2 

𝐶𝐹4 

Turbo rotor blades  

Deformation (𝐹5) 

𝐶𝐹3 

𝐶𝐹5 

 

   𝐹1 𝐹2  . . 𝐹𝑚            𝐶𝐹1 . 𝐶𝐹𝑗 . 𝐶𝐹𝑛 

(𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙)               [0 0 0 0 0 0 0 𝑅𝑃𝐼𝑗 0 0] 
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Step 2. Relative AHP is employed to determine the weights of RPN factors (𝑤𝑂, 𝑤𝑆, and 𝑤𝐷) (Abbasgholizadeh 

Rahimi, Jamshidi, Ait-Kadi, & Ruiz, 2015) and the numbers ‘‘0.4809, 0.1652, and 0.3538’’ are achieved for O, 

S, and D factors, respectively (as shown in second column of Table 3.4).   

Step 3. Values under header “Exp (𝑤𝑖)” in Table 3.4 represent the weights assigned to each of experts. In our 

numerical example, we set them arbitrarily as 0.3, 0.5, and 0.2. The same weights are applied in step 5 for 

obtaining 𝑊𝐼𝑛𝑖𝑡𝑖𝑎𝑙  matrix. 

Table 3. 4 Assigning linguistic terms for each RPI factor 

𝑅𝑃𝐼 
Factors 

Exp (𝑤𝑖) 
𝐹1 𝐹2 𝐹3 𝐹4 𝐹5 

𝐶𝐹1 𝐶𝐹2 𝐶𝐹4 𝐶𝐹5 𝐶𝐹1 𝐶𝐹2 𝐶𝐹3 𝐶𝐹4 𝐶𝐹5 𝐶𝐹2 𝐶𝐹4 𝐶𝐹3 𝐶𝐹5 

S 

 

1(0.3) L M VH VH M VL L VH L VH M H M 

2(0.5) L L M H M L VL H L VH M M H 

3(0.2) M L M VH H L L H M VH M M H 

O 
 

1(0.3) H H M M M VL H M H L VH M M 

2(0.5) VH H H M L L VH H VH L H L L 

3(0.2) H VL H L M L H M H VL H M M 

D 
 

1(0.3) VL VH L L H H M VL VL L VL L H 

2(0.5) VL VH L VL M H VH VL VL L L VL M 

3(0.2) VL H VL L M VH H L VL L VL L VH 

 

Step 4. Construct fuzzy FMEA assessment tables for all of failures and related causes. Each 𝑅𝑃𝐼 factor is evaluated 

by three experts based on linguistic terms. Tables 4.5-9 illustrate this step.  

Table 3.5 shows the linguistic terms assigned by three experts to each cause of failure. Using Table 3.1 and 

Equations 9-11, the linguistic variables are converted into triangular fuzzy numbers as indicated in Table 3.5. In 

Table 3.6, the fuzzy triangular numbers in Table 3.5 are multiplied by experts’ weights (𝑤𝑖) and the opinions of 

all three experts are aggregated using Equations 12-14. It should be mentioned that due to lack of space the values 

of some columns in Tables 4.5 and 4.6 are not shown.  

Table 3. 5 Assignment of fuzzy triangular numbers 

𝑅𝑃𝐼 
Factors 

Exp(W) 
𝐹1  

. 
𝐹5 

𝐶𝐹1 𝐶𝐹2 𝐶𝐹4 𝐶𝐹5 . 𝐶𝐹3 𝐶𝐹5 

S 

 

1(0.3) 1 2.5 4 . . . . . 3 5 7 

2(0.5) 1 2.5 4 . . . . . 6 7.5 9 

3(0.2) 3 5 7 . . . . . 6 7.5 9 

O 
 

1(0.3) 6 7.5 9 . . . . . 3 5 7 

2(0.5) 8 9 10 . . . . . 1 2.5 4 

3(0.2) 6 7.5 9 . . . . . 3 5 7 

D 

 

1(0.3) 0 1 2 . . . . . 6 7.5 9 

2(0.5) 0 1 2 . . . . . 8 9 10 

3(0.2) 0 1 2 . . . . . 8 9 10 

 

Table 3. 6 Aggregating experts’ opinions by considering their weights 

𝑅𝑃𝐼 
Factors 

𝐹1 . 𝐹5 

𝐶𝐹1 𝐶𝐹2 𝐶𝐹4 𝐶𝐹5 . 𝐶𝐹3 𝐶𝐹5 
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S 0.46 1 1.53 0.53 1.08 1.63 . . . 1.3 1.92 2.53 1.7 2.25 2.8 

O 2.33 2.75 3.16 1.6 2.06 2.53 . . . 0.67 1.25 1.83 0.67 1.25 1.83 

D 0 0.33 0.66 2.53 2.9 3.26 . . . 0.17 0.58 1 2.47 2.85 3.23 

 

Table 3. 7 Aggregation of same causes of failures 

𝑅𝑃𝐼 factors 𝐶𝐹1 𝐶𝐹2 𝐶𝐹3 𝐶𝐹4 𝐶𝐹5 

𝑆𝑗  (0.1652) 0.015 0.05 0.1 0.001 0.01 0.028 0.01 0.03 0.069 0.015 0.041 0.086 0.008 0.028 0.061 

𝑂𝑗 (0.4809) 0.36 0.79 1.34 0.011 0.12 0.383 0.36 0.79 1.343 0.624 1.382 2.574 0.15 0.573 1.377 

𝐷𝑗 (0.3538) 0 0.12 0.27 0.08 0.28 0.592 0.05 0.21 0.409 0.001 0.016 0.064 0 0.025 0.095 

 

Table 3.7 shows the aggregation results of same causes of failures (𝐶𝐹𝑗) using Equations 15-17. Then, Equation 

19 is used to defuzzify the weighted 𝑂𝑗, 𝑆𝑗 and 𝐷𝑗   values for each cause of failures as shown in Table 3.8. Finally, 

𝑅𝑃𝐼 scores are obtained using Equation 20 as indicated in the last row of Table 3.8. 

Table 3. 8 Defuzzified S, O, and D values for obtaining 𝑅𝑃𝐼s 

RPI factors 𝐶𝐹1 𝐶𝐹2 𝐶𝐹3 𝐶𝐹4 𝐶𝐹5 

𝐷𝑆𝑗  0.33 0.45 0.21 1.68 1.15 

𝐷𝑂𝑗  1.71 0.67 1.71 6.44 2.89 

𝐷𝐷𝑗  0.35 2.45 0.63 0.2 0.29 

𝑅𝑃𝐼𝑗 0.203 0.748 0.22 2.11 0.96 

 

The obtained results for 𝑅𝑃𝐼𝑗  in Table 3.8 show the criticality of each cause of failure. From these results, it is 

clear that 𝐶𝐹4 > 𝐶𝐹5 > 𝐶𝐹2 > 𝐶𝐹3 > 𝐶𝐹1. However, the impact of these 𝐶𝐹𝑠 on the failures 1-5 are not 

determined. In addition, the possible dependencies among Fs and CFs are not considered in this 𝐶𝐹 ranking. Then, 

using 𝑅𝑃𝐼𝑗 scores as initial values, the next steps will identify the most critical failure and cause of failure by 

considering the dependencies and through establishing the FCM diagram. 

Step 5. Establish the FCM diagram based on three experts’ opinions and obtain 𝑊𝐼𝑛𝑖𝑡𝑖𝑎𝑙  matrix. Fig. 3.2 shows 

the FCM structure for potential failures and their causes of rotor blades. This contains 36 arcs. Table 3.9 shows 

the linguistic terms assigned for each relationship among Fs, CFs, Fs and CFs, and vice versa. In order to make 

the 𝑊𝐼𝑛𝑖𝑡𝑖𝑎𝑙  matrix, experts individually determine the level of dependency. Then, the linguistic variables are 

aggregated and defuzzified through Eq. 19 to obtain crisp numbers. The initial weight matrix, is shown in Table 

3.10.  
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                           Dependencies among Fs 

                           Dependencies among CFs 

               Dependencies among Fs & CFs 

               Dependencies among CFs & Fs  

 

 

 

 

Figure 3. 2 FCM structure for 5 failures (𝐹𝑖) and 5 causes of failures (𝐶𝐹𝑗) 

Table 3. 9 Assigning linguistic terms for level of dependencies among failures and their causes 

 

Table 3. 10 𝑊𝐼𝑛𝑖𝑡𝑖𝑎𝑙  matrix 

𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝐹1 𝐹2 𝐹3 𝐹4 𝐹5 𝐶𝐹1 𝐶𝐹2 𝐶𝐹3 𝐶𝐹4 𝐶𝐹5 

𝐹1 
0 0.275 0.068 0.208 0.233 0 0 0 0 0 

𝐹2 
0.033 0 0.125 0 0.25 0 0 0.075 0 0 

𝐹3 
0 0 0 0.06 0 0 0.24 0 0 0 

𝐹4 
0 0 0.085 0 0 0 0 0 0 0 

𝐹5 
0.275 0 0.183 0.1 0 0.18 0 0 0 0 

𝐶𝐹1 
0.285 0.1 0 0 0 0 0 0 0 0.225 

𝐶𝐹2 
0.142 0.2 0 0.3 0 0.13 0 0.29 0 0 

𝐶𝐹3 
0 0.3 0.058 0 0.167 0 0 0 0.17 0 

𝐶𝐹4 
0.208 0.4 0.125 0.248 0 0 0 0 0 0 

𝐶𝐹5 
0.275 0.5 0.167 0 0.048 0 0 0.068 0 0 

 

As already mentioned, some ranges could be defined by experts for the weights in Table 3.10. Besides, experts 

could define some desired regions between [0,1] for some concepts in 𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙 as Desired Output Concepts 

EXP.1

(0.3)
F1 F2 F3 F4 F5 C1 C2 C3 C4 C5

EXP.2

(0.5)
F1 F2 F3 F4 F5 C1 C2 C3 C4 C5

EXP.3

(0.2)
F1 F2 F3 F4 F5 C1 C2 C3 C4 C5

F1 0 H VL M H 0 0 0 0 0 F1 0 VH L H H 0 0 0 0 0 F1 0 H L M M 0 0 0 0 0

F2 0 0 M 0 H 0 0 L 0 0 F2 0 0 L 0 H 0 0 VL 0 0 F2 0 0 M 0 H 0 0 M 0 0

F3 0 0 0 0 0 0 VH 0 0 0 F3 0 0 0 0 0 0 VH 0 0 0 F3 0 0 0 0 0 0 H 0 0 0

F4 0 0 VL 0 0 0 0 0 0 0 F4 0 0 L 0 0 0 0 0 0 0 F4 0 0 M 0 0 0 0 0 0 0

F5 H 0 M VL 0 M 0 0 0 0 F5 VH 0 M M 0 M 0 0 0 0 F5 H 0 H VL 0 H 0 0 0 0

C1 H H 0 0 0 0 0 0 0 M C1 VH M 0 0 0 0 0 0 0 H C1 VH VH 0 0 0 0 0 0 0 H

C2 L M 0 VH 0 L 0 VH 0 0 C2 M L 0 VH 0 M 0 VH 0 0 C2 M VL 0 VH 0 L 0 H 0 0

C3 0 0 VL 0 M 0 0 0 M 0 C3 0 0 L 0 M 0 0 0 M 0 C3 0 0 VL 0 M 0 0 0 M 0

C4 H 0 L VH 0 0 0 0 0 0 C4 M 0 M H 0 0 0 0 0 0 C4 H 0 L M 0 0 0 0 0 0

C5 VH 0 M 0 L 0 0 VL 0 0 C5 H 0 M 0 VL 0 0 L 0 0 C5 VH 0 M 0 VL 0 0 L 0 0

𝐹1   

𝐹3   

𝐹5   

𝐹4   

𝐹2   

𝐶𝐹1 𝐶𝐹3 

𝐶𝐹2 

𝐶𝐹5 𝐶𝐹4 
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(DOCs). The DOCs are defined for those concepts (failures or cause of failures) which are important for the 

experts. 

Step 6. Make an initial concept vector (𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙) using the 𝑅𝑃𝐼𝑗  scores obtained in Table 3.8, as follows:     

 

 

 

Step 7: Train the FCM and obtain the steady-state concept matrix (𝐶∗) as follows: 

 

 

Figure 3. 3 The variation of five failures modes for 10 cycles: convergence region 

All the initial data are imported into Matlab R2015b as a code. For this numerical example, the population size is 

50 and the values of crossover constant (CR), mutation constant (𝜇), weight decay learning parameter (𝛾) and 

learning rate parameter (𝜂) are 0.5, 0.5, 0.98, 0.04, respectively. 1000 iterations were performed. According to 

the matrix 𝐶∗ and Fig. 3.3, the most critical failure mode is 𝐹4 (0.7576) followed by 𝐹2, 𝐹5, 𝐹1, 𝐹3. The results of 

the comparison of FCM simulations are shown graphically in Fig. 3.3. 

Step 8. In order to figure out which cause of failure has the most impact on 𝐹4, all the cause of failures involved 

in the occurrence of failure mode 𝐹4 should be activated separately. To do so, in each new 𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙 vector, the 

value of all Fs and CFs are considered zero, except the activated 𝐶𝐹𝑗 which its value is considered as 𝑅𝑃𝐼𝑗  obtained 

in Table 3.8.  

Table 3. 11 Activating 𝐶𝐹2 and 𝐶𝐹4 and obtaining 𝐶∗ vectors 

  𝐹1 𝐹2 𝐹3 𝐹4 𝐹5 𝐶𝐹1 𝐶𝐹2 𝐶𝐹3 𝐶𝐹4 𝐶𝐹5 

𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙 0 0 0 0 0 0 0.748 0 0 0 

𝐶∗ 0.829  0.752    0.760 0.755 0.845 0.688 0.794 0.922 0.803 0.746 

𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙 0 0 0 0 0 0 0 0 2.11 0 

𝐶∗ 0.820 0.885 0.758 0.749 0.844 0.744 0.850 0.882 0.905 0.809 

                           𝐹1 𝐹2 𝐹3 𝐹4 𝐹5 𝐶𝐹1 𝐶𝐹2 𝐶𝐹3 𝐶𝐹4 𝐶𝐹5 

𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙              [0 0 0 0 0 0.203 0.748 0.22 2.11 0.96] 

    𝐹1 𝐹2 𝐹3 𝐹4 𝐹5 𝐶𝐹1 𝐶𝐹2 𝐶𝐹3 𝐶𝐹4 𝐶𝐹5 

𝐶∗ [0.6838 0.7505 0.6469 0.7576 0.7453 0.9687 0.7626 0.7789 0.801 0.806] 
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Figure 3. 4 The variation of five failures modes by activating 𝐶𝐹2 and 𝐶𝐹4 for 10 cycles: convergence region 

The information obtained from steps 7 and 8 provide practitioners with variety of valuable information for 

effectively and more accurately preventing critical failures and their related causes. The findings in Table 3.10 

show that by activating 𝐶𝐹2 and 𝐶𝐹4, 𝐶𝐹2 has a strong influence over 𝐹2 rather than 𝐶𝐹4. On the other words, 

𝐶𝐹2 is more critical than the other cause of failures over 𝐹2 and should be given priority in prevention activities. 

In addition, the findings show the range of impact and the average impact of each cause of failure. For example, 

the range of impact of 𝐶𝐹2 on the five failure modes is [0.611,0.766] and the average impact is 0.715*. Moreover, 

this process could be carried out for all of the other cause of failures by activating each cause of failure at each 

time, in order to analysis the impact of each 𝐶𝐹𝑖 on each failure modes. This will determine if cause of failure 𝐶𝐹𝑖 

occurs, which failure will be affected mostly.  

4. Discussion 

This paper aims to enhance the efficiency of the traditional FMEA method by integrating it with FCM tool. In 

fact, it intends to propose an advanced FCM-based FMEA tool which is able to fairly accurately model the 

behaviour of complex cause and effect relationships among failures/cause of failures in order to evaluate and 

prioritize such failures/causes and predict their effects on the other failures/causes or on the system performance. 

                                                           
* The mean was calculated by adding up the values of failures and dividing by the number of failures. 
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Table 3.12 shows the principal requirements for such an advanced failure analysis tool and indicate whether the 

existing methods including our proposed tool meet the demanded requirements. Note that we have selected the 

similar methods such as DEMATEL from literature based on the fact that they are able to consider Direct/Indirect 

relationships between failures/causes. When a method meets a requirement, this is indicated in Table 3.12 with 

.  

Table 3. 12 Comparing the proposed framework with other similar methods in terms of requirements 

 
 

Requirements 

 

Direct/Indirect 

relationships 

Predicting 

the effects of 

failure/ 

causes  

Uncertainties 

and 

imprecise 

information 

Ability to consider 

several components 

with same/different 

𝐹𝑖 and 𝐶𝐹𝑗 

Ability to consider 

the level of experts’ 

knowledge and 

experience 

Dynamic 

system 

 With 

feedback 

DEMATEL       

OWA & DEMATEL       

GRA & DEMATEL       

FMECA & ANP       

FCM- based FMEA       

As it is clear from this Table, FCM-based FMEA is the only modelling tool which meet all the requirements 

demanded. Due to these features, this artificial intelligence tool has gained an increasing attention and it is being 

used in different complex decision making problems. Although some of the existing methods such as DEMATEL 

are able to consider the direct/indirect relationships among failure and causes of failures, none of them take into 

account the possible connections between failure modes (or failure causes). For example, some failures could 

have effects on other failures, for example 𝐹1 in our numerical example has effects on the failures  𝐹2, 𝐹3, 𝐹4 and 

𝐹5. Considering all possible connections in failure analysis provides a possible tool for helping to automate the 

reasoning required in FMEA. The proposed FCM-based FMEA is also able to provide valuable information for 

predicting failure effects and causes on the system performance. In particular, experts can easily determine how 

any change in a failure or cause of failure will affect the other failure modes while this feature is not available in 

the other methods. One of the other features of our proposed tool that is that it is dynamic, meaning that it involves 

feedback and by changing the value of a concept the values of other nodes could be affected. Last but not least, 

using causal graphs, experts can better understand and rate all of the dependencies among failure and their causes. 

The most significant weaknesses of the FCMs are their critical dependence on the experts’ opinion and the 

potential convergence to undesired states. Learning algorithms can help overcome this shortcoming by increasing 

the efficiency and robustness of FCMs. As a future research topic, application of other learning algorithms for 

training FCM could be considered. 

5. Conclusion 

This study presents an integrated dynamic framework for advanced failure analysis of complex and critical 

systems by considering failures and causes of failures interactions under uncertainty. At first, a fuzzy FMEA 

model is proposed to determine the initial 𝑅𝑃𝐼 scores for all causes of failures by considering experts’ weights. 

Then, an innovative FMEA-based FCM model is developed to take into account all possible relationships between 

nodes. Finally, using NHL-DE hybrid learning algorithm, initial 𝑅𝑃𝐼 scores are trained and the most critical failure 

mode is identified. Besides, the most influential cause of failure on the most critical critical failure is determined 

by activating the cause of failures involved in the occurrence of this failure. Depending on the proposed FCM-

based FMEA framework, experts can identify the critical failure modes and causes more precisely and accurately 

by predicting their impacts on the system and assign the limited resources to the most serious failures. The 
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proposed framework is not only novel but sufficiently general and it could be adapted as an advanced risk 

assessment tool in all critical and complex industries for prioritizing critical failures and causes and mitigating 

them. Although it is not possible to conclude that the proposed tool is indeed effective due to lack of information, 

the distinguished features of this tool encourage us to continue our research. In future works, we plan to evaluate 

the performance of the proposed tool in practice on a complex system. Also, we will develop a user-friendly 

software based on this framework in order to facilitate its implementation in practice.  
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Chapter 4. Dynamic risk modeling and assessing 

in complex systems using FCM 
 

The forth chapter is dedicated to the following articles: 

[1] Dynamic risk assessment of complex systems using FCM; A. Jamshidi, D. Ait-kadi, A. Ruiz, M.L. Rebaiaia, 

Accepted for publication in International Journal of Production Research. 

[2] Dynamic risk modeling and assessing in maintenance outsourcing with FCM, 6th International Conference on 

Industrial Engineering and Systems Management (IESM 2015), Seville, Spain. Afshin Jamshidi, S. A. Rahimi, D. 

Ait-kadi, A. Ruiz. 2015, pp. 209-215. doi: 10.1109/IESM.2015.7380159. 

[3] A new decision support tool for dynamic risks analysis in collaborative networks, A. Jamshidi, S. A. Rahimi, 

D. Ait-kadi, A. Ruiz, Risks and Resilience of Collaborative Networks Book, Pages 53-62, Vol 463 of  the series 

IFIP Advances in Information and Communication Technology, Springer International Publishing, DOI 

10.1007/978-3-319-24141-8_5. 
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4.1 Dynamic risk assessment of complex systems using FCM 

Résumé: L'analyse du risque des systèmes complexes actuels est délicate en raison de la nature complexe et 

dynamique des systèmes. Les outils actuels d'analyse des risques ne sont pas en mesure de prendre en compte les 

interactions complexes entre les risques et ne peuvent donc pas prédire avec précision le comportement des 

risques. Pour tenter de remédier à cette lacune, nous proposons un outil généralisé d'aide à la prise de décision 

utilisant les cartes cognitives floues (FCM) pour l'évaluation dynamique des risques des systèmes complexes. 

L'outil proposé est capable de prévoir l'impact de chaque risque sur les autres ou sur les résultats des projets au fil 

du temps en considérant la probabilité d'occurrence et les conséquences des risques en tenant compte des 

dépendances complexes entre les facteurs de risque. Cet outil pourrait aider les praticiens des industries critiques 

à gérer les risques des systèmes complexes de manière plus efficace et plus précise et à offrir de meilleures 

solutions d'atténuation des risques. 

Mots-clés: Évaluation des risques, Cartes cognitives floues, Systèmes complexes, Incertitude, Systèmes 

dynamiques. 
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4.1 Dynamic risk assessment of complex systems using FCM 

Abstract: Analysing risk of today’s complex systems is challenging due to the complex and dynamic nature of 

systems. The current risk analysis tools are not able to take the complex interactions among risks into account and 

therefore they can’t predict the behaviour of risks accurately. In an attempt to overcome this shortcoming, this 

paper proposes an integrated generalized decision support tool using Fuzzy Cognitive Maps (FCMs) for dynamic 

risk assessment of complex systems. The proposed tool is able to predict the impact of each risk on the other risks 

or on the outcomes of projects over time by considering probability of occurrence and consequences of risks and 

also taking into account the complex dependencies among risk factors. This tool could help practitioners in critical 

industries to manage the risks of complex systems in a more effective and precise way and offer better risk 

mitigation solutions. 

Keywords: Risk assessment, Fuzzy cognitive maps, Complex systems, Uncertainty, Dynamic systems. 

Introduction 

Modern systems and processes in manufacturing, healthcare, engineering, finance, sales, and many other fields 

are becoming more complex and dynamic. The risks and uncertainties associated with these systems and processes 

are often composed by several cause-effect relationships in so complex ways. This could lead to an increase in 

the number of failures in these systems if not assessed by an advanced risk assessment tool. Ordinary qualitative/ 

quantitative risk analysis tools such as traditional fault tree analysis (FTA) or failure mode effects analysis 

(FMEA) methods are designed to illustrate static dependencies among logical variables, and do not consider 

process variables, time, uncertainties (Abdo & Flaus, 2016), or human behavior (which affect the system dynamic 

response) (Siu, 1994) and therefore could not be applied to risk assessment of these systems. In addition, some 

advanced modelling techniques such as Bayesian networks, Neural networks, etc. are not able to take into account 

the requirements demanded for dynamic risk assessment of such complex systems.  

FCMs are useful graphical tools for modeling and simulating dynamic systems. Due to their simplicity, recently, 

they have been employed widely as an advance decision support system in different domains such as engineering, 

medical decision system, business, software engineering, environmental sciences, political decision making, 

decision analysis, fault detection, process control, data mining in internet, and modeling LMS critical success 

factors (Salmeron & Papageorgiou, 2012; Zhi Xiao, 2013; Nassim Douali, 2014; Azadeh, Salehi, Arvan, & 

Dolatkhah, 2014; Núnez-Carrera, Espinosa-Paredes, & Cruz-Esteban, 2011; Lakovidis & Papageorgiou, 2011). 

In addition, some FCM extensions have been proposed in order to enhance its structures inheriting characteristics 

and advantages of other intelligent techniques. These extensions are designed to overcome three FCM 

shortcomings; uncertainty modeling (FGCM, iFCM, BDDFCM, RCM), dynamic issues (DCN, DRFCM, FCM, 

E-FCM, FTCM, TQFCM), and rule-based knowledge representation (RBFCM, FRI-FCM). More information 

about the different extensions of FCM are available in (Papageorgiou E. I., 2014).  

FCM is considered as a useful artificial intelligence technique which represents and analyzes the dynamic behavior 

of complex systems composed of interrelated variables (Kosko B. , Fuzzy cognitive maps, 1986). Due to this fact, 

in addition to its application as an advanced decision support tool, recently this tool has been applied successfully 

for evaluating risks in complex and critical environments such as healthcare. Papageorgiou et al. (2015) proposed 

a decision support approach using FCM to accurately assess familial breast cancer risk factors and to evaluate the 



63 
 

risk grades. In a similar work, Subramanian et al. (2015) proposed a NHL-FCM model for predicting breast cancer 

risk grade based on demographic risk factors identified by domain experts. Bevilacqua et al. (2013) used FCM for 

understanding the cognitive mechanisms that influence the errors of drug management activities. Ahmad and 

Kumar (2012) assessed the effects of risks on the success of Enterprise Recourse planning (ERP) maintenance 

through FCM modeling. At first, they identified risks to ERP maintenance success. Then, they specified which 

goals must be reached so that ERP maintenance will be considered successful. Finally, a FCM was created to 

forecast risk effects on ERP maintenance goals and simulate distinct scenarios. Lopez and Salmeron (2012) built 

a dynamic simulation tool using FCM that allows ERP managers to foresee the impact of risks on maintenance 

goals. Salmeron (2010) analyzed IT projects implementation risks and the relationships between using FCM. 

Bevilacqua et al. (2012) analysed the injuries in an Italian refinery by presenting a FCM approach to explore the 

importance of the relevant factors in industrial plants. For this purpose, industrial plants were described in terms 

of factors that affect injury risk and the causal relationships involved. Recently, the authors demonstrated the 

application of FCM in risk analysis of collaborative networks (Jamshidi, Abbasgholizadeh Rahimi, Ait-Kadi, & 

Ruiz, 2015), and maintenance outsourcing risks (Jamshidi, Abbasgholizadeh Rahimi, Ait-Kadi, & Ruiz, 2015).  

In this paper, we focus on risk assessment feature of FCM and propose an adjusted integrated six steps approach 

to enhance its capability and generalize its application for dynamic risk assessment of complex systems in all 

industries and organizations. A major contribution of this paper is to develop an advanced dynamic risk assessment 

tool using FCM tool which is able to consider interdependencies between risk factors in risk assessment process 

and also predict the impact of each risk on the other risks or system outcomes by developing several what-if 

analyses. To the best of our knowledge, this is the first time that the dependencies among risk factors are included 

in the risk assessment process. We show how considering interdependencies including direct and indirect 

relationships between risk factors could significantly change the final prioritization of risk factors. In addition, we 

show how any changes in the value of risk factors could affect the other risks or system outcomes be defining 

nine different scenarios.  The reminder of this paper is organized as follows. Section 2 presents the theoretical 

foundations of fuzzy logic and FCM. Sections 3 introduces some existing learning algorithms for training FCMs 

and compare them, while section 4 details the proposed approach. Section 5 illustrates the proposed approach with 

a hypothetical numerical example. Finally, the conclusions are drawn in Section 6.  

2. Theoretical background 

2.1. Fuzzy Theory 

Definition 4.1. A fuzzy set is built from a reference set called universe of discourse. The reference set is never 

fuzzy. Assume that 𝑈 =  {𝑥1, 𝑥2, . . . , 𝑥𝑛} is the universe of discourse, then a fuzzy set �̃� in U (�̃�  ⊂  𝑈) is defined 

as a set of ordered pairs {(𝑥𝑖, 𝜇𝐴(𝑥𝑖))} where 𝑥𝑖 ∈  𝑈, 𝜇�̃�: 𝑈 → [0, 1] is the membership function of �̃� and 𝜇�̃�(𝑥) 

∈  [0, 1] is the degree of membership of 𝑥 in �̃� (Werro, 2015). 

Definition 4.2. A fuzzy variable determined by the triplet �̃�[𝑙, 𝑚, 𝑢] of crisp number with 𝑙  𝑚 𝑢 is called a 

triangular fuzzy linguistic variable, which is characterized by the following member function: 

𝜇�̃� (𝑥) = {

𝑥−𝑙

𝑚−𝑙
,   𝑖𝑓 𝑙 ≤ 𝑥 ≤  𝑚

𝑢−𝑥

𝑢−𝑚
, 𝑖𝑓 𝑚 ≤ 𝑥 ≤  𝑢

0,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Figure 4.  1 A triangular fuzzy number. 

Figure 1 shows a simple fuzzy triangular number. The values 𝑙, 𝑚, and 𝑢 indicate the lower, medium and upper 

bound for the assigned linguistic term. The aim of considering lower and upper bounds for each linguistic term is 

to take into account the uncertainties in experts’ opinions.  

2. 2. Fuzzy Cognitive Maps 

FCM was originally introduced by Kosko (1986) as a soft computing technique which is able to take into account 

the dependencies among the main concepts/nodes and analyse inference patterns (E.I. Papageorgiou, 2004). FCMs 

constitute a modeling methodology that combines fuzzy logic and neural networks and are used to represent both 

qualitative and quantitative data (Elpiniki I. Papageorgiou, Fuzzy Cognitive Maps Learning Using Particle Swarm 

Optimization , 2005). FCMs are developed based on the experience and knowledges of experts through an 

interactive procedure of knowledge acquisition. Various methodologies such as Delphi could be used in order to 

reach a consensus among the experts in FCM (Glykas, 2010). Table 1 shows the requirements demanded in the 

modelling tool selection. As shown in this table, FCM is the only modelling tool that meets all the requirements 

demanded in risk analysis of complex and dynamic systems. Considering these benefits of FCM in comparison 

with other existing tools, it is evident that why FCM is evolving and gaining importance each day. 

Table 4. 1 Comparing the modeling techniques in terms of the requirements demanded (Salmeron J., 2010). 

 

Requirements 

Modelling techniques 

Systems 

dynamics 

Bayesian 

networks 

Neural 

networks 

FCM 

Capable of representing all possible connections * * * * 

Does not ignore the uncertainty  * * * 

Directed graph with cycles *   * 

The propagation does not follow an established pattern *   * 

Assumes information is scarce   * * 

 

Fuzzy Cognitive Maps (FCMs) are graphs which consist of nodes and weighted arcs between nodes. The following 

figure illustrates a FCM graph with 5 nodes and 9 arcs. The value of each concept 𝐶𝑖 stands in the interval [0, 1], 

and the weighted arcs among nodes 𝐶𝑖 and 𝐶𝑗 (𝑊𝑖𝑗) can range in the interval [-1, 1] which represent the influence 

of each node on the others. 
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Figure 4.  2 A simple Fuzzy Cognitive Map. 

The values of initial weight matrix (𝑊𝑖𝑗) are suggested by different experts using fuzzy linguistic terms such as 

Very High (VH), Low (L), etc. in order to determines the dependencies among nodes. Then, the linguistic 

variables are aggregated and defuzzified to numerical values (Papageorgiou E. I., 2014). When the FCM is 

initialized, it converges to a steady state through the interaction of equation (1). At each simulation step, the value 

𝐴𝑖 of the concept 𝐶𝑖  is influenced by the values of concepts connected to it and it is updated through the following 

reasoning process (Papageorgiou E. I., 2014): 

 

𝐴𝑖
𝑘+1 = 𝑓(𝐴𝑖

(𝑘)
+ ∑ 𝑊𝑗𝑖𝐴𝑗

(𝑘)
)𝑛

𝑗=1
𝑗≠𝑖

,                                                                         (1) 

where, 𝑊𝑗𝑖  shows the initial dependencies weight between concepts 𝐶𝑗 and 𝐶𝑖;  

𝐴𝑖
𝑘+1 is the value of concept 𝐶𝑖 at simulation step 𝑘 + 1; 

𝐴𝑗
(𝑘)

 is the value of concept 𝐶𝑗 at simulation step 𝑘; 

The initial values of concepts are shown by initial concept vector 𝑐 as 𝑐 = [𝐴1, … , 𝐴𝑗, … , 𝐴𝑛]; 

𝑘 shows the simulation step;   

𝑓 is a threshold function, which is used to restrict the concept value into [0,1] range. The most common types of 

𝑓 are: bivalent function (f(x) = 0 or 1), tangent hyperbolic (𝑓(𝑥) = 𝑡𝑎𝑛ℎ(𝑥)), trivalent function (𝑓(𝑥) = -1, 0 or 

1), and sigmoid function (𝑓(𝑥)  =  1/(1 + 𝑒−𝜆𝑥)) (Glykas, 2010). In this study, sigmoid function is adopted.  

At each iteration, values of all concepts are recalculated and this process continues until FCM reaches one of the 

following states (Papageorgiou E. I., 2014): 

1) The value of concepts have stabilized at a fixed equilibrium point, 

2) A limited state cycle is exhibited, and 

3) Chaotic behavior has appeared. 

 

A major deficiency of FCM is its potential convergence to undesired steady states. In order to overcome this 

shortcoming, some learning algorithms have been developed such as particle swarm optimization (PSO) (Elpiniki 

I. Papageorgiou, Fuzzy Cognitive Maps Learning Using Particle Swarm Optimization , 2005), Differential 

Hebbian Learning [11, 14], Simulated Annealing (SA) (Somayeh Alizadeh, 2009), and etc. The next section 

discusses the developed learning algorithms for FCM.  

 

𝑊54 

𝐶1 

𝐶2 

𝐶5 𝐶4 

𝑊12 𝑊23 

𝑊14 

𝑊52 

𝑊15 𝑊53 

𝑊25 
𝑊24 

𝑊34 
𝐶3 
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3. Learning algorithms for FCMs 

The main objective of developed learning algorithms in the literature is to update the initial knowledge of decision 

makers or any other knowledge obtained from historical data in order to produce learned values/weights 

(Papageorgiou E. , 2012). Learning algorithms can increase the efficiency and robustness of FCMs by updating 

the initial weight matrix (𝑊𝐼𝑛𝑖𝑡𝑖𝑎𝑙) (Elpiniki I. Papageorgiou, Fuzzy Cognitive Maps Learning Using Particle 

Swarm Optimization , 2005). The learning techniques could be categorized into three groups; Hebbian-based, 

population-based and hybrid, combining the main aspects of Hebbian-based and population-based type learning 

algorithms (Papageorgiou E. , 2012). Each one of these learning categories has its advantages and limitations, 

which make it appropriate to specific type of problems according to the data and knowledge availability. Table 2 

gathers the most significant advantages and limitations of each learning category.  

Table 4. 2 FCM learning comparison (Papageorgiou E. I., 2014). 

 Advantages Limitations 

 

 

Hebbian-based 

-No time consuming 

-Ease of use 

-No multiple historical data 

-Connections have a 

physical meaning 

-Connections keep their 

signs 

-Higher simulation errors 

-Low generalization ability  

-Small deviations of weights from the initial ones 

-Dependence on experts, initial states and connections 

 

 

 

 

Population-based 

- Low simulation error 

- Increase functionality 

-Robustness 

- Generalization ability  

-Model concepts with 

precise values 

-Cost function optimization 

 

-Time consuming 

-Adjustment of enough learning parameters 

-Availability of historical data 

-Problem with convergence issues  

-Learn FCM from multiple observed response sequences 

-Large number of historical data 

-Large number of processors 

 

According to Papageogiou (Papageorgiou E. , 2012), the hybrid based algorithms which are based on 

functionalities of Hebbian and population-based learning algorithms and inherit the advantages and disadvantages 

of both of them, emerge fewer limitations as most of them can overcome from the fusion of both computational 

methods. Thus, their operation could be more advantageous in the case of modeling complex systems and systems 

with time evolving since they can ensure near-optimum solutions in the weights search space. Several attempts 

have been made recently for developing learning algorithms for FCMs (E.I. Papageorgiou, 2004; Elpiniki I. 

Papageorgiou, Fuzzy Cognitive Maps Learning Using Particle Swarm Optimization , 2005; G.A. Papakostas, 

2011; Papageorgiou E. , 2012; Somayeh Alizadeh, 2009). However, no commonly used tool has been proposed 

for simulation of FCMs because of the application of FCM technique to a wide variety of scientific areas 

(Papageorgiou E. I., 2014). 

3.1 Hebbian-based Learning Algorithms 

In Hebbian-based learning algorithms, the weight values of the arcs between nodes (𝑊𝑗𝑖) are updated based on the 

available historical data and several modifications of the Hebbian theory. Variety of Hebbian-based algorithms 

have been proposed for learning FCMs such as Differential Hebbian Learning Algorithm, Balance Differential 



67 
 

Hebbian Learning Algorithm, Nonlinear Hebbian Learning Algorithm, Active Hebbian Learning Algorithm, and 

Data-Driven Hebbian Learning Algorithm. For more information regarding Hebbian-based learning algorithms 

please refer to  (Papageorgiou E. , n.d.).  

3.2 Population-based Learning Algorithms 

In Population-based algorithms, the experts are substituted by historical data and the corresponding learning 

algorithms or optimization algorithms are used to estimate the weight values of the arcs between nodes (𝑊𝑗𝑖). The 

population-based learning algorithms attempt to find models that mimic the input data (Papageorgiou E. I., 

2014). Several population-based algorithms have been introduced for training FCMs such as: Ant Colony 

Optimization (ACO), Particle Swarm Optimization (PSO), Artificial Bee Colony, Genetic Algorithms (GA), 

Game-based learning, Immune Algorithm, Real Coded Genetic Algorithm (RCGA), Memetic Algorithms (MAs), 

Simulated Annealing (SA), Chaotic Simulated Annealing (CSA), Evolutionary Strategies (ES), Tabu Search (TS), 

and Bing Bang-Big Crunch (BB-BC). For more information regarding population-based learning algorithms 

please refer to  (Papageorgiou E. , n.d.).  

3.3 Hybrid based Learning Algorithms  

Hybrid-based learning techniques are a combination of Population-based and Hebbian-based algorithms 

(Papageorgiou E. , 2012). In this learning technique, the initial weight matrix is updated/modified by using the 

knowledge and experience of experts and historical data at a two-step process. Few hybrid-based algorithms have 

been proposed in the literature (Y. Zhu and W. Zhang, 2008; Ren, 2012; Papageorgiou & Groumpos, 2005). 

Papageorgiou and Groumpos (2005) proposed NHL-DE hybrid algorithm for learning FCMs. This algorithm is 

consisted of Nonlinear Hebbian Learning (NHL) and Differential Evolution (DE) algorithms. They proved the 

efficiency of this algorithm by three experiments. The hybrid-based learning algorithms are more effective in 

modeling complex systems and have less limitations since they inherit the advantageous of both evolution-based 

and hebbian-based algorithms (Papageorgiou E. I., 2014). In this study, we apply NHL-DE algorithm to train the 

FCM.  

4. Proposed dynamic risk assessment model 

In this paper, we propose an integrated approach for dynamic risk analysis of complex systems by using FCM. At 

first, we calculate risk score for each risk factor using Eq. 2 and then use it as initial value for designing the 

adjusted FCM model. The main objective of this study is to develop an advanced dynamic risk assessment tool 

which is able to prioritize the complex risks (by considering the probability of occurrence and consequences of 

risks and also taking into account dependencies among risk factors) and predict the impact of each risk on the rest 

of the risks and also system outcomes by developing several what-if analyses and eventually to avoid undesired 

outcomes. The steps of our proposed model are as follows: 

Step 1: Form a group of experts in order to identify and scale the risks. A heterogeneous group is usually preferred 

for designing FCM models (Salmeron & Lopez, 2012). To the best of our knowledge, no study has been conclusive 

with the optimal number of experts in a heterogeneous group. However, according to Salmeron & Lopez (2012), 

the greater the heterogeneity of the group, the fewer the number of experts is recommended.  
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Step 2: In order to take into account the probability of occurrence and consequence of each risk factor in predicting 

its impact on the other failures, we first calculate the risk score using the well-known risk assessment method (Eq. 

2) and then, in an innovate manner, consider it as initial concept value in step 4. 

𝑅𝑆 =  𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 × 𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠                                                  (2) 

 

The probability of occurrence estimates the likelihood that each specific risk will occur. The consequence 

parameter investigates the potential impact of the risk on the system. These fundamental parameters as well as 

dependencies among risk factors are expressed by linguistic terms as shown in Table 3.  

Table 4. 3 Fuzzy ratings for occurrence and consequences parameters. 

Occurrence Consequences Dependencies Fuzzy rating 

Very Low (VL) Very Low (VL) Very Low (VL) (0, 0, 1.5) 

Low (L) Low (L) Low (L) (1, 2.5, 4) 

Moderate (M) Moderate (M) Moderate (M) (3.5, 5, 6.5) 

High (H) High (H) High (H) (6, 7.5, 9) 

Very high (VH) Very high (VH) Very high (VH) (8.5, 10, 10) 

In this study, fuzzy triangular numbers parametrized by a triplet (l, m, u) (Fig. 2) are used in order to consider the 

uncertainties in experts’ opinions. 

Risk can include variety of risks such as risks for patients, risks of supplier selection, risk of accidents for labor 

force and maintenance personnel in the case of chemical process industries or other critical industries, 

environmental risks, etc. Note that different approaches such as FMEA (Jamshidi, Abbasgholizadeh Rahimi, Ait-

Kadi, & Ruiz, 2015) could be used for calculating the risk score and variety of criteria or sub-criteria could be 

applied depending on the objectives of the organization. As shown in Table 3, we have considered the same five-

terms fuzzy rating for occurrence, consequences, and dependency parameters. However, different fuzzy ratings 

and linguistic terms could be defined based on the criticality of the problem and objectives of the 

organization/company. 

Step 3: Normalize 𝑅𝑆 and obtain 𝑅𝑆𝑗
∗ using the following equation (Abdullah & Jamal, 2011): 

𝑅𝑆𝑗
∗ =

𝑅𝑆𝑗

∑ 𝑅𝑆𝑗
𝑛
𝑗=1

                                                                               (3) 

where j= 1,2,…,n corresponds to the nodes (risks). 

In this study, as a new contribution, the value of activated risk/s in the initial concept vector (𝑐) is considered as 

𝑅𝑆𝐽
∗ (instead of 𝐴𝑗), and this number is 0 for the rest of the risks which are not activated. Therefore, Eq. 1 could 

be defined as Eq. 4. 

𝑅𝑆𝑖
∗ 𝑘+1 = 𝑓(𝑅𝑆𝑖

(𝑘)
+ ∑ 𝑊𝑗𝑖𝑅𝑆𝑗

(𝑘)
)𝑛

𝑗=1
𝑗≠𝑖

,                                                                         (4) 

where, 𝑊𝑗𝑖  shows the initial dependencies weight between risks 𝐶𝑗 and 𝐶𝑖;  

𝑅𝑆𝑖
∗(𝑘+1)

 is the value of risk factor 𝑖 at simulation step 𝑘 + 1; 

𝑅𝑆𝑗
(𝑘)

 is the value of risk factor 𝐶𝑗 at simulation step 𝑘; 

Step 4: Depict the FCM for the identified risk factors and obtain the initial weight matrix (𝑊𝐼𝑛𝑖𝑡𝑖𝑎𝑙). Experts 

should first reach consensus on the sign and direction of arcs between risks. In order to determine the level of 
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influence of each risk on the other risk and vice versa, each expert individually assigns a linguistic term for each 

arc (𝑊𝑖𝑗) using Table 3. Then, for each arc, the opinions of all expert are aggregated using the average value of 

assigned linguistic terms in order to obtain the overall linguistic weight. Finally, the overall linguistic weight 

should be defuzzified in order to find the initial influence weight (𝑊𝐼𝑛𝑖𝑡𝑖𝑎𝑙). There are different defuzzification 

methods available in literature (Talon & Curt, 2017). In this paper, we apply the defuzzification method proposed 

by Çelik & Yamak (2013). According to this method, the defuzzification value 𝑡 of a triangular fuzzy number 

(𝑙, 𝑚, 𝑢) is equal to: 

𝑡 =
𝑙+𝑚+𝑚+𝑢

4
                                                                       (5) 

𝑊𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = [

𝑤11 ⋯ 𝑤1𝑛

⋮ ⋱ ⋮
𝑤𝑛1 ⋯ 𝑤𝑛𝑛

]                                                                       (6) 

Step 5: Dynamic analysis of FCM requires the definition of an initial scenario, which represents a proposed initial 

situation to assess (Lopez & Salmeron, Dynamic risks modelling in ERP maintenance projects with FCM, 2012). 

In this step, several “what-if” scenarios should be defined.  In each scenario, a risk or a set of risks are activated. 

In order to achieve precise results, all of the risks should be taken into account and the total effects for each risk 

should be evaluated to determine their influences on the other risks or consequences using the following initial 

concept vector: 

𝑐 = [0, 0, 0, 𝑅𝑆𝐽
∗, 0, 0, 0]                                                                       (7) 

where 𝐽 is a subset of nodes (risks) on the map. 

Step 6: Calculate the impact of activated risks by updating the initial concept vector (𝑐). To do so, each initial 

concept vector is trained through Eq. 4 using a learning algorithm in order to obtain the steady state vector 𝐶∗. 

The aim of this step is to identify the impact of each risk on the other risks. This process is illustrated through a 

numerical example in the following section. 

5. Numerical example 

In this section, we illustrate the applicability and potential of the proposed tool in general for dealing with complex 

risks with a hypothetical numerical example. To do so, we derived the supplier selection risks from Xiao et al. 

study (2013). Identification and assessment of supplier risks is one of the most important areas of supply chains 

risk (Zhi Xiao, 2013; Aqlan & S. Lam, 2015). These risks could be different for each organization/company based 

on its perspective and they should be identified by each organization (Blackhurst, Scheibe, & Johnson, 2008; Ho, 

Zheng, Yildiz, & Talluri, 2015). Xiao et al. integrated the FCM and fuzzy soft set (FSS) model for solving the 

supplier selection problem by considering risk factors. The related FCM diagram is shown in Fig. 3 and the risks 

are shown in Table 4. The authors applied FCM in order to consider the dependencies among risk factors in 

supplier selection problem. In this study, we apply the same risks and present another feature of FCM which is 

the ability in prioritizing risks by considering the dependencies among them and also in predicting the impact of 

each risk or a group of risks on the other risks or on the outcomes of projects over time. 
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Figure 4.  3 FCM of supplier risk factors [17] 

Step 1: In this numerical example, fourteen risk factors adopted from Xiao et al. (2013) are considered to be 

evaluated by three Experts (Ex.1, Ex.2, Ex.3).  

Step 2 & 3: Table 4 indicates the hypothetical linguistic values assigned for each risk factor using Table 3. These 

values are converted into fuzzy triangular numbers as shown by two sets of columns “L, M, U” and then are 

defuzzified using Eq. 5 in order to obtain the normalized risk scores (𝑅𝑆𝑗
∗). The last column of this table indicates 

the ranking of fourteen risk factors as R4>R2>R14>R1>R12>R10>R11>R9>R3>R8>R6>R7>R5>R13. This 

ranking reveals that remedy for quality problem, on-time delivery rate, and technological capacity are the three 

most important risks identified by three experts.  

Table 4. 4 Prioritization of supplier selection risks. 

 Risks Exp. Occ Con Occurrence Consequence Multiplication Opinion aggregation 𝑅𝑆𝑗
∗ Rank 

L M U L M U 

 

 

 

Quality risk 

of the 

product 

R1 Rejection rate of 

the product 

Ex.1 H VH 6 7.5 9 8.5 10 10 
51 75 90 

 
33.08 

 
52.08 

 
71.08 

 
0.102 

 

4 

 Ex. 2 H H 6 7.5 9 6 7.5 9 
36 56.25 81 

Ex. 3 M M 3.5 5 6.5 3.5 5 6.5 
12.25 25 42.25 

R2 On-time delivery 

rate 

Ex.1 H H 6 7.5 9 6 7.5 9 36 56.25 81  
43.08 

 
64.58 

 
79.83 

 
0.123 

 

2 

 
Ex.2 VH VH 8.5 10 10 8.5 10 10 72.25 100 100 

Ex.3 M H 3.5 5 6.5 6 7.5 9 21 37.5 58.5 

R3 Product 

qualification ratio 

Ex.1 M M 3.5 5 6.5 3.5 5 6.5 12.25 25 42.25  
12.25 

 
25 

 
42.25 

 
0.051 

 

9 

 
Ex.2 M L 3.5 5 6.5 1 2.5 4 3.5 12.5 26 

Ex.3 M H 3.5 5 6.5 6 7.5 9 21 37.5 58.5 

R4 Remedy for 

quality problem 

Ex.1 H H 6 7.5 9 6 7.5 9 36 56.25 81  
53.08 

 
77.08 

 
90.33 

 
0.145 

 

1 

 

 

Ex.2 H VH 6 7.5 9 8.5 10 10 51 75 90 

Ex.3 VH VH 8.5 10 10 8.5 10 10 72.25 100 100 

 

 

Service risk 

R5 Response to 

changes  

Ex.1 VL H 0 0 1.5 6 7.5 9 0 0 13.5  
0 

 
0 

 
7.25 

 
0.004 

 

13 

 
Ex.2 VL VL 0 0 1.5 0 0 1.5 0 0 2.25 

Ex.3 L VL 1 2.5 4 0 0 1.5 0 0 6 

R6 Technological 

and R&D support 

Ex.1 L M 1 2.5 4 3.5 5 6.5 3.5 12.5 26  
5.583 

 
13.33 

 
26.08 

 
0.028 

 

11 

 
Ex.2 L L 1 2.5 4 1 2.5 4 1 2.5 10 

Ex.3 M M 3.5 5 6.5 3.5 5 6.5 12.25 25 42.25 

R7 Ease of 

communication 

Ex.1 VL L 0 0 1.5 1 2.5 4 0 0 6  
5.250 

 
12.50 

 
24.75 

 
0.027 

 

12 

 
Ex.2 L M 1 2.5 4 3.5 5 6.5 3.5 12.5 26 

Ex.3 M M 3.5 5 6.5 3.5 5 6.5 12.25 25 42.25 

 

 

 

Supplier’s 

profile risk 

 

R8 Financial status 

Ex.1 M H 3.5 5 6.5 6 7.5 9 21 37.5 58.5  
11.41 

 
22.91 

 
38.91 

 
0.047 

 

10 

 
Ex.2 L L 1 2.5 4 1 2.5 4 1 6.25 16 

Ex.3 M M 3.5 5 6.5 3.5 5 6.5 12.25 25 42.25 

 

R9 Customer base 

Ex.1 M M 3.5 5 6.5 3.5 5 6.5 12.25 25 42.25  
20.16 

 
35.41 

 
55.16 

 
0.071 

 

8 

 
Ex.2 H H 6 7.5 9 6 7.5 9 36 56.25 81 

Ex.3 M M 3.5 5 6.5 3.5 5 6.5 12.25 25 42.25 

R10 Performance 

history 

Ex.1 H H 6 7.5 9 6 7.5 9 36 56.25 81  
36.08 

 
52.08 

 
62.33 

 
0.099 

 

6 

 
Ex.2 VH VH 8.5 10 10 8.5 10 10 72.25 100 100 

Ex.3 L VL 1 2.5 4 0 0 1.5 0 0 6 

R11 Production 

facility and capacity 

Ex.1 M H 3.5 5 6.5 6 7.5 9 21 37.5 58.5  
26 

 
43.75 

 
66 

 
0.088 

 

7 

 
Ex.2 H M 6 7.5 9 3.5 5 6.5 21 37.5 58.5 

Ex.3 H H 6 7.5 9 6 7.5 9 36 56.25 81 

 

Long-term 

cooperation 

risk 

R12 Supplier’s 

delivery ratio 

Ex.1 M VH 3.5 5 6.5 8.5 10 10 29.75 50 65  
31.83 

 
52.08 

 
70.33 

 
0.101 

 

5 

 
Ex.2 M VH 3.5 5 6.5 8.5 10 10 29.75 50 65 

Ex.3 H H 6 7.5 9 6 7.5 9 36 56.25 81 

R13 Management 

level 

Ex.1 VL M 0 0 1.5 3.5 5 6.5 0 0 9.75  
0 

 
0 

 
4.75 

 
0.002 

 

14 

 
Ex.2 VL VL 0 0 1.5 0 0 1.5 0 0 2.25 

Ex.3 VL VL 0 0 1.5 0 0 1.5 0 0 2.25 

R14 Technological 

capability 

Ex.1 H VH 6 7.5 9 8.5 10 10 51 75 90  
38.08 

 
58.33 

 
74.08 

 
0.112 

 

3 
Ex.2 VH H 8.5 10 10 6 7.5 9 51 75 90 

Ex.3 M M 3.5 5 6.5 3.5 5 6.5 12.25 25 42.25 

 

Step 4: The initial weight matrix is shown in Table 6. In order to obtain this matrix, each expert is asked to 

determine the weight (𝑊𝑖𝑗) on each arc, by assigning linguistic variables using Table 3. It should be noted that 

the sign and direction of arcs between risks are adopted from Xiao et al. (2013). Table 5 shows the assigned values 
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𝑅3 

𝑅9 

𝑅7 

𝑅1 

𝑅8 

𝑅6 

𝑅4 

𝑅2 

𝑅10 

𝑅11 

𝑅12 

𝑅13 

𝑅14 
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by three experts. Then, the opinions of all experts are aggregated using the average value of the assigned linguistic 

values (fuzzy triangular numbers (l, m, u)) for each interconnection and the aggregated values are defuzzified 

using Eq. 5. Finally, in order to obtain the numeric impacts between [-1,1], the defuzzified values are divided by 

10.  

Table 4. 5 Fuzzifcation and defuzzification process for obtaining initial weight matrix. 

Node  

1 

Node  

2 

 

𝑊𝑖𝑗 

Expert opinions Fuzzifcation   

Opinions’ Aggregation  

 

Numeric 

impact 
Ex.

1 

Ex.

2 

Ex.

3 

Ex.1 Ex.2 Ex.3 

l m u l m u l m u l m u 

R1 R9 −𝑊1,9 VL L L 0 0 1.5 1 2.5 4 1 2.5 4 0.667 1.667 3.167 - 0.179 

R2 R13 +𝑊2,3 H H VH 6 7.5 9 6 7.5 9 8.5 10 10 6.833 8.333 9.333 +0.821 

R3 R1 +𝑊3,1 M H H 3.5 5 6.5 6 7.5 9 6 7.5 9 5.167 6.667 8.167 +0.667 

R4 R9 +𝑊4,9 VH VH VH 8.5 10 10 8.5 10 10 8.5 10 10 8.500 10.00 10.00 +0.963 

R5 R2 +𝑊5,2 VL VL M 0 0 1.5 0 0 1.5 0 0 1.5 0.000 0.000 1.500 +0.038 

R7 R5 +𝑊7,5 M H M 3.5 5 6.5 6 7.5 9 3.5 5 6.5 4.333 5.833 7.333 +0.583 

R8 R7 +𝑊8,7 L M M 1 2.5 4 3.5 5 6.5 3.5 5 6.5 2.667 4.167 5.667 +0.417 

R8 R11 +𝑊8,11 VH VH H 8.5 10 10 8.5 10 10 6 7.5 9 7.667 9.167 9.667 +0.892 

R8 R14 +𝑊8,14 VL M VL 0 0 1.5 3.5 5 6.5 0 0 1.5 1.167 1.667 3.167 +0.192 

R9 R12 +𝑊9,12 M M M 3.5 5 6.5 3.5 5 6.5 3.5 5 6.5 3.500 5.000 6.500 +0.500 

R10 R12 +𝑊10,12 H VH H 6 7.5 9 8.5 10 10 6 7.5 9 6.833 8.333 9.333 +0.821 

R11 R12 +𝑊11,12 M M L 3.5 5 6.5 3.5 5 6.5 1 2.5 4 2.667 4.167 5.667 +0.417 

R12 R13 +𝑊12,13 L L L 1 2.5 4 1 2.5 4 1 2.5 4 1.000 2.500 4.000 +0.250 

R13 R11 +𝑊13,11 H H H 6 7.5 9 6 7.5 9 6 7.5 9 6.000 7.500 9.000 +0.750 

R13 R7 +𝑊13,7 L VL L 1 2.5 4 8.5 10 10 1 2.5 4 3.500 5.000 6.000 +0.488 

R13 R2 +𝑊12,13 H H M 6 7.5 9 6 7.5 9 3.5 5 6.5 5.167 6.667 8.167 +0.667 

R14 R3 +𝑊14,3 VH H VH 8.5 10 10 6 7.5 9 8.5 10 10 7.667 9.167 9.667 +0.892 

R14 R4 +𝑊14,4 M M M 3.5 5 6.5 3.5 5 6.5 3.5 5 6.5 3.500 5.000 6.500 +0.500 

R14 R6 +𝑊14,6 VL VL L 0 0 1.5 0 0 1.5 1 2.5 4 0.333 0.833 2.333 +0.108 

Table 4. 6 Initial weight matrix (𝑊𝐼𝑛𝑖𝑡𝑖𝑎𝑙). 

 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 

R1 0 0 0 0 0 0 0 0 -0.18 0 0 0 0 0 

R2 0 0 0 0 0 0 0 0 0 0 0 0 0.821 0 

R3 0.667 0 0 0 0 0 0 0 0 0 0 0 0 0 

R4 0 0 0 0 0 0 0 0 0.963 0 0 0 0 0 

R5 0 0.038 0 0 0 0 0 0 0 0 0 0 0 0 

R6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

R7 0 0 0 0 0.583 0 0 0 0 0 0 0 0 0 

R8 0 0 0 0 0 0 0 0 0 0 0 0 0 0.192 

R9 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 

R10 0 0 0 0 0 0 0 0 0 0 0 0.821 0 0 

R11 0 0 0 0 0 0 0 0 0 0 0 0.417 0 0 

R12 0 0 0 0 0 0 0 0 0 0 0 0 0.250 0 

R13 0 0.667 0 0 0 0 0.488 0 0 0 0.75 0 0 0 

R14 0 0 0.892 0.5 0 0.108 0 0 0 0 0 0 0 0 

Step 5 & 6: In this step, we first assess the impact of considering dependencies among risk factors in their final 

ranking (Scenario 1) and then, we define five different scenarios (2-6) in order to assess and interpret the impact 

of each risk category on the other risks.  

Scenario 1, activating all risk factors at the same time 

In order to assess the impact of considering dependencies among risk factors in prioritization of supplier selection 

risks, at the initial time all of fourteen risk factors are activated as follows: 

𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙= [0.102, 0.123, 0.051, 0.145, 0.004, 0.028, 0.027, 0.047, 0.071, 0.099, 0.088, 0.101,0.002, 0.112] 

Note that in this scenario the values of 𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙 sum to 1. This is because all of risk scores (𝑅𝑆𝑗
∗) are activated and 

adopted from Table 4 and according to Eq. 3, the sum of all risk scores should be equal to 1. In order to train 

FCM, in this paper we apply NHL-DE algorithm which is a combination of nonlinear Hebbian learning (NHL) 
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and differential evolution (DE) algorithms (Papageorgiou & Groumpos, A new hybrid method using evolutionary 

algorithms to train Fuzzy Cognitive Maps , 2005). The training process in NHL-DE has two steps. The first step 

starts with NHL algorithm and in the second step, the result of first step is used to seed the DE algorithm. For 

more knowledge about this algorithm please see (Papageorgiou & Groumpos, A new hybrid method using 

evolutionary algorithms to train Fuzzy Cognitive Maps , 2005). We imported the data into Matlab code in order 

to obtain the updated concept matrix (𝐶∗). The values of learning rate parameter (𝜂), mutation constant (𝜇), 

crossover constant (CR), and weight decay learning parameter (𝛾) have been selected as 0.05, 0.5, 0.5, 0.97, 

respectively. The population size is considered 500. It should be mentioned that 1000 iterations for the algorithm 

per experiment and 50 independent experiments were performed. Using 𝑊𝐼𝑛𝑖𝑡𝑖𝑎𝑙  matrix, Initial concept 

vector 𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙, Equation (4) and NHL-DE learning algorithm, the updated concept vector is obtained as follows:  

𝐶∗ = [0.5007, 0.8110, 0.7951, 0.7513, 0.4948, 0.6774, 0.7467, 0.6590, 0.8049, 0.6590, 0.8096, 0.9010, 0.8417, 0.7097] 

As it is clear from above steady state vector (𝐶∗), the ranking of risk factors has been completely changed to 

R12>R13> R2>R11>R9>R3>R4>R7>R14>R6>R8,R10>R1>R5 and the three most affected risks are R12, R13, 

and R2. This is while the three most affected risks were R12, R13, and R2 (See Table 4) in the case of overlooking 

the dependencies among risk factors. These findings contrast with the results of Table 4. This result proves that 

considering the dependencies among risk factors could significantly influence the priority of risks and as a result, 

this could have an impact on minimizing risks, costs, downtime and reaching the desired goals of companies. The 

values of 14 risk factors in 11 iterations for reaching the desired steady state is given in Fig. 4.  

Table 7 shows the inputs and outputs for the nine scenarios. In addition, Figure 5 shows the simulation results. 

 

Figure 4.  4 The values of risks (RFs) in 11 iterations for scenario 1. 

 

 

 

 

 

 

 



73 
 

Table 4. 7 Inputs and outputs of the scenarios. 

Sc. 

Description 
"Quality risk of the product" "Service risk" "Supplier’s profile risk" 

"Long-term cooperation 

risk" 
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 

 

1 

Activating all risks  0.102 0.123 0.051 0.145 0.004 0.028 0.027 0.047 0.071 0.099 0.088 0.101 0.002 0.112 

Results 0.5007 0.8110 0.7951 0.7513 0.4948 0.6774 0.7467 0.6590 0.8049 0.6590 0.8096 0.9010 0.8417 0.7097 

 

2 

Activating risk set 1 0.102 0.123 0.051 0.145 0 0 0 0 0 0 0 0 0 0 

Results 0.4976 0.7855 0.7940 0.7403 0.4951 0.6858 0.7479 0.6590 0.7900 0.6590 0.8004 0.8885 0.8208 0.6827 

 

3 

Activating risk set 2 0 0 0 0 0.004 0.028 0.027 0 0 0 0 0 0 0 

Results 0.5159 0.7833 0.8045 0.7519 0.5001 0.6962 0.7661 0.6590 0.8033 0.6590 0.8014 0.9083 0.8249 0.6873 

 

4 

Activating risk set 3 0 0 0 0 0 0 0 0.047 0.071 0.099 0.088 0 0 0 

Results 0.5052 0.7965 0.7935 0.7424 0.4929 0.6662 0.7815 0.6590 0.8128 0.6590 0.8148 0.9047 0.8575 0.7025 

 

5 

Activating risk set 4 0 0 0 0 0 0 0 0 0 0 0 0.101 0.002 0.112 

Results 0.4957 0.7774 0.8074 0.7374 0.4934 0.6723 0.7693 0.6590 0.80494 0.6590 0.80491 0.9027 0.8507 0.6978 

 

 

6.1 

 

20% increase in Set 1 0.1224 0.1476 0.0612 0.174 0.004 0.028 0.027 0.047 0.071 0.099 0.088 0.101 0.002 0.112 

Results 0.4906 0.8047 0.7958 0.7381 0.4975 0.6835 0.7652 0.6590 0.8145 0.6590 0.7911 0.8843 0.8489 0.6818 

20% decrease in Set 1 0.0816 0.0984 0.0408 0.116 0.004 0.028 0.027 0.047 0.071 0.099 0.088 0.101 0.002 0.112 

Results 0.5001 0.7852 0.8101 0.7606 0.5075 0.7027 0.7408 0.6590 0.8069 0.6590 0.8014 0.8953 0.8300 0.7091 

 

 

6.2 

20% increase in Set 2 0.102 0.123 0.051 0.145 0.0048 0.0336 0.0324 0.047 0.071 0.099 0.088 0.101 0.002 0.112 

Results 0.5037 0.8000 0.7913 0.7516 0.5001 0.6799 0.7684 0.6590 0.8071 0.6590 0.7993 0.8994 0.8592 0.6706 

20% decrease in Set 2 0.102 0.123 0.051 0.145 0.0032 0.0224 0.0216 0.047 0.071 0.099 0.088 0.101 0.002 0.112 

Results 0.5067 0.7950 0.8170 0.7562 0.5034 0.6897 0.7794 0.6590 0.8148 0.6590 0.7953 0.8984 0.8275 0.6955 

 

 

6.3 

20% increase in Set 3 0.102 0.123 0.051 0.145 0.004 0.028 0.027 0.0564 0.0852 0.1188 0.1056 0.101 0.002 0.112 

Results 0.4964 0.8122 0.7952 0.7502 0.4764 0.6869 0.7552 0.6590 0.8073 0.6590 0.8003 0.8994 0.8635 0.6972 

20% decrease in Set 3 0.102 0.123 0.051 0.145 0.004 0.028 0.027 0.0376 0.0568 0.0792 0.0704 0.101 0.002 0.112 

Results 0.4944 0.7840 0.7927 0.7466 0.4891 0.6864 0.7430 0.6590 0.7990 0.6590 0.8009 0.8951 0.8522 0.7140 

 

 

6.4 

20% increase in Set 4 0.102 0.123 0.051 0.145 0.004 0.028 0.027 0.047 0.071 0.099 0.088 0.1212 0.0024 0.1344 

Results 0.5040 0.7699 0.8115 0.7581 0.4976 0.7014 0.7687 0.6590 0.7894 0.6590 0.8023 0.8972 0.8354 0.6946 

20% decrease in Set 4 0.102 0.123 0.051 0.145 0.004 0.028 0.027 0.047 0.071 0.099 0.088 0.0808 0.0016 0.0896 

Results 0.4871 0.7644 0.7937 0.7513 0.4859 0.6725 0.7618 0.6590 0.8138 0.6590 0.8211 0.9041 0.8388 0.6811 

 

Figure 4.  5 Simulation results. 

Scenario 2, activating quality risks of the product 

In the second scenario, we assess the impact of “quality risks” set on the other risks. In this scenario, at the initial 

time only quality risks (R1, R2, R3, and R4) are activated as shown in Fig. 6 (green highlighted nodes). To do so, 

we apply the 𝑅𝑆𝑗
∗ scores related to “quality risks” set from Table 2 (0.102, 0.123, 0.051, 0.145). The results of 

scenario 2 reveals that the impact of “quality risks” were from 0.4951 to 0.8885. The average influence was 

0.7229. This indicates that activating quality risks has a high and positive impact on the rest of the risks. The 

average influence was calculated by adding up the values of supplier selection risks (except quality risks) and 

dividing by the number of risks (R5-R14). As shown in Table 7, The three most highly affected risks are R12 

(0.8885), R13 (0.8208) and R11(0.8004). This shows that quality risks strongly affect the “Supplier’s delivery 

ratio”, “Management level” and “Production facility and capacity”. However, long-term cooperation risk set was 
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the most highly affected risk category (mean = 0.7973). The mean for each risk category was calculated by adding 

up the values of risks in that category reached in learning process and dividing by the number of risks in that 

category.  

Figure 4.  6 Activating quality risks of the product (R1-R4) and their impact on R12, R13, and R11. 

Scenario 3, activating service risks 

In the third scenario, we assess the impact of “service risks” set on the other risks. In this scenario, at the initial 

time only service risks (R5, R6, and R7) are activated. The steady state vector 𝐶∗ in Table 7 reveals that these 

impacts were from 0.5001 to 0.9083. The average influence was 0.7453. This indicates that the activated risks 

have a strong and positive influence on the rest of risks as scenario 2. The three most highly impacted risks are 

R12 (0.9083), R13 (0.8249) and R3 (0.8045). This shows that service risks highly affect the Supplier’s delivery 

ratio, Management level and Product qualification ratio. The most highly affected risk category was long-term 

cooperation risks (mean= 0.8068) as scenario 2.  

Figure 4.  7 Activating service risks (R5-R7) and their impact on R12, R13, and R3. 

 

 

 

 

 

 

𝑅5 

𝑅3 

𝑅9 

𝑅7 

𝑅1 

𝑅8 

𝑅6 

𝑅4 

𝑅2 

𝑅10 

𝑅11 

𝑅12 

𝑅13 

𝑅14 

𝑅5 

𝑅3 

𝑅9 

𝑅7 

𝑅1 

𝑅8 

𝑅6 

𝑅4 

𝑅2 

𝑅10 

𝑅11 

𝑅12 

𝑅13 

𝑅14 



75 
 

Scenario 4, activating supplier’s profile risks 

In the fourth scenario, we assess the impact of activating “supplier’s profile risks” set on the other risks. In this 

scenario, at the initial time only supplier’s profile risks (R8, R9, R10, and R11) are activated. The steady state 

vector 𝐶∗ reveals that these impacts were from 0.4929 to 0.9047. The average influence was 0.7243. This indicates 

that the activated risks have a high and positive influence on the rest of risks. The three most highly impacted 

risks were R12(0.9047), R13 (0.8575) and R11 (0.8148). This shows that supplier’s profile risks highly affect the 

Supplier’s delivery ratio, Management level and Production facility and capacity. As scenarios 2 and 3, long-term 

cooperation risk set was the most highly affected risk category (mean = 0.8216). Simulation 4 also reveals that 

the one of the most affected risks were the same activated risk R11 (0.8148). 

Figure 4.  8 Activating supplier’s profile risks (R8-R11) and their impact on R12, R13, and R2. 

Scenario 5, activating long-term cooperation risks 

In this scenario, we assess the impact of activating “long-term cooperation risks” set on the other risks. In this 

scenario, at the initial time only long-term cooperation (R12, R13, and R14) are activated. The results of this 

simulation reveal that the impacts of the activated risks were from 0.4934 to 0.9027. The average influence was 

0.6983. This indicates that the activated risks have a slightly high and positive influence on the rest of risks. The 

three most highly impacted risks were R9 (0.80494), R11 (0.80491) and R3 (0.8074). This shows that long-term 

cooperation risks moderately affect the customer base, production facility and capacity and product qualification 

ratio risks. The most highly affected risk category was again long-term cooperation risks (mean = 0.8171). The 

result of simulation 5 also shows that the most strongly affected risk factors were the same activated risks, with 

the exception of R14. 

Figure 4.  9 Activating long-term cooperation risks (R12-R14) and their impact on R9, R11, and R3. 
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Scenarios 6.1-6.4, marginal analysis of Scenario 1 

In the last scenario, based on scenario 1, we defined four new scenarios in order to verify the impact of 

increasing/decreasing the initial risks of each set of risks for 20%, while holding others equal as 𝑅𝑆𝐽
∗. Then, we 

compared the results to that of scenario 1. Unlike scenario 2 to scenario 5, these scenarios have all starting risk 

scores greater than zero as scenario 1. But, the sum of values in CInitial matrices are not equal to one as scenario 

1. This is because we increased/decreased the initial values of each set of risks for 20% while holding others equal 

as 𝑅𝑆𝐽
∗. The results of these scenarios (6.1-6.4), as indicated in Table 7, reveal that although the risk values have 

been slightly changed by increasing/decreasing the initial risks of any set of risks for 20%, it has no significant 

influence on the final ranking of risk factors. In all cases, the risk factors R12 and R13 have the highest values 

which belong to the long-term cooperation risk set. This analysis certifies the robustness and effectiveness of the 

proposed framework.  

As it is clear from the above nine scenarios, the proposed tool is able to prioritize risk factors by calculating their 

probability of occurrence and consequences and also more importantly, by considering all complex interactions 

among risk factors. In addition, it is able to predict the impact of each risk or set of risks on the other risks more 

accurately since it takes into account the multiple connections between risks and the uncertainties in decision 

making process. Therefore, decision makers and managers could manage the risks more properly and accurately 

and offer better risk mitigation strategies. Nevertheless, the main limitation of FCM-based models is their 

dependency to the experts’ knowledge and experience. Special attention should be paid to the selection of right 

panel since their opinions could significantly affect the final results and could lead to wrong decisions (Lopez & 

Salmeron, Dynamic risks modelling in ERP maintenance projects with FCM, 2012; Bevilacqua, Emanuele 

Ciarapica, & Mazzuto, 2012; Lakovidis & Papageorgiou, 2011; Subramanian, Karmegam, Papageorgiou, 

Papandrianos, & Vasukie, 2015). To the best of our knowledge, no research has been carried out for sensitivity 

analysis of the impact of experts’ opinions in final results in FCM-based models. Therefore, research that answers 

this question is required. 

6. Conclusion 

Today’s advanced and complex systems require an advanced risk assessment tool in order to take into account all 

aspects of risks in risk analysis process. The conventional risk analysis tools such as FMEA, FTA, AHP/ANP and 

their modified versions are not able to predict the behaviour of complex risks accurately and analysis them in a 

dynamic way. FCM is a useful graphical tool which represents and analyzes the dynamic behavior of complex 

systems composed of interrelated variables. Due to its simplicity, FCM has gained increasing attention as an 

advanced decision support tool in recent years. This tool has also been successfully applied for evaluating risks in 

complex and critical environments such as healthcare. In this paper, we focus on this feature of FCM and propose 

an integrated approach to generalize and enhance its application as an advanced decision support system for 

dynamic risk analysis of complex systems. Some features makes our proposed tool distinguished form other risk 

assessment tools such as FMEA. First of all, all the interactions among variety of risk factors are considered by 

handling incomplete data and based on the opinions of several experts. In addition, the importance of risk factors 

is considered by calculating the probability of occurrence and consequences of risks. To our best knowledge, this 

is the first time in the literature that the dependencies among risk factors are included in the risk assessment 
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process. In addition, in the existing FCM-based risk assessment models, the values of initial concept vectors (risks) 

have been always considered as 1 for the activated risks and 0 for the other risks. But, in this research as a new 

contribution, we consider the value of activated risks as 𝑅𝑆𝑗
∗ values. The proposed approach provides valuable 

information to practitioners for predicting impact of risks on the other risks or on the system performance by 

developing what-if analyses. In other words, practitioners are able to understand how any change in a risk factor 

could affect the other risks or outcomes of the project. By transforming decision problems into causal graphs, 

decision makers with no technical background can easily understand all of the risk factors in a given problem and 

their relationships. The above features could lead to a more precise and accurate risk analysis and practitioners 

will have a strong support for identifying critical risks/failures and mitigating them. In future works, we will 

evaluate the performance of the proposed tool in a large-scale practical environment. As a future research topic, 

this study could be extended in different directions. For example, application of other learning algorithms such as 

particle swarm optimization (PSO) could be considered for improving the training process of FCMs. In addition, 

other risk analysis methods such as FMEA or Probabilistic risk assessment (PRA) could be applied for calculating 

the risk scores in the second step of the proposed method. Moreover, considering the impact of risks on the system 

performance or organizational goals could be an interesting future research topic. Finally, development of a user-

friendly software based on the proposed framework in this study would be very useful in order to streamline the 

implementation of the proposed approach in practice. 
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4.2 Dynamic risk modeling and assessing in maintenance outsourcing with FCM 

Résumé: L'externalisation de maintenance est une pratique courante dans de nombreuses industries, comme 

l'aviation et la fabrication de matériel médical. Cependant, il existe toujours des risques dynamiques associés à 

l'externalisation. L'analyse des risques des projets d'externalisation de maintenance est une tâche complexe en 

raison de la présence de nombreux facteurs de risque avec des dépendances entre eux. Bien qu'il existe quelques 

études sur les risques de sous-traitance de la maintenance, aucune attention n'a été accordée à l'analyse des risques 

de l'externalisation de la maintenance en considérant les dépendances entre les facteurs de risque. Considérant les 

dépendances entre les facteurs de risque pourrait conduire à une analyse plus précise des risques et augmenter le 

taux de réussite des projets d'externalisation. Pour y remédier, nous proposons un outil avancé d'aide à la décision 

appelé «Fuzzy Cognitive Maps» (FCM) qui peut traiter les risques de tels systèmes complexes. La FCM représente 

le comportement de systèmes complexes avec précision et peut tenir compte des incertitudes, de l'information 

imprécise, des interactions entre les facteurs de risque, de la pénurie d'information et des opinions de plusieurs 

décideurs. En outre, il pourrait être appliqué dans différents problèmes décisionnels liés à des projets 

d'externalisation tels que le problème de sélection du fournisseur. Par conséquent, l'outil proposé aidera les 

praticiens à gérer les risques de sous-traitance de maintenance d'une manière plus efficace et proactive et offrirait 

de meilleures solutions d'atténuation des risques. 

Keywords: Risks analysis; Maintenance outsourcing; Fuzzy cognitive maps; Aviation; Medical equipment. 
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4.2 Dynamic risk modeling and assessing in maintenance outsourcing with FCM 

Abstract: Maintenance outsourcing is a common practice in many industries, such as aviation and medical 

equipment manufacturing. However, there is always some dynamic risks associated with outsourcing.  Risk 

analysis of maintenance outsourcing projects is a complex task due to consisting of many risk factors with 

dependencies among them. Although there are some studies on maintenance outsourcing risks, no attention has 

been paid to the risk analysis of maintenance outsourcing by considering the dependencies among risk factors. 

Considering the dependencies among risk factors could lead to more precise risks analysis and increase the success 

rate of outsourcing projects. To address this, we are proposing an advanced decision support tool called “Fuzzy 

Cognitive Maps” (FCM) which can deal with risks of such complicated systems. FCM represents the behavior of 

complex systems accurately and is able to consider uncertainties, imprecise information, the interactions between 

risk factors, information scarcity, and several decision maker’s opinions. In addition, it could be applied in different 

decision makings problems related to outsourcing projects such as provider selection problem. Therefore, the 

proposed tool would help practitioners to manage maintenance outsourcing risks in a more effective and proactive 

way and offer better risk mitigation solutions.  

Keywords: Risks analysis; Maintenance outsourcing; Fuzzy cognitive maps; Aviation; Medical equipment. 

1. INTRODUCTION 

Outsourcing is comprehensively used by many U.S. companies. Two common examples of the practice are 

outsourcing IT jobs to India and outsourcing product manufacturing to China (Welborn, 2007). However, 

outsourcing does not guarantee business success. While outsourcing is a powerful tool to cut costs, improve 

performance, and refocus on the core business, it is associated with some major risks including; (1) outsourcing 

activities that should not be outsourced; (2) selecting the wrong vendor: (3) writing a poor contract; (4) overlooking 

personnel issues; (5) losing control over (he outsourced activity; (6) overlooking the hidden costs of outsourcing: 

and (7) failing to plan an exit strategy (i.e., vendor switch or reintegration of an outsourced activity). Outsourcing 

failures are rarely reported because firms are reluctant to publicize them (Baitheiemy, 2003). Maintenance 

outsourcing is one of the best solutions or strategies available for each company that can lead to greater 

competitiveness and it has a major part to play in the design, installation and commissioning of an asset, and is 

instrumental in driving post commissioning improvements. In terms of maintenance outsourcing, a set of potential 

and attractive benefits can be reached such as to increase labour productivity, to reduce maintenance costs, to focus 

in-ho use personnel on “core” activities, to improve environmental  performances, to obtain specialist skills not 

available in house , to improve work quality, etc. (Bertolini, Bevilacqua, Braglia, & Frosolini, 2004). 

However, maintenance outsourcing is a complex arrangement associated with uncertainties in dynamic business 

environments. This uncertainty and complexity could lead to critical risks that can impact on the enterprises’ 

performance. Risk evaluation of maintenance outsourcing is a complex and critical task since several tangible and 

intangible risk factors should be considered in this process. In addition, there are always some dependencies among 

risks that can influence each other mutually and these dependencies make the evaluation process more complex 

and challenging. Therefore, an effective method for evaluating the risks is fundamental and essential. Many papers 

related to outsourcing exist in the literature (Baitheiemy, 2003) (Jimmy Gandhi, Gorod, & Sauser, 2012) (Welborn, 

2007). However, research about the risk assessment of maintenance outsourcing by considering the 
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interrelationships among risks factors and forecasting the impact of each risk on the other risks is lacking in the 

literature and further research in this field is required. Considering the interdependencies among risks could lead 

to more accurate risk assessment to organizations.  

Therefore, this paper deals with risk assessment of maintenance outsourcing arrangements as the most important 

phase of risk management, and proposes an advanced decision support tool called “FCM” to overcome the 

shortcomings of current risk evaluation tools applied in maintenance outsourcing such as failure mode and effect 

analysis (FMEA) (Welborn, 2007). FCM is a useful artificial intelligence technique which represents and analyzes 

the dynamic behavior of complex systems composed of interrelated variables (Kosko B. , 1986; Jamshidi, 

Abbasgholizadeh Rahimi, Ait-Kadi, & Ruiz, 2015). This tool recently has been applied successfully in evaluating 

risks in complex and critical environments such as Enterprise Resource Planning (ERP) maintenance (Lopez & 

Salmeron, 2014) (Ahmad & Kumar, 2012) and IT projects (Salmeron, 2010), and therefore we think it has a good 

potential to be applied in complex maintenance outsourcing projects for evaluating risks and forecasting the impact 

of each risk by considering interdependencies. The reminder of this paper is organized as follows. Section 3 and 4 

explain the proposed tool with an example related to outsourcing risk evolution. Conclusions are drawn in Section 

5. 

2. The proposed method 

In order to illustrate the proposed tool, we adopted the related risks to outsourcing identified in Jimmy et al. (Jimmy 

Gandhi, Gorod, & Sauser, 2012) study. The identified risks and their definitions are shown in Table 4.1 and the 

related FCM graph is depicted in Fig. 4.1. Besides, four risk consequences (Effects) are imagined as C1, C2, C3, 

and C4 to show how the proposed tool could consider all the interrelationships among risks and their effects on 

the project performance.  

Table 4. 8 Risk factors in outsourcing. 

Risks Index Definitions 

 

Schedule 

R1 The inability to deliver the end product within the originally 

specified period of time 

Technical R2 The inability of the technology to provide the expected 

performance 

Financial R3 The inability to complete the project within a given budget 

 

Vendor 

R4 The possibility of choosing an inappropriate vendor that could 

impact project performance 

 

 

Culture 

R5 Occurrence of shared values and assumptions that govern 

acceptable behavior and thought patterns which could result in 

widely differing work ethics and quality standards 

 

Reputation 

R6 Negative opinion of the stakeholders towards an organization 

Intellectual 

property 

R7 The threat of the vendor using your ideas to produce a competing 

product or service 

 

Flexibility 

R8 The inability of an organization to respond to potential internal 

or external changes in a timely and cost effective manner 

 

Compliance 

R9 The inability of an organization to comply with appropriate 

regulations (local and global) 

 

Quality 

R10 The inability of the end deliverable (product or service) to meet 

customer requirements 
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Figure 4.  10 FCM for risk analysis on maintenance. 

The FCM graph in Figure 4.1 is depicted based on experts’ opinions in order to show the dependencies and 

feedbacks among factors. In this numerical example, the interrelationships among ten risk factors are identified 

through Jimmy et al. (Jimmy Gandhi, Gorod, & Sauser, 2012) study (black lines in Fig. 4.1). In addition, some 

interrelationships are depicted among risks & consequences and vice versa (orange and green lines in Fig. 4.1). 

Moreover, two possible dependencies among consequences C1 & C3 and C4 & C2 are depicted with blue bolded 

lines in Fig. 4.1. To make the initial weight matrix (𝑊𝑖𝑗), each expert individually determines the dependencies 

between concepts, using fuzzy linguistic terms such as Very High (VH), Low (L), etc. Then, the linguistic variables 

are aggregated and defuzzified to numerical values (Elpiniki I. Papageorgiou, 2005). The initial weight matrix, is 

shown in Table 4.2. 

Table 4. 9 Initial weight matrix. 

𝑾𝑨𝒖𝒈  R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 C1 C2 C3 C4 

R1 0 0 0.5 0 0 0 0 0.5 0 0.3 0.1 0 0 0.2 

R2 0 0 0.6 0 0 0 0 0 0 0  0.1 0.7 0 0 

R3 1 0 0 0 0 0.1 0 0.5 0.9 0 0.1 0.88 0 0 

R4 0.8 0.9 0 0 0.2 0 0.14 0.5 0 0.68 0 -0.2 0 0.2 

R5 0.7 0 0.8 0.4 0 0.6 0 0 0.1 0 0 0.7 0 0.77 

R6 0.8 1 0 0 0.2 0 0 0.47 0 0 0 0.66 0.6 0.2 

R7 0.8 0 0 0.6 0.6 1 0 0.5 0.8 0.5 0 0 0 0.2 

R8 0 0.2 0 0.5 0 0 0.1 0 0.9 0 0 0 0.6 0 

R9 0.7 0.3 0.8 0.8 0.5 0.11 0 0 0 0 0.1 0 0 0.2 

R10 0.1 0.35 0.2 0.1 0.9 0.13 0.2 0 0 0 0 0.44 0.69 0 

C1 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 

C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C3 0 0 1 0 0 0 0 0 1 0 0 0 0 0 

C4 0 0 0 0 0 0 0 0 0 0 0 0.78 0 0 

       

3. FCM building process 

Two types of FCM model could be developed for evaluating risks. The first type is scenario-based which is used 

in this paper and the second type is based on initial concept values obtained from multi criteria decision making 

tools such as AHP/ANP (Abbasgholizadeh Rahimi & Jamshidi, Prioritization of Organ Transplant Patients using 
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Analytic Network Process, 2014) or eigenvalue approach. In order to evaluate  the impact of risks in a scenario-

based FCM model, several what-if analysis scenarios should be developed using different initial concept values 

(𝑐). In each scenario, a risk or a set of risks are activated and using Eq. 3.1 and learning algorithms the initial 

vector (𝑐) is updated in order to show the impact of activated risks on the other risks.  

In second type of FCM modeling, the initial concept values (𝑐) is updated by using initial weight matrix (𝑊𝑖𝑗) and 

Eq. 3.1 until it converges to the steady state condition. The updated concept values 𝐶∗ shows the importance of 

each risk. Since this type of FCM is unable to assess the impact of each risk on the other risks, we propose to apply 

the first type in evaluating the risk of maintenance outsourcing. To illustrate the risk evaluation process, in this 

paper we only assess the impact of “Schedule” risk on other risks. 

In this scenario, none of the risks in the initial vector are activated at the initial time, but schedule risk (R1): 

𝑐 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; 

Using 𝑊𝑖𝑗 matrix, Initial concept vector 𝑐, Eq. 3.1 and learning algorithm, the training process starts. In this paper 

we applied NHL-DE algorithm for training FCM which is combined of differential evolution (DE) and nonlinear 

Hebbian learning (NHL) algorithms. We imported the data into Matlab code and we used MATLAB version 

R2012a software to obtain the updated concept matrix (𝐶∗). For this specific problem, the suggested value of 

learning rate parameter (𝜂), mutation constant (𝜇), crossover constant (CR), and weight decay learning 

parameter (𝛾) have been selected 0.04, 0.5, 0.5, 0.98 respectively. The population size is equal to 50. For the 

algorithm, 100 independent experiments have been performed, to enforce the reliability of the results, and the 

algorithm was allowed to perform 1000 iterations (generations) per experiment. 

𝐶∗ = [0.66, 0.7, 0.95, 0.87, 0.99, 0.4, 0.8, 0.94, 0, 0.97, 0.2, 0.49, 0.78, 0.96]; 

The steady state vector 𝐶∗ shows that activating “Schedule” risk have a strong influence over the risks R3, R5, R8, 

R10 and also it has a strong effect over the consequence C4. The same procedure should be done for all other risks 

by activating their risk or related sub-risks each time. The results reveal that which risks are critical and which 

have a greater impact on the other risks. In addition, it reveals that each risk factor on which consequence(s) has 

strong effect. Therefore, decision makers will be able to manage the risks properly and accurately. 

4. Conclusion 

This paper proposes an effective decision support tool called “Fuzzy Cognitive Maps” (FCM) which can deal with 

risks of maintenance outsourcing (or other type of outsourcing) by taking into account the interrelationships among 

risk factors and consequences. The main features of FCM in contrast with those of other existing methods such as 

FMEA are; 1) the dependence and the feedback effects among variety of risk factors, their effects and also 

importance of factors could be considered , 2) uncertainties on the decision-making process are taken into account, 

3) several experts can state their opinions, 4) it has capabilities to handle both qualitative and quantitative factors, 

5) several risk factors and effects can be considered in risk analysis process and 6) by transforming decision 

problems into causal graphs, decision makers with no technical background can easily understand all of the 

components in a given problem and their relationships. 
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Apart from the application of this tool in risk analysis, FCM is sufficiently general and it could be adapted to a 

wide range of complex and critical multi criteria decision making problems in outsourcing such as service provider 

selection, simulation and forecasting with application to predict behaviors in outsourcing, etc. The major 

contribution of this paper is considering the possible interrelationships in risk analysis of maintenance outsourcing 

including interrelationships among risks & consequences and vice versa, relationships among risks and finally 

possible dependencies among consequences. To the best of our knowledge, this is the first time in the literature of 

outsourcing that such interrelationships are taken into account through an advance decision support tool. 

Considering the dependencies among risk factors and consequences could lead to a more precise and accurate risk 

analysis and decision makers and managers will have a strong support to better mitigate associated risks. As a 

future research topic, application of other hybrid algorithms for training FCM could be considered.  
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4.3 A new decision support tool for dynamic risks analysis in collaborative networks  

Résumé: Les réseaux collaboratifs sont des systèmes complexes et se composent de nombreux facteurs avec des 

dépendances parmi eux. Bien que le nombre de réseaux collaboratifs tels que les chaînes d'approvisionnement 

avancées ou les organisations virtuelles / laboratoires / cyber sciences ne cessent de croître et leur importance 

augmente dans le monde, bon nombre d'entre elles ne réussissent pas. En outre, on a accordé très peu d'attention à 

l'analyse des risques des réseaux collaboratifs en tenant compte des dépendances entre les facteurs de risque. Ainsi, 

l'analyse précise des risques associés aux projets de réseaux collaboratifs est cruciale pour atteindre une 

performance satisfaisante. Pour y remédier, nous proposons un outil avancé d'aide à la décision appelé «Fuzzy 

Cognitive Maps» (FCM) qui peut traiter les risques de tels systèmes compliqués en tenant compte des interrelations 

entre les facteurs. La FCM considère le comportement de systèmes complexes avec précision et illustre tout 

environnement complexe basé sur les perceptions des experts et par des représentations graphiques. Elle peut tenir 

compte des incertitudes, des informations imprécises, des interactions entre les facteurs de risque, de la rareté de 

l'information et des opinions de plusieurs décideurs. La FCM n'est pas seulement en mesure d'évaluer les risques 

plus précisément dans les réseaux de collaboration, mais elle pourrait également être appliquée dans différents 

processus décisionnels liés à des réseaux collaboratifs tels que la sélection des partenaires et les comportements 

de prévision, l'analyse des politiques, la modélisation de l'évaluation de la collaboration. L’outil proposé, aiderait 

les praticiens à gérer les risques collaboratifs et les problèmes de prise de décision de manière efficace et proactive. 

Mots-clés: Analyse des risques, Réseaux collaboratifs, Cartes cognitives floues, Entreprises virtuelles, 

Connaissances approfondies. 
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4.3 A new decision support tool for dynamic risks analysis in collaborative networks  

Abstract. Collaborative networks are complex systems and consist of many factors with dependencies among 

them. Although the number of collaborative networks such as advanced supply chains or virtual 

organizations/laboratories/e-science is growing and their significance is increasing in the world, many of them are 

unsuccessful. In addition, very little attention has been paid to the risk analysis of collaborative networks by 

considering the dependencies among risk factors. So, the precise risks analysis associated with collaborative 

networks projects is crucial to attain a satisfactory performance. To address this, we are proposing an advanced 

decision support tool called “Fuzzy Cognitive Maps” (FCM) which can deal with risks of such complicated 

systems by considering the interrelationships between factors. FCM states the behaviour of complex systems 

accurately and illustrate any complex environment based on the experts’ perceptions and by graphical 

representations. It is able to consider uncertainties, imprecise information, the interactions between risk factors, 

Information scarcity, and several decision maker’s opinions. FCM is not only able to evaluate risks more precisely 

in collaborative networks, but also it could be applied in different decision makings problems related to 

collaborative networks such as partner selection and forecasting behaviors, policy analysis, modeling collaboration 

preparedness assessment, etc. Hence, the proposed tool would help practitioners to manage collaborative network 

risks and decision making problems effectively and proactively.  

Keywords: Risks analysis, Collaborative networks, Fuzzy cognitive maps, virtual enterprises, Expert knowledge. 

1. Introduction 

Collaborative networks (CNs) such as virtual organizations, dynamic supply chains, professional virtual 

communities, collaborative virtual laboratories, etc. are complex systems associated with uncertainties in dynamic 

business environments. This uncertainty and complexity could lead to critical risks which could influence on the 

enterprises’ performance. According to Munyon & Perryman (2011), failure rate of alliances are estimated 

between 60% and 70%. Risk evaluation of CNs is a complex and critical task since several tangible and intangible 

risk factors should be considered in this process. In addition, there are always some dependencies among risks that 

can influence each other mutually and these dependencies make the evaluation process more complex and 

challenging. Therefore, an effective method for evaluating the risks is fundamental and essential. In recent decade, 

many problems related to CNs such as partner selection (Hexin & Jim, 2005) (H.Shah & Nathan, 2008) (Jarimo 

& Salo, 2007), modeling collaboration preparedness assessment (Rosas & Camarinha-Matos, 2008), etc. have been 

investigated. However, very little attention has been paid to the risk analysis of collaborative networks by 

considering the dependencies among risk factors (LI & Liao, 2007) (Zhou & Lu, 2012). 

Li & Liao (LI & Liao, 2007) identified all possible risks which could influence on the operation of alliance and 

measured their priority numbers using three criteria; probability of risk, severity of risk and risk detection number. 

Das and Teng (Das & Teng, 2001) developed a risk perception model. The model consists of the following 

components: the antecedents of risk perception, relational risk and performance risk, risk perception and structural 

preference, and the resolution of preferences. Ip et al. (Ip, Huang, Yung, & Wang, 2003) described and modeled a 

risk-based partner selection method by taking into account risk of failure, due date and the precedence of sub-

project. In addition, a rule-based genetic algorithm with embedded project scheduling was proposed to solve the 

problem. Huang et al. (Huang, Ip, Yang, Wang, & Lau, 2008) developed a risk management model for virtual 

enterprises (VE) and presented a tabu search algorithm by considering uncertainties in experts’ opinions. Huang 
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et al. (Huang, Lu, Ching, & Siu, 2011) proposed a two level Distributed Decision Making (DDM) model for the 

risk management of dynamic alliance. A Particle Swarm Optimization (PSO) algorithm is used to solve the 

resulting optimization problem. Their proposed model improves the description of the relationship between the 

owner and the partners. 

However, research about the risk assessment of CNs by considering the interrelationships among risks factors and 

forecasting the impact of each risk on the other risks don’t exist in the literature of CNs and further research in this 

field is required. Considering the interdependencies among risks could lead to more accurate risk assessment to 

enterprises. In addition, during the risk assessment process, there are lots of uncertainties and imprecise 

information associated with experts opinions that should be taken into account. Recently, Zhou and Lu (Zhou & 

Lu, 2012) presented a methodology for choosing a coalition partner using Fuzzy Analytic Network Process 

(FANP) and by considering the interaction and feedback relationships between risk factors. Although ANP is able 

to consider interdependencies among factors, it has some disadvantages. Sometimes it is not easy even for experts 

to compare the importance of a factor to another (R. Yu, 2006). In addition, different structures could lead to the 

different rankings and it is usually difficult for experts to provide the true relationship structure by taking into 

account several factors. Moreover, ANP is time-consuming due to the large number of pair-wise comparisons 

needed for comparing the risk factors. 

Therefore, this paper deals with risk assessment of CNs as the most important phase of risk management, and 

proposes an advanced decision support tool called “FCM” to overcome the shortcomings of current risk evaluation 

tools applied in CNs. FCM is a useful tool that states and evaluates the dynamic behaviour of complex systems by 

considering the interrelationships among factors (Kosko B. , 1986). It considers the uncertainties and imprecise 

information by using linguistic variables. Hence, expert perception is considered in the model more precisely. 

Moreover, FCM can even be used when the information is scarce. This tool recently has been applied successfully 

in evaluating risks in complex and critical environments such as Enterprise Resource Planning (ERP) maintenance 

(Lopez & Salmeron, 2014) (Ahmad & Kumar, 2012) and IT projects (Salmeron, 2010), and therefore we think it 

has a good potential to be applied in complex CNs for evaluating risks and forecasting the impact of each risk.  

The reminder of this paper is organized as follows. Section 2 explains the proposed tool with an example related 

to risk evolution in dynamic alliance and conclusions are drawn in Section 3. 

 

2. The proposed method 

In order to illustrate the proposed tool, we adopted the risks identified in Li & Liau (LI & Liao, 2007) study 

regarding dynamic alliance. Dynamic alliance or VE is a temporary network of specialised individuals and 

independent institutes who work together and share skills and costs in order to better respond to fast changing 

market opportunities (LI & Liao, 2007). The identified risks are shown in Table 4.3 and the related FCM graph is 

depicted in Fig. 4.2. The definitions of these risks are available in study (LI & Liao, 2007). 

The FCM graph is depicted based on experts’ opinions in order to show the dependencies and feedbacks among 

factors. To make the initial weight matrix (𝑊𝑖𝑗), each expert individually determines the dependencies between 

concepts, using fuzzy linguistic terms such as Very High (VH), Low (L), etc. Then, the linguistic variables are 

aggregated and defuzzified to numerical values (Elpiniki I. Papageorgiou, Fuzzy Cognitive Maps Learning Using 

Particle Swarm Optimization, 2005). The initial weight matrix, is shown in Table 4.4. 
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In order to deffuzify a triangular fuzzy number (l, m, u) the following Equation is usually applied: 

 

𝑡 =
𝑙+𝑚+𝑚+𝑢

4
                                                                              (1) 

 

Table 4. 10 Risk factors in dynamic alliance. 

Risk Sub-risks Index 

 

Market risk 

Demand fluctuation risk C1 

Competition risk C2 

Spillover effect risk C3 

Financial risk Interest rate risk C4 

Exchange rate risk C5 

Natural risk Natural risk C6 

 

 

Relational risk 

Trust risk C7 

Moral risk C8 

Motivation risk C9 

Communication risk C10 

Organization risk C11 

 

Operational risk 

Information sharing risk C12 

Information integration risk C13 

Information conveyance risk C14 

Political risk Social risk C15 

Policy risk C16 

 

 

Competency risk 

Quality risk C17 

Cost risk C18 

Time risk C19 

Technologic risk C20 

 

Investment risk 

Investment recovery risk C21 

Investment implementation risk C22 
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Figure 4.  11 FCM for risk analysis on dynamic alliance. 

Table 4. 11 Initial weight matrix. 

𝑾𝑨𝒖𝒈  C1 C2 C3 C4 C5 . . C18 C19 C20 C21 C22 

C1 0 0.2 0.5 0 1 . . 0 0 1 0 0.3 

C2 0.2 0 0.6 0.5 0 . . 0.26 0 0 0.1 0.3 

C3 1 0 0 0 0 . . 0 0 0.8 0 0.3 

C4 0.8 0.9 0 0 0.2 . . 0.12 0 0 0.1 0 

C5 0.7 0 0.8 0.4 0 . . 0 0 0.4 0 0 

C6 0.8 1 0 0 0.2 . . 0 0.1 0 0 0 

C7 0.8 0 0 0.6 0.6 . . 0.78 0 0 1 0.38 

C8 0 0.2 0 0.5 0 . . 0 0 0.5 0.1 0.1 

C9 0.7 0.3 0.8 0.8 0.5 . . 0 0.78 0 0.99 0 

C10 0.1 0.35 0.2 0.1 0.9 . . 0 0 0 0 0 

C11 0.4 0 0.2 0 0 . . 0 0 0.1 0.1 0 

C12 0 1 0.1 0 0 . . 0.5 0.3 0 0 0.9 

C13 0 0.3 1 0.2 0 . . 0 0 0.2 0.1 -1 

C14 0 0 0.5 0.5 0 . . 0 0.6 0 0 0.8 

C15 0.7 0.3 0.3 0 0.9 . . 0 0 0 0.6 0.9 

C16 0.2 0 0.1 0 0 . . 1 0.67 0 0 0 

C17 0.65 0.3 0 0.8 0.5 . . 0 0 0.3 0.1 0 

C18 0.7 0 0 0 0.1 . . 0 0.6 0 0.5 0 

C19 0.2 0.5 0 0.8 0 . . 0.3 0 0 0.1 0 

C20 0.6 0 0.3 0 0 . . 0.9 0.7 0 0.1 0.56 

C21 0 0.6 0.7 0 0 . . 0.3 0.2 0.1 0 0.8 

C22 0 0 1 0.5 0 . . 0 0.7 0.1 0.5 0 
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2.1. FCM building process 

Two types of FCM model could be developed for evaluating risks. The first type is scenario-based which is used 

in this paper and the second type is based on initial concept values obtained from multi criteria decision making 

tools such as AHP/ANP or eigenvalue approach. Scenario-based FCM is a new method recently presented by 

different authors and it is becoming popular in complex and fast-changing domains such as business environment, 

therefore it is critical to predict the impact of potential risks that could be happened in the future. In order to 

evaluate the impact of risks in a scenario-based FCM model, several what-if analysis scenarios should be 

developed using different initial concept values (𝑐). In each scenario, a risk or a set of risks are activated and using 

learning algorithms the initial vector (𝑐) is updated in order to show the impact of activated risks on the other risks. 

Note that when a risk is activated, its value in the initial vector (𝑐) is considered 1. This number is 0 for the rest of 

the risk factors which are not activated. 

In second type of FCM modeling, the initial concept values (𝑐) is updated by using initial weight matrix (𝑊𝑖𝑗) and 

Eq. 1 until it converges to the steady state condition. The updated concept values 𝐶∗ shows the importance of each 

risk. Since this type of FCM is unable to assess the impact of each risk on the other risks, we propose to apply the 

first type in evaluating the risk of CNs. To illustrate the risk evaluation process, in this paper we only assess the 

impact of “Market risks” on other risks.  

In this scenario, at the initial time only risks related to market risks including “Demand fluctuation risk (C1)”, 

“Competition risk (C2)”, and “Spillover effect risk (C3)” are activated. 

𝑐 = [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; 

Using 𝑊𝑖𝑗 matrix, Initial concept vector 𝑐, Equation (1) and learning algorithm, the training process starts. In this 

paper we applied NHL-DE algorithm for training FCM which is a combination of nonlinear Hebbian learning 

(NHL) and differential evolution (DE) algorithms. According to Papageorgiou (Papageorgiou E. , 2014), the 

hybrid training approaches such as NHL-DE emerge less limitations as they combine two training algorithms and 

inherit the benefits and shortcomings of both of them. The training process in NHL-DE has two steps. The first 

step starts with NHL algorithm and in the second step, the result of first step is used to seed the DE algorithm. We 

imported the data into Matlab code and we used MATLAB version R2012a software to obtain the updated concept 

matrix (𝐶∗). In this paper, the values of learning rate parameter (𝜂), mutation constant (𝜇), crossover constant 

(CR), and weight decay learning parameter (𝛾) have been selected 0.04, 0.5, 0.5, 0.98 respectively. The population 

size is considered 50. It should be noted we performed 1000 iterations for the algorithm per experiment and 100 

independent experiments were performed. 

𝐶∗ = [0.7, 0.47, 0.85, 0.7, 0.98, 0.4, 0, 0.94, 0, 0.97, 0.2, 0.49, 0.78, 0.21, 0.93, 0.7, 0.91, 0.1, 0.78, 0.99, 0, 0.37]; 

The steady state vector 𝐶∗ shows that activating C1, C2, and C3 risks have a strong influence over the remainder 

risks in particular risks C5, C8, C10, C15, C17, and C20. 

The same procedure should be done for all other risks by activating their sub-risks each time. The results reveals 

that which risks are critical. In addition, the proposed tool is able to predict the impact of each risk on the other 

risks more accurately because it take into account the multiple connections between risks. Therefore, decision 

makers will be able to manage the risks of CNs properly and accurately. It should be noted that the process for 
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developing a FCM is strongly dependent on the experts’ opinions. Then, special attention should be paid to matters 

such as the selection of experts’ team and the feedback with them. 

3. Conclusion 

This paper proposes an advanced decision support tool called “Fuzzy Cognitive Maps” (FCM) which can deal 

with risks of collaborative networks by taking into account the interrelationships among factors. This tool can be 

adapted to a wide range of multi criteria decision making problems such as predicting behaviors in CNs, partner 

selection, policy analysis, modeling collaboration preparedness assessment, etc.  

The main features of FCM in contrast with those of other existing methods are; 1) the relationships among variety 

of factors and also importance of factors could be considered , 2) uncertainties and imprecise information are taken 

into account on the decision-making process, 3) several experts can state their opinions, 4) it has capabilities to 

handle both qualitative and quantitative factors, 5) several alternatives can be considered in decision making about 

best partner and 6) by using the casual graphs in FCM, it is easier for decision makers and experts to understand 

the factors and their dependencies. Moreover, by relying on FCM models, the decision makers have a strong 

support, and therefore are able to decide more precisely and accurately when evaluating risks or choosing the 

partner. As a future research topic, application of other hybrid algorithms for training FCM could be considered. 

Currently, we are working on developing a comprehensive framework for partner selection problem in dynamic 

alliance by using an integrated FCM-based method. 
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Chapter 5. A new framework for risk assessment in 

ERP maintenance 

 

The fifth chapter is dedicated to the following article: 

[1] “A new framework for risk assessment in ERP maintenance”, Afshin Jamshidi, Samira Abbasgholizadeh Rahimi, 

Angel Ruiz, Daoud Ait Kadi. IEEE Xplore, PP: 1-6, 2014, The annual reliability and maintainability symposium, 

DOI:10.1109/RAMS.2014.6798515. 
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5.1 A new framework for risk assessment in ERP maintenance 

Résumé: Au cours des dernières décennies, des entreprises du monde entier ont mis en place des systèmes de Progiciel 

de Gestion Intégré (PGI). Une mise en œuvre correcte des PGI a été une question plus explorée. Plus précisément, de 

nombreux articles ont présenté les facteurs critiques de succès de ces projets. Mais même lorsque l'implémentation 

s'est terminée de manière satisfaisante, le succès de l'adoption de PGI n'est pas garanti. Cela dépend aussi du processus 

d'efficacité dans les systèmes PGI post-implémentation. La maintenance de l'PGI est nécessaire pour corriger et 

prévenir les risques des systèmes ainsi que pour améliorer ses performances et s'adapter en permanence au système. 

Néanmoins, cela est souvent géré intuitivement et sans tenir compte des risques existants. En ce sens, les gestionnaires 

de maintenance doivent connaître l'importance de tous les risques identifiés. 

Compte tenu de cette lacune existant dans la littérature et des besoins professionnels, l'objectif de cette recherche est 

d'analyser les facteurs de risque (RF) qui menacent la performance de maintenance PGI. Dans cet esprit, nous 

présentons d'abord les principaux risques relevés lors de la revue de la littérature, affectant la performance de la 

maintenance PGI. En outre, nous proposons une approche systématique pour l'identification et l'évaluation des risques 

potentiels à l'aide d'une Analyse de mode de défaillance et leurs effets flou (FFMEA) et d'une Analyse Relationnelle 

Grise (ARG). L'approche proposée comporte deux étapes: la construction du FFMEA et l'application du ARG. La 

première étape vise à incorporer les caractéristiques spécifiques à la maintenance PGI au nouveau modèle FFMEA, 

en fournissant différentes dimensions et sous-dimensions, englobant les caractéristiques d'entretien PGI. À la 

deuxième étape, le GRA est appliqué pour calculer la priorité de risque de chaque mode de défaillance pour traiter les 

nécessités d'un cadre d'évaluation flexible sous ces multi-dimensions interdépendantes. Enfin, tous les risques 

présentés dans la taxonomie générale des risques sont classés des plus critiques au moins critiques en fonction de leur 

importance pour le risque. 

Les résultats soulignent quels sont les risques les plus importants dans la maintenance PGI. Ce cadre aide les 

gestionnaires, les fournisseurs, les consultants, les auditeurs, les utilisateurs et le personnel informatique à mieux gérer 

la maintenance PGI dans le cadre systématique. 

Mots clés: Maintenance de PGI, évaluation des risques, Analyse de mode de défaillance et leurs effets, Analyse 

Relationnelle Grise 
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5.1 A new framework for risk assessment in ERP maintenance 

Abstract: In recent decades, companies across the world have implemented enterprise recourse planning (ERP) 

systems. Proper ERP implementation has been a more explored issue. Specifically, numerous papers have presented 

the critical success factors in these projects. But even when the implementation finished satisfactorily, success in ERP 

adoption is not guaranteed. It also depends on the effectiveness process in the post-implementation ERP systems. The 

maintenance of the ERP is necessary to correct and prevent systems risks as well as to enhance its performance and 

adapt continuously to the system. Nevertheless, this is often managed intuitively and without taking into account the 

existing risks. In this sense, the maintenance managers need to know the importance of all risks identified.  

Given this gap existing in the literature and the professional needs, the aim of this research is to analyze the risk factors 

(RFs) that threaten ERP maintenance performance. With this in mind, at first we introduce the main risks retrieved 

from literature review, affecting the performance of ERP maintenance. Moreover, we propose a systematic approach 

for identifying and evaluating potential risks using a Fuzzy Failure Mode and Effect Analysis (FFMEA) and Grey 

Relational Analysis (GRA). The proposed approach consists of two stages: construction of FFMEA and application 

of GRA. The first stage, aims at incorporating the ERP Maintenance-specific characteristics to the new FFMEA model, 

providing different dimensions and sub-dimensions, encompassing the ERP Maintenance characteristics. At the 

second stage, GRA is applied to calculate the risk priority of each failure mode to deal with the necessities of a flexible 

evaluation framework under these interrelated multi-dimensions. Finally, all risks presented in the general risks 

taxonomy are ranked from more to less critical according to their risk importance.  

The results highlight which risks are most important in ERP maintenance. This framework helps managers, vendors, 

consultants, auditors, users and IT staff to manage ERP maintenance better and within the systematic framework.  

Key Words: ERP Maintenance, Risk Assessment, FMEA, GRA 

 

1. INTRODUCTION 

Enterprise resource planning (ERP) systems are defined as a single software system allowing the complete integration 

of information flow from all functional areas in companies by means of a single database and accessible through a 

unified interface and channel of communication . Companies have spent billions of dollars in ERP implementation. 

However, ERP projects are never finished: after the implementation process, the maintenance starts. The ERP system's 

maintenance is a critical issue, because if it is not fit, the system will soon not be useful.  

A survey about ERP systems shows a growing activity in ERP maintenance. This trend has continued in recent years. 

However, ERP risks studies represent about only 12% of the ERP research [1]. According to advanced market research 

(AMR) , 67% of companies spent more than $1 million on ERP, and 13% of them spent more than 20 million dollars 

in 2006. This report also expects budgets to grow 12.3%. ERP maintenance costs can exceed initial acquisition, with 

average annual ERP maintenance costs estimated at 25% of original implementation. Despite this, a model unaware 

of risk has been developed [1].  
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The successful maintenance of ERP systems has shown itself to be a complex and difficult activity [2]. Indeed, the 

progress and outcomes of the final projects are usually uncertain and this requires facing many unforeseen events. 

Moreover, it has been proved that planning and control risks negatively affect the success of ERP projects [2]. To 

avoid undesired outcomes, practitioners have to proactively manage real ERP maintenance risks. A large number of 

models, methods and techniques have been developed to address the need for a structured Risk Management (RM) 

approach as a core activity of ERP projects for identifying, evaluating and prioritizing ERP implementation projects 

risks [3-5,8-10]. These studies have applied techniques such as analysis of variance (ANOVA), the fuzzy variables 

set method, the Analytic Hierarchy Process (AHP), neural networks, and decision trees [4,6,7]. However, these tools 

lack certain characteristics necessary to fairly and accurately model ERP projects risks. In fact, these methods are not 

capable of representing all possible interactions between risks. In addition, none of these methods considers different 

opinions of experts and assigns different weights to each idea. In a specific review on ERP ‘‘risk management’’, Aloini 

et al. [3] stated that most of the contributions were focused on the risk identification and risk analysis in a rather 

descriptive way, while only a few of them suggested working models or techniques for the risk quantification or for 

defining the appropriate treatment strategies. Moreover, even in case of structured approaches, works do not include 

the complex system of internal relationships (among the risk factors and between risk factors and effects) in the 

quantification step. To our best knowledge, this is still a major gap in literature. The most common shortcomings in 

terms of potential cause of failure in RM are often about a superficial risk analysis which misses risk interdependence 

analysis; this is also valid within the ERP case. The complex structure of an ERP project and the high number of risk 

factors indeed increase the magnitude of risks not only in relation to each single factor, but also to the interconnections 

between them. More recently, Aloini & Lopez [2,11] applied Petri Net and fuzzy cognitive maps (FCM) approaches 

respectively. 

In this paper, we deal with the Risk Assessment (RA) stage of RM in an attempt to contribute to the development of 

an effective methodology for its application and to provide a support tool for the formulation of risk treatment 

strategies and actions for ERP maintenance. Specifically, our aim is to provide a quantitative RM methodology to 

include risk interdependence in the risk analysis process as well as considering the different experts' opinions. Then 

we rank and prioritize ERP maintenance risk factors to establish the relative importance of each one. To do this, we 

introduce an integrated multi-criteria decision making (MCDM) methodology. For the numerical example, we refer 

to the General ERP maintenance risks taxonomy defined in [1]. The results indicate where the maintenance team must 

focus on treating and mitigating the risks and threats. The main objective of this work is to develop a quantitative 

framework using fuzzy FMEA& GRA to model ERP project risks and rank each risk factor including their 

interdependencies.   

2. ERP MAINTENANCE 

The ERP maintenance project is made up of activities undertaken from the time the ERP goes live until it is retired 

from production. ERP maintenance management is different from the classical one. This is not only due to the size, 

scope and organizational impact of the ERP project. ERP is a standard software that is adjusted to the specific needs 

of the firm. As such, ERP kept in line with continuous changes and improvements but it is conditioned by the 
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generation of further versions. Moreover, the ERP maintenance project’s complexity is greater than that of the classical 

software maintenance project due to the amount of modifications applied to the ERP during the implementation and 

post-implementation stage. In spite of this, there is not an ERP maintenance standard which indicates just one way to 

manage the process better. 

ERP’s nature requires a more ongoing process of improvement and fine-tuning than classical maintenance because 

the ERP scope is wider than other applications and its impact on companies is larger. However, many companies have 

not maintained their ERPs successfully. In this sense, the ERP maintenance risks need to be managed. Otherwise, ERP 

will not attain its whole potential benefits and ERP might even become useless. Despite this, the maintenance team 

usually treats these risks intuitively. Moreover, little effort to analyze ERP maintenance risks has been made in the 

literature. As a result, the authors consider that a formal study about ERP maintenance risks is valuable. 

3. ERP MAINTENANCE RISK FACTORS 

Identifying the risks factors to include in the analysis can be quite challenging for managers, especially because there 

are different ways in which they can be described and categorized [11]. Factors affecting an ERP implementation 

project spread around all the project phases [12].  Many empirical researches have focused the attention on risk 

identification and classification [5,8]. Aloini et al. [3] especially reviewed a large number of articles about ERP system 

implementation from a RM perspective. They identified 19 risk factors and 10 project effects. The general risks 

taxonomy summarizes the threats that affect the ERP maintenance. However, if the maintenance team wants to 

correctly manage the risk existing in the process, this is not enough. The managers need to know which risks are 

critical, moderate and marginal. To do so, the maintenance team has to have a structured framework. Most of authors 

[1,2,12] have estimated both the probability of occurrence and the impact on the ERP maintenance performance while, 

this is not enough criteria for risks estimation and their ranking. To rank and prioritize risks factors in ERP 

Maintenance, we need to take into account some other dimensions/sub-dimensions. In addition, we should be capable 

of representing all possible interactions between risks [11]. Then, in this paper we address these  gaps  and propose  a 

new framework  to  improve current risk assessment processes in ERP maintenance. Specifically, we develop a new 

version of FMEA called ERP-specific FMEA and consider three dimensions and eight sub-dimensions in this method.  

4. CONSTRUCTING ERP-SPECIFIC FMEA FRAMEWORK 

FMEA is a reliability analysis tool widely used in the manufacturing sectors, to identify, prioritize, and eliminate 

known potential risks from systems [14,15]. Much debate has taken place regarding risk prioritization by traditional 

FMEA [16] which is related to the appropriateness of the relation, consideration of different impacts of "S" (severity), 

"O" (occurrence), and "D"(detection) in risk implication, and the appropriateness of multiplication [12].  

In the traditional FMEA, the risks are assessed by the Risk Priority Number (RPN).  

 

RPN = D× O× S                                                                                                                                                             (1) 

 

The severity, occurrence, and detection of the RFs are scaled from 1 to 10.   
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where: S is an assessment of the seriousness of the effect of the risk to system if it occurs, O is the likelihood that a 

specific risk will occur, and D is an assessment of the ability of the current experts to detect a potential risk. A larger 

RPN represents a higher risk. 

To consider accurately all of three dimensions of FMEA method, in this paper we have considered eight sub-

dimensions (3, 3, and 2 for S ,O , and D dimensions respectively). The explanation of these sub-dimensions is as 

follows: 

 

S1: Impact (How much the impact of risk is) 

S2: Affected range (How broad the affected range is) 

S3: Interdependency (How closely the risk is linked with other risks) 

O1: Frequency (How frequently the failure happens) 

O2: Repeatability (Does the failure happen repeatedly) 

O3: Failure visibility (Is the failure visible to the customer or not) 

D1: Chance of detection (How severe is the detection of risk) 

D2: Method of systematic detection (Does the periodical and systematic method exist for detection) 

 

 FMEA is normally a team effort in which several experts are involved. Thus, different opinions will arise in ranking. 

In order to consider all of experts' opinion, we present a fuzzy FMEA. In fuzzy FMEA, the values are expressed by 

membership functions instead of real numbers. The application of fuzzy membership functions better represents the 

team opinions. We define fuzzy membership functions for S, O, and D values of RPN as follows: 
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The value for level i given by expert j for severity dimension is denoted as
ijS , i = 1…m, j =1…n, where n is the 

number of experts and m is the number of risks factors. After this transformation, values are between 0 and 1. In this 

paper, triangular membership functions is used. 

The complete ERP-specific FMEA framework is shown in Figure 5.1. It should be mentioned that, we can determine 

particular weights (
ijW ) for experts based on their experience and knowledge. Weights should be between zero and 

one and total weights for all experts, should be one. In addition, in our previous article [14] we did a pair wise 

comparison among S, O, and D to obtain the comparison matrix (0.3538, 0.1652, 0.4809). After assigning weights for 

each expert (
ijW ) and each dimension, we present the new fuzzy membership function called RPI, as follows:       

                                                                                                (3) 

 

The membership function for the RPI needs to be defuzzified to obtain the RPI value. In this paper, we used Center 

of Maximum (COM) method. In the COM method, the average of the minimum value and the maximum value is 

considered to be the expected RPI.  

)4809.01652.03538.0()( 3
DOSijWRPI  
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Finally, after obtaining the RPI values we use grey analysis relational theory to obtain risk score for each dimension. 

The application of our framework is demonstrated through a numerical example. 

 

 

Figure 5. 1 ERP-specific FMEA framework 

4.1 Grey relational analysis as a tool for risk prioritization 

In this section, a new integrated method for risk prioritization is introduced with the help of GRA and our proposed 

new membership function. Contrary to the traditional FMEA which consists of only three dimensions, ERP specific-

FMEA has some sub-dimensions describing each dimension, showing the complicated relationships between 

themselves. Therefore, a GRA characterized by the multiple criteria decision making in a complicated interrelated 

situation, is proposed as a resolution of this problem. GRA is a method for decision making, which is suitable for 

solving problems with complicated interrelationships between multiple factors and variables [16]. It is a simple and 

data-driven method useful for making decisions by analyzing various relationships. 

Contrary to the previous studies, application of GRA in this paper consists of a two-phase application in order to 

highlight the multilateral perspective of ERP specific-FMEA. The first phase deals with the calculation of risk score 

for each dimension, and the second phase covers the calculation of overall risk priority by using Equation 3. In the 

first phase, the risk score for each dimension is calculated and referred to S, O, and D score respectively. These 

calculated scores are then used as the inputs of the second phase, calculating the final risk priority. Section 4.1.1 

illustrates the calculation of risk scores. 

4.1.1 The calculation of risk scores 

Step 1. Calculating the comparative series for RFs for each dimension. 

 As the first stag e, all values for each RF are processed into a comparability sequence. If there are m  RFs and n 

attributes in a dimension, the ith RF can be expressed as a comparative series xi  = (xi1 , xi2 , . . . , xin ) as below[16]. 
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                                                                                                       (4) 
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yij is the value of attribute j of alternative i. 

 

Step 2. Setting the reference sequence (standard series) definition. 

 Since the RFs with high value should be selected, the reference set should be set as xo  = (xo1 , xo2 , . . . , xon ) = (1, 

1, 1, . . . , 1). 

 

Step 3. Calculating the grey relational coefficient for each dimension. This step is used for determining how close xij  

is to xoj  .The larger the coefficients, the closer xij and xoj  . The relational coefficient can be expressed as: 

max

maxmin
),( 0











ij

ijj xx                                                                                                                                    (5) 

(ζ : the distinguishing coefficient, ζ ∈ (0, 1))                          

Generally, ζ can be 0.5 [16].

 

where i = 1, . . . ,m, j = 1, . . . , n,

 

xo(k)
 

 is the standard series, and xi(k) is the comparative 

series.

 ijojij xx 
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Grey relational coefficient for each dimension 
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 Where i = 1, . . . ,m, j = 1, . . . , pd, (pd = total number 

of attributes for each dimension). 

 

Step 4. Calculating the grey relational grade: (The risk score). Using the weighting coefficient of the decision factors, 

the final grey relational grade is calculated according to the following formula: 

 

),(),(
1 00 ij

n

j jji xxwXX  
 

                                                                                                                                        (6) 

 

for i = 1,..., m where 𝑤𝑗  is the weighting coefficient of factors, and  ∑ 𝑤𝑗 = 1𝑛
𝑗=1  .      

Therefore, scores for each dimension can be calculated under the framework of calculating grey relational grade, as 

shown in Table 5.1. 

 

Dimension Grey relational grade (Risk score) 

S score Γ(𝑋𝑜, 𝑋𝑖) =∑ 𝑤𝑗
𝑛𝑠
𝑗=1 𝛾(𝑥𝑜𝑗 , 𝑥𝑖𝑗)  for i = 

1, 2, . . . ,m 

(𝑛𝑠 : Total number of attributes for S 

dimension) 

O score Γ(𝑋𝑜, 𝑋𝑖) =∑ 𝑤𝑗
𝑛𝑜
𝑗=1 𝛾(𝑥𝑜𝑗 , 𝑥𝑖𝑗)  for i = 

1, 2, . . . ,m 

(𝑛𝑜 : Total number of attributes for O 

dimension) 

D score Γ(𝑋𝑜, 𝑋𝑖) =∑ 𝑤𝑗
𝑛𝑟
𝑗=1 𝛾(𝑥𝑜𝑗 , 𝑥𝑖𝑗)  for i = 

1, 2, . . . ,m 

(𝑛𝑟 : Total number of attributes for D 

dimension) 

Table 5. 1 Risk scores for each dimension 
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Here, Γ(𝑋𝑜, 𝑋𝑖) is the grey relational grade between xo and xi , representing the level of correlation between the 

reference sequence and the comparability sequence. It means that if the degree of relation is stronger, this RF is more 

risky, and is thus prioritized as the urgent one. Until now, the risk score of each dimension is evaluated. After 

calculating scores for each dimension, the overall risk score can be calculated.  

5. Numerical Example 

In this section, a numerical example is used to illustrate the proposed approach. Firstly, RFs are identified and listed 

based on the article of Salmeron et al. [1]. They identified 30 RFs in their paper. Assigned ranks for each RPI factor, 

according to the opinions of five engineers, is shown in Table 5.2. The value in parentheses refers to the weight of 

each dimension. The value W refers to the weight of experts’ opinion (which was assigned based on their experience 

and knowledge).  

 

 

 

 

 

 

 

Table 5. 2 Assigning ranks for each RPI factor 

In Table 5.3, we assign different weights for each experts’ opinion.  

 

RF Eng W S1 S2 S3 O1 O2 O3 D1 D2 

R2 1 0.25 0.01 0.25 0.011 0.595 0.613 0.64 0.012 0.395 

2 0.1 0.016 0.4 0.171 0.294 0.303 0.064 0.045 0.206 

3 0.15 0.6 0.006 0.007 0.039 0.072 0.054 0.75 0.483 

4 0.35 0.126 0.504 0.599 0.658 0.678 0.35 0.437 0.180 

5 0.15 0.486 0.054 0.35 0.070 0.018 0.15 0.007 0.019 

R5 1 0.25 0.008 0.187 0.132 0.168 0.189 0.118 0.340 0.49 

2 0.1 0.344 0.033 0.052 0.218 0.303 0.336 0.225 0.004 

3 0.15 0.082 0.112 0.220 0.328 0.163 0.071 0.416 0.096 

4 0.35 0.772 0.116 0.329 0.151 0.519 0.294 0.476 0.126 

5 0.15 0.186 0.05 0.035 0.405 0.113 0.007 0.037 0.6 

.   .  .  .  .  

R30 1 0.25 0.694 0.102 0.183 0.038 0.675 0.457 0.04 0.052 

2 0.1 0.277 0.368 0.294 0.061 0.333 0.182 0.1 0.021 

3 0.15 0.104 0.245 0.039 0.369 0.005 0.154 0.096 0.789 

4 0.35 0.155 0.063 1.029 0.861 0.571 1 1.4 0.165 

5 0.15 0.204 0.027 0.158 0.092 0.045 0.038 0.096 0.031 

Table 5. 3 Assigning W to each sub - dimension 
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R2 

1 0.25 1 5 1 9 9 8 1 7 

2 0.1 2 10 6 10 10 4 3 8 
3 0.15 10 1 1 3 4 3 10 10 
4 0.35 3 6 6 8 8 5 5 4 
5 0.15 9 3 7 4 2 5 1 2 

 

 

R5 

1 0.25 1 3 3 5 5 3 7 7 

2 0.1 10 2 3 9 10 8 9 1 
3 0.15 4 3 5 9 6 3 10 4 
4 0.35 8 2 4 4 7 4 7 3 
5 0.15 6 2 2 10 5 1 3 10 

  . 

. 

   . 

. 

    

 

R30 

1 0.25 10 3 5 2 9 8 2 2 

2 0.1 10 9 10 4 10 8 5 2 
3 0.15 5 6 3 8 1 6 4 10 
4 0.35 4 2 10 8 7 10 10 3 
5 0.15 7 2 6 4 9 3 4 2 
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Now we have to convert the fuzzy membership functions numbers into numerical values. Then, we use COM 

defuzzification method. After defuzzification of Table 5.3, the ERP- specific FMEA is constructed, as shown in Table 

5.4. 

 

 

 

 

5.1 Application of grey relational analysis 

Step1. Based on Table 5.4 and Equation 4, the first step of GRA is applied. Table 5.5 shows the comparative series 

for S, O, and D dimensions.  

Risks S1 S2 S3 O1 O2 O3 D1 D2 

R2 0.667 0.525 0.473 0.845 0.857 0.437 0.593 0.686 

R5 0.693 0.723 0.179 0.729 0.599 0.152 0.799 0.631 

. 
 

. 
 

. 
 

. 
 

. 

R30 0.755 0.361 0.820 0.604 0.809 0.932 0.792 0.487 

Table 5. 4 Comparative series for S, O, and D 

Step 2. Working with the reference set and using Equation 5, the grey relational coefficients for each dimension are 

calculated as Table 5.6. In this case, we set ζ = 0.5. 

Step 3. After calculating the grey relational coefficients, grey relational grade for each dimension is calculated using 

the weighted average of each grey relational grade. Table 5.7 shows the weight vector for S dimension. 

Risks S1 S2 S3 O1 O2 O3 D1 D2 

R2 0.582 0.494 0.468 0.763 0.778 0.470 0.551 0.614 

R5 0.601 0.626 0.361 0.649 0.555 0.370 0.713 0.575 

. 
 

. 
 

. 
 

. 
 

. 

R30 0.654 0.420 0.720 0.558 0.724 0.881 0.706 0.493 

Table 5. 5 Grey coefficients for S, O, D dimensions 

S1 S2 S3 O1 O2 O3 D1 D2 

0.3846 0.3846 0.2307 0.416 0.25 0.333 0.625 0.375 

Table 5. 6 Weight vector for each sub-dimension 

Step 4. Using the weighting coefficient of the decision factors in Table 5.7, Equation 6 and Table 5.1, the final grey 

relational grade is calculated for S, O, and D dimensions. The result of the grey relational grade for each dimension is 

illustrated in Table 5.8. 

Risks S O D 

R2 0.1741 0.2230 0.2876 

R5 0.1853 0.1775 0.3308 

R30 0.1933 0.2356 0.3134 

Table 5. 7 Grey relational grades for each dimension 

By using Equation 3, the overall grey relational grades can be calculated, as shown in Table 5.9. 

Risks S1 S2 S3 O1 O2 O3 D1 D2 

R2 7.115 6.131 5.771 7.944 8.007 5.878 6.341 6.930 

R5 7.288 2.5 3.742 7.359 6.700 4.436 7.638 6.58 

. 
 

. 
 

. 
 

. 
 

. 

R30 7.716 4.999 8.169 6.727 7.761 8.385 7.596 5.676 
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Risks S*W1 O*W2 D*W3 SUM SUM^1/3=RPN 

R2 0.0616 0.0368 0.1383 0.2367 0.6186 

R5 0.0655 0.0293 0.1591 0.2539 0.6332 

. 
 

. 
 

. 
 

R30 0.0684 0.0389 0.1507 0.2581 0.6366 

Table 5. 8 Overall grey relational grade 

Table 5.10 presents the final risks ranking. The findings suggest which risks are more critical in the ERP maintenance 

and this indicates in which order the risks should be treated. As shown in Table 5.10, the most important and critical 

RFs are RF12, RF6,and RF10 respectively.  

 

 

 

 

 

 

      

 

 

Table 5. 9 Final risks ranking 

6. Conclusion & Future Works 

The aim of this research was to introduce a new framework to identify and prioritize the risks factors that threaten 

ERP maintenance performance. Our new framework is an integrated approach based on combining ERP-specific 

FMEA, and GRA. The results indicate which risks are more likely to occur in ERP maintenance. The major 

contributions and attributes of this framework are: 

 A systematic way to consider interdependence in the risk analysis process, 

 Considering different experts' ideas, 

 Assigning weights for each experts' idea and also each dimension and sub-dimension, 

 It provides a rapid response, as well as the ability to modify or expand the model. Our model has the flexibility 

for defining different Criteria/ sub-criteria or removing some of them in order to adapt best framework for 

prioritization of risks factors.  

Risks Rank Risk  Rank 

R2 17 R28 6 

R5 13 R1 16 

R6 2 R12 1 

R8 21 R13 23 

R15 26 R14 24 

R23 18 R17 5 

R7 22 R19 28 

R9 14 R20 27 

R18 20 R25 15 

R27 9 R21 10 

R4 19 R3 25 

R10 3 R22 8 

R11 4 R24 12 

R16 29 R30 11 

R26 7 R29 30 
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For the future works it is worthwhile to consider cost and profitability dimensions in ERP maintenance risks 

prioritization. The findings of this research will help the maintenance managers to decide which risk treatment to 

carryout in order to minimize unacceptable risks. But they should obtain more information about the risks factors for 

this purpose. In addition, the professionals also need to know how the risks arise. In this sense, we believe that studies 

about the ERP maintenance risks dimensions are also necessary.  
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Chapter 6 . 

Risk-based maintenance of Medical Devices 
 

 

This chapter is dedicated to the following articles: 

[1] “Medical devices Inspection and Maintenance; A Literature Review”, A. Jamshidi, S. A. Rahimi, D. Ait-kadi, A. 

Ruiz. 2014 IIE Annual Conference (ISERC) Proceedings, May 31-June 3. Montreal, Canada.  

[2] “A risk-based Maintenance Strategy using Fuzzy HFMEA for Critical Medical Equipment” A. Jamshidi, S. A. 

Rahimi, D. Ait-kadi, A. Ruiz. Industrial and systems engineering world conference September 16-18, 2012, 

Washington, DC, USA. 

[3] “A comprehensive fuzzy risk-based maintenance framework for prioritization of medical devices”, Afshin 

Jamshidi, Samira Abbasgholizadeh Rahimi, Daoud Ait-kadi, Angel Ruiz, Applied Soft Computing, Volume 32, 2015, 

Pages 322-334. 

[4] A comprehensive fuzzy risk-based framework for replacement of medical devices, A. Jamshidi, S. A. Rahimi, D. 

Ait-kadi, A. Ruiz. 11th International Industrial Engineering Conference- CIGI 2015, Quebec, Canada, October 2015. 
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6.1. Medical devices Inspection and Maintenance; A Literature Review 

Résumé: Les dispositifs et équipements médicaux modernes sont devenus très complexes et sophistiqués, et devraient 

fonctionner dans des environnements stricts. Les hôpitaux doivent s'assurer que leurs dispositifs médicaux critiques 

sont sûrs, précis, fiables et fonctionnent au niveau de performance requis. Même si l'importance, l'application de tous 

les modèles d'inspection, de maintenance et d'optimisation aux dispositifs médicaux est assez nouvelle. Au Canada, 

la plupart, sinon tous les organismes de santé, incluent tout leur matériel médical dans leur programme d'entretien et 

suivent simplement les recommandations des fabricants pour l'entretien préventif. Ensuite, les stratégies actuelles 

d'entretien utilisées dans les hôpitaux et les organismes de santé ont des difficultés à identifier les risques spécifiques 

et à appliquer des activités optimales de réduction des risques. Ce document aborde ces lacunes dans la littérature pour 

l'inspection et l'entretien des équipements médicaux et examine divers aspects importants, y compris les politiques 

actuelles appliquées dans les hôpitaux. Enfin, nous proposons des recherches futures qui seront le point de départ pour 

développer des outils et des politiques pour une meilleure gestion des dispositifs médicaux à l'avenir. 

Mots-clés: Dispositifs médicaux, Maintenance, Fiabilité, externalisation, prioritisation 
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6.1. Medical devices Inspection and Maintenance; A Literature Review 

Abstract: Modern medical devices and equipment have become very complex and sophisticated and are expected to 

operate under stringent environments. Hospitals must ensure that their critical medical devices are safe, accurate, 

reliable and operating at the required level of performance. Even though the importance, the application of all 

inspection, maintenance and optimization models to medical devices is fairly new. In Canada, most,  if  not  all  

healthcare  organizations  include  all their  medical equipment  in  their  maintenance  program  and  just  follow 

manufacturers’ recommendations for preventative maintenance. Then, current maintenance strategies employed in 

hospitals and healthcare organizations have difficulty in  identifying  specific  risks  and  applying  optimal  risk  

reduction activities. This paper addresses these gaps found in literature for medical equipment inspection and 

maintenance and reviews various important aspects including current policies applied in hospitals. Finally, we suggest 

future research which will be the starting point to develop tools and policies for better medical devices management 

in the future. 

Keywords: Medical devices, Maintenance, Reliability, outsourcing, prioritization 

6.1.1. Introduction  

The maintenance of medical equipment is as important as its design and development. Usually, much more money is 

spent on maintaining a piece of equipment over its life span than on its procurement [1]. Medical equipment is 

extensively (from 5,000 to more than 10,000 different type) used in all aspects of health services, ranging from 

prevention, screening, diagnosis, monitoring, and therapeutics to rehabilitation. Nowadays, it is virtually impossible 

to provide health services without them. Unlike other types of healthcare technologies (i.e., drugs, implants, and 

disposable products), medical equipment requires maintenance (both scheduled and unscheduled) during its useful 

life. As the sophistication and cost of medical equipment continue to escalate, the complexity and cost of its 

maintenance have also risen sharply in the last few decades. Studies conducted using data collected from hundreds of 

acute-care hospitals indicate that on average, each hospital acquired about 15–20 pieces of medical equipment for 

each staffed bed, which translates into a capital investment of around US$200–400,000/staffed bed. Thus, it is 

common for a 500-bed hospital to own more than US$100–200 million worth of medical equipment and considerably 

more if it is affiliated with a medical school. The same studies have indicated that annual medical equipment 

maintenance and management cost is approximately 1% of the total hospital budget, so a 500-bed hospital spends 

typically around $5 million/year. In addition to its high maintenance costs, medical equipment is often involved in 

patient incidents that resulted in serious injuries or deaths. In fact, statistics accumulated by The Joint Commission 

(TJC) show medical equipment-related “sentinel events1” is typically among the top ten types every year [2]. 

Therefore, Hospitals and healthcare organizations must ensure that their critical medical devices are safe, accurate, 

reliable and operating at the required level of performance.   

Maintenance strategies and reliability engineering techniques have been significantly improved in the last two 

decades, and they have been successfully applied in many industries to improve the performance of equipment 

maintenance management.  Numerous inspection  and  optimization  models  are  developed  and  widely  used  to  

achieve  maintenance excellence,  i.e.  the  balance  of  performance,  risk,  resources  and  cost  to  reach  to  an  
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optimal solution. However, most of hospitals and healthcare organizations do not benefit from maintenance excellence 

as much as other industries [3]. Unnecessary and excessive preventive maintenance could be also loss-making likewise 

inadequate level of maintenance. The  time, which is spent doing the unnecessary preventive maintenance,  is robbing 

an organization of a fraction of one of its most vital resources [4].Since  2004,  when  Joint  Commission  on  

Accreditation  of  Healthcare  Organizations(JCAHO) introduced standard EC.6.10  [5], hospitals in US have started 

adopting their  maintenance  programs  to  put  their  maintenance  resources  where  most  needed.  This standard 

allows hospitals to not have schedule inspection or maintenance tasks for certain  pieces or  types  of  medical  

equipment,  if  these  tasks  are  not  needed  for  safe  and  reliable  operation [6].  

However,  in  Canada,  most,  if  not  all  healthcare  organizations  include  all their  medical equipment  in  their  

maintenance  program  and  just  follow  manufacturers’  recommendations  for preventative maintenance [3]. Current 

maintenance strategies employed in hospitals and healthcare organizations  have  difficulty  in  identifying  specific  

risks  and  applying  optimal  risk  reduction activities [7]. Moreover, even though the use of reliability engineering 

tools is well established, their application to the medical industry is new. Most research in this area merely suggests 

how to assess or improve the reliability of devices in their design or manufacturing stages. To this point, best  

maintenance  strategies  for  medical  equipment  in  their  operating  context  have  not  been considered. Hospitals, 

due to possessing  a large number of difference  devices, can benefit significantly if the optimization  techniques  are  

used  properly  in  the  equipment  management  processes. In this paper we address these gaps and review the research 

literature regarding medical device inspection and maintenance. We consider various important aspects, concerned 

with MEIM including prioritization of medical equipment, maintenance optimization models applied for medical 

devices, maintenance outsourcing, and current MEIM policies applied in hospitals for improving medical equipment 

maintenance. Finally, in the discussion and conclusion section, we present the main research gaps found and 

suggestions for future research which will be the starting point to develop tools suitable for better medical devices 

management. 

 

6.1.2. Review of the existing literature 

In this section, we assess the status of research on maintenance of medical devices. We consulted a range of academic 

archives including books, research papers and theses to identify relevant research for medical device maintenance. 

The source used for our study was academic journal articles published between 1985 and 2014. Publications in 

languages other than English were not included. The archives consulted included, Proquest, ScienceDirect, Emerald, 

Google scholar, and JSTOR. Moreover, a search for additional papers in the reference lists of all papers is carried out.  

Clinical engineering departments have struggled to optimize medical device risk management using various Medical 

Equipment Management Programs (MEMPs) for more than 25 years. Many risk based MEMPs, including the seminal 

Fennigkoh and Smith method and its variations, have been proposed and are currently in use. A common theme in 

these methods is that a single measure of a number of different risks is defined and used to guide safety and 

performance inspection and preventive maintenance activities. These methods, although simple to use, present a 

number of problems including difficulty in identifying specific risks and applying optimal, specific risk reduction 

activities. It is widely recognized that although current medical equipment management methods do reduce risks, they 

are not near optimal in minimizing risks [7]. 
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A serious debate on preventive maintenance (PM) intervals is taking place among clinical engineering (CE) 

practitioners on various levels and in professional journals. The debate is focused on the standard requirements by 

regulating authorities and accreditation organisation in many countries that (PM) intervals should follow the 

equipment manufacturer’s recommendations [8]. Some devices that appear to be very similar in their function and 

design have manufacturer-recommended intervals that vary by a factor of two or more. The question has been raised 

about the credibility of these recommended intervals and whether it is based on meaningful test data. Debating the 

PM intervals with equipment manufacturers does not seem to be a practical approach because manufacturers may be 

reluctant to share that information with end-users if there are any documented data. Judging maintenance outcomes 

based on PM or safety and performance inspection (SPI) is not possible and the same applies to periodic replacement 

of parts or calibrations [6].  

Clinical and biomedical engineering professionals are still holding on to process measures rather than analysing the 

outcome of maintenance in spite of the experience from other industries, which shows that traditional PM is often 

unnecessary, if not counterproductive [9]. In 1984, the Emergency Care Research Institute (ECRI) [10] published a 

recommendation to use risk as the primary criteria for deciding which piece of equipment should be subject to SM as 

well as the frequency of the SM and risk was categorised as high-medium-low. ECRI has developed scheduled 

(planned) maintenance (SM) for most of medical equipment which is known as health device inspection and 

preventive maintenance (IPM). The IPM includes guidelines on PM and SPI. Fennigkoh and Smith [11] introduced 

another approach, which classifies equipment using three parameters, i.e. function, physical risk, maintenance 

requirements. This approach was known later as the risk-based inclusion criteria and allowed CE professionals to 

focus their PM on a limited portion of medical devices (life support). 

Ridgway [12] noted that PM does have some impact on the reliability of some items and therefore it does have some 

beneficial impact on equipment uptime. However, the discussion about what value properly executed PM brings to 

the facility’s maintenance program requires considering the impact of eliminating or increasing the intervals for some 

or all of the PM-related tests and results achieved: increased safety, reduced downtime and fewer expensive repairs. 

Ridgway [13] further noted that PM is an issue of declining importance-relative to several other equipment issues. 

Yet, US$300 million per year is still allocated to this in the USA hospitals. Ridgway further indicated that there is still 

no good consensus on the definition of PM or even why it is done, no rational process for defining a non-critical device 

and no good method for justifying PM intervals. PM does not prevent all types of equipment failure and only addresses 

failures that result from the degeneration of a device’s non-durable parts and hidden failure. 

In this review, we divide the studies used in the literature into three main categories, which are prioritization of medical 

devices, empirical researches, and mathematical modeling. The three categories, each with their own related 

approaches and references, are reported in Table 6.1 In what follows, we more specifically go into the references and 

show what has been done. 

 

6.1.3 Development of maintenance philosophies 

Maintenance management techniques have been through a major process of metamorphosis over recent years. Today, 

the maintenance progress has been provoked by the increase in complexity in manufacturing processes and variety of 
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products, growing awareness of the impact of maintenance on the environment and safety of personnel, the 

profitability of the business and quality of products. There is a paradigm shift in implementing maintenance strategies 

like condition-based maintenance (CBM) and reliability-centered maintenance (RCM). Then the risk-based 

maintenance (RBM) has been emphasized. The development of maintenance philosophies is shown in Figure 6.1 This 

figure reveals that maintenance policies are evolved over time and can be categorized as first, second, third and recent 

generations. 

 

 

Figure 6. 1 Development of maintenance philosophies [14] 

6.1.4. Empirical approaches versus mathematical models 

Today, medical equipment maintenance suffers from the same ailments that traditional medicine was suffering from 

before.  Rapid  advance  of  medical  technologies  has proven  that  traditional  maintenance  is  no  longer  enough  

to ensure that equipment is getting the best possible maintenance. Medical  equipment  industry  has  been  following  

empirical approaches  and  very  little was  done  on  mathematical modelling.  Preliminary  data  collected  from  

some  hospitals  in  USA and analysed show that current maintenance strategies might be  effective  but  there  is  no  

clear  evidence  whether they  are efficient.  However, incorporating mission-criticality concept with patient risk might 

produce much higher impact on reduction of risk.  Refocusing  resources  from  scheduled maintenance  to  higher  

impact  tasks,  e.g.,  use  error  tracking,  self-identified failures and repairs, user training and working with facilities  

and  purchasing  should  lead  to  a  balanced mix  between needs and resources [15]. 

Literature review has shown that very little research has been done to measure the availability of medical equipment 

in relation to maintenance using mathematical modelling. The empirical approach is widely used in other sectors of 

industry and various mathematical models were developed to measure availability and reliability of equipment and 

systems. Evidence in literature shows that maintenance policies based on mathematical models are much more flexible 

than heuristic policies and the great advantage of the mathematical approach is that the outcomes can be optimised 

and maximum reliability or minimal cost can be achieved [16].  

The empirical approach is based on experience and manufacturer’s recommendations. One method is called reliability 

centred maintenance (RCM), introduced about 30 years ago and considered to be empirical. RCM is based on 

condition monitoring, analysis of failure causes and investigation of operating needs and priorities. According to 

Endrenyi [16] RCM selects the critical components in equipment, which contribute to equipment failure or financial 

loss and initiates stringent maintenance programs for these components. Endrenyi further concluded that RCM helps 
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to decide where to put the next dollar budget for maintenance and is good for comparing policies but not for true 

optimisation. In RCM, six basic patterns of failure have been identified based on industrial experience (very little data 

is available for medical equipment). A study done 1982, which analysed maintenance data from the USA Navy 

industry using six patterns, found the following information in Figure 6.2 [17]. 

 

Figure 6. 2 Six basic patterns of failures in RCM [17] 

Hall [18] noted that there are two keys to RCM method, the first is having a good maintenance history of medical 

equipment and the second key is the age. Hall further indicated that RCM might be a better strategy for younger 

equipment. To balance both sides of maintenance (preventive, corrective), condition based maintenance (CBM) was 

introduced, which observes and forecasts real time health of machines where RCM studies the failure causes over a 

period of time and initiates maintenance programmes to increase the up time of these equipment. Recent development 

in CBM revealed promising technologies for advanced fault detection and forecasting. In addition, CBM increases 

productivity, availability and safety of the machinery systems [19]. In CBM, machines are continuously monitored by 

various sensors to detect failures in real-time and therefore CBM is useful in estimating the time of a future failure 

and remaining useful life. 

6.1.5. Classification and Prioritization of medical devices for maintenance activities 

The ever-increasing number and complexity of medical devices demands that hospitals establish  and  regulate  a  

Medical  Equipment  Management  Program  (MEMP)  to  ensure  that critical devices are safe and reliable and that 

they operate at the required level of performance. As fundamental aspects of this program [20] inspection, preventive 

maintenance, and testing  of  medical  equipment  should  be  reviewed  continuously  to  keep  up  with  today’s 

technological improvements and the increasing expectations of healthcare organizations. No  longer  content  to  

merely  follow  manufacturers’  recommendations,  hospital  clinical engineering  departments  all  around  the  world  

including  Canada,  Australia,  and  United  States have  begun  to  employ  more  efficient  and  cost-effective  

maintenance  strategies.  Gentles  et  al [21] have begun to develop a unique database to collect comparative  data  on  

inventory  and  maintenance  of  the  most  critical  devices  used  in  hospitals across Canada and the United States. 

This project will provide a large statistical failure data set which  could  be  used  to  establish  optimum  intervals  for  

routine  maintenance  scheduling. Ridgway  et  al. [12] provide  concise  guidelines  for  maintenance  management  

of  medical equipment  and  address  methods,  which  have  been  used  for  a  long  time  in  other  industry segments, 

such as  RCM.  Significant and critical assets should be identified and prioritized, and many techniques have been 

developed for criticality assessment of devices.  Most use some variation of the probability risk number or PRN, a 
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product of the probability of failure of an asset, severity of the consequence of the failure, and detectability of the 

failure:  

PRN =Probability of failure* Severity* Detectability*  

In  hospitals,  risk  is  a  criterion  in  criticality  assessment  of  medical  devices,  but  the definition of risk differs 

from that used in RCM. After running an evaluation on medical devices, clinical engineers decide which should be 

included in the MEMP of the hospital based on their risk scores.  

Fennigkoh  and  Smith [11] proposed  a  risk  assessment  method  to  group  medical devices on the basis of their  

Equipment Management (EM) numbers, or the sum of the numbers assigned to the device’s critical function, physical 

risk, and required maintenance: 

EM= Critical Function + Physical Risk + Required Maintenance 

Devices with an EM number above a critical value 12 are considered to have critical risk and thus are included in 

inspection and maintenance plans. In 1989, JCAHO recognized  importance  of this method and  eventually  in  2004  

approved  it  as  the  standard  (EC6.10) [5].  This  standard  allows  hospitals  not  to  perform  scheduled  inspection  

or maintenance tasks for certain pieces or types of medical equipment, if these tasks are not needed for safe and reliable 

operation [6]. Since then, Fennigkoh and Smith’s method or its many variations have been used by clinical engineers 

[7]. Ridgway [12] in his recent paper  emphasizes  that  preventive  maintenance  can  provide  a  benefit  for  just  a  

relatively  few devices,  and  a  significant  number  of  repair  calls  are  made  due  to  random  failures  of  device’s 

components. Wang and Rice [22] propose simplified version of gradient risk sampling and attribute sampling to select 

a portion of equipment for inclusion. Clinical  engineers  believe  that  risk  is  not  the  only  inclusion  criterion,  

however,  even though it is the most important one  [23]. Other criteria  which reflect the needs and reality of a hospital 

should be considered, including mission criticality, availability of backup, hazard notice, and recall history (24,25]). 

Taghipour et al. [26] presented a multi-criteria decision-making model to prioritize medical devices according to their 

criticality. Devices with lower criticality scores can be assigned a lower priority in a maintenance management 

program. However, those with higher scores should be investigated in detail to find the reasons for their higher 

criticality, and appropriate actions, such as ‘preventive maintenance’, ‘user training’, ‘redesigning the device’, etc. 

should be taken. In this paper, the authors also describe how individual score values obtained for each criterion can 

be used to establish guidelines for appropriate maintenance strategies for different classes of devices. Recently, 

Jamshidi et al [27] developed a fuzzy healthcare failure modes and effects analysis (HFMEA) method for prioritization 

of medical devices. The authors calculated the risk based on conditional probability of failures and consequence 

analysis.  

6.1.6. Inspection and maintenance optimization models 

Wang and Levenson [24] proposed a new interpretation of the function parameter and called it mission criticality, 

which they defined as the “equipment role or importance within the organisation’s mission”. Later Wang et al. 6] 

proposed a more explicit maintenance approach that uses patient risk-mission criticality as a classification method and 

a maintenance-strategy selection. According to Wang [9] ideally PM should be performed at time intervals just below 

the mean-time-between-failure (MTBF), as this would allow one to minimise resources while preventing the majority 
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of failures. Wang further proposed that the theoretical ideal interval for SPIs is (SPI period =2*(1- uptime)*MTBF). 

Uptime or availability of equipment for use is measured as a percentage of the planned operational time. Baker [28] 

assessed validity of some widely-used models of age-related failure rate, such as the power-law and loglinear Poisson 

process, using large database of failures of many types of medical equipment. According to his research the power-

law process is the best proposed model to study the dependence of failure rate on equipment age and on time since 

repair, which demonstrated a complete methodology for deriving optimum equipment replacement policies. The above 

study was limited to the use of mathematical models to assess failure rate and excluded the effect of PM on failure 

rate.  Khalaf [29] suggested a maintenance model for minimizing the risk and optimizing the cost-effectiveness of 

medical equipment. The elements of both risk management and cost-effectiveness were evaluated together with the 

role of medical equipment suppliers. The results showed a poor overall performance and lack of effective procedures 

regarding risk and costs of maintenance programs. Therefore, Khalaf revised the model to suit clinical engineering 

departments in Palestinian hospitals. Khalaf et al [15] developed a mathematical model using a mixed integer based 

approach for maintenance operations schedules for medical equipment. In addition, they proposed a greedy algorithm 

to give an initial solution for the model. Tentative conclusions from preliminary analysis done by ARAMARK  

Healthcare's  Clinical  Technology  Services show  that  current  maintenance  strategies  are  effective. 

Taghipour et al. [26] considered a repairable system with components subject to hard and soft failures; soft failures 

are only rectified at periodic inspections and are fixed with minimal repairs. They propose a model to find the optimal 

periodic inspection interval on a finite time horizon. Taghipour and Banjevic [30] further present two inspection 

optimization models over finite and infinite time horizon for a multi-component repairable system subject to hidden 

failures. Recently, Zhang [31] demonstrated how a Condition Based Maintenance (CBM) program can be used to 

utilize field data and usage data, to minimize unnecessary maintenance, and to reduce service costs. In the case study, 

the service order data, local dispensing station logs, and install asset data on medicine dispensing products were 

analyzed. The case study shows that a significant cost saving can be achieved by utilizing the existing field and usage 

data to establish the CBM program in medicine dispensing product service. In addition, Khalaf et al. 32] proposed a 

global model to measure the probability of equipment being available using real data extracted from maintenance 

history of infusion pumps and ventilators and analysed using Matlab. To confirm the validity of the developed model, 

the survival analysis approach was used to develop a model that measures the survival of equipment as a function of 

maintenance and age of equipment. The method was first tested using simulated data and the findings confirm the 

validity of the proposed approach. 

 

6.1.7. Maintenance outsourcing 

When a health care institution lacks the technical skills or specialized assets needed for the maintenance of its medical 

technology, maintenance should be outsourced. Yet while outsourcing has grown in popularity, research on 

maintenance outsourcing for medical devices in academic literature remains scarce. Research into the outsourcing of 

medical device maintenance services and its associated risks in hospitals is still in its infancy stages, and that further 

progress in this field would benefit from additional empirical study grounded in management theory. In the healthcare 

environment this problem is worthy of study, as healthcare institutions lacking the capacity to deal with these issues 

may face significantly higher costs [33]. 
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Figure 6. 3 Results of Ridgway’s 2009 study [34] 

6.1.8. Medical device-related facts and figures 

6.1.8.1 Repair calls 

A recent study conducted by Ridgway et al. [34] in which the authors used nine categories of codes to analyse ongoing 

repair calls cause coding and applied that to data captured from Master plan’s database. They studied three different 

groups of facilities, one of which consists of 14 hospitals and analysed 2,598 repair calls made over three months 

during 2009. Some of the interesting findings are (Fig. 6.3): 

I. 46.3 percent of repair calls are due to random, unpredicted failures associated with the device inherent 

reliability. 

II. 32.2 percent of repair calls are due to equipment management issues such as accessories, physical stress, 

environmental stress and user related. 

III. 7.8 percent of repair calls are battery related. 

IV. 13.7 per cent is related to inadequate PM, set-up and uncategorised repair calls.                                                                                          

Another study was conducted by Wang et al. [35] in which the authors used maintenance data collected from 40,496 

equipment records in various hospitals and applied specific failure codes developed by the team to measure 

maintenance effectiveness. The codes are assigned by CE professionals when completing SM and CM activities for 

all kinds of medical equipment. The summary of the preliminary findings of the above study is: 

- Current maintenance strategies are effective but it is not clear whether they are efficient. 

- It would be preferable to drop SPI on some equipment and use the time saved to help user. The time saved is  

estimated to be 25 per cent. 

- Refocus resources from SM (SPI+PM) to higher impact tasks, e.g. use error tracking, self-identified failures, and 

repairs. 

6.1.8.2 Observations 

We looked at scholarly papers tackling the maintenance problems, scrutinizing three major branches of papers, 

including: mathematical models, empirical research on the maintenance of medical devices, and prioritization of 

medical devices for maintenance activities. Table 6.1 shows the existing literature on maintenance of medical devices 

between 1989 and 2014. 
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Table 6.  1 Studies related to maintenance of medical devices between 1989 and 2014 

 

Author( Year) 

Optimization/ 

Prioritization/ 

Empirical 

Book/ 

Paper/ 

Thesis 

 

Description 

Fennigkoh and Smith 

(1989) [11] 

Prioritization Paper Classification of medical equipment using three  

parameters 

Wang and Levenson 

(2000) [24] 

Empirical Paper Proposed mission criticality 

Dhillon, 2000 [36] Empirical Book Medical device Reliability 

Ridgway, (2001)[25] Prioritization Paper Classifying medical devices 

Baker, (2001) [28] Optimization Paper Data-based modeling of the failure rate of repairable 

equipment 

Wang and Rice (2003) 

[22] 

Empirical Paper proposed simplified version of gradient risk sampling and 

attribute sampling 

Ridgway, M, 2003 [37] Prioritization Paper Analysing PM data by FMEA 

Hyman, 2003 [23] Empirical Paper The Theory and Practice of Preventive Maintenance 

Abdelbaset Khalaf, 2004 

[29] 

Optimization Paper Maintenance model for minimizing risk of medical 

equipment 

Wang et al. (2006a) [6] Empirical Paper Interview with Larry  Fennigkoh 

Wang et al. (2006b) [38] Empirical Paper An strategy for incorporating multiple criteria 

Hall (2006) [18] Empirical Paper Evaluation of RCM method 

Rice (2007) [7] Empirical Paper Building an effective MEMP using FTA 

Wang (2008) [9] Empirical Book A Practicum for Biomedical Engineering 

Ridgway (2008) [13] Empirical Paper Decoding the PM puzzle 

Ridgway (2009a) [8] Empirical Paper Manufacturer-recommendation PM intervals 

Ridgway (2009b) [12] Empirical Paper Optimizing PM programs 

Ridgway et al.(2009c) 

[34] 

Empirical Paper Reducing Equipment Downtime 

Stiefel, 2009 [20] Empirical Book Medical Equipment Management Manual 

Wang et al. (2010) [35] Empirical Paper Evidence-based maintenance – part II 

Khalaf  et al. (2010) [15] Empirical Paper Evidence-based mathematical maintenance model for 

medical equipment 

Gentles et al. 2010 [21] Empirical Paper Collecting comparative  data  on  inventory  and  

maintenance  of  the  most  critical  devices  used  in  

hospitals 

Wang et al. (2011) [39] Empirical Paper Enhancing Patient Safety Using Failure Code Analysis 

Taghipour (2008-12) 

[3,26,30] 

Optimization& 

Prioritization 
Thesis Reliability and Maintenance of Medical devices 

Cruz and Rincon (2012) 

[33] 

Empirical mapping 

review 
Medical device maintenance outsourcing 

Jamshidi et al. (2012) [27] Prioritization Paper A risk-based Maintenance Strategy for prioritization of 

Medical Equipment 

Wang, 2012 [2] Empirical Book Medical Equipment Maintenance: Management and 

Oversight 

Afshin Jamshidi(2012-16) 

[40] 

Optimization& 

Prioritization 

Thesis Risk-based Inspection& Maintenance of Medical Devices 

Khalaf  et al. (2013) [32] Optimization Paper The effect of maintenance on the survival of medical 

equipment 

Wang et al. (2013a) [41] Empirical Paper An estimate of patient incidents caused by medical 

equipment maintenance omissions 

Wang et al. (2013b) [42] Empirical Paper Evidence-Based Maintenance 

Bassel et al (2013) [43] Prioritization Paper Revisiting and Reassessing the major factors that affect 

device risk scores. 

Richard C. Fries (2013) 

[44] 

Empirical Book Reliable design of Medical Devices 

Qian Zhang (2013) [31] Optimization Paper Condition Based Maintenance Used in Medical Devices 

6.1.8.3. Patient incidents caused by medical equipment maintenance omissions  
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Patient incidents involving medical equipment are fairly common, but it is unclear how many of them are actually 

caused by maintenance omissions, i.e., improper or lack of scheduled and unscheduled maintenance. This question is 

important because hospitals have been allowed by The Joint Commission (TJC) to develop their own maintenance 

practice instead of following manufacturers' recommended frequencies and procedures. Wang et al. [42] reported an 

attempt to estimate the magnitude of such incidents using the sentinel events database collected by TJC. Using worst-

case assumptions, the estimates ranged 0.14-0.74 in 2011, which translates into .00011-.0006 per million equipment 

uses. These extremely low values were confirmed by a survey conducted by AAMI in which 1,526 participants 

reported no known patient incidents traceable to maintenance practice. Wang states that it seems unwise to mandate 

clinical engineering (CE) professionals to refocus their attention to manufacturers' maintenance recommendations 

versus active involvement in technology management and, especially, user training and assistance, to address the most 

frequent root causes of sentinel events. 

Figure 6.4 shows the classification of 2011 sentinel events reviewed by TJC as a percentage of the 1,242 events 

reported that year. Medical equipment-related events totaled 39 (3.1%) and represented the 10th highest category. 

These values are consistent with prior years ‘data, as there were 176 events related to medical equipment in the period 

of 2004-2011, representing 2.9% of the grand total of 6,093 events and the11th highest category. Healthcare 

organizations that 

report sentinel events to TJC are required to share its RCA results and TJC reviews them and assign one or more root 

causes to each event' Multiple causes are often assigned for each event because the outcome is typically the 

consequence of the failure or inefficiency of one or more processes instead of a single cause. Figure 6.5 shows the 

root causes of the medical equipment-related events as determined by TJC for the medical equipment-related events 

for the period of 2004-2011as a percentage of the 620 causes identified. Since TJC did not provide the root causes of 

the39 medical equipment-related events reported in2011, it was not possible to assess if these causes differ 

significantly from those of prior years [42]. 

 

 

Figure 6. 4 Number of sentinel events reported to TJC in 2011 
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Figure 6. 5 Number of root causes of sentinel events 

6.1.8.4. The effect of maintenance on the survival of medical equipment  

The recent analysis using survival approach reveals that conducting preventive maintenance (PM) on the selected 

medical equipment had an impact on survival of equipment. However, the manufacturer’s recommended PM intervals 

do not correlate to the failure rate encountered. This will contribute to the debate on PM manufacturer’s recommended 

intervals and might lead to the revision of maintenance strategies implemented by hospitals and clinical engineering 

(CE) practitioners [32]. 

6.1.9. Conclusion and directions for future works 

This paper has attempted to provide a literature review and assessment of the status of research dealing with the 

maintenance of medical devices. To the best of our knowledge, this is the first paper that has tackled this issue in a 

review. Based on literature published so for, totally 34 studies exist. These studies include 27 papers, 2 theses and 5 

books regarding maintenance of medical devices. As Fig. 6.6 shows, majority of papers are empirical. According to 

this figure, out of 34 research studies, 64% are empirical, 19% are prioritization and 17% are optimization models. 

In addition, Fig 6.7 shows the distribution of the reviewed articles. This figure depicts increasing status of research 

papers during 1989 till 2014. However it reveals that not much research has been presented in the literature during 25 

years to address proper strategies and the methods for implementing them, while maintenance optimization models 

are widely developed and applied in other industries. In addition, this review shows that most of researches have been 

done in US, while research status on maintenance strategies in other developed countries such as Canada remain scare. 

The most significant finding of this review is the need for further research in the field of maintenance of medical 

devices, as indicated by the gaps in existing research detailed above. The main suggestions for future work are as 

follows:  

1- Although there are several research works on maintenance strategy selection in different industries, there is still a 

need to use a systematic mathematical approach to help the decision maker in taking an appropriate decision for 

selecting the maintenance strategy in healthcare industries. There is no study done in healthcare area for selecting best 

maintenance strategy. There are a large number of tangible and intangible criteria, which often are in conflict with 

each other, that should be considered in selection of the best maintenance strategy. For these reasons, it is particularly 
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difficult to equipment managers choose the best maintenance strategy for each piece of equipment from a set of 

feasible alternatives. As a result, using multi attribute decision making methods can be useful. 

 

 

 

Figure 6. 6 Classification of papers from 1989 to 2014 

 

Figure 6. 7 Distribution of the reviewed articles 

2- Although there are a number of research works on maintenance strategy selection in healthcare industries, there is 

still a need to use a comprehensive framework for prioritizing critical medical devices. 

3- Research into the outsourcing of medical device maintenance services in hospitals is still in its infancy stages, and 

that further progress in this field would benefit from additional empirical study grounded in management theory.  

4- Researcher need to measure outcomes such as uptimes and failure rates as part of their PM. 

5- The use of suitable techniques and methodologies, careful investigation during the risk analysis phase, and its 

detailed and structured results are necessary to make proper risk-based maintenance decisions. 

6- Last but not least, authors working in this area should apply new integrated risk-based maintenance models rather 

than traditional methods to consider different uncertainties in hospital environment, expert’s opinion, and etc. 
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6.2 A risk-based Maintenance Strategy using Fuzzy HFMEA for prioritization of Critical 

Medical Equipment 

 

Résumé: Les équipements médicaux tels que les machines d'anesthésie nécessitent une maintenance essentielle pour 

assurer un haut niveau de fiabilité dans les services de santé. Une stratégie de maintenance basée sur les risques (RBP) 

est un outil utile pour concevoir un programme d'entretien rentable; Son objectif est de réduire le risque global. Dans 

l'évaluation des risques d'un scénario d'échec dans les organisations de soins de santé, les conséquences ont souvent 

trois caractéristiques clés: l'effet de la sécurité des patients, l'effet des ressources de maintenance et des pertes 

économiques. Dans cet article, pour quantifier la gravité des lésions du patient et des ressources de maintenance, une 

méthode d'analyse de mode de défaillance et leurs effets floue (FFMEA) est développée à partir de données provenant 

de cinq experts. En fonction de la probabilité conditionnelle de défaillances et de l'analyse des conséquences, le risque 

est calculé et priorisé. Pour faciliter la comparaison des échecs, un nouvel indice de risque est introduit. Un exemple 

numérique illustre la faisabilité de l'approche proposée pour l'équipement médical critique. Les résultats indiquent que 

cette méthode serait apte à identifier les défaillances critiques dans le processus d'entretien des équipements médicaux 

complexes en tenant compte des avis de cinq experts et la méthode proposée peut augmenter la fiabilité des machines 

à haut risque dans les industries de la santé. 

 

Mots-clés: Maintenance axée sur le risque, Analyse de mode de défaillance et leurs effets floue, Logique floue, 

Sécurité des patients, Appareils d'anesthésie. 
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6.2 A risk-based Maintenance Strategy using Fuzzy HFMEA for prioritization of Critical 

Medical Equipment 

 

Abstract: Medical equipment such as anaesthesia machines require essential maintenance to ensure high levels of 

reliability in healthcare services. A risk-based maintenance (RBP) strategy is a useful tool to design a cost-effective 

maintenance schedule; its objective is to reduce overall risk. In risk assessment of a failure scenario in healthcare 

organizations, consequences often have three key features:  patient safety effect, maintenance resources effect and 

economic loss.  In this paper, to quantify the severity of patient injury and maintenance resources, a fuzzy healthcare 

failure modes and effects analysis (HFMEA) method is  developed  using data derived from five experts. Based on 

conditional probability of failures and consequence analysis, the risk is calculated and prioritized. To facilitate the 

comparison of failures, a new risk index is introduced. A numerical example illustrates the feasibility of proposed 

approach in critical medical equipment. The results indicate that this method would be fit for identifying critical 

failures in complex medical equipment maintenance process by considering different ideas of five experts and the 

proposed method can increase the reliability of high risk machines in healthcare industries. 

 

Keywords:  Risk-based maintenance (RBM), Healthcare Failure modes and effects analysis (HFMEA), Fuzzy Logic, 

Patient safety, Anaesthesia machines. 

6.2.1. Introduction 

 
Maintenance of medical equipment is not just a question of repairing broken things.  It is an integral part of managing 

the whole lifecycle of equipment. Medical equipment brings along with it associated benefits and problems. The 

problem that draws the most attention is maintenance.  Lack of a maintenance policy can result in no advance planning 

for maintenance budgets and thus no availability of spares and accessories. Many laboratories and healthcare 

programmes suffer because the installation and maintenance requirements are not planned in advance. This renders 

much equipment unusable and many devices lie idle because of lack of spares or funds. There are two types of 

maintenance of Medical Equipment; Corrective Maintenance (or Repair) and Preventive Maintenance (Planned or 

Scheduled) (Ministry of Health and Family Welfare, 2010). 

Risk-based maintenance (RBM) methodology provides a tool for maintenance planning and decision making to reduce 

the probability of failure of equipment and the consequences of failure. The concept of risk-based maintenance was 

developed to inspect the high-risk components usually with greater frequency and thoroughness and to maintain in a 

greater manner, to achieve tolerable risk criteria. In  an  RBM  strategy in healthcare areas,  the  risk  of  a  particular  

failure  scenario  can  defined  as  the  product  of likelihood and consequences. These consequences have three key 

features: patient safety effect, maintenance resources effect and economic loss. With regard to the problem of how to 

use available resources in the most effective way, cost-effective maintenance strategies are both vital and necessary.  

Over the past few decades, maintenance strategies have been through a major metamorphosis from  primitive  

breakdown  maintenance  to  the  more  sophisticated  strategies  like  condition-based maintenance  and  reliability-

centered  maintenance  (Patton,  1983;  Rao,  1996;  Rausand,  1998).  The risk-based  maintenance  (RBM)  strategy,  

which  emerged  in  the  1990s,  provides  a  new  vision  for asset  integrity  management  (Harnly,  1998;  Kumar,  
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1998;  Montgomery,  &  Berratella,  2002; Backlund,  &  Hannu,  2002;  Farquharson,  &  Choquette,  2002;  Kjellen,  

Motet,  & Hale,  2009).  The RBM  strategy  uses  the  risk  level  as  a  criterion  to  plan  maintenance  tasks  and  

has  received increasing attention from researchers in recent years. Apeland  and  Aven  (2000)  presented  a  Bayesian  

method  for  RBM  optimization  as  an alternative  to  the  probabilistic  framework.  Jovanovic  (2003)  reviewed  

practices  and  trends  in  the area of risk-based inspection and maintenance in power and process plants by comparing 

European and  US  studies.  Arunraj  and  Maiti  (2007)  reviewed  research  on  RBM  and  risk  assessment 

technologies. Khan  and  Haddara  (2003)  proposed  a  complete  framework  for the RBM strategy, in which the 

probability of the unexpected event was determined using fault tree analysis and  the  consequences  involved  the  

estimation  of  system  performance  loss,  financial  loss, human  health  loss  and  environmental  and/or  ecological  

loss. Arunraj and Maiti (2010) used risk as a criterion to select the  appropriate  maintenance  policy  and  the  results  

showed  that  condition-based  maintenance  was suitable for high-risk equipment and corrective maintenance for low-

risk equipment. Capuano and Koritko (1996) and Ridgway (2001) have used the risk-based policy in the maintenance 

of medical devices. Taghipour (2010) proposed prioritization of medical equipment for maintenance decisions.  

However these researches indicate that there is few researches related to using risk based maintenance for critical 

medical devices and these researches don’t cover all aspects of prioritization of critical medical equipment. For 

example there is no attention to several experts' opinion or all of the experts have the same weights while they have 

different knowledge and experience and so on. In response, in the present paper, after finding the possible potential 

failures of medical devices, to  judge  the  severity  of  the  patient safety  effect and  maintenance resources effect, at 

the first step the failure probability of a medical device is calculated using a Weibull distribution model. Then, a fuzzy 

HFMEA (Healthcare Failure modes and effects analysis) is developed based on information derived from five experts. 

In the second step, for risk evaluation, a new risk index is introduced to facilitate the comparison between the 

calculated risks. To integrate the three risk indices into a single index, weight factors that represent the relative 

importance of the three consequence features are determined using an analytic hierarchy process (AHP). The 

remainder of this paper is organized as follows: section 2 proposes the framework of the improved RBM strategy; a 

numerical example is presented in section 3 to demonstrate the detailed procedures of the methodology; and finally, 

conclusion and future research are presented in the last section.  

 

6.2.2. Risk-based maintenance (RBM) strategy 

 

The  RBM  strategy  is  a  quantitative  approach  integrating  reliability  analysis  and  risk assessment to develop a 

cost-effective maintenance policy. Generally the RBM strategy consists of the  following  four  modules:  identification  

of  a  system  scope,  risk  assessment,  risk  evaluation  and maintenance planning. Risk can be seen as a natural 

consequence of medical devices activities. It  is  impossible  to  eliminate all  risks,  so  risks are  reduced to  an  

acceptable level.  Risk assessment requires  the  application  of  the  appropriate  techniques  to  analyze  the  risk  of  

an  unexpected  failure scenario,  which  involves  the  estimation  of  the  likelihood  (failure  probability)  and  

consequences (severity of the undesired failure scenario) (Wang, Cheng, Hu and Wu 2012). When  a  failure  scenario  

occurs in healthcare organizations,  the  consequences  often  have  three  key  features:  patient safety  effect,  

maintenance resources effect and  economic  loss.  Economic loss can be evaluated directly in terms of money. It 
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should be noted that a medical device is prone to several failure modes, and each failure mode may lead to different 

consequences.  

Therefore, FMEA is an appropriate method to analyze different failure modes and their consequences. The FMEA 

methodology is one of the risk analysis techniques recommended by international standards  such  as  Society  of  

Automotive  Engineers,  US  Military  of  Defense (Wang, Cheng, Hu and Wu 2012), and  Joint Commission on 

Accreditation of Healthcare Organizations (JACAHO). FMEA is organized around failure modes, which link the cause 

and effect of failures.  FMEA  takes  three  parameters  into  consideration; Severity  (S),  Occurrence  (O),  and  

Detection  (D) which  are  usually  evaluated  through easily  interpreted  linguistic  expressions,  each  has  a  score  

rage  (minimum  of  1  to  a maximum  of  10) but, traditional FMEA considers opinion of only one expert while, 

FMEA is a team work and all of the different opinions should be considered in order to gain better and accurate results. 

Hence, in the presented method, the purpose of performing  fuzzy HFMEA is to identify every device’s failure  modes  

and  their  effects  (Severity)  concerning  patient safety  effect and  maintenance resources effect based on information 

derived  from all relevant  experts. In addition, the opinions of all experts by assigning their knowledge and experience 

as a weight is considered. It should mentioned that sum of weights for experts should be one. In this paper weights for 

five experts are considered 0.1, 0.25, 0.15, 0.2, 0.3, respectively. 

In  this  case,  it  is reasonable  to  assume  that  a  failure  mode  is  almost  certain  to  be  detected  once  it  occurs  

under current  inspections,  which  corresponds  to  a  Detection  score  of  “1”;  thus  the  RPN  would  be  in accordance  

with  the  concept  of  risk  in  RBM  which  is  defined  as  the  product  of  likelihood  and consequences (Wang, 

Cheng, Hu and Wu 2012). According  to  domain  experts,  severity of patient safety can  be  divided  into  five  levels:  

minor,  low,  moderate, high  and  very  high;  each  level  is  described  by  linguistic  terms  in  detail  (Table  6.2). 

In addition severity of maintenance resources can be  divided  into  three  levels as mentioned in Table 6.3 (Li, Ma, 

Gong and Wang 2011). The  FMEA  is performed to identify failure modes of each device; then the experts give 

individual judgments on the  severity  level  of  the  patient safety  effect and  maintenance resources effect for  each  

failure  mode based on their own knowledge and experience, which are expressed as scores in Table 6.2 and Table 6.3 

However, this may not be realistic in real applications. Therefore, in this paper we treat the severity factors as fuzzy 

variables and evaluate them using fuzzy linguistic terms. Then, after assigning certain numbers to each failure, we 

have normalized them to get the fuzzy numbers. 

 
Table 6.  2 Description of patient safety effect 

Consequence Level Score Description 

 

 

patient safety  
effect 

Minor 1-2 Less or no effect 

Low 3-4 Minor injury or illness 

Moderate 5-6  Moderate injury or illness(can recovery) 

High 7-8 Debilitating injury or serious long-term illness 

 Very high 9-10 Death 

 

Table 6.  3 Rating guidelines of impact on the level of maintenance resources (M) (Li, Ma, Gong and Wang 2011) 

Maintenance tools Score Maintenance materials Score Maintenance skills Score 

General tools (multiple 

alternatives) 
 

1 No special 

requirements 

1 No special 

requirements 

1 
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General tools (no 

alternatives) 
 

2  

Special 
requirements 

 

2 

Level 

requirements 
 

2 

Special tools 3 High requirements 3 

 

To obtain the defuzzified values, the membership function for the severity factor needs to be defuzzified. We have 

used center of maximum (COM) method for defuzzification in Table 6.2.5. In the COM method, the average of the 

minimum defuzzified value and the maximum defuzzified value is considered to be the expected 𝑅1 (P risk) and 𝑅2(M 

risk) (Jamshidi 2010). 

 

𝑅1= dP× 𝐹𝑖(t)                                                                                                                                                                             (1) 

𝑅2= dM× 𝐹𝑖(t)                                                                                                                                                                            (2) 

 

Where, dP is defuzzified patient safety risk (P risk), dM is defuzzified maintenance resources risk (M risk), and 𝐹𝑖(t) 

is the probability of failure mode i. 

Economic loss (𝑅3) is a combination of the maintenance cost (MC) and delayed treatment loss (DL). In healthcare 

organizations, maintenance costs typically consists of both fixed costs and variable costs.  

 

𝑀𝐶 = 𝐶𝑓 + 𝐷𝑇. 𝐶𝜈                                                                                                                                                                     (3)  

 

Where MC is the maintenance cost, 𝐶𝑓 is the fixed cost of the failure scenario ($US), 𝐶𝑣 is the variable cost per hour 

of downtime ($ℎ−1), DT is the downtime, which includes the total time the device would be out of service as a result 

of the failure scenario (hours). The delayed treatment loss (DL) can be estimated by multiplying downtime (DT) and 

delayed treatment loss per hour (DLPH, $ℎ−1). 

 

DL= DT. DLPH                                                                                                                                                                          (4) 

𝑅3= DL+MC                                                                                                                                                                               (5) 

  

The  possible  risk  in  a  failure  scenario  involves  three  risk  parts:  patient safety  effect (𝑅1), maintenance resources 

effect (𝑅2) and economic loss (𝑅3); each can be calculated by multiplying the failure probability and the corresponding 

consequences (normalized numbers).  

 

6.2.3. New proposed risk index for risk evaluation 

The  purpose  of  risk  evaluation  is  to  judge  whether  the  calculated  risk  is  acceptable. In  order  to  facilitate  the  

comparison risk indices of failure modes,  a new risk  index  ( RI )  is  introduced. The risk index of the three risk parts 

should be integrated into a single index.  Thus, weight factors that respectively represent the relative importance of 

the three consequence features are required.   The AHP  is a  popular  multiple criteria  decision-making tool, and  has  

been  used  in almost all applications  related  to  decision  making  (Vaidya,  &  Kumar,  2006;  Ho,  2008).  Its basic 

principal is that the weight factors are derived from comparing the importance of factors two at a time. In the present 

paper, AHP is used to determine the values of three weight factors: patient safety effect and economic loss are ranked 

as being more important than maintenance resources effect.  On the basis of the three weight factors, the risk index 

can be calculated as follows:  
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𝑅𝐼 = √𝑤1 × 𝑅1 + 𝑤2 × 𝑅2 + 𝑤3 × 𝑅3
3 = √𝑅𝐼1 +𝑅𝐼2 +𝑅𝐼3 

3
                                                                                             (6)  

 

Where  𝑤1  , 𝑤2    and 𝑤3    are weight factors of patient safety effect, maintenance resources effect and economic loss, 

respectively; RI   is the risk index of a failure scenario. Now we can prioritize our medical devices by using the new 

RI. Devices with higher scores should be investigated in detail to find the reasons for their higher criticality, and 

appropriate actions, such as ‘preventive maintenance’, ‘user training’, ‘redesigning the device’, etc. should be taken. 

 
6.2.4. Numerical example 

We present a simplified example to illustrate the model’s application in the prioritization of critical medical devices 

for maintenance activities. We extracted information of 4 different medical devices from Taghipour's paper 

(Taghipour, 2010). As Table 6.4 shows, we have multiple failure modes for device A and one failure mode for the 

rest.   

Table 6.  4 Risk assessment of the failure modes in four different devices (Taghipour, 2010) 

Device No. Device name Failure mode Failure effect 

 

A 

 

Infant incubator 

Audio alarms are not 

working 

Injury 

Motor is stuck Death 

B ECG physiological telemetry 

unit 

Telemetry does not detect 

lead off 

Inappropriate 

therapy 

C CT scanner Wire harness for CT 

dislodged 

Delayed treatment 

D External pacemaker Pulse generator failure Death 

 

6.2.4.1 Risk assessment  
 

6.2.4.1.1. Failure probability of basic event 

It  is  assumed  that  the  device  failure  process  follows  the  two-parameter  Weibull  distribution.  The  failure  

probability  at  a  given  time  t   can  be determined  from  the  cumulative  distribution  probability  of  the  facility,  

Eq.7 (Wang, 2012). 

 

𝐹(𝑡) = 1 − 𝑒𝑥𝑝 [−{
𝑡

𝛽
}𝛼]                                                                                                                                                           (7)  

 

The values of the two parameters α (Shape parameter) and β (Scale parameter) can be obtained from failure and 

maintenance records using maximum likelihood estimations (Shin, Lim and Lie, 1996). We assume that α and β data 

are given as table 6.5. Then, cumulative distribution probability during 1 year can be calculated; the results are listed 

in Table 6.5. 

Table 6.  5 Parameters of the probability distribution function 
Device Failure mode α β F(t) 

 

A 

Failure mode 1 1.7765 12.8924  0.5854 

Failure mode 2 2.8897 14.1356 0.4636 

B Failure mode 3 2.2255 10.3058 0.2592 

C Failure mode 4 1.7411 11.343 0.2888 

D Failure mode 5 1.9425 16.6722 0.4102 
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6.2.4.1.2. Identifying risk factors and consequence analysis  

In this step at first, five experts are selected from the operation, maintenance and management departments of the 

healthcare organization. Then  FMEA  is  used  to  identify  the  failure  modes  of each device  as  listed  in Table 6.6;  

these  five  experts  are  asked  to  make  their  own  judgments  on  the  severity  of  the patient safety  effect and  

maintenance resources effect for each failure mode. The experts give score values for patient safety effect (P effect) 

and maintenance resources effect (M effect) for each failure mode. In third column of Table 6.6, the numbers inside 

the parenthesis refer to weights of each expert based on their knowledge and experience. In fifth column of Table 6.6, 

we have normalized the P effect scores to reach fuzzy numbers (N-P). We do the same approach for M effect to get 

the normalized numbers of M (N-M). In the next step we have used COM method to calculate the defuzzified numbers 

for N-P and N-M. Finally, the patient safety  risk (P risk) and  maintenance resources risk (M risk)  is  calculated  as  

the  product  of  the  failure  probability  and  consequence  scores by using Eq.1 &2.  The results are listed in Table 

6.6.  

Table 6.  6 Risk of patient safety effect and maintenance resources effect 

 

Device 

 

Failure 

mode 

 

Expert(Weight) 
Severity of consequences P  risk M risk 

 

P 

effect 

 

N-P 

 

N-

M*W 

 

Defuzzified P 

M effect  

N-M 

N-

M*W 
 

Defuzzified 

M 
𝑴𝟏   𝑴𝟐   𝑴𝟑   M 

tota

l 

𝑹𝟏   𝑹𝟐   

 

 

 

 

A 

 

FM 1 

Exp1(0.1) 8 0.190 0.019 0.038 1 2 1 2 0.049 0.005 0.068 0.022 0.04 

Exp2 (0.25) 7 0.167 0.042 2 2 3 12 0.293 0.073 

Exp3 (0.15) 9 0.214 0.032 3 1 1 3 0.073 0.011 

Exp4( 0.2) 10 0.238 0.048 3 2 1 6 0.146 0.029 

Exp5(0.3) 8 0.190 0.057 3 2 3 18 0.439 0.132 

 

FM 2 

Exp1(0.1) 6 0.214 0.021 0.051 1 2 2 4 0.114 0.011 0.070 0.024 0.032 

Exp2 (0.25) 5 0.179 0.045 3 2 3 18 0.514 0.129 

Exp3 (0.15) 1 0.036 0.005 3 1 1 3 0.086 0.013 

Exp4( 0.2) 7 0.250 0.050 2 1 2 4 0.114 0.023 

Exp5(0.3) 9 0.321 0.096 1 2 3 6 0.171 0.051 

 

B 

 

FM 3 

Exp1(0.1) 8 0.235 0.024 0.055 2 2 3 12 0.353 0.035 0.035 0.014 0.009 

Exp2 (0.25) 7 0.206 0.051 3 1 2 6 0.176 0.044 

Exp3 (0.15) 5 0.147 0.022 2 1 3 6 0.176 0.026 

Exp4( 0.2) 4 0.118 0.024 3 2 1 6 0.176 0.035 

Exp5(0.3) 10 0.294 0.088 1 2 2 4 0.118 0.035 

 

C 

 

FM 4 

Exp1(0.1) 5 0.200 0.020 0.170 1 1 3 3 0.073 0.007 0.037 0.049 0.011 

Exp2 (0.25) 3 0.120 0.030 2 2 2 8 0.195 0.049 

Exp3 (0.15) 7 0.280 0.042 3 2 3 18 0.439 0.066 

Exp4( 0.2) 8 0.320 0.064 3 2 1 6 0.146 0.029 

Exp5(0.3) 2 0.080 0.024 2 1 3 6 0.146 0.044 

 

D 

 

FM 5 

Exp1(0.1) 6 0.188 0.019 0.150 2 1 3 6 0.222 0.022 0.044 0.062 0.018 

Exp2 (0.25) 5 0.156 0.039 2 2 2 8 0.296 0.074 

Exp3 (0.15) 4 0.125 0.019 3 1 3 9 0.333 0.050 

Exp4( 0.2) 8 0.250 0.050 1 1 2 2 0.074 0.015 

Exp5(0.3) 9 0.281 0.084 1 2 1 2 0.074 0.022 

 

The fixed costs, variable costs and downtimes of the device are obtained from maintenance records. In this paper we 

assume that the results of fixed costs, variable costs and downtimes for each device's failure are as Table 6.7. We used 

equation 3, 4 and 5 to obtain economic loss in Table 6.7. Finally, we normalized R3 numbers because they are not 

adjusted with 𝑅1 and 𝑅2 numbers. 

 

Table 6.  7 Risk of economic loss 

Device Failure mode 𝑪𝒇/$ 𝑪𝒗/$𝒉−𝟏 DT /hours DLPH/$𝒉−𝟏 Economic  loss/$ 𝑹𝟑  /$ Normalized 𝑹𝟑   

 

A 

FM 1 2152 158 24.000 1968.000 53176 31129.230 0.165 

FM 2 7874 316 48.000 1969.000 117506 54475.781 0.288 

B FM 3 1575 158 24.000 984.000 28983 7512.393 0.040 

C FM 4 3850 316 60.000 1968.000 140890 40689.032 0.215 

D FM 5 3937 316 72.000 1968.000 168385 69071.527 0.365 

 

 



132 
 

6.2.4.1.3. Using new risk index for risk evaluation 

  
In this paper, AHP was used to determine the three weight factors as follows: patient safety effect (𝑤1= 0.5958),  

environmental  threat  (𝑤2 =0.1958 )  and  economic  loss  (𝑤3 =0.2084 ). The detailed calculation procedures of AHP 

are not presented here. The risk index calculations for each device are shown in Table 6.8 using Eq.6.  

 
Table 6.  8 Risk evaluation results 

Device Failure mode 𝑹𝑰𝟏 𝑹𝑰𝟐 𝑹𝑰𝟑 RI Rank 

 

A 
FM 1 0.01203 0.00783 0.03429 0.37833 4 

FM 2 0.01273 0.00635 0.06001 0.42925 2 

B FM 3 0.00771 0.00179 0.00828 0.26100 5 

C FM 4 0.02649 0.00207 0.04482 0.41866 3 

D FM 5 0.03320 0.00357 0.07609 0.48325 1 

 

6.2.4.1.4. Ranking medical devices 

 

Our model is now ready to rank critical medical devices. Based on the last column in the table 6.8, the prioritization 

of devices is: FM5, FM2, FM4, FM1 and FM3. Devices with lower criticality scores can be assigned a lower priority 

in a maintenance management program. However, those with higher scores should be investigated in detail to find the 

reasons for their higher criticality, and appropriate actions, such as ‘preventive maintenance’, ‘user training’, 

‘redesigning the device’, etc, should be taken.  

 

6.2.5. Conclusion and Future research 

 

This paper presents a methodology by using an improved RBM strategy and fuzzy HFMEA for prioritization of critical 

medical devices. When quantifying  the  risk  of  a  failure  scenario in healthcare sectors,  a  consequence  analysis  

involves  three  features: patient safety  effect,  maintenance resources effect and  economic  loss. However, it should 

be noted that it is  a  sensitive  matter  to  measure  patient  injury and  maintenance resources in  monetary  terms; 

thus  a fuzzy HFMEA  method  was  developed  to  determine  the  severity  of  the  patient safety  effect and  

maintenance resources effect,  according  to the  opinions of  five  experts and by assigning different weights to their 

opinions. Maintenance process is the research object of FMEA that defects of maintenance procedures can be found; 

therefore, the problems that may exist in the maintenance process of critical medical devices could be predicted by 

adopting the technology of HFMEA. The results show that the new integrated fuzzy HFMEA and RBM strategy is a 

simple tool to prioritize critical medical devices. In addition, this method introduce new risk index which consider all 

opinions of experts team and assign weights to them based on their knowledge and experience. Future  research  should  

focus  on  the  design  of  maintenance  strategies for better scheduling of inspections and maintenance besides, other 

features such as age of a device, failure frequency, cost of repair and etc. can be added to new risk index for considering 

all aspects in critical medical devices. 
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6.3. A comprehensive Fuzzy Risk-based Maintenance Framework for Prioritization of 

Medical Devices 

Résumé: Les équipements médicaux tels que l'incubateur pour nourrissons, la pompe à perfusion, le scanner CT, etc. 

doivent être maintenus correctement pour répondre aux normes de fiabilité adéquates dans les services de santé. Cet 

article propose un nouveau cadre de priorisation exhaustif axé sur les risques pour la sélection de la meilleure stratégie 

de maintenance. Le cadre comprend trois étapes. Dans la première étape, on applique une méthode d'analyse des 

modes de défaillance et des effets floue (FFMEA) en considérant plusieurs facteurs d'évaluation des risques. Dans la 

deuxième étape, sept dimensions diverses, telles que les risques liés à l'utilisation, l'âge et l'utilisation, sont appliquées 

pour tenir compte de tous les aspects des dangers et des risques inhérents à la hiérarchisation des dispositifs médicaux. 

Enfin, on introduit une méthode simple dans la troisième étape pour trouver la stratégie de maintenance la plus 

appropriée pour chaque dispositif en fonction des scores produits par les étapes précédentes. Un exemple numérique 

illustre l'approche proposée et montre que, grâce à la méthode présentée dans ce document, les gestionnaires peuvent 

facilement classer les dispositifs médicaux pour les activités d'entretien en fonction de leurs scores de criticité. La 

mise en œuvre de ce cadre pourrait accroître la disponibilité des machines à haut risque dans les industries de la santé. 

En outre, ce cadre peut être appliqué dans d'autres industries essentielles telles que l'aviation en modifiant certains 

critères et dimensions. 

Mots-clés: Dispositifs médicaux, FMEA, Priorité à la criticité, Maintenance axée sur le risque, Hôpitaux, Prise de 

décision multi-critères 
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6.3. A comprehensive Fuzzy Risk-based Maintenance Framework for Prioritization of 

Medical Devices 

Abstract: Medical equipment such as Infant incubator, Infusion pump, CT scanner, and etc. should be maintained 

properly to meet adequate standards of reliability in healthcare services. This paper proposes a new comprehensive 

risk - based prioritization framework for selecting the best maintenance strategy. The framework encompasses three 

steps. In the first step, a fuzzy failure modes and effects analysis (FFMEA) method is applied by considering several 

risk assessment factors. In the second step, seven miscellaneous dimensions such as use-related hazards, age, and 

utilization are applied to consider all aspects of hazards and risks in prioritization of medical devices. Finally, a simple 

method is introduced in the third step in order to find the most suitable maintenance strategy for each device according 

to the scores produced by the previous steps. A numerical example illustrates the proposed approach and shows that, 

through the method introduced in this paper, managers can easily classify medical devices for maintenance activities 

according to their criticality scores. Implementation of this framework could increase the availability of high risk 

machines in healthcare industries. Moreover, this framework can be applied in other critical industries such as aviation 

by modifying some criteria and dimensions. 

Keywords: Medical devices, FMEA, Criticality prioritization, Risk-based maintenance, Hospitals, Multi criteria 

decision making 

6.3.1. Introduction 

Nowadays, safety of medical device and the hazards associated with utilization of them is one of the critical issues for 

healthcare organizations across the world [1]. Medical devices are instruments or machines that are used to diagnosis, 

monitor, treat, or prevent disease or other conditions. Degradation in the performance of critical medical devices and 

inadequately maintained medical equipment create an unacceptable risk of patient injury. In addition, there are risks 

of injury to clinical staff from simple, direct hazards, such as accidental contact with electrified parts or from 

mechanical failures within the device [3], for example defects in ultrasound machines, defective artificial cardiac 

valves, leakage of insulin pumps [4], and high number of errors in CT scans which leads to patients receiving 10 times 

the intended dose of radiation in some cases. Thus, the maintenance of medical devices is fundamental and it calls for 

an effective and efficient framework to prioritize medical devices for maintenance activities based on key criteria and 

choose the best maintenance policy for each device. 

Clinical engineering departments in hospitals have been developing programs such as Medical Equipment 

Management Program (MEMP) to reduce risks associated to medical devices and to promote the safety of medical 

devices in support of patient care. Some risk based MEMP methods have been presented for assessment of devices 

and are currently in use. These models consider risk in terms of maintenance requirements of medical device, function 

of medical device, and physical harm/risk. However, other important criteria such as the number of patients served, 

economic loss, mean time to repair (MTTR), and use-related hazards, among others are overlooked. Rice [5] in his 

paper mentions that, “although these methods do reduce risks, they are not near optimal”. Besides, in most of the 

proposed models equal risk levels are assigned to similar devices and the operational and environmental conditions 
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and independently of the hospital’s mission statement are overlooked. This could lead to misclassifying devices, such 

as steam sterilizers, as low risk [6]. 

This paper presents a novel fuzzy multi-criteria decision making (FMCDM) approach to the medical device 

prioritization problem within a Risk-based Maintenance (RBM) framework. This comprehensive approach first 

prioritizes medical devices based on their criticality and then propose a diagram for selecting appropriate maintenance 

strategy in healthcare organizations.  The two objectives of this research are (1) to revisit and reassess the major 

criteria and sub criteria that can affect medical devices risk scores, and (2) to propose a three steps approach for clinical 

engineers to prioritize medical devices and select the best maintenance strategy for them. The first step consists in 

applying FFMEA method to calculate the Risk Priority Index (RPID) for each device. In the proposed FFMEA model, 

three criteria – Severity (S), Occurrence (O) and Detection (D) – and eight sub-criteria have been considered. In the 

second step, seven miscellaneous dimensions are applied and Total Intensity (TI) score is calculated based on weighted 

sum of seven miscellaneous dimensions in order to take into account other aspects of hazards as well as S, O and D. 

Finally, in the third step, a maintenance planning diagram is proposed according to the scores produced by the previous 

steps. The proposed approach is illustrated by an academic example including five medical equipment. 

The rest of this paper is organized as follows. Section 2 draws a literature review on the existing approaches to the 

medical device prioritization problem. Section 3 describes the proposed approach, while Section 4 illustrates its 

application on an academic numerical example. Conclusions and directions for future research are presented in Section 

5. 

6.3.2. Literature review 

The prioritization of medical devices into risk management programs based on risk scores has become a capital task 

for healthcare organizations. The medical equipment standards presented by the Joint Commission on Accreditation 

of Healthcare Organizations (JCAHO) have forced hospitals in US to use their own risk management tools in order to 

decide which equipment must be involved in the MEMP [2]. In 1989, Fennigkoh and Smith [10] proposed a device 

classification scheme based on three criteria: maintenance requirements, physical harm/risk and equipment 

function. They classified medical equipment by assigning scores to the three criteria and calculating equipment 

management (EM) number using the summation of values assigned to the three criteria. Their approach includes 

any device with EM number greater than or equal 12 in the MEMP.  In 2004, JCAHO approved the Fennigkoh and 

Smith method and introduced the standard EC6.10 [11]. This method has been widely used after publication in The 

Joint Commission. However, this method is not appropriate for risk management because it merely computes an 

arithmetic average over three factors, and it is rather insensible to changes on the estimated risk of medical equipment. 

In addition, all of three criteria have the same weight and different experts’ opinions are ignored and so on. As Tawfik 

et al. [7] has mentioned in their recent paper, these shortcoming could causes some critical equipment (such as blood 

gases analyzers, hematology analyzers, and steam sterilizers) to be classified as low risk because they have low scores 

in two criteria (physical harm and equipment function). 

In 1996, the American Society for Healthcare Engineering (ASHE) [12] presented a Classification Scheme for ranking 

medical equipment according to the five criteria; equipment function (E), clinical application (A), preventive 
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maintenance requirements (P), probability of equipment failure (F), and environmental use (U). A total score (T) is 

calculated for each component using the following Equation. 

T = E + A + [(P + F + U) /3]                                                                                                                                        (1) 

Wang and Levenson [6] proposed a new interpretation for the equipment function criterion proposed in [10], and they 

suggested that it should be replaced with ‘mission criticality’ criterion as the equipment’s importance. In addition, 

they added another criterion called ‘equipment utilization rate (UR)’ to the Fennigkoh and Smith’s Equation. Finally, 

they proposed the following equation for calculating Equipment Management Rating (EMR). 

EMR= [UR × (Mission Critical + 2× Maintenance)] + 2× Risk                                                                                   (2) 

where ‘risk’ scores are obtained from the Emergency Care Research Institute (ECRI) risk classification [13] by 

assigning score 5 to high risk (H) with 5, score 4 to medium risk (M), and score 1to low risk (L). Maintenance scores 

are the same with Fennigkoh and Smith [10] maintenance criterion. Wang and Rice [14] proposed two sampling 

methods for inclusion of a portion of medical equipment in maintenance activities; a simplified version of gradient 

risk sampling (GRS) and Attributes Sampling.    

Ridgway [3] discusses that although preventive maintenance (PM) prevents some devices failures, the fact is that it is 

useful for a relatively few devices and it cannot be used for all of devices failures. He also provides guidelines for 

MEMP and introduces some tools which successfully have been used in different industries, such as Reliability 

Centered Maintenance (RCM). Youssef et al [15] proposed a medical device classification model based on their 

complexity. Their model consists of two steps: technical complexity and use complexity. Technical complexity 

includes four criteria about technical perspective such as Equipment Maintainability, while use complexity consists 

of nine criteria regarding difficulty at the operation level of medical equipment such as data entry, setup process. 

Some authors (Wang and Levenson [6], Hyman [16], Ridgway [17] and Taghipour [18]) have debated that although 

risk is an important criterion in medical equipment classification, other criteria also should be taken into account such 

as, equipment utilization rate, availability of identical devices, mission criticality, hazard notice, and recall history. To 

overcome this problem, Taghipour et al. [18] presented a multi-criteria decision-making (MCDM) method using 

Analytical Hierarchy Process (AHP) for prioritization of medical equipment based on their criticality. Their proposed 

AHP method consists of six criteria ‘Risk’, ‘Age’, ‘Equipment Function’, ‘Mission criticality’, ‘Recalls’, and 

‘Maintenance requirements’. However, the AHP method has been criticized by many authors for some certain issues 

such as the need for large number of subjective pairwise comparisons, uncertainties in experts’ ideas because of 

subjectivities in comparison process and etc.. 

Recently, Corciovă et al. [19] provided  some guidelines to  establish  and  manage  a medical equipment  quality  

assurance  program, and presented  some procedures  for  inspection,  maintenance,  evaluation,  and performance  

testing  for  medical  devices. They considered five risk criteria in their scoring system in relation to patient and staff 

members. Tawfik et al. [7] developed a fuzzy logic model for classification of medical equipment.  They used four 

criteria (Mission criticality status, equipment function, maintenance requirements, and physical risks) in order 
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to calculate the risk scores for each device. Their results show that, in certain cases, the same equipment type may 

attain different risk scores. In addition, they made a comparison between their classification scheme versus other 

schemes. This comparison illustrates that in some cases medical equipment may obtain different risk scores. 

Despite all these efforts some important points are overlooked and, in our opinion, need to be improved. Among them, 

special attention should be devoted to the followings aspects. 

1) Since prioritization and classification of medical equipment is a MCDM problem, different expert’s evaluations 

should be considered rather than prioritizing based on a sole expert’s assessment; 

2) Some criteria applied in the literature need to be reassessed and revisited; 

3) Some new criteria should be added to the reassessed criteria; 

4) The criteria and the tables used in prioritization process should be defined in a more simple and realistic way in 

order to be understandable for all of clinical experts, because most of experts in hospitals are not familiar with fuzzy 

logic principles and maintenance technical vocabulary. 

5) Most of the existing studies don’t consider the uncertainties associated to experts’ opinions; 

6) Last but not least, there is no systematic and comprehensive framework for Prioritization of Medical devices and 

classification of them for maintenance activities. 

Then, inspired by some of reliability and maintenance tools and equations successfully applied in manufacturing and 

other critical industries (such as Aviation, Oil & Gas, etc.), the main goal of this study is to first cover all of the above 

mentioned weaknesses in current prioritization systems in healthcare and then propose a comprehensive risk-based 

maintenance framework for prioritization of medical devices. To do so, first the existing criteria in the literature for 

prioritization of medical devices are reassessed and for some of criteria, new or modified equations have been 

introduced. Besides, some new criteria are defined and added to the existing criteria in order to consider all aspects in 

prioritization of devices. Then, a new comprehensive fuzzy multi criteria and multi dimensions decision making 

approach is proposed in order to prioritize medical devices based on different expert’s ideas and by considering their 

experience and knowledge. In addition, the third step of the approach contributes a new method to select appropriate 

maintenance strategies for each device.  

6.3.3. A Fuzzy FMEA based approach to the medical device prioritization  

In agreement with traditional FMEA and RBM principles, the aim of the proposed approach is to assure high 

availability for critical medical devices. In brief, this approach is able to prioritize medical devices based on their 

criticality, taking into account the different criteria and dimensions. In addition, the proposed model is able to choose 

the best maintenance strategy for each medical device. The proposed approach is comprised of the three following 

steps. 

6.3.3.1. First Step 

This step is based on a FFMEA model which integrates three criteria (D, O, and S) and eight sub criteria. In traditional 

FMEA method, the risk priorities of failure modes are obtained by using the Risk Priority Number (RPN), which is  



140 
 

the product of  three  factors (RPN = O × S × D). This method is simple but it has been criticized by several authors.  

Some of these criticisms include: 

 

A. Various sets of O, S and D may produce an identical RPN [8], 

B. The relative importance among O, S and D is overlooked [8], 

C. The method  used by  the  traditional  FMEA for calculating the risk scores of failures [9], 

D. Cost and profitability factors are ignored, 

E. Different experts opinions are ignored, 

F. The scales for S, O and D are ordinal. 

In order to overcome the traditional FMEA weaknesses, we use a fuzzy approach for computing RPN. Doing so, we 

apply a modified version of FFMEA at the first step of our model by assigning linguistic variables to RPN factors in 

order to consider uncertainties in experts’ ideas. In addition, particular weights have been assigned to experts’ ideas 

and also RPN factors. Moreover, we have added eight sub criteria to the main criteria (S, O, and D) of RPN method 

in order to consider different aspects of failures in each medical device. It should be highlighted that our proposed 

FFMEA model has the ability to consider multiple failures. All of the new/modified criteria and sub-criteria are 

defined in the sections 3.1.1, 3.1.2 and 3.1.3. 

Detectability (D) 

This criterion refers to the probability of detection of a potential failure before it occurs. In this study, detectability 

includes two following sub criteria; the chance of non-detection and Method of failure detection.  

Probability of non-detection (𝑫𝟏) 

This sub-criterion estimates the rate of detection of the device failures by applying the Table 6.9. According to Sharma 

[20],“the probability of non-detection is related to different factors including the ability of maintenance personnel to 

detect failure through periodical inspection or naked eye or with the help of machine diagnostic aids such as automatic 

controls, alarms and sensors”.  

Table 6.  9 Fuzzy ratings for detection assessment of a failure 

Visibility Detection via automatic 

diagnostic aids 

Detection after 

an inspection 

Scheduled 

inspection 

Rating  

Fuzzy 

number 
Yes Partially No Directly Indirectly No Yes No Yes No 

Probability of detection 

          Almost certain (AC) (1, 1, 2) 

          Very high (VH) (1, 2, 3) 

          High (H) (2, 3, 4) 

          Moderately high (MH) (3, 4, 5) 

          Moderate (M) (4, 5, 6) 

          Low (L) (5, 6, 7) 

          Very low (VL) (6, 7, 8) 

          Remote (R) (7, 8, 9) 



141 
 

          Very remote (VR) (8, 9, 10) 

          Absolute uncertainty 

(AU) 

(9, 10, 10) 

Table 6.9 shows the four elements and fuzzy ratings used for evaluating the 𝐷1. The fuzzy ratings in this table are 

defined in accordance with the experience of authors, the opinions of maintenance staff, and by using Braglia’s study 

[21]. Note that the ratings for this criterion have been considered in reverse scale, because we are dealing with the 

chance of ‘non-detection’. It is evident from Table 6.9 that the less a device failure is visible the less its probability of 

non- detecting grows. The second element Detection via automatic diagnostic aids refers to the auto-analysis programs 

or installed sensors to detect some defects in the device. Each expert should consider all of these four elements in 

order to be able to rate the 𝐷1 sub criterion. Fig. 6.8 shows the fuzzy membership function of this sub criterion. It 

should be noted that Figures 6.8 and 6.9 were drawn using Fuzzy Tech Software (http://www.fuzzytech.com/). 

All failure modes and their associated frequency, consequence, and detectability could be estimated using the device 

maintenance history [18]. 

 

 
Figure 6. 8 Fuzzy membership function for D1 

Method of failure detection (𝐃𝟐) 

The kind of method which is used for detecting the failures is another important indicator of detection ability for 

repairable devices. In particular, this sub criterion measures the degree of automation in inspection process of medical 

device. Table 6.10 shows the linguistic terms and their fuzzy numbers used for evaluating the method of failure 

detection and Fig. 6.9 shows the membership functions of this sub criterion. 

Table 6.  10 Fuzzy ratings for Systematic method of failure detection 

Rating Description Fuzzy rating 

Remote/unreliable 

(R) 

The device is 100% inspected and the inspection process is automatic (for example, 

automatic sensors has been installed in the device). (0, 0, 1.5) 

Low (L) There is complete inspection, but it is not automated. (1, 2.5, 4) 

Moderate (M) 
There is a process for manual inspection and it is applied only to some components in 

the device. 
(3.5, 5, 6.5) 

High (H) There is no inspection process for the device and the failure has been allowed to occur. (6, 7.5, 9) 

 

Very high (VH) 

There is no known inspection process for detecting the device failures and the failures 

can hardly be detected even with a complete inspection. 

 

(8.5, 10, 10) 

http://www.fuzzytech.com/
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It should be noted that fuzzy membership functions for the rest of sub criteria (𝑂1, 𝑂2, 𝑂3, 𝐶1, 𝐶2, 𝐶3 and 𝐶4)  are 

similar to the one in Figure 6.10 and therefore they will not be shown.  

 
Figure 6. 9 Fuzzy membership functions for D2 

Occurrence (O) 

The frequency of failures or probability of occurrence estimates the frequency of potential failure(s) or risk(s) for a 

given device. In order to calculate this probability more precisely, it is required that some sub criteria be added to the 

occurrence criterion depending on the device or system. Then, in this paper, we propose three following sub-criteria 

to be added to the occurrence criterion; Frequency or mean time between failures (𝑂1 ), Repeatability (𝑂2 ) and 

Visibility (𝑂3). These sub criteria are presented in the following. 

Mean time between failures (𝐎𝟏) 

Mean time between failures (𝑀𝑇𝐵𝐹) is one of frequently used basic measures in reliability engineering of repairable 

devices or components [22]. MTBF reports the expected time between two failures for a repairable system. Required 

data related to 𝑀𝑇𝐵𝐹 can be obtained from computerized Maintenance Management Systems (CMMS) of firms/ 

organizations, and they should be integrated with the experience of maintenance experts. In this study, 𝑀𝑇𝐵𝐹 is 

defined as a chance of failure in a period of time as shown in Table 6.11.  

Repeatability (𝐎𝟐) 

Repeatability is another important factor in terms of occurrence that should be considered in estimating the probability 

of occurrence. Geum et al. [23] define “Repeatability” as “a concept differentiated from the frequency, representing 

the frequency of occurrence of failure due to the same source within a specified time”. In this paper, repeatability is 

defined as a “same failure occurring in a period of time for a device or component” as shown in Table 6.11. It is 

evident from Table 6.11 that when a same failure occurs in a short period, (e.g. 3 months), its repeatability rating is 

very high, while when a same failure occurs in a long period of time (e.g. ten years), the repeatability rating is very 

low.  

Visibility (𝐎𝟑) 

Visibility of failures is the third important factor in measuring the probability of occurrence of failures specially hidden 

failures. It shows whether the failure is visible to the maintenance experts or not.  
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Table 6.  11 Fuzzy rating and scales for measurement of occurrence sub-criteria 

 

Rating  
 (𝑂1) (𝑂2) (𝑂3) Fuzzy 

number Chance of 

failures 

Corresponding 

𝑀𝑇𝐵𝐹  

Corresponding time  Corresponding time  

Very high 

(VH) 

Failure is almost 

inevitable 

< 3 months same failures in 3 months It is not visible at all. (8.5,10,10) 

High  

(H) 

Repeated failures 3-6 months same failures in 3-6 months Visible while using 

the device 

(6,7.5,9) 

Moderate 

(M) 

Occasional 

failures 

6 months-2 years same failures in 6-24 months Visible between two 

inspection intervals 

(3.5,5,6.5) 

Low  

(L) 

Relatively few 

failures 

2-10 years same failures in 2-10 years Visible while 

inspecting 

(1,2.5,4) 

Remote 

(R) 

Failure is 

unlikely 

>10 years failure is unlikely>10 years Visible before an 

inspection 

(0,0,1.5) 

 

Table 6.11 presents our proposal of scales for descriptive assessment of probability of failure occurrence or frequency 

of occurrence for the three sub criteria 𝑀𝑇𝐵𝐹, Repeatability, and Visibility. It also indicates the fuzzy triangular 

numbers associated to each statement.  

Failure’s consequences (S) 

When a device failure occurs in healthcare organizations, the consequences often show three major impacts:  impact 

on patient’s safety, impact on the maintenance resources, and economic loss. Then, to consider the total consequences 

of each failure mode, all its potential impacts need to be assessed.  

Patient safety (𝐒𝟏) 

According to LD.5.2 JCAHO’s patient safety standard, “leaders must ensure that an ongoing, proactive program for 

identifying risks to patient safety and reducing medical/health care errors is defined and implemented” [24]. In 

addition, possible effects of each failure mode should be identified. To do so, JCAHO proposed Health Care Failure 

Mode and Effect Analysis (HFMEA) in 2002 [25]. HFMEA is a valuable tool that focuses on patient safety. Hence, 

in this paper we considered patient safety as a first sub criterion of severity criterion in our FFMEA model. The levels 

of patient safety and the other sub-criteria of Consequences (S2, S3, S4) and their associated fuzzy rating are described 

in Table 6.12. 

Potential Risk for the Device Operator and Maintenance Personnel (𝐒𝟐) 

A potential failure or malfunction in a component or device can result in injury, permanent impairment, or even death 

to the device users or maintenance personnel as well as the patient. Then, in this paper, the potential risks for the 

device operator is considered as a second major sub criteria.  

Mean time to repair (𝐒𝟑)  
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Mean time to repair (𝑀𝑇𝑇𝑅) is one of the widely used technical measures of the maintainability for repairable devices 

or components [26]. It is the average time required to perform corrective maintenance in a device or system [22]. 

MTTR in a system is computed as “the total corrective maintenance time divided by the total number of corrective 

maintenance actions during a given period of time” [27]. 𝑀𝑇𝑇𝑅 is expressed by:  

𝑀𝑇𝑇𝑅 = (∑ 𝑀𝑇𝑇𝑅𝑖 ∗ 𝜆𝑖)/ (∑ 𝜆𝑖)
𝑛
𝑖=1

𝑛
𝑖=1   (4) 

where 𝑖 = {1, … , 𝑛} is the index for the set of units or medical devices considered, 𝑀𝑇𝑇𝑅𝑖  is the time required to repair 

item or unit i, and 
𝑖
 is the number of corrective maintenance actions of item or unit i during the considered period. In 

this paper, MTTR levels and its fuzzy ratings are defined according to the experience of authors and maintenance staff 

as shown in Table 6.12. 

Economic Loss (𝐒𝟒) 

Wang et al. [28] define “Economic Loss” in industrial petrochemical plants as “a combination of the maintenance cost 

and production loss”. Inspired by their definition, we define economic loss in healthcare organizations as a 

combination of maintenance cost (MC) and the hourly loss associated to delaying treatment (DL). Maintenance costs 

(due to a malfunction or failure in a component or medical device) contains fixed costs (e.g., the costs of spare part(s)) 

and variable costs (e.g., maintenance experts’ costs). Therefore MC for a given medical device is expressed as: 

 𝑀𝐶 = 𝐶𝑓 + 𝐷𝑇. 𝐶𝜈                                                                                                                                                       (5)                                                 

where 𝐶𝑓 and 𝐶𝑣  refer to the fixed and variable costs of the failure f, and DT is the downtime or repair time of the 

device (hr.).  

The delayed loss DL can be estimated as a product of downtime DT and hourly loss associated to delaying treatment 

DL𝑃𝐻($/hr.) 

DL= DT. DLPH                                                                                                                                                            (6)                                                                                                                                                                                                                            

𝐶4(𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒)= DL+MC (7) 

𝐶4(𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑑𝑒𝑣𝑖𝑐𝑒) =  ∑ (𝐷𝐿 + 𝑀𝐶)𝑛
𝑖=1                                                                                                                     (8)                                                                                                               

 

where n represents the number of failures that could happen for each medical device.  

Economic loss levels and their related linguistic levels and fuzzy ratings are described in Table 6.12.  

  

Table 6.  12 Consequences sub-criteria levels and their associated fuzzy rating 

Level 𝑆1 and 𝑆2 𝑆3 𝑆4 Fuzzy rating 

Very high 

(VH) 

Death Order a new 

device 

Economic Loss ≥ 

$5000 

(8.5,10,10) 

High (H) Debilitating long-term 

injury 

External 

intervention for 

repairs 

$2000≤ Economic 

Loss < $5000 

(6,7.5,9) 

Moderate 

(M) 

Moderate injury  1 day ≤MTTR <4 

days 

$500≤ Economic 

Loss < $2000 

(3.5,5,6.5) 

Low (L) Minor injury or illness 1 Hour ≤MTTR<1 

day 

$250≤ Economic 

Loss < $500 

(1,2.5,4) 
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Remote (R) Less or no effect MTTR<1 Hour $0≤ Economic Loss 

<$250 

(0,0,1.5) 

Fuzzification and defuzzification 

All of criteria and sub criteria are fuzzified using the proposed membership functions in the previous sections. The 

fuzzy conclusion is then defuzzified to get crisp 𝑅𝑃𝐼𝐷 (index D refers to the device number). The higher the value 

of 𝑅𝑃𝐼𝐷, the more critical the failure. The following paragraphs discuss the fuzzification and defuzzification 

operations. 

Let 𝑂𝑗𝑘𝑙
𝑛 , 𝑆𝑗𝑘𝑙

𝑛 , and 𝐷𝑗𝑘𝑙
𝑛  be respectively the occurrence, severity, and detection values for medical device 𝑗, failure mode 

𝑘 and sub criteria 𝑙 evaluated by expert 𝑛. Let us also consider the triangular fuzzy membership function:  

 

𝑂𝑗𝑘𝑙
𝑛 = (𝐿𝑂𝑗𝑘𝑙

𝑛 , 𝑀𝑂𝑗𝑘𝑙
𝑛 , 𝑈𝑂𝑗𝑘𝑙

𝑛 ), where 0 ≤ 𝐿𝑂𝑗𝑘𝑙
𝑛 ≤ 𝑀𝑂𝑗𝑘𝑙

𝑛 ≤ 𝑈𝑂𝑗𝑘𝑙
𝑛 ≤ 10 (9) 

𝑆𝑗𝑘𝑙
𝑛 = (𝐿𝑆𝑗𝑘𝑙

𝑛 , 𝑀𝑆𝑗𝑘𝑙
𝑛 , 𝑈𝑆𝑗𝑘𝑙

𝑛 ), where 0 ≤ 𝐿𝑆𝑗𝑘𝑙
𝑛 ≤ 𝑀𝑆𝑗𝑘𝑙

𝑛 ≤ 𝑈𝑆𝑗𝑘𝑙
𝑛 ≤ 10 (10) 

𝐷𝑗𝑘𝑙
𝑛 = (𝐿𝐷𝑗𝑘𝑙

𝑛 , 𝑀𝐷𝑗𝑘𝑙
𝑛 , 𝑈𝐷𝑗𝑘𝑙

𝑛 ), where 0 ≤ 𝐿𝐷𝑗𝑘𝑙
𝑛 ≤ 𝑀𝐷𝑗𝑘𝑙

𝑛 ≤ 𝑈𝐷𝑗𝑘𝑙
𝑛 ≤ 10 (11) 

It should be noted that weighting values 𝑤𝑖  are determined for each expert 𝑖 ∈ {1, …,n} according to their experience 

and knowledge. These values are in the [0,1] interval, and sum of them for all experts must be one. Besides, a pairwise 

comparison among, O, S and D parameters should be done in order to determine the weights of importance for each 

criterion (𝑊𝑂, 𝑊𝑆, and 𝑊𝐷). Equations (12) to (14) are used to aggregate the experts’ opinions (𝑤𝑖). 

𝑂𝑗𝑘𝑙 = ∑ 𝑂𝑗𝑘𝑙
𝑖 𝑤𝑖

𝑛

𝑖=1
 

(12) 

𝑆𝑗𝑘𝑙 = ∑ 𝑆𝑗𝑘𝑙
𝑖 𝑤𝑖

𝑛

𝑖=1
 

(13) 

𝐷𝑗𝑘𝑙 = ∑ 𝑆𝐷𝑗𝑘𝑙
𝑖 𝑤𝑖

𝑛
𝑖=1                                                                                    (14) 

After assigning weights 𝑊𝑂, 𝑊𝑆, and 𝑊𝐷 to reflect the relative importance of each criterion, we obtain the fuzzy 

membership function called μ(RPI): 

𝜇(𝑅𝑃𝐼) = 𝑊𝑂𝜇(𝑂𝑗𝑘𝑙) + 𝑊𝑆𝜇(𝑆𝑗𝑘𝑙) + 𝑊𝐷𝜇(𝐷𝑗𝑘𝑙) (15) 

In order to obtain crisp numbers from the above fuzzy set, ( μ(RPI)) should be defuzzified. There are many different 

defuzzification methods available in literature. Center-of-area (COA) method [29] is one of simple and practical 

methods for defuzzification which can be used to defuzzify the fuzzy membership functions of O, S and D 

(𝑂𝑗𝑘𝑙
𝑛 , 𝑆𝑗𝑘𝑙

𝑛 , 𝐷𝑗𝑘𝑙
𝑛 ) and also 𝜇(𝑅𝑃𝐼). Eqs. 16-18 represent 𝐷𝑂,𝐷𝑆, and, the defuzzified values of fuzzy O, S and D for a 

given device, respectively. 

 

𝐷𝑂 =
1

3
[(𝑈𝑂 − 𝐿𝑂) + (𝑀𝑂 − 𝐿𝑂)] + 𝐿𝑂 (16) 

𝐷𝑆 =
1

3
[(𝑈𝑆 − 𝐿𝑆) + (𝑀𝑆 − 𝐿𝑆)] + 𝐿𝑆 (17) 

𝐷𝐷 =
1

3
[(𝑈𝐷 − 𝐿𝐷) + (𝑀𝐷 − 𝐿𝐷)] + 𝐿𝐷 (18) 

Finally, defuzzified 𝑅𝑃𝐼  for a given device is calculated using 𝐷𝑂,𝐷𝑆, and DD in Equation (19).   
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𝑅𝑃𝐼𝐷 = 𝐷𝑂 × 𝐷𝑆 × 𝐷𝐷 (19) 

Tables 2.9 to 2.12 and Figures 6.9 and 6.10 represent the linguistic variables and their fuzzy ratings developed for 

calculating the 𝑂, 𝑆, 𝐷 criteria and sub criteria proposed in this paper for the sake of visualization.  

6.3.3.2. Second step  

In the second step, seven important miscellaneous dimensions (that could not be considered as FFMEA factors) are 

considered in order to take into account other factors and aspects strongly related to risks in prioritization of medical 

devices for maintenance works. Most of these dimensions are probabilistic (rated between 0% and 100%) and they 

are assessed by using device history and based on experts’ opinions. For each dimension d, several grades or levels 

are proposed and for each grade, an Intensity (𝐼𝑑) is associated. Intensities obtained for the seven dimensions need 

also to be weighted according to their relative importance in order to obtain the total intensity (TI) for the incumbent 

device. The seven dimensions, the computation of the Intensity score for each dimension and the medical device’s TI 

are detailed in the next subsections. 

Age 

Reliability of a medical device is a function of the age of a component or system. The failure rate of components and 

systems depends on time and it is calculated as the number of malfunctions occurring during a period of time. Bathtub 

curve describes the different rates of failures for a component or system in three distinct regions (Fig. 6.10). The first 

region, is the beginning of the life of an electronic device and it is called the “Infant Mortality region”. As shown in 

Fig. 6.10, this period is characterized by decreasing high rate of failures. According to Fries [4], “early failures occur 

usually within the first 1000 h of operation”. Generally, failures occurring in this period are because of poor component 

quality. In the second region, referred to as the “Useful Life region”, the failure rate is constant. During this period 

chance or random failures occur. These failures usually stem from weaknesses in the design, hidden component 

failures, or improper use of device. The rightmost part of the bathtub curve, known as the “Wearout” region, exhibits 

an increasing failure rate due to longterm usage of the product or fatigue. In order to consider the life cycle of medical 

devices for failures, we propose Table 6.13 for assessing sub dimension age. According to Taylor [30], the average 

life span of medical devices is 10 years. It should be highlighted that the life of equipment and failure rate relation is 

not the same for all devices. 
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Figure 6. 10 Typical Life Cycle Bathtub Curve for devices’ failures 

                                 

Table 6.  13 Assessing intensity for Age sub dimension 

Age Description Intensity 

Age < 1 000 hours of operation Infant mortality region 0 – 15% 

1000hr. ≤ Age < 90000hr. Useful life 15 – 70% 

Age ≥ 90 000 hr. of operation Wear-out region 70 – 100% 

Usage-related Hazards (URH) 

According to FDA [31], “hazards associated with device usage are a common and serious problem”. Generally, these 

hazards derive from the complexity of medical device and also user training issues. The FDA’s evidences show that 

the manner in which a device is used determines significantly its overall safety and effectiveness. In addition, evidence 

from research works indicate that the frequency and consequence of hazards due to medical device misuse might far 

exceed the device failures. Therefore, usage-related hazards should be identified, assessed and prioritized by experts 

in order to perform risk management efforts based on their severity. The device’s manual helps the analyst to identify 

use-related hazards. Our model includes use-related hazards as an important dimension in order to capture all the 

medical device- related hazards. To do so, we have proposed in Table 6.14 linguistic levels and description of each 

linguistic level to assess the potential consequences of device- related hazards.  

Table 6.  14 Intensities and their descriptions for assessing of use-related hazards 

Level Description Intensity 

Very high Death 100% 

High long-term injury 70 – 90% 

Moderate Moderate injury  40 – 70% 

Low Minor injury 10 – 40% 

Remote Less or no effect < 10% 

In order to assess precisely the linguistic levels in Table 6.14, the experts must answer some or all of the following 

questions described by FDA based on the device complexity level [31]. 

1. “What are the critical steps in setting-up and operating the device? Can they be performed adequately by 

the normal users? Is it likely that the user sets up the device incorrectly? If yes, what kind of effects would 

this have? 
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2. Is the user likely to operate the device differently than the manner indicated by the instructions? 

3. How might the physical and mental capabilities of users affect their use of the device? 

4. Are users likely to be affected by clinical or age-related conditions that impact their physical or mental 

abilities? Could these conditions affect their ability to use the device? 

5. How might safety-critical tasks be performed incorrectly and what effects would this have? 

6. How important is user training, and will users be able to operate the device safely and effectively if they 

don’t have it? 

7. Do any aspects of device use seem complex, and how can the operator become “confused” when using the 

device? 

8. Can touching or handling the device harm the user or patient? 

9. If the device fails, does it “fail safe” or give the user sufficient indication of the failure? 

10. Could device use be affected if power is lost or disconnected (inadvertently or purposefully), or if its battery 

is damaged, missing or discharged?” 

Utilization (U) 

Calculating medical device utilization rate can vary depending on the device, what it is used for, and how often among 

others. Utilization is a compound measure based on the weighted sum of two indicators. The first indicator is the 

average daily utilization rate of the device, and the second indicator, is calculated as “the proportion between the 

number of patients served per day and the maximum number of patients that the device may treat”. After proposing 

these indicators to a group of experts in the field of healthcare devices maintenance, they suggested to assign weights 

of 0.4 and 0.6 to these indicators, respectively, in order to calculate U, the medical device utilization sub dimension.  

As in the previous paragraphs, we suggest in Table 26.15 several Utilization levels and the corresponding Intensity 

allowing experts estimating Utilization intensity for each medical device.  

Table 6.  15 Assessing intensity for sub dimension utilization 

Daily utilization rate of device i Intensity 

0 ≤ U < 0.4 0 - 40% 

0.4 ≤ U < 0.7 40 – 70% 

0.7 ≤ U 70 – 100% 

Number of available identical devices 

As pointed out by Taghipour [18], having several identical medical devices does not always guarantee higher 

availability. In fact, the number of patients served each day by these devices is the major aspect impacting the 

availability of these devices. For example, if five similar MRI devices are available in a hospital and all of them are 

used at the same time, if either fails, none of the others can be substituted with the failed device. Availability of 

identical devices’ can be computed as a function of the number of identical devices and their demand per unit of time. 

Therefore, we propose a modified version of the Overall Equipment Effectiveness (OEE) indicator to compute the 

availability of identical devices. OEE is a major key performance indicator defined as the product of three constituent 

aspects [32]: 

𝑂𝐸𝐸 =  𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 × 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 ×  𝑄𝑢𝑎𝑙𝑖𝑡𝑦 (20) 
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Availability is defined as the expected proportion of time that a device is in a functioning condition. Given n as 

identical devices, we compute its Availability during a period of length t as: 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 −
∑ 𝐷𝑜𝑤𝑛𝑖

𝑛
𝑖=1

𝑛 × 24ℎ
 

(21) 

where 𝐷𝑜𝑤𝑛𝑖  is the sum of downtimes incurred by the 𝑛 concerned devices during period 𝑡. 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
𝐴𝑣𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑠𝑒𝑟𝑣𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑛 𝑑𝑒𝑣𝑖𝑐𝑒𝑠× 𝐼𝑑𝑒𝑎𝑙 𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟 𝑝𝑎𝑡𝑖𝑒𝑛𝑡

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑛 𝑑𝑒𝑣𝑖𝑐𝑒𝑠
                                (22) 

where “Ideal cycle time per patient” I the number of minutes that each patient is served by medical device 𝑖. 

Finally, we assume that the Quality of treatment is the same for all the patients and we set its value to 100%. 

Hence, once the modified OEE indicator for measurement of availability of identical medical devices has been 

computed, Table 6.16 allows obtaining intensity values. 

                                                                    

Table 6.  16 Intensity associated to Modified OEE values 

Modified OEE Intensity 

0 ≤ OEE < 0.5 70 - 100% 

0.5 ≤ OEE < 0.7 20 – 70% 

0.7 ≤ OEE 10 – 20% 

Recalls and hazard alerts 

Recalls are issued by manufacturers or the FDA to address problems in equipment that can pose risks to health or 

violate FDA regulations. Recalls should be considered as an important dimension in ranking medical devices for 

maintenance activities. This dimension could be considered as the function of the number and levels of recalls for a 

device. FDA has categorized recalls into three classes according to the level of hazard involved [32]. 

 “Class I recall: a situation in which there is a reasonable probability that the use of or exposure to a violative 

product will cause serious adverse health consequences or death”. 

 “Class II recall: a situation in which use of or exposure to a violative product may cause temporary or 

medically reversible adverse health consequences or where the probability of serious adverse health 

consequences is remote”. 

 “Class III recall: a situation in which use of or exposure to a violative product is not likely to cause adverse 

health consequences2”. 

Based on these categories, Table 6.17 proposes intensity values for the sub dimension Recalls and hazard alerts. 

 

 

Table 6.  17 Intensity values of sub dimension Recalls 

                                                           
2 U.S.A. Department of Health and Human Services, U.S. Food and Drug Administration (http://www.fda.gov/safety/recalls/ucm165546.htm) 

accessed on line 2014/06/06. 

http://www.fda.gov/safety/recalls/ucm165546.htm
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 Recalls numbers & classes Intensity 

Total number of Class I recalls (per year)≥1 100% 

3≤Total number of Class II & III recalls(per year)<5 20 – 60% 

1≤Total number of Class II & III recalls(per year)<3 10 – 20% 

Function 

The classification of medical devices is a ‘risk based’ system linking the vulnerability of the human body to the 

potential risks associated with the devices. The Medical Devices Bureau (MDB) of Health Canada has classified 

medical devices into four classes based on the safety and effectiveness; Devices placed in Class I, have the lowest 

potential risk, while Class IV devices present the highest risk. In addition, the Association for the Advancement of 

Medical Instrumentation (AAMI) classified equipment into six categories [33]. Recently, Taghipour [18] proposed 

five classes as function categories in order to describe more explicitly the function of medical devices. In this study 

we elected to use Taghipour’s classification to support the functional risk and proposed related intensities for each 

class as shown in Table 6.18.                            

Table 6.  18 Intensity values of sub dimension Function 

Class Intensity 

Life support 100% 

Therapeutic 40 – 50% 

Diagnosis 30 – 40% 

Analysis 20 – 30% 

Others 10% 

Maintenance requirements 

Each medical device has its own maintenance requirements. According to [33], a device’s maintenance task involves 

resources of three different natures: tools, materials, and skills. In [12], authors classified maintenance requirements 

for medical devices into three grades (high, medium and low). In this paper, we adopt the maintenance’s resources 

categories proposed by [33], and assign to each kind of resource potential grades and scores as shown in Table 6.19.  

Table 6.  19 Assessing maintenance resources and the proposed scores [33] 

Maintenance tools Score  Maintenance materials Score  Maintenance skills Score 

General tools (multiple 

alternatives) 
1  No special requirements 1  No special requirements 1 

General tools (no 

alternatives) 
2  

Special requirements 2 
 Level requirements 2 

Special tools 3   High requirements 3 

 

Total Maintenance requirements intensity is computed as the product of maintenance tools, maintenance materials, 

and maintenance skills scores. Since the intensities achieved by this dimension are not probabilistic, they are not 

adjusted to the other dimensions intensities. Then, we normalize the intensity values of the dimension Maintenance 

requirement by dividing the Total Maintenance requirement intensity (assigned by each expert) by the sum of all 

intensities assigned by different experts for each device. This step is illustrated in Table 6.28 in the numerical example 

section. 

Intensity scores and medical device’s TI computation 
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After acknowledging the dimensions, grades and intensities of each of the dimensions, each expert should assess each 

device with respect to every dimension 𝑑 ∈ {1, … , 7}. Assuming that n experts are consulted, the Intensity score for 

each dimension, 𝐼𝑑 is computed as: 

𝐼𝑑 = ∑ 𝑤𝑖𝐼𝑑𝑖
𝑛
𝑖=1   (23) 

where 𝐼𝑑  is the intensity score obtained for dimension d  based on the judgement of expert i, and 𝑤𝑖  are the weights 

assigned to the experts according to their experience and knowledge.  

After finding the intensity score for each dimension, the TI of a medical device can be calculated using a weighted 

sum of dimensions. To do so, an analytical hierarchy process (AHP) method has been employed to determine the set 

of weights 𝑊𝑑 reflecting the relative importance of each dimension. Weights must be in the [0,1] interval and total 

weights for all dimensions should be equal to one. Applying this process led to the weights given in Table 6.20. 

Table 6.  20 Weights assigned to the seven dimensions 

Dimension Weight 

Age 0.06 

Usage-related Hazards 0.16 

Utilization 0.07 

Number of available identical devices 0.03 

Recalls  0.16 

Function 0.43 

Maintenance requirements 0.48 

 

It should be pointed out that the different weights might be assigned to the above dimensions by participation of 

different experts from other departments, because their opinions generally differ [34]. 

Finally, the TI of a medical device is calculated as: 

𝑇𝐼 = ∑ 𝑊𝑑𝐼𝑑
𝑑
𝑗=1    (24) 

6.3.4 Third step (Maintenance Planning) 

After prioritization of all medical devices, the final step is to design an appropriate maintenance strategy. Generally, 

maintenance strategies are categorized based on their required resources such as labor and equipment and also their 

effect on maintenance of equipment [34]. Improper selection of the maintenance strategy may adversely affect the 

patient safety and even user’s safety, as well as affecting the available operating budget due to unplanned costs. 

Unfortunately, little research has been devoted to maintenance strategy selection in the particular case of medical 

equipment. Only, Taghipour [18] suggested a ‘Transformed score value’ (TSV) in order to determine appropriate 

maintenance policies for medical devices.  

In this paper we propose a Maintenance Planning Diagram (see Fig. 6.11) to identify the optimal maintenance strategy 

for each medical device. This Diagram uses the 𝑅𝑃𝐼𝐷  and 𝑇𝐼 scores which are achieved from the first and second steps 

of our approach. The abscissa reports the risk priority index numbers, valued by 𝑅𝑃𝐼𝐷  , while the ordinate reports the 

𝑇𝐼 scores achieved by the second step of the proposed method.  
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Figure 6. 11 The TI-RPI diagram 

To make a classification, the position of each medical device should be first determined on the TI-RPI diagram (by 

using 𝑅𝑃𝐼𝐷  and 𝑇𝐼 scores). The points (coordinates) placed on the diagram display medical devices and their 

disposition on each of four quarters presents information regarding the criticality of each medical device and 

maintenance actions to undertake. Figure 6.11 shows 4 zones; Zone 1 comprises a ‘Low Priority’ area where both 𝑇𝐼 

and 𝑅𝑃𝐼 have low scores. Zone 2 shows a second ‘Low Priority’ zone, including high 𝑇𝐼 scores and low 𝑅𝑃𝐼 scores. 

Zone 3 is a ‘High Priority’ area including high 𝑅𝑃𝐼 and low 𝑇𝐼 scores. Last, zone 4 is a ‘Very High Priority’ area. 

Devices within this zone have very high 𝑅𝑃𝐼 and 𝑇𝐼 scores, and therefore they are critical. According to criticality of 

the devices determined on this diagram, four different maintenance strategies described in the following, are proposed 

in Figure 6.11 to reduce the risks of the devices. 

 

1. Corrective Maintenance: This maintenance policy is carried out after detection of failure and it restores the 

component or device to an operational condition. We recommend this maintenance strategy for the devices placed 

in the first zone [35]. 

2. Time-based preventive maintenance: In this policy, the maintenance tasks are performed periodically in order to 

reduce the rate of failures. In this paper, this strategy is suggested for the devices placed in the second zone [36]. 

3. Condition-based maintenance (CBM): This maintenance policy is carried out according to data gathered from a 

set of system’s sensors and some indicators such as vibration monitoring, lubricating analysis, and ultrasonic 

testing. CBM uses real-time data for prioritization and optimization of maintenance resources. We propose this 

strategy for the devices located in the third zone [36]. 
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4. Predictive maintenance: This policy is designed to predict device failures by evaluating the observed data and 

determine when maintenance should be performed. In this paper, this strategy is suggested for the devices placed 

in the fourth zone [37]. 

 

In order to obtain reliable and safe medical devices, there should be a periodic inspection of all devices, and their 

maintenance strategies should be adjusted accordingly. Note that the proposed framework should be performed for 

each new device which is added to the inventory. Since there is no maintenance history of new devices, their 

maintenance data should be monitored and recorded in order to analysis the effectiveness of the proposed maintenance 

policy for the new device. 

6.3.5. Numerical example and discussion 

In order to illustrate the proposed framework, this section presents an academic numerical example. We extracted 

multiple failure modes of five medical devices from the literature and assessed them, following the three proposed 

steps. The judgement of three different experts were considered. 

Step 1. Construct 𝑅𝑃𝐼 assessment table for each device: Tables 2.21 to 2.25 illustrate the first step of the framework. 

Table 6.21 presents the five medical devices, their considered failure modes and the scores assigned by three experts. 

The first step of the proposed framework uses FFMEA model to calculate the RPI numbers. Each RPI factor is 

computed based on linguistic scales as described in the first step (Tables 6.9-12). Values under header ‘W’ in Table 

6.21 represents the weights assigned to each of the experts based on their experience and knowledge. The same weights 

are applied in step 2 for the experts (Table 6.26). In addition, relative AHP is employed to determine criteria weighting 

values (𝑤𝑂, 𝑤𝑆, and 𝑤𝐷) [38] and the numbers ‘‘0.4809, 0.1652, and 0.3538’’ are achieved for O, S, and D criteria, 

respectively.   

Table 6.22 shows how linguistic variables are assigned to sub criterion 𝐶4 in Table 6.21. The fixed costs (𝐶𝑓), variable 

costs (𝐶𝒗) and downtimes of the device (𝐷𝑇) are obtained from maintenance records. To achieve the related linguistic 

variables for sub criterion 𝐶4, first economic loss values are calculated by using Equations 5 to 8 and then these values 

are converted to linguistic variables by using Table 6.12.  

Table 6.  21 Numerical example Fuzzy FMEA starting values 

 

Equipment 

  

 

Failure 

  

 

Exp (W) 

  

Fuzzy Risk Priority Index 

Detection Occurrence Consequences 

𝐷1 𝐷2 𝑂1 𝑂2 𝑂3 𝐶1 𝐶2 𝐶3 𝐶4 

 

 

 

Infant 

Incubator 

 

1 

1(0.50) M M VH H VH H M H H 

2(0.15) M H H H H H M M M 

3(035) MH M VH H H VH L M M 

 

2 

1(0.50) VL R H VH VH L H M VH 

2(0.15) VL L H VH VH L M L H 

3(035) L R H H VH R VH R M 

 

3 

1(0.50) M L L L L VH M VH M 

2(0.15) MH M L R R VH R VH M 

3(035) M H L L R VH L VH M 

 

 

 

1 

1(0.50) L R M H M L L L L 

2(0.15) M L H M H L M L M 

3(035) M M M H M L VH M M 
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Defibrillator 

 

2 

1(0.50) M M H VH H M VH M L 

2(0.15) L M VH H H L H M L 

3(035) M M VH VH VH L M H L 

 

3 

1(0.50) VL R H H M VH M H VH 

2(0.15) L L M H H VH M H H 

3(035) VL L M M H H M M VH 

 

 

Surgical 

Lights 

 

1 

1(0.50) AC VH H H H H L M L 

2(0.15) AC VH H VH VH M L M L 

3(035) VH VH M H H M L M M 

 

2 

1(0.50) H H M L M M L L M 

2(0.15) VH VH M L M M M L M 

3(035) H H M M L H L R L 

Automatic X-

ray processor 

 

1 

1(0.50) AC VH H H H L VH M R 

2(0.15) VH H H VH VH L VH L L 

3(035) VH VH H H VH L VH L R 

 

 

Infusion 

Pump 

 

1 

1(0.50) VL L L M L VH H VH M 

2(0.15) L L L L L H H H VH 

3(035) R R M L L H M H H 

 

2 

1(0.50) R R H H H L M M L 

2(0.15) VL R VH VH H R M H L 

3(035) VL L H H H R H H M 

 
Table 6.  22 The economic loss assessment of failure modes 

Device Failure 

mode 
𝐶𝑓/$ 𝐶𝑣/$ℎ−1 DT /hours 𝑀𝐶 DLPH/$ℎ−1 DL Economic  

loss/$  
 

Infant Incubator 

FM 1 180 40 28 1300 25 700 2000 

FM 2 30 20 10 230 25 250 480 

FM3 500 60 95 6200 25 2375 8575 

 

Defibrillator 

FM 1 100 18 12 316 22 264 580 

FM 2 200 30 34 1220 22 748 1968 

FM 3 200 30 80 2600 22 1760 4360 

Surgical Lights 
FM 1 200 56 24 1544 19 456 2000 

FM 2 400 15 2 430 14 28 458 

Automatic X-ray  FM 1 100 12 18 316 10 180 496 

Infusion Pump FM 1 78 57 68 3954 15 1020 4974 

FM 2 50 25 12 350 12 144 494 

             

Table 6.  23 Assignment of expert’s weights (wi) and fuzzy triangular numbers 

 

Equipment 

  

 

Failure 

  

Fuzzy Risk Priority Index 

Detection Occurrence Consequences 

𝐷1 𝐷2 𝑂1 𝑂2 𝑂3 𝐶1 𝐶2 𝐶3 𝐶4 

 

 

 

Infant 

Incubator 

 

1 

2 2.5 3 . . . . . . . 3 3.75 4.5 

0.6 0.75 0.9 . . . . . . . 0.525 0.75 0.975 

1.05 1.4 1.75 . . . . . . . 1.225 1.75 2.275 

 

2 

3 3.5 4 . . . . . . . 4.25 5 5 

0.9 1.05 1.2 . . . . . . . 0.9 1.125 1.35 

1.75 2.1 2.45 . . . . . . . 1.225 1.75 2.275 

 

3 

2 2.5 3 . . . . . . . 1.75 2.5 3.25 

0.45 0.6 0.75 . . . . . . . 0.525 0.75 0.975 

1.4 1.75 2.1 . . . . . . . 1.225 1.75 2.275 

 

 

 

 

Defibrillator 

 

1 

2.5 3 3.5 . . . . . . . 0.5 1.25 2 

0.6 0.75 0.9 . . . . . . . 0.525 0.75 0.975 

1.4 1.75 2.1 . . . . . . . 1.225 1.75 2.275 

 

2 

2 2.5 3 . . . . . . . 0.5 1.25 2 

0.75 0.9 1.05 . . . . . . . 0.15 0.375 0.6 

1.4 1.75 2.1 . . . . . . . 0.35 0.875 1.4 

 

3 

3 3.5 4 . . . . . . . 4.25 5 5 

0.75 0.9 1.05 . . . . . . . 0.9 1.125 1.35 

2.1 2.45 2.8 . . . . . . . 2.975 3.5 3.5 

0.5 0.5 1 . . . . . . . 0.5 1.25 2 
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Surgical 

Lights 

 

1 

0.15 0.15 0.3 . . . . . . . 0.15 0.375 0.6 

0.35 0.7 1.05 . . . . . . . 1.225 1.75 2.275 

 

2 

1 1.5 2 . . . . . . . 1.75 2.5 3.25 

0.15 0.3 0.45 . . . . . . . 0.525 0.75 0.975 

0.7 1.05 1.4 . . . . . . . 0.35 0.875 1.4 

 

Automatic X-

ray processor 

 

1 

0.5 0.5 1 . . . . . . . 0 0 0.75 

0.15 0.3 0.45 . . . . . . . 0 0 0.225 

0.35 0.7 1.05 . . . . . . . 0 0 0.525 

 

 

Infusion 

Pump 

 

1 

3 3.5 4 . . . . . . . 1.75 2.5 3.25 

0.75 0.9 1.05 . . . . . . . 1.275 1.5 1.5 

2.45 2.8 3.15 . . . . . . . 2.1 2.625 3.15 

 

2 

3.5 4 4.5 . . . . . . . 0.5 1.25 2 

0.9 1.05 1.2 . . . . . . . 0.15 0.375 0.6 

2.1 2.45 2.8 . . . . . . . 1.225 1.75 2.275 

Using tables 2.9 to 2.12 and equations 9 to 11, linguistic variables for each dimension (in Table 6.21) are converted 

into fuzzy triangular numbers (see Table 6.23). The values in Table 6.23, are obtained by multiplying experts’ weights 

(𝑤𝑖) by fuzzy triangular numbers for each linguistic variable. It should be mentioned that Table 6.23 contains 27 

columns; however because of lack of space some columns are not shown. 

Table 6.  24 Aggregation of all sub criteria and failure modes 

 

 

Equipment 

Fuzzy Risk Priority Index 

Detection Occurrence Consequences 

Lower M Upper Lower M Upper Lower M Upper 

Infant Incubator  1.510 1.911 2.244 0.415 0.580 0.810 1.594 2.142 2.770 

Defibrillator 1.689 2.090 2.411 0.280 0.481 0.729 1.592 2.211 2.868 

Surgical Lights 0.296 0.506 0.907 0.456 0.691 0.939 1.850 2.557 3.234 

Automatic X-ray processor 0.092 0.150 0.350 0.0647 0.161 0.285 0.633 0.810 1.164 

Infusion Pump 2.180 2.560 2.821 0.511 0.746 0.994 1.297 1.916 2.566 

 

Using Equations 12 to 14, the fuzzy triangular numbers for each sub criterion in Table 6.23 are aggregated in order to 

achieve one fuzzy triangular number for each main criteria of FFMEA model (D, O and S). Results of this aggregation 

are given in Table 6.24 Finally, by using Equations 16 to 19, the defuzzified numbers for D, O and S and also final 

𝑅𝑃𝐼𝐷  scores are shown in Table 6.25. This table shows the final ranking of five medical devices.         

              

Table 6.  25 RPI value of each medical device 

Equipment 
Risk Priority Index 

Detection Occurrence Consequences 𝑅𝑃𝐼𝐷  RANK 

Infant Incubator 1.888 0.602 2.168 2.466 2 

Defibrillator 2.063 0.497 2.224 2.283 3 

Surgical Lights 0.570 0.695 2.547 1.011 4 

Automatic X-ray processor 0.197 0.170 0.869 0.029 5 

Infusion Pump 2.520 0.750 1.926 3.647 1 

As shown in Table 6.25, Infusion Pump and Automatic X-ray processor have the highest and lowest rankings among 

other medical devices, respectively.  
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Table 6.  26 Numerical values for the calculation of miscellaneous dimensions’ Intensities 

 

Device 
 

Exp(W) 
 

Age 

(0.06) 

Use-related  

Hazards 

(0.16) 

Utilization 

(0.07) 

Availability 

(0.03) 

Recalls 

(0.16)  

Function   

(0.45) 

Maintenance 

Requirements(0.07) 

 

M 

Total 

 

Normalized 

M  Tools Materials Skills 

Infant 

Incubator  

1(0.50)  60% 90% 100% 98% 30% 100% 3 3 3 27 0.375 

2(0.15)  55% 100% 95% 90% 30% 100% 3 3 3 27 0.375 

3(035)  55% 95% 98% 95% 30% 100% 2 3 3 18 0.25 

Defibrillator 

1(0.50)  45% 85% 95% 10% 0% 100% 3 3 2 18 0.285 

2(0.15)  50% 85% 90% 15% 0% 100% 2 3 3 18 0.285 

3(035)  40% 70% 90% 15% 0% 100% 3 3 3 27 0.428 

Surgical Lights 

Automatic X-

ray processor 

1(0.50)  50% 5% 20% 50% 0% 40% 1 1 1 1 0.25 

2(0.15)  40% 7% 23% 40% 0% 45% 1 1 1 1 0.25 

3(035)  50% 10% 25% 30% 0% 40% 2 1 1 2 0.05 

Surgical Lights 

Automatic X-

ray processor 

1(0.50)  90% 45% 50% 15% 0% 30% 2 2 2 8 0.15 

2(0.15)  95% 20% 55% 12% 0% 35% 3 3 3 27 0.509 

3(035)  100% 20% 50% 14% 0% 30% 3 2 3 18 0.339 

Surgical Lights 

1(0.50)  85% 90% 60% 20% 0% 50% 2 1 2 4 0.444 

2(0.15)  90% 70% 65% 20% 0% 50% 2 1 2 4 0.444 

3(035)  90% 60% 55% 18% 0% 50% 1 1 1 1 0.111 

 

Step 2. Construct assessment table: Table 6.26 reports the values produced by the second step of the proposed 

framework. All the dimensions except Maintenance requirement are estimated based on probabilistic intensities 

(presented in Tables 2.13-19). Dimension Maintenance requirement is computed as the product of Maintenance tools, 

Maintenance materials and Maintenance skills. Since the total score M isn’t probabilistic, the values of total 𝑀 are 

normalized (last column of Table 6.26). 

After assigning the intensity values for each dimension, we calculate the TI score for each medical device by using 

Equations 23 and 24. Table 6.27 shows the TI scores and rankings of five medical devices. According to this table, 

Infant Incubator and Surgical Lights have the highest and lowest rankings, respectively. 

Step 3. After prioritization of all medical devices by steps 1 and 2, the final step is to elect an appropriate maintenance 

strategy using the TI-RPI diagram. Studying the location of each medical device in the TI-RPI diagram provides useful 

information about their criticality as well as their maintenance actions to undertake. As shown by Fig. 6.12, Infant 

Incubator and Defibrillator are in the very high priority zone (Zone 4 in Fig. 6.11). According to Fig. 6.11, predictive 

or preventive maintenance strategy can be applied for devices located in this zone. In addition, condition-based 

maintenance should be applied for Infusion Pump. Automatic X-ray processor is placed in the second zone and 

according to Fig. 6.11 Time-based maintenance is proposed for devices placed in this zone. Finally, Surgical Lights 

should be maintained by corrective maintenance. 

 

Table 6.  27 Total Intensity scores and ranking for each medical device 

Equipment 6% 16% 7% 3% 16% 45% 7% TI RANK 

Infant Incubator  0.011 0.049 0.022 0.009 0.016 0.15 0.087 0.347 1 

Defibrillator 0.008 0.042 0.021 0.001 0 0.15 0.121 0.345 2 

Surgical Lights 0.009 0.003 0.005 0.004 0 0.061 0.046 0.130 5 

Automatic X-ray processor 0.018 0.017 0.011 0.001 0 0.0461 0.103 0.199 3 

Infusion Pump 0.017 0.040 0.0137 0.001 0 0.075 0.029 0.178 4 
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Figure 6. 12 TI-RPI diagram 

6.3.6. Conclusion and Future work 

The two main contributions of this study are: (i) development of a comprehensive framework for prioritization of 

critical medical devices, and (ii) proposing a method to select the best maintenance strategy for each device. The risk 

based prioritization of medical devices is valuable to healthcare organizations in prioritizing maintenance activities 

and in budget allocation to maintenance works. In addition, the findings of this research are very beneficial both 

academically and to other critical industry such as aviation, petroleum and etc. by modifying some criteria and 

dimensions.  

In contrast with other existing methods, the proposed approach offers the following strengths and main features: 

 The possibility of converting traditional factors of the FMEA into quantitative and objective factors, based 

on economic aspects. In our new FFMEA approach, the 𝑅𝑃𝐼𝐷 number is based on experts’ fuzzy linguistic 

assessment. Prioritization of medical devices contains different qualitative criteria and dimensions. 

Therefore, the expert’s judgement using linguistic terms and assigning weights to their knowledge and 

experience is an efficient way to obtain more precise results. 

 Easiness: we propose a classification for maintenance activities of medical devices through the graphic 

solution proposed in Fig. 6.3.4. 

 Considering cost aspects by attributing the economic loss to consequences of each medical device failure, 

through the maintenance costs (MC), delayed treatment losses (DL) and linguistic terms proposed in Table 

6.12. 

 In the proposed framework, several multidisciplinary experts can scale on both importance of criteria and 

evaluation of alternatives. In fact, a multidisciplinary team ensures that various opinions are taken into 

consideration. 

 The proposed framework is able to consider both qualitative and quantitative criteria/ sub criteria. 

This is an original and innovative framework and the above features, distinguish it from other methods. This 

framework produces precise and reliable prioritization results and not only a simple ordering. In addition, it is able to 

select the best maintenance policy for each medical device based on its criticality. In future works, we will develop a 
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risk-based maintenance software based on this framework in order to facilitate implementing the proposed framework 

in healthcare organizations.  
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6.4 A comprehensive fuzzy risk-based framework for replacement of medical devices 

Résumé: L'analyse de remplacement est l'un des défis de la gestion hospitalière. La gestion de milliers de dispositifs 

médicaux prend du temps et coûte chère, et dans certains cas, cela peut entraîner des erreurs qui conduisent à des 

accidents avec des conséquences potentiellement mortelles pour les patients. Par conséquent, une méthode robuste 

pour évaluer le remplacement du matériel médical est nécessaire pour éviter tout risque pour le patient. Cependant, 

peu de recherches dans ce domaine existent et les méthodes proposées comportent quelques lacunes majeures. Par 

exemple, aucun d'entre elles ne considère les incertitudes et les informations imprécises associées aux opinions des 

experts lors de l'évaluation des critères de remplacement et les critères proposés ne tiennent pas compte de tous les 

aspects du risque. Ensuite, nous proposons un cadre exhaustif axé sur le risque pour le remplacement des dispositifs 

médicaux en tenant compte des incertitudes et de plusieurs facteurs qualitatifs / quantitatifs. Dans un premier temps, 

une méthode fondée sur le risque est appliquée en fonction de la probabilité et de la gravité des échecs et en tenant 

compte de plusieurs facteurs. Ensuite, sept dimensions diverses telles que les risques liés à l'utilisation, l'âge et 

l'utilisation sont appliquées pour tenir compte de tous les aspects des dangers et des risques. Enfin, un diagramme est 

proposé pour identifier la priorité des dispositifs de remplacement. Grâce au cadre proposé, les gestionnaires peuvent 

facilement et plus précisément classer les dispositifs médicaux pour le remplacement en fonction de leurs scores de 

criticité. Ce cadre peut être adopté dans d'autres industries essentielles telles que l'aviation en modifiant certains 

critères et dimensions. 

Mots-clés: Logique floue, Appareils médicaux, Maintenance à risque, Remplacement, MCDM. 
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6.4 A comprehensive fuzzy risk-based framework for replacement of medical devices 

Abstract: Replacement analysis is one of the challenging issues in hospital management. Managing thousands of 

medical devices is time and cost consuming and in some cases this may result in errors which lead to accidents with 

potentially fatal consequence for patients. Therefore, a robust method for appraising medical equipment replacement 

is needed to avoid any risk for patient. However, little research in this area exists and proposed methods have some 

major shortcomings. For example, none of them consider uncertainties and imprecise information associated with 

experts’ opinions when assessing the replacement criteria and the proposed criteria don’t consider all risk aspects.  

Then, this paper proposes a comprehensive risk-based framework for replacement of medical devices by considering 

uncertainties and several qualitative/quantitative factors. At first, a risk-based method is applied based on probability 

and severity of failures and by considering several factors. Then, seven miscellaneous dimensions such as use-related 

hazards, age, and utilization are applied to consider all aspects of hazards and risks. Finally, a diagram is proposed to 

identify the priority of devices for replacement. Through the proposed framework, managers can easily and more 

accurately classify medical devices for replacement according to their criticality scores. This framework can be 

adopted in other critical industries such as aviation by modifying some criteria and dimensions. 

Keywords: Fuzzy logic, Medical devices, Risk-based Maintenance, Replacement, MCDM. 

 

6.4.1. Introduction 

Given the limited funding of hospitals, decisions regarding the replacement or maintenance of medical devices is a 

challenge. If these decisions are not carefully structured, ad hoc judgment can lead to a premature replacement of one 

piece of equipment while failing to replace other equipment that should have been a higher priority [Dreiss, 2008]. 

This may increase costs and also risks to patients and/or hospital personnel and visitors. Variety of criteria are proposed 

for medical devices replacement decisions in the literature and some techniques are developed for evaluating these 

criteria. However, no attention has been paid to the uncertainties and imprecise information associated with experts’ 

opinions when assessing the replacement criteria. In addition, the proposed methods are either qualitative or 

quantitative and some influential risk-based criteria such as mean time between failures (MTBF), probability of 

occurrence of failures, potential risk for the device operator, etc. are not taken into account. One of qualitative 

approaches compiles a list of medical equipment with its basic data to calculate the cumulative cost of replacement 

then determine “cut off” line that depends upon the available budget [Yeo, 2005]. Rajasekaran [Rajasekaran, 2005] 

developed an automated equipment replacement planning system (ERPS) to identify equipment most in need of 

replacement in order to optimize the utilization of capital budget resources. Taylor and Jackson [Taylor and Jackson, 

2005] developed another automated technique called “medical equipment replacement score system (MERS)” based 

on technical, safety and mission critical rules, where higher scores propose higher priorities to replace. In another 

effort, Yatsenko and Hritonenko [Yatsenko and Hritonenko, 2008] developed a new approach to model the optimal 

policies of machine replacement under technological change. They considered a single-machine replacement problem 

in continuous time and reduced it to a nonlinear integral equation for the variable optimal service life of machine. 

However, this technique is complicated for medical equipment and lacks for other important factors such as safety 
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and vendor support [Ouda et al., 2010]. A mathematical model using event tree theory for the removal of medical 

devices from hospital inventory was published by Miguel [Miguel, 2002]. This model guarantees a warning when a 

piece of medical equipment needs to be replaced.  Despite a significant percentage of success between real-world 

situation and the mathematical model proposed, the model could not predict certain cases [Cruz and Denis, 2006]. To 

solve these cases, a so-called 𝛼 factor was introduced in the model. Although interval values of 𝛼 were obtained, more 

comprehensive studies were needed to obtain more generalized 𝛼 values. To overcome this shortcoming, Cruz and 

Denis [Cruz and Denis, 2006] used artificial neural network (ANN) to classify the medical equipment life into three 

zones, depending on its service costs and age factors using software program; zone I: remove equipment, zone II: 

surveillance, zone III: maintain equipment. 

This paper proposes several risk-based criteria and seven miscellaneous dimensions for assessing the replacement of 

medical devices and presents a comprehensive risk-based framework for replacement of medical devices by 

considering uncertainties and imprecise information. The proposed framework considers the level of experience and 

knowledge of experts and it is able to assign different weights to the proposed criteria and dimensions. This framework 

is explained in section 2.  

 

6.4.2. Methodology 

In this paper, we propose a novel integrated framework for prioritizing medical devices for replacement based on 

several risk-based criteria and dimensions which are introduced in the previous section (section. 6.1). This 

comprehensive approach first prioritizes medical devices based on their criticality and then propose a diagram for 

selecting appropriate replacement strategy for medical devices in healthcare organizations. The aim of the proposed 

approach is to assure high patient and personnel safety for medical devices. The proposed approach is comprised of 

the three following steps. 

6.4.2.1. First Step 

In first step, we calculate the risk score for each medical device using the Eq. 1 and by considering uncertainties in 

experts’ ideas. In addition, particular weights have been assigned to experts’ opinions. Moreover, we have added seven 

sub criteria to the main criteria in order to consider different aspects of failures in each medical device. It should be 

highlighted that our proposed model has the ability to consider multiple failures. In this paper, risk score for each 

medical device is calculated using the following Equation: 

𝑅𝑖𝑠𝑘 =  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 × 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠                                                                                               (1) 

Probability of occurrence (O) 

The probability of occurrence estimates the frequency of potential failure(s) or risk(s) for a given device. In this paper, 

we propose two following sub-criteria to be added to the occurrence criterion in order to calculate this probability 

more precisely; Frequency or mean time between failures (𝑂1) and Repeatability (𝑂2). These sub-criteria are already 

introduced in sub-section 2.3.3. 
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Consequences of failures (S) 

In order to consider the consequences of failures, we use the four criteria that we already proposed in sub section 2.3.3. 

These criteria are; Patient safety, Personnel safety, Mean time to repair, and Economic loss.  

Fuzzification and defuzzification 

All of criteria and sub criteria are fuzzified using the proposed membership functions in the previous sections (2.3.3). 

The fuzzy conclusion is then defuzzified to get crisp 𝑅𝑃𝐼𝐷 (index D refers to the device number). The higher the value 

of 𝑅𝑃𝐼𝐷, the more critical the failure. The following paragraphs discuss the fuzzification and defuzzification 

operations. 

Let 𝑂𝑗𝑘𝑙
𝑛  and 𝑆𝑗𝑘𝑙

𝑛  be respectively the occurrence and severity values for medical device 𝑗, failure mode 𝑘 and sub 

criteria 𝑙 evaluated by expert 𝑛. Let us also consider the triangular fuzzy membership function:  

 

𝑂𝑗𝑘𝑙
𝑛 = (𝐿𝑂𝑗𝑘𝑙

𝑛 ,𝑀𝑂𝑗𝑘𝑙
𝑛 , 𝑈𝑂𝑗𝑘𝑙

𝑛 ),                                                                                                                                                 (7) 

where 0 ≤ 𝐿𝑂𝑗𝑘𝑙
𝑛 ≤ 𝑀𝑂𝑗𝑘𝑙

𝑛 ≤ 𝑈𝑂𝑗𝑘𝑙
𝑛 ≤ 10 

 

𝑆𝑗𝑘𝑙
𝑛 = (𝐿𝑆𝑗𝑘𝑙

𝑛 ,𝑀𝑆𝑗𝑘𝑙
𝑛 , 𝑈𝑆𝑗𝑘𝑙

𝑛 ),                                                                                                                                                   (8) 

where 0 ≤ 𝐿𝑆𝑗𝑘𝑙
𝑛 ≤ 𝑀𝑆𝑗𝑘𝑙

𝑛 ≤ 𝑈𝑆𝑗𝑘𝑙
𝑛 ≤ 10 

It should be noted that weighting values 𝑤𝑖  are determined for each expert 𝑖 ∈ {1, …,n} according to their experience 

and knowledge. These values are in the [0,1] interval, and sum of them for all experts must be one. Besides, a pairwise 

comparison among O and S parameters should be done in order to determine the weights of importance for each 

criterion (𝑊𝑂 and 𝑊𝑆). Equations 9 and 10 are used to aggregate the experts’ opinions (𝑤𝑖). 

𝑂𝑗𝑘𝑙 = ∑ 𝑂𝑗𝑘𝑙
𝑖 𝑤𝑖

𝑛

𝑖=1
                                                                      (9) 

𝑆𝑗𝑘𝑙 = ∑ 𝑆𝑗𝑘𝑙
𝑖 𝑤𝑖

𝑛

𝑖=1
                                                                     (10) 

After assigning weights 𝑊𝑂 and 𝑊𝑆 to reflect the relative importance of each criterion, we obtain the fuzzy 

membership function called μ(RPI): 

𝜇(𝑅𝑖𝑠𝑘) = 𝑊𝑂𝜇(𝑂𝑗𝑘𝑙) + 𝑊𝑆𝜇(𝑆𝑗𝑘𝑙)                                                                                                                                      (11) 

In order to obtain crisp numbers from the above fuzzy set, ( μ(Risk)) should be defuzzified. In this study, Center-of-

area (COA) method [Lin, 2014] is used to defuzzify the fuzzy membership functions of O and S (𝑂𝑗𝑘𝑙
𝑛 , 𝑆𝑗𝑘𝑙

𝑛 ) and also 

𝜇(𝑅𝑖𝑠𝑘). Eqs. 12-13 represent 𝐷𝑂 𝑎𝑛𝑑 𝐷𝑆.  

 

𝐷𝑂 =
1

3
[(𝑈𝑂 − 𝐿𝑂) + (𝑀𝑂 − 𝐿𝑂)] + 𝐿𝑂                                                  (12) 

𝐷𝑆 =
1

3
[(𝑈𝑆 − 𝐿𝑆) + (𝑀𝑆 − 𝐿𝑆)] + 𝐿𝑆                                                 (13) 

Finally, defuzzified 𝑅𝑃𝐼  for a given device is calculated using 𝐷𝑂 𝑎𝑛𝑑 𝐷𝑆 in Equation (14).   

𝑅𝑖𝑠𝑘𝐷 = 𝐷𝑂 × 𝐷𝑆                                                                  (14) 
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6.4.2.2. Second step  

In the second step, seven important miscellaneous dimensions are considered as previous paper in order to take into 

account other factors and aspects strongly related to replacement of medical devices. After acknowledging the 

dimensions, grades and intensities of each of the dimensions, each expert should assess each device with respect to 

every dimension 𝑑 ∈ {1, … , 7}. Assuming that n experts are consulted, the Intensity score for each dimension, 𝐼𝑑 is 

computed using equation 2.18 presented in sub section 2.3.3. In addition, the Total Intensity of each medical device 

is calculated using Eq. 19. 

6.4.3. Third step  

After ranking all of considered medical devices, the final step is to identify which device should be replaced. In this 

paper we propose a Replacement Planning Diagram (see Fig. 6.13) to identify the critical medical devices in need for 

replacement. This Diagram uses the 𝑅𝑖𝑠𝑘𝐷  and 𝑇𝐼 scores which are achieved from the first and second steps of our 

approach. The abscissa reports the risk scores, valued by 𝑅𝑖𝑠𝑘𝐷 , while the ordinate reports the 𝑇𝐼 scores achieved by 

the second step of the proposed method.  

 

Figure 6. 13 The TI-Risk diagram 

To make a classification, the position of each medical device should be first determined on the TI-Risk diagram (by 

using 𝑅𝑖𝑠𝑘𝐷  and 𝑇𝐼 scores). The points (coordinates) placed on the diagram display medical devices and their 

disposition on each of four quarters presents information regarding the criticality of each medical device for 

replacement. Figure 6.13 shows 4 zones; Zone 1 comprises a ‘Low Priority’ area where both 𝑇𝐼 and 𝑅𝑖𝑠𝑘𝐷  have low 

scores. Zone 2 shows a second ‘Low Priority’ zone, including high 𝑇𝐼 scores and low 𝑅𝑖𝑠𝑘𝐷  scores. Zone 3 is a ‘High 

Priority’ area including high 𝑅𝑖𝑠𝑘𝐷  and low 𝑇𝐼 scores. Zone 4 shows ‘Urgent’ area. Devices within this zone have 
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very high 𝑅𝑃𝐼 and 𝑇𝐼 scores, and therefore they are critical and need to be replaced as soon as possible. Devices 

located in zone 3 are less critical than zone 4, but they are close to the replacement and therefore they should be 

considered in the next 1-2 years. Since devices within zone 2 have low priority, they could be considered for 

replacement in the next 2-5 years. Devices within zone 1 very low priority for replacement and they could be 

maintained periodically.  Note that the limited budget of organization should be considered when planning for 

replacement. 

 

6.4.4. Conclusion  

Although the concept of capital equipment planning and replacement are well established in different industries, 

replacement planning of medical devices has received the least attention. According to the literature, very few 

hospitals have any formal process for evaluating medical devices replacement. In addition, there are some major 

shortcomings in currently used tools in hospitals, while this may result in errors which lead to accidents with 

potentially fatal consequence for patients and even device operator or maintenance personnel. 

Considering the patient safety and limited budget of healthcare organizations, the risk-based prioritization of medical 

devices for maintenance activities or replacement is valuable and essential. Therefore, this paper proposes a 

comprehensive fuzzy risk-based framework for replacement planning of medical devices. In contrast with other 

existing methods, the proposed framework offers the following strengths and main features; 1) it contains several 

qualitative and quantitative risk-based criteria and dimensions in order to consider all possible aspects of risks in 

replacement of devices, 2) the expert’s judgement using linguistic terms and assigning weights to their knowledge and 

experience is an efficient way to obtain more precise results, 3) several experts can scale on both importance of criteria 

and evaluation of devices, 4) the proposed framework is able to consider both qualitative and quantitative criteria/ sub 

criteria, and 5) to the best of our knowledge this is the first paper that consider uncertainties in replacement of medical 

devices. 

This is an original and innovative framework and the above features, distinguish it from other methods. This 

framework produces more precise and reliable prioritization results and not only a simple ordering. The findings of 

this research are very beneficial both academically and to other critical industry such as aviation, petroleum and etc. 

by modifying some criteria and dimensions.  
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Chapter 7. Case study 

 

Updating clinical practice guidelines: A new priority-

based quantitative framework for updating existing 

guidelines 

 

 

The seventh chapter is dedicated to the following articles: 

[1] “Influential criteria in updating clinical practice guidelines”, Afshin Jamshidi, Samira Abbasgholizadeh Rahimi, 

Daoud Ait-kadi, Angel Ruiz, Marie-eve Lamontagne, Froncoia Routhier (Submitted in Journal of Health Services 

Research). 

[2] “A comprehensive prioritization framework for updating Clinical Practice Guidelines”, Afshin Jamshidi, Angel 

Ruiz, Daoud Ait-kadi, Marie-eve Lamontagne, Froncoia Routhier (Submitted in International Journal of Medical 

Informatics). 
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7.1 Influential criteria in updating clinical practice guidelines 

Objectifs: Identifier, valider et pondérer les critères potentiellement influents dans la mise à jour des GPC. 

Méthodes: Nous avons effectué des recherches dans les bases de données MEDLINE, EMBASE, CINAHL et dans 

la bibliothèque du Réseau international de recommandations (G-I-N) pour trouver des articles, des manuels 

méthodologiques et des manuels qui donnent des conseils sur la mise à jour des GPC. Ensuite, nous avons réalisé un 

sondage en ligne entre février et juillet 2015. L'enquête a été envoyée par courrier électronique à 83 organismes publics 

et privés du monde entier et à 16 auteurs qui ont publié des articles pertinents sur la mise à jour des GPC. 

Résultats: Nous avons inclus un total de treize documents dans l'examen systématique et nous avons identifié 18 

critères potentiels. Trois articles, un manuel méthodologique et deux manuels décrivent 15 critères explicitement pour 

évaluer les GPC à mettre à jour. Nous avons identifié le reste des critères en fonction de la perception par les experts 

de certaines phrases ou paragraphes dans les articles inclus et un consensus a été atteint sur tous les critères potentiels. 

Trente institutions et 5 auteurs ont répondu au questionnaire (taux de réponse de 36%). En dernière analyse, 24 

questionnaires remplis (24%) ont été inclus. 

Conclusions: C'est la première fois que les critères de hiérarchisation utilisés pour la mise à jour des GPC ont été 

identifiés et validés. L'évaluation et la priorisation des GPC existants sur la base des critères validés peuvent favoriser 

la canalisation des ressources limitées dans la mise à jour des GPC les plus sensibles au changement, améliorant ainsi 

la qualité et la fiabilité des décisions prises en matière de santé fondées sur les GPC actuels.  

Mots-clés: Mise à jour, Guides de pratique clinique, Priorité, Critères, Prise de décision multicritères. 
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7.1 Influential criteria in updating clinical practice guidelines 

Objectives: To identify, validate and weigh the potential influential criteria in updating CPGs.  

Methods: We searched the MEDLINE, EMBASE, CINAHL databases and the Guideline International Network (G-

I-N) library for articles, methodological handbooks, and manuals that provide guidance on updating time/process of 

CPGs. Then, based on the review’s results, we conducted an online survey between February and July 2015. The 

survey was sent by email to 83 public and private organizations across the world and 16 authors who have published 

relevant articles on the subject of updating CPGs.  

Results: We included a total of thirteen documents in the systematic review and we identified 18 potential criteria. 

Three articles, one methodological handbook, and two manuals describe 15 criteria explicitly for assessing CPGs for 

updating. We identified the rest of the criteria based on experts’ perception of some sentences or paragraphs in the 

included articles and a consensus was reached on all potential criteria. Thirty institutions and 5 authors answered the 

questionnaire (36% response rate). In the final analysis, 24 completed questionnaires (24%) were included.  

Conclusions: This is the first time that criteria for prioritization used in updating CPGs were identified and validated. 

Evaluation and prioritization of existing CPGs based on the validated criteria can promote channelling limited 

resources into updating CPGs that are most sensitive to change, thus improving the quality and reliability of healthcare 

decisions made based on current CPGs. 

Keywords: Updating, Clinical Practice Guidelines, Prioritization, Criteria, Multi-Criteria Decision Making. 

BACKGROUND 

A clinical practice guideline (CPG) is a document that includes recommendations to assist physicians, healthcare 

practitioners, and patients in making decisions about diagnosis, management, and treatment for specific clinical 

conditions [1]. The lifespan of CPGs is limited since new evidences emerge continuously [2,3]. New information 

needs to be assessed frequently and CPGs should be updated regularly based on the new evidence in order to remain 

valid [4]. Many organizations recommend a full update every 3-5 years [5]. This could be a waste of the limited 

resources of organizations since the rate of new evidence for different fields is variable [6]. Currently, there is not 

robust evidence about differences between lifespan of CPGs by topic [6,7]. Updating CPGs is a crucial and complex 

process in the lifecycle of CPGs for ensuring their validity and quality [8,9]. Substantial human and financial resources 

are being expended internationally for updating existing CPGs [5,8,10,11]. According to Shekelle [11], conducting a 

systematic review in the US Agency for Healthcare Research and Quality (AHRQ) costs approximately $250,000 

USD for each CPG. Considering the limited resources of organizations, dynamic and fluid environment of CPGs, and 

substantial cost and time needed for updating, it is obvious that updating all CPGs regularly is not feasible. Therefore, 

there must be some criteria in order to prioritize the existing CPGs for updating. Prioritization of existing CPGs for 

updating is an effective way of ensuring that resources are spent in an efficient and effective manner towards the 

upkeep of the CPGs that are the most relevant and of the highest priority [10]. Although there are some criteria and 

methods for prioritization of recommendations for CPG development, there is no validated criteria, standardized 

method or comprehensive process for prioritizing CPGs and assessing when each CPG should be updated, and very 
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few research has been done into this prioritization process [4,5,8,10-15]. According to the recent systematic review of 

methodological handbooks conducted by Vernooij et al. [5], “Crucial elements in identifying new evidence, the 

assessment for the need for an update and the updating strategy itself, are generally lacking or include solely a 

reference to the development process”. Considering the above-mentioned shortcomings in updating CPGs, the main 

objectives of this study were: 1) to identify and describe the potential priority criteria in updating CPGs, and 2) to 

validate, and weigh the identified criteria. 

METHODS 

 

Systematic Review 

 

Information sources and search strategy 

 

To identify and describe the potential priority criteria in updating CPGs, we performed the primary systematic search 

in September 2014 in three databases (MEDLINE, EMBASE, and CINAHL) as well as the Guideline International 

Network (G-I-N) Library (from 1990 onwards). We included studies published in English, regardless of their 

publication status and by using a combination of free text terms (Updating, Clinical Practice Guidelines, Clinical 

Guidelines, Guidelines, Criteria, elements, factors, and Prioritization). Additionally, a secondary search was 

performed by checking the reference lists of the included studies. Moreover, we used the Google search engine to 

search the grey literature in order to find additional relevant sources. The Research Ethic Board’s approval was not 

required for this systematic review. 

Eligibility criteria 

 Articles, manuals, and methodological handbooks that provide guidance on updating methods including 

evaluating, or comparing strategies or methods and assessing the need for an update; 

 Published in English after 1990; 

 Full-text version available. 

Exclusion criteria 

 Handbooks which focus mainly on developing CPGs; 

 Reports on CPGs; 

 Updated systematic reviews or meta-analyses; 

 Health technology assessments. 

Study selection 

Two authors (AJ, SAR) independently selected potential articles by reviewing titles and abstracts, and finally full text 

for a more detailed evaluation. Disagreements were initially resolved by discussion and consensus, and if necessary, 

with the help of a third author (MEL). Since updating issue of clinical practice guidelines is common among all 

guideline developers, we opted not to target any specific population/patients or health condition in this study and we 

considered updating issue for all topics. 
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Data Extraction Strategy 

An initial extraction was performed (AJ) on 5 articles to pilot the designed form in order to obtain a reliable data 

extraction form. The results of this pilot extraction were examined to refine the data extraction form. The final 

extraction form included the following information: 

1) Characteristics of articles, manuals, and methodological handbooks including the institution/organization/author 

name, country, and publication year, 

2) Study characteristics including health topic, sample size and type of analysis, 

3) The proposed criteria/factors and their descriptions by indicating their exact address in the article (including page, 

column and paragraph), and; 

4) Limitations of the proposed model/criteria. 

The above data was systematically extracted from each study by two authors (AJ, SAR) and was double-checked by 

a third author (MEL).  

Survey 

To validate and weight the criteria identified in the previous step, an international web survey was conducted. It was 

approved by the Research Ethic Board of the Institut de réadaptation en déficience physique de Québec (IRDPQ) 

(Project # 2014-396). The survey consisted of four sections. The first section included questions about the organization 

(three questions), the second was related to the updating process of CPGs (eight questions), the third section was 

dedicated to participants’ characteristics (five questions), and the last section focused specifically on the expert’s 

perceived importance of the identified criteria which were divided into two different steps with regards to relevance 

for updating CPGs (see Supplementary file 1). At the end of each step’s questions, we included two open-ended 

comment sections in order to gather comments or additional information. In particular, we asked the participants 

whether a criterion should be eliminated from, or added to, the identified criteria for each step. The questionnaire was 

first tested with two individuals for clarity and burden. Their feedback was used to refine the final version of the 

survey for optimal understanding. We sent personalized invitation emails to each organization as well as each author, 

providing them with brief information about the study and survey. We sent three reminders at intervals of two weeks 

(1st, 3rd, 5th week) to all the participants. In addition, we extended the survey’s deadline by three months and we 

contacted all the institutions and authors who didn’t complete the survey. 

Study population 

Our study population includes: 1) experts involved in CPG development in institutions which are members of the G-

I-N and the U.S. National Guideline Clearinghouse (NGC), and: 2) the authors of relevant articles on the subject of 

updating CPGs.  
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Study sample 

We selected participant institutions based on the following criteria: 1) institutions included in NGC that published 

more than 20 CPGs, 2) members of G-I-N, and 3) institutions additionally selected by an 

expert committee based on relevance. In addition, we contacted the authors of the relevant articles found in the 

systematic review and invited them to participate in our survey. We sent an email to each organization and author 

through the address identified via the internet and the author information in the manuscripts, respectively. In addition, 

we asked them if they knew some other experts within their organization or university who could answer the survey 

and, if so, distribute the survey link to them. 

Analysis 

We used descriptive statistics to analyze the data in sections A, B, and C of the questionnaire. For questions in section 

D, we applied a multi-attribute decision making (MADM) tool called “Fuzzy Simple Additive Weighting (FSAW)” 

[16] to weight the importance of each criterion based on the experts’ opinions. This tool is explained in the following. 

Simple Additive Weighting (SAW) is the most popular and applicable MADM method [17]. The basic concept of 

SAW method is to find the weighted sum of ratings for some alternatives by some decision makers. Due to its 

simplicity, SAW method has been used in several healthcare decision making problems [16-19]. In this method, each 

criterion is assessed independently with respect to its importance in the updating process of CPGs and is given the 

most descriptive rank. Since the traditional SAW method is not able to handle the uncertainties existing in the expert’s 

opinions, in this study a Fuzzy SAW model (FSAW) was employed [16]. Parameter uncertainty refers to the 

uncertainty in decision-makers’ opinions, for example when a group of experts assign linguistic terms to a criterion 

[20]. In this study, the criteria are evaluated by adapting a nine-scale linguistic terms [21] to handle the uncertainties 

in the experts’ opinions (See Table 1). The linguistic terms are used to convert the subjective perception of experts 

into numerical values to obtain the importance weight of criteria.  

The steps of FSAW method are presented as follows: 

Step 1: form a committee of experts (𝑗 =  1, 2 …  𝑛) for rating the criteria (𝑖 = 1,… ,𝑚).  

Step 2. Determine the weights of importance for each expert (𝑊𝑗) by considering the level of knowledge and 

experience. In this study, we assigned scores 2, 6, 8, and 10 to the highest level of education (less than BSc, BSc, 

MSc, and PhD, respectively) and also scores between 0 and 10 to the expert level of experience in CPG development 

and updating. Then, we aggregated them using Microsoft Excel 2013 average function. Finally, in order to obtain the 

weights of experts in the zero to one interval, 𝑊𝑗  ∈ [0,1], we defined the following Equation. 

 𝑊𝑗 =
𝐴𝑗

∑ 𝐴𝑗
𝑛
𝑗=1

   (1) 

where 𝐴𝑗 indicates the average value of scores assigned to expert 𝑗. Note that the sum of total weights for all experts 

should be equal to one (∑ 𝑊𝑗
𝑗
𝑛=1 = 1). 
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Step 2: Assign suitable linguistic term for each criterion using Table 1. 

Table 7.  1 Linguistic terms and fuzzy triangular numbers for rating the criteria step 1 & 2. 

 Linguistic terms Fuzzy triangular numbers 

1 Absolutely Low (1, 1, 2) 

2 Very Low (1, 2, 3) 

3 Low (2, 3, 4) 

4 Medium Low (3, 4, 5) 

5 Fair (4, 5, 6) 

6 Medium High (5, 6, 7) 

7 High (6, 7, 8) 

8 Very High (7, 8, 9) 

9 Absolutely High (8, 9, 10) 

Step 3: Translate the assigned linguistic terms to fuzzy triangular numbers 𝐹𝑖𝑗 = (𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝑐𝑖𝑗) using Table 1. Figure 1 

shows a simple fuzzy triangular number. The values 𝑎, 𝑏, and 𝑐 indicate the lower, medium and upper bound for the 

assigned linguistic term. The aim of considering lower and upper bounds for each linguistic term is to take into account 

the uncertainties in experts’ opinions.  

Definition 1. A fuzzy set is built from a reference set called universe of discourse. The reference set is never fuzzy. 

Assume that 𝑈 =  {𝑥1, 𝑥2, . . . , 𝑥𝑛} is the universe of discourse, then a fuzzy set �̃� in U (�̃�  ⊂  𝑈) is defined as a set of 

ordered pairs {(𝑥𝑖, 𝜇𝐴(𝑥𝑖))} where 𝑥𝑖 ∈  𝑈, 𝜇�̃�: 𝑈 → [0, 1] is the membership function of �̃� and 𝜇�̃�(𝑥) ∈  [0, 1] is the 

degree of membership of 𝑥 in �̃� [22]. 

Definition 2. A fuzzy variable determined by the triplet �̃�[𝑎, 𝑏, 𝑐] of crisp number with 𝑎  𝑏  𝑐 is called a 

triangular fuzzy linguistic variable, which is characterized by the following member function: 

𝜇�̃� (𝑥) = {

𝑥−𝑎

𝑏−𝑎
,   𝑖𝑓 𝑙 ≤ 𝑥 ≤  𝑚

𝑐−𝑥

𝑐−𝑏
, 𝑖𝑓 𝑚 ≤ 𝑥 ≤  𝑢

0,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 
Fig 7. 1 A fuzzy triangular number. 

Step 4: Multiply the experts’ weights in the fuzzy triangular numbers and obtain the weighted fuzzy numbers (𝑊𝐹𝑖𝑗). 

 𝑊𝐹𝑖𝑗 = 𝑊𝑗 × (𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝑐𝑖𝑗)    (2) 

Step 5: Aggregate the weighted fuzzy numbers of all experts (by calculating the average value of lower, medium, and 

upper bounds for each criterion) and obtain the aggregated fuzzy number 𝐴𝐹𝑖=(𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖). 

                                          𝐴𝐹𝑖 =
(𝑊𝐹1𝑖  + 𝑊𝐹2𝑖  +⋯ + 𝑊𝐹𝑛𝑖)

𝑛
 ;            𝑗 =  1, 2 …  𝑛; 𝑖 = 1,… ,𝑚  (3) 

Step 6: Defuzzify the aggregated values (𝐴𝐹𝑖) using the following Equation [23]: 
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 𝑑 =  
(𝑎𝑖 + 2𝑏𝑖+ 𝑐𝑖)

4
   (4) 

Step 7: Normalize the defuzzified values for each criterion by dividing the diffuzzified value of each criterion into the 

sum of diffuzified values of all criteria. 

 

RESULTS 
Systematic review 

 

Study selection 

 

We initially identified 160 publications from the literature search that met the eligibility criteria and excluded 15 

duplicates and 106 references after examining the title and abstract (Figure 2). We selected 39 articles for full-text 

review and excluded 26 references. We finally included thirteen studies [4,6,10-13,24-30]. The screening process is 

summarized in Figure 2.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7. 2 Flow diagram for the identification of studies. 

Criteria for assessing the importance of each CPG (Criteria-Step 1) 

Excluded titles and abstracts: 

- Different issues (n=44) 

- Reports on CPGs (n=23) 

- CPG development (n=25) 

- Health technology assessment (n=6) 

- Meta-analysis (n=1) 

- Unable to retrieve (n=3) 

- Systematic reviews (n=4) 

n=106 

Additional records identified in other sources 

n=3 

 

Records identified through databases 

searching (n=157) 

- EMBASE (n=44) 

- PUBMED (n=65) 

- CINAHL (n=47) 

- GIN (n=1) 

 

 

 (  

 
Records after duplicates removed 

n=145 

 

Full-text documents 

n=39 

Full-text reports 

n=13 

Excluded full-text articles: 

- No information regarding criteria  

n=26 
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As Table 4 shows, the first step includes 10 criteria. The purpose of the identified criteria for this step is to rank the 

updating importance of each CPG for without assessing new evidence and only based on the following criteria in order 

to identify which CPG has a high priority for updating. In this study, we use parameter 𝐶𝑘𝑖 to call the criteria step 1 

and 2, where index 𝑘 = 1,2 refers to the step of criterion and index 𝑖 = 1,… ,𝑚 indicates the number of each criterion. 

8 out of 10 criteria were explicitly introduced by two articles [10,28] and two manuals [26,30]. Only two criteria (C11 

and C12) were identified based on the experts’ perception of some sentences or paragraphs in the included articles. 

The exact reference/s of each identified criterion is mentioned in Table 4. The complete description of each first step’s 

criterion is described in the following. Note that in some cases, we have applied different references than Table 4 in 

order to find more suitable description of the following criteria. 

1- The Scope of the guidelines (𝑪𝟏𝟏) 

The scope of the CPG represents the clinical condition, patients’ population, target audience, the type of care providers, 

guidelines’ consumers, the interventions and the types of settings in which the guidelines will be employed [31].  

2- Fast-changing fields and rate of new evidence (𝑪𝟏𝟐) 

Some fields are fast-changing such as AIDS, breast cancer, and cardiovascular risk management. Other guidelines 

may need less frequent updating [12].  

3- The required resources (𝑪𝟏𝟑) 

The required resources (including human resources and material) for updating each CPG should be considered 

according to the topic/scope of CPG [30]. This information could be estimated by experts based on the update history 

of the CPGs and by assigning linguistic variables to this criterion. 

4- Potential benefits of updating a guideline for public health (𝑪𝟏𝟒) 

Some topics have a high public health burden such as infectious diseases, while the burden of other topics is low (e.g. 

counseling for dental disease) [26]. 

5- Performance evaluations and feedback on guideline use (𝑪𝟏𝟓) 

Availability of feedback on guideline use from CPG users could improve the implementability and acceptance of the 

recommendations in subsequent versions of the CPG [28]. 

6- The appropriateness of the questions and search criteria (𝑪𝟏𝟔) 

The questions and search criteria as they are in the CPG should address current needs, such that an updated literature 

search would be useful and identify relevant evidence [10]. 

7- The last review date of CPG (𝑪𝟏𝟕) 

The last review date indicates how old the existing guideline is [10].  

8- The current relevance of the CPG (𝑪𝟏𝟖) 

This criterion indicates that how current and relevant the recommendations still are for decision making [10]. 

9- The impact of the CPG on access to care (𝑪𝟏𝟗) 



177 
 

Sometimes some decisions are made about access or payment for care by the Ministry or other organizations based 

on the recommendations in the CPG such as funding, case-by-case review or out of country requests [10]. 

10- The risk of leaving the CPG publicly available, the risk of being outdated (𝑪𝟏𝟏𝟎) 

The recommendations have the potential to cause harm to patients if they are outdated. Then, the risk of leaving the 

guideline publicly available should be assessed by experts [10]. 

Criteria for assessing the new evidences (Criteria-Step 2) 

The purpose of the identified criteria for this step is to determine the influence of the new evidence on the CPGs 

categorized as high priority (in step 1) and the actions such as full/partial update or defer to the next year that should 

be taken. This step includes 8 criteria which 7 of them were explicitly introduced by Shekelle [6,29]. The one other 

criterion (𝐶27) was identified based on the experts’ perception from a methodological handbook [27]. The 8 identified 

criteria for assessing the new evidences are described in the following.  

1- Changes in the available interventions (𝑪𝟐𝟏) 

“Since the development of a guideline, new preventive, diagnostic, or treatment interventions may have emerged to 

complement or supersede other interventions” [6]. 

2- Changes in the evidence on the benefits and harms of existing interventions (𝑪𝟐𝟐) 

“New evidence regarding the benefits and harms may invalidate the existing CPG. for example, the surgical risk of 

carotid endarterectomy has fallen substantially over the past 30 years, altering the risk-benefit ratio in favour of 

performing the operation for selected patients with symptomatic, high grade carotid stenosis” [6]. 

3- Changes in outcomes that are considered important (𝑪𝟐𝟑) 

“New evidence may identify important outcomes that were previously unappreciated or wholly unrecognized” [6]. 

4- Changes in the evidence that current practice is optimal (𝑪𝟐𝟒) 

“Guidelines are developed to help narrow the gap between ideal and current clinical practice. This gap could narrow 

over time to the point that a guideline is no longer needed” [6]. 

5- Changes in the values placed on outcomes (𝑪𝟐𝟓) 

“The values that individuals or society place on different outcomes may change over time. For example, economic 

issues have received little attention in most guidelines but will be considered explicitly in guidelines developed by the 

UK National Institute for Clinical Excellence” [6]. 

6- Changes in the resources available for healthcare (𝑪𝟐𝟔) 

“Guidelines may need to be updated to permit increased delivery of services if the level of available resources increases 

over time” [6]. 
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7- The quality of the evidence (𝑪𝟐𝟕) 

The quality of evidence indicates the level of confidence or certainty in the estimates of effects related to an outcome 

[12].  

8- The strength of the evidence (𝑪𝟐𝟖) 

This criterion indicates the level of confidence that adherence to the recommendation will do more good than harm 

[32]. It may influence the durability of guideline recommendations, with recommendations based on stronger evidence 

lasting longer [29]. 

Survey 

We contacted 83 organization including 52 members of G-I-N, 30 institutions included in NGC that published more 

than 20 CPGs, and one organization, which was not a member of G-I-N or NGC and 16 authors. After three reminders, 

we received a reply from 9 participants (9% response rate). Due to the low response rate, we extended the deadline 

of the survey until the end of June 2015 and contacted all the institutions and authors who started to complete the 

survey and didn’t complete it. Finally, we received 35 completed questionnaires. We excluded eleven questionnaires 

because more than 30% of questions were not answered. In the final analysis, we included 24 questionnaires (see 

Figure 2).  

Fig 7. 3 Survey flow diagram. 

Survey flow 

Non random sample of 83 organizations and 16 authors 

N=99 

Survey email reminder sent at week 1 

(Week of March 8th, 2015) 

Organizations and authors invited to participate in 

Internet-based survey (Week of February 28th, 2015) 

Survey email reminder sent at week 3 

(Week of March 22th, 2015) 

 

Survey email reminder sent at week 5 

(Week of April 5th, 2015) 

36% (35/97) Participated 3% explicitly Declined 

participation 

Survey closed 

(Week of July 9th, 2015) 

39% (38/99) 
Responded 
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The information obtained from participants is described in the following sub sections. It should be mentioned that the 

number of respondents for each questionnaire’s section varied between 21 and 24.  

Organizational Characteristics  

23 organizations answered the questions related to the organizational characteristics. The majority reported that they 

do update their guidelines (92%). Most of the respondents were from North America and Europe (87%). Around 50% 

of organizations reported that they publish fewer than 5 new CPGs per year. 56% of participating organizations were 

public institutions.  

Characteristics of the Updating Process of CPGs 

21 organizations answered the questions related to the updating process of CPGs (Section B of questionnaire). The 

information regarding the CPGs’ updating process of these organizations is indicated in Table 2. The time frame to 

check for the need of updating was variable between 2 to 5 years. Only one institution mentioned that they assess all 

their CPGs annually. Over 90% of the institutions reported that they review the CPGs every 3-5 years. Only one 

organization mentioned that they review “Every 2 years from publication date - with a less intensive procedure at 2, 

6, 10 years etc., and a more thorough look at 4, 8, 12 years etc.”.  

In section B of the survey, we also asked the participants whether they prioritize their CPGs based on some criteria. 

One organization reported that they usually consider a 1st come - 1st served process for minor/discrete updates. Some 

organizations reported criteria such as the topics of guidelines, policy issues, number of patients affected by CPG, 

nature of any clinical changes, new evidences, consensus from other relevant guidelines and the program’s capacity 

to make changes. One organization reported that “The prioritization is done according to the epidemiology of major 

pathologies of the country, according to mortality and morbidity among others. Also in response to priority health 

programs in the country.” Only one organization mentioned that they have a quantitative method for the prioritization 

of CPGs’ updating as follows: “All CPGs that are identified as needing updates are given a priority score (between 

1&5) based on five questions including the guidelines relevance to neurologists, prevalence of the disease, the amount 

of practice variation or controversy, feasibility, and patient care and outcomes.” 

By considering and evaluating the above criteria with our expert team, we came to the conclusion that most of these 

criteria are already identified through our systematic review and introduced in our questionnaire. Additionally, some 

of them could not be considered as a criterion such as the first come - first served process. Moreover, none of the 

participant organizations suggested that we add any of the above criteria to our identified criteria.  
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Table 7.  2 Characteristics of the responding institutions & the process of updating CPGs. 
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Number of guidelines 

assessed per year 

0≪N< 5 6 28 

5≪N< 10 3 15 

10≪N≪15 3 15 

N>15 9 42 

 

Number of guidelines 

updated per year (Partially 

or fully) 

0≪N< 5 10 46 

5≪N< 10 3 15 

10≪N≪15 5 24 

N>15 3 15 

 

 

Part of the guidelines 

checked 

Clinical questions 13 62 

Recommendations  2 9 

Methodologies 0 0 

The whole CPG 5 24 

Unknown 1 5 

 

Reliability of the updating 

process 

Not very reliable 2 10 

Could be more reliable 2 10 

Moderately reliable 9 42 

Very reliable 8 38 

Time frame to check for the 

need of updating 

Yes 16 76 

No. 5 24 

Time frame to decide when 

to update 

Yes 14 67 

No. 7 33 

Prioritizing CPGs according 

to their urgency 

Yes 15 72 

No. 6 28 

Prioritizing CPGs based on 

some standardized criteria 

Yes 13 62 

No. 8 38 

Participants’ characteristics 

In section C of the survey, we asked some questions regarding the level of experience and knowledge of participants 

in order to consider their experience and knowledge in scaling the criteria to achieve more precise and rigorous 

rankings. Table 3 shows the calculated weights of 24 experts based on the obtained data in section C of survey.  

Table 7.  3 Assigned values to experts’ level of education and experience. 

Experts Highest level of 

education 

Level of 

experience 

Exp. 

Weights 

EXP.1 10 3 0.045 

EXP.2 2 2 0.026 

EXP.3 1 1 0.026 

EXP.4 5 5 0.026 

EXP.5 10 10 0.055 

EXP.6 7 6 0.045 

EXP.7 4 1 0.028 

EXP.8 5 3 0.038 

EXP.9 10 10 0.064 

EXP.10 10 8 0.055 
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EXP.11 5 3 0.034 

EXP.12 10 1 0.045 

EXP.13 10 7 0.058 

EXP.14 10 1 0.041 

EXP.15 5 5 0.043 

EXP.16 8 8 0.051 

EXP.17 7 5 0.030 

EXP.18 4 4 0.034 

EXP.19 4 4 0.030 

EXP.20 10 10 0.060 

EXP.21 7 5 0.043 

EXP.22 10 10 0.064 

EXP.23 4 1 0.028 

EXP.24 5 5 0.034 

 

Criteria Importance 

Although few organizations reported few criteria for considering the urgency of CPGs in section B of the survey, no 

criterion was added or eliminated by them in section D of the questionnaire. Table 5 and 6 indicate the assigned 

linguistic values for criteria step 1 and 2 by 24 and 22 participants, respectively. Tables 7 and 8 show the fuzzification 

and defuzzification process for obtaining the weights of criteria step 1 and 2. Note that the fuzzy numbers in Tables 7 

and 8 are multiplied by the weights of experts in Table 3. Due to lack of space some columns are not shown in Tables 

7 and 8. Since the criteria for steps 1 and 2 are not related to each other, we calculated the weights for steps 1 and 2 

based on 24 and 22 responses, respectively.  

Table 7.  4 Validated and weighted criteria for first and second step of CPG prioritization. 

 

Step 

 

Author,  year 

 

Criteria 

 

Health Topic 

Criterion 

explicitly 

Proposed  

 

 

 

 

 

 

 

 

Step 1 

 

Eccles, 2002 

 

The Scope of the guidelines (𝐶11) 

Angina and asthma in 

adults 

 

No 

Van der Wees, 2007 Physical therapy 

Alonso, 2011 Fast-changing fields and rate of new evidence (𝐶12) All topics No 

Alonso, 2011  

The required resources (𝐶13) 

 

All topics 

 

 

Yes 

Laura, 2012 

AAOS, 2011 Orthopedic Surgeons 

AHRQ, 2008 All topics 

AHRQ, 2008 Potential benefits of updating a guideline for public 

health (𝐶14) 

 

All topics Yes 

AAOS, 2011 Orthopedic Surgeons 

 

Burgers, 2012 

Performance evaluations and feedback on guideline 

use (𝐶15) 

Chronic obstructive 

pulmonary disease 

(COPD) 

 

Yes 

 

 

Agbassi, 2014 

Changes in the resources available for healthcare (𝐶26)  

 

Cancer 

Yes 

The last review date of CPG (𝐶17) Yes 

The current relevance of the CPG (𝐶18) Yes 

The impact of the CPG on access to care (𝐶19) Yes 

The risk of leaving the CPG publicly available (𝐶110) Yes 
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Table 7.  5 Assigned values for criteria-step 1 by 24 experts. 
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E
1
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E
1
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E
1
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E
1
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E
1

7
 

E
1

8
 

E
1

9
 

E
2

0
 

E
2

1
 

E
2

2
 

E
2

3
 

E
2

4
 

𝐶11 8 6 7 9 3 3 3 6 6 5 7 9 2 9 3 9 7 6 9 7 7 2 9 9 

𝐶12 7 7 7 9 7 7 9 7 7 6 9 8 8 9 7 9 8 7 9 7 9 8 9 9 

𝐶13 4 6 6 9 3 6 8 9 7 8 9 9 7 5 8 9 7 6 3 8 8 8 9 7 

𝐶14 8 5 6 7 9 2 8 8 5 7 9 8 7 7 1 9 7 7 2 7 4 3 7 7 

𝐶15 3 8 8 9 9 7 7 6 7 5 9 7 3 3 6 9 5 5 9 8 5 8 9 7 

𝐶16 7 8 5 7 6 9 8 8 5 3 9 8 7 8 9 9 8 8 8 6 7 7 9 7 

𝐶17 9 7 5 9 7 8 7 6 6 2 8 9 6 9 2 9 5 6 7 6 7 7 7 7 

𝐶18 3 8 6 9 7 9 8 9 4 9 9 9 6 8 8 9 8 6 8 6 6 5 8 7 

𝐶19 2 5 4 9 7 8 6 6 6 9 8 7 7 1 8 9 5 5 2 7 8 7 9 4 

𝐶110 3 5 8 9 4 4 8 8 8 8 9 9 5 9 7 9 6 8 2 7 7 8 9 7 

Table 7.  6 Assigned values for each criteria-step 2 by 22 experts. 
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E
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E
1
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E
1
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E
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E
1
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E
2

0
 

E
2

1
 

E
2

2
 

𝐶21 8 8 9 9 8 7 9 8 9 7 9 9 9 9 9 9 8 7 8 7 9 8 

𝐶22 9 9 8 9 9 9 9 8 9 8 9 9 9 7 9 9 8 9 8 7 9 8 

𝐶23 6 9 6 7 6 7 8 8 9 3 9 8 8 8 9 9 6 9 8 7 8 8 

𝐶24 7 7 7 7 7 9 7 7 6 6 9 8 8 6 9 9 6 9 2 7 4 7 

𝐶25 9 7 5 7 9 5 6 6 6 3 9 7 8 4 6 9 5 5 3 7 5 7 

𝐶26 4 7 5 7 8 4 6 5 7 2 9 8 7 3 2 9 4 5 2 7 6 8 

𝐶27 9 7 9 9 9 6 9 6 9 5 9 8 7 8 8 9 7 9 7 8 7 7 

𝐶28 9 7 8 9 9 6 8 6 9 5 9 7 8 9 8 9 7 9 7 8 7 8 

Table 7.  7 Fuzzification and defuzzification process for obtaining the weights of criteria-step 1. 

 

Criteria 

𝑾𝑭𝒊𝟏 … 𝑾𝑭𝒊𝟐𝟒 Aggregation (𝑨𝑭𝒊) Defuz. 

(𝒅) 

Normalized 

Weights 𝒂𝒊𝟏 𝒃𝒊𝟏 𝒄𝒊𝟏 𝒂𝒊𝒋 𝒃𝒊𝒋 𝒄𝒊𝒋 𝒂𝒊𝟐𝟒 𝒃𝒊𝟐𝟒 𝒄𝒊𝟐𝟒 𝒂𝒊 𝒃𝒊 𝒄𝒊 

𝐶11 0.324 0.370 0.416 . . . 0.285 0.320 0.356 0.206 0.247 0.289 0.247 0.088 

𝐶12 0.278 0.324 0.370 . . . 0.285 0.320 0.356 0.281 0.323 0.365 0.323 0.115 

𝐶13 0.139 0.185 0.231 . . . 0.214 0.249 0.285 0.250 0.292 0.333 0.292 0.103 

𝐶14 0.324 0.370 0.416 . . . 0.214 0.249 0.285 0.221 0.261 0.303 0.261 0.093 

𝐶15 0.093 0.139 0.185 . . . 0.214 0.249 0.285 0.235 0.277 0.318 0.277 0.098 

𝐶16 0.278 0.324 0.370 . . . 0.214 0.249 0.285 0.252 0.294 0.336 0.294 0.104 

 

 

 

 

Step 2 

 

 

 

 

 

 

 

 

Shekelle, 

2001__BMJ 

 

Changes in the available interventions (𝐶21)  

 

 

 

 

 

 

All topics 

Yes 

Changes in the evidence on the benefits and harms of 

existing interventions (𝐶22) 

 

Yes 

Changes in outcomes that are considered important 

(𝐶23) 

 

Yes 

Changes in the evidence that current practice is 

optimal (𝐶24) 

Yes 

Changes in the values placed on outcomes (𝐶25) 

 

Yes 

Changes in the resources available for healthcare (𝐶26) 

 

Yes 

Alonso et al., 2009 The quality of the evidence (𝐶27) No 

Shekelle, 2014 The strength of the evidence (𝐶28) No 
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𝐶17 0.370 0.416 0.463 . . . 0.214 0.249 0.285 0.235 0.277 0.319 0.277 0.098 

𝐶18 0.093 0.139 0.185 . . . 0.214 0.249 0.285 0.252 0.293 0.335 0.293 0.104 

𝐶19 0.046 0.093 0.139 . . . 0.107 0.142 0.178 0.230 0.270 0.312 0.270 0.096 

𝐶110 0.093 0.139 0.185 . . . 0.214 0.249 0.285 0.244 0.285 0.327 0.285 0.101 

Table 7.  8 Fuzzification and defuzzification process for obtaining the weights of criteria-step 2. 

 

Criteria 

𝑾𝑭𝒊𝟏 … 𝑾𝑭𝒊𝟐𝟐 Aggregation (𝑨𝑭𝒊) Defuz. 

(𝒅) 

Normalized 

Weights 𝒂𝒊𝟏 𝒃𝒊𝟏 𝒄𝒊𝟏 𝒂𝒊𝒋 𝒃𝒊𝒋 𝒄𝒊𝒋 𝒂𝒊𝟐𝟐 𝒃𝒊𝟐𝟐 𝒄𝒊𝟐𝟐 𝒂𝒊 𝒃𝒊 𝒄𝒊 

𝐶21 0.342 0.391 0.440 . . . 0.526 0.602 0.677 0.329 0.374 0.420 0.374 0.139 

𝐶22 0.391 0.440 0.489 . . . 0.526 0.602 0.677 0.341 0.387 0.432 0.387 0.144 

𝐶23 0.244 0.293 0.342 . . . 0.526 0.602 0.677 0.291 0.336 0.382 0.336 0.125 

𝐶24 0.293 0.342 0.391 . . . 0.451 0.526 0.602 0.273 0.318 0.364 0.318 0.118 

𝐶25 0.391 0.440 0.489 . . . 0.451 0.526 0.602 0.248 0.294 0.339 0.294 0.109 

𝐶26 0.147 0.195 0.244 . . . 0.526 0.602 0.677 0.223 0.268 0.314 0.268 0.100 

𝐶27 0.391 0.440 0.489 . . . 0.451 0.526 0.602 0.307 0.352 0.398 0.352 0.131 

𝐶28 0.391 0.440 0.489 . . . 0.526 0.602 0.677 0.312 0.357 0.403 0.357 0.133 

Comparing the importance weights of criteria for the prioritization’s first and second steps   

As shown in the last column of Table 7, according to the experts' opinions, the importance weights of the 10 criteria 

for the first step are very close which means that all of identified criteria are almost equally important in the CPGs’ 

prioritization for the updating process. Regarding the 8 criteria for the second step, their importance weights are close 

as the first step (See Table 8). However, the “Changes in the evidence on the benefits and harms of existing 

interventions” (𝐶22) criterion has obtained the highest importance weight in comparison with other criteria. In 

addition, the criteria “Changes in the available interventions (𝐶21)” and “The strength of evidence (𝐶28)” have the 

second and third highest importance weights. Another criterion worth emphasizing is that “Changes in the resources 

available for healthcare” (𝐶26) was the less important criterion in assessing the new evidence.   

DISCUSSION   

Major Findings 

The prioritization of CPGs for the updating process is a complex task since a variety of subjective and objective criteria 

should be taken into account. This is the first systematic review and international survey dedicated to the identification 

of priority criteria for prioritization of CPGs’ updating. We identified most of the articles and manuals that were 

identified by Alonso-Coello et al. [12] and Becker et al. [13] in their systematic reviews. Very few documents have 

introduced some criteria or algorithms for the prioritization of CPGs’ updating. We identified most of the criteria from 

four articles [10,6,28,29], one methodological handbook [27] and two manuals [26,30]. Most of the included 

documents offer general information regarding the need for systematic methods for updating CPGs such as 

prioritization or propose a scheduled review date.  

The Need for a Systematic and Comprehensive Prioritization Tool  

In this study, the priority criteria for prioritization used in updating CPGs were identified, validated, and weighed. 

They now need to be integrated into a priority-based algorithm in order to be more effective. Currently, we are in the 

process of developing such an algorithm based on the validated criteria and by using some engineering tools such as 

Multi-Criteria Decision Making (MCDM) methods. The main features of the proposed algorithm will be the ability 
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to consider: 1) the uncertainties and imprecise information, 2) multiple experts’ opinions in all stages of the algorithm; 

3) the level of experience and knowledge of experts, 4) variety of subjective and objective criteria, 5) the dynamic 

environment of CPGs; and 6) the required resources and limited budget parameters. The proposed algorithm will 

aggregate and normalize the data obtained from experts to annually prioritize CPGs in order to identify the CPGs in 

need of updating. 

Methodology Limitations  

Our project presents some weaknesses that should be discussed. One potential weakness of our systematic review is 

that, because we only included English manuscript, we may have missed relevant literature that is only available in 

other languages. In addition, given the nature of the documents reviewed, most of them are not empirically derived 

and are more related to general wisdom than to actual evidences. Thus, it was not possible to comment on the overall 

quality of the selected studies. Moreover, the survey used a convenience sample, inferring with the generalizability of 

the results. It is possible that other existing individuals or authors were reached with our strategy. We evaluated the 

face validity of our survey, however, it was not possible to explore further the metrological qualities of our 

questionnaire. Thus, it may affect the reliability or the validity of the answers provided. Finally, we acknowledge the 

small number of potential participants due to the small number of existing experts in the field. However, we included 

the responses of most prominent guideline organizations such as Cochrane, GRADE, NICE, SIGN, CCO, the United 

States Preventive Services Task Force, and the New Zealand Guidelines Group. 

CONCLUSION 

Due to limited healthcare resources for updating CPGs, the substantial cost of updating, and on-going advances and 

new evidences in healthcare, every institution faces the challenge of CPGs’ prioritization for updating. However, there 

is no validated criteria or comprehensive process for prioritization of updating CPGs in literature. Therefore, the aim 

of this research was to identify, validate, and weight the priority criteria in updating CPGs through a systematic review 

and international survey which can be used for prioritizing CPGs. Our study is the first systematic review and 

international survey dedicated to the identification and validation of these criteria. This study enables a prioritization 

process to be followed based on the transparent weighted criteria and, as are validated through an international survey, 

are likely to be acceptable to the public. In addition, by considering these validated criteria the organizations can 

assign their limited resources to updating only the CPGs that are the most sensitive to change, thus improving the 

quality and reliability of healthcare decisions made based on current CPGs. An obvious area for further research is the 

application of the validated criteria in practice. 
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7.2 A Comprehensive Prioritization Framework for Updating Clinical Practice Guidelines 

(CPGs) 

Article 2 in integrating efforts in guidelines’ updating 

Résumé: Les guides de pratique clinique (GPC) devraient être mises à jour régulièrement en fonction des nouvelles 

données probantes afin de rester valides. La mise à jour des GPC est une tâche cruciale et complexe car une variété 

de critères subjectifs et objectifs doit être envisagée. De plus, les ressources pour l'évaluation des GPC sont inférieures 

à celles nécessaires pour évaluer tous les GPC en vue de leur mise à jour. Par conséquent, des priorités doivent être 

établies afin de déterminer les GPC dont la mise à jour est urgente. Dans cette étude, on propose pour la première fois 

un algorithme de priorisation dynamique pour la mise à jour des GPC s sur la base des 18 critères que nous avons 

validés et pondérés dans notre étude précédente. En outre, des échelles catégoriques pour la notation des critères ont 

été élaborées sur la base de la littérature. Une méthode Fuzzy TOPSIS est appliquée pour hiérarchiser les GPCs en 

deux étapes différentes de l'algorithme proposé. Enfin, un règlement de classification est proposé afin de classer les 

GPC dans différentes catégories sur la base des valeurs de score transformées (TSV). Les principales caractéristiques 

de l'algorithme proposé sont la capacité à considérer; Les incertitudes et les informations imprécises; Des avis d'experts 

multiples à tous les stades de l'algorithme; Le niveau d'expérience et de connaissances des experts; Une variété de 

critères subjectifs et objectifs; L'environnement dynamique des GPC; Et les ressources requises et les paramètres 

budgétaires limités. En appliquant le cadre proposé, les organisations auront un processus formel et plus précis pour 

hiérarchiser les mises à jour des GPC. 

Mots-clés: Guides de pratique clinique, Mise à jour, Priorisation, TOPSIS floue, Analyse de sensibilité. 

 

 

 

 

 

 

 

 

 

 

 



189 
 

7.2 A Comprehensive Prioritization Framework for Updating Clinical Practice Guidelines 

(CPGs) 

Article 2 in integrating efforts in guidelines’ updating 

Abstract: Clinical Practice Guidelines (CPGs) should be updated regularly based on the new evidence in order to 

remain valid. Updating CPGs is a crucial and complex task since variety of subjective and objective criteria should be 

considered. In addition, the resources for CPGs’ assessment fall short of that needed to evaluate all CPGs for updating. 

Therefore, priorities have to be set in order to determine the CPGs which are in urgent need for updating. In this study, 

for the first time, a dynamic prioritization algorithm is proposed for updating CPGs based on the 18 criteria that we 

validated and weighted in our previous study. In addition, categorical scales for scoring the criteria were devised based 

on the literature. A Fuzzy TOPSIS method is applied for prioritizing the CPGs in two different steps of the proposed 

algorithm. Finally, a classification regulation is proposed in order to classify the CPGs in different categories based 

on the Transformed Score Values (TSV). The main features of the proposed algorithm are the ability to consider; the 

uncertainties and imprecise information; multiple experts’ opinions in all stages of the algorithm; the level of 

experience and knowledge of experts; variety of subjective and objective criteria; the dynamic environment of CPGs; 

and the required resources and limited budget parameters. By applying the proposed framework, the organizations 

will have a formal and more accurate process for prioritizing the updates of CPGs. 

Keywords: Clinical Practice Guidelines, Updating, Prioritization, Fuzzy TOPSIS, Sensitivity Analysis.  

Background 

Clinical Practice Guidelines (CPGs) have a limited lifespan and need to be assessed for updating regularly in order to 

ensure their validity and quality [1]. This is due to the rapid and continues emergence of new evidence. Considering 

the finite resources of organizations, dynamic and fluid environment of CPGs, and substantial cost and time needed 

for updating, it is obvious that updating all CPGs regularly is not feasible. Many authors and organizations around the 

world, have recognized the need to use more rigorous processes such as setting priorities for updating CPGs [1-10]. 

According to our recent survey [2], 72% of participant reported that they prioritize their CPGs based on their urgency, 

however, only 38% of them believe that their updating process is very reliable. Without some attempts to set relative 

priorities, organizations can not appropriately manage the limited resources for the retrieval of evidence, assessment 

of evidence, or updating CPGs. Although there are few methods for prioritization of recommendations for CPG 

development, there is no standardized method or comprehensive process to prioritize CPGs for updating process. 

Recently, a new CPG-updating procedure called DAR (Document Assessment and Review) process [3] was developed 

and tested by a research team of the Program in Evidence-based Care (PEBC) for cancer CPGs in Ontario, Canada. 

This process has encountered some major and minor challenges at every step of the process, as mentioned by the 

authors [3]. The first major challenge is that the volume of documents requiring reviews exceeds the availability of 

research methodologists and clinical experts to commit to completing the review. From engineering point of view, we 

think this is due to the fact that the DAR process is not based on mathematical modeling and it is not able to rank the 

CPGs based on their importance or new evidence. Therefore, the CPGs that fall into the review category, have all the 
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same urgency for updating and experts will not be able to distinguish between them. Second, this process doesn’t 

consider the uncertainties associated with experts’ opinions while there is a lot of uncertainties due to incomplete data 

or imprecise information in prioritization of CPGs. Third, several influential criteria such as the scope of guidelines, 

fast-changing fields, the required resources, etc. are not considered in this priority-based process. In addition, the two 

questionnaires used in conducting the document assessment and review are not validated. Last but not least, all the 

questions have the same level of importance, while some questions (criteria) are much more important than the others 

in prioritization of CPGs.   

To overcome the above-mentioned shortcomings, in our first article we performed a systematic review and 

international survey to identify and validate influential criteria that could be considered for prioritization of CPGs’ 

updating. Through this study, we validated and weighted 18 influential criteria and inspired from DAR process, we 

divided them into two different steps; the CPGs assessment and the new evidence review. In this article, based on the 

results of our first work, we first propose a two-step dynamic and general prioritization algorithm that could be applied 

by all organizations for updating CPGs. Then, we categorize and score our validated criteria in order to illustrate how 

they could be scored by experts in our prioritization model. Afterwards, we propose a Fuzzy TOPSIS approach for 

prioritization of CPGs. Finally, we propose a classification regulation for both prioritization steps based on the 

Transformed Score Values (TSV) in order to classify the CPGs in different categories. The proposed formulized 

approach is not only able to consider subjective and objective criteria, but also takes into account the uncertainties 

associated with several experts’ opinions. Moreover, this approach is able to consider the importance weights of 

criteria. This is the first time that a mathematical-based prioritization framework is proposed for updating the existing 

CPGs by considering the finite resources. By applying the proposed framework, the organizations will have a formal 

process for prioritizing the updates of CPGs.  

The rest of this paper is organized as follows. In section 2, the methodology including the proposed prioritization 

algorithm, categorisation and scoring of criteria, Fuzzy TOPSIS technique, and classification regulation is described. 

Section 3 deals with comparison of our prioritization framework with DAR process and also discusses about the 

validation process and limitations of this study. Finally, conclusions are explained in Section 4. 

Methods 

Proposed prioritization algorithm 

Inspired from DAR process [3], our proposed prioritization algorithm consists of two steps; “The CPGs Assessment” 

Step and “The New Evidence Review” Step as shown in Figure 7.3. These steps are explained in the following. 

 

First step (The CPGs Assessment) 

The purpose of first step is to assess the importance of each CPG among other CPGs based on criteria-step 1 and 

without assessing the new evidence. The ten criteria for this step were identified and validated in our first study [2] 

(see Table 7.4). In this step, we first prioritize all CPGs and then categorize them in one of the following three priority 

levels: (1) High Priority, (2) Medium Priority, and (3) Low Priority. The CPGs which are categorized as “High 
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Priority” move to the next step of our process for assessing the new evidence and the other CPGs with medium and 

low priority values are evaluated in the next annual assessment. The prioritization and categorization process are 

described in sections 2.5 and 2.6, respectively.  

Fig 7. 4 The proposed prioritization algorithm for updating CPGs. 

Second step (The New Evidence Review) 

The purpose of second step is to assess the new evidence published since the CPG was completed or last reviewed 

based on the criteria-step 2. As criteria-step 1, the eight criteria for step 2 were identified and validated through our 

first study (see Table 7.5). Note that only the CPGs categorized as “High Priority” from step 1 are eligible for step 2. 

In order of their priority determined in first step, a clinical expert and a methodologist should conduct a limited search 
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of the literature for significant new evidence that may have an effect on the validity of the guideline statements. Having 

the limited literature searches conducted by groups already familiar with the topic, such as relevant Cochrane Review 

groups or evidence-based practice centers, is likely to be more efficient in this step [4]. As suggested by Shekelle [4], 

the limited literature searches could be restricted using the "document type" Medical Subject Heading terms to retrieve 

only review articles, editorials, and commentaries published since the last search on the particular guideline topic. In 

addition, the limited literature search could be restricted to key journals, ie, those most likely to have published 

evidence of sufficient magnitude to warrant the revision of an existing CPG. Titles, abstracts, and articles should be 

reviewed sequentially, seeking new evidence regarding the guideline statements. New evidence (principally 

randomized clinical trials) referenced in the review articles, editorials, or commentaries should be retrieved and 

reviewed for relevance. Relevant articles should then be distributed to the entire panel for scoring of the impact of 

new evidence on the validity of the existing CPG, using the criteria-step 2 that we have validated for new evidence 

assessment. 

Based on the clinical experts’ responses to the criteria-step 2, the CPGs are first categorized in one of the following 

categories: (1) High Priority, (2) Medium Priority, and (3) Low Priority. Then, in order of their priority, we classify 

each CPG into one of the following five categories: 1) Full Update, 2) Partial Update, 3) Defer3 to the next year, 4) 

Endorse4, and 5) Archive5.  

1. CPGs with high priority score fall into either “Full Update” or “Partial Updating” classes. This decision 

should be made based on the experts’ opinions and by considering the required resources and limited budget 

of organization. In general, partial updates are preferable to full updating of CPGs in terms of costs and 

efforts [6] and they should be given priority. If available recourses are enough for full/partial updating of 

CPGs, they will be updated in the current period and the approximate time for updating the CPG will be 

estimated and scheduled. If not, they have to be postponed to the next annual assessment and they should be 

assessed along with other existing CPGs.  

2. CPGs with medium priority score could also be considered for full/partial update if there is still some 

budget available after assigning for the CPGs with high priority. Otherwise, they are determined as “Defer” 

and should be evaluated in the next annual assessment. 

3. CPGs with low priority score will be either endorsed or archived depending on the characteristics of the 

CPG and based on the opinions of the experts. The CPGs which are determined as “Endorse” will be assessed 

in 3 years. If there is sufficient and significant scientific evidence that motivates a review before that date, 

the review process may be accelerated for a more rapid update of some recommendations. In addition, 

occasionally a request for an exceptional surveillance review decision (decision to update) is received from 

a stakeholder and this (after consideration from the director) might warrant a more expeditious surveillance 

review than the standard three yearly pattern. The archiving may happen because the recommendations are 

no longer clinically relevant and applicable to current practice. Or, it may be because the developing group 

                                                           
3 Defer means that the CPG is still valid enough and could be used until the next assessment [3]. 
4 Endorsement means that the recommendations are still current and relevant and there is no need for updating [3]. 
5 Archive means that the CPG cannot be endorsed or deferred, and the recommendations will no longer be maintained [3].  
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has little or no interest in maintaining them; for example, the topic areas may have changed so much that 

developing a new document is a more practical option than updating the existing one [3]. 

 

Categorisation and scoring of criteria 

Key to any prioritization process are the criteria. The 18 validated and weighted criteria in Tables 7.4 and 7.5 should 

be categorized and scored in order to be measurable by experts. Then, in this paper, categorical scales for scoring these 

criteria were devised. The choice for these categorical scales was partly based on the Oortwijn et al. and Agbasi et al. 

studies [11, 3]. Specifically, scores for most of criteria-step 1 (Table 7.4) are constrained within a linguistic scale from 

Very Low to Very High or Low to High. Only, scores for the criterion “The last review date of CPG” is constrained 

within a numerical scale from 1 to 5. Regarding the criteria-step 2 (Table 7.5), we barley found indications for scaling 

or categorizing in the literature, except the “quality and strength of the evidence” criteria that were explicitly 

categorized and scored by GRADE [12] and AHRQ [13], respectively. According to Shekelle [5], measuring these 

subjective criteria (criteria 1-6) is complex and there is high degree of uncertainty and imprecise information. 

However, we devised some classes and scoring based on few existing studies [5, 14-16] and also perception of our 

experts from these criteria. 

It is evident that some concerns will be raised about the different scales and categorizations that we devised for 

quantitative and qualitative criteria in Tables 7.4 and 7.5. It should be mentioned that our aim of devising the scales 

and categorizations in this study was to only demonstrate how these criteria should be categorized and scaled by 

experts in order to be applicable in our proposed prioritization tool (Fuzzy TOPSIS). Each organization could adjust 

the proposed scales and scores based on its CPGs and the opinions of its own experts. 

Table 7.  9 Categorization and scoring of criteria-step 1. 

Criterion 

(Sub-criterion) 

Criterion 

weight 

Measured with Intensity 

Score 

Source of Data 

The Scope of guideline 

- Patient population 

(Incidence rate) [11] 
 

 

 
 

- Broadness of scope 

0.088 Absolute numbers (per year) 

0-5000 

5001-10000 
10001-15000 

15001-20000 

>20000 
 

Broad  

Moderate 
More narrowly defined (very focused) 

 

Very Low 

Low 
Moderate 

High 

Very High  
 

Low 

Medium 
High 

 

National data; review 

articles 
 

 

 
 

Expert’s opinion and 

stakeholder input 

 

 
Fast-changing fields  

 

 
0.097 

1- (Rate of new evidence) 

Slowly-changing fields such as venous ulcer, 
sinusitis, etc. 

 Fast-changing fields such as AIDS, 

cardiovascular risk management, breast 

cancer, etc. 

Very slow 

slow 
Moderate 

rapid 

Very rapid 

 

Review articles, 
expert’s opinion, 

surveys 

 

 

The required resources 
[11] 

 

 

 

 

0.103 

 US $ 

>200000 US $ 

$ 150000-200000 US $ 
100000-150000 US $ 

50000-100000 US 

0-50000 US $ 

 

Very Low 

Low 
Moderate 

High 

Very High 

 

National data; review 

articles, 
CPG developer 

 

 

Potential benefits for public 
health (Disease Burden) 

 

 

 
0.105 

 Disease/Condition incidence or prevalence, 

 High risk impact of disease/condition in the 
health system, 

 

Very Low 

Low 
Moderate 

 

 

 
Experts’ opinion, 
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[17]  High frequency of risk factors associated with 

the disease/condition, 

 High frequency of avoidable risk factors 

associated with the disease/condition. 

High 

Very High 

surveys 

 

 
Feedback on guideline use 

 
 

0.097 

 
- No important feedback available, 

- Some performance evaluation is reported, 

- High-quality effective reviews are available, 

 
Low 

Moderate 

High 

Review articles, 
contacting with other 

CPG developers active 

in the same disease 
area, surveys 

 

 
 

The appropriateness of the 

questions and search 
criteria [3] 

 

 
 

0.114 

1- The standard of care has shifted significantly 

since the last version of the document, such 
that the questions only address the topic in 

part, 

 There are new, significant options (for 
treatment, diagnosis, etc.) available that 

are not covered by the current questions, 
such that new questions would need to be 

added to the document, 

 For the document to still be useful it will 
have to substantially be rewritten. 

 

 
Very Low  

Low  

Moderate  
High  

Very High 

 

 

 
 

Experts’ opinion, 

surveys 

 

 
The last review date of 

CPG 

 

 
0.091 

≤1 year ago 
2 years ago 

3 years ago 
4 years ago 

≥ 5 years ago 

1 

2 
3 

4 

5 

 

 
Update history of the 

CPG 

 

The current relevance of the 

CPG 

 

0.104 

81%-100% 

61%-80%  

41%-60% 
21%-40% 

0%-20% 

Very Low 

Low 

Moderate 
High 

Very High 

 

 

Experts’ opinion, 
surveys 

 

 
 

The impact of the CPG on 

access to care [3] 

 

 
 

 

0.094 

 Ministry funding decisions have been, 
are, or will be made on the basis of this 

document, 

 Case by case review or out of country 
requests are known to be decided based 

on the document, 

 Funding for some screening, diagnostic, 

staging or treatment procedure was or is 

determined. 

 

Very Low 
Low 

Moderate 

High 
Very High 

 

 
Meetings, 

policymakers, 

 

 

The risk of being outdated 
 

 

 

0.102 

0%-20% 

20%-40% 

40%-60% 
60%-80% 

80%-100% 

Very Low 

Low 

Moderate 
High 

Very High 

Experts’ opinion 

Review articles, The 

last review date of 
CPG, surveys 

Table 7.  10 Categorization and scoring of criteria-step 2. 

Criterion Weight Measured with Intensity 

Score 

Source of Data 

 
Changes in the available 

interventions [5] 

 
 

0.139 

-Weak intervention available  
-Some effective interventions available 

-The recommended interventions are inappropriate, 

ineffective, or superseded by new significant 
interventions 

Low 
Moderate 

High 

 

Existing reviews; 
Literature search; 

Expert judgment 

Changes in the evidence on 

the benefits and harms of 

existing interventions [15, 

16] 

 

 

 

0.144 

 Risk-Benefit Balance 

-The desirable and undesirable consequences are 

closely balanced, 

-Uncertain risk-benefit balance, 

-The benefits outweigh the risks,  

 

Low 

 

Moderate 

High 

 

Existing reviews; 

Literature search; 

Expert judgment 

 

Changes in outcomes that 

are considered important 
[14] 

 

 

0.126 

-No significant outcomes/ Further research is likely 

to change the outcomes, 

-Some outcomes available/ Further research is likely 
to have an important impact on the outcomes, 

-Significant outcomes available, 

Low 

 

Moderate 
 

High 

Existing reviews; 

Literature search; 

Expert judgment 

Changes in the evidence 

that current practice is 
optimal 

0.119 - Evidence does not permit a conclusion 

- Some considerable evidences available  
- Large clinical trials show that current practice is 

optimal 

Low 

Moderate 
High 

Existing reviews; 

Literature search; 
Expert judgment 
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Changes in the values 

placed on outcomes 

0.108 -No significant change in the values 

-Considerable changes in the values 
-Significant change in the values 

Low 

Moderate 
High 

 

Policymakers 

Changes in the resources 

available for healthcare 

 

0.098 

-No significant change in the resources 

-Considerable changes in the resources 

-Significant change in the resources 

Low 

Moderate 

High 

 

Policymakers 

 

 

 
The quality of the evidence 

[12] 

 

 

 
 

 

0.131 

- Further research is very unlikely to change our 

confidence in the estimate of effect. Example: 

Randomized trials without serious limitations, Well-performed 

observational studies with very large effects 
- Further research is likely to have an important 
impact on our confidence in the estimate of effect 

and may change the estimate. Example: Randomized trials 

with serious Limitations, Well-performed observational studies 

yielding large effects 

- Further research is very likely to have an important 
impact on our confidence in the estimate of effect 

and is likely to change the estimate. Example: 
Randomized trials with very serious limitations, Observational studies 

without special strengths or important limitations 

- Any estimate of effect is very uncertain. Example: 

Randomized trials with very serious limitations and inconsistent 

results, Observational studies with serious limitations Unsystematic 

clinical observations 

High 

 

 
 

Moderate 

 
 

 

Low 
 

 

 
 

Very low 

 

 

Quality measurement 
based on the 

GRADE’s eleven 

factors [12]; experts’ 
opinion 

 

 
 

 

 
 

 

The strength of the 
evidence [13] 

 

0.132 
 Risk of bias, consistency, directness, 

precision 

-High confidence that the evidence reflects the true 

effect (randomized trials). Further research is very 
unlikely to change our confidence in the estimate of 

effect. 

- Moderate confidence that the evidence reflects the 
true effect. Further research may change our 

confidence in the estimate of effect and may change 

the estimate. 
-Low confidence that the evidence reflects the true 

effect. Further research is likely to change the 

confidence in the estimate of effect and is likely to 
change the estimate. 

-Evidence either is unavailable or does not permit a 

conclusion. 

 

High 
 

 

 
Moderate 

 

 
 

Low 

 
 

 

Insufficient 

 

 
 

 

 
 

Strength measurement; 

experts’ opinion 

 

Availability of Data and uncertainties 

The data used to score most of the above-mentioned criteria will often be incomplete or imprecise, either because data 

are not available or because they are too expensive to collect. Therefore, they should be scored based on the experience 

and knowledge of experts and by using linguistic terms. To limit the distortions that may arise from reliance on 

obviously incomplete data or imprecise information in prioritization of CPGs, in this study we developed our 

prioritization tool based on fuzzy logic approach which is explained briefly in the next section. 

 

Fuzzy Logic 

Fuzzy set theory was proposed by Zadeh in 1965 for handling the uncertainties and imprecise information in decision-

making. Fuzzy numbers stand for a specific range between zero and one for a specific value. Due to this specific range, 

it is easier for the expert to indicate his/her preference [22]. Experts are asked to express their opinions using linguistic 

terms. Then, these terms are translated into a Fuzzy number consisting of multiple numbers. This way, the linguistic 

rating is reflected as a range. Both triangular and trapezoidal Fuzzy numbers parametrized by a triplet (l, m, u) (Fig. 

7.4) or a quadruplet (p, q, r, s) (Fig. 7.5) can be used for Fuzzy soft sets. In this article, we use triangular Fuzzy 

numbers (TFNs) because of the ease of computation.  
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Fig 7. 5 A triangular fuzzy number. 

 

 

 

 

 

 

 

Fig 7. 6 A trapezoidal fuzzy number. 

The Fuzzy TOPSIS method 

The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was first proposed by Hwang and Yoon 

[18] and a Fuzzy TOPSIS method was later introduced by Chen and Hwang [19]. There are many real-life situations 

where decision makers’ opinions are uncertain and they are not able to assign precise crisp values to their judgments 

[20]. The Fuzzy TOPSIS approach is capable of dealing with multi-criteria decision-making (MCDM) by translating 

the linguistic values into Fuzzy numbers and thereby allowing decision-makers to incorporate incomplete or 

unavailable information into the decision model. This method has been widely applied in the literature to support 

MCDM problems [20-22]. Among the techniques based on fuzzy set theory, fuzzy TOPSIS is usually preferred since 

it doesn’t have the limitation of criteria and alternatives’ numbers. In addition, it does not cause the ranking reversal 

problem and null weights as in fuzzy AHP; and in relation to comparative approaches, it requires a lower number of 

judgments by decision makers [21] .This method comprises the following steps: 

The steps of the Fuzzy TOPSIS method for prioritizing CPGs  

Step 1: Form a committee of expert to evaluate the CPGs. 

Step 2: Determine the weighting of evaluation criteria. We already performed this step using Fuzzy AHP method in 

our first article [2] and determined the weights of criteria step 1 and 2 based on the opinions of 24 participants through 

an online survey (See second column of Table 7.4 and 7.5).  

Step 3: Apply the linguistic variables devised in Tables 7.4 and 7.5 for each criterion in order to prioritize the CPGs. 
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Step 4: Determine the aggregated weight of CPGs with respect to each criterion. If the Fuzzy rating of the decision-

maker 𝑘 is described as TFNs �̃�𝑘 = (𝑎𝑘 , 𝑏𝑘 , 𝑐𝑘), 𝑘 = 1,2,3, … , 𝐾, then the aggregated Fuzzy rating can be determined 

as 𝑅 = (𝑎, 𝑏, 𝑐), 𝑘 = 1,2,3, … , 𝐾. Here, 𝑎 = min (𝑎𝑖𝑗𝑘); 𝑏 =
1

𝐾
∑ 𝑏𝑖𝑗𝑘

𝐾
𝑘=1 ; 𝑐 = max (𝑐𝑖𝑗𝑘) [22]. 

Step 5: Construct the Fuzzy decision matrix [21]. 

   𝐶1         𝐶2      .    .      𝐶𝑛 

�̃� =

𝐴1

𝐴2

..
𝐴𝑚

 

[
 
 
 
 
�̃�12 �̃�12 . . �̃�12

�̃�21 �̃�22 . . �̃�2𝑛

. . . . .

. . . . .
�̃�𝑚1 �̃�𝑚2 . . �̃�𝑚𝑛]

 
 
 
 

 

Step 6: Normalize the Fuzzy decision matrix. For normalization, the linear-scale transformation can be used to 

transform the various criteria scales into a comparable scale. The normalized Fuzzy decision matrix �̃� through the 

following Equation [22]. 

 

�̃� = [𝑟𝑖𝑗]𝑚×𝑛
   𝑖 = 1,2,3, … ,𝑚;      𝑗 = 1,2,3, … , 𝑛 

 

where �̃�𝑖𝑗= (
𝑎𝑖𝑗

∗

𝑐𝑗
,
𝑏𝑖𝑗

∗

𝑐𝑗
,
𝑐𝑖𝑗

𝑐𝑗
∗ ) and 𝐶𝑗

∗ = max𝐶𝑖𝑗 

 

Step 7: Construct weighted normalized Fuzzy decision matrix. 

Considering the different weight of each criterion, the weighted normalized decision matrix is computed by 

multiplying the important weight of evaluation criteria in the normalized Fuzzy decision matrix. The weighted 

normalized decision matrix 𝑉 is defined as 

 

�̃� = [�̃�𝑖𝑗]𝑚×𝑛
        𝑖 = 1,2,3, … ,𝑚; 𝑗 = 1,2,3, … , 𝑛 

�̃�𝑖𝑗=�̃�𝑖𝑗𝑊 where W is the weighted vector of evaluating criteria.  

Step 8: Determine the Fuzzy positive ideal solution (FPIS) and Fuzzy negative ideal solution (FNIS) as: 

𝐹𝑃𝐼𝑆(𝑃 ∗) = (𝑉1
∗ ,̃ 𝑉2

∗̃, 𝑉3
∗̃,…, 𝑉𝑛

∗̃)    and 𝐹𝑃𝐼𝑆(𝑃−) = (𝑉1
−,̃ 𝑉2

−̃, 𝑉3
−̃,…, 𝑉𝑛

−̃)     

where �̃�𝑗
∗ = 𝑚𝑎𝑥𝑖{𝑣𝑖𝑗𝑘} and �̃�𝑗

− = 𝑚𝑖𝑛𝑖{𝑣𝑖𝑗𝑘}; 𝑖 = 1,2,3, … ,𝑚; 𝑗 = 1,2,3, … , 𝑛 

Step 9: Calculate the distance of each alternative from FPIS and FNIS as 

𝑑𝑖
∗ = ∑ 𝑑𝑣

𝑛
𝑗=1 (�̃�𝑖𝑗𝑣𝑗

∗);        𝑖 = 1,2,3, … ,𝑚    and 𝑑𝑖
− = ∑ 𝑑𝑣

𝑛
𝑗=1 (�̃�𝑖𝑗𝑣𝑗

−); 𝑖 = 1,2,3, … ,𝑚     

where 𝑑𝑣 is the distance measurement between two Fuzzy numbers. 
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Step 10: Calculate the Closeness Coefficient (𝐶𝐶𝑖) for each CPG. The closeness coefficient represents the distance to 

the FPIS (𝑃∗) and Fuzzy negative ideal solution (𝑃−). The closeness coefficient for each alternative is calculated as: 

𝐶𝐶𝑖 =
𝑑𝑖

−

𝑑𝑖
−+𝑑𝑖

∗ ,   𝑖 = 1,2,3, … ,𝑚 

Classification of CPGs 

To judge the importance level of CPGs, the 𝐶𝐶𝑖 scores have to be transformed into categories. Then, we suggest to 

classify the CPGs in each prioritization process according to “Transformed score value (𝑇𝑆𝑉)” and based on the 

corresponding thresholds which are given in Table 7.6. The 𝑇𝑆𝑉 can be mapped to 0, 100% using the following 

equation: 

𝑇𝑆𝑉 =
𝐶𝐶𝑖 − min 𝐶𝐶𝑖

max𝐶𝐶𝑖 − min 𝐶𝐶𝑖

% 

where “min 𝐶𝐶𝑖” shows the lowest 𝐶𝐶𝑖 score which is obtained when the CPG gets the lowest intensity from all 

criteria, and “max𝐶𝐶𝑖”  shows the highest 𝐶𝐶𝑖 score which is obtained when the CPG gets the highest intensity from 

all criteria. 

Table 7.  11 The proposed classification regulation. 

𝑇𝑆𝑉 Classification of 

CPGs in 1st step of 

prioritization  

Classification of CPGs in 2nd step of 

prioritization 

70% ≤ 𝑇𝑆𝑉 ≤ 100% High Priority  - Full/Partial Update by considering budget 

40% ≤ 𝑇𝑆𝑉 ≤ 100% Medium Priority - Full/Partial Update by considering budget 

- Defer to the next year 

0% ≤ 𝑇𝑆𝑉 ≤ 40% Low Priority - Endorse 

- Archive 

In general, the suggested thresholds for 𝑇𝑆𝑉 can be adjusted after applying the model and investigating the obtained 

𝐶𝐶𝑖 values. Thresholds should always be established according to both the characteristics of CPGs and their estimated 

score values. Moreover, the number of classes and updating strategies (full/ partial update) depend on available 

resources (budget, personnel, etc.) in the organization.  

Discussion 

Our proposed prioritization algorithm is based on the DAR process [2]. However, there are some major differences 

that makes our algorithm unique. In the first step of DAR process, 6 questions are asked in order to classify each 

candidate CPG into one of the following groups: endorse, review, defer, and archive. The CPGs categorized as review 

from step 1 are assessed based on 4 questions in step 2 in order to determine the effect of new evidence. In order to 

response these question a streamlined systematic review of new evidence is conducted by a methodologist. Finally, 
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based on the experts’ responses to the 4 question in step 2, each CPG is classified into one of the following outcomes: 

endorse, archive, or update. Comparing this process with our prioritization algorithm explained in section 2.1 

illustrates the main differences as followings: 1) we consider 18 validated and weighted criteria for prioritization of 

CPGs, while DAR process prioritizes CPGs based on 10 non-validated questions; 2) the responses of questions in 

DAR process are Yes or No, while in our prioritization method different levels and linguistic terms for each criterion 

is devised out in order to prioritize the CPGs more accurately and precisely; 3) different categorizations are defined 

in each step of  our proposed algorithm; 4) we consider uncertainty in experts’ opinions when assigning values for 

each criterion; 5) our proposed framework is able to consider both qualitative and quantitative criteria/sub criteria, 

and last but not least 6) we consider the required resources and limited budget of organizations in our prioritization 

process.  

We have applied the same approaches successfully in solving many prioritization problems in critical industries. 

Although we have not implemented our prioritization process in practice and we don’t have sufficient data to make 

meaningful comparisons between our algorithm and DAR process, we believe that the proposed algorithm and the 

validated criteria are more systematic, meaningful, and cost-effective. Since the proposed framework is generally 

sufficient, it could be tested by other institutes in order to verify its universality and identify any shortcomings with 

this prioritization process. Another important point which should be highlighted is that this process is flexible and 

some criteria could be added or eliminated depending on the objectives of organizations. Moreover, the calculated 

weights for the 18 criteria could be recalculated by each organization based on their experts’ opinions and for their 

specific guidelines. It is evident that these weights could be different for any organization. 

Conclusions 

In this paper, a dynamic prioritization algorithm and a MCDM model has been developed and presented in a fuzzy 

environment for prioritization of CPGs for updating process. This is the first time that such a quantitative method has 

been proposed in the literature of guidelines. The main contributions of this research are; 1) developing a 

comprehensive prioritization algorithm for updating CPGs, 2) categorizing and scoring the validated criteria, 3) 

developing a fuzzy TOPSIS model for prioritization of CPGs in two different steps, and 4) proposing a classification 

regulation based on the Transformed Score Values. Using Fuzzy TOPSIS, uncertainty and vagueness can be 

effectively handled and reached to a more effective decision. The proposed process provides a more accurate, 

effective, and systematic decision support tool for updating CPGs. The present process can be adopted in any 

organization. In addition, it could be applied to other MCDM problems related to guidelines such as setting priorities 

for recommendations for CPG development, and updating Systematic Reviews. In the future, we will implement the 

proposed prioritization process in practice and compare it to the results of other methods to improve and socialize our 

findings with a wider audience. In addition, we will provide an easy to use online software to be applied by 

practitioners as a systematic prioritization tool. As a future research, we will extend the proposed prioritization 

algorithm to new CPG topic that are in progress as well as the existing CPGs in need for updating in order to better 

manage the CPGs’ development and updating process. 
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This chapter summarizes the main research topics of this dissertation. It summarizes the essential learnings and 

resulting from the research. This chapter also provides opportunities for future research. 

This thesis proposed several comprehensive frameworks related to risk-based maintenance planning and advanced 

risk analysis of complex systems. In addition, as a case study, a comprehensive priority-based framework was 

developed for updating CPGs by validating the influential criteria in updating process. Twelve publications have been 

produced, which present contributions of this thesis. 

In the first contribution, we addressed the shortcomings of current MSS methods in different industries and developed 

an integrated dynamic risk-based framework using AHP, FCM, and FSS for selecting the best maintenance policy by 

considering uncertainties and dependencies among criteria. By performing a sensitivity analysis, it was revealed that 

the final priority of maintenance policies remained stable in all cases when the weights of the main criteria were 

increased/decreased for 25 percent. In addition, we demonstrated that considering the complex dependencies among 

criteria has an impact on priority of maintenance policies. 

The second paper aimed to address the shortcomings of traditional failure mode and effect analysis (FMEA) method 

and enhance it using FCM. FMEA is one of well-known methods for assessing potential failures and has been widely 

used in the literature. However, traditional FMEA has been criticised for some major shortcomings. In this study, we 

proposed an innovative framework for analysis of failure modes in complex systems by considering the complex 

interactions among failures and cause of failures.  The proposed framework is able to predict the impact of each failure 

or cause of failure on the other failure modes or on the system performance. In addition, it is able to take into account 

the level of experience and knowledge of experts, the uncertainties on failure analysis process, and multiple causes of 

failures and components.  

In papers 3 and 4, we proposed a dynamic risk modeling and assessment tool using FCM for dealing with risks of 

maintenance outsourcing and collaborative networks. Then, in paper 5, we extended the developed tool and proposed 

an advanced decision support tool using FCM for predicting the impact of each risk on the other risks or on the 

performance of system. The main feature of this tool is the ability to consider all the possible interdependencies among 

risk factors. This tool could help practitioners in critical industries to manage the risks of complex systems in a more 

effective and precise way and offer better risk mitigation solutions. In the sixth paper, we addressed the associated 

risks in ERP maintenance and proposed another integrated approach using fuzzy FMEA method for prioritizing the 

risks. The maintenance of the ERP is necessary to correct and prevent systems risks as well as to enhance its 

performance and adapt continuously to the system. Nevertheless, this is often managed intuitively and without taking 

into account the existing risks. In this sense, the maintenance managers need to know the importance of all risks 

identified. 

The contributions 7-10 are related to maintenance and replacement of medical devices, since these devices have 

become very complex and sophisticated and the application of maintenance and optimization models to them is fairly 

new. In the seventh paper, we performed a literature review regarding the maintenance planning of medical devices. 
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Then, based on the results of this review, we developed three integrated frameworks (papers 8-10) for risk-based 

maintenance and replacement planning of medical devices.  

As a case study, we performed a project titled “Updating Clinical Practice Guidelines; a priority-based framework for 

updating existing guidelines” in collaboration with CIRRIS which led to two important contributions. In the first 

contribution (paper 11), we performed a systematic literature review to identify potential criteria in updating CPGs. 

Then, based on the review’s results, we conducted an online survey. We validated and weighed all the identified 

criteria through an international survey. In the second contribution (paper 12), we developed and validated a 

comprehensive priority-based framework for updating CPGs based on the approaches that we had already developed 

and applied successfully in other industries. This is the first time that such a comprehensive framework has been 

proposed in the literature of guidelines. Evaluation and prioritization of existing CPGs based on the validated criteria 

and proposed quantitative framework can promote channelling limited resources into updating CPGs that are most 

sensitive to change, thus improving the quality and reliability of healthcare decisions made based on current CPGs. 

By implementation of this framework in healthcare, institutes will have a formal and rigorous process for deciding 

which guideline is in urgent need for updating and when a guideline should be updated. We can expect that the 

proposed frameworks result more realistic and more robust plans compared with the traditional models. 

Future work 

Several perspectives can be developed in the future research which are suggested as follows: 

1. Applying the proposed frameworks and decision tools in this thesis in a real case study as a pilot study and 

comparing them with current methods 

2. Extending the proposed framework for replacement of medical devices in order to taking into account new 

technologies 

3. Research into the outsourcing of medical device maintenance services in hospitals is still in its infancy stages, 

and that further progress in this field would benefit from additional empirical study grounded in management 

theory. 

4. Applying other learning algorithms for training FCM in the developed frameworks and comparing with our 

proposed NHL-DE learning algorithm 

5. Applying the proposed priority-based framework for updating CPGs in other similar cases such as setting 

priorities for updating systematic reviews or development of CPGS. 

 

 

 

 

 


