175 research outputs found

    The Fundamentals of Global Outsourcing for Manufacturers

    Get PDF

    A computer graphics approach to logistics strategy modelling

    Get PDF
    This thesis describes the development and application of a decision support system for logistics strategy modelling. The decision support system that is developed enables the modelling of logistics systems at a strategic level for any country or area in the world. The model runs on IBM PC or compatible computers under DOS (disk operating system). The decision support system uses colour graphics to represent the different physical functions of a logistics system. The graphics of the system is machine independent. The model displays on the screen the map of the area or country which is being considered for logistic planning. The decision support system is hybrid in term of algorithm. It employs optimisation for allocation. The customers are allocated by building a network path from customer to the source points taking into consideration all the production and throughput constraints on factories, distribution depots and transshipment points. The system uses computer graphic visually interactive heuristics to find the best possible location for distribution depots and transshipment points. In a one depot system it gives the optimum solution but where more than one depot is involved, the optimum solution is not guaranteed. The developed model is a cost-driven model. It represents all the logistics system costs in their proper form. Its solution very much depends on the relationship between all the costs. The locations of depots and transshipment points depend on the relationship between inbound and outbound transportation costs. The model has been validated on real world problems, some of which are described here. The advantages of such a decision support system for the formulation of a problem are discussed. Also discussed is the contribution of such an approach at the validation and solution presentation stages

    Resource Allocation Models in Healthcare Decision Making

    Get PDF
    We present models for allocating limited healthcare resources efficiently among target populations in order to maximize society's welfare and/or minimize the expected costs. In general, this thesis is composed of two major parts. Firstly, we formulate a novel uncapacitated fixed-charge location problem which considers the preferences of customers and the reliability of facilities simultaneously. A central planner selects facility locations from a set of candidate sites to minimize the total cost of opening facilities and providing service. Each customer has a strict preference order over a subset of the candidate sites, and uses her most preferred available facility. If that facility fails due to a disruptive event, the customer attends her next preferred available facility. This model bridges the gap between the location models that consider the preferences of customers and the ones that consider the reliability of facilities. It applies to many healthcare settings, such as preventive care clinics, senior centers, and disaster response centers. In such situations, patient (or customer) preferences vary significantly. Therefore, there could be a large number of subgroups within the population depending on their preferences of potential facility sites. In practice, solving problems with large numbers of population subgroups is very important to increase granularity when considering diverse preferences of several different customer types. We develop a Lagrangian branch-and-bound algorithm and a branch-and-cut algorithm. We also propose valid inequalities to tighten the LP relaxation of the model. Our numerical experiments show that the proposed solution algorithms are efficient, and can be applied to problems with extremely large numbers of customers. Secondly, we study the allocation of colorectal cancer (CRC) screening resources among individuals in a population. CRC can be early-detected, and even prevented, by undergoing periodic cancer screenings via colonoscopy. Current guidelines are based on existing medical evidence, and do not explicitly consider (i) all possible alternative screening policies, and (ii) the effect of limited capacity of colonoscopy screening on the economic feasibility of the screening program. We consider the problem of allocating limited colonoscopy capacity for CRC screening and surveillance to a population composed of patients of different risk groups based on risk factors including age, CRC history, etc. We develop a mixed integer program that maximizes the quality-adjusted life years for a given patient population considering the population's demographics, CRC progression dynamics, and relevant constraints on the system capacity and the screening program effectiveness. We show that the current guidelines are not always optimal. In general, when screening capacity is high, the optimal screening programs recommend higher screening rates than the current guidelines, and the optimal screening policies change with age and gender. This shows the significance of incorporating screening capacity into the decisions of optimal screening policies

    Locating Automated Parcel Lockers (APL) with known customers’ demand: a mixed approach proposal

    Get PDF
    Logistics Service Providers (LSP) are increasingly adopting Automated Parcel Lockers (APLs) to mitigate the operational pressure of last-mile logistics. The optimal location of APL stations is key for reaching customers’ demand while keeping the investment reasonable. Previous studies developed optimization algorithms and applied them to virtual instances of the problem, lacking applicability to real-life situations encountered by LSPs who aim to serve an urban area with such technology. This study proposes a novel solution to the APLs location problem by combining mixed-integer linear programming and greedy heuristics algorithms. The study tested the propose solution on real customers’ demand data related to Turin, Italy. Results show that covering 90% of the estimated potential demand requires 10 to 11 APLs, on average. The adopted approach enables finding an optimal solution grounded in a real geographical context without requiring time-consuming optimization

    Locating and Protecting Facilities Subject to Random Disruptions and Attacks

    Get PDF
    Recent events such as the 2011 Tohoku earthquake and tsunami in Japan have revealed the vulnerability of networks such as supply chains to disruptive events. In particular, it has become apparent that the failure of a few elements of an infrastructure system can cause a system-wide disruption. Thus, it is important to learn more about which elements of infrastructure systems are most critical and how to protect an infrastructure system from the effects of a disruption. This dissertation seeks to enhance the understanding of how to design and protect networked infrastructure systems from disruptions by developing new mathematical models and solution techniques and using them to help decision-makers by discovering new decision-making insights. Several gaps exist in the body of knowledge concerning how to design and protect networks that are subject to disruptions. First, there is a lack of insights on how to make equitable decisions related to designing networks subject to disruptions. This is important in public-sector decision-making where it is important to generate solutions that are equitable across multiple stakeholders. Second, there is a lack of models that integrate system design and system protection decisions. These models are needed so that we can understand the benefit of integrating design and protection decisions. Finally, most of the literature makes several key assumptions: 1) protection of infrastructure elements is perfect, 2) an element is either fully protected or fully unprotected, and 3) after a disruption facilities are either completely operational or completely failed. While these may be reasonable assumptions in some contexts, there may exist contexts in which these assumptions are limiting. There are several difficulties with filling these gaps in the literature. This dissertation describes the discovery of mathematical formulations needed to fill these gaps as well as the identification of appropriate solution strategies

    The Siting Of Multi-User Inland Intermodal Container Terminals In Transport Networks

    Get PDF
    Almost without exception, cargo movements by sea have their origins and destinations in the hinterlands and efficient land transport systems are required to support the transport of these cargo to and from the port. Furthermore, not all goods produced are exported or all goods consumed are imported. Those produced and consumed domestically also require efficient transport to move them from their production areas to areas of consumption. The use of trucks for these transport tasks and their disproportionate contribution to urban congestion and harmful emissions has led governments, transport and port authorities and other policy-makers to seek for more efficient and sustainable means of transport. A promising solution to these problems lies in the implementation of intermodal container terminals (IMTs) that interface with both road and rail or possibly inland waterway networks to promote the use of intermodal transport. This raises two important linked questions; where should IMTs be located and what will be their likely usage by individual shippers, each having a choice of whether or not to use the intermodal option. The multi-shipper feature of the problem and the existence of competing alternative modes means the demand for IMTs are outcome of many individual mode choice decisions and the prevailing cargo production and distribution patterns in the study area. This thesis introduces a novel framework underpinned by the principle of entropy maximisation to link mode choice decisions and variable cargo production and distribution problems with facility location problems. The overall model allows both decisions on facility location and usage to be driven by shipper preferences, following from the random utility interpretation of the discrete choice model. Several important properties of the proposed model are presented as propositions including the demonstration of the link between entropy maximisation and welfare maximisation. Exact and heuristic algorithms have been also developed to solve the overall problem. The computational efficiency, solution quality and properties of the heuristic algorithm are presented along with extensive numerical examples. Finally, the implementation of the model, illustration of key model features and use in practice are demonstrated through a case study

    Two-stage network design in humanitarian logistics.

    Get PDF
    Natural disasters such as floods and earthquakes can cause multiple deaths, injuries, and severe damage to properties. In order to minimize the impact of such disasters, emergency response plans should be developed well in advance of such events. Moreover, because different organizations such as non-governmental organizations (NGOs), governments, and militaries are involved in emergency response, the development of a coordination scheme is necessary to efficiently organize all the activities and minimize the impact of disasters. The logistics network design component of emergency management includes determining where to store emergency relief materials, the corresponding quantities and distribution to the affected areas in a cost effective and timely manner. In a two-echelon humanitarian relief chain, relief materials are pre-positioned first in regional rescue centers (RRCs), supply sources, or they are donated to centers. These materials are then shipped to local rescue centers (LRCs) that distribute these materials locally. Finally, different relief materials will be delivered to demand points (also called affected areas or AAs). Before the occurrence of a disaster, exact data pertaining to the origin of demand, amount of demand at these points, availability of routes, availability of LRCs, percentage of usable pre-positioned material, and others are not available. Hence, in order to make a location-allocation model for pre-positioning relief material, we can estimate data based on prior events and consequently develop a stochastic model. The outputs of this model are the location and the amount of pre-positioned material at each RRC as well as the distribution of relief materials through LRCs to demand points. Once the disaster occurs, actual values of the parameters we seek (e.g., demand) will be available. Also, other supply sources such as donation centers and vendors can be taken into account. Hence, using updated data, a new location-allocation plan should be developed and used. It should be mentioned that in the aftermath of the disaster, new parameters such as reliability of routes, ransack probability of routes and priority of singular demand points will be accessible. Therefore, the related model will have multiple objectives. In this dissertation, we first develop a comprehensive pre-positioning model that minimizes the total cost while considering a time limit for deliveries. The model incorporates shortage, transportation, and holding costs. It also considers limited capacities for each RRC and LRC. Moreover, it has the availability of direct shipments (i.e., shipments can be done from RRCs directly to AAs) and also has service quality. Because this model is in the class of two-stage stochastic facility location problems, it is NP-hard and should be solved heuristically. In order to solve this model, we propose using Lagrangian Heuristic that is based on Lagrangian Relaxation. Results from the first model are amounts and locations of pre-positioned relief materials as well as their allocation plan for each possible scenario. This information is then used as a part of the input for the second model, where the facility location problem will be formulated using real data. In fact, with pre-positioned items in hand, other supplies sources can be considered as necessary. The resulting multi-objective problem is formulated based on a widely used method called lexicography goal programming. The real-time facility location model of this dissertation is multi-product. It also considers the location problem for LRCs using real-time data. Moreover, it considers the minimization of the total cost as one of the objectives in the model and it has the availability of direct shipments. This model is also NP-hard and is solved using the Lagrangian Heuristic. One of the contributions of this dissertation is the development of Lagrangian Heuristic method for solving the pre-positioning and the real- time models. Based on the results of Lagrangian Heuristic for the pre-positioning model, almost all the deviations from optimal values are below 5%, which shows that the Heuristics works acceptably for the problem. Also, the execution times are no more than 780 seconds for the largest test instances. Moreover, for the real-time model, though not directly comparable, the solutions are fairly close to optimal and the execution time for the largest test instance is below 660 seconds. Hence, the efficiency of the heuristic for real-time model is satisfactory

    Bottling plant location of microbreweries in East Midlands area, UK

    Get PDF
    Facility location decisions are critical in real-life projects, which impact on profitability of investment and service levels from demand side. In this paper, a project-based facility location problem should be resolved which refers to the establishment of a centralized bottling plant to serve microbreweries in East Midlands area of UK. This problem will be structured by firstly finding a mathematically theoretical location using the centre-of-gravity method and then formulate the problem as a multi-criteria decision making problem applying Analytical Hierarchy Process based on selection of the optimal location out of the four candidate locations where three of those have been given. The second part is modeled by considering several criteria related to both the activities before and after bottling and also issues of surrounding area of the location where the prioritization of those criteria are based on the preferences of the project investor. The final result is obtained by applying EXPERT CHOICE to approach Eigenvalue methods to enhance Analytical Hierarchy Process. The outcome can be clarified with illustration of the sensitivities resulted from the weight changes of criteria and the pull-out of certain criteria. Key Words: Facility Location, center-of-gravity method, Multi-criteria decision making, Analytical Hierarchy Proces

    Bottling plant location of microbreweries in East Midlands area, UK

    Get PDF
    Facility location decisions are critical in real-life projects, which impact on profitability of investment and service levels from demand side. In this paper, a project-based facility location problem should be resolved which refers to the establishment of a centralized bottling plant to serve microbreweries in East Midlands area of UK. This problem will be structured by firstly finding a mathematically theoretical location using the centre-of-gravity method and then formulate the problem as a multi-criteria decision making problem applying Analytical Hierarchy Process based on selection of the optimal location out of the four candidate locations where three of those have been given. The second part is modeled by considering several criteria related to both the activities before and after bottling and also issues of surrounding area of the location where the prioritization of those criteria are based on the preferences of the project investor. The final result is obtained by applying EXPERT CHOICE to approach Eigenvalue methods to enhance Analytical Hierarchy Process. The outcome can be clarified with illustration of the sensitivities resulted from the weight changes of criteria and the pull-out of certain criteria. Key Words: Facility Location, center-of-gravity method, Multi-criteria decision making, Analytical Hierarchy Proces
    • …
    corecore