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Abstract  

Almost without exception, cargo movements by sea have their origins and destinations in the 

hinterlands and efficient land transport systems are required to support the transport of these cargo 

to and from the port. Furthermore, not all goods produced are exported or all goods consumed are 

imported. Those produced and consumed domestically also require efficient transport to move 

them from their production areas to areas of consumption. The use of trucks for these transport 

tasks and their disproportionate contribution to urban congestion and harmful emissions has led 

governments, transport and port authorities and other policy-makers to seek for more efficient and 

sustainable means of transport.  

 

A promising solution to these problems lies in the implementation of intermodal container 

terminals (IMTs) that interface with both road and rail (or possibly inland waterway) networks to 

promote the use of intermodal transport as a more sustainable alternative to road alone transport 

(e.g. trucks). This raises two important linked questions; where should IMTs be located and what 

will be their likely usage by individual shippers, each having a choice of whether or not to use the 

intermodal option.  The multi-shipper feature of the problem and the existence of competing 

alternative modes means that the usage of the IMTs are the outcome of many individual mode 

choice decisions and the prevailing cargo production and distribution patterns in the study area.  

 

This thesis introduces a novel framework underpinned by the principle of entropy 

maximisation to link mode choice decisions and variable cargo demand problems with facility 

location problems. The model allows both decisions on facility location and usage to be driven by 

shipper preferences. This is the perspective that a rational planning authority would adopt and 

differs from the perspective of, say, a profit maximising IMT operator. The proposed model takes 

the form of a non-linear mixed integer programming problem with an entropy objective function 

subject to a range of constraints. Several properties of the proposed model are presented in the 

form of propositions, including a general method of dealing with capacity constraints. An 

important outcome is the demonstration of the link between entropy maximisation and welfare 

maximisation. In other words, the proposed framework allows IMTs to be strategically placed at 

locations where shipper welfare is maximised. Exact and heuristic algorithms have been developed 
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to solve the problem. The computational efficiency, solution quality and properties of the heuristic 

algorithm are presented along with extensive numerical examples.  

 

Finally, the implementation of the model, illustration of key model features and use in 

practice are demonstrated through a case study. Specifically, the model was used to determine the 

best locations in the Greater Sydney Metropolitan Area to locate IMTs for the containerised import 

market. The full model comprised a linked facility location sub-model, a mode choice sub-model 

and a cargo distribution sub-model. The model was used for forecasting and testing various 

policies, like changes in land use patterns, road pricing, subsidies, and strategic transport network 

expansion or improvements to support more use of intermodal transport in the Sydney region.  
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Notation 

Variable Meaning 

𝒪 set of origin zones indexed by 𝑖 
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𝑍𝑤 Demand assigned to each elemental alternative 𝑤 ∈ 𝒲 

𝕊 Solution space 
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𝜏 The cardinality of the set of candidate terminal locations 𝒯 
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𝑌𝑘𝑘 = 𝑌𝑘 equals 1 if node 𝑘 is a hub and zero otherwise 

𝑓𝑡 fixed cost of locating an IMT at 𝑡 ($ per day) 

𝑏𝑡 maximum handling capacity of IMT 𝑡 (TEUs per day) 

𝑝 required number of IMTs to be locate 

𝑞𝑖𝑗  Observed quantity of cargo to be transported from origin zone 𝑖 to destination zone 𝑗 (TEUs per 

day) 

𝐺𝑘 Weighted value of variable 𝑘 ∈ 𝒢 

𝐴𝑙 Weighted value of variable 𝑙 ∈ ℋ 

𝑄𝑖𝑗  Estimateed quantity of cargo to be transported from origin zone 𝑖 to destination zone 𝑗 (TEUs per 

day) 

𝑞𝑖 Observed quantity of cargo produced in origin zone 𝑖 (TEUs per day) 

𝑄𝑖  Estimateed quantity of cargo produced in origin zone 𝑖 (TEUs per day) 

𝑑𝑗 Oberved quantity of cargo arriving at destination 𝑗  (TEUs per day) 

𝑊𝑖𝑠𝑡𝑗 the quantity of 𝑞𝑖𝑗  transported intermodally through IMTs 𝑠 and 𝑡 ≠ 𝑠 (TEUs per day) or regional 

intermodal transport demand with unit transport cost 𝑐𝑖𝑠𝑡𝑗 (in $ per TEU) 
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𝑐∗
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𝛿𝑖𝑗𝑚 Equals 1 if mode 𝑚 (𝑚 = 1,2,3) is available for that origin-destination pair and 0 otherwise 

𝐻 Shannon entropy or amount of missing information for a given probability distribution 

𝑆 Entropy 
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𝜆 Structural parameters 

𝜃, 𝜙 Model parameters 

𝑇𝐵 Algorithm running time 

𝑣𝑜𝑡 Driver’s value of travel time savings ($ per min) 

𝑣𝑜𝑐 Vehicle operating cost ($ per km) 

𝛼 Economies of scale factor (𝛼 ≥ 0) from concentration of flows  

𝑟𝑘  Maximum distance or cost between hub 𝑘 and the demand nodes allocated to it 
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Chapter 1 Introduction 

   

 

          

 

1.1 Background 

Prior to the advent of containerised shipping in the 1950s, the various modes of transport in the 

freight system (ships, rail and trucks) were largely used independently, un-integrated and 

considered as competing modes (Rodrigue and Slack 2013). It was also often the case that 

through public policy in many countries a company could own and operate only one mode of 

transport (see Rodrigue and Slack 2013) resulting in fierce competition between transport 

companies with each exploiting the advantages of the mode under its control regarding modal 

flexibility, reliability, economies of scale (to drive down costs), environmental friendliness and 

safety. The biggest barrier to mode integration was, however, not the existence of public 

policies barring companies from owning more than one mode but rather the difficulties and 

high costs associated with transferring cargo between modes in a single journey. These 

difficulties were largely due to the loading units that were employed; sacks, bales, crates, boxes 

and barrels requiring extensive labour force and taking several hours or days to load and unload 

the same amount of cargo, which now takes few man-hours to handle at ports (Cudahy 2006).  

Some studies have estimated that about 20 dock workers were required to load/unload the same 

amount of cargo that is now loaded/unloaded by one person (Broeze 2012).   

 

Following the container revolution in the 1950s first championed by Malcolm McLean 

(Cudahy 2006) and the standardisation of container sizes (notably 20-foot and 40-foot 

container sizes) across the shipping and transport industries in the 1970s, a new and more 

sustainable means of freight transport emerged – intermodal transport. The standardisation 

also meant that containers could be stacked more efficiently and more importantly, ships, 

trains, trucks, terminals, cranes and other related equipment could be built to a single size 

specification. It also removed the potential risks that could have prevented major shipping 
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companies from investing in the new technology for the fear of it turning obsolete (Cudahy 

2006). The basic principle underlying the use of intermodal transport is to combine the 

strengths of the various modes of transport (e.g., rail, air, inland waterway, sea, and road 

transport) for the efficient and sustainable shipment of cargo from anywhere to anywhere in 

the world with minimum complications or disruptions. The European Commission definition 

of intermodal transport involves the movement of goods in one and the same loading unit 

without handling the goods themselves when changing modes (European Conference of 

Ministers of Transport 1997). The loading units are often containers, pallets, swap bodies or 

semi-trailers. This thesis focuses on the container as it is by far the main loading unit for freight 

and as noted in Levinson (2006) the lifeline of intermodal transport and hence international 

trade. In this thesis, loading unit and container are used interchangeably.    

 

The intermodal transport concept allows a single journey1 to be segmented into several 

connected legs, where the most appropriate and/or cost effective mode is used along each leg. 

The attractiveness of this method of transport lies in the fact that each mode has its own 

advantages and disadvantages as each mode may differ in cost, speed, capacity, safety, 

efficiency and flexibility (Rodrigue and Slack 2013). Comparing rail and truck for example, 

rail has very high carrying capacity compared to truck and is generally attractive for long 

distance trips. However, rail is less flexible, usually operates in an inefficient environment and, 

more crucially, is less accessible to shipper’s or customer’s facilities. The truck on the other 

hand is very flexible and can access almost every facility connected to the road network. The 

truck, due to its limited carrying capacity, has relatively high unit costs, which increases 

linearly with distance making the truck less attractive for long distance trips and in cases where 

the volume of goods to be transported is very high (Park et al. 1995).  It is also worth noting 

that almost all commodities (except bulk commodities like coal or iron ore) can be carried for 

some distance by truck (‘first’ and ‘last’ mile logistics).  

 

On a more global scale, consider the movement of cargo, typically expressed in terms 

of Twenty-foot Equivalent Units (TEUs), by a shipper from, say, warehouses in Shanghai to a 

consignee’s warehouses in Sydney. The shipper can decompose the journey into the sea and 

landside legs. The creation of a sea leg means that a container vessel can be used on this leg to 

benefit from economies of scale and other safety and environmental benefits associated with 

                                                           
1 Journey here, refers to the shipment of cargo from the shipper to the consignee 
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using the sea. The landside legs comprise movements from warehouses to the exporting port 

in Shanghai and the movements from the importing port in Sydney to various warehouses, 

where the containers can be finally emptied. The main mode used on these legs is the truck, 

due to its flexibility and direct access to shippers’ or consignee’s warehouses. However, if the 

warehouses can be accessed by rail, then the shipper may opt to use rail to benefit from 

economies of scale. An alternative option is to seek to avoid congestion problems around the 

port by first transporting the containers by rail or barge to an inland terminal and then 

transferring them onto trucks for onward movements to the warehouses. Thus, depending on 

the transport infrastructure and available freight facilities in the hinterland, the shipper can 

explore and benefit from several transport solutions. Although, these two modes of transport 

do still compete, they can complement each other by exploiting the advantages and minimising 

the disadvantages of each through integration.   

 

The relative ease of integrating the various modes of transport has made it possible to 

efficiently move products and raw materials over a long distance and transfer them from one 

mode of transport to another without being opened or having its contents exposed to damage 

or theft, triggering unprecedented growth in international trade (Bernhofen et al. 2014). This 

was possible because intermodal transport or mode integration has resulted in a significant 

reduction in shipping times and the elimination of multiple handling of goods, which usually 

leads to damage and pilferage. These in turn led to a significant reduction in transport costs of 

international trade and reduction of congestion within ports. As shown in Figure 1.1, 

international trade has significantly increased by more than a factor of 10 since the adoption 

and standardisation of the container in the 1970s.  

 

Intermodal transport has also made it possible to integrate once isolated factories or 

companies into a global network of international manufacturers (Cudahy 2006). As noted in 

Cudahy (2006), before Malcolm McLean popularised the idea of container shipping in 1956, 

the world was full of small manufacturers where almost 100% of the finished product would 

be consumed in the country of production. Today, purely local markets for goods of any sort 

have almost disappeared allowing consumers in any part of the world to enjoy unlimited 

varieties of goods made from other parts of the world (Cudahy 2006). Recent statistics 

(UNCTAD 2013) even show that containers now carry many more unfinished products than 

finished ones revealing the deep interdependency among world economies. The success of any 

intermodal transport system, however, critically depends on the geographical locations of 
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where the containers are transferred from one mode to another. These locations or nodes are 

called intermodal terminals and for the purposes of this thesis intermodal container terminals 

(IMTs). The crux of this thesis is to develop models for finding the best locations of these 

terminals.  

 

The rest of the chapter is organised as follows; Section 1.2 discusses the critical role 

played by IMTs in promoting intermodal transport. Two types of IMTs were identified; port 

terminals and inland terminals. The section also contains a brief description of port terminals.  

Section 1.3 presents a discussion on the role of inland terminals in promoting inland intermodal 

transport as a viable and more sustainable alternative to road alone transport (e.g., trucks). The 

potential transport markets for these terminals are discussed in Section 1.4. Section 1.5 

discusses the location decisions of these terminals and the factors governing these decisions. 

Section 1.6 defines the research problems, proposed methods for answering the research 

questions and presents the main contributions of this research. Finally, Section 1.7 presents the 

outline of the thesis.  

 

 

Figure 1.1: World trade since 1960 (Source: OECD Economic Outlook 2016) 

 

1.2 Intermodal terminals  

IMTs are an integral part and key promoter of intermodalism. It is the facility where the transfer 

of containers or loading units from one mode to another takes place. It can also be defined as a 

‘place equipped for the transshipment and storage of intermodal loading units’ (EC 2006).  The 
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Australian government (AHRCR 2007) defined it as any site or facility along the supply chain 

that contributes to an intermodal movement by providing efficient transfer of goods from one 

mode of transport to another. The transfers between modes can be done directly or through 

immediate storage, where the containers arriving at the terminals by one mode (e.g., trucks) 

are first stored before being loaded onto another mode.  A typical IMT must therefore connect 

at least two modes of transport, which are usually a combination of rail, road and sea. The IMT 

can also be designed to have interfaces with other modes such as inland waterways or air 

transport networks.   

 

Although the key feature or primary objective of IMTs is to receive cargo in one mode 

and transfer it to another mode for an onward journey, there are many auxiliary freight activities 

that can take place at the terminals. Some of these activities include temporary storage of the 

goods in their loading units, storage of empty containers, warehousing activities, consolidation 

activities, and repair and maintenance activities (Meyrick 2006). IMTs of this nature are usually 

referred to as logistics centres or freight villages. Consolidation/distribution activities could 

involve consolidating incoming goods of the same type from different sources or separating 

large volumes of goods into smaller outgoing shipments or direct transfer between modes as 

suggested by Feldman et al. (1996).  In summary, an IMT can simply be a transfer point that 

provides a limited set of services, to a purpose-built hub, designed for transfers, storage, 

distribution and a host of associated services (BITRE 2016). IMTs can be classified into two 

types, depending on their geographical locations on transport networks; the port terminals and 

inland terminals, also called dry ports.   

 

Port terminals are terminals located at ports with a direct interface to land transport 

networks such as rail and/or road networks (Crainic and Kim 2006). They serve as gateways 

for international trade where, for example, goods to be exported are first transported by rail or 

trucks to the terminals (of the exporting country) before being transferred onto vessels to be 

shipped to another country. Similarly, imported goods arriving at the port are first unloaded, 

temporarily stored at the terminal and then transported by rail and/or truck to consignee 

warehouses in the hinterland. These terminals sometimes act as transshipment hubs, with or 

without hinterland connections, where containers on small vessels from several ports are 

consolidated into a large vessel or containers on a large vessel from a given port is divided or 

distributed into small vessels and then shipped to their final destinations or other ports. A 

typical example of transshipment hub is the port of Singapore, one of the largest and busiest 
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ports in the world. However, most of the containers it handles have both their origins and 

destinations outside Singapore. A more comprehensive treatment of the subject can be found 

in Crainic and Kim (2006). The focus of this thesis is however, on the development of inland 

intermodal terminals to support more use of intermodal transport and less use of trucks for the 

movements of cargo between a given origin-destination pair in the hinterlands.  

 

1.3 Inland terminals  

The concept of developing inland container terminals to support intermodal transport is 

relatively new and largely motivated by the successes chalked up by port terminals in 

drastically driving down freight rates since the advent of the container. The costs of 

transporting containers between ports have been driven down further in recent years through 

the economies of scale of ever increasing container vessel sizes supported by the concept of 

hub-spoke networks, where as described above containers on small vessels (or large vessel) 

can be consolidated (de-consolidated) and loaded onto a large vessel (small vessels) for onward 

movement to another port terminal(s). These benefits are increasingly being offset by 

inefficiencies in landside container activities, especially the movements of containers between 

ports and various cargo origins/destinations in the hinterland (Norris 1994; UN 1992).  

 

Land transport is a crucial element along the intermodal transport chain and as a matter 

of fact, the sea transport cannot operate efficiently if not supported by efficient land transport. 

This is because goods are generated or consumed in the hinterlands, implying that all goods 

movements by sea have their origins and destinations in the hinterlands and must be transported 

to or from the port. Inefficient and lack of sustainable inland transport therefore threatens the 

growth of international trade and can undo the efficiency gains in ports operations. It is to be 

expected that port activities can be severely constrained when vehicles arriving to receive or 

discharge containers are not managed properly.  This situation is more acute for city ports like 

Sydney with increasingly large vessels calling, little room for physical expansion and where 

the dominant mode of land transport is the truck.  Irrespective of the level of investment in port 

equipment, poor and inefficient hinterland transport can choke port operations, which can, in 

turn, affect the economy of the host country as the port is the main gateway of trade between 

the host country and the rest of the world. 
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Furthermore, not all goods generated are exported or all goods consumed are imported. 

Goods that are generated and consumed domestically also require efficient transport to move 

them from the regions of production to the regions of consumption. Increasingly, governments, 

port authorises and other stakeholders (e.g., carriers and shippers) are turning their attention to 

land transport, with a view to reducing the dependency on trucks by pursuing policies with the 

potential to shift freight away from trucks onto more sustainable modes such as rail or barge 

(EC 2011; NCHRP586 2007; AHRCR 2007).  

 

An important reason why the rail, despite its economies of scale, has a very low mode 

share in freight transport tasks is largely due to low accessibility (BITRE 2016). Few 

companies or shippers have direct access to rail yards and in some cases the seaports 

themselves are not connected to the rail network. Thus, for most shippers, the use of rail is not 

an option. A promising strategy considered by many policymakers for increasing rail mode 

share is the development of inland IMTs that interface with both road and rail networks (EC 

2011; NCHRP586 2007; AHRCR 2007; Meyrick 2006). For example, imported cargo can now 

be moved by rail to the inland terminal and then transferred to trucks for onward distribution 

to their destinations or intermediate warehouses. Similarly, cargo for export can first be 

consolidated at inland terminals before being transported to the port by rail for export. 

Additionally, intermodal transport can be used to move cargo from their production areas to 

their consumption areas in the hinterlands. For example, the movement of cargo from say 

Sydney to Melbourne can be done intermodally by first moving the cargo from the production 

areas in Sydney by trucks to a nearby terminal, where they can be transferred onto rail to be 

moved to a terminal in Melbourne close to the cargo destinations and then transferred onto 

trucks again for final delivery (see Figure 1.2). The development of inland terminals is 

therefore critical in making rail accessible to many shippers and thereby promoting more use 

of rail in the freight tasks.  

 

The development of inland terminals can also be used by governments or local 

authorities to achieve certain policy objectives and may have to intervene in various ways to 

create the necessary environment to make the terminals viable and sustainable. One of such 

policy objective may be to move away from continuous road network expansions to 

accommodate freight growth to support more use of intermodal transport by investing in 

intermodal transport systems. It is generally acknowledged that expanding the road network to 

accommodate growth (both from passengers and freights) is at best a short-term congestion 
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alleviation strategy as newly created capacity is quickly taken up by induced demand and/or 

natural growth in demand such as increase in population and/or economic activities (Hills 

1996). Additionally, the high cost of land, environmental concerns and physical barriers 

restricts expansion of existing road networks, especially in urban areas. Furthermore, the 

disproportionate impacts of truck related congestion on the urban fabric in terms of noise, 

pollution and safety have also been well documented in the literature (Ellison 2014; Ayres and 

Kneese 1969; Moseley 1973). Government intervention could take several forms including 

providing suitable land and related facilities for the development of the terminals (DoFD 2011), 

subsidising the use of the terminals, investing or improving the rail lines connecting the 

terminals and between the terminals and other important nodes like the port or giving tax 

incentives to truck companies willing to make their vehicles available for local pickups and 

deliveries along the intermodal transport chain (BITRE 2016). Governments can also 

discourage the use of road alone transport through some form of road pricing, especially around 

ports, to trigger mode shifts in favour of intermodal transport.  

 

The truck industry also stands to benefit from intermodal transport solutions. The 

rapidly ageing workforce coupled with growth in freight has resulted in shortage of truck 

drivers in many advanced economies (Golob and Regan 2000; ATRI 2014). Also, truck drivers 

generally resent moving freight over long distances since they are often required to spend long 

hours alone, away from family and colleagues, together with the fact that truck driving is quite 

a difficult and sometimes dangerous occupation (Golob and Regan 2000). This adds to the 

daily frustrations experienced by truck drivers when they get stuck in traffic for several minutes 

or hours (Golob and Regan 2000). As a result, the number of truck drivers is decreasing whilst 

cargo volumes are increasing, and subsequently, the cost of trucking are rising (ATRI 2014). 

Intermodal transport solutions open up alternative and more environmentally sustainable 

solutions requiring fewer drivers.  

 

Although intermodal transport services can be derived from various combinations of 

modes (road, rail, barge, air), this thesis focuses on rail and road as the main modes of transport 

for inland intermodal freight movement. The discussion above also reveals two main markets 

for inland intermodal transport; the regional containerised transport market (RCTM) and 

metropolitan containerised transport market (MCTM). Detail discussions about these markets 

are presented below.  
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1.4 Inland terminal markets  

Two main markets for inland IMTs as transfer nodes can be identified in the literature (Arnold 

et al. 2001; Meyrick 2006); the regional containerised transport market and the metropolitan 

containerised transport market. The regional market (Arnold et al. 2001; Meyrick 2006) 

comprises the movement of cargo between their production and consumption areas in the 

hinterland without the use of the seaport. The cargo is transported over long distances, usually 

between two urban or metropolitan regions or countries. Two main modes of transport are often 

available in this market; road alone and intermodal transport. Road alone transport involves the 

use of only trucks for the transport task. The intermodal transport mode used in this market 

comprises two terminals as transfer nodes along the intermodal transport chain. The cargo is 

first consolidated at a terminal close to the cargo origin using trucks and then transported by 

rail (or other high capacity mode) to another terminal close to cargo destinations where the 

cargo is finally distributed by truck to their various destinations as shown in Figure 1.2. This 

type of market is very common in Europe (EC 2011), America (NCHRP586 2007) and 

Australia (AHRCR 2007; Meyrick 2006) and the development of terminals in this market could 

be considered as the traditional concept of inland intermodal transport, where both economies 

of scale and distance are the key drivers in both the location and use of IMTs.   

 

The metropolitan market comprises the export and the import markets and are 

sometimes referred to as the IMEX (import/export) containerised markets. Here again, two 

main modes are available; road alone and metropolitan intermodal transport. Metropolitan 

intermodal transport is a relatively new concept of intermodalism, largely motivated by ports, 

especially city ports, experiencing high growth in container throughput, increasing port calls 

by larger vessels, limited physical space for expansion and lack of investment in inland 

transport infrastructure connecting with the ports, resulting in congestion, safety and 

environmental problems around ports in addition to choking port operations and increasing the 

cost and unreliability of container pickups and deliveries. The use of metropolitan intermodal 

transport in the IMEX market requires the use of only one IMT along the intermodal transport 

chain, where the seaport is either the cargo origin (import markets) or cargo destination (export 

markets) and the mode of transport between the port and the terminal is a high capacity mode 

such as rail. The geographical locations of these terminals do not necessarily have to be within 

the metropolitan region, they can be located anywhere in the region or outside the region or 

even at the periphery of the region provided it leads to the use of only one IMT along the 
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intermodal transport chain. In Australia, for example, the IMEX market accounts for over 99% 

of all containerised volumes through Australians ports (Piyatrapoom et al. 2006) and over 86% 

of these volumes are transported to their various destinations by trucks (Shipping Australia, 

2011) resulting in road congestion, safety and environmental problems in the vicinity of the 

ports.  

 

The next section discusses the location decisions of terminals in both markets and their 

significance in promoting inland intermodal transport use. 

 

 

Figure 1.2: Inland intermodal transport markets 

 

1.5 Location decisions 

The success or failure of any intermodal terminal depends on it geographical location with 

respect to cargo origins and destinations. The locations of these terminals are crucial for their 

survival and are also the key facilitator of intermodalism which in turn drives economic growth. 

It is hard to imagine any other factor or characteristic of intermodalism or terminal activities 

that is not influenced by where the terminal is located. If the wrong location is chosen, then 

whatever facilities or features the terminal possesses may be of little use.  
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The location also determines users’ cost of intermodal transport and whether or not it 

can compete with road alone transport (e.g., trucks). The cost of using inland intermodal 

transport comprises three main components; the road leg costs, terminal costs and rail leg costs.  

Each cost component occupies a certain percentage of the total transport cost with the share 

depending on the contribution of each mode in the transport task. Crucially, the direct factors 

governing one cost component are usually related to those governing others. For example, it is 

to be expected that terminals located in urban areas will have higher user costs than those 

located in rural areas due to higher installation and operation costs, which are expected to be 

passed on to the user. However, urban terminals may be close to customers so may reduce the 

associated truck costs of reaching these customers. The rail and truck cost components form 

the main part of the total intermodal transport cost.  

 

As noted earlier, the comparative advantage of using intermodal transport hitches 

largely on the economies of scale and economies of distance of rail. For illustrative purposes, 

consider intermodal transport use in the MCTM where in this example containers are moved 

from the port to a warehouse in the metropolitan region as illustrated in Figures 1.3 and 1.4.   

The only difference between the two figures relates to the location of the terminal with respect 

to the port and cargo destination in the metropolitan region. In Figure 1.3, the terminal is closer 

to the cargo destination than in Figure 1.4. The cost of each mode (rail or truck) is assumed to 

be made up of a fixed cost which is independent of distance or the travel time covered by the 

mode and a variable cost which is a function of distance and/or journey time. It is to be expected 

that the fixed cost of rail would be relatively higher than that of the truck (BITRE 2016). 

However, the economies of scale advantage of rail mean that the overall cost of rail depending 

on the cargo volumes and distance involved could be lower than that of the truck as illustrated 

in Figure 1.3 and 1.4.  

 

For intermodal transport to be competitive its total cost (fixed and variable) must be 

comparable to road alone transport cost and this critically depends on the location of the 

terminal. For example, in both figures, the total transport cost of intermodal transport is the 

sum of the fixed (𝐶3) and variable (𝐶4) cost of rail and the fixed (𝐶5) and variable cost (𝐶6) of 

truck.  As expected, the fixed cost of rail is higher than that of road alone (𝐶3 > 𝐶1). However, 

due to the economies of scale benefits of rail, the variable cost of rail ($ per TEU) is lower than 

that of road alone (𝐶4 < 𝐶2) such that there exists a certain distance from the port (the break-
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even distance) beyond which the overall cost of rail transport becomes lower than that of road 

alone transport. In Figure 1.3, the location of the IMT resulted in significant cost savings by 

rail, which is more than enough to compensate for the additional cost of local distribution by 

truck (made up of 𝐶5 and 𝐶6), resulting in the total cost of intermodal transport being lower 

than that of road alone.  In Figure 1.4, however, the cost savings by rail is not enough to make 

up for the extra cost of local truck delivery, making intermodal transport in this instance less 

competitive. The only difference between the two scenarios presented in Figures 1.3 and 1.4 is 

the location of the IMT along the intermodal transport chain. This example shows the critical 

role played by the physical location of the IMT with respect to cargo origins/destinations in 

making intermodal transport competitive to road alone transport. If the terminal it too close the 

port, the distance covered by the truck leg will be relatively longer and can undo the benefits 

that the rail might bring through its economies of scale. In other words, the high cost of one 

mode can undermine the cost advantage of other modes and may render intermodal transport 

less competitive. IMTs therefore need to be strategically placed at locations where intermodal 

transport use will be an attractive modal option to as many shippers as possible. 

 

Additionally, the inland IMT has over the years evolved from a simple transfer node 

where containers are transferred between two modes (e.g., road and rail) to an extended zone 

that has taken on additional logistics tasks such warehousing, empty container storage and 

sometimes port-related activities such as customs and quarantine (BITRE 2016). Revenues 

from these auxiliary activities are considered vital for the viability and sustainability of many 

inland terminals especially metropolitan intermodal terminals, partly due to the high setup or 

rental cost and operation costs associated with these terminals and the need for it operate daily 

throughout the year (DoFD 2011; Meyrick 2006). It is therefore very important that any 

procedure used for the selection of the best inland IMT(s) also accounts for these potential 

revenue generating markets (auxiliary activities).  
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1.6 Contribution to literature and practice 

The above analysis shows that the geographical distribution of inland IMTs with respect to 

cargo origins/destinations are key in promoting inland intermodal transport use. An important 

feature of the IMTs under consideration is that they are open access facilities where a shipper 

has the choice of using them as part of an intermodal chain or use road alone transport mode 

(trucks) in the transport task. There are, however, many instances where market forces alone 

may not be enough to make intermodal transport (especially metropolitan intermodal transport) 

competitive to road alone transport. In these instances, some form of government intervention 

Container destination IMT Port  Distance from port 

Break-even 

distance 

Cumulative 

transport 

Cost 

Rail leg 

𝑪𝟏 

𝑪𝟒 

𝑪𝟑 

𝑪𝟐 

𝑪𝟓 

𝑪𝟔 

Cost savings 

Figure 1.3: Competitive intermodal transport (Source: BITRE 2016 modified) 
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Figure 1.4: Less competitive intermodal transport (Source: BITRE 2016 modified) 
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in the form of subsidies or road pricing may be justified to make intermodal transport more 

competitive. Given the potential environmental benefits of IMTs, it is to be expected that 

policymakers will be keen on terminal location and demand estimation tools that are responsive 

to policy variables to help evaluate and select the best policy to promote more use of intermodal 

transport.  

 

The aim of this research is to develop mathematical models to enable policymakers, both 

government and private sector, to determine the best locations for current and future IMTs. The 

model presented here will provide policymakers with a better understanding of the intermodal 

transport system in general and the means of testing various policy instruments to support more 

use of intermodal transport. The model can also be connected to an existing transport network 

model to identify hot spots and bottlenecks on the transport networks that need treating, among 

others. Additionally, the model can be used to understand factors governing the distribution of 

freight and the choice of mode and interactively forecast freight volumes by modes and by each 

IMT. The model can also provide the required inputs to support a business case for an IMT and 

help identify lands and other resources to reserve for the future development of IMTs.  

 

To achieve the above objective, this thesis introduces a novel framework for locating 

multi-user facilities and specifically inland IMTs. More importantly, models developed under 

this framework are suitable for forecasting and testing of various policy instruments. The 

proposed framework is underpinned by the principle of entropy maximisation or information 

theory where terminals are located to maximise shippers’ or users’ welfares. The problem of 

locating IMTs or intermodal terminal location problem (IMTLP) analogous to the classical 

facility location problem comprises two linked problems with conflicting objectives; the 

location problem and the allocation problem. The location problem determines the exact 

locations of the terminals with the objective of keeping the costs of installations as low as 

possible, whilst the allocation problem determines the usage of the located terminals with the 

objective of keeping the transport costs of accessing the terminals as low as possible. These 

two problems are linked and cannot be solved separately since their objectives are in conflict 

and therefore require some degree of trade-offs as shown in Figure 1.5.  

 

The multi-user feature of the problem and the existence of a competing alternative mode 

(road alone) means that the allocation part of the problem can be cast as a mode choice problem 

(MCP), where potential users of the terminals are assumed to face a choice of choosing the 
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among the available transport modes (road alone transport versus intermodal transport) the 

mode they perceive to offer them the highest utility (or least disutility or cost) for the transport 

task and where the choice of intermodal transport leads to the use of one of the IMTs. Thus, 

the demand associated with each located IMT is expected to be the outcome of many individual 

mode choice decisions. As noted by McFadden (1974), in a choice situation not all factors 

affecting the choice process are known to the analyst or can be quantified and included in the 

modelling process, making a probabilistic description of modal choices desirable.  

 

Additionally, the choice of mode depends on the cargo origin and where the cargo is 

destined. Intermodal transport may not be feasible or cost competitive if the cargo destination 

is sufficiently close to the cargo origin. Conversely, the choice of cargo destination depends on 

modal accessibility. This implies that cargo origin and destination must be connected to the 

transport network and must be accessible by at least one available mode of transport. This 

reveals a link between cargo production and distribution and mode choice, where the choice of 

mode is conditioned by cargo production and the choice of cargo destination, whilst mode 

choice influences the production and distribution of cargo as illustrated in Figure 1.6. This 

leads to three linked problems; facility location problem (FLP), mode choice problem (MCP) 

and variable cargo demand problem (VDP). The VDP comprises the production and 

distribution problems and provides a means of quantifying the demand of the located terminals 

due to auxiliary activities like warehousing or storage, where the terminal can be coded as 

cargo destination on the transport network. The study refers to the extended problem with VDP 

as IMT location with variable cargo demand problem (IMTL+VDP). Also for the sake of 

clarity, the combined MCP and VDP is referred to as the cargo flow problem (CFP) as shown 

in Figure 1.6. Thus, in applications where the production and distribution of cargo is fixed (not 

influenced by the choice of mode or changes transport network conditions), the CFP reduces 

to MCP, and the IMTL+VDP reduces to the basic IMTLP.  
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This thesis made several contributions to the literature. Perhaps, the most important 

contribution is the development of a modelling framework that links behavioural modal 

decisions and/or variable cargo demand problems with an FLP to determine the best locations 

of multi-user facilities in general and IMTs in particular and their expected usages. The 

proposed framework takes the form of a non-linear mixed integer programming problem and 

involves maximising an objective function subject to a set of constraints. The objective 

function to optimised is an entropy function describing all possible states of modal decisions 

and the constraints consist of a linked FLP, MCP and VDP. The framework locates terminal 

and generates probabilistic models for determining the expected usage of the located terminals. 

Once the best locations of terminals are determined, the CFP is converted into a nested logit 

Figure 1.5: Basic intermodal terminal location problem 
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model suitable for forecasting and testing policies to promote more use of the located IMTs. 

Models for locating terminals in the metropolitan containerised transport market is first 

developed, followed by models for locating terminals to serve the regional containerised 

transport market. The latter model is generalised to also allow for locating terminals to serve 

the metropolitan or simultaneously serve both markets. Finally, the models developed are 

extended to incorporate variable cargo demand.  

 

The second important contribution relates to the general formulation of the FLP, MCP, 

and VDP and how they can be expressed as constraints within the entropy framework. The 

formulations allow both decisions on facility location and facility allocation or usage to be 

driven by shippers or users’ preferences with one objective function to optimise. Several 

properties of the entropy model are presented in the form of propositions including a general 

method of dealing with capacity constraints. An important outcome of this study is the 

demonstration of the link between entropy maximisation and welfare or consumer surplus 

maximisation. In other words, the proposed method allows IMTs to be strategically placed at 

locations where users’ welfares are maximised. 

 

The third contribution relates to the development of algorithms for solving the 

formulated problems. The general solution techniques employed involve decomposition the 

problem into FLP and the CFP using Lagrangian relaxation technique and developing 

algorithms to solve each sub-problem. The solution to the CFP (both the MCP and VDP) 

involves conversion into a behavioural nested logit model to explain the choice behaviour of 

facility users. To solve the overall model, two main general solutions are proposed; complete 

enumeration and an entropic greedy heuristic algorithm. The complete enumeration algorithm 

is proposed to deal with small to medium sized problems and proved to be very useful, 

especially for locating terminals to serve the metropolitan container market. It also provided a 

benchmark for gauging the quality of the proposed heuristic for solving large problem 

instances. The heuristic algorithm was primarily developed for locating terminals to serve the 

regional market. The geographical region making up the regional intermodal market is usually 

large and can encompass a whole country or several countries or economic regions and 

therefore required a more efficient algorithm. The computational efficiency, solution quality 

and properties of the heuristic algorithm are also presented.  

 



   

  37 

 

Finally, the implementation of the models in practice, illustration of key model features 

and use in practice are demonstrated through a case study implementation. Specifically, the 

model is used to determine the best places in Sydney Greater Metropolitan Area (GMA) to 

locate terminals to serve the import containerised market. The full model comprises linked 

FLP, MCP and the VDP formulations. The factors governing the models are discussed followed 

by the use of the model in forecasting and testing of various policies. Some of the policies 

tested include changes in land use patterns, road pricing, subsidies, and strategic transport (rail 

and road) network expansion or improvements to support more use of intermodal transport in 

the Sydney region.  

  

1.7 Outline of the thesis 

The remainder of the thesis is organised in the following way. Chapter 2 discusses the existing 

literature on IMTLPs, identifies specific gaps in the literature, formulates the research 

questions and proposed methods for answering the questions. The principle of entropy 

maximisation and its suitability for developing models for answering the research questions 

are presented in Chapter 3. In Chapter 4, models suitable for locating terminals to serve the 

metropolitan containerised market with solution algorithms are developed. The proposed 

model is underlined by the principle of entropy maximisation and based on the assumption of 

fixed origin-destination cargo matrix. Chapter 5 addresses the second research question by 

generalising the models in Chapter 4 to be suitable for locating terminals to serve the regional 

containerised market and terminals to serve both markets. This chapter also contains a new 

solution algorithm for solving the generalised problem. The properties of the algorithm 

including solution quality and computational efficiency together with extensive numerical 

examples are also presented in this Chapter.  

 

The model proposed in this chapter is also underlined by the fixed origin-destination 

cargo matrix assumption. Chapter 6, relaxes this assumption by replacing the fixed cargo 

matrix with cargo production and distribution models to allow changes in cargo production and 

distribution patterns to affect modal decisions which can in turn influence location decisions. 

The chapter contains various ways of formulating the cargo production and distribution 

problem and how they can be expressed as constraints within the entropy framework. Chapter 

7 presents a case study implementation of the model developed in the previous chapters. The 

chapter specifically looks at the location of terminals within the Sydney greater metropolitan 
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area using import containerised data of the study area. Data sources, estimation of transport 

costs by each mode, candidate IMTs and general description of the study area including 

analysis of the results and the testing of various policies are also presented in this chapter. 

Finally, Chapter 8 provides a summary of how the research questions were addressed, presents 

the key contributions made in this study to the literature and in practice and finally discusses 

the limitations of this study and the directions for further research.  
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Chapter 2 Literature Review 

 

 

 

 

 

2.1 Background 

The previous chapter presents the background and motivation of this study including the need 

for policy-oriented models to support the development of inland intermodal terminals. The 

purpose of this review is threefold; first to clearly identify and acknowledge what has been 

done in the literature in relation to the topic under consideration; identify specific gaps in the 

literature; formulate the research questions; and finally propose how this thesis address those 

questions. 

 

Research on intermodal terminal location problems (IMTLP) is relatively young but 

has been receiving growing attention by both policy makers and academics for more than two 

decades (Arnold et al. 2001; Bontekoning et al. 2004). The IMTLP can be classified under a 

more general location problem called the Hub Location Problems (HLP). A hub is 

characterised by three main features; Consolidation, where flows are aggregated from different 

origins and dispatched to different destinations through other hubs in order to exploit 

economies of scale; transfer, where cargo can be re-directed to different destinations; and 

Distribution where large cargo flows can be decomposed into smaller ones and then distributed 

to several nodes or destinations (O'Kelly 1987; Alumur and Kara 2008). In addition to these 

three main features, auxiliary activities such as warehousing, storage and sorting and other 

freight related activities can be performed in a hub.  All the above features also apply to 

intermodal terminals, making intermodal terminals effectively hubs. The IMTLP also share 

common features with HLPs, especially in relation to the construction of objective functions, 

treatments of economies of scale discounts and the fact that both hubs and IMTs act as transfer 

nodes and can perform value added services.  

 

The review of the literature therefore, starts with work on HLP, followed by review of 

work on IMTLP and a discussion of the common features between the two problems. These 

are followed by identifying the gaps in literature on IMTLP that this research aims to fill. The 
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gaps are synthesised and formulated as research questions followed by the proposed method 

for answering these questions. The rest of the chapter is, therefore, organised follows; Section 

2.2 synthesised and summarised the work on hub location problems in the literature, followed 

by the literature on intermodal terminals location problems in Section 2.3. The identified gaps 

in the literature and how this thesis intends to fill them are presented in Section 2.4. Section 

2.5 presents the research questions and the proposed methodology for addressing the questions 

is presented in Section 2.6.  

 

2.2 Hub location problems 

HLPs have been investigated by many researchers since the pioneering work by O’Kelly 

(1987). A recent review by Alumur and Kara (2008) cited over 100 papers related to the 

problem. The HLP considered by O’Kelly (1987) can be stated as follows; 

 

 “Given a set of demand nodes (flows between origin-destination pairs), locate p-hub 

facilities at candidate sites to minimise the total transport cost to serve the demands’. 

 

In formulating the problem, O’Kelly (1987) assumes that freight origins, destinations 

and candidate hub locations are nodes that interact on the network. Each node is assumed to 

be assigned to exactly one of the p-hubs (where p is the number of hubs to locate) and all hubs 

are connected to each other, allowing the movement from one hub to any other hub in the 

network. For example, if cargo origin node  𝐷1 ∈ 𝒩 is assigned (or connected) to hub 𝑌1 ∈

𝒩, and cargo destination node  𝐷5 ∈ 𝒩 is assigned to hub 𝑌2 ∈ 𝒩, then the flow of cargo 

from 𝐷1  to 𝐷5 must be first be routed from 𝐷1 to 𝑌1, then from 𝑌1 to 𝑌2, and then finally from 

𝑌2 to 𝐷2 as shown in Figure 2.1a.  The mathematical formulation of the HLP due to O’Kelly 

(1987) can be presented as follows: 

 

(O′ Kelly 1987): Min Λ =   ∑ ∑ 𝑞𝑖𝑗 (∑ 𝑐𝑖𝑘𝑌𝑖𝑘 + 𝛼 ∑ ∑ 𝑐𝑘𝑚𝑌𝑖𝑘𝑌𝑗𝑚

𝑚𝑘

+

𝑘

∑ 𝑐𝑗𝑚𝑌𝑗𝑚

𝑚

) 

𝑗𝑖

 

Subject to: 

 

∑ 𝑌𝑖𝑘

𝑖

≤ (𝑛 − 𝑝 + 1)𝑌𝑘𝑘;   ∀𝑘 
(2.1) 
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∑ 𝑌𝑖𝑘

𝑘

= 1 ;    ∀𝑖 (2.2) 

∑ 𝑌𝑘𝑘

𝑘

= 𝑝 
(2.3) 

𝑌𝑖𝑘 ∈ {0,1}; ∀𝑖, 𝑘 (2.4) 

 

In the above formulation, the location variable 𝑌𝑖𝑘 equals 1 if node 𝑖 is assigned to a hub at 𝑘 

and zero otherwise and 𝑌𝑘𝑘 equals 1 if node 𝑘 is a hub and zero otherwise.  Here, the flow 

variables 𝑞𝑖𝑗 are the quantity of flow between nodes 𝑖 and 𝑗. By construction  𝑞𝑖𝑖 = 𝑞𝑗𝑗 = 0  

and 𝑐𝑖𝑗 is the transport cost of a unit of flow between node 𝑖 and 𝑗 and  𝑝 is the total number 

of hubs to be constructed with 𝑛 being the total number of nodes in the transport network to 

be interconnected.  

 

The objective function Λ comprises three main terms; the first term (collection costs) 

captures the weighted transport costs of collecting flows to the assigned hubs; the second term 

(transfer costs) captures the weighted costs of transfer of flows between hubs. These inter-hub 

costs are multiplied by a discount factor 0 ≤ 𝛼 ≤ 1 to reflect the economies of scale effects 

in inter-hubs flows. The third term (distribution costs) reflects the weighted costs of 

distributing flows to their final destinations.  Constraint (2.1) ensures that no node is assigned 

to a location unless a hub is opened at that site and recognizing that nodes can only be assigned 

to hubs, and that at most (𝑛 − 𝑝 + 1) nodes can be assigned to any hub (including the hub 

itself). Constraint (2.2) ensures that each node is assigned to one and only one hub. Constraint 

(2.3) locates the correct number of hubs. Constraint (2.4) ensures that a hub is either opened 

or closed. The phrase ‘open hub’ is used to mean a location where a hub is operating; for this 

location 𝑌𝑘𝑘 = 1, conversely a ‘closed hub’ is a location where 𝑌𝑘𝑘 = 0. 

 

The second term in the objective function is quadratic making O’Kelly’s formulation 

a quadratic integer program and thus, very difficult to solve exactly for all instances. The 

benefits of linearizing the quadratic function (Kaufman and Broeckx 1978; Burkard and 

Stratmann 19780) come at the expense of additional variables and constraints. In addition to 

the quadratic function, the formulation includes integer variables, making it an NP-hard 

combinatorial problem (Garey and Johnson 1979) with no known algorithm to efficiently 

solve every instance of the problem.  
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Some of the obvious limitations of O’Kelly’s formulation include the assigning of each 

demand node to exactly one hub and the fact that modal decisions are ignored in addition to 

preventing direct routing of flows between nodes. Subsequent studies on the subject have 

sought to relax some of these limitations and also expanded the problem to include other 

aspects of hub activities.  The problem considered by O’Kelly (1987) was later classified 

under a more general class of HLPs by Campbell (1994) called the p-hub median problem (p-

HMP). The other two classes of HLP identified by Campbell (1994) are; the p-hub centre 

problem (p-HCP) and the hub covering problems (HCP). The basic formulation of each sub-

group together with their extensions and variants are presented below. The discussion starts 

with the p-HMP, followed by p-HCP and then finally the HCP.   

 

 

Figure 2.1: a) Single allocation                       b) multiple allocations 

 

2.2.1 p-Hub median problems 

The model proposed by O’Kelly (1987) forms the basis of all problems in this group. All 

problems under this class are characterised by at least 4 features; 1. Every origin-destination 

path must visit at least one hub, 2. Exactly p number of hubs must be installed on the network, 

3. All hubs are assumed to be connected to each other and inter-hub cost per unit flow is 

discounted by a factor 𝛼  to reflect the economies of scale benefits from concentration of flows 

and 4. The objective function is often to minimise the weighted total transport cost of all flow 

movements.  The economies of scale factor 𝛼 as noted in Campbell (1994) plays an important 

role in determining the best locations of the p hubs and the assignment of demand nodes to 

the located hubs. It is expected and demonstrated by O’Kelly (1987), O’Kelly et al. (1996) 

and Campbell (1994) that as 𝛼  decreases, hubs tend to spread farther apart and the number of 

spokes (The links or arcs connecting the demand nodes to hubs) decreases, since a lower inter-
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hub transport cost favours allocation to the nearest hub. In the extreme case where 𝛼 = 0 the 

inter-hub cost will reduce to zero and each demand point will be allocated to exactly one hub 

(least cost hub) and the p-HMP collapses to the classical p-median problem (Hakimi 1965). 

For large 𝛼 (𝛼 > 1) hub interactions are expensive and hubs are drawn closer together to 

reduce inter-hub transport costs.  

 

Several variants of the p-HMP exist in the literature with the probably the most 

noticeable one being how demands are allocated to hubs. Two types of allocations are 

discussed in the literature, the single allocation and the multiple allocations p-hub median 

problems. Single allocation p-hub median problems (SApHMP) assign each demand node to 

exactly one hub. The model by O’Kelly (1987) is a classic example of the SApHMP.  Multiple 

allocation p-hub median problems (MApHMP) on the other hand allows the assignment of 

each demand node to more than one hub. The difference between these two problems is 

illustrated through Figure 2.1. In Figure 2.1a demand node D1 is assigned to only hub Y1 and 

it implies that flows to and from node D1 can only go through hub Y1. Under Figure 2.1b, 

demand node D4 is assigned to hubs Y1 and Y2 allowing flows to and from this node to go 

through either hub. This example illustrates the restrictive nature of the SApHMP and may be 

unrealistic in many real applications especially in transport applications.   

 

Nevertheless, research on SApHMP have been pursued by several authors including 

the work by Campbell (1994) who presented the linear version of the problem reducing the 

quadratic integer programming formulation (O’Kelly 1987) to integer linear programming 

formulation. Skorin-Kapov et al. (1996) show that the linear formulation by Campbell (1994) 

is not tight enough as it produces highly fractional solutions. They then presented a tighter 

formulation of the problem and demonstrated using the CAB data set (Ernst and 

Krishnamoorthy 1996) that their formulation almost always yields integral solutions using the 

CPLEX software. Ernst and Krishnamoorthy (1996) presented a new mixed integer linear 

programing (MILP) formulation of the problem also in an attempt to reduce the number of 

variables and constraints, which are directly linked to the computational time required to solve 

the problem. In their formulation, they treated the inter-hub transfers as a multicomodity flow 

problem where each commodity represents the traffic flow from a demand node. They showed 

the computational benefits of their new formulation using the AP (Australian Post) data set 

which uses different discount factors for collecting and distributing flows.   
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Table 2.1 presents a summary of other relevant work on this class of problem and 

includes the work by O’Kelly and Bryan (1998) who focussed on the effects of the economies 

of scale factor 𝛼 on hub locations and potential usage. Sohn and Park (1998) presented a new 

formulation of the problem using fewer decision variables and constraints. The formulation 

by Ebery (2001) reduced both the number of decision variables and constraints to the order of 

O(n2), making it theoretically the most computationally efficient model on the subject, with n 

being the number of nodes on the network. However, it was shown that in practice the 

formulation by Ernst and Krishnamoorthy (1996) is computationally more efficient (Alumur 

and Kara 2008).  

 

Studies on MApHMP were first conducted by Campbell (1992). He presented an 

integer linear programming (ILP) formulation of the problem with a total of O(n4) binary 

variables and O(n4) linear constraints.  He noted that an optimal solution to the problem exists 

if the capacity constraints on links are relaxed. Skorin-Kapov et al. (1996) again presented a 

tighter formulation of the problem with the required number of constraints reducing to the 

order O(n3).  The model has been reported to return optimal solutions to many instances of the 

CAB data set and those non-optimal solutions they found were within 1% of the optimal 

solutions. Extending their work on the SApHMP to the MApHMP, Ernst and Krishnmoorthy 

(1996) also proposed a new formulation of the problem with significant improvements in 

computational efficiency. The number of binary variables reduce to the order O(n3) and 

required O(n2) constraints. Other noticeable work on the subject are summarised in Table 2.2, 

including Sohn and Park in (1998) formulation of the uncapacitated version of the problem 

and Sasaki et al. (1999) who considered a special case of problem where each route in the 

network uses only one of the located hubs.  

 

Other important variants of the hub location problem include whether or not the 

amount of flows through the located hubs are restricted or unrestricted. The restricted versions 

are called capacitated HLP and work in the area includes Lin and Chen (2012), Stanimirovic 

(2010) and Ernst and Krishnamoorthy (1999), Aykin (1994).  Most of the work described 

above including O’Kelly (1987) and Campbell (1994) are uncapacitated or unrestricted 

variants of the problem. Another variant of the HLP is the inclusion of the fixed costs of hub 

location in the objective function to account for the differential cost of land, labour and other 

factors in each candidate hub location.  HLP with fixed cost of hub locations can be found in 
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Chen (2007), Topcuoglu et al. (2005), Klincewicz (1996), Aykin (1995) and Ernst and 

Krishnamoorthy (1998a). 

 

Table 2.1: Summary of work on p-HMP (Single allocation) 

Reference 

Capacitated 

(Y/N) 

With Fixed 

Cost (Y/N) Comments 

O' Kelly (1987) N N Quadratic integer program and heuristics 

Aykin (1990) N N Exact algorithm 

Klincewicz (1991) N N Exchange heuristic 

Campbell (1994) N N First integer formulation 

O' Kelly et al. (1995) N N Lower bounding technique 

Klincewicz (1992) N N Tabu search and GRASP heuristics 

Skorin-Kapov and Skorin-Kapov (1994) N N Tabu search heuristics 

Campbell (1996) N N Heuristics 

Ernst and Krishnamoorthy (1996). N N New formulation, SA and B&B  

   
algorithms 

O' Kelly et al. (1996) N N New formulation 

Smith et al. (1996). N N Heuristics 

Sohn and Park (1997) N N Problem complexity 

Ernst and Krishnamoorthy (1998a). N N Shortest path based B&B 

Pirkul and Schilling (1998). N N Lagrangian relaxation heuristic 

Sohn and Park (1998) N N New formulation 

Sohn and Park (2000) N N Problem Complexity 

Abdinnour-Helm (2001) N N Simulated annealing 

Ebery (2001) N N New formulation 

Elhedhli and Hu (2005)              N                N Congestion cost function with  

   
Lagrangian heuristic 

Stanimirovic (2010) Y Y New formulation with Genetic algorithm 

Alumur et al. (2009) N Y Hub location in incomplete hub 

 
  

networks 

    
 

Table 2.2: Summary of work on p-HMP (Multiple allocation) 

Reference 
Capacitated 

(Y/N) 

With Fixed 

Cost (Y/N) 
Comments 

Campbell (1992) N N First integer program 

Campbell (1994) N N New formulations with fixed costs 

Campbell (1996) N N Greedy interchange heuristic 

Skorin-Kapov and O' Kelly (1996) N N New formulation 

Ernst and Krishnamoorthy (1998a) N N New formulation, B&B algorithms and heuristics 

Ernst and Krishnamoorthy (1998b) N N Shortest path-based B&B algorithms 

Sasaki et al. (1999) N N 1-stop problem with B&B algorithm & heuristic 

Boland et al. (2004) N N Preprocessing and tightening constraints 

O' Kelly (1992) N Y Single allocation hub location with fixed costs 

Abdinnour-Helm (1998) N Y Hybrid genetic and Tabu search heuristics 
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2.2.2 p-Hub centre problems 

The p-hub centre problem (p-HCP) was introduced by Campbell (1994) as analogues to the 

classical p-centre problem (Hakimi 1965; Drezner 1984). However, the notion of “centre” in 

the p-HCP is different from that of the classical p-centre problem. The objective of the p-centre 

problem is to minimise the maximum weighted distance between each demand node and its 

closest facility (Hakimi 1965). According to Campbell (1994) p-HCP can be characterised by 

three main objective functions; the first is to minimise the maximum cost or distance for any 

origin-destination pair; the second is to minimise the maximum cost or distance of any single 

link in an origin-destination path and finally, to minimise the maximum cost or distance 

between flow origin or destination and a hub.  

 

Clearly, the first objective function is naturally deduced from the objective function of 

the p-centre problem, where by definition a hub centre represents a set of hubs such that the 

maximum cost of moving flows between any origin-destination pair is minimised. Campbell 

(1994) noted that this type of hub centre is important for a hub system involving perishable or 

time sensitive items. The second objective function is based on the fact that flows between each 

origin-destination pair goes through a path consisting of three legs; flows from origin-to-hub, 

hub-to-hub and hub-to-destination and the objective is to minimise the maximum cost or 

distance of any of these three legs. The third objective was based on the concept of vertex 

centre problem (Hakimi 1965) in which the set of hubs minimises the maximum cost for 

movement between a hub and an origin/destination.  

 

 The p-HCP formulation presented here is due to Ernst et al. (2002) which has fewer 

decision variables and constraints and considered to be computationally more efficient: 

 

(𝑝 − HCP): Min Λ 

 

Subject to: 

              ∑ 𝑌𝑖𝑘

𝑘

= 1 ;     ∀𝑖 (2.5) 

                𝑌𝑖𝑘 ≤ 𝑌𝑘𝑘 ;     ∀𝑖, 𝑘 (2.6) 

                ∑ 𝑌𝑘𝑘

𝑘

= 𝑝 
(2.7) 
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                𝑟𝑘 ≥ 𝑐𝑖𝑘𝑌𝑖𝑘 ; ∀𝑖, 𝑘 (2.8) 

                Λ ≥ 𝑟𝑘 + 𝑟𝑚 + 𝛼𝑐𝑘𝑚 ; ∀𝑘, 𝑚 (2.9) 

                𝑌𝑖𝑘 ∈ {0,1}; ∀𝑖, 𝑘 (2.10) 

                𝑟𝑘 ≥ 0; ∀𝑘 (2.11) 

 

The variable 𝑟𝑘 is called the radius of hub 𝑘 and represents the maximum distance or cost 

between hub 𝑘 and the demand nodes allocated to it expressed as constraint (2.8). Constraint 

(2.9) is the objective function to be minimised (the maximum cost or distance for any origin-

destination pair). The rest of the constraints have similar interpretations as those under 

(O’Kelly 1987). Campbell (1994) presented the formulations for the other two objective 

functions and interested readers are referred to his paper.  

 

The single and multiple allocation versions of the p-HCP also exist in the literature. 

Kara and Tansel (2000) for example show that the single allocation version is NP-complete.  

The multiple allocation variant was also proposed by Campbell (1994) and was shown to be 

NP-hard by Ernst et al. (2002).   

 

2.2.3 Hub covering problems 

The hub covering problems (HCP) are also analogous to the classical facility covering 

problems (Hakimi 1965), where demand nodes are considered covered if they are close enough 

to the facility and satisfy certain pre-defined thresholds. Covering problems are generally 

classified into two categories (Schilling et al. 1993); Set covering problems (SCP) which deals 

with the variant of the problem where coverage is required and the maximal covering location 

problem (MCLP) where coverage is optimised. Analogues to the hub covering problems, the 

hub set-covering location problem locate hubs to cover all demand nodes such that the cost of 

opening hub facilities is minimised, whilst for the maximal hub-covering location problems 

the number of demand nodes covered by a given set of located hubs is maximised (Alumur and 

Kara 2008).  Hub covering problems are also characterised by three objective functions 

(Campbell 1994); 1. The cost of moving flows between any given origin-destination pair 

through two hubs does not exceed a specified value; 2. The cost of each leg in the path, origin-

to-hub, hub-to-hub and hub-to-destination does not exceed a specified value; and 3. Each of 

the origin-hub and hub-destination links meets separate specified values. Campbell (1994) 

presented MILP formulations of the problem under the three objective functions. 
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 Here again, the formulation due to Ernst et al. (2005) is presented as it is computational 

more efficient with less decision variables and constraints: 

 

(HCP): Min Λ =  ∑ 𝑌𝑘𝑘

𝑘

 

Subject to: Constraints (2.5), (2.6), (2.8), (2.10), (2.11) and 

 

𝑟 ≥ 𝑟𝑘 + 𝑟𝑚 + 𝛼𝑐𝑘𝑚 ; ∀𝑘, 𝑚 (2.12) 

 

where 𝑟 is the predefined cover radius. The single allocation variant of the problem was studied 

by Kara and Tansel (2003) and proved it to be NP-hard. The work by Wagner (2004) includes 

both the single and multiple allocations variants of the problem.  His formulations require less 

decision variables and constraints compared to those of Kara and Tansel (2003). 

 

 

2.2.4 Other notable variants 

2.2.4.1 Hub arc problems 

Hub arc problems (HRP) are relatively new class of problems proposed by Campbell et al. 

(2005a and b) where instead of locating hubs, hub arcs are located.  They noted that the 

assumption of complete graph of hub nodes (inter-connected hubs) underlying p-hub median 

problems imposes a topological and cost structure that may be undesirable in many 

applications. Indeed, there are many applications especially in the communication and transport 

industries where all the hubs do not need to be fully connected (Campbell et al. 2005a and b). 

They also observed that the economies of scale (discount) factor on hub links may result in 

some hub arcs having unrealistically lower flows than some hub access links.  

 

The HRP consists of two interrelated network design decisions; hub arcs and access 

arcs. The hub arc design decision is to select the hub arcs and, as a consequence, the hubs that 

are the end points of these arcs (Campbell et al. 2005a). In comparison with the p-HMP, it is 

equivalent to locating hub nodes under the assumption of complete graph of hub nodes. The 

access arc design decision is to select the arcs connecting the flow origins and destinations to 

hubs. The single and multiple allocations variants of the p-HMP also apply to HRP. Campbell 

et al. (2005a) noted that the HRP can also results in fully connected hubs making the p-HMP 
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as a special case of the p-HRP. Campbell et al. (2005b) proposed integer programming 

formulations for several variants of the problem including algorithms for solving small 

instances of the problem with extensive computational analysis using the CAB data set.  

 

2.2.4.2 Deterministic and stochastic hub location problems 

The models considered so far are deterministic models as traffic flows, travel times or costs and 

other variables are assumed to be certain. In these situations, stochastic data are normally 

averaged and used in the models. The consequences of doing this has long been recognized in 

the literature as producing sub-optimal solutions (Yang 2009; Savage 2008; Wang 2007). Lium 

et al. (2009) also noted that uncertainty is a key promoter of hub-spoke-networks since 

consolidation of flows are done to hedge against uncertainty rather than benefit from economies 

of scale. The problem with the stochastic hub problem is that they are much harder to solve 

than their deterministic equivalents (Hult 2011).  

 

Several researchers have extended some of the deterministic models to allow for 

stochasticity of some of the input variables and in some cases, exact solutions to small instances 

of the problem are provided. Sim et al. (2009) proposed a stochastic single allocation p-hub 

center problem with stochastic travel times on each link with the objective of ensuring that all 

path travel times are less than or equal to the maximum time by at least some probability γ. 

The stochastic uncapacitated multiple allocation hub location problem (UMAHLP) was 

researched by Yang (2009) where seasonal variations on demand, as well as seasonal variations 

on the discount factors for hub to hub flights were accounted for. The solution to the problem 

involves decomposing the problem into two stages, with the first stage determining the number 

and location of hubs, whilst the second stage accounts for the stochasticity of the seasonal 

demands and discount factors.  

 

Contreras et al. (2011) investigated the stochastic version of the uncapacitated multiple 

allocation hub location problem (UMAHLP) where demand is stochastic and show that the 

stochastic model is equivalent to the deterministic model if demand is considered on an average 

basis. Their work also involves looking at different stochastic variants of UMAHLP where 

transport costs on all paths are stochastic.  Other relevant works in this area include the work 

by Hult (2011) on the single allocation p-hub centre problem with stochastic travel times; Lium 
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et al. (2009), who recognized the role play by uncertainty in the evolution of hub-spoke-

network structures and the work by Kim and O’Kelly (2009) on the development of both single 

and multiple allocation models to maximise the expected flow transmitted between origins and 

destinations, where edges and nodes have reliabilities defined as the probability that the hub or 

edge transmits flows for a given time period without failing.  

2.2.4.3 Competitive hub location problems 

Competitive hub location problems involve firms developing hubs to compete with other firms 

for customers. Several studies (Campbell and O'Kelly 2012; Eiselt and Marianov 2009; Sasaki 

et al. 2009; Sasaki et al. 2014) have shown that the location of hubs under competitive 

environments differ greatly in terms of optimal hub locations, network structures, and traffic 

patterns compared with hub locations under uncompetitive environments. 

 

Work on hub location in a competitive environment include the work by Marianov et 

al. (1999) where the problem was formulated using a 0-1 integer programming technique and 

solved by tabu search heuristics. In their model, flows between each origin-destination pair can 

be routed through one or two hubs and each demand point can be assigned to one or more hubs 

depending on the traffic destinations.  The proportion of each origin-destination demand 

expected to go through the hubs is determined by a pre-defined set. For example, the set can 

be defined such that the demand for all origin-destinations pairs is assigned to the new hub if 

the cost of using it (newly located hub) is lower than that of the existing or competitor hub(s).  

The set can also be defined such that only a certain percentage of demand is captured by the 

new hub if the cost difference is not very significant. An improved formulation was provided 

by Wagner (2008) with associated heuristics for solving it. They have shown that their 

improved model can be solved to optimality for problem sizes of up to 50 nodes in reasonable 

computation time. The allocation mechanisms in these two studies were extended by Eiselt and 

Marianov (2009), where the discrete demand allocation to hubs was replaced with proportional 

allocation based on relative costs between competing options.   

 

Lüer-Villagra and Marianov (2013) studied the environment where an existing firm 

operates a hub and spoke network, and where a new entrant is assumed to maximise profit by 

choosing the best hub location and network topology applying optimal pricing assuming that 
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the existing company applies mill pricing2. The allocation of demand between the firms is logit-

based resulting in a non-linear mixed integer programming problem, which was solved using 

a genetic algorithm. A game theoretic approach of locating competitive hubs was researched 

by Sasaki and Fukushima (2001), Sasaki (2004) and Lin and Lee (2010).  In Sasaki and 

Fukushima (2001), a 1-stop continuous Stackelberg hub location problem as a bi-level 

programming problem is formulated and solved using a sequential quadratic programming 

method.  Numerical examples illustrate the significance of rival companies when locating and 

designing hubs.  Their proposed model used a logit function to determine the assignment of 

customers to available services so as to capture their various choice preferences, compared with 

the all-or-nothing procedure used in Marianov et al. (1999). To prevent the situations where 

firms carry an unrealistically low level of flow for any OD pair, Sasaki (2005) introduced flow 

threshold to ensure that only flows above this threshold are assigned to competing firms.  The 

overall problem was formulated as a bi-level programming problem where the upper level 

model captures the decisions by the leader firm and the lower level model outputs the decisions 

of the follower firm.  

 

 Lin and Lee (2010) study an oligopolistic market environment. Their approach was 

motivated by the fact that industries such as freight or airlines can be considered as operating 

in oligopolistic markets, where prices are controlled by small groups of firms. Thus, a firm's 

hub network design is largely motivated by the actions or reactions of its competitors in pursuit 

of profits and market share rather than cost minimisation (Lin and Lee 2010).  They showed 

that the long-term Cournot–Nash equilibrium steady state for the competition game is such that 

none of the firms may unilaterally change their respective hub networks, demands, or 

operational plans to increase profit, and also demonstrated that a dense hub network is more 

likely to earn a higher profit than a sparse hub network under price-elastic demand. The work 

by Sasaki et al. (2014) considered two firms competing for customers in a Stackelberg 

framework where the leader firm locates hub arcs to maximise revenue, given that the follower 

firm will subsequently locate its own hub arcs to maximise its own revenue. They presented an 

optimal solution algorithm that allocates traffic between the two firms based on the relative 

utility of travel through the competing hub networks and also demonstrated the importance of 

competition in locating and designing hub-based transport systems. 

 

                                                           
2 A mill pricing firm sets a single price at its plant and customers bear the cost of transport. 
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 Similar work in the airline industry includes Adler (2005), where a non-linear 

mathematical program model is proposed for evaluating the most appropriate hub-and-spoke 

network for an airline in a competitive environment, which is in turn used to derive a two stage, 

Nash-type, best-response game.  The first stage of the two-stage game determines the choice 

of network by the airlines, whilst in the second stage, each airline competes for market share, 

given the other airlines’ decisions.  Adler and Smilowitz (2007) investigated global alliances 

and mergers in the airline industry under competition where they proposed a game theoretic 

framework incorporating a profit-maximising objective and a cost-based network design. 

Numerical examples show that some mergers may be more successful than others and that 

optimal international gateway choices change according to the number of competitors 

remaining in the market. Both studies used logit models to determine the market shares of each 

competing firm and in both models, global equilibrium cannot be guaranteed due to the non-

convexity of the objective function.  The location of park and ride facilities using p-Hub 

approach (where the park and ride locations were treated as hubs) was studied by Aros-Vera et 

al. (2013). The problem was formulated as a nonlinear programming problem with embedded 

logit model to determine the demand of the located park and ride facilities. Their solution 

approach involves a linearizing technique for transforming the nonlinear programming 

problem to equivalent MILP.  

 

2.2.5 Summary of work on hub location problems 

Section 2.2 provides a summary of work on hub location problems and identified three main 

categories (p-hub median/hub arc problems, hub centre problems, and hub covering problems) 

analogous to the three classes of classical facility location problems. Several variants of each 

category were also studied in the literature including single and multiple allocation of demand 

nodes to hubs; capacitated and uncapacitated hubs, fixed cost hubs and non-fixed cost hubs, 

deterministic versus stochastic hubs and hubs under competitive and uncompetitive 

environments. Each of these variants added some insights to the general problem of locating 

hubs in the literature and applications. Interested readers are also referred to review of hub 

location problems by Alumur and Kara (2008) and the recent review of facility location 

problems by Farahani et al. (2014). 

 

Although IMTLP is a problem on its own right, work in the hub location literature seem 

to provide the basis of the work in the IMTLP literature both in terms of problem formulations 
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and solution algorithms. Before reviewing the work on IMTLP it is important to recognise the 

following important features of the HLP considered so far; 1. HLP do not recognise the 

existence of multiple decision makers when allocating hubs to demand nodes; 2. Direct flows 

between demand nodes are often ignored; 3. The availability of modes and the competition 

between the modes in the transport tasks are ignored in the formulations and 4. The demand 

matrix showing the amount of cargo flows between each origin-destination pair (or demand 

nodes) is assumed given and fixed. That is, it is assumed to be invariant to changes in transport 

network conditions, the location of the hubs or any other factors. All these are important 

features of the IMTLP. 

 

2.3 Intermodal terminal location problems  

Research on IMTLP has been receiving growing attention by both policy makers and 

academics (Bontekoning et al. 2004). The research work began with the mathematical 

formulation of the problem by Arnold et al. (2001). Arnold et al. (2001) focussed on locating 

intermodal terminals to serve the regional containerised transport markets, where the use of 

intermodal transport requires the use of exactly two IMTs along the intermodal transport chain. 

The chain consists of three leg; the pre-haul leg, the main haul, and the post haul legs as 

illustrated in Figure 2.2. The pre-leg involves local pickup of cargo by trucks from various 

cargo origins to the nearest IMT, and the post haul leg consists of local distribution of cargo to 

various destinations and is also done by trucks due to its flexibility and accessibility to customer 

facilities. The main haul is done by high capacity mode such as rail.  

 

 

Figure 2.2 : Regional intermodal transport chain 

 This intermodal transport market as noted in Section 1.4 involves moving freight over 

long distances and its competitiveness depends on the economies of distance (lower unit cost 

per kilometer) and the economies of scale (through the use of rail) relative to road alone mode 

such as trucks. The model formulated by Arnold et al. (2001) can be stated as follows: 

 



   

  54 

 

(Arnold et al.  2001): Min Λ =  ∑ ∑ ∑ ∑ 𝑐𝑖𝑠𝑡𝑗𝑊𝑖𝑠𝑡𝑗

𝑡∈𝒯𝑠∈𝒯𝑗∈𝒟𝑖∈𝒪

+ ∑ ∑ 𝑐𝑖𝑗𝑈𝑖𝑗

𝑗∈𝒟𝑖∈𝒪

+ ∑ 𝑓𝑡𝑌𝑡

𝑡∈𝒯

 

Subject to: 

                 𝑊𝑖𝑠𝑡𝑗 ≤ 𝑞𝑖𝑗  𝑌𝑠  ;     ∀𝑡, 𝑠 ∈ 𝒯, 𝑖 ∈ 𝒪, 𝑗 ∈ 𝒟 (2.13) 

                 𝑊𝑖𝑠𝑡𝑗 ≤ 𝑞𝑖𝑗  𝑌𝑡   ;     ∀𝑡, 𝑠 ∈ 𝒯, 𝑖 ∈ 𝒪, 𝑗 ∈ 𝒟 (2.14) 

                ∑ ∑ 𝑊𝑖𝑠𝑡𝑗

𝑡∈𝒯𝑠∈𝒯

+ 𝑈𝑖𝑗 = 𝑞𝑖𝑗  ;      𝑖 ∈ 𝒪, 𝑗 ∈ 𝒟 
(2.15) 

                 ∑ ∑ ∑ 𝑊𝑖𝑠𝑡𝑗

𝑡∈𝒯𝑗∈𝒟𝑖∈𝒪

+ ∑ ∑ ∑ 𝑊𝑖𝑡𝑠𝑗

𝑡∈𝒯𝑗∈𝒟𝑖∈𝒪

≤ 𝑏𝑠   ; ∀𝑠 ∈ 𝒯 
(2.16) 

                 𝑌𝑡 ∈ {0,1}; ∀𝑡 ∈ 𝒯 (2.17) 

                  𝑊𝑖𝑠𝑡𝑗 ≥ 0 , 𝑈𝑖𝑗 ≥ 0, 𝑊𝑖𝑡𝑡𝑗 = 0 ; ∀𝑡, 𝑠 ∈ 𝒯, 𝑖 ∈ 𝒪, 𝑗 ∈ 𝒟 (2.18) 

 

where 𝑊𝑖𝑠𝑡𝑗 the quantity of flow from origin 𝑖 to destination 𝑗 routed through IMT 𝑠  and 𝑡 with 

associated unit cost 𝑐𝑖𝑠𝑡𝑗; 𝑌𝑠  equals 1 if IMT 𝑠 is open and 0 otherwise; 𝒪 is the set of all cargo 

origin nodes and 𝒟 the set of destinations nodes; 𝒯 is the set of all feasible IMT locations on 

the network; 𝑞𝑖𝑗  represent the quantity of cargo to be transported from origin 𝑖 to destination 

𝑗;  𝑈𝑖𝑗  the quantity of  𝑞𝑖𝑗  to be transported unimodally or by trucks from origin 𝑖  to destination 

𝑗 with unit cost 𝑐𝑖𝑗;  𝑏𝑠  the maximum handling capacity of IMT 𝑠 , and  𝑓𝑠  the fixed or setup 

cost of IMT 𝑠.  The objective function is composed of three parts; the first part captures the 

weighted cost of all intermodal transport flows; the second part represents the weighted cost of 

road alone transport, and the third part comprises the total fixed associated with all opened 

IMTs. Constraints (2.13) and (2.14) ensure that no cargo can be transported through an IMT, 

unless it is opened. Constraint (2.15) reveals the existence of competition between road lone 

and intermodal transport modes and stipulates that, for each origin-destination, the sum of all 

cargo flows transported by road alone and by regional intermodal transport should equal the 

demand associated with this origin/destination-pair. Constraint (2.16) enforces capacity limit 

on each opened IMT. Constraints (2.17) ensure that an IMT should either be opened or closed. 

Constraint (2.18) ensures that no demand is transported using only one IMT and also ensure 

that only non-negative amounts are transported.  

 

The model formulated by Arnold et al. (2001) was associated with a large number of 

decision variables and constraints, making it difficult to efficiently solve for even small 

problem instances. This limitation motivated a new formulation of the problem by Arnold et 
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al. (2004). Their reformulated model is similar to the multicommodity fixed-charge network 

design problem (MCNDP), where IMTs are considered as arcs instead of vertices in a graph.  

The reformulation resulted in a significant reduction in the number of decision variables and 

constraints especially in sparse networks (Arnold et al. 2004). The generalisation of the 

intermodal location problem to include non-linear and concave cost functions to capture 

economies of scale effects on intermodal usage was developed by Racunica and Wynter (2005).  

The non-linearity and concavity of the transport cost function means that a linearization 

procedure is required to solve the problem. The algorithms they proposed includes a 

linearization algorithm for reducing the non-linear problem to linear and two heuristics for 

solving large instances of the problem.  

 

Similar work by Rahimi et al. (2008) comprises a location-allocation model for locating 

hubs to promote the use of rail through the use of hub-and-spoke networks using a concave 

cost function to capture economies of scale resulting from freight consolidation at hub 

terminals. Limbourg and Jourquin (2009) cast the intermodal location problem as linked p-hub 

median problem and multi-modal assignment problem where the demand can be assigned over 

all the transport modes, with the option of using trans-shipment facilities. The model works by 

repeatedly solving the p-median problem for each update in trans-shipment costs, which in turn 

is based on previous estimated flow at each terminal until the relative difference in trans-

shipment costs between two iterations is smaller than a pre-defined threshold.  

 

Ishfaq and Sox (2011) employed the multiple-allocation p-hub median modelling 

approach to formulate a new mathematical model for IMTLP. Their proposed model includes 

important transport mode attributes such as transport cost, modal connectivity costs, and fixed 

location costs under service time requirement. Large instances of the problem were solved 

using a tabu search metaheuristics algorithm with the quality of the solution measured against 

lower bounds from a Lagrangian relaxation. Ishfaq and Sox (2012) extended their previous 

work (Ishfaq and Sox 2011) with the integration of a queuing system to model hub operations 

and investigated the effects of limited hub resources on the design of intermodal logistics 

networks under service time requirements. The features of the model were illustrated using a 

25-city road-rail intermodal logistics network. Sorensen et al. (2012) proposed meta-heuristic 

algorithms; the greedy randomised adaptive search procedure (GRASP) and the attribute based 

hill climber (ABHC) for solving the model proposed in Arnold et al. (2001).  
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To capture the joint effects of CO2 emissions and economies of scale on intermodal 

terminal location, Zhang et al. (2013) proposed as bi-level programming, where a genetic 

algorithm was used at the upper level to search for the optimal terminal network configurations, 

while the lower level performs multi-commodity flow assignment over a multimodal network. 

A similar work by Qu et al. (2016) was conducted but their objective focussed on the effects 

of greenhouse gas emissions and intermodal transfers on intermodal network design. The 

resulting non-linear model was linearized and solved for a hypothetical case study of eleven 

candidate locations in the United Kingdom. Recently, Ghane-Ezabadi and Vergara (2016) 

proposed a new mathematical formulation and decomposition based solution algorithm for 

designing intermodal networks. The novelty in their approach was the use of composite 

variable in representing a complete route for a load from origin to destination, thereby allowing 

exact solution algorithms to be developed for solving relatively large instances of the problem. 

The computational efficiency of their proposed decomposition-based algorithm was illustrated 

through numerical examples, where they show that it could solve for instances of up to 150 

nodes in reasonable amount of computational time (few seconds).  

 

The first model for locating city or IMEX intermodal terminals proposed by Teye et al. 

(2015) was also based on a MILP with Lagrangian heuristics for solving it. They observed that 

the MILP formulation leads to all-or-nothing (AON) assignment of demand between 

competing modes for each origin-destination pair, resulting in unintuitive results during 

forecasting and policy testing. A summary of work on locating intermodal terminals or hubs 

are presented in Table 2.3.  The next section discusses the gaps identified in the literature and 

how this research intends to fill the gaps.  
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Table 2.3: Summary of previous research on IMTLP 

Reference Objective Modelling  Solution  Comments 

Arnold et al. (2001) Total cost  Mixed integer  Heuristic Here the competition is between modes of 
 

minimisation programming 
 

transport and intermodal transport involves 
    

the use of exactly two terminals 

Peeters and  Total cost  Mixed integer Heuristic Improved formulated of Arnold et al. (2001) 

Thomas (2004) minimisation programming 
 

as a multicommodity fixed-charge network 
    

design problem (MCNDP), to reduce the 
    

number of decision variables 

Racunica and Total cost Mixed integer  Linearization  The formulation includes non-linear and 

Wynter (2005) minimisation programming and heuristics concave cost functions to capture economies 
    

of scale effects on intermodal usage 

Rahimi et al. (2008)  Total cost  Single facility   Exact  Location-allocation model for locating hubs 
 

minimisation location (6 nodes) terminals to promote the use of rail using a 
    

concave cost function to capture economies of 
    

scale resulting from freight consolidation at hubs 

Limbourg and  Total cost  Multiple  Exact solution Linked p-hub median problem and multi-modal 

Jourquin (2009) minimisation allocation  for hubs only assignment problem for locating intermodal 
  

phub median locations terminals 

Ishfaq and Sox (2011)  Total cost  Single allocation  Tabu search  Employed a multiple-allocation p-hub median 
 

minimisation  p-hub median 
 

modelling approach to formulate a new mathematical 
    

model for the intermodal terminal location problem 

Ishfaq and Sox (2012)  Total cost  Nonlinear  Tabu search  Extension of Ishfaq and Sox, (2011) with the 
 

minimisation  mixed integer  
 

integration of a queuing system to model hub 
  

programming 
 

operations and investigated the effects of limited hub 
    

resources on the design of intermodal logistics 
    

networks under service time requirements 

Sorensen, Vanovermeire  Total cost  Mixed integer  GRASP and  Two heuristic algorithms for solving the intermodal 

and Busschaert (2012) minimisation programming ABHC terminal location problem 

Zhang et al. (2013)  CO2 emissions  Mixed integer  Genetic  A as bi-level programming, where the upper level 
 

cost minimisation programming algorithm  determines the optimal terminal network 
    

configurations, while the lower level performs 
    

multi-commodity flow assignment over a 
    

multimodal network 

Qu et al. (2014)  Greenhouse gas Mixed integer  Exact  Focussed on the effects of greenhouse gas 
 

emissions cost  programming (11 nodes) emissions and intermodal transfers on 
 

minimisation 
  

intermodal network design 

Teye et al. (2015) Total cost  Mixed integer  Lagrangian  Intermodal terminals location with and transport 

  minimisation programming heuristic mode choice 

Ghane-Ezabadi  Total cost  Integer  Decomposition  Simultaneously determines the location of hubs, 

and Vergara (2016) minimisation programming  approach routes for loads and their transport modes 
  

using composite 
  

  variables   

Current research Welfare Nonlinear  Exact and  The method strategically places IMTs at locations  

  maximisation mixed integer  heuristic  where shippers’ or users’ welfares are maximised 

  Programming 

with entropy 

objective 
function 

algorithms subject to a set of constraints comprising all known 

information about the freight system 
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2.4 Research gaps  

Almost without exception, MILP techniques have been employed to find the best locations of 

IMTs in the literature (Arnold et al. 2001; Ishfaq and Sox 2011; Sorensen et al. 2012). The 

MILP technique has been very successful for locating facilities, especially in uncompetitive 

environments and can help a single shipper or firm decide on where best to locate a facility as 

part of the company's supply network. The solution to MILP models are corners to the simplex 

formed by the linear equality and inequality constraints leading to all-or-nothing (AON) 

assignment of flows to competing alternatives only constrained by the capacities of the 

competing alternatives. Solution of this nature may work well in cases where the demand is for 

a single shipper or decision maker. The solution is less intuitive for the problem under 

consideration, where the IMTs to be located are open access terminals with multiple users. 

Under forecasting and testing of various policies, the solution to a MILP model exhibits the so-

called ‘flip flop’ behaviour (disproportionate swings in demands) where a small change to the 

cost variables leads to large shifts in demand (Teye et al. 2015).  

 

Additionally, the observed costs used in the modelling exercise are the average cost of 

using each mode for moving cargo between each origin-destination pair and that the actual cost 

experienced by each shipper varies about the average value. Thus, what we should expect is 

not the AON assignment of each origin-destination demand to the least cost mode, but the share 

of each mode in the transport task. The multi-user feature of the problem and the existence of 

a competing alternative mode (road alone) means that the allocation part of the problem can be 

cast as an MCP, where potential users of the terminals are assumed to face a choice of mode 

among those available (road alone transport versus intermodal transport) that offers them the 

highest utility for the transport task and where the choice of intermodal transport leads to the 

use of one of the located terminals. Thus, the demand associated with each located IMT is 

expected to be the outcome of pooled outputs of many individual mode choice decisions. In 

addition to cost variability, McFadden (1974) noted that in a choice situation not all factors 

affecting the choice process are known to the analyst or can be quantified and included in the 

modelling process, making a probabilistic description of modal decisions more desirable.  

 

Another important gap identified in the literature relates to the restrictive assumption 

of fixed demand of cargo flows underlying existing models on IMTLP. This assumption 

implies that changes in transport network conditions, the location of terminals or any land use 
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or economic factors do not alter the distribution pattern of cargo in the study area and are hence 

invariant to IMT location decisions and usage. It is to be expected that the choice of mode 

depends on where the cargo is destined and intermodal transport may not be feasible or cost 

competitive if the cargo destination is sufficiently close to the cargo origin. Conversely, the 

cargo destination depends on modal accessibility. That is, the cargo destination must be 

connected to the transport network and must be accessible by at least one available mode of 

transport.  This reveals a link between cargo distribution and mode choice, where the choice of 

mode is conditioned by the choice of cargo destination, whilst the mode choice influences the 

choice of cargo destination. Additionally, without a cargo distribution model, there is no means 

of quantifying the demand of the located terminals due to auxiliary activities like warehousing 

or storage, where the terminal can be coded as a cargo destination on the transport network. 

Revenues from these auxiliary activities are considered vital for the viability and sustainability 

of inland terminals, especially metropolitan terminals (Meyrick 2006). 

 

2.5 Research questions and solution approach 

Driven by the gaps identified in the literature, four overarching research questions are raised 

and answered through the proposed methods, numerical examples and a case study; 

 

Research question I: 

Given the distribution of containerised cargo and candidate terminal locations on the transport 

network, what are the best places to locate p intermodal terminals to best serve the 

metropolitan containerised market? 

 

 The answer to the above question is model based. The research question was cast as a 

mathematical problem – the metropolitan intermodal terminal location problem (MIMTLP) – 

with an objective function to optimise and a set of constraints imposed by the metropolitan 

market. The key assumption underlying this problem is that the distribution of cargo (cargo 

flow matrix) in the metropolitan region is known and fixed. The cargo flow matrix comprises 

import cargo and their distributions in the metropolitan region and export cargo from 

production areas in the region to the port(s) for export. The variable p is user defined and 

represents the number of desired terminals to locate from a candidate set of plausible terminal 

locations in the region. Once the research question is cast as a mathematical problem, the next 

stage is solving it. The solution to the formulated problem are then interpreted to answer the 
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research question. Another important consideration is the type of objective function to 

optimise. A detailed discussion on the objective to optimise is provided in Chapter 4.  

 

Research question II: 

Given the distribution of containerised cargo and candidate terminal locations on the transport 

network, what are the best places to locate p intermodal terminals to best serve the regional 

containerised market? 

 

The approach for answering this research question is similar to the approach adopted in 

answering research question I, except that in answering question II, the demand for the located 

terminals are derived from the regional containerised market. The associated mathematical 

problem is called the regional intermodal terminal location problem (RIMTLP). The solution 

to the RIMTLP is more complex than the solution to the MIMTLP as the study area for the 

former covers a large geographical area with many potential places to locate the terminals. This 

calls for an efficient algorithm for solving the RIMTLP.  

 

Research question III: 

Given limited demand for intermodal transport in either or both markets, what are the best 

places to locate p intermodal terminals to serve both the metropolitan and the regional 

containerised markets? 

 

The problem of insufficient cargo volumes and lack of affordable land with the required 

scale and features for developing separate terminals for both metropolitan and regional 

containerised markets is driving the need to develop terminals that can serve both markets. A 

typical example in practice is the development of the Moorebank intermodal terminal in 

Sydney with enough cargo handling capacity to serve both markets (DoFD 2011). The 

proposed model to answer this research question is generalised such that it can also be used to 

answer research question I and II.  The generalised problem is referred to as the intermodal 

terminal location problem (IMTLP).  

 

The proposed models for answering questions I, II and III are based on the assumption 

of fixed cargo flow matrix. This assumption as noted earlier limits the application of the models 

in answering important policy questions such the impacts of changes in network conditions or 

modal accessibility on cargo distribution and more importantly the demand for the located 
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terminals associated with auxiliary activities such warehousing and storage of empty 

containers. This leads to the fourth research question. 

 

Research question IV: 

What are the key factors governing the distribution of cargo in the study area and to what 

extent do changes in these factors alter the distribution pattern and the location and use of 

intermodal container terminals?   

 

This fourth research question relates directly to the fixed matrix gap identified in the 

literature and the limitations of the model proposed to answer research questions I, II and III 

where fixed cargo matrices were used to infer the best locations and usage of terminals. The 

goal here is to replace the fixed matrix with variable cargo demand models such that changes 

in cargo production and distribution patterns are allowed to influence terminal locations, whilst 

terminal location conditions cargo production and distribution and the choice of mode. The 

model can also be used to gauge the likely revenue that located IMTs can generate from 

performing auxiliary activities such warehousing and empty container storage, by allowing re-

distribution of cargo volumes. This research question is also motivated by the fact that pure 

transport benefits associated with metropolitan IMTs are less likely to generate sufficient 

revenue to make them sustainable. This therefore, allows the selection of the best IMTs to also 

be based on their suitability as transfer nodes (primary purpose) and their attraction for 

warehousing or other auxiliary activities. Important outcomes of this model are the key factors 

governing cargo distribution and whose future changes in certain directions may put the 

sustainability of the located IMTs into question. Knowing these factors and their adverse 

impacts may help to hedge against them.  The associated mathematical problem is called the 

intermodal terminals location with variable cargo demand problem (IMTL+VDP). To derive 

the exact factors governing the cargo distribution and hence location decisions, a case study 

implementation of the model was presented. The implementation of the model also provides 

the opportunity to test for various policies and quantifying their impacts on intermodal transport 

usage.    

 

2.6 Proposed methodology 

The proposed method to answer the above research questions is model based and departs from 

the traditional use of mixed integer programming techniques for searching for the best locations 



   

  62 

 

of facilities. An alternative method has been proposed based on information theory or the 

principle of entropy maximisation, which provides a universal way of constructing probability 

distributions about a system of interest based on all available information about the system. 

The notion of entropy maximisation has its root in thermodynamics and dates back to the days 

of Clausius (1865) and Boltzmann (1872) where it was first proposed, rediscovered in 

information theory by Shannon (1948) and later enhanced into a general tool for deduction 

reasoning and statistical inference (Jaynes 1957). It’s first application in transport was due to 

Wilson (196; 1970) who used it to develop trip distribution models for transport planning. 

However, its suitability for locating facilities of this kind has only recently been explored (Teye 

et al. 2017a,b). The flexibility of this modelling technique means that probabilities describing 

the system can be constructed using available information and can readily be updated when 

new information becomes available. Probabilities constructed under the entropy maximisation 

principle have been shown to be the least biased distribution possible (Jaynes 1957).  

 

Recall that the classical facility location problem with multiple users is a linked problem 

and comprises the location and the allocation subproblems. The location problem is mainly 

concerned with keeping the cost of establishing the facilities as low as possible. The allocation 

problem on the other hand, deals with best possible way of allocating demand to the located 

facilities to reduce transport costs, which has been shown to be mode choice problem and 

extended to also include cargo production and distribution problems. The application of the 

entropy maximising principle allows the linking of behavioural choice models with traditional 

integer programming models in a consistent way. The behavioural models explain shippers’ 

mode choice behaviours and the production and distribution of cargo in the study area, whilst 

the integer programming part determines the exact location of the IMTs. The problem is 

formulated in a way to allow shippers or users to drive the decisions on IMT location and usage 

with one objective function to optimise. This was achieved by including the cost of IMT 

location in the overall costs confronted by shippers choosing which if any IMT to use. This in 

turn, enables the demand for new IMTs to be estimated as a function of the fee charged by 

terminal operators for IMT usage and the transport cost of accessing the terminal. The solution 

to the model generates a linked facility location sub-model, a mode choice sub-model (Chapter 

4 and 5) suitable for explaining shipper’s mode choice behaviour and a variable cargo demand 

model (Chapter 6) for forecasting IMT usage and policy testing. Detailed discussion of the 

entropy framework and it suitability for answering the research questions are presented in 

Chapter 3.  
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A basic entropy model is developed in Chapter 4 to answer research question I. This 

chapter includes several important properties of the entropy model including showing the link 

between entropy maximisation and welfare maximisation. The models in Chapter 4 were then 

generalised to answer research questions II and III in Chapter 5. Different methods of 

formulating the variable cargo demand problem and its incorporation within the entropy 

framework is provided in Chapter 6. Finally, a case study for the models developed to address 

research question IV is presented in Chapter 7. In addition to the several proposed model 

properties, numerical examples also were used to illustrate the key features of the models and 

how they can be applied in practice.  

 

2.7 Relationship to practice-based outcome 

Successful location of intermodal terminals will promote intermodal transport use hence the use 

of more sustainable mode such as rail and less trucks on the road on a daily basis. Shippers will 

benefit from cheaper transport costs and more efficient empty container handling. Port 

corporations will see a reduction in port congestion, both land side and at the berth. Although these 

benefits may be reduced by the possible changes in traffic patterns and hence increase in traffic in 

the surrounding area of the located terminals. Road carriers stand to gain from fast access to 

containers and an increase in the number of containers they can move in any one day as the result 

of potentially less congestion at the port. Research work by Meyrick (2006) suggests that 

properly located IMTs can help address the difficulties that truck operators normally face in 

coordinating clients' opening hours. For example, a truck operator or driver can pick up the 

container from port at night or preferred time and temporally store it at an IMT, then deliver it 

within the customer’s operating hours or preferred delivery time.  Intermodal transport solutions 

can also open up alternative and more sustainable services for trucking companies so trucking 

costs can be kept to a minimum and help solve the problem of truck driver shortage especially 

for long distance trip services.  

 

The community, as whole, stands to gain as a result of reduction in the cost of the 

movement of goods, easing of road congestion and reduction in truck related accidents. The 

community also benefits through newly created jobs and investments. Benefits include jobs from 

short-term construction and long-term operations of the terminal as well as the potential to 

attract other businesses near the terminal facility.  The terminal can also generate income to the 

community and the state directly in the form of property tax, corporate income tax, sales tax, 



   

  64 

 

and the various permitting fees from activities at the terminals. For example, an employee at 

the new warehouse receives wages that otherwise would not have received (AHRCR 2007).  

Improvements in the environment and safety will result from the reduction in the number of truck 

trips on the road and the total distance travelled. Shift to a more efficient transport mode like 

intermodal transport is likely to lead to less damage to the road infrastructure, less congestion, 

reduction in accidents and other road fatalities and reduction in greenhouse emissions (AHRCR 

2007).   
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Chapter 3 Entropy Maximisation 

 

“As far as the laws of math refer to reality, they are not certain; and as far as they are certain, they do 

not refer to reality.” Albert Einstein (1879 – 1955) 

 

 

 

 

 

3.1 Background 

The various methods used in the literature for locating hubs and inland intermodal terminals have 

been discussed in chapter 2. The chapter also illustrates why existing techniques are not suitable 

for addressing the research questions. This chapter discusses the alternative method employed to 

provide satisfactory answers to the questions. The proposed approach is based on the principle of 

entropy maximisation.  This principle provides a general guide on how to make decisions under 

incomplete information. The lack of complete information about the system of interest raises two 

important questions; first, how to describe or quantify the current state of partial knowledge of the 

system and second, how to update from one state of knowledge to another when new information 

becomes available? The first question can be answered through the construction of probability 

distributions to describe the system. The probability distribution reflects the fact that not all 

information about the system is known. For the second question, at least two main strategies can 

be employed for the updates; the first is based on the conviction that what we learned in the past 

is important and should only be revised to the extent required by the new information (Caticha 

2012). The second strategy is to ignore the knowledge gained in the past and rather combine 

the old and new information to characterise the current state of knowledge about the system 

under investigation. It can be shown that the principle of entropy maximisation allows for the 

implementation of both updating strategies. Thus, both questions (the construction of 

probability distributions under incomplete information and their subsequent update with new 

information) can be adequately addressed under the entropy maximisation principle. In the 

light of this, it is important to first consider the notion of probability, their construction and 

then how they can be updated with new information.  

 

The rest of the chapter is organised as follows; first, the general concept of probability 

theory is considered in Section 3.2, followed by the concept of entropy in a thermodynamic sense 
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and in information theoretic sense in Section 3.3.  At this stage, the relationship between 

probability theory and entropy is established. Section 3.4 presents numerical examples illustrating 

important features of the entropy framework and Section 3.5 presents a summary of the entropy 

maximisation concept.  Finally, Section 3.6 discusses the suitability of employing the entropy 

maximisation principle to address the research questions.  

 

3.2 The concept of Probability  

3.2.1 Background  

Probability of an event is a numeric value constrained between 0 and 1 or 0 and 100% 

indicating the likelihood of the event happening.  A probability of 0 indicates that there is no 

chance that the event will occur, whereas a probability of 1 indicates that the event is certain 

to occur. If for example a probability of 0.25 (25%) is assigned to shipper’s choice of 

intermodal transport mode, it indicates that if a shipper makes 100 independent modal decisions 

over time, 25 of those decisions will favour the use of intermodal transport mode.  

 

Humans have always communicated in probabilistic terms (though not often with 

numbers), using words like probably, likely or maybe to reveal our complete lack of 

information about the subject matter. In fact, probabilistic way of thinking can be considered 

as a process of learning–inference. As noted in Giffin (2008) we learn by processing the 

information available to us which yields answers with uncertainty-probabilities. And when we 

get new information, we add it to what we already know, reprocess and arrive at new 

probabilities. For example, the analyst who assigned a probability of 0.25 to the shipper’s use 

of intermodal transport may revise this value if new information becomes available to him that 

the shipper is developing new intermodal terminals or there are restrictions on truck access to 

the seaport during certain time of the day.   

 

Although the notion of probability has always been with humans, it was not until the 

17th century that it was given a mathematical description by Fermat (1601–1665), Pascal 

(1623–1705), Huyghens (1629–1695) and J. Bernoulli (1654–1705) with the original 

motivation being to provide answers to various questions regarding the games of chance.  Its 

use is now pervasive in all aspects of science and human learning and to quote Pascal; 
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 “It is remarkable that a science which began with the consideration of games of chance should 

have become the most important object of human knowledge” (Pascal 1623-1705). 

 

In general, two notions of probabilities, underpinned by two different schools of thoughts can 

be identified in the literature; the objective probability and the subjective probability. The 

objective probability of an event is defined through random experiments and the computed 

probability in principle can be verified in every detail. The verification is done by re-computing 

the probabilities under the same experimental settings or environments. On the other hand, the 

subjective probability of an event is expressed as a measure of our ignorance of the occurrence 

or non-occurrence of the event based on past knowledge and/or experience. As noted in Jaynes 

(1957), proponents of subjective probability argue that the purpose of probability theory is to 

help us in forming plausible conclusions in cases where there is not enough information 

available to lead to a certain conclusion and that detailed verification is not of interest.  The 

test for a good subjective probability distribution therefore lies in correctly representing the 

state of knowledge about the events of interest (Jaynes 1957).  It turns out that both definitions 

are useful in most practical problems and as noted in Jaynes (1957) the notion of one being 

better than the other is not relevant. Before getting into detailed discussion about the two 

schools of thoughts on probability, the axioms underlying all definitions of probability, also 

called the Kolmogorov's (1933) axioms, are first discussed.  

 

3.2.2 Kolmogorov's Probability 

Before providing a formal definition of probability, two important building blocks are first 

defined; the sample space Ω and event ℰ.  The sample space (assume the experiment is random) 

is the set of all possible outcomes of an experiment. For example, if you consider the 

assignment of 3 containers (𝑐1, 𝑐2,, 𝑐3) to two modes (𝑚1,𝑚1 )  as an experiment called CAM 

(container assignment to modes) experiment, then the sample space for this experiment is  Ω =

{I, II, III, IV, V, VI } where the outcome I indicates that 𝑐1 , 𝑐2  are assigned to 𝑚1 and 𝑐3 is 

assigned to 𝑚2  as shown in Table 3.1. An event ℰ is an outcome or a group of outcomes of 

interest from the experiment. For example, if we are interested in the assignment of two 

containers to 𝑚1  (mode 1) then the event of interest is ℰ = {I, II}  and also for the assignment 

of no containers to 𝑚2  the event of interest is ℰ = {V}. It is worth nothing that the former 

definition of ℰ = {I, II} involves grouping two elementary outcomes, whilst the later is just one 

of the 6 possible outcomes. These definitions are useful in the subsequent sections in defining 
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the possible states of a system of interest and the possible number of ways that each state can 

occur.   

 

Table 3.1 : Possible outcomes Ω= {I, II, III, IV, V, VI} 

Outcomes 𝑚1  𝑚2  

I 𝑐1 , 𝑐2  𝑐3  

II 𝑐1 , 𝑐3  𝑐2  

III 𝑐1  𝑐2 , 𝑐3  

IV 𝑐2  𝑐1 , 𝑐3  

V 𝑐1 , 𝑐2 , 𝑐3  0 

VI 0 𝑐1 , 𝑐2 , 𝑐3  

 

 

Once the two basic elements of probability are defined, the next step is to provide a 

formal definition of probability.  All definitions of probability must obey the following three 

axioms of Kolmogorov's (1933): 

 

1. Axiom 1 (Normalisation): 𝑃(Ω) = 1, 

2. Axiom 2 (Non-negativity): 0 ≤ 𝑃(ℰ) ≤ 1 and 

3. Axiom 3 (Finite additivity): 𝑃(ℰ1 ∪ ℰ2) =  𝑃(ℰ1) +  𝑃(ℰ2), If ℰ1 and ℰ2 are two disjoint or 

independent events. 

 

If we let the set 𝔽 represent the collection of all possible events (partial subsets) of the sample 

space Ω including the empty (or impossible) event ∅ and the sample space itself Ω, then the 

collection (Ω, 𝔽, 𝑃) is called probability space, the set 𝔽  is called sigma-algebra or sigma-field 

(𝜎-algebra or 𝜎-field) and 𝑃 is the probability function. Axioms 1 and 2 simply define the range 

of values assigned by the probability function 𝑃 to each event ℰ in the set 𝔽. Axiom 3 says that 

if there is nothing in common between two events (disjoint or mutually exclusive) then the 

occurrence of one should not affect the occurrence of the other.   This leads us to the two 

definitions of probabilities.  

 

3.2.3 Classical and Frequency Probability 

The Classical definition of probability (Equally likely principle): If each possible outcome of 

an experiment is equally likely then the probability of an event ℰ can be computed as:  
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𝑃(ℰ) =
𝑁(ℰ)

𝑁(Ω)
 

(3.1) 

 

where 𝑁(ℰ) is the number of outcomes in the event ℰ and 𝑁(Ω) is the number of outcomes in 

the sample space Ω. With the assumption of equally likely outcomes, the calculation of 

probabilities reduces to counting the number of outcomes (in ℰ and Ω) and taking the ratio.  

For example, in the CAM experiment, the event of assigning two containers to 𝑚1  is ℰ = {I, II} 

and the probability of this event happening is: 𝑃(ℰ) = 𝑁(ℰ )/𝑁(Ω)  =  2/6 =  1/3. Another 

way to compute 𝑃(ℰ)  is to use the assumption that each outcome is equally likely and hence 

the probability of all the outcomes are the same and equals 1/6 and then apply axiom 3. That is 

𝑃(ℰ) = 𝑃(I ∪ II) =  𝑃(I) + 𝑃(II)  =  1/3.  Thus, if we know the probability of each outcome 

of an experiment, we can compute the probability of any event of interest. 

 

The above definition of probability is very useful but run into many practical problems.  

One obvious limitation of (3.1) is that one would have to know all of the possible outcomes in 

Ω in order to be sure that they are equally likely or assign a probability. It is obvious that this 

is not possible for most practical problems because the set Ω could be unknown or some 

outcomes may be impossible to identify or the outcomes are simply not equally likely. This 

practical limitation was actually realised by Pascal who noted that (3.1) is a solution for only 

games of chance and not reasonable solution for practical matters.  He noted and I quote,  

 

‘...what mortal will ever determine, for example, the number of diseases...? It would clearly be 

mad to want to learn anything this way’ (Pascal 1623-1705). 

  

A natural extension to (3.1) is to define the probability of an event directly by counting 

the number of times that the event occurred (𝑚) in a given number of repeated trials of an 

experiment (𝑛): 

 

𝑃(ℰ) ≈
𝑚

𝑛
 (3.2) 

 

The probability definition in (3.2) is called the relative frequency definition of probability. The 

probabilities are approximated by recording the frequency at which the event occurred 𝑚 and 

dividing it by the number of times 𝑛 that the experiment was repeated.  Thus, moving away 
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from knowing all possible outcomes of an experiment before computing probabilities. 

Definition (3.2) raises another problem; how many times should the experiment be repeated to 

achieve accurate estimate for 𝑃(ℰ)? For example, will the evaluation of 𝑃(ℰ) for 𝑛 = 10 be 

the same for 𝑛 = 1000? It was, however, understood and shown by Bernoulli that the accuracy 

of computing 𝑃(ℰ) using (3.2) increases with increasing 𝑛. In other words, as 𝑛 increases, the 

ratio 
𝑚

𝑛
  gets closer to the true probability 𝑃(ℰ) 

 

𝑃(ℰ) = limn→∞

𝑚

𝑛
 (3.3) 

 

The above outcome led to the law of large numbers by Poisson (1835) and its subsequent 

transformation to weak and strong laws of large numbers by notable mathematicians like 

Chebyshev, Markov, Borel, Cantelli and Kolmogorov. The practical question that arises from 

(3.3) is, how large is large enough or what if the experiments are too expensive or impossible 

to repeat enough number of times?  These questions have still not been answered fully. It was, 

however, suggested by Bernoulli that for practical problems, one could use the probability 

estimate from (3.2) as the true probability.  Pascal also noted regarding (3.1) that if we know 

the number of possible outcomes of an experiment and have no reason to believe that one 

outcome should be more likely than another then it is accurate to use (3.1) to compute the 

probability of events. This is called the principle of insufficient reasoning. 

  

These two definitions of probability are generally called objective probabilities because 

anyone repeating the experiments used in producing the probability of an event under the same 

experimental conditions would be expected to get the same result. Many had argued that these 

two probabilities have very little practical appeal especially in the sciences and in practical 

fields like insurance, transport, finance and economics.  Yet, these fields were in part founded 

on probabilistic concepts and tools. As rightly noted in Giffin (2008), some of the best theories 

of physical, chemical and biological phenomena are all probabilistic in nature as they do not 

make definite predictions. Rather they predict events, at best, with high objective probability.  

The question that arises is which concept of probability were they founded on since almost 

none was based on the above two definitions of probability. For example, the question of ‘what 

is the probability of rain tomorrow?’ cannot be answered using the above definitions since there 

is only one tomorrow and we can’t observe tomorrow many times. In reality, we do have 
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weather forecast almost daily and certainly, these two definitions are not adequate for such 

forecasts, at least in their classical forms.  

  

This leads us to the third notion of probability called the belief-type or subjective 

probability. This approach views probability as a numerical measure of degree of belief that is 

constrained to certain conditions or axioms (Jaynes 1957; Gilboa et al. 2008). The higher our 

subjective probability of an event, the higher our expectation that the event will occur. If we 

consider the weather forecast example, the weather forecaster may compare the weather 

condition of today with large past dataset and select those days that are in many ways similar 

to today to form the sample space.  The forecaster can then apply the relative reference 

approach to compute the probability of a rain tomorrow, where in this case the number of 

successes will be the days in the sample space where it rained the following day. What is 

obvious in this approach is that the forecaster could have used a different approach in 

generating the data with different methods likely to result in different weather forecasts. This 

makes the subjective way of constructing probabilities partly dependent on the beliefs and/or 

experience of the one constructing the probabilities in addition to available evidence on the 

subject matter.  

 

The subjective approach is by far the most common approach for constructing 

probabilities and as noted earlier forms the basis of many applied fields. The approach became 

more attractive and very accessible to many more fields with the development of conditional 

probability and Bayes’ theorem (Bayes 1763). These two techniques allow probabilities to be 

updated with availability of new information or evidence, making them even more useful in 

many practical applications.  The section below discusses the basic concept of conditional 

probability and Bayes’ theorem.  

 

3.2.4 Conditional Probability and Bayes’ Theorem  

Conditional probability simply measures or modifies the probability of an event given that 

another event has occurred. In a broader sense, the probabilities considered so far are 

conditional probabilities. They all assume that the event Ω (sample space) has already occurred 

when computing the probability of an event ℰ. Thus, we can effectively deduce the likelihood 

occurrence of one event by knowing that a similar event has already occurred. This concept 

can best be explained and then generalised using the dice example in the Venn diagram of 
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Figure 3.1. The sample space Ω = {1,2,3,4,5,6} is the set of possible outcomes of rolling a die 

once. Event ℰ1 = {1,2,3,4} and ℰ2 = {3,4, 5,6} present all outcomes less than 5 and more than 

2 respectively. Using the classical definition of probability 𝑃(ℰ1) = 𝑃(ℰ2) = 4/6 = 2/3. 

From Figure 3.1,  𝑃(ℰ1 ∩ ℰ2) =  2/6 =  1/3. The conditional probability of event ℰ1 

occurring given that event ℰ2 has already occurred (i.e, using ℰ2 as the sample space) will 

simply equal the number of elements in ℰ1 that are also in ℰ2 divided by the size of ℰ2: 

𝑃(ℰ1|ℰ2) = 2/4 = 1/2. It is obvious to deduce a connection among 𝑃(ℰ1 ∩ ℰ2), 𝑃(ℰ2) and 

𝑃(ℰ1|ℰ2): 

 

𝑃(ℰ1|ℰ2) =
1

2
 =  

𝑃(ℰ1 ∩ ℰ2)

𝑃(ℰ2)
 

(3.4) 

 

An important consequence of the above result is that the initial probability of event ℰ1 

occurring has decreased from 2/3 to 1/2 simply by knowing that event ℰ2 has already 

occurred. Re-arranging (3.4) we have 𝑃(ℰ1 ∩ ℰ2) = 𝑃(ℰ2) 𝑃(ℰ1|ℰ2). Applying similar logic 

we have 𝑃(ℰ1 ∩ ℰ2) =  𝑃(ℰ2|ℰ1)𝑃(ℰ1) and equating the two we have what is called Bayes’ 

theorem: 

 

𝑃(ℰ1|ℰ2) =  
𝑃(ℰ2|ℰ1)𝑃(ℰ1)

𝑃(ℰ2)
 

(3.5) 

 

Equation (3.5) simply implies that the probability of an event is not only a function of current 

evidence (data) but on prior experience as well. This connection was first discovered by 

Reverend Thomas Bayes 3(1763) and later developed by other mathematicians such as Laplace 

(1812), Jeffreys (1939), Cox (1946), Jaynes (1957) among others. Equation (3.5) can have 

many interpretations depending on the application at hand. One common interpretation is to 

consider ℰ1 as hypothesis whose truth we want to judge and ℰ2 as the data. We can then 

compute the probability that the data would have been obtained if the hypothesis is 

true 𝑃(ℰ2|ℰ1), followed by the probability (likelihood) that the data would have been obtained 

whether or not the hypothesis is true, 𝑃(ℰ2). Equation (3.5) can then be used to update the 

probability that the hypothesis is true (posterior probability) in light of the observed data ℰ2. 

                                                           
3 Bayes’ work was published after his death by his friend Richard Price who found it among his (Bayes) notes.  Unfortunately, the published 

work was virtually unread by anyone until it was rediscovered by Laplace in 1812.  
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Thus, the process of inference or learning about a subject of interest, usually start with a 

hypothesis whose truth we want to judge and a belief that the hypothesis is true with a certain 

probability (prior probability) 𝑃(ℰ1), and then update the probability in light of new evidence 

(data) to get posterior probability 𝑃(ℰ1|ℰ2). This process can be repeated several times in light 

of any new information or data and the final probability (posterior probability) 𝑃(ℰ1|ℰ2) 

becomes the probability that the hypothesis is true based on all the available information about 

the hypothesis. This updating rule was first applied by Laplace (1772) to infer the mass of 

planets such as Jupiter and Saturn using astronomical observations, but the resulting posterior 

probability distribution was intractable due the choice of the prior probability distribution. He 

later refined it (Laplace 1812) using the newly developed Gaussian distribution (Gauss 1809).  

 

 

 

 

 

 

 

 

 

 

 

 

Equation (3.5) is usually referred to as the product rule of Bayes’. Another important rule is 

the sum rule. The sum rule deals with the joint occurrence of two or more events. For example, 

the probability of occurrence of events ℰ1 or ℰ2 denoted as 𝑃(ℰ1 + ℰ2) or 𝑃(ℰ1 ∪ ℰ2) is 

expressed as: 

 

𝑃(ℰ1 + ℰ2) =  𝑃(ℰ1) + 𝑃(ℰ2) − 𝑃(ℰ1 ∩ ℰ2)   (3.6) 

 

It easy to show that Equation (3.6) is true from the dice example in the Venn diagram given 

that  ℰ1 + ℰ2 = Ω  and hence 𝑃(ℰ1 + ℰ2) = 1 =  𝑃(ℰ1) + 𝑃(ℰ2) − 𝑃(ℰ1 ∩ ℰ2). The other 

probabilities are already computed above. If events are independent (mutually exclusive) then 

𝑃(ℰ1 ∩ ℰ2) = 0 and 𝑃(ℰ1 ∪ ℰ2) =  𝑃(ℰ1) + 𝑃(ℰ2) . The sum rule is found to be particularly 

3,4 

Ω = {1,2,3,4,5,6} 

ℰ1 ℰ2 

1,2 
5,6 

ℰ1 ∩ ℰ2 

 

Figure 3.1: Venn diagram 
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useful in Bayesian parameter estimation as it allows one to investigate some properties of 

useful parameters whilst removing non-useful ones (Bretthorst 1990).  The sum and the product 

rules together are referred to as the Bayes’ rules (Bretthorst 1990). 

 

 As demonstrated above, Bayesian rules are very useful for updating probabilities when new 

evidence become available.  This flexibility allows the rules of Bayesian probability theory to 

be applied in parameter estimation or hypothesis selection problems (Bretthorst 1990). The key 

limitation of Bayesian theory relates to the fact that Bayesian rules only tell us how to 

manipulate or update probabilities after they have been assigned but not on how to construct 

the probabilities themselves (Bretthorst 1990). Additionally, the choice of the prior distribution 

is generally arbitrary and heavily influenced by an individual’s subjective belief making its use 

potentially dangerous in practice. These limitations led to almost the complete neglect and 

disuse of the Bayesian method by the end of the 19th century (Harney 2003). Although Bayesian 

and its applications have now been revived (see Jeffreys 1939; Savage 1950; Jaynes 1968; 

1980, Bretthorst 1988 and Zellner 1971), none of the methods developed so far for converting 

new evidence into probabilities and/or choosing of priors has been universally accepted as the 

best or standard way of dealing with the problems.  

 

An alternative and more appealing theory that possesses the key properties of Bayes’ 

(updating probabilities with new evidence) and also capable of assigning or constructing 

probabilities is presented. This theory is referred as the principle of entropy maximisation. 

 

3.2.5 Summary on Probability  

The above section describes the two main schools of thoughts on probabilities. The objective 

notion of probability which comprised the classical and frequency definitions of probability 

and the subjective notion, which includes Bayes probability and other belief forms of 

probabilities. Both descriptions are valid as they both satisfy the three axioms of Kolmogorov's 

(1933) and the choice of one over the other depends on the application at hand. The probability 

of an event can therefore, be defined broadly as: (1) a predictor of frequencies of outcomes 

over repeated trials, or (2) a numerical measure of plausibility that an event will occur. As can 

be expected sometimes the frequency definition is meaningless, and only the subjective one 

makes sense. The subjective definition of probability implicitly acknowledges the fact that our 

beliefs of the occurrence of any event are held on the basis of incomplete information. Thus, 
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the more information we have the stronger our beliefs.  This therefore, calls for a theory for 

updating probabilities of which the Bayesian theory is one method. The limitations of the 

Bayesian updating approach have been discussed and the next section presents alternative 

updating methods and, more importantly, a probability construction method.  

 

3.3 The principle of entropy maximisation 

3.3.1 Background 

The principle of entropy maximisation could be considered as an extension of Bayes’ theorem 

as it also possesses perhaps the most important property of Bayes’ theorem-updating 

probabilities (one’s beliefs) of events occurring with new evidence. In addition and probably 

more importantly, the entropy principle leads to the construction of probabilities by making 

use of all available information relating to the event of interest. The mysterious nature of 

entropy is not limited to these two important properties. Researchers (Burg 1978; Seth and 

Kapur 1990; Donoso and Grange 2010) have shown the connection between entropy 

maximisation and the method of maximum likelihood for parameter estimation.  The entropy 

maximisation principle thus allows for the construction of probabilities, estimation of 

parameters governing the probabilities and updating the probabilities with new information as 

they become available.   

 

Adding to the mystery are the existence of entropic measures used in many applied 

fields such as finance, economics, network theory and many other disciplines for selecting 

between competing alternatives or hypothesis.  For example, in Finance, entropy is considered 

as a measure of portfolio diversification where greater entropy is generally considered as a 

higher degree of portfolio diversification and vice versa (Bera and Park 2009; Usta and Kantar 

2011; Jana, Roy and Mazumder 2007). It is also being applied in capital investment and option 

pricing (Buchen and Kelly 1996; Benth and Groth 2009). In information theory, it is used as a 

measure of the average amount of information contained in a message (Shannon 1948), in 

sociology, entropy is considered as a natural decay of structures (Liu, Liu and Wang 2011) and 

in general statistical inference, it is considered as the amount of missing information in 

constructed probabilities (Jaynes 1957). Also in economics and transport studies, the 

similarities between models resulting from utility-maximising and entropy-maximising, have 

been well documented in the literature, especially with respect to the derivation of the 

multinomial logit model (Clark and Wilson 1985; Anas 1984; Fisk 1985) and in Physics that 
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gave birth to the entropy concept, it is often interpreted as the amount of disorder in a system 

(Boltzmann 1872; Gibbs 1902; Planck 1901). 

 

The pervasive use of entropy in almost all disciplines makes it difficult to give it a 

precise definition. In fact, from its very conception, it was known to be confusing and 

mysterious, even among accomplished scientists like Clifford Truesdell and John von 

Neumann.  Clifford Truesdell once noted that; 

 

“Entropy, like force, is an undefined object, and if you try to define it, you will suffer the same 

fate as the force definers of the seventeenth and eighteenth centuries: Either you will get 

something too special or you will run around in a circle’’ (Truesdell 1966).  

 

And in 1948 when Shannon wanted a measure of the amount of information that was 

transmitted in signals, he arrived at an equation whose name was suggested by John von 

Neumann as entropy. John gave two reasons for the choice of entropy, his reasons as reported 

by Shannon and can be found in Tribus (1979) were; 

 

‘‘In the first place, your uncertainty function has been used in statistical mechanics under that 

name, so it already has a name. In the second place, and more importantly, no one really knows 

what entropy is, so in a debate you will always have the advantage’’.  

 

Caticha (2012) noted that entropy maximisation should be broadly considered as a tool for 

reasoning without recourse to notions of heat, multiplicity of states, disorder, uncertainty, or 

even in terms of an amount of missing information. In this way, entropy needs no interpretation, 

and our focus should be more on how to use it rather than what it means. Any attempt to find 

a uniquely correct and universally acceptable definition of entropy is likely to fail just like 

previous attempts and as noted in (Caticha 2012) none can be found.  

 

Indeed, entropy has its origin in statistical mechanics and was first introduced into 

thermodynamic by Rudolf Clausius (1865) and later given a statistical interpretation by 

Boltzmann (1872). Since then entropy has played an important role in thermodynamics and a 

countless number of disciplines. Many researchers have contributed significantly to its 

development and applications (Planck 1901; Gibbs 1902; Jeffreys 1938; Kullback and Leibler 

1951; Wilson 1970; Shore and Johnson 1980). However, this study will focus on the pioneering 
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contributions of three scholars whose names are often associated with entropy; Boltzmann’s 

entropy, Shannon entropy and Jaynes entropy and the relationship between these entropies.   

 

3.3.2 Boltzmann’s Entropy 

Ludwig Boltzmann (1844–1906) is generally acknowledged as one of the most important 

physicists of the nineteenth century and is generally credited with statistical interpretation of 

entropy and the second law of thermodynamics in general (Boltzmann1872). He was the first 

to connect entropy with probability through his kinetic theory of gases giving rise to the famous 

entropy formula: 

 

𝑆 =  𝑘𝐵ln𝐸 (3.7) 

 

where kB is Boltzmann's constant and is normalised to 1 for non-thermodynamic applications 

(Jaynes 1957; Shannon 1948; Fisk 1985). ‘ln’ is the natural logarithm and 𝐸 is the possible 

number of ways that a state of the system can occur. The system at any given time can be found 

in exactly one of the possible states that it can occur. Boltzmann found through experimentation 

that a system in equilibrium is almost always in the state that has the highest number of ways 

of occurring and hence has the maximum entropy. The reason is because ‘nature’ says so. If 

you consider the CAM (assigning containers to modes) experiment for example. Assume that 

we want to assign 4 containers to the 2 modes and the state of interest is the number of 

containers assigned to each mode. Table 3.2 shows that the CAM system can be observed in 5 

possible states. Following the classical definition of probability, state {M1, M2} = {2,2} has 

the highest probability of occurrence as it has the highest number of ways of occurring and 

hence the highest entropy according to Boltzmann’s Equation (3.7). It is to be expected, at least 

theoretically, that for large number of containers, the probability of the CAM system being in 

state {2,2}  will be closer to one whilst that of the rest of the states gets closer to zero. Thus, all 

things being equal, without any external influence or information, state {2,2}  will be the most 

likely representation of the system as it has the highest number of ways of occurring as shown 

in Table 3.2. This simple experiment also reveals something very interesting-each mode in  

{M1, M2} =  {2,2} is assigned the same number of containers. Thus, each alternative or mode 

has equal ‘mode’ share, revealing a uniform probability distribution at play.   

 

 

 

https://en.wikipedia.org/wiki/Boltzmann_constant
https://en.wikipedia.org/wiki/Natural_logarithm
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Table 3.2: Possible macrostates Ω= {M1, M2} 

Distribution of containers to 

modes (states) 

All possible assignments of 

containers 

Number of 

ways of 

occurring 

Probability of 

occurrence of each 

state M1 M2 M1 M2 

4 0 𝑐1 , 𝑐2 , 𝑐3 , 𝑐4  0 1 0.063 

0 4 0 𝑐1 , 𝑐2 , 𝑐3 , 𝑐4  1 0.063 

3 1 𝑐1 , 𝑐2 , 𝑐3  𝑐4  4 0.250 

  𝑐1 , 𝑐2 , 𝑐4 𝑐3    

  𝑐1 , 𝑐3, 𝑐4 𝑐2    

  𝑐2 , 𝑐3 , 𝑐4 𝑐1    

1 3 𝑐4  𝑐1 , 𝑐2 , 𝑐3  4 0.250 

  𝑐3  𝑐1 , 𝑐2 , 𝑐4   

  𝑐2  𝑐1 , 𝑐3, 𝑐4   

  𝑐1  𝑐2 , 𝑐3 , 𝑐4   

2 2 𝑐1 , 𝑐2  𝑐3 , 𝑐4  6 0.375 

  𝑐1 , 𝑐3 𝑐2, 𝑐4   

  𝑐1 , 𝑐4 𝑐2, 𝑐3   

  𝑐2 , 𝑐3  𝑐1 , 𝑐4    

  𝑐2 , 𝑐4  𝑐1 , 𝑐3    

  𝑐3 , 𝑐4  𝑐1 , 𝑐2   

 

 

We have seen that the most likely state for any isolated system is the one with the 

highest number of ways of occurring or multiplicity and has the highest entropy according to 

Equation (3.7).  Determining the number of ways and hence the probability that each state can 

occur can be computed directly using Equation (3.8):  

 

𝐸 =  
𝑛!

∏ 𝑛𝑖!𝑚
𝑖=1

 
(3.8) 

 

where 𝑛 the total number of elements is in the system, 𝑚 is the number of alternatives of interest 

and 𝑛𝑖  is the number of elements assigned to alternative 𝑖 = 1,2, . . 𝑚 such that ∑ 𝑛𝑖
𝑚
𝑖=1 = 𝑛. 

From the CAM experiment, the number of elements (containers) 𝑛 = 4, the number of 

alternatives (modes) 𝑚 = 2, the number of containers assigned to mode 1 is 𝑛1 and the number 

assigned to mode 2 is 𝑛2.  A state of the system is therefore characterised by {𝑛1, 𝑛2} such that 

𝑛1 +  𝑛2 = 𝑛 . The number of ways that each state can occur can be computed directly using 
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(3.8).  For example, the number of ways that the state {4,1} can occur according to (3.8) is 1, 

and that of {2,2}  is 6 and so on.  The state with maximum number of ways of occurring can 

be derived directly by maximising (3.8) subject to the conservation of flow constraint:   

 

max 𝐸 =  
𝑛!

∏ 𝑛𝑖!𝑚
𝑖=1

 

 

 

Subject to the fact that 𝑛1 + 𝑛2 + ⋯ + 𝑛𝑚 = 𝑛. 

 

Since the values of 𝑛𝑖′𝑠 that maximises 𝐸, also maximises ln𝐸 but it is easier to work with ln𝐸 

so ln𝐸  is maximised instead. Taking the natural logarithm of 𝐸 and applying the Stirling’s4 

approximation we have:  

 

ln𝐸 = 𝑛ln(𝑛) − 𝑛 −  ∑ 𝑛𝑖(ln(𝑛𝑖) − 1)

2

𝑖=1

    

 

Forming the Lagrangian equation comprising ln𝐸  above and the constraint and enforcing the 

first order condition of optimality with respect to 𝑛𝑖 we have: 𝑛𝑖 = 𝑒−𝜆;   𝑖 = 1,2,  where 𝜆 is 

the Lagrangian multiplier associated with the conservation constraint. Using the conservation 

of flow constraint, the parameter 𝜆 can be estimated: 

 

∑ 𝑛𝑖 =

𝑚

𝑖=1

4 = ∑ 𝑒−𝜆

𝑚

𝑖=1

  

 

resulting in 𝑒−𝜆  =
4

2
= 2 

 

Hence   𝑛𝑖 = 2; 𝑖 = 1,2 

 

and the corresponding entropy 𝑆 = 1.792 where 𝑘𝐵 is normalised to 1. Thus, the most likely 

state is 𝑛1 =  𝑛2 = 2 or {2, 2} which agree exactly with the result in Table 3.2. Alternatively, 

the uniform distribution is the ‘most probable state’ and it has the maximum number of ways 

                                                           
4 According Stirling ln(𝑛!) ≈ 𝑛ln(𝑛) − 𝑛,  where ‘ln’ is the natural logarithm 
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of occurring. Thus, the most likely state of the system or any system can be found by 

maximising the entropy of the system.   

 

 The entropy in Equation (3.8) can be expressed in terms of probabilities rather than in 

combinatorial terms. Following the frequentist definition of probability, the probability for 

alternative 𝑖, 𝑝𝑖 =
𝑛𝑖

𝑛
;  𝑖 = 1,2, . . 𝑚.  Applying the Stirling’s approximation to (3.8) we have: 

 

𝑆 =  ln𝐸 = 𝑛ln(𝑛) − 𝑛 − ∑ 𝑛𝑖(ln(𝑛𝑖) − 1)

𝑚

𝑖=1

 

 

Replacing the 𝑛𝑖′𝑠 with probabilities and simplifying we have: 

 

𝑆 = − 𝑛 ∑ 𝑝𝑖ln(𝑝𝑖)

𝑚

𝑖=1

 

 

(3.9) 

3.3.3 Shannon Entropy 

The motivation of Shannon was different from that of Boltzmann and he worked in a 

completely different subject. Shannon seeks an absolute measure of the amount of missing 

information in a given probability (𝑝) that an event will occur. He noted that such a measure 

if it exists must satisfy a set of axioms involving consistency, continuity and additivity 

(Shannon 1948).  He denoted such as measure by the letter 𝐻 if it exists. Suppose that we have 

a set of 𝑚 competing or mutually exclusive and exhaustive discrete alternatives whose 

probabilities of occurrence are 𝑝1, … , 𝑝𝑚 then according to Shannon, 𝐻 must satisfy the 

following axioms: 

 

Axiom 1. The measure 𝐻 should be continuous in 𝑝𝑖; 𝑖 = 1,2, . . 𝑚 

Axiom 2. If 𝑝𝑖 =
1

𝑚
; ∀𝑖 = 1,2, . . , 𝑚 then 𝐻 should be a monotonic increasing function of 𝑚. 

Thus, the measure should attain its highest possible value when there is complete lack of 

information as to which alternative is more likely to occur.   

Axiom 3. If a choice can be broken down into two successive choices, the original 𝐻 should 

be the weighted sum of the individual values of 𝐻. For example, if the probability of using 

truck, barge and rail are 𝑝𝑡𝑟𝑢𝑐𝑘, 𝑝𝑏𝑎𝑟𝑔𝑒 and 𝑝𝑟𝑎𝑖𝑙 respectively and the barge and rail modes are 
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combined to from one mode called sustainable transport (st) with probability 𝑝𝑆𝑇 =  𝑝𝑏𝑎𝑟𝑔𝑒 +

𝑝𝑟𝑎𝑖𝑙 then the following relation must be satisfied: 

 

𝐻(𝑝𝑡𝑟𝑢𝑐𝑘, 𝑝𝑏𝑎𝑟𝑔𝑒 , 𝑝𝑟𝑎𝑖𝑙 ) = 𝐻(𝑝𝑡𝑟𝑢𝑐𝑘, 𝑝𝑆𝑇) + 𝑝𝑆𝑇𝐻(𝑝𝑏𝑎𝑟𝑔𝑒 , 𝑝𝑟𝑎𝑖𝑙)  

 

(3.10) 

Shannon showed that (3.11) is the only measure that can satisfy the above axioms: 

 

𝐻 = −𝐾 ∑ 𝑝𝑖log𝑝𝑖

𝑚

𝑖=1

 
(3.11) 

 

where 𝐾 is a positive constant and provides a choice of a unit of measure for 𝐻 since the terms 

𝑝𝑖log𝑝𝑖 are unitless. In information theory, the logarithm (log) is to the base 2 since information 

is often transmitted in strings of binary digits (0s and 1s) and thus the measure 𝐻 can be 

expressed in bits. Shannon called the measure 𝐻 entropy following the advice of Von Neumann 

who recognised its physical significance and the similarity in mathematical form to the quantity 

S in thermodynamics.  

 

 A simple approach of deriving (3.11) can presented as follows; assume we are 

interested in the occurrence of an event ℰ and all we know is the probability 𝑝 that the event 

will occur. By definition, the probability 𝑝 gives us a measure of information about the 

likelihood of that event occurring. If the value of 𝑝 is very high (say 0.99) and the event occurs, 

then there will be almost no surprise and the amount of information gain in the occurrence of 

ℰ or the amount of missing information or uncertainty in 𝑝 will be low. Conversely, if 𝑝 is very 

low (say 0.001), we will be surprised if the event did occur, implying the uncertainty or the 

amount of missing information in 𝑝 is high.  It is therefore intuitive to assume that the amount 

of missing information in 𝑝 is inversely related to 𝑝. It is also to be expected that if we have 

two independent events ℰ1 and ℰ2 with 𝑝1 and 𝑝2 as the respective probability of occurrence, 

then the information gained from the joint occurrence of these two events must equal the sum 

of the information (𝐼) gained from the occurrence of ℰ1 (or ℰ2) followed by the occurrence of 

ℰ2 (or ℰ1). In other words, it is reasonable to assume that the information gained when an event 

occurs, should be additional to the information already gained, and, thus, one might expect that 

the information gain on the occurrence of both events to be the sum of each, irrespective of 

which occurs first: 𝐼(𝑝1, 𝑝2) = 𝐼(𝑝1) + 𝐼(𝑝2).  It appears a logarithm function is the only 
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function that satisfies this condition.  Thus, the amount of information gain when an event with 

probability 𝑝 occurs can be expressed as: 

 

𝐼(𝑝) ∝ ln (
1

𝑝
) 

(3.12) 

 

In general, if there are 𝑛 independent events with probabilities of occurrence 𝑝1, … , 𝑝𝑚, then 

the expected (average) amount of information gained (entropy) using (3.12) by definition is 

expressed as:   

 

𝐻(𝑝1, … , 𝑝𝑚) = 𝐾 ∑ 𝑝𝑖 𝐼(𝑝𝑖)

𝑚

𝑖=1

= −𝐾 ∑ 𝑝𝑖ln (𝑝𝑖)

𝑚

𝑖=1

 

(3.13) 

 

where 𝐾 is constant of proportionality. Clearly, Shannon entropy in Equation (3.13) is 

equivalent to Boltzmann entropy in (3.9) though both were derived in two completely fields 

with different motivations and assumptions.  This leads to Jaynes entropy, who promoted the 

Shannon entropy into the method of statistical inference.    

 

3.3.4 Jaynes’ principle of entropy maximisation  

The work by Jaynes (1957) was key in promoting the entropy concept into a general method 

of deductive reasoning. Prior to Jaynes, several scholars including John von Neumann 

recognised the connection between thermodynamics or Boltzmann’s entropy and Shannon 

entropy. However, as noted in Section 3.3.3 the connection took the form of an analogy 

between the two major disciplines; physics and engineering. Boltzmann’s’ quantity in (3.9) 

was meant to be true and reflect the very ‘laws of nature’ whilst Shannon measure in (3.11) 

was meant to be true for communications systems. With the work of Jaynes in the 1950s, it 

became clear that the connection was not an accident.  

 

Jaynes indicated that ‘reasoning with incomplete data’ is the crucial link between 

Boltzmann’s and Shannon entropies (Caticha 2012).  Jaynes argued that what is at play is not 

a direct ‘image’ of nature as expounded in thermodynamics but rather a rule for constructing 

probabilities in the face of incomplete information and that the entropic measure in (3.9) or 

(3.11) can be interpreted as the uncertainty represented by the probability distribution itself, or 
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as a measure of the amount of information required to achieve certainty.  The impacts on 

physics is particularly enormous as entropy can no longer be justified as fundamental law of 

nature, but rather a method of statistical inference about nature (Caticha 2012). Jaynes 

subsequently announced the principle of entropy maximisation (PEM) as a general technique 

for constructing probabilities on the basis of partial information.  The objective function to 

maximise is an entropy (either Boltzmann or Shannon) function subject to the available 

information converted into a set of constraints.  Probability distributions constructed using 

PEM approach are considered the least biased possible on the given information since it 

maximises the amount of missing or remaining information (Jaynes 1957).  

 

 Jaynes’ entropy is Shannon entropy with logarithm to base 2 replaced by the natural 

logarithm and the constant 𝐾 normalised to 1, making Jaynes’ entropy unitless and more 

relevant to many disciplines: 

 

𝐻(𝑝1, … , 𝑝𝑚) = − ∑ 𝑝𝑖ln (𝑝𝑖)

𝑚

𝑖=1

 
(3.14) 

 

The existence and uniqueness of solutions to the resulting optimisation problem or simply 

entropy maximising programming problem have been shown by Shore and Johnson (1980).   

 

 Although Jaynes’ entropy (3.14) is inspired by Shannon’s (3.11), the two functions have 

completely different meaning. Shannon’s entropy assumes the probabilities are known and 

what was needed was a measure that can quantify the amount of information contained in a 

message and the degradation of that information during transmission, processing and storage 

(Shannon 1948). For Jaynes, the interest was on finding the least biased ways to construct 

probability distributions containing all available information about the system of interest and 

according to Jaynes, these distributions can be constructed using the principle of entropy 

maximisation. 

  

A further note is also necessary on Boltzmann’s and Jaynes’ entropies. The motivation 

behind the work of both scholars is essentially the same—finding the most likely probability 

distribution based on available information’. Although under Boltzmann, the available 

information were macroscopic properties like energy or number of particles in the system. 
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Indeed, it was Boltzmann who first expressed the idea that a system at equilibrium is in a state 

of highest entropy (Boltzmann 1972). With known macroscopic properties of the 

thermodynamic system, he constructed a probability distribution of energetic states of particles 

(called the Boltzmann distribution) by maximising an entropy function subject to what he 

knows about the system; the total number of particles and the total energy of the system—first 

application of the principle of maximum entropy. The main difference between the two 

approaches (Boltzmann verses Jaynes) lies in the functional form of the entropy; Boltzmann 

entropy is combinatorial in specification whilst Jaynes entropy is probabilistic and as shown 

through Equation (3.9) one can easily be transformed to the other. Both approaches are valid 

and depending on the application at hand one may be found more appropriate than the other. 

In transport applications, both approaches have been used and the choice between the two is 

usually motivated by the type of data available (Wilson 1967; Evan 1973; 1976; Anas 1983; 

Bell 1983; Fisk 1985).  

 

In summary, the principle of entropy maximisation provides a universal way of 

processing information and constructing probability distributions making it suitable for the 

study of a wide variety of probabilistic systems transcending all disciplinary boundaries. In 

addition to its practicality and great success in almost every discipline, the principle of entropy 

maximisation goes to the very heart of the meaning of probability and inductive reasoning 

(Caticha 2012). The basic idea is that if we want to model or find the most likely state that a 

system of interest is in, we first define an entropy function of the system, present our knowledge 

of the system as a set of constraints and then maximise the entropy function subject to these 

constraints. The constructed probability distribution then represents the current state of 

knowledge about the system under investigation. Once the probability distribution is 

constructed, the next important question is, what happens if new information about the system 

comes along and we want to update our current state of knowledge with the new information? 

One obvious answer to this question is to employ Bayes’s rule as discussed in Section 3.2. It 

turns out that we do not have to use Bayes’ rule for the update. The update can also be done 

consistently within the entropy framework as discussed in the next section.  

 

3.3.5 Entropic update of probabilities 

It has been demonstrated how PEM can be used to construct probability distribution to describe 

the behaviour of almost any system of interest by construction an entropy function and 
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converting available information about the system into a set of constraints. It has also been 

noted that the maximised value of the entropy function captures the amount of missing 

information in the probabilities constructed.  The entropic probability of a system therefore, 

reflects of our state of knowledge about the system. We therefore, expect that the more 

information we have about the system under consideration, the better the predictive power of 

the constructed probability distribution and hence the more we can trust its description of the 

system. This means that being able to construct probability distribution based on the current 

state of knowledge about the system is not enough. It is equally important to find the means of 

updating the distribution as and when new information becomes available. The updating 

scheme will ensure that the probability distribution at any given time reflects our most current 

state of knowledge about the system.  

 

One obvious updating scheme is the Bayesian method where the existing probability 

distribution (called the prior) is replaced by a posterior distribution as described in Section 3.2. 

Employing Bayesian method required making some assumptions about probability distribution 

of the new information, which means artificially "adding" information, which may be true or 

false. The good news is that we do not have to switch to Bayesian updating method when new 

information becomes available. The framework of entropy maximisation allows for the update 

of the probability distribution with new information in at least two consistent ways; absolute 

entropy update (AEU) as proposed by Jaynes (1957) and relative entropy update (REU), also 

called cross entropy update, first proposed by Kullback and Leibler (1951).  

 

Absolute entropy update (AEU) 

The AEU approach simply discards the existing probability distribution and reconstructs a new 

one using both the old and the new information. This approach is attractive and efficient if the 

volume of new information is significantly more than the old one and/or if the new information 

is considered more accurate than certain aspects of the old information.  In many practical 

problems, however, the new information is likely to be significantly smaller in volume and/or 

reflects some aspect of the system that has not been adequately described by the existing 

probability distribution. In these situations, the REU method is efficient and more relevant.  
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Relative update method (REU) 

The REU generates new (posterior) probability distribution by allowing the construction of 

Boltzmann’s entropy function to explicitly account for the existing (prior) probability 

distribution.  

 

Proposition 3.1: Maximising entropy is equivalent to maximising the log-likelihood of the 

multinomial probability mass function: 

 

𝑓(𝑛1, 𝑛2, … 𝑛𝑚|𝒫) =  (
𝑛!

∏ 𝑛𝑖!𝑚
𝑖=1

)  ∏ 𝓅𝑖
𝑛𝑖

𝑚

𝑖=1

 
(3.15) 

 

with the assumption that the prior probabilities 𝓅𝑖 (𝑖 = 1,2, … 𝑚) follow a uniform distribution.  

𝓅𝑖 is the prior probability that alternative 𝑖  takes on the value 𝑛𝑖 such that 𝑛1 + 𝑛2 + ⋯ +𝑛𝑚 =

𝑛.   

 

Proof 3.1: The term in the bracket of Equation (3.15) is called the multinomial coefficient and 

corresponds to the entropy function in Equation (3.8). Taking the natural logarithm of (3.15) 

and applying Stirling’s approximation we have: 

 

ln𝑓 =  𝑛ln𝑛 − ∑ 𝑛𝑖ln𝑛𝑖

𝑖

+ ∑ 𝑛𝑖ln𝓅𝑖

𝑖

 

 

If we define the posterior probability as 𝑝𝑖 =  
𝑛𝑖

𝑛
 , where 𝑛 is the total size of the system and 𝑛𝑖 

and is the size occupied by alternative 𝑖 or the number of times that event 𝑖 occurred. 

Converting the 𝑛𝑖′𝑠  into 𝑝𝑖′𝑠 and simplifying we have: 

 

ln𝑓 = −𝑛 ∑ 𝑝𝑖ln𝑝𝑖

𝑖

+ 𝑛 ∑ 𝑝𝑖ln𝓅𝑖

𝑖

 

 

which simplifies to become 

 

ln𝑓 =  −𝑛 ∑ 𝑝𝑖ln
𝑝𝑖

𝓅𝑖
𝑖

 
(3.16) 
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If the prior probabilities follow a uniform distribution, 𝓅1 =  𝓅2 = ⋯ = 𝓅𝑚 = 𝓅 then the 

above simplifies to become: 

 

ln𝑓 = −𝑛 ∑ 𝑝𝑖ln𝑝𝑖

𝑖

+ 𝑛𝓅 =  −𝑛 ∑ 𝑝𝑖ln𝑝𝑖

𝑖

+ 𝑘 

 

where 𝑘 = 𝑛𝓅 is constant and can be ignored in the optimisation process.  Clearly, maximising 

entropy 𝑆 in (3.8) is equivalent to maximising 𝑓 with the assumption that the prior probabilities 

are uniformly distributed. In fact, it has already been shown that the uniform probability 

distribution is the default distribution when the entropy of a system is maximised with no 

available information―an outcome that echoes Laplace’s principle of insufficient reasoning. 

Thus, the entropy in (3.8) or (3.11) can be generalised by relaxing the uniform distribution 

assumption of the prior probabilities: 

 

𝑆(𝑝1, … , 𝑝𝑛|𝒫) = − ∑ 𝑝𝑖ln
𝑝𝑖

𝓅𝑖
𝑖

 
(3.17) 

 

Since maximising 𝑆(𝑝1, … , 𝑝𝑛|𝒫) is equivalent to minimising −𝑆(𝑝1, … , 𝑝𝑛|𝒫), the 

minimisation of −𝑆(𝑝1, … , 𝑝𝑛|𝒫), is referred to in the literature as cross entropy or Kullback-

Leibler divergence (Kullback and Leibler 1951): 

 

𝑆(𝑝1, … , 𝑝𝑛|𝒫) = −𝑆(𝑝1, … , 𝑝𝑛|𝒫) = ∑ 𝑝𝑖ln
𝑝𝑖

𝓅𝑖
𝑖

 
(3.18) 

 

The process of minimising (3.18) subject to the new information is generally referred to in the 

literature as the principle of minimum information (Williams 1980; Kullback and Leibler 1951; 

Caticha and Giffin 2006).   

  

 We have demonstrated ways in which existing probabilities can be updated with new 

information as and when they become available making the entropy framework a truly 

universal method of deductive inference. It is also worth noting that some scholars such as 

Willians (1980), Diaconis and Zabell (1982), Jaynes (1988), Caticha and Giffin (2006) have 

investigated the link between the principle of minimum information and Bayesian updating 

method and found the later to be a special case of the former. As noted earlier a connection 
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with maximum likelihood estimation has also been established (Burg 1978; Seth and Kapur 

1990). Thus, the principle of entropy maximisation is truly universal; it allows for the 

construction of probabilities, updating the probabilities with new information as they become 

available and the estimation of parameters governing the distributions. The next section 

presents a numerical example to illustrate some important features of the entropy concept.  

 

3.4 Numerical Example 

This section provides an illustrative example to demonstrate some features of the entropy 

concept, especially in relation to probability construction and subsequent update with new data 

or information.  

 

Problem setup: Consider the system of container movements between a seaport and various 

warehouses in the metropolitan region. The only information available to the study team are 

that the only modes of transport available for transporting 120 TEUs of cargo from the port to 

various warehouses are road, rail and barge. The question posed to the research team was to 

determine the mode share or the quantity of containers carried by each mode.  

 

Solution approach: Since the researchers wanted to avoid assuming or adding more 

knowledge than they have, they employed the principle of entropy maximisation to solve the 

problem. For simplicity, Jaynes’ entropy will be used to find the mode shares directly. If 𝑑 =

120 and 𝑑1, 𝑑2, 𝑑3 are quantities of cargo carried by road, rail and barge respectively, with 

corresponding mode shares 𝑝1, 𝑝2, 𝑝3 then from Equation (3.14) we maximise: 

 

𝐻(𝑝1, 𝑝2, 𝑝3) =  − ∑ 𝑝𝑖ln (𝑝𝑖)

3

𝑖=1

 

 

Subject to: 

𝑝1 + 𝑝2 + 𝑝3 = 1    

  𝑝𝑖 ≥ 0; 𝑖 = 1,2,3 

 

Forming the Lagrangian equation and enforcing the first order condition for maximum 

𝐻(𝑝1, 𝑝2, 𝑝3) with respect to 𝑝𝑖′𝑠 satisfy the following equation: 
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−ln(𝑝𝑖) − 1 − 𝜑 = 0;   𝑖 = 1,2,3  

 

where 𝜑 is the Lagrangian multiplier associated with the equality constraint. Solving for 𝑝𝑖 by 

enforcing the equality constraints we have the maximum of 𝐻(𝑝1, 𝑝2, 𝑝3) occurring at 𝑝1 =

𝑝2 = 𝑝3 = 1/3 and the corresponding flows are 𝑑1 = 𝑑2 = 𝑑3 = 40.  It can also be shown 

using Equation (3.10) that 𝑑1 = 𝑑2 = 𝑑3 = 40 has the highest number of possible ways of 

occurring (entropy).   

 

Now suppose that new information becomes available in terms average costs of 

transport by each mode with the average cost of road  𝑐1 = $5, the average cost of rail  𝑐2 =

$8,  the cost of barge  𝑐3 = $10 and the average cost over all modes 𝑐 = $7. As discussed in 

Section 3.3, there are two ways of updating the prior probabilities  𝓅1 =  𝓅2 =  𝓅3 = 1/3; 

the absolute entropy update (AEU) approach and the relative entropy update (REU). Each of 

these updating methods is applied to the problem, starting with the REU, and then the AEU. 

Let  𝑝1 ,  𝑝2 ,  𝑝3  be the updated (posterior) probabilities. 

 

Relative entropy update (REU): This approach uses the Kullback-Leibler function in (3.18) 

subject to only the new information converted into a constraint as follows: 

 

𝐾𝐿(𝑝1, 𝑝2, 𝑝3) =  min (𝑝1log
𝑝1

 𝓅1 
+  𝑝2 log

 𝑝2 

 𝓅2 
+  𝑝3 log

 𝑝3 

 𝓅3 
) 

subject to: 

𝑐1𝑝1 + 𝑐2 𝑝2 + 𝑐3 𝑝3 = 𝑐 

𝑝1 +  𝑝2 + 𝑝3 = 1 

𝑝𝑖 ≥ 0; 𝑖 = 1,2,3 

 

Solving the above problem, we have the following posterior probability distributions governed 

by the parameter 𝛽: 

 

𝑝𝑖 =  
 𝓅𝑖 𝑒

−𝛽𝑐𝑖

∑  𝓅𝑗 𝑒
−𝛽𝑐𝑗3

𝑗=1

   ;   𝑖 = 1,2,3 

 

Since  𝓅1 =   𝓅2 =  𝓅3 = 1/3, it implies that: 
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𝑝𝑖 =  
𝑒−𝛽𝑐𝑖

∑ 𝑒−𝛽𝑐𝑗3
𝑗=1  

  ;    𝑖 = 1,2,3 

 

With some algebraic manipulation (or use of a root finding algorithm) the parameter value 

𝛽 =0.1562 minimises the entropy function and satisfies all the constraints. This produces 

𝑝1 =0.48, 𝑝2 =0.30 and 𝑝3 = 0.22. Thus 𝑑1 = 58, 𝑑2 = 36, and 𝑑3 = 26 indicating that the 

new information has increased the share of road by 14.7% (from 33.3% to 48%). 

    

Absolute entropy update (AEU):  This approach of update throws away the prior probabilities 

and re-construct new probabilities using the new information together with the existing 

information. Thus, we maximise:  

 

𝐻(𝑝1, 𝑝2, 𝑝3) =  − ∑ 𝑝𝑖 ln(𝑝𝑖)

3

𝑖=1

 

subject to: 

𝑐1𝑝1 + 𝑐2 𝑝2 + 𝑐3 𝑝3 = 𝑐 

𝑝1 +  𝑝2 +  𝑝3 = 1 

𝑝𝑖 ≥ 0; 𝑖 = 1,2,3 

 

Solving the above problem produces the following probability distributions governed by:  

 

𝑝𝑖 =  
𝑒−𝛽𝑐𝑖

∑ 𝑒−𝛽𝑐𝑗3
𝑗=1

 ;    𝑖 = 1,2,3 

 

Again, the value 𝛽 =0.1562 maximises 𝐻(𝑝1, 𝑝2, 𝑝3) and satisfies both old and new constraints 

and  𝑝1 =0.48, 𝑝2 =0.30 and 𝑝3 = 0.22.  The probability or the share of each mode can readily 

be computed for any change in the cost of each mode: 

 

𝑝𝑖 =  
𝑒−0.1562𝑐𝑖

∑ 𝑒−0.1562𝑐𝑗3
𝑗=1

 ; 𝑖 = 1,2,3 
(3.19) 

 

In summary, we started with lack of information about the container system, other than 

the constraint that the sum of the number of containers carried by the three modes should add 
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up to 120. Clearly, there are many values of 𝑑1, 𝑑2 and 𝑑3  that satisfy this constraint-we could 

have chosen 𝑑1 = 120; 𝑑2 = 0; 𝑑3 = 0 or 𝑑1 = 20; 𝑑2 = 70; 𝑑3 = 30 and both will satisfy 

the constraint. Neither choice of values seems particularly appropriate, because each goes 

beyond what we know. We are assuming something which can turn out to be true or false.  To 

avoid introducing potential false information, we employed the principle of maximum entropy 

to select that probability distribution or modal demands which is consistent with the constraint 

and contains the least added information (maximum entropy). The resulting probability 

distribution turns out to be the uniform distribution with equal mode share. The researchers 

were then introduced to new set of information in terms of the average cost of using each mode. 

The new information required the probability distributions constructed to be updated in light 

of the new information, which was done using two updating methods; AEU and REU methods. 

Both methods were shown to yield the same results.  

 

 The numerical example also demonstrates the subjective nature of the probabilities 

constructed by the researchers to cope with their lack of knowledge about the system. It shows 

that a new research team with new set of information or additional set of information about the 

system are likely to generate different probability distributions.  What is also very clear is that 

if the two research teams have the same set of information, they will end up constructing the 

same probability distributions. Additionally, all the information does not have to be available 

to the two teams at the same time-each can receive different amount of information at a given 

time and each will produce different probability distributions during the information flow and 

update them as new information comes along. In the end, both teams will generate the same 

probability distributions if it turns out that each have access to the same amount of information.  

It has also been demonstrated that having additional information ought to yield on average 

better probability distribution in the sense that it produces less entropy or uncertainty. 

 

3.5 Summary 

It has been demonstrated that the principle of entropy maximisation provides a universal way of 

processing information, constructing and updating probability distributions making it suitable 

for the study of a wide variety of probabilistic systems. The principle can also be seen as a 

natural extension of Laplace’s ‘principle of insufficient reasoning’, which states that if one wants 

to assign probabilities to events and there is no reason why one event should occur more than 

others (absence of prior knowledge), the events must be assigned equal probabilities. This places 
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entropy maximisation at the very heart of the meaning of probability and inductive reasoning 

as demonstrated in the previous sections. It was shown in Section 3.2 and by numerical example 

in Section 3.4 that maximising entropy in the absence of all information yields equal probabilities 

or uniform distribution and that the distribution becomes non-uniform once we happen to know 

or learn something about the events.  The principle of entropy maximisation thus guides us to the 

least biased probability distribution that reflects our current state of knowledge and tells us what 

do to if new information becomes available.  This makes entropy maximisation a very powerful 

framework for model building and arguably the most practical way of constructing unbiased 

probability distributions to describe the behaviour of a system of interest. Any other 

distribution would have implied adding information ‘artificially’, which may be true or false 

(Jaynes 1975).  

 

It has also been shown that the entropy function possesses desirable properties (many 

of which will be shown in other sections of this thesis). For example, it was shown that the 

entropy function attains its maximum possible value when nothing is known about the system 

and decreases as we know more about the system. This property allowed the optimised value 

of an entropy function to be interpreted as the amount of missing information about the system 

or in the probabilities constructed. This interpretation seems intuitive since it implies that the 

more information we have about the system, uncertainty (entropy) about the resulting 

probability distribution is less and vice versa and hence the better its predictive power.  

 

Another important property of the entropy function is its additive property. This 

property underpins Shannon’s definition of entropy, where the information gained from the 

joint occurrence of two independent events should equal the sum of information gained from 

the occurrence of one followed by the other (irrespective of which occurs first). In other words, 

the final model is independent of the steps followed in constructing the model. This property is 

particularly useful when relying on data from several sources to build a model. Data from each 

source is expected to describe some aspect of the system and the non-availability of some data 

means that the model can still be constructed to describe the other aspects of the system. As an 

example, assume that a given data D can be divided into two disjoint groups D1 and D2, then the 

additive property requires that 𝐻(𝐷) = 𝐻(𝐷1) + 𝐻(𝐷2). If D2 is related to D1, then 𝐻(𝐷) =

𝐻(𝐷1) + 𝐻(𝐷2|𝐷1) = 𝐻(𝐷2) + 𝐻(𝐷1|𝐷2). This property proved useful in developing 

algorithms for solving entropy problems in Chapter 4 to 6.  

 



   

  93 

 

3.6 Application of entropy maximisation  

This section discusses the suitability of employing the entropy framework to answer the 

research questions. As noted in Chapter 2, the problem of locating intermodal terminals was 

decomposed into two linked sub-problems; the location problem and cargo flow problem. The 

goal of the locater is to strategically place the IMTs at locations that can attract as many users 

as possible whilst keeping the cost of installations as low as possible. The cargo flow problem 

comprises many decision makers with each maximising his/her utility in the choice of mode 

and cargo destination. These two problems are linked and will require some degree of trade-

offs between the costs of IMT location and the amount of usage.   

 

This study employs the principle of maximum entropy to solve these problems with one 

objective to optimise. The entropy approach allows the linking of behaviour models (for 

describing the cargo flow problem) with facility location problem (integer programming of 

IMT locations). The use of the entropy principle is also broadly supported by the lack of data 

about the containerised system in sufficient quantity and quality coupled with the that fact that 

it is impossible to track every potential user or shipper and extract relevant information about 

his/her mode and destination choice processes. Additionally, shippers, carriers or other 

logistics providers are unwilling to provide data at the required level of detail for modelling. 

They are even sensitive to basic data on cargo volumes and their origins and destinations due 

to fear of losing competitive advantage of their businesses.   

 

Data limitations coupled with the fact available data (often derived from several 

sources) are usually in aggregate forms with each data set explaining some aspects of the 

containerised system. These require the need for a method of combining all these diverse pieces 

of contextual information or evidence together to explain or describe the system in a consistent 

and unbiased way. It has been shown in earlier sections that the best and most unbiased way is 

through entropy maximisation (Jaynes 1957; Shannon 1948; Wilson 1970; Fisk 1985). The 

principle of entropy maximisation provides the means of combining the various pieces of 

information as constraints as well as accounting for the fact that not all information about the 

system can be obtained or quantified (Hensher and Figliozzi 2007; McFadden 1974). The 

entropy principle was shown to produce probability distributions capturing all known 

information (aggregate and disaggregate) about the system and can be updated with new 

information as and when they become available.  
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Under the entropy maximisation approach, all possible demands of modal decision 

variables are considered and the most likely demand consistent with all available information 

on cargo production and distribution and modal decisions is selected. The most likely demand, 

under the entropy framework is the demand that produces the highest entropy of the system. 

An equivalence has been shown between entropy and shipper welfare, following from the 

random utility interpretation of the discrete choice model, which in turn is a consequence of 

entropy maximisation (see Chapter 4 and 5). In Chapter 4, the principle of entropy 

maximisation has been applied to develop probabilistic models for locating intermodal 

terminals to serve the metropolitan containerised market. The model was in turn used to provide 

suitable answers to research question I. Chapter 5 extends the model in Chapter 4 to answer 

research questions II and III. The extended model is flexible for locating terminals to serve the 

metropolitan market, regional market or both markets simultaneously. The incorporation of 

variable cargo demand as constraints within the entropy framework is presented in Chapter 6. 

The resulting entropy model comprises linked facility location model, mode choice model and 

cargo production and/or distribution model suitable for addressing research question IV.  
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Chapter 4 Metropolitan container 

terminals 

 

 

 

 

 

 

4.1 Background 

The previous chapter discussed the methodological framework for the location of inland 

container terminals. This chapter focuses on addressing research question I by developing 

models for locating container terminals to serve the import and export markets (IMEX) or the 

metropolitan containerised transport market (MCTM). The located terminals are expected to 

promote the use of intermodal transport in the movement of cargo between the port and cargo 

origin/destinations in the hinterlands, with more use of intermodal transport leading to more 

use of the located terminals and less visibility of container trucks on the road network.  

 

The motivation for the development of these terminals is driven by the need to find a 

sustainable solution to the disproportionately negative impacts of container trucks on the urban 

fabric in terms of road damage, congestion, safety and pollution. These problems are 

compounded for port, especially city ports faced with continuous growth in trade, increased 

‘lumpiness’ of throughputs produced by larger vessels, limited physical space for expansion to 

accommodate growth and lack of adequate transport infrastructure connecting the ports and the 

cargo origins/destinations in the hinterlands or the metropolitan region. Port activities or 

operations are also adversely affected if large volumes of cargo and trucks within and around 

the port are not properly managed. Inefficient port systems have direct impact on a nation’s 

economy, its foreign trade and its ability to compete in global markets. This is because the port 

is the gateway for the greater part of visible trade between countries and links the economy of 

its host country to the rest of the world.  

 

A promising solution to the above problems is the promotion of inland intermodal 

transport use through the development of intermodal terminals (IMTs) that interface with both 

road and rail/barge networks. Import containers can then be transported by rail (a high capacity 
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mode) to the IMT and then be transferred onto trucks for onward movement to their various 

destinations in the hinterland as shown in Figure 4.1. Also, export containers can first be 

consolidated at the IMT before being transported to the port by rail or barge for export. The 

development of these terminals is expected to promote the use of intermodal transport over 

road alone transport in the metropolitan (import/export) containerised market. More use of 

intermodal transport is expected to create significant extra handling and storage capacities at 

ports, reduce the number of trucks going to deliver and receive container(s) at the port, reduce 

the number of container trucks on the road network especially around the vicinity of the port 

and thereby reducing congestion and the number of conflicts with other road users. The positive 

impact on the environment is realised through the reduction in the number of trucks on the road 

network or the total kilometres travelled by trucks.   

 

The problem of locating intermodal container terminals to serve the metropolitan 

market was cast in Chapter 1 and 2 as a linked facility location problem (FLP) and mode choice 

problem (MCP). The FLP determines the exact locations of the required number of terminals 

among a candidate set on the transport network and the MCP determines the demand or usage 

of the located terminals through the demand for intermodal transport. The mathematical 

formulation of the metropolitan intermodal terminal location problem (MIMTLP) is based on 

the principle of entropy maximisation.  The entropy maximisation principle as discussed in 

Chapter 3, provides the means of combining all relevant information about the metropolitan 

containerised market in a consistent and unbiased way to construct probability distributions to 

describe shippers’ mode choice behaviours and hence terminal location decisions in the market. 

The entropy formulation produced a single level mathematical program where both terminal 

location decisions and mode choice decisions are driven by shipper preferences. This was 

achieved by focusing more on the shipper as the decision-maker by including the fixed cost of 

terminal location in the transport cost confronted by shippers choosing which if any terminal 

to use. This, in turn, enables the demand for terminals to be estimated as a function of the fee 

charged by terminal operators for terminal usage and the transport cost of accessing the 

terminal along the intermodal transport chain.   

 

The rest of the chapter is organised as follows. Section 4.2 presents the mathematical 

formulation of MIMTLP underpinned by the principle of entropy maximisation. The proposed 

solutions of the formulated problem are presented in Section 4.3. The application of the model 
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in practice is discussed in Section 4.4.  Finally, Section 4.5 presents a summary of how the 

model addresses the research question.  

 

  

 

 

 

 

 

 

 

 

 

 

4.2 Methodology  

4.2.1 Problem definition and assumptions 

The MIMTLP can be stated as follows: 

 

“Given the distribution of containerised cargo and candidate terminal locations on the 

transport network, what are the best places to locate p intermodal terminals to best serve the 

metropolitan containerised market?” 

 

What is best depends on the objective function and in this study, the objective to be optimised 

is the entropy, which is a function of the modal decision variables. The motivation for 

maximising entropy was discussed in Chapter 3, and in this chapter, it will be shown that 

maximising entropy is equivalent to maximising shippers expected utility or welfare. 

 

In formulating the problem, it was assumed that the study area (e.g., the metropolitan 

region) is segmented into freight analysis zones where cargo can be seen as originating from 

one zone and destined to another zone. The zones are connected to both the rail and highway 

networks so that cargo can be transported from one zone to another using at least one mode of 

transport. Two main modes of transport are assumed to be available to each user or shipper; 

road alone transport and intermodal transport. Road alone transport mainly involves the use of 

trucks to transport containers to and from the port. Intermodal transport, on the other hand, 

combines the use of trucks and a high carrying capacity mode such as rail for the movement of 

IMT 

Warehouses in the 

Metropolitan region 

Seaport 

Main leg by 
Final delivery/Local pickup 

Figure 4.1: Modal options: Import market (Export market is the reverse) 

IMT 
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containers to and from the port, where the rail is used for the main leg and the trucks for local 

pickups and/or local deliveries as shown in Figure 4.1. In addition to the above assumptions, 

following information are assumed to be available or can readily be deduced: 

 

1. Fixed origin-destination movement of cargo (in TEUs) in the study area. 

2. The transport budget (known or assumed). Here, the analyst has the opportunity to 

investigate the implications of different transport budgets on IMT location and usage.  

Plausible ways of deriving this budget are discussed below. 

3. The generalised cost of using each mode of transport between each origin-destination pair. 

The construction of these costs variables is discussed in below.  

4. Candidate IMT sites (plausible places where IMTs can be located), the number of IMTs to 

locate and handling capacity of each candidate IMT location. 

The intermodal transport cost 𝑐𝑖𝑡𝑗 is a very important policy variable and comprises three 

main components: 

 

𝑐𝑖𝑡𝑗 =  𝑐𝑖𝑡 +  𝑐𝑡 + 𝑐𝑡𝑗 (4.1) 

 

where for import cargo movements, 𝑐𝑖𝑡 is the unit cost of transporting cargo from the port to 

IMT 𝑡 by rail ($ per TEU);  𝑐𝑡𝑗 is the unit road cost from IMT 𝑡 ∈ 𝒯 to cargo destination 𝑗 ∈

𝒟 ($ per TEU).  For export cargo movements, 𝑐𝑖𝑡 is the unit truck cost of transporting cargo 

from origin 𝑖 to IMT 𝑡 ($ per TEU);  𝑐𝑡𝑗 is the unit rail cost from IMT 𝑡 ∈ 𝒯 to the port (cargo 

destination 𝑗 ∈ 𝒟).  The parameter 𝑐𝑡 is the terminal usage cost or rental ($ per TEU) passed 

on to the shipper, who then decides whether or not to use the terminal and comprised the fixed 

installation costs and terminal operation costs.  The transport network cost (road or rail) 

between any two zones 𝑖 ≠ 𝑗 is generally assumed to consist of two cost components:  

 

𝑐𝑖𝑗 =  𝜑̃ + 𝜃𝐺𝑇𝑖𝑗 (4.2) 

 

where 𝜑̃ is the fixed transport cost ($ per TEU), 𝜃 is the cost sensitivity parameter of 

generalised travel time, 𝐺𝑇𝑖𝑗 between two locations on the network with the combined term 

𝜃𝐺𝑇𝑖𝑗 representing the variable cost component. The generalised time 𝐺𝑇𝑖𝑗 can be a function 
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of distance or time as may be the case for rail or a linear combination of distance and time as 

expressed below: 

 

𝐺𝑇𝑖𝑗 =  𝑡𝑖𝑚𝑒𝑖𝑗 +  
𝑣𝑜𝑐 

𝑣𝑜𝑡
𝑑𝑖𝑠𝑡𝑖𝑗 

 

(4.3) 

𝑡𝑖𝑚𝑒𝑡𝑗 and 𝑑𝑖𝑠𝑡𝑡𝑗 are the travel time (minutes) and distance between location 𝑖 and location 𝑗 

respectively, 𝑣𝑜𝑐 is the vehicle operating cost ($ per km) and 𝑣𝑜𝑡 is driver’s value of time 

savings ($ per minutes).  It can further be assumed that the truck travel times and distances will 

come from an existing suitable transport model of the study area and that the model contains 

assignment models that adequately capture the non-linearity between flows and travel times on 

the transport network.  

 

The transport budget is also very important variable in the model and provides the 

analyst or location planner some degree of flexibility in locating IMTs to achieve certain 

economic, environmental or social policy targets.  The budget 𝑐 can be derived using 𝑐 = 𝑐̅𝑍, 

where 𝑐̅  is the average transport cost within the study area and 𝑍 is the total cargo in the system. 

The average cost can be derived from a sample of origin-destination cargo flows with 

associated costs. Alternatively, it seems reasonable to assume that shippers individually would 

not choose to increase their transport costs because a new IMT becomes available, so they 

would not do so collectively. Thus, collectively shippers can be assumed to behave in such a 

way that the average transport costs over all origin-destination cargo movements after the 

addition of IMT(s) are no higher than before. The average transport cost can therefore be 

computed using equation (4.4), which is the average cost of using road alone transport. Once 

the average transport is known, the budget can be derived using 𝑐 = 𝑐̅𝑍.  

 

𝑐̅ =  
 ∑ ∑ 𝑐𝑖𝑗𝑞𝑖𝑗𝑗∈𝒟𝑖∈𝒪

∑ ∑ 𝑞𝑖𝑗𝑗∈𝒟𝑖∈𝒪
 

(4.4) 

  

where 𝑞𝑖𝑗 is the quantity of cargo to be transported between the sampled origin-destination 

cargo movements and 𝑐𝑖𝑗  is the associated road alone transport cost. The transport budget can 

more generally be computed using: 

 

𝑐 = 𝜅𝑐̅𝑍;     𝜅 > 0 (4.5) 
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Equation (4.5) allows the budget to be specified such that the location of the terminals can be 

used to improve the average existing cost of transport in addition to the environmental and 

other benefits associated with intermodal transport.   

 

Decision variables 

The key decision variables are 𝑌𝑡  with 𝑌𝑡 = 1 indicating that candidate location 𝑡 ∈ 𝒯  must 

be developed as an intermodal terminal.  The values of the variable 𝑉𝑖𝑡𝑗 represent the demand 

for terminal 𝑡 ∈ 𝒯 in the movement of cargo between zones  𝑖 ∈ 𝒪 and  𝑗 ∈ 𝒟 hence determines 

the demand for intermodal transport, whilst 𝑋𝑖𝑗 outputs the demand for road alone transport.  

 

4.2.2 The Entropy Maximising Facility Location Problem 

The goal is to determine the most likely 𝑝 IMT locations based on available information on 

transport budget, cargo distribution patterns, transport costs of cargo distribution, candidate 

IMT locations with important features such as cargo handling capacities. Here, the entropy 

maximising principle is used to combine these diverse pieces of information to find the most 

likely 𝑝 IMT locations and the least biased probability distribution of located IMT usage.  The 

general entropy maximisation framework comprises an entropy objective function and a set of 

constraints representing the available information. The entropy function comprises the possible 

ways that a given state of the system can occur:  

 

𝐸 =  
𝑍!

∏ ∏ 𝑋𝑖𝑗! (∏ 𝑉𝑖𝑡𝑗!𝑡∈𝒯 )𝑗∈𝒟𝑖∈𝒪

 
(4.6) 

 

where 𝐸 is the number of possible ways that the state (𝑉𝑖𝑡𝑗 , 𝑋𝑖𝑗) such that ∑ ∑ 𝑋𝑖𝑗 𝑗∈𝒟𝑖∈𝒪 +

∑ ∑ ∑ 𝑉𝑖𝑡𝑗𝑗∈𝒟𝑡∈𝒯  𝑖∈𝒪 =  𝑍 can occur. The important question is: based on what we know about 

the system, which of the many states (values of 𝑋𝑖𝑗  and 𝑉𝑖𝑡𝑗 ) is most likely to represent the 

system? The principle of entropy maximisation is simply asking us to select the states with the 

maximum number of ways of occurring and consistent with all we know about the system. In 

general, we seek the values of 𝑋𝑖𝑗  and 𝑉𝑖𝑡𝑗 that maximises 𝐸  and also satisfy all the constraints 

representing the available information about the system.  Statistically, the values of  𝑋𝑖𝑗 and 

𝑉𝑖𝑡𝑗 that maximises 𝐸 also maximises ln𝐸. However, it is easier to maximise ln𝐸 so we 

maximised ln𝐸 instead. Thus, Equation (4.6) reduces to: 
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ln𝐸 = ln𝑍! − ∑ ∑ ln(𝑋𝑖𝑗!)

𝑗∈𝒟𝑖∈𝒪

− ∑ ∑ ∑ ln(𝑉𝑖𝑡𝑗!)

𝑗∈𝒟

 

𝑡∈𝒯𝑖∈𝒪

 
(4.7) 

 

It has been shown in Chapter 3 that the term ln𝐸  has special meaning and desirable properties 

and Boltzmann (1972) referred to it as entropy.  Thus, maximising (4.7) can equivalently be 

stated as maximising entropy. One of the desirable properties of ln𝐸 (entropy) is that its 

corresponds to the amount of missing information (or uncertainty or entropy) in the constructed 

of the probability distribution and that the maximum amount of missing information is attained 

when there is no known information about the system under investigation. These properties are 

expressed in propositions (4.1), (4.2) and (4.3) below: 

 

Proposition 4.1: If the set ℳ = {𝑡: 𝑡 ∈ {0, 𝒯}} is set of modal alternatives, where {0} is the 

index for road alone and the set 𝒯 is the set of indices of IMTs forming the intermodal transport 

alternatives.  Also, let the set of origin-destination movements ℛ = {𝑟 = (𝑖, 𝑗): 𝑖 ∈ 𝒪, 𝑗 ∈ 𝒟} 

then set the of elemental alternatives 𝒲 = {𝑤 = (𝑟, 𝑡): 𝑟 ∈ ℛ, 𝑡 ∈ ℳ} with cardinality 𝑛 =

|𝒲|. If the probability of each elemental alternative 𝑤 ∈ 𝒲 is defined by Equation (4.8): 

 

𝑃𝑤 =  
𝑍𝑤

𝑍
; ∀𝑤 ∈ 𝒲 

(4.8) 

 

Then, equation (4.7) or entropy can be expressed as: 

 

ln𝐸 = − 𝑍 ∑ 𝑃𝑤ln𝑃𝑤

𝑤∈𝒲

 
(4.9) 

 

Proof 4.1: By definition, equation (4.7) can be simplified as: 

 

In𝐸 =  ln𝑍! − ∑ ln𝑍𝑤!

𝑤∈𝒲

 

 

Applying Stirling's approximation, the above equation simplifies to: 
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ln𝐸 =  𝑍(ln𝑍 − 1) − ∑ 𝑍𝑤(ln𝑍𝑤 − 1)

𝑤∈𝒲

 
(4.10) 

 

Substituting Equation (4.8) into (4.10) and performing some algebraic manipulation we have: 

 

ln𝐸 = − 𝑍 ∑ 𝑃𝑤ln𝑃𝑤

𝑤∈𝒲

 
(4.11) 

 

Proposition 4.2: In the absence of any other information about the freight system, 

maximising equation (4.11) produces uniform probability distributions of modal flows: 

 

𝑃𝑤 =  
1

𝑛
 ;  ∀𝑤 ∈ 𝒲 

(4.12) 

 

with corresponding maximum entropy: 

 

𝐻 = In𝐸̃ =  𝑍ln(𝑛) (4.13) 

 

where 𝑛 is the cardinality of the set 𝒲 

 

Proof 4.2: Now if we assume there is no information available other than obeying the 

normalisation axiom of probability: 

 

∑ 𝑃𝑤

𝑤∈𝒲

= 1 
(4.14) 

 

then from equation (4.11) the first order condition for maximum ln𝐸 with respect to 𝑃𝑤 and 

subject to (4.14) satisfy the following equation: 

 

−𝑍ln(𝑃𝑤) − 1 − 𝜑 = 0;  ∀𝑤 ∈ 𝒲 (4.15) 

 

where 𝜑 is the Lagrangian multiplier associated with constraint (4.14). Solving for 𝑃𝑤 in 

(4.15) by enforcing constraint (4.14) we have: 
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𝑃𝑤 =  
1

𝑛
 ;  ∀𝑤 ∈ 𝒲                                                                                                                                  

 

and substituting the above into Equation (4.11) the maximum entropy can be computed: 

 

𝐻 = 𝑍ln(𝑛)                                                                                                                                              

 

Proposition 4.3: The entropy (or amount of missing information (𝐻) in the probability 

distributions) constructed based on any amount of available information about the system 

cannot be greater than the entropy in equation (4.13). That is 𝐻 ≤ 𝑍ln(𝑛) 

 

Proof 4.3: Define a convex function 𝜙(𝑥) = 𝑥ln(𝑥); ∀𝑥 ≥ 0. Following Jensen’s inequality, 

the following must hold: 

 

−
1

𝑛
∑ 𝜙(𝑃𝑤)

𝑤∈𝒲

≤ −𝜙 (
1

𝑛
∑ 𝑃𝑤

𝑤∈𝒲

)  
(4.16) 

 

Applying the definition of the convex function 𝜙 to the term on the left-hand side of Equation 

(4.16) and using Equations (4.11) we have: 

 

− 
1

𝑛
∑ 𝜙(𝑃𝑤)

𝑤∈𝒲

= −
1

𝑛
∑ 𝑃𝑤ln(𝑃𝑤)

𝑤∈𝒲

= (𝐻)
1

 𝑛𝑍
 

 

 

Also, applying the definition of 𝜙 to the term on the right-hand side of (4.16) we have: 

 

−𝜙 (
1

𝑛
∑ 𝑃𝑤

𝑤∈𝒲

) = −
1

𝑛
ln (

1

𝑛
) =

1

𝑛
ln(𝑛) 

 

 

It therefore follows from equation (4.16) that 

 

𝐻 ≤ 𝑍ln(𝑛)  (4.17) 
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The result in equation (4.17) is intuitive since it implies that the more information we have, the 

less entropy or uncertainty we have about the resulting probability distribution and vice versa. 

In other words, on average, the amount of missing information (entropy) about the system 

under investigation is never increased by learning something about it.  Equation (4.12) simply 

states that applying the principle of maximum entropy to the MCTM with no evidence to 

suggest why a particular modal alternative should be preferred more than the others will result 

in a uniform probability distribution. The next section presents the information available in the 

form of constraints to form the entropy maximising facility location problem (EMFLP).   

 

4.2.3 Available evidence as constraints 

For the purpose of this exercise, the evidence available are summarised as follows: 

 

1.Budget constraint: It is assumed that the transport budget 𝑐 is known. This evidence is added 

as constraint (4.18). The first component captures the weighted cost of using intermodal 

transport and the second captures the weighted cost of using road alone transport (e.g. truck 

only), with the sum not exceeding the total allocated transport budget. 

 

                ∑ ∑ ∑ 𝑐𝑖𝑡𝑗𝑉𝑖𝑡𝑗

𝑗∈𝒟𝑡∈𝒯𝑖∈𝒪

+ ∑ ∑ 𝑐𝑖𝑗𝑋𝑖𝑗

𝑗∈𝒟𝑖∈𝒪

≤  𝑐 
(4.18) 

 

2. Conservation of cargo flow constraint. Information on the distribution of origin-destination 

flows of cargo (𝑞𝑖𝑗) by modes is added as constraint (4.19). It ensures that for each origin-

destination pair, the sum of cargo by all available modes equals the total cargo associated with 

this origin-destination pair. 

 

                ∑ 𝑉𝑖𝑡𝑗 

𝑡∈𝒯

+ 𝑋𝑖𝑗 = 𝑞𝑖𝑗;   ∀  𝑖 ∈ 𝒪, 𝑗 ∈ 𝒟 
(4.19) 

 

3. Definitional constraint. The information on the required number of IMTs (𝑝) to locate is 

presented by constraint (4.20). It ensures that only the required number of IMTs are located. 

 

                ∑ 𝑌𝑡

   𝑡∈𝒯

= 𝑝   (4.20) 
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4. Capacity constraint. The cargo handling capacity limit of the each IMT is captured in 

constraints (4.21) and guarantees that no located IMT exceeds its cargo handling capacity. The 

constraints also ensure that only open IMTs are used.  

 

                ∑ ∑ 𝑉𝑖𝑡𝑗

𝑗∈𝒟𝑖∈𝒪

≤ 𝑌𝑡𝑏𝑡 ;     ∀𝑡 ∈ 𝒯 
(4.21) 

 

Finally, the entropic objection function in (4.7) can be simplified by applying Stirling's 

approximation to the factorial terms, ignoring the constant term, ln𝑍! as it does not influence 

the optimisation process: 

 

ln𝐸~ ∑ ∑ ∑ 𝑉𝑖𝑡𝑗(1 − ln𝑉𝑖𝑡𝑗)

𝑗∈𝒟

 

𝑡∈𝒯𝑖∈𝒪

+ ∑ ∑ 𝑋𝑖𝑗(1 − ln𝑋𝑖𝑗)

𝑗∈𝒟𝑖∈𝒪

 
(4.22) 

 

Once the available information are converted to constraints (4.18-4.21), the EMFLP is 

presented as follows: 

 

EMFLP ∶ Max  Λ = ∑ ∑ ∑ 𝑉𝑖𝑡𝑗(1 − ln𝑉𝑖𝑡𝑗)

𝑗∈𝒟

 

𝑡∈𝒯𝑖∈𝒪

+ ∑ ∑ 𝑋𝑖𝑗(1 − ln𝑋𝑖𝑗)

𝑗∈𝒟𝑖∈𝒪

 

 

Subject to constraint (4.18) to (4.21) and the following integer and non-negativity constraints: 

 

    𝑌𝑡 ∈ {0,1} ;   𝑡 ∈ 𝒯 (4.23) 

 

    𝑉𝑖𝑡𝑗 ≥ 0; 𝑋𝑖𝑗 ≥ 0 ; ∀𝑡 ∈ 𝒯; ∀ 𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟 (4.24) 
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4.3 Solving the EMFLP  

4.3.1 Background 

The EMFLP is NP-hard since it includes mixed integer linear programming (Sorensen et al. 

2012). This suggests that it is unlikely that efficient algorithms for solving every instance of it 

(EMFLP) can be found (Garey and Johnson 1979).  However, considering the fact that there 

are few plausible places in a metropolitan region to place IMTs, complete enumeration of IMT 

locations is feasible for most practical problems.  The study therefore explores the structure of 

the problem and notes that it is possible to separate the location aspect of the problem from the 

mode choice aspect, allowing for complete enumeration algorithm or other exact algorithms 

like branch and bound to be used to solve the overall problem. This was achieved by relaxing 

constraint (4.21) or more generally relaxing all constraints expressed in terms of both location 

and flow variables:  

 

Max{Λ𝑅}  

 

Subject to constraints (4.18) to (4.20), (4.23) and (4.24) 

 

where 

 

Λ𝑅 = ∑ ∑ ∑ 𝑉𝑖𝑡𝑗(1 − ln𝑉𝑖𝑡𝑗)

𝑗∈𝒟

 

𝑡∈𝒯𝑖∈𝒪

+ ∑ ∑ 𝑋𝑖𝑗(1 − ln𝑋𝑖𝑗)

𝑗∈𝒟𝑖∈𝒪

 

+  ∑ 𝜓𝑡 (𝑌𝑡𝑏𝑡  − ∑ ∑ 𝑉𝑖𝑡𝑗 

𝑗∈𝒟𝑖∈𝒪

)

𝑡∈𝒯

 

 

 

and where 𝜓𝑡 ≥ 0; ∀𝑡 ∈ 𝒯 are Lagrangian multipliers associated with the relaxed constraint 

(4.21). The relaxed problem can then be decomposed it into two sub-problems; the facility 

location sub-problem (FLP) and mode choice sub-problem (MCP) with the FLP given as: 

 

FLP ∶ Min ΛFLP = ∑(𝜓𝑡𝑏𝑡)𝑌𝑡

𝑡∈𝒯

 

Subject to constraints (4.20) and (4.23)  

 

and the MCP with a simplified objective function becomes: 
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MCP ∶ Max ΛMCP = ∑ ∑ 𝑋𝑖𝑗 {1 − ln𝑋𝑖𝑗} 

𝑗∈𝐷𝑖∈𝑂

+ ∑ ∑ ∑ 𝑉𝑖𝑡𝑗{1 − ln𝑉𝑖𝑡𝑗 − 𝜓𝑡}

𝑗∈𝐷𝑡∈𝒯

 

𝑖∈𝑂

 

 

Subject to constraints (4.18), (4.19) and (4.24) and 𝜓𝑡 ≥ 0; ∀𝑡 ∈ 𝒯.  

 

Thus, overall objective function Λ𝑅 reduces to: 

 

Λ𝑅 = ΛFLP +  ΛMCP (4.25) 

 

4.3.2 Solution the FLP 

Given 𝜓𝑡 ≥ 0; ∀𝑡 ∈ 𝒯 the FLP can be solved by identifying the 𝑝 largest elements of 

(𝜓𝑡𝑏𝑡) ; ∀𝑡 ∈ 𝒯 and setting the corresponding values of 𝑌𝑡 equal to 1. Let  𝒦 with cardinality 𝑝 

be the set of located IMTs, which then goes into the MCP. Note that for sufficiently large IMTs, 

𝜓𝑡 = 0; ∀𝑡 ∈ 𝒯, the objective value (ΛFLP) of the FLP will be zero and the selection of the 

best IMTs will only be based on the value of ΛMCP. Thus, all things being equal IMTs with 

𝜓𝑡 > 0 are more likely to be selected as expected. This is because if two competing IMTs have 

equal demands but one of them has 𝜓 > 0, it implies this IMT is more attractive and would 

have attracted more demand had it not been restricted by its capacity following the definition 

of 𝜓 > 0.  

 

4.3.3 Solution to the MCP 

Similarly, the solution to the MCP is based on the assumption that 𝒦, the set of IMTs to locate 

is known. The following propositions investigate the existence and uniqueness of MCP 

solutions for any given set of located IMTs 𝒦.  

 

Proposition 4.4 (Existence): Given that the set 𝒦 is known and the set of feasible solutions, 

𝕊 to the MCP is defined by constraints (4.18), (4.19), (4.21) and (4.24) as: 

 

𝕊 =  {𝑍𝑖𝑡𝑗 |(4.18), (4.19), (4.21) and (4.24); ∀ 𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟; 𝑡 ∈ ℳ} 

 

then at least one solution to the MCP exists in 𝕊.  
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Proof 4.4: Set 𝕊 is convex, closed and bounded as it is defined by linear equality (4.19) and 

inequality constraints (4.18), (4.21) and (4.24).  The set 𝕊 is also not empty in terms of the 

cargo flow variables 𝑉𝑖𝑡𝑗 and 𝑋𝑖𝑗;  ∀ 𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟, 𝑡 ∈ 𝒦 since for any 𝑞𝑖𝑗 > 0;  ∑ 𝑉𝑖𝑡𝑗𝑡∈𝒦 +

𝑋𝑖𝑗 > 0; ∀ 𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟. Finally, location variables 𝑌𝑡;  ∀ 𝑡 ∈ 𝒦 and the flow variables 𝑉𝑖𝑡𝑗; 

∀ 𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟, 𝑡 ∈ 𝒦 are linearly related through constraint (4.21). Hence the feasible region 

corresponding to 𝑌𝑡; ∀ 𝑡 ∈ 𝒦 is also convex, compact (closed and bounded) and non-empty.  

Hence the MCP possesses at least one solution (Boyd and Vandenberghe 2009). 

  

Proposition 4.5 (Uniqueness): If a solution of the MCP model exists in 𝕊 then that solution 

must be unique.  

 

Proof 4.5: To prove uniqueness we first show that the objective function ΛMCP is strictly 

convex in 𝕊.  The second-order partial derivatives of ΛMCP at 𝑍𝑖𝑡𝑗;  ∀ 𝑖 ∈ 𝑂; 𝑗 ∈ 𝐷; 𝑡 ∈ 𝔐 =

{0, 𝒦}: 

 

𝜕2ΛMCP

(𝜕𝑍𝑖𝑡𝑗)
2 =  −

1

𝑍𝑖𝑡𝑗
;  ∀ 𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟; 𝑡 ∈ 𝔐 

(4.26) 

 

𝜕2ΛMCP

(𝜕𝑍𝑖𝑡𝑗)(𝜕𝑍𝑖𝑠𝑗)
=  0; ∀ 𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟; 𝑡 ≠ 𝑠 ∈ 𝔐 

(4.27) 

 

From (4.26), the second-order derivative or the Hessian of ΛMCP is negative definite since: 

 

[∇2ΛMCP]𝑖,𝑡,𝑗 < 0; ∀ 𝑍𝑖𝑡𝑗 > 0; ∀ 𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟; 𝑡 ∈ 𝔐  (4.28) 

 

Hence the objective function ΛMCP of the MCP model is strictly concave for all non-zero 𝑍𝑖𝑡𝑗 ∈

𝕊; ∀ 𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟; 𝑡 ∈ 𝔐 (Boyd and Vandenberghe 2009). Because the feasible region 𝕊 is 

compact, convex and non-empty, and the objective function of the MCP model ΛMCP is strictly 

concave on 𝕊, hence the MCP model has a unique solution (Boyd and Vandenberghe 2009).   

 

The solution to the MCP has been shown to exist and is unique for any given set of IMT 

locations 𝒦. The next step to find this solution, which can be found by constructing a 
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Lagrangian equation comprising the objective function associated with MCP and the 

corresponding constraints and enforcing the Karush-Kuhn-Tucker (KKT) condition: 

 

ΛLMCP = ∑ ∑ 𝑋𝑖𝑗 {1 − ln𝑋𝑖𝑗} 

𝑗∈𝒟𝑖∈𝒪

+ ∑ ∑ ∑ 𝑉𝑖𝑡𝑗{1 − ln𝑉𝑖𝑡𝑗 − 𝜓𝑡}

𝑗∈𝒟𝑡∈𝒦

 

𝑖∈𝒪

+ ∑ ∑ 𝜂𝑖𝑗 {𝑞𝑖𝑗 − ∑ 𝑉𝑖𝑡𝑗

𝑡∈𝒦

− 𝑋𝑖𝑗}

𝑗∈𝒟𝑖∈𝒪

+ 𝛽 {𝑐 − ∑ ∑ ∑ 𝑐𝑖𝑡𝑗𝑉𝑖𝑡𝑗

𝑗∈𝒟𝑡∈𝒦

 

𝑖∈𝒪

−  ∑ ∑ 𝑐𝑖𝑗𝑋𝑖𝑗 

𝑗∈𝒟𝑖∈𝒪

} 

 

where 𝜂𝑖𝑗   and 𝛽 ≥ 0 are Lagrangian multipliers associated with constraints (4.19) and (4.18) 

respectively. 

 

The KKT conditions for optimality of ΛLMCP with respect to 𝑉𝑖𝑡𝑗 and  𝑋𝑖𝑗 are: 

 

−ln(𝑉𝑖𝑡𝑗) − 𝜓𝑡 − 𝜂𝑖𝑗 − 𝛽𝑐𝑖𝑡𝑗 = 0; ∀ 𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟; 𝑡 ∈ 𝒦  (4.29) 

 

−ln(𝑋𝑖𝑗) − 𝜂𝑖𝑗 − 𝛽𝜔𝑖𝑗 = 0; ∀ 𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟 (4.30) 

 

Solving 𝑉𝑖𝑡𝑗 and  𝑋𝑖𝑗 in (4.29) and (4.30) we have:   

 

𝑉𝑖𝑡𝑗 =  𝑒−𝜓𝑡−𝜂𝑖𝑗−𝛽𝑐𝑖𝑡𝑗  ;   ∀ 𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟; 𝑡 ∈ 𝒦 (4.31) 

 

𝑋𝑖𝑗 =  𝑒−𝜂𝑖𝑗−𝛽𝜔𝑖𝑗            ;  ∀ 𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟 (4.32) 

 

Enforcing constraints (4.19), the Lagrangian parameters 𝜂𝑖𝑗 can be estimated using equations 

(4.31) to (4.32): 

 

𝑒𝜂𝑖𝑗 =  
1

𝑞𝑖𝑗
{𝑒−𝛽𝑐𝑖𝑗 + ∑ 𝑒−(𝛽𝑐𝑖𝑡𝑗+𝜓𝑡)

𝑡∈𝒦

 }   
(4.33) 

 

Also, the Lagrangian multipliers for constraint (4.21) can be estimated as using (4.31): 
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𝜓𝑡 = max {0, ln (
Ω𝑡

𝑏𝑡
)} ∀𝑡 ∈ 𝒦   

(4.34) 

 

where 

 

Ω𝑡 =  ∑ ∑ 𝑒−𝜂𝑖𝑗𝑒−𝛽𝑐𝑖𝑡𝑗

𝑗∈𝒟𝑖∈𝒪

 ;  ∀ 𝑡 ∈ 𝒦 

 

The Lagrangian parameter 𝛽 (cost sensitivity) associated with constraint (4.18) can be 

derived for a given budget 𝑐 as follows:  

 

𝑓(𝛽) = ∑ ∑ ∑ 𝑐𝑖𝑡𝑗𝑋𝑖𝑡𝑗

𝑗∈𝒟𝑡∈𝒦𝑖∈𝒪

+ ∑ ∑ 𝑐𝑖𝑗𝑊𝑖𝑗

𝑗∈𝒟𝑖∈𝒪

−  𝑐 ≤ 0  (4.35) 

 

or from Equations (4.31) and (4.32): 

 

𝑓(𝛽) = ∑ ∑ 𝑒−𝜂𝑖𝑗 {𝑐𝑖𝑗𝑒−𝛽𝑐𝑖𝑗 + ∑ 𝑐𝑖𝑡𝑗𝑒−(𝛽𝑐𝑖𝑡𝑗+𝜓𝑡)

𝑡∈𝒦

  } − 𝑐 ≤ 0 

𝑗∈𝒟𝑖∈𝒪

 
(4.36) 

 

The function 𝑓(𝛽) is continuous and differentiable with respect to 𝛽 hence the parameter 𝛽 can 

be estimated using Newton-Raphson’s or Hyman’s method (Hyman 1969) with the assumption 

that 𝜂𝑖𝑗 and 𝜓𝑡  are known. Extensive numerical examples show that Hyman’s method is 

computationally more efficient for estimating 𝛽, an outcome generally consistent with the 

conclusion reached by Williams (1976) who compared several estimation methods for 

calibrating gravity type models with exponential functions. Thus, all estimated values of 𝛽 in 

this thesis are based on Hyman’s method. 

 

 The solution to the MCP can be simplified further by converting the solutions in 

Equations (4.31) and (4.32) into a two-level nesting structure (see Figure 4.2), where the 

distribution of demand for each mode of transport (road versus intermodal transport) conditions 

the distribution of demand for the located IMTs. Conversely, the models are connected in the 

opposite direction by accessibility measures such that improving accessibility to the located 

IMTs influences the demand for intermodal transport. 
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By inserting (4.33) into (4.31) and (4.32) it follows that: 

 

𝑉𝑖𝑡𝑗 =  𝑞𝑖𝑗

 𝑒−𝛽𝑐𝑖𝑡𝑗−𝜓𝑡

∑  𝑒−𝛽𝑐𝑖𝑡𝑗−𝜓𝑡
𝑡∈𝒦 + 𝑒−𝛽𝑐𝑖𝑗

=  𝑞𝑖𝑗Pr (𝑉𝑖𝑡𝑗);   ∀ 𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟; 𝑡 ∈ 𝒦 
(4.37) 

 

𝑋𝑖𝑗 = 𝑞𝑖𝑗

𝑒−𝛽𝑐𝑖𝑗

∑  𝑒−𝛽𝑐𝑖𝑡𝑗−𝜓𝑡
𝑡∈𝒦 + 𝑒−𝛽𝑐𝑖𝑗

 = 𝑞𝑖𝑗Pr (𝑋𝑖𝑗) ; ∀ 𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟 
(4.38) 

 

where Pr (𝑉𝑖𝑡𝑗) is the probability that demand 𝑉𝑖𝑡𝑗 is realised for IMT 𝑡 ∈ 𝒦 when transporting 

cargo between origin zone 𝑖 ∈ 𝒪 and destination zone 𝑗 ∈ 𝒟: 

 

Pr (𝑉𝑖𝑡𝑗)  = Pr (𝑉𝑖𝑗) Pr (𝑉𝑖𝑡𝑗|𝑉̃𝑖𝑗);   ∀ 𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟; 𝑡 ∈ 𝒦 (4.39) 

 

where Pr (𝑉𝑖𝑗)  is the probability that demand 𝑉𝑖𝑗 is realised for intermodal transport between 

each origin-destination pair: 

 

Pr (𝑉𝑖𝑗)  =  
𝑒ℓ𝑖𝑗

𝑒ℓ𝑖𝑗 + 𝑒−𝛽𝑐𝑖𝑗
 ;  ∀ 𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟 

(4.40) 

 

Figure 4.2: Nesting structure of mode choice problem (MCP) 

IMT 2 IMT 𝒑 

     Decision maker 

IMT 1 ... 

Road alone 
Intermodal 

transport 
(2) Mode Choice 

(1) IMT Choice 
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The variable ℓ𝑖𝑗  is the logsum or, with reference to random utility theory, the maximum 

expected utility over all located IMTs and serves as a measure of access to intermodal transport 

for each origin-destination pair: 

 

ℓ𝑖𝑗 = ln ∑  𝑒−𝛽𝑐𝑖𝑡𝑗−𝜓𝑡

𝑡∈𝒦

   ;  ∀ 𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟 
(4.41) 

 

and Pr (𝑉𝑖𝑡𝑗|𝑉̃𝑖𝑗) is the conditional probability for realising the demand 𝑉𝑖𝑡𝑗 for IMT 𝑡 ∈ 𝒦 

given that intermodal transport demand 𝑉̃𝑖𝑗 is known for each origin-destination pair: 

  

Pr (𝑉𝑖𝑡𝑗|𝑉̃𝑖𝑗) =   
 𝑒−𝛽𝑐𝑖𝑡𝑗−𝜓𝑡

∑  𝑒−𝛽𝑐𝑖𝑡𝑗−𝜓𝑡
𝑡∈𝒦

 ;  ∀ 𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟; 𝑡 ∈ 𝒦   
(4.42) 

 

Similarly, from (4.38), Pr (𝑋𝑖𝑗) is the probability that the demand 𝑋𝑖𝑗is realised for road alone 

transport between origin zone  𝑖 ∈ 𝒪 and destination zone 𝑗 ∈ 𝒟:   

 

 Pr (𝑋𝑖𝑗) =  
𝑒

−𝛽𝑐𝑖𝑗

𝑒
ℓ𝑖𝑗+𝑒

−𝛽𝑐𝑖𝑗
 ;  ∀ 𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟  

(4.43) 

 

The maximum expected utility or logsum (Williams 1977) over all modes (road alone and 

intermodal transport) from the denominator of (4.43) can be expressed as: 

 

𝐿𝑖𝑗 = ln(𝑒−𝛽𝑐𝑖𝑗 +  𝑒ℓ𝑖𝑗) =  In ( 𝑒ℓ𝑖𝑗 + ∑  𝑒−𝛽𝑐𝑖𝑡𝑗−𝜓𝑡

𝑡∈𝒦

) ;   ∀ 𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟 
(4.44) 

 

The term 𝐿𝑖𝑗  represent a measure of access to multiple modes of transport for the movement 

of cargo to destination zone 𝑗 ∈ 𝒟 from origin zone 𝑖 ∈ 𝒪.  Looking at Equation (4.44) it is 

clear that the logsum 𝐿𝑖𝑗 and the Lagrangian multipliers in Equation (4.33) are related as 

follows: 

 

𝜂𝑖𝑗 = −ln(𝑞𝑖𝑗𝑒−𝐿𝑖𝑗)   (4.45) 
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An important outcome of the above analysis is that the Lagrangian multipliers 𝜓𝑡 in (4.34) 

can be computed more intuitively through proposition 4.6 below: 

 

Proposition 4.6: The Lagrangian parameter 𝜓𝑡; ∀ 𝑡 ∈ 𝒦 in Equation (4.34) can be evaluated 

iteratively as a function of the total estimated demand for each IMT 𝑉𝑡; ∀𝑡 ∈ 𝒦 and its handling 

capacity 𝑏𝑡; ∀𝑡 ∈ 𝒦 with the kth iterated value evaluated using equation (4.46): 

 

𝜓𝑡
𝑘 = 𝜓𝑡

𝑘−1 +  max {0, ln (
𝑉𝑡

𝑘−1

𝑏𝑡
)}   ;  ∀ 𝑡 ∈ 𝒦 

(4.46) 

 

where 𝑉𝑡
𝑘−1 is the estimated demand for IMT 𝑡 ∈ 𝒦 from the previous iteration: 

 

𝑉𝑡
𝑘−1 =  ∑ ∑ 𝑉𝑖𝑡𝑗

𝑘−1

𝑗∈𝒟𝑖∈𝒪

= ∑ ∑ 𝑞𝑖𝑗Pr(𝑉𝑖𝑡𝑗)𝑘−1

𝑗∈𝒟𝑖∈𝒪

 ; ∀𝑡 ∈ 𝒦 

 

(4.47) 

Proof 4.6: From Equation (4.34) the computation of Ω𝑡 at iteration 𝑘 using the logsum in 

Equation (4.44) can be expressed as: 

 

Ω𝑡
𝑘 =  ∑ ∑ 𝑞𝑖𝑗

𝑒−𝛽𝑐𝑖𝑡𝑗  

𝑒𝐿𝑖𝑗
𝑘−1

𝑗∈𝒟𝑖∈𝒪

 

 

From the probabilities in equations (4.37) we have: 

 

Ω𝑡
𝑘 =  𝑒𝜓𝑡

𝑘−1
{∑ ∑ 𝑞𝑖𝑗Pr(𝑉𝑖𝑡𝑗)𝑘−1

𝑗∈𝒟𝑖∈𝒪

} 

 

The term in the bracket represents the total demand for IMT 𝑡 ∈ 𝒦 and from (4.47) the above 

equation reduces to:  

 

Ω𝑡
𝑘 =  𝑒𝜓𝑡

𝑘−1
𝑉𝑡

𝑘−1 

 

(4.48) 

also taking the natural logarithm on both sides of equation (4.48) we have: 
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 lnΩ𝑡
𝑘 = 𝜓𝑡

𝑘−1 +  ln𝑉𝑡

𝑘−1
  

 

Hence equation (4.34) can be re-expressed as: 

 

𝜓𝑡
𝑘 = max {0, 𝜓𝑡

𝑘−1 +  ln (
𝑉𝑡

𝑘−1

𝑏𝑡
)} ; ∀𝑡 ∈ 𝒦    

 

since by definition 𝜓𝑡 ≥ 0; ∀𝑡 ∈ 𝒦 the above equation reduces to: 

 

𝜓𝑡
𝑘 = 𝜓𝑡

𝑘−1 +  max {0, ln (
𝑉𝑡

𝑘−1

𝑏𝑡
)} ; ∀𝑡 ∈ 𝒦    

 

Proposition 4.6 provides simple and intuitive way of computing the Lagrangian parameters 

associated with the IMT capacity constraint (4.21). It implies that the parameters 𝜓𝑡 can be 

updated by simply comparing the estimated demand of an IMT with its handling capacity. 

 

 As shown in Equations (4.33) to (4.45) the estimation of the parameters in the MCP are 

inter-dependent, where the evaluated value of one is required to solve the other. A general 

technique for solving this kind of problem, called Bregman's balancing method (Lamond and 

Stewart 1981), has already been developed and been shown to be routed in Brouwer’s (1910) 

fixed point theorem and converge to an acceptable level of accuracy (Wilson 2010). We 

adapted this method to estimate these parameters in algorithm A1 below.  The convergence 

criteria can be based on the convergence of both 𝛽 and 𝜓 parameters.  

 

Algorithm A1: Modified Bregman’s algorithm for solving the MCP  

1. Initialisation:     

For a given set of located IMTs  𝒦 with size 𝑝  and starting cost sensitivity parameter 𝛽 =  
1

𝑐̅
 , where 

𝑐 ̅can be the average transport budget and 𝜓𝑡 = 0; ∀ 𝑡 ∈ 𝒦  

2. Logsums Update 

2.1 Update logsums over all located IMTs ℓ𝑖𝑗 using Equation (4.41) 

2.2 Update the logsums 𝐿𝑖𝑗  over all transport modes using Equation (4.44) 

3. Flows Update  

3.1 Update the demand 𝑉𝑖𝑡𝑗 for each located IMT using Equation (4.37) 

3.2 Update the demand road alone transport 𝑋𝑖𝑗 using (4.38)  



   

  115 

 

4. Update 𝛽  from equation (4.35) using Newton Raphson or Hyman’s method (Hyman 1969)  

5. Update the Lagrangian multipliers 𝜓𝑡; ∀ 𝑡 ∈ 𝒦 for IMT capacity constraints using the iterative method in 

Proposition (4.46). 

6. Repeat steps (2) - (5) until convergence is achieved. 

 

Algorithm A1 can be terminated once the changes in the estimated values of both parameters 

are smaller than pre-defined thresholds. It has been demonstrated that once the EMFLP is 

decomposed, the resulting sub-problems can be solved to optimality.  

 

4.4 Solution to the overall EMFLP 

As illustrated in Section (4.3), the solution to the FLP relies on the assumption of knowing the 

evaluated values of the Lagrangian parameters, whilst the solution to the MCP is based on the 

assumption of knowing the set of located IMTs. Thus, one sub-problem cannot be solved 

without knowing the solution of the other. However, the decomposition allows Algorithm A1 

for solving the MCP to be embedded in any of the general enumeration algorithms, such as 

branch and bound (B&B) or complete enumeration (CE), to solve the overall EMFLP to 

optimality.  Considering the fact that the metropolitan region is the main study area for the 

application of the proposed model, CE based algorithm A2 with embedded algorithm A1 is 

practical for solving the overall EMFLP. Note that the size or cardinality of the set 𝒰, which is 

the set of all subsets of the candidate IMTs 𝒯 with cardinality 𝑝 is polynomially bounded by: 

 

|𝒰| = (
𝜏

𝑝
)  =  

𝜏!

𝑝! (𝜏 − 𝑝)!
= 𝑂(𝜏𝑝) 

(4.49) 

 

where 𝜏  is the cardinality of the set 𝒯. For example, if the analyst is interested in locating two 

IMTs, then the number of possible evaluations of the MCP is bounded by 𝜏(𝜏 − 1).  Also, 

Bregman's balancing method for solving MCP converges in polynomial time (Lamond and 

Stewart 1981) to an acceptable level of accuracy, making the use of algorithm A2 efficient.  

Once the EMFLP is decomposed, the application of the algorithm A2 is straight forward. This 

is because, once the set 𝒦 (set of p IMTs) is known, constraints (4.20) and (4.23) are 

automatically satisfied; the rest of the constraints are satisfied by solving the MCP for the given 

𝒦.  The algorithm A2 is presented as follows:   
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Algorithm A2: Solution by complete enumeration 

1. Initialization: 𝒦 = {0}, Λ∗ =  −∞, 𝒦∗ the set with the optimum IMT sites with associated objective 

value Λ∗  

2. For each subset 𝒦 ∈ 𝒰 of size p, with the location variable 𝑌𝑡 = 1; ∀𝑡 ∈ 𝒦 ; 𝑌𝑡 = 0 ∀𝑡 ∉ 𝒦 do: 

2.1. Solve the MCP using algorithm A1 for the flow variables and the Lagrangian parameters 

2.2. Compute Λ𝑅 using the overall objective function in Equation (4.25)  

2.3. If Λ𝑅 > Λ∗,  then Λ∗  =  Λ𝑅   and 𝒦∗  =𝒦  

3. Repeat step (2) for all subsets of 𝒰 and stop 

4. Set 𝑌𝑡 = 1, ∀ 𝑡 ∈ 𝒦∗  and 𝑌𝑡 = 0, ∀ 𝑡 ∉ 𝒦∗ 

 

Proposition 4.7: For simplicity let 𝑃𝑖𝑗 =  Pr(𝑋𝑖𝑗); and 𝑃𝑖𝑡𝑗 =  Pr(𝑉𝑖𝑡𝑗). Maximising Λ (the 

entropy objective function of EMFLP), is equivalent to maximising the weighted expected 

utility or welfares of all shippers subject to the given transport budget.  

 

Proof 4.7: Using the definitions of probabilities in equations (4.37) and (4.38), the entropy 

function in (4.22) Λ can be re-expressed as: 

 

Λ = ∑  ∑ 𝑞𝑖𝑗𝑃𝑖𝑗{1 − ln(𝑞𝑖𝑗𝑃𝑖𝑗)}

𝑗∈𝒟𝑖∈𝒪

+ ∑ ∑ ∑ 𝑞𝑖𝑗𝑃𝑖𝑡𝑗{1 − ln(𝑞𝑖𝑗𝑃𝑖𝑡𝑗)}

𝑗∈𝒟𝑡∈𝒯𝑖∈𝒪

 

 

Expanding, grouping like terms and using the second axiom of probability we have: 

 

Λ = ∑  ∑ 𝑞𝑖𝑗

𝑗∈𝒟𝑖∈𝒪

− ∑  ∑ 𝑞𝑖𝑗𝑃𝑖𝑗ln(𝑞𝑖𝑗𝑃𝑖𝑗)

𝑗∈𝒟𝑖∈𝒪

− ∑ ∑ ∑ 𝑞𝑖𝑗𝑃𝑖𝑡𝑗ln(𝑞𝑖𝑗𝑃𝑖𝑡𝑗)

𝑗∈𝒟𝑡∈𝒯𝑖∈𝒪

 

 

Expanding the terms in the logarithm function and grouping like terms we have: 

 

Λ = ∑  ∑ 𝑞𝑖𝑗

𝑗∈𝒟𝑖∈𝒪

− ∑  ∑ 𝑞𝑖𝑗ln(𝑞𝑖𝑗)

𝑗∈𝒟𝑖∈𝒪

− ∑  ∑ 𝑞𝑖𝑗𝑃𝑖𝑗ln(𝑃𝑖𝑗)

𝑗∈𝒟𝑖∈𝒪

− ∑ ∑ ∑ 𝑞𝑖𝑗𝑃𝑖𝑡𝑗ln(𝑃𝑖𝑡𝑗)

𝑗∈𝒟𝑡∈𝒯𝑖∈𝒪

 

 

Using Sterling’s approximation, the above can be simplified as: 

 

Λ = − ∑  ∑ 𝑞𝑖𝑗!

𝑗∈𝒟𝑖∈𝒪

− ∑ ∑ 𝑞𝑖𝑗 (𝑃𝑖𝑗ln𝑃𝑖𝑗 + ∑ 𝑃𝑖𝑡𝑗ln𝑃𝑖𝑡𝑗

𝑡∈𝒯

)

𝑗∈𝒟𝑖∈𝒪
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The term − ∑  ∑ ln𝑞𝑖𝑗!𝑗∈𝒟𝑖∈𝒪  is constant and can be ignored in the optimisation process, since 

𝑞𝑖𝑗 (input data) are not decision variables. Thus,  

 

Λ ≈ − ∑ ∑ 𝑞𝑖𝑗𝑃𝑖𝑗ln𝑃𝑖𝑗 − ∑  ∑ 𝑞𝑖𝑗 ∑ 𝑃𝑖𝑡𝑗ln𝑃𝑖𝑡𝑗

𝑡∈𝒯𝑗∈𝒟𝑖∈𝒪𝑗∈𝒟𝑖∈𝒪

 
(4.50) 

 

From Equation (4.37), 𝛽𝑐𝑖𝑡𝑗 + 𝜓𝑡 = 𝛽𝑐̃𝑖𝑡𝑗, where 𝑐̃𝑖𝑡𝑗 is the total cost of intermodal transport:  

 

𝑐̃𝑖𝑡𝑗 = 𝑐𝑖𝑡𝑗 +
𝜓𝑡

𝛽
= 𝑐𝑖𝑡 +   𝑐𝑡̃ +  𝑐𝑡𝑗 

(4.51) 

 

where the term  𝑐𝑡̃ =  𝑐𝑡 +
𝜓𝑡

𝛽
  is the terminal total user fee passed on to the shipper, who then 

decides whether or not to use the terminal and comprises the original user cost and a shadow 

price 
𝜓𝑡

𝛽
  to dissuade enough users from using IMTs with insufficient handling capacities (ψt >

0 ). The shadow price is treated as an out of pocket cost and forms part of the terminal usage 

cost or rental passed on to the shipper. Replacing the probabilities in (4.50) with those in (4.39) 

and (4.43) and using (4.37) and (4.38), the entropy function in (4.50) simplifies to become:  

 

Λ ≈ ∑ ∑ 𝐿𝑖𝑗𝑞𝑖𝑗

𝑗∈𝒟𝑖∈𝒪

+ 𝛽 ∑ ∑ (𝑐𝑖𝑗𝑋𝑖𝑗 + ∑ 𝑐̃𝑖𝑡𝑗𝑉𝑖𝑡𝑗

𝑡∈𝒯

)

𝑗∈𝒟𝑖∈𝒪

 
(4.52) 

 

Thus, maximising entropy Λ  is equivalent to maximising the weighted maximum expected 

utility or weighted consumer surplus subject to the given transport budget: 

 

max ∑ ∑ 𝐿𝑖𝑗𝑞𝑖𝑗

𝑗∈𝒟𝑖∈𝒪

 

 

Subject to the transport budget constraint (4.18): 

 

∑ ∑ ∑ 𝑐̃𝑖𝑡𝑗𝑉𝑖𝑡𝑗

𝑗∈𝒟𝑡∈𝒯

 

𝑖∈𝒪

+ ∑ ∑ 𝑐𝑖𝑗𝑋𝑖𝑗  

𝑗∈𝒟𝑖∈𝒪

≤ 𝑐 
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where 𝐿𝑖𝑗 is the maximum expected utility (see Equation (4.44); Batty 2010; Williams 1977) 

or consumer surplus (Train 2009; De Jong et al. 2005).  The proposition implies that, the 

maximum entropy yields the maximum consumer surplus or shippers’ welfares. 

 

Preposition 4.8:  Comparing the solution of MCP and equivalent LP solution 

For any given set of located IMTs 𝒦, the EMFLP reduces to the MCP and the MILP reduces 

to equivalent linear programming (LP) solutions or equivalently the solution to EMFLP 

reduces to the mixed integer linear programming (MILP) solution as  𝛽 → ∞. 

 

Proof 4.8: By using the generalised cost definition 𝑐̃𝑖𝑡𝑗 in (4.51) in Equations (4.37) and 

(4.38) the flow variables can be estimated directly using:  

 

𝑉𝑖𝑡𝑗
∗ =  𝑞𝑖𝑗

 𝑒−𝛽𝑐̃𝑖𝑡𝑗

∑  𝑒−𝛽𝑐̃𝑖𝑡𝑗
𝑡∈𝒦 + 𝑒−𝛽𝑐𝑖𝑗

;    ∀ 𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟, 𝑡 ∈ 𝒦 
(4.53) 

 

𝑋𝑖𝑗
∗ = 𝑞𝑖𝑗

𝑒−𝛽𝑐𝑖𝑗

∑  𝑒−𝛽𝑐̃𝑖𝑡𝑗
𝑡∈𝒦 + 𝑒−𝛽𝑐𝑖𝑗

 ;  ∀ 𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟 
(4.54) 

 

From constraint (4.18), the total budget used 𝑐 can be expressed as: 

 

𝑐 = ∑ ∑ (∑ 𝑐̃𝑖𝑡𝑗𝑉𝑖𝑡𝑗
∗

𝑡∈𝒦

+ 𝑐𝑖𝑗𝑋𝑖𝑗
∗)

𝑗∈𝒟𝑖∈𝒪

 =   ∑ ∑ 𝐶𝑖𝑗

𝑗∈𝒟𝑖∈𝒪

   

 

where 

 

𝐶𝑖𝑗 =  ∑ 𝑐̃𝑖𝑡𝑗𝑉𝑖𝑡𝑗
∗

𝑡∈𝒦

+ 𝑐𝑖𝑗𝑋𝑖𝑗
∗ 

 

 

Using Equations (4.53) and (4.54), the above cost equation can be expressed as: 

 

1

𝑞𝑖𝑗
𝐶𝑖𝑗 =

1

∑  𝑒−𝛽𝑐̃𝑖𝑡𝑗
𝑡∈𝒦 + 𝑒−𝛽𝑐𝑖𝑗

 (𝑐𝑖𝑗𝑒
−𝛽𝑐𝑖𝑗 + ∑ 𝑐̃𝑖𝑡𝑗 𝑒−𝛽𝑐̃𝑖𝑡𝑗

𝑡∈𝒦

) 
(4.55) 
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Suppose that the transport costs 𝑐̃𝑖𝑡𝑗 and 𝑐𝑖𝑗 are kept fixed, leaving the origin-destination 

average budget 𝐶𝑖𝑗 and 𝛽 so that if the budget changes 𝛽 must also change and vice versa. It is 

clear from Equation (4.55) that as 𝛽 → ∞ the term with the smallest cost (𝑐∗
𝑖𝑗) become the 

biggest term in both the numerator and denominator on the right hand-side of equation (4.55). 

Thus as 𝛽 → ∞, Equation (4.55) reduces to:   

 

1

𝑞𝑖𝑗
𝐶𝑖𝑗 → 𝑐∗

𝑖𝑗

 𝑒−𝛽𝑐∗
𝑖𝑗

𝑒−𝛽𝑐∗
𝑖𝑗

=  𝑐∗
𝑖𝑗 

 

which simplified to become: 

 

𝐶𝑖𝑗 → 𝑞𝑖𝑗𝑐∗
𝑖𝑗  

 

Hence the total used budget 𝑐 over all origin-destination pairs as 𝛽 → ∞ becomes: 

 

𝑐 =  ∑ ∑ 𝐶𝑖𝑗

𝑗∈𝒟𝑖∈𝒪

→  ∑ ∑ 𝑞𝑖𝑗𝑐∗
𝑖𝑗

𝑗∈𝒟𝑖∈𝒪

 
(4.56) 

 

which is the optimal solution to equivalent MILP, which assigns all flows to the least cost 

mode.  Thus as 𝛽 → ∞, the solution to the entropy model reduces to the solution of the MILP.  

A recent study by Teye et al. (2017) has demonstrated the unsuitability of MILP is locating 

multi-user facilities of this kind (IMTs) as it was shown to produce unrealistic large responses 

during farecasting and policy testing.   

 

Proposition 4.9:  The budget attains its largest possible value as 𝛽 → 0 

 

Proof 4.9: Suppose also that 𝛽 → 0, then all the exponential terms tend to toward unity and 

equation (4.55) reduces to: 

 

1

𝑞𝑖𝑗
𝐶𝑖𝑗 →  ∑ 𝑐̃𝑖𝑡𝑗

 1

(∑  1𝑡∈𝒦 ) + 1
𝑡∈𝒦

+ 𝑐𝑖𝑗

1

(∑  1𝑡∈𝒦 ) + 1
 

 

Or 
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𝑐 →  
1

𝑝 + 1
∑ ∑ 𝑞𝑖𝑗 (∑ 𝑐̃𝑖𝑡𝑗

𝑡∈𝒦

+ 𝑐𝑖𝑗)

𝑗∈𝒟𝑖∈𝒪

  
(4.57) 

  

 The numerator becomes the sum of the cost values of all modes and the denominator 

is just the total number of modal alternatives. It means that if there is no limit on modal costs, 

then the budget will tend to infinity.  The above analysis gives us some idea of what influence 

𝛽 has on the budget. If 𝛽 is large, the total budget must be small; if 𝛽 is small the total budget 

must be large.  In the limit as 𝛽 approach infinity the budget takes on a minimum value and 

as 𝛽 approach zero, the budget takes on the maximum value. This suggests that 𝛽 is inversely 

related to the total budget.  

 

4.4 Model Application   

It has been demonstrated that once EMFLP is solved to optimality and the optimal location of 

the IMTs are known, the solution to the MCP can be expressed as a two-level nesting or tree 

structure model, where the upper model determines the demand of each mode and is influenced 

by a lower model (through the logsum), which determines the demand for each located IMT. 

These conversions allow the entropy model to inherit important policy-oriented properties of 

the logit model (McFadden 1974; Hensher et al. 1996; Hensher and Golob 1998) including the 

maximum expected utility or logsums, which represent access to intermodal transport modes 

or access to multiple modes of transport when moving cargo from between each cargo origin-

destination pair; an S-shaped response curve, which tracks the expected relationship between 

the attractiveness of intermodal transport and its usage. The curve (see Figure 4.3), which is 

produced by plotting the probability of intermodal transport against its utility asymptotes to 

zero (no chance of being used if it is very unattractive) to being the dominant mode if it is very 

attractive.  

 

Others are direct and cross elasticity properties, which reveal how the probability of say 

road alone transport changes in response to a given change in the attribute level of the 

intermodal transport. For example, the analyst or government may want to understand how the 

demand for intermodal transport (or rail) changes in response to changes in the cost of using 

road alone and vice versa. This information will be particularly useful for identifying policies 

that can reduce the usage of trucks or truck km-travelled or promote more use of intermodal 

transport or rail. This type of information can be derived through the cross derivative of 
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intermodal transport probability Pr(𝑉𝑖𝑗) with respect to the cost (or any policy variable) of road 

alone: 

 

𝜕Pr(𝑉𝑖𝑗)

𝜕𝑐𝑖𝑗
= 𝛽Pr(𝑉𝑖𝑗) (1 − Pr(𝑉𝑖𝑗)) 

(4.58) 

 

Equation (4.58) implies that an increase (decrease) in the cost of road alone transport will 

increase (decrease) the probability and hence the usage of intermodal transport. The plot of 

Equation (4.58) implies that the impact of any change is largest when the share of intermodal 

transport is about 50% and then diminishes as the share moves towards zero or 100% as shown 

in Figure 4.4. Thus, the average impact of any policy will be greatest if the current share of the 

intermodal transport is about 50%. It is also of interest to know that the sum of the derivatives 

over the two modes with respect to the cost of the road alone mode equals zero: 

 

𝜕Pr(𝑉𝑖𝑗)

𝜕𝑐𝑖𝑗
+

𝜕Pr(𝑋𝑖𝑗)

𝜕𝑐𝑖𝑗
= 𝛽Pr(𝑉𝑖𝑗)Pr(𝑋𝑖𝑗) − 𝛽Pr(𝑋𝑖𝑗)Pr(𝑉𝑖𝑗) = 0 

(4.59) 

 

It means that if intermodal transport is improved so that the probability of its being used 

increases, the additional probability will necessarily be “drawn” from the road alone mode. 

Thus, to increase the probability of using intermodal transport mode necessitates decreasing 

the probability of using road alone mode. Finally, the elasticity of 𝑃𝑟(𝑋𝑖𝑗) with respect to a 

change in 𝑐𝑖𝑗 is: 

 

𝜕Pr(𝑉𝑖𝑗)

𝜕𝑐𝑖𝑗

𝑐𝑖𝑗

Pr(𝑉𝑖𝑗)
=  𝛽𝑐𝑖𝑗Pr(𝑋𝑖𝑗) 

(4.60) 

 

The resulting nested logit model from the MCP can be carried forward for forecasting 

and policy testing; once the intermodal transport and road alone transport costs are updated or 

constructed due to changes in transport network conditions or cost parameters, the steps (2), 

(3) and (5) of algorithm A1 is used during the forecasting and or policy testing. Steps (5) is only 

required if an IMT exceeds its handling capacity during the forecasting process.  
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Figure 4.3: S-shaped response function 

 

 

Figure 4.4: Cross derivative function 

 

4.5 Conclusion 

This paper proposes a flexible model based on the principle of entropy maximisation to answer 

research question I.  Research question I was cast a mathematical problem such that solutions 

to the problem can be inferred to address the research question. The problem was formulated 

and solved to optimality using Lagrangian relaxation technique so as to make it suitable for 

applying Bregman and enumeration based algorithms. The Bregman’s algorithm was used to 

solve the mode choice part of the problem and then embeds it in a complete enumeration 

algorithm to solve the overall problem. Important properties of the solved problem were 

presented including discussions on how the model can applied in forecasting and testing of 

various policies to promote intermodal transport use in the metropolitan market.   
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Chapter 5 Inland container terminals 

 

 

 

 

 

 

5.1 Background 

Chapter 4 focused on the application of the principle of entropy maximisation to locate 

intermodal container terminals to primarily serve the import and export containerised markets. 

The location of these terminals allows the use of high carrying capacity mode such as trains to 

transport the containers between the seaport and the terminals and the use of trucks for local 

pickups and deliveries. This type of intermodal transport market was described in Chapter 1 

and was referred to as the metropolitan containerised transport market (MCTM). The type of 

intermodal transport (regional intermodal transport) used in the regional containerised transport 

market (RCTM) also described in detail in Chapter 1 involves the movements of cargo by 

combining the strengths of high carrying capacity mode such as rail or barge and trucks in the 

movements of containerised cargo between cargo origins and destinations in the hinterlands. 

In this market (see Figure 5.1) the cargo is first consolidated at an IMT close to the cargo origin 

using trucks and then transported by a high capacity mode (e.g. rail or barge) to another 

terminal close to the cargo destinations for final distribution by trucks. The cargo movements 

require the use of exactly two terminals and cargo are usually transported from their production 

areas in one metropolitan area or economic region to consumption areas in another region or 

economic areas within the hinterland.  This type of intermodal transport is called regional 

intermodal transport. 
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Figure 5.1: Modal options in regional transport market 

 

The competitive advantage of developing these intermodal systems as noted in Chapter 

1 is based on exploiting the economies of scale and economies of distance of rail whilst taking 

advantage of the flexibility and accessibility of trucks in cargo consolidations and final 

deliveries. In Chapter 4, it was noted that the benefits of using intermodal transport in MCTM 

lies in the economies of scale benefits (through the use of a high carrying capacity mode) and 

reduction in congestion related costs, especially around the seaport. For RCTM, the key drivers 

are economies of scale and economies of distance benefits with respect to cargo origins and 

destinations (Meyrick 2006; Arnold et al. 2004).  

 

As noted earlier, the key difference between intermodal transport use in the two markets 

(RCTM and MCTM) is the number of terminals involved in the transport tasks.  Additionally, 

intermodal transport use in both markets benefit from economies for scale, but the economies 

of distance also play a key role in the choice of intermodal transport in RCTM (Park et al. 

1995) with some studies recommending minimum distances (usually between 400-600km) 

above which regional intermodal transport is considered competitive against road alone 

transport (NCHRP586 2007; Piyatrapoomi et al. 2006; Klink et al. 1998).  

 

In areas where sufficient cargo volume exit for both markets, separate IMTs can be 

located to serve each market. This location type of terminal location decisions seems to be the 

current state of practice (see Meyrick 2006; NCHRP586 2007; Arnold et al. 2004). A classic 

example is the Australian regional and metropolitan intermodal terminal networks (Meyrick 
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2006) where separate set of terminals were developed for both markets.   Current literature on 

the subject also treats the location decisions of terminals serving these markets separately. For 

example, studies on locating IMTs to serve the RCTM can be found in (Park et al. 1995; Arnold 

et al. 2001; Arnold et al. 2004; Lin et al. 2014) whilst studies on locating terminals to serve the 

MCTM can be found in (Teye et al. 2015; Piyatrapoomi et al.  2006; Meyrick 2006).  The 

problem of market saturation (several IMTs serving the same markets) and lack of affordable 

land with the required scale and features for having separate IMTs for both markets is now 

driving the need to consider the design and location of IMTs that can serve both markets. A 

typical example in practice is the development of the Moorebank IMT in Sydney to serve both 

markets (DoFD 2011).   

 

This paper extends the work in the previous Chapter in two main directions; first, the 

chapter generalised the metropolitan intermodal location problem (MIMTLP) in Chapter 4 to 

also include regional IMT location problems (RIMTLP), where the former will be a special 

case of the later. The generalised location problem is referred to as (inland) intermodal terminal 

location problem (IMTLP). The proposed model for solving IMTLP is suitable for locating 

IMTs to serve the metropolitan market, regional market or both markets. Second, a new 

algorithm for solving large instances of the generalised problem efficiently is proposed. The 

computational efficiency, solution quality and properties of the algorithm are also presented. 

The computational time of the algorithm can be shown to grow linearly with respect to the 

number of IMTs to locate. The proposed algorithm is particularly desirable for solving the 

regional intermodal terminal location problem, which is usually characterised by a large study 

area such as a whole country or large economic regions. 

 

The rest of the chapter is organised as follows; Section 5.2 presents the assumptions 

underlying the proposed entropy model for the IMTLP. The IMTLP is also mathematically 

formulated based on the principle of entropy maximisation in Section 5.3. Section 5.4 discusses 

solution algorithms for the solving the formulated problem. Numerical example illustrating the 

key features of the proposed entropy model and algorithms are presented in Section 5.5. 

Finally, Section 5.6 presents the conclusions drawn from this chapter.  
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5.2 Assumptions and decision variables  

All assumption made during the development of the terminals in the metropolitan market also 

apply to the generalised case. In addition, it was assumed that the unit cost of regional 

intermodal transport 𝒄𝒊𝒔𝒕𝒋 is made up of four main cost components as follows:  

𝑐𝑖𝑠𝑡𝑗 = 𝑐𝑖𝑠 +   𝑐𝑠 +   𝑐𝑠𝑡 + 𝑐𝑡 +  𝑐𝑡𝑗  ; ∀𝑖 ∈ 𝒪, 𝑗 ∈ 𝒟, 𝑠 ≠ 𝑡, 𝑠, 𝑡 ∈ 𝒯 (5.1) 

 

where 𝑐𝑖𝑠 is the road cost ($/TEU) from cargo origin 𝑖 ∈ 𝒪 to IMT 𝑠 ∈ 𝒯; 𝑐𝑠𝑡 is the rail cost 

($/TEU) from IMT 𝑠 ∈ 𝒯to IMT 𝑡 ≠ 𝑠 ∈ 𝒯 and takes into account the economies of scale 

benefit of using rail; 𝑐𝑡𝑗 is the road cost ($/TEU) from IMT 𝑡 ∈ 𝒯  to cargo destination 𝑗 ∈ 𝒟  

and 𝑐𝑠 and 𝑐𝑡 are terminal usage cost ($/TEU) for IMT 𝑠 and 𝑡 respectively. These terminal 

usage costs are assumed to include the fixed cost of IMT location and operation costs ($ per 

TEU) passed on to the shipper or user, who then decides whether or not to use the terminal.  

 

Decision Variables 

The key outputs of the model are the flow variables 𝑊𝑖𝑠𝑡𝑗 , 𝑉𝑖𝑡𝑗, 𝑋𝑖𝑗 for determining the demands 

for regional, metropolitan and road alone transport respectively and the location variables 𝑌𝑡, 

which determines the locations for the developments of IMTs.  

 

5.3 Entropy maximising inland IMT location problem 

The goal is to find the most likely state of the system based on all we know about it.  To do this 

requires specifying all possible states of the system and selecting the most likely state in 

accordance with the principle of entropy maximisation. Mathematically, the number of possible 

ways that a state (𝑋𝑖𝑗, 𝑉𝑖𝑡𝑗, 𝑊𝑖𝑠𝑡𝑗) can occur can be determined using Equation (5.2). It is 

expected that state with the most ways of occurring are more likely to represent the system.  

 

𝐸 =  
𝑍!

∏ ∏ (𝑋𝑖𝑗!)(∏ 𝑉𝑖𝑡𝑗!𝒯 )(∏ ∏ 𝑊𝑖𝑠𝑡𝑗𝑡≠𝑠∈𝒯 !𝑠∈𝒯 )𝑗∈𝒟𝑖∈𝒪

 
(5.2) 

 

where 𝑍 is the total cargo (in TEUs) in the system such that: 

 

∑ ∑ ∑ ∑ 𝑊𝑖𝑠𝑡𝑗

𝑗∈𝒟𝑡≠𝑠∈𝒯

 

𝑠∈𝒯𝑖∈𝒪

+ ∑ ∑ ∑ 𝑉𝑖𝑡𝑗

𝑗∈𝒟𝑡∈𝒯

 

𝑖∈𝒪

+ ∑ ∑ 𝑋𝑖𝑗  

𝑗∈𝒟𝑖∈𝒪

= 𝑍 
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and by construction 𝑊𝑖𝑠𝑠𝑗 =  𝑊𝑖𝑡𝑡𝑗 = 0; ∀𝑠, 𝑡 ∈ 𝒯, 𝑖 ∈ 𝒪, 𝑗 ∈ 𝒟. Again, ln𝐸 is maximised 

instead of 𝐸 so taking the natural logarithm of (5.2) and applying the Stirling's approximation 

we have:  

 

In𝐸 =  In𝑍! + ∑ ∑ 𝑋𝑖𝑗 {1 − ln𝑋𝑖𝑗} 

𝑗∈𝒟𝑖∈𝒪

+ ∑ ∑ ∑ 𝑉𝑖𝑡𝑗{1 − ln𝑉𝑖𝑡𝑗}

𝑗∈𝒟𝑡∈𝒯

 

𝑖∈𝒪

+ ∑ ∑ ∑ ∑ 𝑊𝑖𝑠𝑡𝑗{1 − ln𝑊𝑖𝑠𝑡𝑗}

𝑗∈𝒟𝑡≠𝑠∈𝒯

 

𝑠∈𝒯𝑖∈𝒪

 

(5.3) 

 

It has been shown in Chapter 4 that the maximum value of ln𝐸 corresponds to the amount of 

missing information (entropy) in the resulting probability distributions and the maximum 

amount of missing information occurs when we have no information about the system. Under 

such conditions all states are equally likely to represent the system and the resulting probability 

distributions are uniform probability distributions. Once information about the system becomes 

available the system moves way from uniform probability distribution to a distribution 

consistent with the new information.  

 

5.3.1 Available information as constraints 

In developing this model, the following information converted into constraints are assumed to 

be available or known about the containerised system.  

 

1. Conservation of cargo flow constraint.  This information is added as constraint (5.4). It 

ensures that for each origin-destination pair, the sum of cargo transported by all available 

modes of transport equals the total cargo associated with this origin-destination pair. The 

first term on the left hand side of (5.4) captures the share of regional transport, the second, 

the share of metropolitan transport and the third captures the share of road alone transport 

in the transport task.  

 

      ∑ ∑ 𝑊𝑖𝑠𝑡𝑗

𝑡≠𝑠∈𝒯

 

𝑠∈𝒯

+ ∑ 𝑉𝑖𝑡𝑗 

𝑠∈𝒯

+ 𝑋𝑖𝑗 = 𝑞𝑖𝑗;   ∀  𝑖 ∈ 𝒪, 𝑗 ∈ 𝒟 
(5.4) 

 

2. Transport budget constraint. This evidence is added as constraint (5.5). The first 

component captures the weighted cost of using regional transport, the second captures 
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the weighted cost of using metropolitan intermodal transport and the third represents 

the weighted cost of road alone transport (e.g. truck only), with the sum not exceeding 

the total allocated transport budget (𝑐). 

 

            ∑ ∑ ∑ ∑ 𝑐𝑖𝑠𝑡𝑗𝑊𝑖𝑠𝑡𝑗

𝑗∈𝒟𝑡≠𝑠∈𝒯

 

𝑠∈𝒯𝑖∈𝒪

+ ∑ ∑ ∑ 𝑐𝑖𝑡𝑗𝑉𝑖𝑡𝑗

𝑗∈𝒟𝑡∈𝒯

 

𝑖∈𝒪

+ ∑ ∑ 𝑐𝑖𝑗𝑋𝑖𝑗  

𝑗∈𝒟𝑖∈𝒪

≤ 𝑐 
(5.5) 

 

3.  Budget on capacity constraint. The maximum quantity of cargo that each IMT can 

handle is expressed in constraint (5.6). The first and second terms represent the total 

capacity of each IMT used up by regional intermodal transport, and the third term 

captures that of metropolitan intermodal transport, the sum of which must not exceed 

the handling capacity of each IMT. 

 

           ∑ ∑ ∑ 𝑊𝑖𝑠𝑡𝑗

𝑠≠𝑡∈𝒯𝑗∈𝒟𝑖∈𝒪

+ ∑ ∑ ∑ 𝑊𝑖𝑡𝑠𝑗

𝑠≠𝑡∈𝒯𝑗∈𝒟𝑖∈𝒪

+  ∑ ∑ 𝑉𝑖𝑡𝑗

𝑗∈𝒟𝑖∈𝒪

≤ 𝑌𝑡𝑏𝑡 ;     ∀𝑡 ∈ 𝒯   (5.6) 

 

4. Definitional constraint. The information on the required number of IMTs to locate is 

presented by constraint (5.7)  

          ∑ 𝑌𝑡

   𝑡∈𝒯

= 𝑝    (5.7) 

 

By ignoring the constant term ln𝑍!, in Equation (5.3) the paper presents the entropy facility 

location problem (EMFLP) consistent with the above available information: 

 

Max Λ = ∑ ∑ 𝑋𝑖𝑗 {1 − ln𝑋𝑖𝑗} 

𝑗∈𝒟𝑖∈𝒪

+ ∑ ∑ ∑ 𝑉𝑖𝑡𝑗{1 − ln𝑉𝑖𝑡𝑗}

𝑗∈𝒟𝑡∈𝒯

 

𝑖∈𝒪

+ ∑ ∑ ∑ ∑ 𝑊𝑖𝑠𝑡𝑗{1 − ln𝑊𝑖𝑠𝑡𝑗}

𝑗∈𝒟𝑡≠𝑠∈𝒯

 

𝑠∈𝒯𝑖∈𝒪

 

 

Subject to constraint (5.4) to (5.7) and the following integer and non-negativity constraints: 

 

      𝑌𝑡 ∈ {0,1} ;   𝑡 ∈ 𝒯  (5.8) 
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      𝑊𝑖𝑠𝑡𝑗 ≥ 0;  𝑉𝑖𝑡𝑗 ≥ 0; 𝑋𝑖𝑗 ≥ 0 ;  𝑊𝑖𝑠𝑠𝑗 =  𝑊𝑖𝑠𝑡𝑡𝑗 =  0; ∀𝑠, 𝑡 ∈ 𝒯; ∀ 𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟 (5.9) 

 

5.4 Solution to the EMFLP 

Applying the general solution approach requires the relaxation of constraint (5.6), which links 

the location problem with the mode choice problem by penalising it in the objective function 

with Lagrangian multipliers 𝜓𝑡; 𝑡 ∈ 𝒯:  

 

Max{ΛR}  

 

Subject to constraints (5.4), (5.5), (5.7) - (5.9)  

 

where 

ΛR = Λ +  ∑ 𝜓𝑡 (𝑌𝑡𝑏𝑡  − ∑ ∑ ∑ 𝑊𝑖𝑠𝑡𝑗 − ∑ ∑ ∑ 𝑊𝑖𝑡𝑠𝑗 − ∑ ∑ 𝑉𝑖𝑡𝑗

𝑗∈𝒟𝑖∈𝒪𝑠≠𝑡∈𝒯𝑗∈𝒟𝑖∈𝒪𝑠≠𝑡∈𝒯𝑗∈𝒟𝑖∈𝒪

)

𝑡∈𝒯

 

 

 

The above problem then decomposes into two sub-problems, the facility location sub-problem 

(FLP) consisting of only the location variables as decision variables and the mode choice sub-

problem (MCP) consisting of only the flow variables as decision variables. The FLP is 

expressed as follows:  

 

FLP ∶  Max ΛFLP = ∑(𝜓𝑡𝑏𝑡)𝑌𝑡

𝑡∈𝒯

 

 

Subject to constraints (5.7) and (5.8) 

 

and mode choice mode problem (MCP) simplifies to become: 

 

MCP ∶ Max ΛMCP

= ∑ ∑ 𝑋𝑖𝑗 {1 − ln𝑋𝑖𝑗} 

𝑗∈𝒟𝑖∈𝒪

+ ∑ ∑ ∑ 𝑉𝑖𝑡𝑗{1 − ln𝑉𝑖𝑡𝑗 − 𝜓𝑡}

𝑗∈𝒟𝑡∈𝒯

 

𝑖∈𝒪

+ ∑ ∑ ∑ ∑ 𝑊𝑖𝑠𝑡𝑗{1 − ln𝑊𝑖𝑠𝑡𝑗 − 𝜓𝑠 − 𝜓𝑡}

𝑗∈𝒟𝑡≠𝑠∈𝒯

 

𝑠∈𝒯𝑖∈𝒪
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Subject to constraints (5.4), (5.5) and (5.9)  

 

Thus, the overall objective function  Λ𝑅 can be expressed in terms of  ΛFLP and ΛMCP: 

 

ΛR =  ΛFLP +  ΛMCP (5.10) 

 

5.4.1 Solution to the FLP 

Given 𝜓𝑡 ≥ 0; ∀𝑡 ∈ 𝒯. The FLP can be solved by identifying the 𝑝 largest elements of 

(𝜓𝑡𝑏𝑡) ; ∀𝑡 ∈ 𝒯 and setting the corresponding values of 𝑌𝑡 equal to 1. Let the set 𝒦 with 

cardinality 𝑝, be the set of located IMTs, which then goes into the MCP as input. And for 

sufficiently larger IMTs such that 𝜓𝑡 = 0; ∀𝑡 ∈ 𝒯, the objective value ( ΛFLP) of the FLP will 

be zero and the selection of the best IMTs will only be based on the value of ΛMCP.  

 

5.4.2 Solution to the MCP 

For a given set of located IMTs 𝒦, the MCP can be solved by constructing a Lagrangian 

equation comprising the objective function and the constraints and enforcing the Karush-Kuhn-

Tucker (KKT) optimality conditions: 

 

ΛLMCP = ∑ ∑ 𝑋𝑖𝑗 {1 − ln𝑋𝑖𝑗} 

𝑗∈𝒟𝑖∈𝒪

+ ∑ ∑ ∑ 𝑉𝑖𝑡𝑗{1 − ln𝑉𝑖𝑡𝑗 − 𝜓𝑡}

𝑗∈𝒟𝑡∈𝒦

 

𝑖∈𝒪

+ ∑ ∑ ∑ ∑ 𝑊𝑖𝑠𝑡𝑗{1 − ln𝑊𝑖𝑠𝑡𝑗 − 𝜓𝑠 − 𝜓𝑡}

𝑗∈𝒟𝑡≠𝑠∈𝒦

 

𝑠∈𝒦𝑖∈𝒪

+ ∑ ∑ 𝜂𝑖𝑗 {𝑞𝑖𝑗 − ∑ ∑ 𝑊𝑖𝑠𝑡𝑗

𝑡≠𝑠∈𝒦

 

𝑠∈𝒦

− ∑ 𝑉𝑖𝑡𝑗 

𝑠∈𝒦

− 𝑈𝑖𝑗}

𝑗∈𝒟𝑖∈𝒪

+ 𝛽 {𝑐 − ∑ ∑ ∑ ∑ 𝑐𝑖𝑠𝑡𝑗𝑊𝑖𝑠𝑡𝑗

𝑗∈𝒟𝑡≠𝑠∈𝒦

 

𝑠∈𝒦𝑖∈𝒪

− ∑ ∑ ∑ 𝑐𝑖𝑡𝑗𝑉𝑖𝑡𝑗

𝑗∈𝒟𝑡∈𝒦

 

𝑖∈𝒪

− ∑ ∑ 𝑐𝑖𝑗𝑋𝑖𝑗  

𝑗∈𝒟𝑖∈𝒪

} 

 

where 𝜂𝑖𝑗 ≥ 0 are Lagrangian multipliers for the origin-destination cargo flow constraint 

(5.4). The KKT conditions for a maximum  ΛLMCP with respect to the flow variables are: 

 

−ln𝑊𝑖𝑠𝑡𝑗 − 𝛽𝑐𝑖𝑠𝑡𝑗 − 𝜂𝑖𝑗 − 𝜓𝑠 − 𝜓𝑡 = 0; ∀𝑠 ∈ 𝒦, 𝑡 ≠ 𝑠 ∈ 𝒦  (5.11) 

 



   

  131 

 

−ln𝑉𝑖𝑡𝑗 − 𝛽𝑐𝑖𝑡𝑗 − 𝜂𝑖𝑗 − 𝜓𝑡 = 0 ; ∀ 𝑡 ∈ 𝒦    (5.12) 

 

−ln𝑋𝑖𝑗 − 𝛽𝑐𝑖𝑗 − 𝜂𝑖𝑗 = 0   (5.13) 

 

Solving for 𝑊𝑖𝑠𝑡𝑗 , 𝑉𝑖𝑡𝑗, 𝑋𝑖𝑗 in the above equations we have:   

 

𝑊𝑖𝑠𝑡𝑗 = 𝑒−𝜂𝑖𝑗𝑒−(𝛽𝑐𝑖𝑠𝑡𝑗+𝜓𝑠+𝜓𝑡); ∀𝑠 ∈ 𝒦, 𝑡 ≠ 𝑠 ∈ 𝒦;   𝑖 ∈ 𝒪, 𝑗 ∈ 𝒟 (5.14) 

  

𝑉𝑖𝑡𝑗 = 𝑒−𝜂𝑖𝑗𝑒−(𝛽𝑐𝑖𝑡𝑗+𝜓𝑡);  ∀ 𝑡 ∈ 𝒦;   𝑖 ∈ 𝒪, 𝑗 ∈ 𝒟   (5.15) 

 

𝑋𝑖𝑗 = 𝑒−𝜂𝑖𝑗𝑒−𝛽𝑐𝑖𝑗;  ∀ 𝑖 ∈ 𝒪, 𝑗 ∈ 𝒟   (5.16) 

 

Equations (5.14) to (5.16) implicitly assume that both metropolitan and regional 

intermodal transport are available for the movements of containers between origin-destination 

pairs. In reality, this may not be true in all cases. For example, the metropolitan intermodal 

transport mode is not available for origin-destination movements where rail is not accessible 

to either the cargo origin or cargo destination.  Conversely, there are cases where the port is 

the cargo origin or cargo destination and so obviates the need of using two IMTs therefore, 

making the use of regional intermodal transport mode not feasible. Additionally, the distance 

between some origin-destination pairs may be too short for regional intermodal transport use 

to be feasible.  To account for some of these limitations, modal choice set variables 𝛿𝑖𝑗𝑚  are 

introduced into the Equations (5.14) to (5.16).  The choice set variable variables 𝛿𝑖𝑗𝑚 is defined 

such that 𝛿𝑖𝑗𝑚 = 1 means that mode 𝑚 (𝑚 = 1,2,3) is available for that origin-destination pair 

and 0 otherwise.  By definition mode 1 (𝑚 = 1) is road alone transport, mode 2 is metropolitan 

intermodal transport and mode 3 is the regional intermodal transport. Equations (5.14) to (5.16) 

are updated with the choices set definitions as follows: 

 

𝑊𝑖𝑠𝑡𝑗 = 𝛿𝑖𝑗3𝑒−𝜂𝑖𝑗𝑒−(𝛽𝑐𝑖𝑠𝑡𝑗+𝜓𝑠+𝜓𝑡); ∀𝑠 ∈ 𝒦, 𝑡 ≠ 𝑠 ∈ 𝒦;   𝑖 ∈ 𝒪, 𝑗 ∈ 𝒟 (5.17) 

  

𝑉𝑖𝑡𝑗 = 𝛿𝑖𝑗2𝑒−(𝛽𝑐𝑖𝑡𝑗+𝜓𝑡);  ∀ 𝑡 ∈ 𝒦;   𝑖 ∈ 𝒪, 𝑗 ∈ 𝒟   (5.18) 

  

𝑋𝑖𝑗 = 𝛿𝑖𝑗1𝑒−𝜂𝑖𝑗𝑒−𝛽𝑐𝑖𝑗;   ∀ 𝑖 ∈ 𝒪, 𝑗 ∈ 𝒟 (5.19) 
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Depending on the application at hand, more useful choice sets can be developed and applied in 

a similar fashion. The next stage is to estimate the parameters in the equations. The Lagrangian 

parameters 𝜂𝑖𝑗 can be estimated by enforcing constraints (5.4) using Equations (5.17) to (5.19):  

 

𝑒𝜂𝑖𝑗 =  
1

𝑞𝑖𝑗
{𝛿𝑖𝑗1𝑒−𝛽𝑐𝑖𝑗 + ∑ 𝛿𝑖𝑗2𝑒−(𝛽𝑐𝑖𝑡𝑗+𝜓𝑡) +

𝑡∈𝒦

 ∑ ∑ 𝛿𝑖𝑗3𝑒−(𝛽𝜔𝑖𝑠𝑡𝑗+𝜓𝑠+𝜓𝑡)

𝑡≠𝑠∈𝒦𝑠∈𝒦

} 
(5.20) 

 

Also by enforcing constraint (5.6) the parameter 𝜓𝑡 can be also be expressed as: 

 

𝜓𝑡 = max {0, ln (
Ω𝑡

𝑏𝑡
)} ∀𝑡 ∈ 𝒦 

(5.21) 

 

where 

 

Ω𝑡 = ∑ ∑ 𝑒𝜂𝑖𝑗 (𝛿𝑖𝑗2𝑒−𝛽𝑐𝑖𝑡𝑗 +  𝛿𝑖𝑗3 ∑ 𝑒−𝜓𝑠(𝑒−𝛽𝑐𝑖𝑠𝑡𝑗 +  𝑒−𝛽𝑐𝑖𝑡𝑠𝑗)

𝑠≠𝑡∈𝒦

)

𝑗∈𝒟𝑖∈𝒪

; 𝑡 ∈ 𝒦 

 

Proposition 5.1: The Lagrangian parameters 𝜓𝑡 can be computed iteratively with the kth 

iterated values are evaluated using equation: 

 

𝜓𝑡
𝑘 = 𝜓𝑡

𝑘−1 +  max {0, ln (
𝐹𝑡

𝑘−1

𝑏𝑡
)} ; 𝜓𝑡

0 = 0;  𝑘 = 1,2, … ; ∀ 𝑡 ∈ 𝒦 
(5.22a) 

 

where 𝐹𝑡 is the total usage of IMT 𝑡 ∈ 𝒦 

 

𝐹𝑡
𝑘−1 =  ∑ ∑ 𝑉𝑖𝑡𝑗

𝑘−1 + ∑ ∑ ∑ 𝑊𝑖𝑠𝑡𝑗
𝑘−1

𝑗∈𝒟𝑠≠𝑡∈𝒦𝑖∈𝒪𝑗∈𝒟𝑖∈𝒪

+ ∑ ∑ ∑ 𝑊𝑖𝑡𝑠𝑗
𝑘−1

𝑗∈𝒟𝑠≠𝑡∈𝒦𝑖∈𝒪

; ∀𝑡 ∈ 𝒦 

 

(5.22b) 

Proof 5.1: The proof follows directly from proposition (4.6) in chapter 4. 

 

 Equations (5.17) to (5.19) can be converted into a three-level nesting or tree structure 

as shown in Figure 5.2 model, where the distribution of demand for each of mode of transport 

(road verses intermodal transport modes) conditions the distribution of demand for intermodal 
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transport modes (metropolitan verses regional intermodal transport), which in turn conditions 

the distribution of demand for the located IMTs. Conversely, the models are connected in the 

opposite direction by accessibility measures such that improving for example accessibility to 

the any of the located IMTs influences the demand for intermodal transport. 

 

 

 

 

 

The expected demand for the three modes can be expressed in probabilistic forms by 

inserting equation (5.20) into (5.17), (5.18) and (5.19) as follows: 

 

𝑊𝑖𝑠𝑡𝑗 = 𝑞𝑖𝑗Pr(𝑊𝑖𝑠𝑡𝑗);  ∀𝑠, 𝑡 ∈ 𝒦, 𝑠 ≠ 𝑡;   𝑖 ∈ 𝒪, 𝑗 ∈ 𝒟 (5.23) 

 

𝑉𝑖𝑡𝑗   = 𝑞𝑖𝑗Pr(𝑉𝑖𝑡𝑗);    ∀ 𝑡 ∈ 𝒦;   𝑖 ∈ 𝒪, 𝑗 ∈ 𝒟   (5.24) 

 

𝑋𝑖𝑗 = 𝑞𝑖𝑗Pr(𝑋𝑖𝑗);  ∀ 𝑖 ∈ 𝒪, 𝑗 ∈ 𝒟  (5.25) 

 

where Pr(𝑊𝑖𝑠𝑡𝑗) represents the probability of realising demand 𝑊𝑖𝑠𝑡𝑗 for regional intermodal 

transport  and can be evaluated using: 

 

Figure 5.2: Three-level nesting structure for MCP 



   

  134 

 

Pr(𝑊𝑖𝑠𝑡𝑗) =  Pr(𝑊𝑖𝑠𝑡𝑗|𝐼𝑖𝑗) ∗ Pr(𝐼𝑖𝑗) (5.26) 

 

Pr(𝑊𝑖𝑠𝑡𝑗|𝐼𝑖𝑗) is the conditional probability of realising 𝑊𝑖𝑠𝑡𝑗 given that the demand for 

intermodal transport  𝐼𝑖𝑗 is known and is expressed as: 

 

Pr(𝑊𝑖𝑠𝑡𝑗|𝐼𝑖𝑗) =
𝛿𝑖𝑗3𝑒−(𝛽𝑐𝑖𝑠𝑡𝑗+𝜓𝑠+𝜓𝑡)

∑ ∑ 𝛿𝑖𝑗3𝑒−(𝛽𝑐𝑖𝑠𝑡𝑗+𝜓𝑠+𝜓𝑡)
𝑡≠𝑠∈𝒦𝑠∈𝒦 + ∑ 𝛿𝑖𝑗2𝑒−(𝛽𝑐𝑖𝑡𝑗+𝜓𝑡)

𝑡∈𝒦

 
(5.27) 

 

The maximum expected utility (logsum) ℓ𝑖𝑗 over all located IMTs is expressed in equation 

(5.28).  ℓ𝑖𝑗 serve as a measure of access to intermodal terminals in the movement of cargo 

between each origin-destination pair. Thus, for any given origin-destination pair, the bigger 

the value of ℓ𝑖𝑗 the better the access to intermodal transport. 

 

ℓ𝑖𝑗 = ln {∑ 𝛿𝑖𝑗2𝑒−(𝛽𝑐𝑖𝑡𝑗+𝜓𝑡)

𝑡∈𝒦

+ ∑ ∑ 𝛿𝑖𝑗3𝑒−(𝛽𝑐𝑖𝑠𝑡𝑗+𝜓𝑠+𝜓𝑡)

𝑡≠𝑠∈𝒦𝑠∈𝒦

} 
(5.28) 

 

The term Pr(𝐼𝑖𝑗) is the probability of realising the demand for intermodal transport 𝐼𝑖𝑗 and is 

expressed as: 

 

Pr(𝐼𝑖𝑗) =  
𝑒ℓ𝑖𝑗

𝑒𝐿𝑖𝑗
 

(5.29) 

 

where 𝐿𝑖𝑗 is the maximum expected utility (logsum) over all modes of transport for each origin-

destination pair and serve as a measure of access to multiple transport modes of transport in 

the movement of cargo between a given origin-destination pair (Williams 1977): 

 

𝐿𝑖𝑗 = ln{𝑒ℓ𝑖𝑗 + 𝛿𝑖𝑗1𝑒−𝛽𝑐𝑖𝑗} (5.30) 

 

Knowing Pr(𝐼𝑖𝑗) from (5.29), the realised demand for intermodal transport 𝐼𝑖𝑗 can be 

computed for each origin-destination: 

 

𝐼𝑖𝑗 = 𝑞𝑖𝑗 Pr(𝐼𝑖𝑗) (5.31) 
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Similarly, the probability distribution for determining metropolitan intermodal transport 

demand is expressed as: 

 

Pr(𝑉𝑖𝑡𝑗) =  Pr(𝑉𝑖𝑡𝑗|𝐼𝑖𝑗)Pr(𝐼𝑖𝑗) (5.32) 

 

Pr(𝑉𝑖𝑡𝑗|𝐼𝑖𝑗) is the conditional probability of realising the demand for metropolitan intermodal 

transport 𝑉𝑖𝑡𝑗 given that the demand for intermodal transport  𝐼𝑖𝑗 is known and are evaluated 

using:  

 

Pr(𝑉𝑖𝑡𝑗|𝐼𝑖𝑗) =
𝛿𝑖𝑗2𝑒−(𝛽𝑐𝑖𝑡𝑗+𝜓𝑡)

∑ ∑ 𝛿𝑖𝑗3𝑒−(𝛽𝑐𝑖𝑠𝑡𝑗+𝜓𝑠+𝜓𝑡)
𝑡≠𝑠∈𝒦𝑠∈𝒦 + ∑ 𝛿𝑖𝑗2𝑒−(𝛽𝑐𝑖𝑡𝑗+𝜓𝑡)

𝑡∈𝒦

 
(5.33) 

 

Finally, the probability of realising 𝑋𝑖𝑗 for road alone transport can be expressed as: 

 

Pr(𝑋𝑖𝑗) = 𝛿𝑖𝑗1  
𝑒

−𝛽𝑐𝑖𝑗

𝑒
ℓ𝑖𝑗+𝛿𝑖𝑗1𝑒

−𝛽𝑐𝑖𝑗  
  

    

(5.34) 

 

A corollary of the above analysis is the direct link between the Lagrangian multipliers 𝜂𝑖𝑗 in 

Equation (5.20) and the measure of access to multiple modes of transport parameter 𝐿𝑖𝑗 in 

(5.30): 

 

𝑒−𝜂𝑖𝑗 = 𝑞𝑖𝑗𝑒−𝐿𝑖𝑗 (5.35) 

 

Finally, for a given transport budget 𝑐, the cost sensitivity parameter 𝛽 can be estimated using 

Hyman’s method (Hyman 1966) or Newton-Raphson’s method 

 

𝑓(𝛽) = ∑ ∑ ∑ ∑ 𝑐𝑖𝑠𝑡𝑗𝑊𝑖𝑠𝑡𝑗

𝑗∈𝒟𝑡≠𝑠∈𝒦

 

𝑠∈𝒦𝑖∈𝒪

+  ∑ ∑ ∑ 𝑐𝑖𝑡𝑗𝑉𝑖𝑡𝑗

𝑗∈𝒟𝑡∈𝒦

 

𝑖∈𝒪

+ ∑ ∑ 𝑐𝑖𝑗𝑋𝑖𝑗 − 𝑐 ≤

𝑗∈𝒟𝑖∈𝒪

0 
(5.36) 

 

Or from equations (5.18) to (5.20): 
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𝑓(𝛽) = ∑ ∑ 𝑒−𝜂𝑖𝑗 {𝛿𝑖𝑗1𝑐𝑖𝑗𝑒−𝛽𝑐𝑖𝑗 + ∑ 𝛿𝑖𝑗2𝑐𝑖𝑡𝑗𝑒−(𝛽𝑐𝑖𝑡𝑗+𝜓𝑡)

𝑡∈𝒦

  

𝑗∈𝒟𝑖∈𝒪

+ ∑ ∑ 𝛿𝑖𝑗3𝑐𝑖𝑠𝑡𝑗𝑒−(𝛽𝑐𝑖𝑠𝑡𝑗+𝜓𝑠+𝜓𝑡)

𝑡≠𝑠∈𝒦

 

𝑠∈𝒦

} − 𝑐 ≤ 0  

 

The function 𝑓(𝛽) is continuous and differentiable with respect to 𝛽, and so it can be 

maximised to obtain the value of 𝛽.   

 

 Again, the estimation of the Lagrangian multipliers in the MCP are inter-dependent, 

where the evaluated value of one is required to solve the other. Algorithm (A1) proposed in 

Chapter 4 can readily be adapted and used to estimate the MCP parameters. The next section 

presents the algorithm for solving the overall problem EMFLP by connecting the two sub-

problems.  

 

5.4.3 Solving the EMFLP by complete enumeration 

The complete enumeration algorithm A2 proposed in Chapter 4 can also be adapted and used 

to solve the overall problem. The use of this algorithm to solve the generalized IMT location 

problem could still be practical for many real world problems. As shown in Equation (4.49) 

the running time of algorithm A2 is bounded by 𝑂(𝜏𝑝𝑇𝐵) where 𝑇𝐵 is the running time of the 

modified Bregman’s algorithm (A1) and 𝜏𝑝 gives the maximum running time of selecting 𝑝 

IMTs from a candidate set of 𝒯 with cardinality 𝜏.   

 

However, the study area for locating regional IMTs is often very large and may 

encompass a whole country like Australia, US or China and regions like the European Union. 

For example, assume there 100 candidate IMT locations in the study area and the planner wants 

to select the best 10 for the development of IMTs. If it takes about 10-3seconds to solve the 

MCP, algorithm A2 will about 560 years to find the best 10 IMT locations. Such large scale 

applications will benefit from more efficient algorithm than A2.  A new fast and efficient 

heuristic is proposed in the next section for solving such larger problem instances.  

 

5.4.4 Combined solution of FLP and MCP by heuristics  

For large problem instances, a fast algorithm is proposed and its solution quality demonstrated 

with respect to algorithm A2 through extensive numerical examples. The heuristic algorithm is 



   

  137 

 

motivated by the convexity of the objective entropy function and the principle of conditional 

entropy in Propositions 5.2 and 5.3. The key assumption underlying the heuristic is that if 𝒦∗ 

is the set with the optimal IMT locations with IMT 𝜗 ∈ 𝒦∗ then IMT 𝜗1 ∈ 𝒯 must also be in 

𝒦∗ if: 

 

𝐻(𝑌𝜗, 𝑌𝜗1) ≥  𝐻(𝑌𝜗, 𝑌𝑡); ∀𝑡 ∈ 𝒯, 𝜗 ≠ 𝜗1       (5.37) 

  

where 𝐻(𝑌𝜗 , 𝑌𝜗1) is the entropy of locating IMTs at locations 𝜗 and 𝜗1. Thus, following 

Proposition 5.2 the selection of IMT location 𝜗1 is conditioned on the selection of IMT 

location 𝜗 ∈ 𝒯. The remaining 𝑝 − 2 IMTs locations are selected in a similar way. For 

example, the selection of the third IMT location 𝜗2 is conditioned on knowing that IMT 

locations 𝜗 and 𝜗1 were selected (or in the set 𝒦∗): 

 

𝐻(𝑌𝜗, 𝑌𝜗1, 𝑌𝜗2) ≥  𝐻(𝑌𝜗, 𝑌𝜗1, 𝑌𝑡); ∀𝑡 ∈ 𝒯, 𝜗2 ≠ 𝜗, 𝜗2 ≠ 𝜗1 (5.38) 

  

The key question that remains is how to select location 𝜗 ∈ 𝒯 as it conditions the selection of 

the remaining 𝑝 − 1 locations. We suggest considering all candidate IMT locations and 

selecting the one with highest entropy. That is select location 𝜗∗ ∈ 𝒯 if 

 

𝐻(𝑌𝜗∗ , 𝒦1) ≥  𝐻(𝑌𝜗 , 𝒦1); ∀𝜗 ∈ 𝒯      (5.39) 

  

where  𝒦1 is the set containing the remaining 𝑝 − 1 IMT locations. 

Proposition 5.2. By definition each location variable 𝑌𝑡; 𝑡 ∈ 𝒯 takes on two values; 0 and 1 

and let ℐ = {0,1}.  If the Shannon entropy (see proposition 5.4) of a location variable 𝑌1 is 

defined as 𝐻(𝑌1) = ∑ 𝑃𝑟(𝑌1 = a)ln𝑃𝑟(𝑌1 = a)𝑎∈ℐ , then the joint entropy for locations 

variables 𝑌1 and 𝑌2 can be expressed as: 

 

𝐻(𝑌1, 𝑌2) = 𝐻(𝑌1) +  𝐻(𝑌2|𝑌1) 

    

(5.40) 

Proof 5.2. By definition the joint entropy of 𝑌1 and 𝑌2 becomes: 

 

𝐻(𝑌1, 𝑌2) =  − ∑ ∑ 𝑃𝑟(𝑌1 = a, 𝑌2 = b)ln𝑃𝑟(𝑌1 = a, 𝑌2 = b)

𝑏∈ℐ𝑎∈ℐ
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Or for simplicity: 

 

𝐻(𝑌1, 𝑌2) =  − ∑ ∑ 𝑃𝑟(a, b)ln𝑃𝑟(a, b)

𝑏∈ℐ𝑎∈ℐ

= − ∑ ∑ 𝑃𝑟(a, b)ln(𝑃𝑟(a)𝑃𝑟(b|a))

𝑏∈ℐ𝑎∈ℐ

 

 

Expanding and using the properties of marginal probability distributions we have: 

 

𝐻(𝑌1, 𝑌2) = − ∑ 𝑃𝑟(a)ln𝑃𝑟(a)

𝑎∈ℐ

 − ∑ ∑ 𝑃𝑟(a, b)ln𝑃𝑟(b|a)

𝑏∈ℐ𝑎∈ℐ

 

 

Hence 

 

 𝐻(𝑌1, 𝑌2) = 𝐻(𝑌1) +  𝐻(𝑌2|𝑌1) 

 

Proposition 5.3. Proposition 5.2 can be generalised for 𝜏 number of IMTs, 𝑌1, 𝑌2, … 𝑌𝜏 :  

𝐻(𝑌1, 𝑌2, … , 𝑌𝜏) = 𝐻(𝑌1) + ∑  𝐻(𝑌𝑡|𝑌1, … , 𝑌𝑡−1)

𝜏

𝑡=2

    
(5.41) 

 

Proof 5.3 by induction. From proposition 5.2, equation (5.40) is true for 𝜏 = 2. Assume 

proposition 5.3 is also true for any 𝜏 then using chain rule: 

 

𝐻(𝑌1, 𝑌2, … , 𝑌𝜏, 𝑌𝜏+1) = 𝐻(𝑌1, 𝑌2, … , 𝑌𝜏) +  𝐻(𝑌𝜏+1|𝑌1, 𝑌2, … , 𝑌𝜏) 

 

Or 

𝐻(𝑌1, 𝑌2, … , 𝑌𝜏, 𝑌𝜏+1) = 𝐻(𝑌1) + ∑  𝐻(𝑌𝑡|𝑌1, … , 𝑌𝑡−1)

𝜏

𝑡=2

+  𝐻(𝑌𝜏+1|𝑌1, 𝑌2, … , 𝑌𝜏) 

Hence 

𝐻(𝑌1, 𝑌2, … , 𝑌𝜏, 𝑌𝜏+1) = 𝐻(𝑌1) + ∑  𝐻(𝑌𝑡|𝑌1, … , 𝑌𝑡−1)

𝜏+1

𝑡=2

 

Based on the insight from the above propositions the proposed heuristic is presented as 

algorithm A3 and labelled as entropic greedy algorithm (EGA). 
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Algorithm A3: Entropic greedy algorithm (EGA) 

1. Initialization: 𝒦 =  𝒦∗ = {}, Λ∗ =  −∞; 𝒯1 = 𝒯   

2. While the candidate set of IMTs 𝒯 is not empty 

3.     Choose an IMT  𝑎 ∈ 𝒯  and delete it from 𝒯, i.e., 𝒯 =  𝒯 − {𝑎} 

4.     𝒯3 = {𝑎}, 𝒦 = {𝑎} 

5.     Solve the MCP with 𝒦 as the set of located IMTs and return the objective value Λ𝑅 

6.     If 𝑝 = |𝒦|  then 

7.          Go to step 25  

8.     Else  

9.          For 𝑢 ≔ 1  𝑡𝑜 𝑝 − 1  

10.              Λ2 =  −∞;  

11.              𝒯2 =  𝒯1 − 𝒯3  

12.              While 𝒯2 is not empty: 

13.              Choose an IMT 𝑠 ∈ 𝒯2 

14.                   𝒦 ≔ 𝒯3 + {𝑠}; 𝒯2 =  𝒯2 − {𝑠} 

15.                  Solve the MCP with 𝒦 and return the objective value Λ𝑅  

16.                   If Λ𝑅 >  Λ2 

17.                          Λ2 = Λ𝑅 ;  𝜗 = 𝑠;   

18.                  Endif 

19.             Endwhile 

20.            Update the set  𝒯3 ≔ 𝒯3 + {𝜗}    

21.         Endfor 

22.    Endif 

23.    𝒦 = 𝒯3  

24.    Solve the MCP with 𝒦 as the set of located IMTs and return the objective value Λ𝑅 

25.    If Λ𝑅 > Λ∗:  then 

26.          Λ∗ = Λ𝑅 ;  𝒦∗ =  𝒦  

27.     Endif 

28. Endwhile 

29. Return the set 𝒦∗ and optimal objective value Λ∗  

 

 

If  𝑇𝐵 be the running time of algorithm A1 (for solving MCP) for a given set of located 

IMTs 𝒦.  It is clear that the running time of the heuristic algorithm A3 will be dominated by 

the number executions of algorithm A1 in line 15 of the inner while loop.  Lines 13 to 17 will 

be executed at most 𝜏2𝑝 times each and given the fact that the execution time of Algorithm A1 

will dominate, it suffices that the running time of lines 13 to 17 will be bounded by 𝑂(𝑝𝜏2𝑇𝐵).  

Similarly, lines 3 to 7 will be executed at most 𝜏 times each with the total running time bounded 
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by 𝑂(𝜏𝑇𝐵).  Finally, lines 23 to 26 will also be executed at most 𝜏 times each with a total running 

time also bounded by 𝑂(𝜏𝑇𝐵). Therefore, the overall running time of the proposed heuristics 

algorithm, A3 is bounded by 𝑂(𝑝𝜏2𝑇𝐵).  Alternatively, the number of executions of Algorithm 

A1 for solving MCP is bounded by 𝑂(𝑝𝜏2) compared with 𝑂(𝜏𝑝) for the enumeration 

Algorithm A2. Thus, the running time savings of Algorithm A3 (heuristic) with respect to A2 

(enumeration algorithm) occurs when 𝑝 ≥ 3.  

 

We have shown that the proposed heuristics Algorithm A3 has a polynomial running 

time, which increases linearly with increasing 𝑝 (number of IMTs to locate) and therefore 

computationally efficient for solving larger problem instances. Algorithm A3 is optimal for 𝑝 =

1, and 𝑝 = 2 since it reduces to Algorithm A2, which is a global optimal algorithm. The 

conjecture is whether it is also optimal for 𝑝 ≥ 3. The quality of solutions produced by the 

heuristics is demonstrated with extensive numerical examples in Section 5.5. 

 

Proposition 5.4. For simplicity let 𝑃𝑖𝑗 =  Pr(𝑋𝑖𝑗); 𝑃𝑖𝑡𝑗 =  Pr(𝑉𝑖𝑡𝑗) and 𝑃𝑖𝑠𝑡𝑗 = Pr(𝑊𝑖𝑠𝑡𝑗) . 

Maximising Λ (the objective function of EMFLP), is equivalent to maximising the Shannon 

entropy 𝐻: 

 

𝐻 = − ∑ ∑ 𝑞𝑖𝑗 (𝑃𝑖𝑗ln(𝑃𝑖𝑗) + ∑ 𝑃𝑖𝑡𝑗ln(𝑃𝑖𝑡𝑗)

𝑡∈𝒯

+ ∑ ∑ 𝑃𝑖𝑠𝑡𝑗ln(𝑃𝑖𝑠𝑡𝑗)

𝑡≠𝑠∈𝒯

 

𝑠∈𝒯

)

𝑗∈𝒟𝑖∈𝒪

 

 

Proof 5.4. Using the definitions of probabilities in equations (23)-(25), Λ can be re-expressed 

as: 

 

Λ = ∑  ∑ 𝑞𝑖𝑗𝑃𝑖𝑗{1 − ln(𝑞𝑖𝑗𝑃𝑖𝑗)}

𝑗∈𝒟𝑖∈𝒪

+ ∑ ∑ ∑ 𝑞𝑖𝑗𝑃𝑖𝑡𝑗{1 − ln(𝑞𝑖𝑗𝑃𝑖𝑡𝑗)}

𝑗∈𝒟𝑡∈𝒯𝑖∈𝒪

+ ∑ ∑ ∑ ∑ 𝑞𝑖𝑗𝑃𝑖𝑠𝑡𝑗{1 − ln(𝑞𝑖𝑗𝑃𝑖𝑠𝑡𝑗)}

𝑗∈𝒟𝑡≠𝑠∈𝒯

 

𝑠∈𝒯𝑖∈𝒪

 

 

Expanding, grouping like terms and using the normalisation axiom of probability we have: 
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Λ = ∑  ∑ 𝑞𝑖𝑗

𝑗∈𝒟𝑖∈𝒪

− ∑  ∑ 𝑞𝑖𝑗𝑃𝑖𝑗ln(𝑞𝑖𝑗𝑃𝑖𝑗)

𝑗∈𝒟𝑖∈𝒪

− ∑ ∑ ∑ 𝑞𝑖𝑗𝑃𝑖𝑡𝑗ln(𝑞𝑖𝑗𝑃𝑖𝑡𝑗)

𝑗∈𝒟𝑡∈𝒯𝑖∈𝒪

− ∑ ∑ ∑ ∑ 𝑞𝑖𝑗𝑃𝑖𝑠𝑡𝑗ln(𝑞𝑖𝑗𝑃𝑖𝑠𝑡𝑗)

𝑗∈𝒟𝑡≠𝑠∈𝒯

 

𝑠∈𝒯𝑖∈𝒪

 

 

Expanding the terms in the logarithm function and grouping like terms we have: 

 

Λ = ∑  ∑ 𝑞𝑖𝑗

𝑗∈𝒟𝑖∈𝒪

− ∑  ∑ 𝑞𝑖𝑗ln𝑞𝑖𝑗

𝑗∈𝒟𝑖∈𝒪

− ∑ ∑ 𝑞𝑖𝑗 (𝑃𝑖𝑗ln𝑃𝑖𝑗 + ∑ 𝑃𝑖𝑡𝑗ln𝑃𝑖𝑡𝑗

𝑡∈𝒯

+ ∑ ∑ 𝑃𝑖𝑠𝑡𝑗ln𝑃𝑖𝑠𝑡𝑗

𝑡≠𝑠∈𝒯

 

𝑠∈𝒯

)

𝑗∈𝒟𝑖∈𝒪

 

 

Thus 

 

Λ = − ∑  ∑ ln𝑞𝑖𝑗!

𝑗∈𝒟𝑖∈𝒪

+ 𝐻 

 

The term − ∑  ∑ ln𝑞𝑖𝑗!𝑗∈𝒟𝑖∈𝒪  is constant and can be ignored in the optimisation process, since 

𝑞𝑖𝑗 (input data) are not decision variables. Hence maximising Λ is equivalent to maximising 

the entropy 𝐻 with respect to the decision variables: 

 

𝐻 = − ∑ ∑ 𝑞𝑖𝑗𝑃𝑖𝑗ln𝑃𝑖𝑗 − ∑  ∑ 𝑞𝑖𝑗 ∑ 𝑃𝑖𝑡𝑗ln𝑃𝑖𝑡𝑗 − ∑  ∑ 𝑞𝑖𝑗 ∑ ∑ 𝑃𝑖𝑠𝑡𝑗ln𝑃𝑖𝑠𝑡𝑗

𝑡≠𝑠∈𝒯

 

𝑠∈𝒯𝑗∈𝒟𝑖∈𝒪𝑡∈𝒯𝑗∈𝒟𝑖∈𝒪𝑗∈𝒟𝑖∈𝒪

 

 

with the first, second and third terms being the Shannon entropies for road alone, metropolitan 

and regional intermodal transport decision variables. The above equation can be simplified 

further by defining the set of elementary modal alternatives; 𝒮 = {{0, 𝑠, 𝑡}, ∀𝑠 ∈ 𝒯; 𝑡 ∈ 𝒯}, 

where {0} is the index road alone alternative. The subset  {{0, 𝑠, 𝑡}, ∀𝑠 = 𝑡 ∈ 𝒯} represents 

modal alternatives for the metropolitan transport market whilst {{0, 𝑠, 𝑡}, ∀𝑠 ≠ 𝑡 ∈ 𝒯} represent 

the modal alternatives for the regional transport market: 

 

𝐻 = − ∑  ∑ 𝑞𝑖𝑗 ∑ 𝑃𝑖𝑚𝑗ln𝑃𝑖𝑚𝑗

𝑚∈𝒮𝑗∈𝒟𝑖∈𝒪

 
(5.42) 
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Proposition 5.4. Maximising entropy facility location problem (EMFLP) with objective 

function Λ  is equivalent to maximising total welfare: 

 

max ∑ ∑ 𝐿𝑖𝑗𝑞𝑖𝑗

𝑗∈𝒟𝑖∈𝒪

 

 

Subject to the transport budget constraint (5.5): 

 

∑ ∑ ∑ ∑ 𝑐̃𝑖𝑠𝑡𝑗𝑊𝑖𝑠𝑡𝑗

𝑗∈𝒟𝑡≠𝑠∈𝒯

 

𝑠∈𝒯𝑖∈𝒪

+ ∑ ∑ ∑ 𝑐̃𝑖𝑡𝑗𝑉𝑖𝑡𝑗

𝑗∈𝒟𝑡∈𝒯

 

𝑖∈𝒪

+ ∑ ∑ 𝑐𝑖𝑗𝑋𝑖𝑗  

𝑗∈𝒟𝑖∈𝒪

≤ 𝑐 

 

where 𝐿𝑖𝑗 is the maximum expected utility in Equation (5.30) interpreted as accessibility in 

Batty (2010) and Williams (1977) or consumer surplus in Train (2009) and De Jong et al. 

(2005).  The cost variable 𝑐̃𝑖𝑡𝑗 has its usual meaning in Chapter 4. The variable 𝑐̃𝑖𝑠𝑡𝑗 represent 

the cost of regional intermodal transport: 𝑐̃𝑖𝑠𝑡𝑗 = 𝑐𝑖𝑠 +   𝑐̃𝑠 +   𝑐𝑠𝑡 + 𝑐̃𝑡 +  𝑐𝑡𝑗 where 𝑐̃𝑠 =  𝑐𝑠 +

 
𝜓𝑠

𝛽
    and  𝑐̃𝑡 = 𝑐𝑡 +

𝜓𝑡

𝛽
  with 

𝜓𝑠

𝛽
  and 

𝜓𝑡

𝛽
 been the shadow prices ($ per TEU) associated with 

terminal 𝑠 and 𝑡 respectively. 

 

Proof 5.4. The proof follows directly from Proposition 4.7 in Chapter 4.  

 

5.5 Numerical Examples 

5.5.1 Data Generation 

The data used for the numerical examples came from Australian Post (AP) data set (Beasley, 

1990) designed for the Capacitated Single Allocation Hub Location Problems (CSAHLP) and 

has up to 200 nodes with capacity and fixed cost of locating a hub at each node. The data also 

contains the geographic coordinates of each node, which were used to compute the costs 

between nodes together with cost parameters. The 20-node version of the dataset was adapted 

to create both metropolitan and regional intermodal markets with the resulting network 

structure shown in Figure 5.3.   

 

 In creating the market for metropolitan intermodal transport, it was assumed those 

origin-destination pairs with distances not greater than 50km are too short to justify the use of 

two IMTs and so a regional intermodal transport mode is not available for such movements. It 
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is further assumed that for these movements, the longest leg (origin-to-IMT or IMT-to-

destination) is the rail leg and benefits from economies of scale. It was also assumed that the 

average distance between the port and any cargo destination in the metropolitan region is not 

greater than 50km and so metropolitan intermodal transport modes are not available for 

movements with distances greater than 50km.  Finally, in both cases, intermodal transport 

movements with an IMT location also acting as cargo origin or destination are removed from 

the potential markets. With the above assumptions, the metropolitan intermodal transport 

market accounts for about 45% of the total demand, whilst the regional market accounts for 

55%.  

 

Each cost component (see equations 4.11 and 5.1) in both the metropolitan and regional 

intermodal transport was constructed as functions of distance between the relevant nodes. The 

metropolitan intermodal transport cost was constructed as:  𝑐𝑖𝑡𝑗 =  𝛼1𝑑𝑖𝑡 + 𝜇𝑡  + 𝛼0𝑑𝑡𝑗 

assuming the intermodal leg (𝑖 → 𝑡) is longer than (𝑡 → 𝑗). The cost of regional intermodal 

transport was constructed using; 𝑐𝑖𝑠𝑡𝑗 =  𝛼0𝑑𝑖𝑠 + 𝜇𝑠 + 𝛼2𝑑𝑠𝑡 + 𝜇𝑡 + 𝛼0𝑑𝑡𝑗  , where 𝛼1, 𝛼2 are 

the transfer costs ($ per TEU per km) capturing the economies of scale between IMTs 

(assuming the port is an IMT) in metropolitan and regional intermodal systems respectively; 𝜇𝑡 

is the cost incurred using an IMT ($ per TEU); 𝛼0 is the collection or distribution cost for road 

alone ($ per TEU per km). Thus 𝑐𝑖𝑗 = 𝛼0𝑑𝑖𝑗  is the unit road transport cost between two nodes 

in the AP data set. Unless otherwise stated, the value of 𝛼2 was set at 0.75 and 𝛼0 at 2 (both 

from the AP data set) and 𝛼1 is the average of 𝛼0 and 𝛼2.  The parameter  𝜇𝑡 = 𝑓𝑡/𝑏𝑡 (fixed 

cost over capacity).  

 

Finally, the choice set for regional transport alternatives available for each origin-

destination pair was expanded to prevent unrealistically small flows or infeasible movements 

(see Figure 5.4). For example, if IMT 𝑠 ∈ 𝒦 is sufficiently close to cargo origin zone 𝑖 ∈ 𝒪 and 

IMT 𝑡 ≠ 𝑠 ∈ 𝒦 is sufficiently close to cargo destination 𝑗 ∈ 𝒟, then it is safe to exclude cargo 

movement 𝑖 → 𝑡 → 𝑠 → 𝑗 from the choice set. Although, the model may assign negligible 

demand to this type of movements, it is practically expedient to exclude them. To control for 

this, for any pair of movements 𝑖 → 𝑡 → 𝑠 → 𝑗 and 𝑖 → 𝑠 → 𝑡 → 𝑗 only the movement with the 

smallest cost is considered as a feasible alternative for the movements of cargo between origin 

𝑖 ∈ 𝒪 and destination 𝑗 ∈ 𝒟. The models were implemented in the C/C++ environment, on an 

Inter(R) Core (TM) i5-3210M CPU@ 2.50GHz, and 8:00 GB RAM of CPU.  
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Figure 5.3: Network structure of text data 

 

Figure 5.4: (a) Feasible alternative; (b) infeasible alternative 

 

5.5.2 Analysis of main results  

The EMFLP was implemented on the above dataset with the location of 𝑝 = 2,3,4,5 in turn 

and the results presented in Table 5.1 with estimated cost sensitivity parameters, 𝛽, in column 

4. The associated Lagrangian multipliers for the capacity constraints 𝜓𝑡  are all zero since none 

of the optimal IMT locations reached the handling capacity. From Table 5.1, locations 10 and 

15 emerged as the best places for locating IMTs when 𝑝 = 2. The contribution of each located 

IMT to total intermodal transport demand is shown in Figure 5.5. About 51% of total expected 

demand for intermodal transport (2056 TEUs) is derived from the metropolitan intermodal 

transport market.  Out of this (metropolitan intermodal transport demand) IMT 10 contributed 

about 91% with just 9% contribution by IMT 15. The location of two IMTs means that both 

contributed equally to the demand of regional intermodal transport, although about 60% of the 
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demand first went through IMT 10 before going through IMT 15 and the remaining flow went 

in the reverse direction.  

 

Table 5.1: Optimal IMTs and computational time (p = 2, 3, 4, 5) 

IMTs CPU(s) Demand Beta Located IMT-------->   IMT demand------->   

2 2 

       

2,056  0.0075 10 15 
   

1311 745 
   

3 13 

       

3,126  0.0103 10 15 17 
  

1154 841 1131 
  

4 76 

       

3,676  0.0145 10 15 17 9 
 

952 884 937 903 
 

5 329 

       

3,936  0.0183 10 15 17 9 5 784 927 765 744 716 

 

 

Figure 5.5: p=2 located IMTs (metropolitan market is blue) 

The results may suggest that the selection of IMT 15 would have been unlikely if the 

selection process was based on only the metropolitan intermodal market. To support this 

analysis, we run the model on only the metropolitan intermodal market followed by another 

run on only the regional market and the results are shown in Figure 5.6.  The figure shows that 

for metropolitan market run, IMTs 7 and 10 are the best locations whilst for the regional market 

scenario, IMTs 4 and 15 emerged as the best locations. Thus, for the metropolitan market 

scenario IMT 7 replaced IMT 15 and for the regional market scenario, IMT 4 replaced IMT 10 

as the best IMT location. These results show that the wrong IMT location decisions can be 

made if the target market (metropolitan, regional or both) is not well defined.  
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Figure 5.6: Metropolitan and regional markets (metropolitan market in blue) 

For 𝑝 = 3, the best IMT locations were 10, 15 and 17 with the distribution of demand 

shown in Figure 5.7. IMT 15 only captures 2% of the metropolitan intermodal transport 

demand, but it is the biggest contributor and a key node in the regional intermodal transport 

system. Overall, the share of intermodal demand for IMTs 10, 15 and 17 are 37%, 27% and 

36% respectively. The overall share of IMT 15 has reduced from 36% for 𝑝 = 2 to 27% for 

𝑝 = 3; a reduction due to the increase in the modal alternatives by adding IMT 17, which is a 

better alternative in the metropolitan intermodal market. Similar conclusions can be drawn 

from the location of 𝑝 = 4 and 𝑝 = 5 with the contribution of each located IMTs in the overall 

intermodal transport demand shown in Figure 5.8. 

 

Figure 5.7: p = 3 located IMTs (metropolitan market in blue) 
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Figure 5.8: p=2, 3, 4, 5 located IMTs and distribution of flow 

5.5.3 Impacts of economies of scale on solutions   

This section investigates the impacts of scale economies on IMT location choice and demand. 

The previous analysis used a fixed distance factor of 𝛼2 = 0.75 and 𝛼1 = 1.4 (which includes 

a discount for using rail through economies of scale) in computing the cost for regional and 

metropolitan intermodal transport modes. These factors were reduced in turn by 10%, 20%, 

30% and 40% followed by 10%, 20%, 30% and 40% increase in turn resulting in eight sets of 

discount factors. Each set was then run in turn for 𝑝 = 2,3,4,5 and the results, presented in 

Table 5.2. As expected, the results generally show that irrespective of the number of located 

IMTs and where they are spatially located, the smaller the values of 𝛼1 and 𝛼2 (representing 

large discount) the higher the demand for intermodal transport and vice versa. For example, for 

𝑝 = 2, the demand for intermodal transport with respect the base (see Table 5.2) decreased by 

16% for a 40% increase in 𝛼1 and 𝛼2 (small discounts) to about a 10% increase for a 40% 

reduction in 𝛼1 and 𝛼2 (large discounts). The effects of the discount factors on location 

decisions (optimal set of IMTs) is very mild and only present for 𝑝 = 5. The mild effects may 

partly be explained by the sufficient handling capacity at each selected IMT. The results 

generally indicate that the locations selected for the development of IMTs for each 𝑝 value are 

robust at least to variations in economies of scale benefits. 
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Table 5.2: Impacts of economies of scale on solutions 

  2 IMT system 3 IMT system 4 IMT system 5 IMT system 

scalar Demand IMT Demand IMT Demand IMT   Demand IMT     

-0.1 2115 10 15 3215 10 15 17 3796 9 10 15 17 4080 5 9 10 15 17 

-0.2 2167 10 15 3287 10 15 17 3886 9 10 15 17 4186 5 9 10 15 17 

-0.3 2216 10 15 3350 10 15 17 3959 9 10 15 17 4268 5 9 10 15 17 

-0.4 2260 10 15 3405 10 15 17 4021 9 10 15 17 4334 5 9 10 15 17 

0.1 1993 10 15 3011 10 15 17 3519 9 10 15 17 3747 5 9 10 15 17 

0.2 1922 10 15 2861 10 15 17 3317 9 10 15 17 3507 5 9 10 15 17 

0.3 1839 10 15 2667 10 15 17 3067 9 10 15 17 3322 9 10 15 17 19 

0.4 1736 10 15 2435 10 15 17 2785 9 10 15 17 3053 9 10 15 17 19 

 

5.5.4 Solution quality of the entropic greedy algorithm  

This section compares the solution quality and computation time from the entropy greedy 

heuristic (Algorithm A3) with the enumeration algorithm (Algorithm A2), which guarantees 

optimal solutions but with high computational costs. The base runs (in Table 5.1) were 

expanded to include 𝑝 = 6,7,8 and the optimal solutions together with their computational 

times (CPU in seconds) are presented in Table 5.3. The results show that the computational 

time of the heuristic increases linearly with increasing value of p whilst the enumeration 

algorithm appears to increase exponentially with increasing value of p as shown in Figure 5.9.  

Also, as expected and shown in Section 5.4.4, the enumeration algorithm is faster than the 

heuristic for 𝑝 = 2, but slower for 𝑝 ≥ 3.  

 

 In terms of solution quality, the heuristics returns the optimal solution on all the eight 

instances as shown in Table 5.3. We also repeated the runs for the instances generated in 

Section 5.5.3 and again the optimal solution was returned for each instance. Finally, we 

conducted as simple experiment where we used the cost values in the base runs as means and 

assumed a 50% standard deviation about each mean and generated 50 test instances each for 

𝑝 = 2,3,4,5. Again, for all the 200 generated test instances, the heuristic returned the optimal 

solution for each instance.  
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Table 5.3: Results for the Heuristics runs 

  CPU(seconds)   Optimal value 

IMTs to locate Enumeration Heuristic Enumeration Heuristic 

2 2 4 -4027 -4027 

3 13 8 -2551 -2551 

4 76 13 -1405 -1405 

5 329 21 -547 -547 

6 2643 61 137 137 

7 8784 82 724 724 

8 17757 106 1226 1226 

 

 

Figure 5.9: Running time comparison of algorithm A3 (heuristic) and A2 

5.6 Conclusion 

In this chapter, a flexible model based on the principle of entropy maximisation for locating 

inland multi-shipper intermodal container terminals in a context where shippers have choices 

which include whether or not to use the facilities is proposed to address research question II. 

The overall problem was decomposed using Lagrangian relaxation technique into a linked 

facility location sub-problem and a mode choice sub-problem. Key features of the model were 

illustrated through model properties and numerical examples. The mode choice problem was 

solved using modified Bregman’s algorithm and cast as nested conditional probabilities of 

modal and IMT usage suitable for forecasting and policy testing. Two algorithms were 

proposed to solve the linked facility location and mode choice sub-problems; complete 

enumeration and a heuristic algorithm. The heuristic was shown to be bounded by 𝑂(𝑝𝜏2𝑇𝐵), 
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which means the running time grows linearly as the number of facilities to locate (𝑝) increases 

for a fixed number of candidate IMT locations 𝜏 with 𝑇𝐵 as the running time of the mode choice 

sub-problem, MCP. In terms of solution quality, the proposed heuristic algorithm returns the 

optimal solution on all the tested instances of the problem. Although, the heuristic has not been 

proved to return the optimal solution for every instance of the problem, it has been shown by 

numerical examples to work very well.  
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Chapter 6 Variable cargo demand 

models 

 

 

 

 

 

 

6.1 Background 

The primary objective for location an IMT is for it to serve as a transfer node between two 

modes (e.g., rail and trucks) where containers (or other loading units) arriving at the terminal 

on one mode (e.g., trains) are transferred to another mode (trucks) for onward journey to 

another cargo destination. These terminals over the years have evolved to perform value added 

or auxiliary activities such as warehousing, empty container storage and other cargo related 

activities (IPART 2011; Meyrick 2006). As noted in DoFD (2011) and Meyrick (2006) revenues 

from these auxiliary activities are vital for the viability and sustainability of many inland 

intermodal terminals. This is partly due to the high setup and operation costs associated with 

these terminals, especially those located in metropolitan areas, and also the need for it operate 

continuously throughout the year.  

 

Chapters 1 and 2 show how the choice of mode depends on where the cargo is destined 

and also that intermodal transport may not feasible or cost competitive if the cargo destination 

is too close to the cargo origin. Conversely, the cargo destination depends on modal 

accessibility. That is, the cargo destination must be connected to the transport network and must 

be accessible by at least one available mode of transport.  These reveal a ‘natural’ link between 

cargo distribution and mode choice, where the choice of mode is conditioned by the choice of 

cargo destination, whilst the mode choice influences the choice of cargo destination through 

accessibility measures. This makes the cargo distribution accessibility-sensitive and the easier 

a destination can be reached by available modes of transport the higher the quantity of cargo it 

attracts. It could be said in loose economic terms that travel cost to a zone is the price to pay to 

have access to participate in freight related activities (e.g., warehousing or storage) in that zone 
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and that the quantity of cargo attracted to that zone is non-increasing with travel cost or non-

decreasing with accessibility.   

 Furthermore, the increase in cargo volumes and their distributions induce the need for 

freight facilities including intermodal terminals, which in turn promote intermodal transport. 

Intermodal transport increases modal options for shippers and hence influences cargo 

distributions. The goal in this chapter is to replace the fixed matrix with variable cargo demand 

models such that changes in cargo distribution patterns are allowed to influence terminal 

locations, whilst terminals locations influence cargo distributions through accessibility 

measures.  

 

Two problems are added to the entropy framework; cargo production and cargo 

distribution problems. The generation and distribution problems together with the mode choice 

problem in Chapter 5 are developed within the entropy framework and are linked through 

accessibility measures such that changes in say the accessibility or cost of using IMTs 

influences the distribution of modes, which in turn influences the distribution and production 

of cargo (containers) whilst cargo production and/or distribution conditions modal and IMT 

demands. These problems together form the cargo flow problem (CFP) and is connected to the 

facility location problem (FLP) and together determines the most likely locations and usage of 

intermodal terminals.   

 The rest of the chapter is organised as follows; Section 6.2 presents the key assumptions 

underlying the cargo production and distribution models; the proposed methods for developing 

the cargo production and distribution models and how they can be expressed as constraints 

within the entropy framework is presented in Section 6.3. Section 6.4 presents the entropy-

based mathematical formulation of intermodal terminals location with variable cargo demand 

problem (IMTL+VDP) and incorporates the cargo production, distribution, mode choice and 

facility location problems. Algorithm for solving the formulated problem is presented in 

Section 6.5. Finally, the implementation of the model in practice is discussed in Section 6.5, 

followed by the conclusions in Section 6.6. 
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6.2 Methodology  

6.2.1 Assumptions 

The assumptions used in the previous chapters also hold under this chapter with the exception 

of the fixed cargo matrix. In addition to these assumptions, the cargo generation and 

distribution models are assumed to be governed by a set of factors such that changes in these 

factors change the quantity of cargo generated and distributed in the study area. These factors 

are presented in the model by a set of variables with the modal accessibility or access to 

multiple modes variable (capturing changes in transport network conditions) being one of them. 

The other factors are assumed to be location (cargo origin or destination) specific factors such 

as land-use, industry-specific, demographic and socio-economic factors.  

 

 The set of location specific factors governing the production of cargo is represented by 

𝒢 and the variable 𝑔𝑖𝑘 representing the quantity of variable type 𝑘 ∈ 𝒢 associated with cargo 

production zone 𝑖 ∈ 𝒪 with 𝑔̅𝑘 presenting weighted averages over all production zones and the 

weights been the observed cargo flows. Similarly, the set ℋ represent the set of factors 

explaining the consumption of cargo at a given location with the variable 𝑎𝑗𝑙  representing the 

quantity of variable type 𝑙 ∈ ℋ associated with cargo destination or consumption zone 𝑗 ∈ 𝒟 

and 𝑎̅𝑙 presenting weighted averages over all cargo destination zones. Also, consistent with the 

previous chapters, the unit of analysis is the cargo measured in TEUs. 

 

Decision Variables 

The key outputs of the model are the flow variables 𝑊𝑖𝑡𝑗 , 𝑉𝑖𝑡𝑗, 𝑈𝑖𝑗 for determining the demands 

for regional, metropolitan and road alone transport respectively and the location variables 𝑌𝑡, 

which determines the locations to select for the developments of IMTs. Adding to the list are 

𝑄𝑖𝑗 for determining the distributions of cargo (in TEUs) from production zone 𝑖 ∈ 𝒪 to 

consumption zones 𝑗 ∈ 𝒟 and 𝑄𝑖 for determining the quantity of cargo produced by each 

production zone 𝑖 ∈ 𝒪. 

 

6.2.2 The Cargo production and distribution models  

Two main methods of incorporating cargo production and distribution models into the entropy 

framework are presented followed by discussions on their merits and limitations.  The first 
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method is the Poisson cargo attraction method and the second is the weighted mean method. 

Each of these two methods is described below. 

6.2.2.1 Poisson cargo attraction method   

To incorporate cargo distribution model into the entropy framework, the study assumes that 

the quantity of cargo (in TEUs per day) attracted to each destination zone (TEUs per day)  is 

independent Poisson random variables with density: 

 

𝑃(𝑄𝑗|𝑑𝑗) =  
𝑒−𝑑𝑗𝑑𝑗

𝑄𝑗

𝑄𝑗!
; 𝑄𝑗 = 0,1,2, …   

(6.1) 

 

where 𝑑𝑗 are the mean quantity of cargo (in TEUs per day) arriving at destination 𝑗 ∈ 𝒟. Based 

on the fact that the possible values of 𝑑𝑗 ≥ 0, the ‘natural’ choice of function to link the mean 

cargo arrival 𝑑𝑗 and the explanatory variables in set ℋ is the log-linear function (Cameron and 

Trivedi 2013): 

 

𝑑𝑗 = exp (∑ 𝜃𝑙𝑎𝑗𝑙

𝑙∈ℋ

) 
(6.2) 

 

where 𝜃𝑙 is the weight or importance associated with variable 𝑎𝑗𝑙. The term 𝑎𝑗 = ∑ 𝜃𝑙𝑎𝑗𝑙𝑙∈ℋ  

can be considered as overall attractiveness of destination 𝑗  as cargo destination zone.  Given a 

set of independent observations, the goal is to find the set of parameters 𝜃 that makes the 

probability density function in (6.1) as likely as possible in re-producing the observed data. 

This can be done by constructing a log-likelihood function and maximising it with respect to 

𝜃.  

 

ΛMLE =  ∑ ln𝑃(𝑄𝑗|𝑑𝑗) =  ∑{𝑄𝑗ln𝑑𝑗 − 𝑑𝑗 − In𝑄𝑗!}

𝑗∈𝒟𝑗∈𝒟

 
(6.3) 

 

The first-order condition for optimal ΛMLE with respect to the parameter vector 𝜃  yields: 

 

∑(𝑄𝑗 − 𝑑𝑗)𝑎𝑗𝑙

𝑗∈𝒟

= 0;  ∀𝑙 ∈ ℋ  
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alternatively, 

 

∑ 𝑄𝑗𝑎𝑗𝑙

𝑗∈𝒟

= ∑ 𝑑𝑗𝑎𝑗𝑙

𝑗∈𝒟

;    ∀𝑙 ∈ ℋ 
(6.4) 

 

This can be expressed as weighted averages with the weights being the observed cargo flows 

as follows: 

 

∑ 𝑄𝑗𝑎𝑗𝑙

𝑗∈𝒟

= 𝑍𝑎𝑙̅;    ∀𝑙 ∈ ℋ 
(6.5) 

 

where 𝑎𝑙̅ =  
1

𝑍
∑ 𝑑𝑗𝑎𝑗𝑙𝑗∈𝒟   is the weighted average of variable 𝑙 ∈ ℋ.  

 

Corollary 6.1: If 𝑄𝑗 = ∑ 𝑄𝑖𝑗𝑖∈𝒪 , then following from (6.4) the following relation holds: 

 

∑ ∑ 𝑄𝑖𝑗𝑎𝑗𝑙

𝑖∈𝒪𝑗∈𝒟

= ∑ 𝑑𝑗𝑎𝑗𝑙

𝑗∈𝒟

;    ∀𝑙 ∈ ℋ 
(6.6) 

 

Or from (6.5) we have: 

 

∑ ∑ 𝑄𝑖𝑗𝑎𝑗𝑙

𝑖∈𝒪𝑗∈𝒟

= 𝑍𝑎𝑙̅;    ∀𝑙 ∈ ℋ 
(6.7) 

 

Equation (6.6) or (6.7) establishes the relationship between the demand for cargo at a given 

destination and the factors or destination specific characteristics driving the demand.   

 

Corollary 6.2: If 𝑄𝑖 is the quantity of cargo (in TEUs per day) produced in zone 𝑖 ∈ 𝒪, and 

since 𝑄𝑖 and 𝑄𝑖𝑗 are related through  𝑄𝑖  =  ∑ 𝑄𝑖𝑗𝑗∈𝒟 , it implies 𝑄𝑖 are also Poisson distributed. 

Thus, based on (6.4), explaining the mean cargo production 𝑞𝑖 by the set of production factors 

𝒢 the following relation also holds: 

 

∑ 𝑄𝑖𝑔𝑖𝑘

𝑖∈𝒪

= ∑ 𝑞𝑖𝑔𝑖𝑘

𝑖∈𝒪

;    ∀𝑘 ∈ 𝒢 
(6.8) 
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Or in weighted averages we have: 

 

∑ 𝑄𝑖𝑔𝑖𝑘

𝑖∈𝒪

= 𝑍𝑔̅𝑘;    ∀𝑘 ∈ 𝒢 
(6.9) 

 

Equations (6.5), (6.7) and (6.9) are particularly useful when observed cargo flows 𝑞𝑖𝑗, 𝑑𝑗 or 

𝑞𝑖 respectively are not available for all zones. In such cases the weighted averages can be 

computed based on only zones where observed data are available.  This leads to a more general 

formulation of the variable cargo demand models.  

6.2.2.2 Weighted mean method   

Let 𝑓𝑙(𝑎𝑗𝑙) be the data generation function for attraction variable 𝑙 ∈ ℋ for each cargo 

consumption zone 𝑗 ∈ 𝒟 with expected value 𝑎̅𝑙;  𝑙 ∈ ℋ. Then by definition, the expected value 

of the function 𝑓𝑙(𝑎𝑗𝑙);  𝑙 ∈ ℋ can be expressed as:  

 

𝔼[𝑓𝑙(𝑎𝑗𝑙)] =  𝑎̅𝑙 =  ∑ 𝑝𝑗𝑓𝑙(𝑎𝑗𝑙)

𝑗∈𝒟

;   ∀𝑙 ∈ ℋ 
(6.10) 

 

where 𝑝𝑗 is the probability of realising demand 𝑄𝑗; 𝑗 ∈ 𝒟 based on the influence of attraction 

variable 𝑙 ∈ ℋ. See Jaynes (1982) for the use of similar expression. Using the frequentist 

definition of probability 𝑝𝑗 =
𝑄𝑗

𝑍
 , and using the fact that 𝑄𝑗 = ∑ 𝑄𝑖𝑗𝑖∈𝒪 , Equation (6.10) can 

be re-written as follows:  

 

∑ ∑ 𝑄𝑖𝑗

𝑖∈𝒪𝑗∈𝒟

𝑓𝑙(𝑎𝑗𝑙) = 𝑍𝑎̅𝑙;    ∀𝑙 ∈ ℋ 
(6.11) 

 

The next step is the choice of the function 𝑓𝑙(𝑎𝑗𝑙),which can take several forms. The reader is 

referred to the papers by (Patil and Rao 1978; 1986) on various forms of specifying function 

𝑓𝑙(𝑎𝑗𝑙). This study focusses on a simple specification of  𝑓𝑙(𝑎𝑗𝑙) called the sized based function 

(Patil and Rao 1978):  

 

𝑓𝑙(𝑎𝑗𝑙) = 𝑎𝑗𝑙;    ∀𝑙 ∈ ℋ, 𝑗 ∈ 𝒟 (6.12) 
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By inserting Equation (6.12) into (6.11) produces the Poisson equation in (6.7):   

 

∑ ∑ 𝑄𝑖𝑗

𝑖∈𝒪𝑗∈𝒟

𝑎𝑗𝑙 = 𝑍𝑎̅𝑙;    ∀𝑙 ∈ ℋ 
(6.13) 

 

Thus, the Poisson method can be seen as a special case of the weighted mean method since the 

weighted mean method allows several choices of function 𝑓𝑙(𝑎𝑗𝑙) describing the available 

information on the variable of interest.  

 

Corollary 6.3: If the function 𝑓𝑘(𝑔𝑖𝑘) generates the data for cargo production variable 𝑘 ∈ 𝒢  

for each production zone 𝑖 ∈ 𝒪 with expected value 𝑔̅𝑘; 𝑘 ∈ 𝒢 over all production zones, then 

based on (6.13) the following must be satisfied: 

 

∑ 𝑄𝑖𝑔𝑖𝑘

𝑖∈𝒪

= 𝑍𝑔̅𝑘;    ∀𝑘 ∈ 𝒢 
(6.14) 

6.2.2.3 Summary of available evidence  

The relevant information and assumptions about the inland containerised system are 

summarised in the following constraints:  

 

1. Conservation of cargo flows. These constraints guarantee that the total quantity of cargo 

originating from a given zone must equal the sum of cargo arriving at all destination zones 

from that origin: 

 

      ∑ 𝑄𝑖𝑗 

𝑗∈𝒟

= 𝑄𝑖   ∀ 𝑖 ∈ 𝒪 
(6.15) 

 

2. Validation constraint I. These constraints ensure that the observed quantity of cargo arriving 

at each destination from all origins equals the estimated equivalent by the model.  

 

      ∑ 𝑄𝑖𝑗 

𝑖∈𝒪

= 𝑑𝑗    ∀ 𝑗 ∈ 𝒟 
(6.16) 
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3. Validation constraint II. These constraints ensure that the observed quantity of cargo 

generated by each production zone equals the estimated equivalent by the model.  

 

      𝑄𝑖 = 𝑞𝑖;    ∀ 𝑖 ∈ 𝒪 (6.17) 

 

4. Validation constraint III. This constraint ensures that the observed total quantity of cargo in 

the system equals the sum over all estimated cargo generated by the production zones. It is 

important to note that if 𝑞𝑖 are observed and constraint (6.17) is satisfied, then (6.18) is 

automatically satisfied and the Lagrangian parameters associated (6.18) will be zero. 

 

      ∑ 𝑄𝑖 

𝑖∈𝒪

= 𝑍   (6.18) 

5. Exploratory constraints: Constraints (6.9) and (6.7) explaining the factors governing the 

production and distributions of cargo respectively. 

 

6.3 Incorporating variable cargo demand  

Based on the existing information summarised in the constraints above, the entropy facility 

location problem in Chapter 5 is extended to include the following constraints:  

1.  Constraints (6.7) and (6.9) 

2.  Constraints (6.15) to (6.18) and the following non-negativity constraints: 

 

 𝑄𝑖𝑗 ≥ 0; 𝑄𝑖 ≥ 0;   ∀ 𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟  (6.19) 

 

The extended problem is referred to as the entropy maximising facility location with variable 

demand problem (EMFL+VDP). The next section presents various way of handling the above 

formulated problem.  

 

6.4 Solution to EMFL+VDP   

The solution to EMFL+VDP is an extension of the solution to EMFLP in Chapter 5 to include 

the cargo production and distributions sub-problems. Following the decomposition procedure 

employed in Chapter 5, the EMFL+VDP is decomposed into FLP and CFP where the CFP 
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comprises the MCP in Chapter 5 and cargo production and distribution sub-problems. The 

solution to the MCP is the same as those developed in Chapter 5 except that the variable 𝑞𝑖𝑗 

are now replaced with 𝑄𝑖𝑗;  ∀ 𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟 to reflect the fact the distribution of cargo is no 

longer assumed fixed.  The focus here is therefore on the solutions to the cargo production and 

distribution sub-problems. To solve these problems, a Lagrangian equation of CFP is 

constructed and applying the Karush-Kuhn-Tucker (KKT) optimality conditions with respect 

to the distribution variables 𝑄𝑖𝑗 and the production variables 𝑄𝑖 ;  ∀ 𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟.  The resulting 

Lagrangian equation is essentially the linear combination of the Lagrangian equation ΛLMCP 

formed to solve the MCP in Chapter 5 and the new constraints developed above: 

 

ΛLCFP =  ΛLMCP + ∑ 𝜃𝑙

𝑙∈ℋ

(∑ ∑ 𝑄𝑖𝑗

𝑗∈𝒟

𝑎𝑗𝑙

𝑖∈𝒪

− 𝛢𝑙) + ∑ 𝜙𝑘 (∑ 𝑔𝑖𝑘𝑄𝑖

𝑖∈𝒪

− 𝐺𝑘)

𝑘∈𝒢

+ ∑ 𝛾0𝑖 (∑ 𝑄𝑖𝑗

𝑗∈𝒟

− 𝑄𝑖)

𝑖∈𝒪

+ ∑ 𝛾1𝑗 (∑ 𝑄𝑖𝑗  

𝑖∈𝒪

− 𝑑𝑗)

𝑗∈𝒟

+ ∑ 𝛾2𝑖(𝑄𝑖 − 𝑞𝑖)

𝑖∈𝒪

+ 𝛾3 (∑ 𝑄𝑖

𝑖∈𝒪

− 𝑍) 

(6.20) 

 

where  𝛢𝑙 = 𝑍𝑎̅𝑙  and 𝐺𝑘 = 𝑍𝑔̅𝑘. The parameters 𝜃𝑙; ∀𝑙 ∈ ℋ, 𝜙𝑘; ∀𝑘 ∈ 𝒢 are the Lagrangian 

multipliers associated with cargo distribution constraint (6.7) and production constraint (6.9) 

and constants 𝛾0𝑖, 𝛾1𝑗, 𝛾2𝑖, 𝛾3; ∀𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟 are the Lagrangian multipliers associated with 

constraints (6.15) to (6.18) respectively. ΛLCFP is first optimised with respect to the distribution 

decision variables 𝑄𝑖𝑗  followed by the cargo production decision variables 𝑄𝑖 leading to 

probability distributions for determining the production and distribution of cargo in the study 

area.  

 

6.4.1 Cargo distribution model 

The KKT conditions for a maximum ΛLCFP with respect to the cargo distribution variable 𝑄𝑖𝑗 

are: 

∑ 𝜃𝑙𝑎𝑗𝑙

𝑙∈ℋ

+ 𝛾0𝑖 + 𝛾1𝑗 + 𝜂𝑖𝑗 = 0 ; ∀  𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟   (6.21) 
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where 𝜂𝑖𝑗 are the Lagrangian multipliers associated with constraint (5.4) in Chapter 5. Making 

𝜂𝑖𝑗 the subject from (6.21) we have:  

 

𝑒−𝜂𝑖𝑗 = 𝑒𝛾0𝑖exp (𝛾1𝑗 + ∑ 𝜃𝑙𝑎𝑗𝑙

𝑙∈ℋ

) 
(6.22) 

 

It was shown in Chapter 5 through Equation (5.35) that the parameters 𝜂𝑖𝑗 can be expressed in 

terms of modal accessibility:  

 

𝑒−𝜂𝑖𝑗 = 𝑄𝑖𝑗𝑒−𝐿𝑖𝑗 

 

The above equation means that the parameters 𝜂𝑖𝑗  can be eliminated from (6.22) and making 

𝑄𝑖𝑗 the subject we have; 

 

𝑄𝑖𝑗 = 𝑒𝛾0𝑖exp (𝛾1𝑗 + 𝐿𝑖𝑗 + ∑ 𝜃𝑙𝑎𝑗𝑙𝑙∈ℋ )  (6.23) 

 

The Lagrangian parameters 𝛾𝑖 can be estimated by using Equation (6.23) to enforce constraint 

(6.15):  

 

𝑒𝛾0𝑖 = 𝑄𝑖

1

∑ exp (𝛾1𝑗 + 𝐿𝑖𝑗 + ∑ 𝜃𝑙𝑎𝑗𝑙𝑙∈ℋ )𝑗∈𝒟

 
(6.24) 

 

Equation (6.24) can be inserted into Equation (6.23) to produce the cargo distribution model: 

 

𝑄𝑖𝑗 = 𝑄𝑖Pr(𝑄𝑖𝑗); ∀ 𝑖 ∈ 𝒪, 𝑗 ∈ 𝒟 (6.25) 

 

where Pr(𝑄𝑖𝑗) is the probability of realising demand 𝑄𝑖𝑗 between cargo production zone 𝑖 ∈ 𝒪 

and consumption zone 𝑗 ∈ 𝒟: 

 

Pr(𝑄𝑖𝑗) =
exp (𝛾1𝑗 + 𝐿𝑖𝑗 + ∑ 𝜃𝑙𝑎𝑗𝑙𝑙∈ℋ ) 

∑ exp (𝛾1𝑗 + 𝐿𝑖𝑗 + ∑ 𝜃𝑙𝑎𝑗𝑙𝑙∈ℋ )𝑗∈𝒟

;  ∀ 𝑖 ∈ 𝒪, 𝑗 ∈ 𝒟 
(6.26) 
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Equation (6.26) can be generalised to allow differential degree of sensitivities of cargo 

distribution and modal distributions to changes in transport network variables such as travel 

time and costs by introducing a sensitivity parameter 0 < 𝜆𝐷 ≤ 1 into equation (6.26) as 

follows: 

 

Pr(𝑄𝑖𝑗) =
exp (𝛾1𝑗 + 𝜆𝐷𝐿𝑖𝑗 + ∑ 𝜃𝑙𝑎𝑗𝑙𝑙∈ℋ ) 

∑ exp (𝛾1𝑗 +  𝜆𝐷𝐿𝑖𝑗 + ∑ 𝜃𝑙𝑎𝑗𝑙𝑙∈ℋ )𝑗∈𝒟

 
(6.27) 

 

The parameter 𝜆𝐷 is also called the structural parameter and together with the logsums 𝐿𝑖𝑗 links 

the mode choice model developed in Chapter 5 to the cargo distribution model in (6.27) such 

that changes in the choice of mode influence the distribution of cargo whilst cargo distribution 

conditions the choice of mode through the evaluation of 𝑄𝑖𝑗. 

 

The term 𝐿𝑖  in Equation (6.28) is derived from the denominator of (6.27) and forms 

the overall accessibility of cargo origin 𝑖 ∈ 𝒪  to all available cargo destinations and can also 

represents the cargo generation power of zone 𝑖 ∈ 𝒪.  

 

𝐿𝑖  =  ln ∑ exp (𝛾1𝑗 +  𝜆𝐷𝐿𝑖𝑗 + ∑ 𝜃𝑙𝑎𝑗𝑙

𝑙∈ℋ

)

𝑗∈𝒟

  ;  ∀ 𝑖 ∈ 𝒪  
(6.28) 

 

The Lagrangian parameters 𝛾0𝑖 in Equation (6.24) can then be expressed in terms of the cargo 

generation power of each production zone 𝐿𝑖;  𝑖 ∈ 𝒪 by using Equation (6.28): 

 

𝑒𝛾0𝑖 = 𝑄𝑖𝑒
−𝐿𝑖 (6.29) 

 

The parameters 𝛾1𝑗 acts like alternative specific constants and can be estimated iteratively using 

Corollary 6.4 below. 

 

Corollary 6.4: The Lagrangian parameters 𝛾1𝑗 can be computed iteratively with the kth 

iterated values are evaluated using equation: 
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𝛾1𝑗
𝑘 = 𝛾1𝑗

𝑘−1 +  ln (
𝑄̃𝑗

𝑘−1

𝑑𝑗
)   ;  𝛾1𝑗

0 = 0; ∀ 𝑗 ∈ 𝒟; 𝑘 = 1,2, … 
(6.30) 

 

where 𝑄̃𝑗
𝑘−1

 is the total cargo attracted to destination  𝑗 ∈ 𝒟 

 

𝑄̃𝑗
𝑘−1

=  ∑ 𝑄𝑖𝑗
𝑘−1

𝑖∈𝒪

 

 

Proof 6.4: The proof follows directly from Proposition 4.6 in Chapter 4. 

 

6.4.2 Cargo production model 

The KKT conditions for a maximum ΛLCFP with respect to the cargo production variable 𝑄𝑖 

are: 

 

∑ 𝜙𝑘𝑔𝑖𝑘
𝑘∈𝒢

− 𝛾0𝑖 + 𝛾2𝑖 + 𝛾3 = 0 ; ∀  𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟   (6.31) 

 

Substituting the parameters 𝛾0𝑖  in Equation (6.29) into (6.31) and making the decision variable 

𝑄𝑖; 𝑖 ∈ 𝒪 the subject we have:  

 

𝑄𝑖 =  exp (𝛾3 + 𝛾2𝑖 + 𝐿𝑖 + ∑ 𝜙𝑘𝑔𝑖𝑘

𝑘∈𝒢

) ; ∀ 𝑖 ∈ 𝒪 

(6.32) 

 

Similar to the distribution model in (6.27), Equations (6.32) can be generalised to also allow 

for differential degree of sensitivity of cargo production, distribution and mode choice with 

respect to changes in network conditions.  This can be achieved by introducing the sensitivity 

parameter 𝜆𝐺 such that 0 < 𝜆𝐺 ≤ 𝜆𝐷 ≤ 1 into equation (6.32) as follows: 

 

𝑄𝑖 =  exp (𝛾3 + 𝛾2𝑖 +  𝜆𝐺𝐿𝑖 + ∑ 𝜙𝑘𝑔𝑖𝑘

𝑘∈𝒢

) ; ∀ 𝑖 ∈ 𝒪 

(6.33) 
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The parameters 𝛾2𝑖 are origin specific constants and can also be estimated iteratively using 

corollary 6.5 below: 

 

Corollary 6.5: The Lagrangian parameters 𝛾2𝑖 can be computed iteratively with the kth 

iterated values are evaluated using equation: 

 

𝛾2𝑖
𝑘 = 𝛾2𝑖

𝑘−1 +  ln (
𝑄̃𝑖

𝑘−1

𝑞𝑖
)   ;  𝛾2𝑖

0 = 0; ∀ 𝑖 ∈ 𝒪; 𝑘 = 1,2, … 
(6.34) 

 

where 𝑄̃𝑖
𝑘−1

 is the modelled or estimated cargo produced in zone 𝑖 ∈ 𝒪 through Equation 

(6.33) during iteration 𝑘 − 1. 

 

Proof 6.5: The proof follows directly from Proposition 4.6 in Chapter 4. 

 

Similarly, the parameter 𝛾3 can be estimated using corollary 6.6 to ensure that the estimated 

total cargo in the system equals the observed total. 

 

Corollary 6.6: The Lagrangian parameters 𝛾3 can be computed iteratively with the kth 

iterated values are evaluated using equation: 

 

𝛾3
𝑘 = 𝛾3

𝑘−1 +  ln (
𝑍̃𝑘−1

𝑍
)   ;  𝛾3

0 = 0; ∀ 𝑖 ∈ 𝒪; 𝑘 = 1,2, … 
(6.35) 

 

where 𝑍̃𝑘−1 is the modelled or estimated total cargo produced in the study area during 

iteration 𝑘 − 1 and where: 

 

𝑍̃𝑘−1 =  ∑ 𝑄𝑖
𝑘−1

𝑖∈𝒪

; 𝑘 = 1,2, … 
(6.36) 

 

Proof 6.6: The proof follows directly from Proposition 4.6 in Chapter 4. 
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6.4.3 Parameter estimation in the CFP 

Several simpler models can be derived from the models developed in (6.25) and (6.33) 

depending on the availability of data. The key ones are summarised as follows: 

 

Model I (CFP1): No available information on cargo distribution 𝑞𝑖𝑗, production 𝑞𝑖, total cargo 

in the system 𝑍 or the quantity of cargo arriving at each destination 𝑑𝑗 and no known factors 

governing the flows of cargo. In such situations, the structural parameters 𝜆𝐷 , 𝜆𝐺 can each be 

set to 1 and the Lagrangian parameters 𝜃𝑙 , 𝜙𝑘, 𝛾0𝑖, 𝛾1𝑗, 𝛾2𝑖 and 𝛾3 set to zero.  The production 

model in (6.38) and the distribution model in (6.37) will be explained by only transport network 

conditions which is expressed in terms of modal (road alone and intermodal) access to each 

destination or cargo production zone: 

 

Pr(𝑄𝑖𝑗) =
exp (𝐿𝑖𝑗) 

∑ exp (𝐿𝑖𝑗)𝑗∈𝒟

;  ∀ 𝑖 ∈ 𝒪, 𝑗 ∈ 𝒟 
(6.37) 

 

𝑄𝑖 =  exp(𝐿𝑖); ∀ 𝑖 ∈ 𝒪 (6.38) 

 

Model II (CFP2): Only information on total cargo 𝑍 in the system is available.  Here, the 

resulting cargo distribution model is the same as that under CFP1 or Equation (6.37). The 

production model accounts for the observed 𝑍 by incorporating the Lagrangian parameter 𝛾3  

in Equation (6.38). Thus, the resulting distribution models in (6.37) is explained by only 

transport network conditions whilst the production model (6.39) is expressed in terms of both 

network conditions and a constant.  

 

𝑄𝑖 =  exp(𝛾3 +  𝐿𝑖);  ∀ 𝑖 ∈ 𝒪 (6.39) 

 

Model III (CFP3): Only information on cargo production 𝑞𝑖 is available. Observing 𝑞𝑖 also 

means 𝑍 is observed since by definition 𝑍 =  ∑ 𝑄𝑖𝑖∈𝒪  . Again, the distribution model in 

Equation (6.37) remains unchanged but the production model is updated with the new 

information as Equation (6.40): 

 

𝑄𝑖 =  exp(𝛾3 + 𝛾2𝑖 +  𝜆𝐺𝐿𝑖); ∀ 𝑖 ∈ 𝒪 (6.40) 
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It can be observed that both 𝛾3 and 𝛾2𝑖 are constants so they can be combined into one constant: 

𝛾̃2𝑖 =  𝛾3 + 𝛾2𝑖.The parameter 𝛾3 can be normalised to zero (𝛾3 = 0) resulting in  𝛾̃2𝑖 =  𝛾2𝑖. 

Thus, estimating 𝛾̃2𝑖 can be treated as estimating 𝛾2𝑖. Equation (6.40) therefore simplifies to 

become: 

 

𝑄𝑖 =  exp(𝛾̃2𝑖 +  𝜆𝐺𝐿𝑖); ∀ 𝑖 ∈ 𝒪 (6.41) 

 

Model IV (CFP4): Available data on cargo production in each zone 𝑞𝑖 with information on 

production factors 𝒢. Again, observing 𝑞𝑖 also means 𝑍 is observed since by definition 𝑍 =

 ∑ 𝑄𝑖𝑖∈𝒪 . The distribution model is the same as that of CFP4 or Equation (6.37). The resulting 

production model becomes: 

 

𝑄𝑖 =  exp (𝛾̃2𝑖 + 𝜆𝐺𝐿𝑖 + ∑ 𝜙𝑘𝑔𝑖𝑘

𝑘∈𝒢

) ; ∀ 𝑖 ∈ 𝒪 

(6.42) 

 

The parameters 𝜆𝐺 , 𝜙𝑘 in the model can be estimated using Poisson quasi-maximum likelihood 

estimator (QMLE) (Cameron and Trivedi 2013) and the 𝛾̃2𝑖 estimate the same way as in CFP3. 

 

Model V (CFP5): Only information regarding the quantity of cargo arriving at each destination 

𝑑𝑗 are available. Knowing 𝑑𝑗 also implies that 𝑍 is known. The resulting production model is 

same as Equation (6.39) under CFP2. The distribution model in (6.27) with 𝜆𝐷 = 1 reduces to:  

 

Pr(𝑄𝑖𝑗) =
exp (𝛾1𝑗 + 𝐿𝑖𝑗) 

∑ exp (𝛾1𝑗 +  𝐿𝑖𝑗)𝑗∈𝒟

 
(6.43) 

 

The estimation of the parameters 𝛾1𝑗 were described under Corollary 6.4.  

 

Model VI (CFP6): Available data on the quantity of cargo arriving at each destination 𝑑𝑗 and 

information on distribution factors ℋ. The resulting production model is the same as Equation 

(6.39) under CFP2. The distribution model in (6.27) with 𝜆𝐷 = 1 reduces to:  
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Pr(𝑄𝑖𝑗) =
exp (𝛾1𝑗 + 𝐿𝑖𝑗 + ∑ 𝜃𝑙𝑎𝑗𝑙𝑙∈ℋ ) 

∑ exp (𝛾1𝑗 +  𝐿𝑖𝑗 + ∑ 𝜃𝑙𝑎𝑗𝑙𝑙∈ℋ )𝑗∈𝒟

 
(6.44) 

 

The parameters 𝜃𝑙  representing the weight or importance associated with each attraction 

parameter 𝑙 ∈ ℋ and can be estimated by enforcing constraint (6.13):  

 

𝑓(𝜃𝑙) = ∑ ∑ 𝑄𝑖𝑗𝑎𝑗𝑙

𝑖∈𝒪𝑗∈𝒟

−  𝐴𝑙 = 0; ∀ 𝑙 ∈ ℋ 
 

or 

 

𝑓(𝜃𝑙) = ∑ ∑ 𝑄𝑖 (
exp (𝛾1𝑗 + 𝐿𝑖𝑗 + ∑ 𝜃𝑙𝑎𝑗𝑙𝑙∈ℋ ) 

∑ exp (𝛾1𝑗 +  𝐿𝑖𝑗 + ∑ 𝜃𝑙𝑎𝑗𝑙𝑙∈ℋ )𝑗∈𝒟

) 𝑎𝑗𝑙

𝑖∈𝒪𝑗∈𝒟

− 𝐴𝑙 = 0; ∀ 𝑙 ∈ ℋ 
(6.45) 

 

The functions 𝑓(𝜃𝑙) are continuous and differentiable with respect to 𝜃𝑙  and can be optimised 

using Newton Raphson’s or Hyman (1969) methods to estimate 𝜃𝑙. Several numerical 

examples show that Hyman method is more computational efficient and stable.  

 

Model VII (CFP7): Available data on the quantity of cargo distributed between zones 𝑞𝑖𝑗  with 

available information on production 𝒢 and distribution factors ℋ. Knowing 𝑞𝑖𝑗 means 𝑑𝑗, 𝑞𝑖 

and 𝑍 are known. The resulting models could be considered as full information models. The 

resulting production model is Equation (6.33) and the distribution model is Equation (6.27). 

The parameters in these models can be estimated using maximum likelihood estimator (MLE) 

or the Poisson quasi-MLE (QMLE) or other appropriate estimators such as Bayesian. The 

estimated parameters include the structural parameters 𝜆𝐷 , 𝜆𝐺 .   

 

Table 6.1 provides a summary of the above seven production and distribution models. 

As shown in Table 6.1 other combinations of production and distribution models can also be 

achieved depending on data availability. 

 

 



   

  167 

 

Table 6.1: Summary of cargo production and distribution models 

 Data 

availability 

Production model Distribution model Comments 

1 No information 

and cargo 

production, 

distribution and 

total cargo in the 

system 

𝑄𝑖 =  exp(𝐿𝑖) 
𝑄𝑖𝑗 = 𝑄𝑖

exp (𝐿𝑖𝑗) 

∑ exp (𝐿𝑖𝑗)𝑗∈𝒟

 
Car production 

and distribution 

models expressed 

in terms of only 

transport network 

variables 

2 Only information 

on total cargo 𝑍 in 

the system is 

available 

𝑄𝑖 =  exp(𝛾3 +  𝐿𝑖) 
𝑄𝑖𝑗 = 𝑄𝑖

exp (𝐿𝑖𝑗) 

∑ exp (𝐿𝑖𝑗)𝑗∈𝒟

 
Same as (1) but 

with a production 

constant to ensure 

that the total cargo 

estimated equals 

the observed. 

3 Only information 

on cargo 

production in each 

zone 𝑞𝑖 is 

available 

𝑄𝑖 =  exp(𝛾̃2𝑖 + 𝜆𝐺𝐿𝑖) 
𝑄𝑖𝑗 = 𝑄𝑖

exp (𝐿𝑖𝑗) 

∑ exp (𝐿𝑖𝑗)𝑗∈𝒟

 
Same as (2) but 

with a production 

constant for each 

production zone 

4 Available data on 

cargo production 

in each zone 𝑞𝑖 

with information 

on production 

factors 𝒢. 

𝑄𝑖 =  exp (𝛾̃2𝑖 + 𝜆𝐺𝐿𝑖 + ∑ 𝜙𝑘𝑔𝑖𝑘

𝑘∈𝒢

) 
𝑄𝑖𝑗 = 𝑄𝑖

exp (𝐿𝑖𝑗) 

∑ exp (𝐿𝑖𝑗)𝑗∈𝒟

 
Same as (3) in 

addition to 

variables 

explaining the 

production of 

cargo in each zone 

5 Only information 

regarding the 

quantity of cargo 

arriving at each 

destination 𝑑𝑗 are 

available 

𝑄𝑖 =  exp(𝛾3 +  𝐿𝑖) 
𝑄𝑖𝑗 = 𝑄𝑖

exp (𝛾1𝑗 + 𝐿𝑖𝑗) 

∑ exp (𝛾1𝑗 + 𝐿𝑖𝑗)𝑗∈𝒟

 
Same as (2) in 

addition to 

attraction constant 

for each cargo 

destination zone 

6 Available data on 

the quantity of 

cargo arriving at 

each destination 𝑑𝑗 

and information on 

distribution factors 

ℋ 

𝑄𝑖 =  exp(𝛾3 +  𝐿𝑖) 
𝑄𝑖𝑗 = 𝑄𝑖

exp (𝛾1𝑗 + 𝐿𝑖𝑗 + ∑ 𝜃𝑙𝑎𝑗𝑙𝑙∈ℋ ) 

∑ exp (𝛾1𝑗 + 𝐿𝑖𝑗 + ∑ 𝜃𝑙𝑎𝑗𝑙𝑙∈ℋ )𝑗∈𝒟

 
Same as (5) in 

addition to 

variables 

explaining the 

attraction of cargo 

to each destination 

zone 

7 Full information 

available 𝑄𝑖 =  exp (𝛾̃2𝑖 + 𝜆𝐺𝐿𝑖 + ∑ 𝜙𝑘𝑔𝑖𝑘

𝑘∈𝒢

) 
𝑄𝑖𝑗 = 𝑄𝑖

exp (𝛾1𝑗 + 𝐿𝑖𝑗 + ∑ 𝜃𝑙𝑎𝑗𝑙𝑙∈ℋ ) 

∑ exp (𝛾1𝑗 + 𝐿𝑖𝑗 + ∑ 𝜃𝑙𝑎𝑗𝑙𝑙∈ℋ )𝑗∈𝒟

 
Full behavioural 

production and 

consumption 

models 
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It has been demonstrated that the CFP can be reduced to several models depending on 

the availability of data. The CFP model comprises the mode choice problem (MCP), the 

variable cargo demand problem (VDP), which consists of the cargo production problem (CPP) 

and the cargo distribution problem (CDP). The MCP was discussed in Chapter 5 and was 

shown to be governed by the cost sensitivity parameter 𝛽 and the IMT capacity constraint 

parameters 𝜓𝑡. The parameters governing the CDP and the CPP have been discussed above 

and the estimation of these parameters depends on data availability.  As shown above the 

parameters in the CFP are inter-dependent, where the evaluated value of one is required to 

solve the other. The modified Bregman’s algorithm (A1) used in Chapter 4 for estimating the 

parameters in the MCP is expanded to include the estimation of parameters in the distribution 

and production problems. The expanded Bregman's algorithm for solving the CFP is presented 

as algorithm A4. This algorithm will also prove useful in the model application stage.  

 

Algorithm A4: Modified Bregman’s algorithm for solving the CFP  

1. Initialisation:     

For a given set of located IMTs  𝒦 with size 𝑝  and starting cost sensitivity parameter 𝛽 =  
1

𝑐̅
 , where 𝑐 ̅can 

be the average transport budget and 𝜓𝑡 = 0; ∀ 𝑡 ∈ 𝒦, 𝜆𝐷 =  𝜆𝐺 = 1, 𝛾3 = 0,  𝛾2𝑖 = 0; ∀ 𝑖 ∈ 𝒪 and 𝛾1𝑗 =

0; ∀𝑗 ∈ 𝒟 

2. Logsums Update 

2.1 Update logsums over all located IMTs ℓ𝑖𝑗 using Equation (5.28) in Chapter 5 

2.2 Update the logsums 𝐿𝑖𝑗  over all transport modes using Equation (5.30) in Chapter 5 

2.3 Estimate the parameters in the CDP depending on the choice of distribution model (CFP1 to CFP7) 

2.4 Update the associated logsums 𝐿𝑖 over all destination zones using Equation (6.28)  

2.5 Estimate the parameters in the CPP depending on the choice of production model (CFP1 to CFP7) 

3. Flows Update   

3.1 Update the quantity of cargo produced in each origin zone depending on the choice of production 

model (CFP1 to CFP7)  

3.2 Update the distribution of cargo between zones depending on the choice of production model (CFP1 

to CFP7) together with Equation (6.25). 

3.3 Update the demand for each mode; 𝑋𝑖𝑗 , 𝑉𝑖𝑡𝑗 , 𝑊𝑖𝑠𝑡𝑗  using Equations (5.25), (5.24) and (5.23) 

respectively in Chapter 5.   

3.4 Update the demand for the located terminals using intermodal transport demands 𝑉𝑖𝑡𝑗 , 𝑊𝑖𝑠𝑡𝑗 or 

Equation (5.22b) in Chapter 5.  

4. Update model parameters 

4.1.  Update 𝛽  from equation (5.36) using Newton Raphson or Hyman’s method (Hyman 1969)  

5. Update capacity constraints parameters 
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5.1.  Update capacity constraint parameters associated with the CPP; 𝛾3 or 𝛾2𝑖  

5.2.  Update capacity constraint parameters associated with the CDP; 𝛾1𝑗 

5.3.  Update the Lagrangian multipliers 𝜓𝑡; ∀ 𝑡 ∈ 𝒦 for IMT capacity constraints  

6. Repeat steps (2)-(5) until convergence is achieved. 

 

6.4.4 Connecting the solutions of FLP and CFP  

It has been demonstrated that once the original problem is decomposed into FLP and CFP, each 

sub-problem can be solved to optimality given the required inputs from the other. Algorithm 

A4 for solving the CFP can be embedded in the exact algorithm (A2) (complete enumeration) 

and the heuristic algorithm (A3) (entropic greedy) developed in Chapter 5 to solve the overall 

problem, where in each case algorithm A1 for solving the MCP is replaced with algorithm A4 

for solving the CFP. The running time of both algorithms (A2 and A4) was shown to be 

dominated by the running time of the algorithm A4 for the CFP. Algorithm (A2) guarantees an 

optimal solution for all instances that are computational feasible. However, it is not suitable to 

solve large problem instances, especially problems involving regional intermodal transport use. 

Algorithm (A3) on the other hand does not guarantee an optimal solution for all problem 

instances but was shown to be computational very efficient for solving large problem instances. 

The solution quality of this algorithm was shown in Chapter 5 to be very good and comparable 

to that of Algorithm A2. 

 

6.5 Model application 

Once the best locations of the IMTs are determined, the coded transport network can be updated 

with the new located IMTs. The revised network then goes into the application version of the 

CFP called the cargo flow model (CFM) for forecasting future terminal demands and testing 

of various policies. The operation of CFM comprises only a few steps of algorithm A4 since at 

this stage the location of the required number of terminals to develop are known and comprises 

step 2 (only 2.1, 2.2 and 2.4 are required), step 3, and step 5.3. Step 5.3 is only required if a 

located terminal reached its handling capacity when forecasting or testing policies.  

 

The operation of CFM as shown in Figure 6.1 works as follows; It first extracts 

transport variables from the revised network to compute the cost of intermodal transports and 

road direct transport. These cost variables go into the terminals choice model (TCM) where 

accessibilities (logsum) to intermodal transport variables are computed. These accessibility 
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measures go into the mode choice model (MCM) where the access to multiple modes of 

transport variable are computed, which in turn go into the cargo distribution model (CDM) as 

variables. The CDM combines the accessibility variables with other destination specific 

variables to construct cargo origin logsums or cargo generation power for each cargo origin 

and go up the tree into the cargo production model (CPM) as additional variable.  

 

Once the CPM received the logsums from the CDM, it computes the quantity of cargo 

produced in each origin zone. The cargo produced are distributed to their various consumption 

or destination zones by the CDM. The output from the CDM go into the MCM to determine 

the contribution of each mode (road alone and intermodal transport) in moving cargo from their 

production zones to their consumption zones. The TCM then takes the demand for intermodal 

transport to determine the demand or usage of each located terminal. At this stage, the quantity 

of cargo (in TEUs) produced by each origin zone, distribution of cargo in the study area, the 

contribution of each mode in the transport task and the usage of each located terminal are 

known.  

 

Changes in transport (road) network conditions due to the terminals can be captured by 

linking the CFM with transport network models, which form the supply side of transport as 

shown in Figure 6.2. This supply-demand loop is important for general traffic impacts 

assessments and to ascertain if the road network around the located terminals have enough 

capacity to handle the extra traffic that the terminals will bring. It will also be helpful to 

ascertain if the located terminals help to solve congestion or general traffic problems in the 

study area, especially around the port. The operation of the supply-demand loop is shown in 

Figure 6.2, where the outputs from the CFM is first converted into trip matrices for assignment. 

These matrices can be combined with non-containerised vehicle (buses, cars, etc.) trip matrices 

and assigned to the road network. For example, the truck legs of intermodal transport chain can 

be combined with trip matrices from road alone transport to form the containerised trip 

matrices. The non-containerised trip matrices can be assumed to come from the existing 

transport model of the study area with suitable traffic assignment models (Bliemer et al. 2017; 

Bliemer et al. 2014; Bell 1995). 

 

The combined matrices form the demand side of transport and are made to interact with 

the supply side of transport by assigning them to the transport network. The assignments may 

alter the conditions of the road network, for example in terms of changes in the time it takes by 
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each mode to move cargo from one location to another on the network. Changes in network 

conditions can be feedback into the CFM to produce a new set of matrices. The model is 

therefore, iterative and is iterated until the supply (assignment)-demand (matrices) equilibrium 

(convergence) is achieved. The network changes going into the CFM could induce changes in 

the usage of the located terminals, the share of each mode in the transport tasks and the 

production and distributions of cargo in the study area. 
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Figure 6.1: Cargo flow model (CFM) architecture 

Figure 6.2: Demand-supply loop 
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6.6 Conclusions  

This chapter deals with incorporating variable cargo demand in the entropy framework. Two 

methods were proposed for developing these models as constraints within the entropy 

framework; Poison method and weighted mean method. It was shown that the Poison method 

is a special case of the weighted mean method. For each method, two linked models were 

developed and incorporated; the cargo production model and cargo distribution model. Based 

on data availability, several special cases of the combined model (production and distribution 

models) were also investigated and how each can be solved to optimality were discussed. The 

overall problem was solved by adapting the complete enumeration algorithm for small 

instances or the heuristic algorithm for larger problem instances. Finally, the study provided 

practical ways of implementing the models in practice.  
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Chapter 7 Case study 

 

 

 

 

 

 

7.1 Background 

The primary objective of this chapter is to apply the models developed in the previous chapters 

to a real transport network and actual freight demand in the study area. The study area is the 

Sydney Greater Metropolitan Area (GMA), Australia. General geographical and demographic 

characteristics of the Sydney GMA and its transport network are provided together with data 

used for the modelling exercise. The data were used to build the entropy maximising facility 

location model suitable for appraising the viability of terminals in Sydney GMA and quantify 

shippers’ responses to the located intermodal terminal(s). Once the best location(s) of the 

required number of terminals are determined, they are then coded in the transport network for 

forecasting and testing of various policies using the forecasting version of the model described 

in Chapter 6. The model can be used to examine the efficacy of alternative intermodal terminals 

in Sydney GMA and the sensitivity of the results to alternative assumptions about terminal user 

fee, rail and road transport costs and other drivers of cargo distribution and terminal usage.  

 

The rest of the chapter is organised follows; Section 7.2 presents the detail description 

of the study area followed by analysis of relevant data. The methodological framework and 

construction of model variables are presented in Section 7.3. Analysis of results including 

locations analysis, sensitivity testing and policy testing are presented in Section 7.4. Finally, 

the conclusions are presented in Section 7.5.  

 

7.2 Data 

Data collected for this empirical exercise came from several sources and includes import 

containerised data and their distribution in the Sydney GMA, congested road network data, 

cost data, candidate intermodal container terminals and land use data. Section 7.2.1 provides a 

detail description of the study area. Analysis of import container and their distribution in study 

area together with candidate intermodal terminal locations and features are presented in Section 
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7.2.2. Section 7.2.3 discusses the transport network data required for the construction of cost 

variables and analysis of land use data required for the production and distributions models is 

presented in Section 7.2.4. 

 

7.2.1 Sydney greater metropolitan area 

The study area for the case study is defined to cover the whole of Sydney GMA in Australia 

(see Figure 7.1). The study area is divided into freight analysis zones where cargo can be seen 

as coming from one zone and destined to another zone as shown in Figure 7.2. The zones are 

connected together with a computer description of the existing road and rail networks at the 

level of detail appropriate to the zone system. The transport network constitutes the supply of 

transport and includes the geographical locations of the intermodal terminals while the 

movements of cargo between the zones and the type of modes used in the transport tasks 

constitute the demand for transport. The interactions between demand and supply forms the 

economic foundation of the proposed entropy maximising facility location model, described in 

detail in Section 7.3.2.     

  

The study area was divided into 80 cargo destination zones in addition to the special 

zones designed for candidate IMT locations. These zones correspond to the Statistical local 

area (SLA), which is an Australian Standard Geographical Classification (ASGC) defined area 

and consists of one or more Collection Districts (CDs). SLAs cover, in aggregate, the whole of 

Australia without gaps or overlaps (ABS 2001). The CDs are the basic building block of ASGC 

and designed for use in the Census of Population and Housing as the smallest unit for 

collection, processing and output of data (ABS 2001). The zone system also corresponds to the 

zone system for the MetroScan-TI model (see Section 7.2.2), which provided transport network 

data in terms of congested travel times and distances by mode in the study area. Figure 7.3 

explores the relationship between population size (Australian Bureau of Statistics) and quantity 

of cargo destined to each SLA. As would be expected areas with large population generally 

attract less cargo than those with small population. The added advantage of adopting this zone 

system is that released public data such as data on population, job, and other business and 

industry data relevant for modelling do not have to be altered, effectively, eliminating errors 

associated aggregation and disaggregation of these type of data. It also makes it easier to 

interpret model results as they can directly be linked to known or tangible features in the study 

area.  
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Figure 7.1: Geographical location of Sydney GMA within Australia 

 

Figure 7.2 : Cargo destinations zones and delivery postcodes 
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Figure 7.3 : Log-log relationship between cargo destination and population size 

 

7.2.2 Import container flows and candidate IMTs 

This section presents sources and descriptive statistics of the main data used for the modelling 

exercise; import containers and their distribution in the study area and candidate intermodal 

terminals and features. The data on import containers and their delivery postcodes within the 

study area were obtained from Australian Bureau of Statistics (ABS 2011). As shown in Figure 

7.4 a total of about 0.83 million TEUs of cargo were imported in 2009-2010 out of which about 

0.73 million TEUs representing about 88% were destined to the Sydney GMA (the study area).  

The distribution of the imported cargo to their reported postcodes are shown in Figure 7.2, 

where most of the cargo are concentrated within a 50kilometer radius of the port. The 

concentration of flows has contributed to the current congestion and associated problems 

especially around the seaport as most of the imported cargo (about 86%) are transported by 

road (Shipping Australia 2011).  The brighter side of this concentration of cargo is that it makes 

intermodal transport option more promising as flows can be consolidated at a terminal away 

from congested areas and then distributed locally. The location of the terminal provides the 

opportunity to use more sustainable modes like rail for the movements of cargo between the 

port and the terminal.  
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Figure 7.4 : Share of imported cargo to the study area 

 

For the modelling exercise, the distribution of cargo are required at the study zone level 

rather than at the postcode level. Using the QGIS5 tool each postcode was assigned to a zone, 

and the cargo flows aggregated to the zonal level. The geographical distribution of the 

aggregated flows at the zonal level and key cargo destinations are shown in Figures 7.2 and 

7.5. The size of the ball in Figure 7.5 corresponds to the quantity of cargo assigned to that zone. 

For example, Blacktown comprises three study zones and together contributed about 13% of 

the total imported cargo destined to the study area, followed by Fairfield with a 10% share. The 

candidate IMTs with their fixed cost and handling capacities in Table 7.1 were derived from 

the national intermodal study, Australia (Meyrick 2006) and can also be found in (Piyatrapoom 

et al. 2006). The geographical locations of the 9 candidate IMTs and given names are shown 

in Figure 7.6 and were recommended by a national study (Meyrick 2006). The choice of the 

locations was influenced by their proximity to the rail and major road networks and in this case 

study, all candidate terminals are assumed to have access to the rail network. The national study 

reported a total annual cost (including capital and operations costs) of $5,053,688 for a terminal 

with a handling capacity of 150,000 TEU per annum. This equates to about $34 per TEU. For 

simplicity, all candidate terminals were assumed to have these features. 
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Table 7.1: IMT features 

ID Names 

Capital and operational cost 

($ per year) 

Handling capacity 

(TEUs per year) 

1 Enfield 5,053,688 150,000 

2 Yennora 5,053,688 150,000 

3 Camellia 5,053,688 150,000 

4 Eastern Creek 5,053,688 150,000 

5 Moorebank 5,053,688 150,000 

6 Ingleburn 5,053,688 150,000 

7 Minto 5,053,688 150,000 

8 Villawood 5,053,688 150,000 

9 Chullora 5,053,688 150,000 

 

 

   

Figure 7.5 : Key cargo destinations 
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Figure 7.6 : Geographical locations of candidate IMTs and names 

 

7.2.3 Transport cost variables 

Transport variables such as travel times and distances between the study zones were obtained 

from the MetroScan-TI model. MetroScan-TI is a land use, transport and environment strategy 

and metropolitan infrastructure scanning tool that encompasses all modes of transport and is 

developed by ITLS, University of Sydney (Ellison et al. 2017). To the best knowledge of the 

author, it is the only model in the study area that allows the interactions between passenger 

modes and freights modes on the road network. This makes it suitable for providing reliable 

transport network variables such as congested travel times and distances, which are in turn used 

to construct the cost of container movements from the port to the various study zones and also 

between candidate intermodal terminals and final container destinations. Figure 7.7 reveals the 

inverse relationship between truck travel times extracted from the MetroScan-TI model and 

cargo flows (TEUs). As expected, on average the farther a freight analysis zone is from the 

port the less cargo it attracts and vice versa. The variable ln(TEUs) on the y-axis of Figure 7.7 

represents the natural logarithm of the total quantity of cargo (TEUs) destined to each zone. 
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Figure 7.7 : Relationship between Cargo destinations and Travel time 

 

7.2.4 Land use data  

Land use data at the zonal level includes data on employment by industry and occupation from 

the Australian Bureau of Statistics (ABS) business counts by both employment and revenue, 

and land-use data derived from ABS meshblock data. All these data are available at the SLA-

level required by the model and so need no further aggregation or disaggregation. Several land 

use data were analysed during the study but two emerged very strongly with respect to 

explaining the distribution of cargo in the study area; number of employees in manufacturing 

jobs and the number of employees in warehousing and storage activities. The strong 

relationships between these variables and cargo attraction (in TEUS) to each zone are shown 

in Figures 7.8. and 7.9. Figures 7.8 and 7.9 reveal log-log relationship between cargo destined 

to a zone and the number of employees in manufacturing, and warehousing and storage in that 

zone respectively. In general, the figures show that areas with high manufacturing and/or 

warehousing and storage jobs attracts more imported cargo and vice versa.   
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Figure 7.8 : Cargo attraction and access to manufacturing activities 

 

 

Figure 7.9 : Cargo attraction and access to warehousing and storage activities 

 

7.2.5 Cost of container movements in Sydney GMA 

The monetary costs of moving containers from the port to sample cargo destinations in Sydney 

GMA by truck were available in 2001 and shown in Table 7.2 below. This data provides a vital 

relationship between the cost of container movements by truck and network travel times and/or 

distances. These data were obtained from Access economics (2003) and available online.  
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Three separate regression models were investigated to gauge the best relationship 

between the cost of truck movements and transport variables. The transport variables 

investigated are travel time (min), distance (km) and generalised time (min). The generalised 

time (min) is a linear combination of time and distance expressed in time units, where the 

distance is converted into time unit by multiplying it by the ratio of vehicle operating cost ($ 

per km) and driver’s value of time savings ($ per min). The three models are presented in Table 

7.3, where model 2 (using time as transport variable) emerged as the statistical favourite. The 

results support the notion that urban congestion (expressed in travel times) is one of the main 

drivers of intermodal transport use. Thus, the decision on which mode of transport to use 

depend, in part, on how congested the transport system is and where the congested points are. 

The estimated parameters in model 2 with a fixed cost of $163.52 per TEU and a variable cost 

of $1.84 per TEU per minute were therefore carried forward in computing the monetary of 

truck movement between any points on the network. Sydney freight council (SFC 2007) 

reported the cost of rail to Sydney GMA to be between $80-$100. Similar range of values were 

reported in IPART (2007) and Shipping Australia (2011). The cost of $100 was carried forward 

and used in the modelling exercise and was assumed to be the cost of rail to each candidate 

IMT followed by some sensitivity analysis about this value during forecasting and policy 

testing.  

 

Table 7.2: Cost of cargo movements by trucks (2001-2002) 

Sample destinations 

Distance 

(km, 1-way) 

Travel time 

(min, 1-way) 

Fare  

($ per TEU) 

Botany 1 2 160 

City and Eastern Suburbs 11 20 200 

South Sydney 15 22 200 

Southern Suburbs 15 22 200 

Inner West 21 32 220 

Liverpool 32 40 230 

South West 53 47 250 

Central West 34 45 250 

Industrial West 43 46 250 

Blacktown 46 44 250 

North Shore 30 42 250 

Penrith 63 62 280 

NW Sydney 37 59 280 

Wollongong PO 84 84 320 

Newcastle PO 172 154 440 
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Table 7.3: Estimation of truck cost parameters 

 
Model 1 Model 2 Model 3 

Variables Coefficient t-stats Coefficient t stat Coefficient t stat 

Fixed cost ($) 184.97 
 

163.52 
 

169.60 
 

t-stats 
 

31 
 

67 
 

49 

       
Distance (Km) 1.53 

     
t-stats 

 
15 

    

       
Travel time (min) 

  
1.84 

   
t-stats 

   
44 

  

       
Generalised time (min) 

   
1.28 

 
t-stats 

     
30 

Parameters 2 2 2 

No of observations 13 13 13 

R Square 94.53% 99.34% 98.56% 

Adjusted R Square 94.11% 99.29% 98.45% 

 

 

7.3 Methodology  

7.3.1 Background 

The various data assembled for the modelling exercise came from various sources and collected 

or derived at different time periods. The import cargo distribution data was collected in 

2009/10, land use data were available in 2011, the transport network data such as travel time 

and distances were obtained from the 2011 base year MetroScan-TI model. The parameters 

governing the cost of truck and rail modes were available in 2001 and 2006 respectively. The 

study adopted 2011 as the modelled year, the unit of analysis is TEU and the modelling time 

horizon is one year. The one year modelled period was adopted to fully capture seasonality and 

other variations in cargo flows over the year.  This required all data to be converted to 2011. 

The following assumptions were used to do the conversions: 

 

1. The import cargo flows in 2009/10 were converted to 2011 using total import cargo in 2011 

and assuming that the proportion or distribution of cargo to various destinations in Sydney 

GMA in 2009/2010 is unchanged in 2011. Thus, if 13% of imported cargo are destined to 

say Blacktown in 2009/10, we expect Blacktown to capture the same 13% in 2011. The 

data for 2011 import cargo were obtained from ABS (2011).  
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2. The fixed and variable cost of using truck (see Table 7.3) were adjusted by a factor of 1.33 

(price adjustment from 2001 to 2011). This factor was accessed from the website of the 

Reserve Bank of Australia (www.rba.gov.au/calculator).   

 

3. The $100 cost of rail in 2006 was also converted to 2011 by a scale factor of 1.16 also 

derived from the Reserve Bank of Australia. 

 

4. The other data sets such as land use and transport network variables were already in 2011 

and needed no conversion.  

 

7.3.2 Model structure and assumptions 

The structure of the model adopted for the empirical exercise is a reduced version of the general 

structure discussed in Section 6.5. In particular, only the metropolitan containerised market is 

considered (see Chapter 4) and the use of import cargo data obviate the need for the cargo 

production model at least for the base year. The two transport modes available for the transport 

tasks in this market are the road alone and metropolitan intermodal transport (see Chapter 4). 

The overall problem comprises linked facility location problem for determining the best 

locations of terminals in the Sydney GMA, and the CFP which determines the usage of the 

located terminals. Here, the CFP comprises the variable cargo demand problem (VDP) and the 

mode choice problem (MCP). The solution to the CFP called the cargo flow model (CFM) is 

converted into a three-level nested logit model of cargo distribution model (CDM), the mode 

choice model (MCM) and the terminal choice model (TCM) as shown in Figure 7.10 and 

carried forward in forecasting and testing of various policies to promote the use of the located 

terminals. Additionally, the forecasting model (CFM) is not linked to the transport network so 

there is no looping between demand and supply. The implementation of the demand-supply 

was considered outside the scope of this study and for this study, only one terminal is required 

to be located in the Sydney GMA. 

 

 

 

 

 

 

http://www.rba.gov.au/calculator
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7.3.3 Factors governing the mode choice model 

The choice of mode is governed by the generalised cost incurred in the use of the mode and the 

transport budget. The cost of using truck between any two points on the network is expressed 

as: 

 

𝑐𝑖𝑗 = 𝑐0 +  𝜌𝑡𝑖𝑗;  ∀  𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟   (7.1) 

 

where 𝑐0 is the estimated fixed cost, which in 2011 prices is $217.54 per TEU, and 𝜌 is the 

variables cost, estimated to be $2.50 per TEU per minute and 𝑡𝑖𝑗 is the truck travel time between 

locations 𝑖 and 𝑗 on the network.  Similarly, the total cost of intermodal transport is  

 

𝑐𝑖𝑡𝑗 = 𝑐𝑖𝑡 + 𝑐𝑡 +  𝑐𝑡𝑗;  ∀  𝑖 ∈ 𝒪; 𝑗 ∈ 𝒟, 𝑡 ∈ 𝒯  (7.2) 

 

𝑐𝑖𝑡𝑗 is the cost of rail and was fixed at $116.00 at 2011 prices, 𝑐𝑡 is the transfer or terminal user 

fee and since values of this variable are the same across candidate terminals it was set to zero 

during the location analysis. The optimal value to charge to attain the highest revenue was later 
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Figure 7.10 : Forecasting model architecture 
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determined through optimal fee analysis. 𝑐𝑡𝑗 is the truck cost for final delivery and takes the 

form of Equation (7.1). 

 

In computing the transport budget, the study assumes that shippers individually would 

not choose to increase their transport costs because a new IMT becomes available, so they 

would not do so collectively. It seems reasonable to therefore use the existing average transport 

cost of the study area (cost of road alone transport) to compute the budget. The total transport 

cost in the study area in absence of intermodal transport can be computed using: 

 

𝑐 =  ∑ ∑ 𝑐𝑖𝑗𝑞𝑖𝑗

𝑗∈𝐷𝑖∈𝑂

 
(7.3) 

 

7.3.4 Factors governing the distribution of import cargo 

The cargo distribution model is explained by four main variables: natural logarithm of the 

number of employees (labourers) in manufacturing as a proxy to access to manufacturing 

businesses and agglomeration; the natural logarithm of number of people employed in 

warehousing and storage industry, which is expected to quantify the benefits of performing 

warehousing activities at the located IMTs. The third variable (accessibility) captures access to 

key markets which in this study were identified as zones in the two main central business 

districts (Sydney and Parramatta) with set Ξ representing the collection of zones in these 

markets. The fourth variable is the logsum from the mode choice model as a measure of access 

to multiple modes of transport and composed of both road and intermodal accessibility 

measures.  The access to key markets variables (third variable) were constructed as: 

 

𝐴𝑐𝑐𝑒𝑠𝑠𝑗 = ln ( ∑ 𝑒−𝛽𝑐𝑗𝑚

𝑚∈Ξ 

) 

 

where 𝑐𝑗𝑚 is the cost ($ per TEU) of using road alone transport between the cargo destination 

zone 𝑗 and a key market zone 𝑚 ∈ Ξ .  
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7.4 Analysis of Results  

7.4.1 Estimated parameters  

The analysis first considered the sensitivity of modal decisions to changes in the generalised 

costs of each mode.  The estimated cost sensitivity parameters for the location of each candidate 

IMT in turn are shown Table 7.4 and Figure 7.11. The figure reveals different degrees of 

sensitivities depending on the location choice of each IMT with Eastern creek emerging as the 

location least sensitive to changes in generalised cost and Moorebank as the most sensitive 

location with cost sensitivity parameter of 0.2009. An important outcome for this result is that 

even within the same study area (Sydney GMA) the cost of freight transport could be valued 

differently depending on the locations of terminals. The corresponding estimated parameters 

for the distribution model are presented in Table 7.4. As expected the weight or importance of 

the two accessibility variables (access to key markets and modal access) increases with 

decreasing sensitivity to modal costs. This inverse relationship makes Eastern Creek the 

location with the greatest access to the key cargo markets (Sydney and Paramatta) and provides 

the greatest modal access to cargo destinations. Eastern Creek also has the greatest access to 

manufacturing activities. The location of IMT at Eastern Creek makes cargo distribution most 

sensitive to jobs in manufacturing and least sensitive to jobs in warehousing and storage 

compared with other candidate locations. For example, if Eastern Creek IMT is opened, a 1% 

increase in the number of manufacturing jobs (or warehousing and storage jobs) in a zone will 

increase the quantity of cargo attracted to that zone by about 0.91% (or 0.33%) compared with 

0.89% (or 0.38%) increase if Moorebank was opened instead. Similar analysis can be made for 

the other candidate IMT locations.  

 

Table 7.4: Estimated factors governing mode and cargo distribution (ordered by 

decreasing entropy) 

ID IMTs Entropy 

Demand 

(TEUs) 

Cost 

sensitivity 

(Beta) 

Access to 

manufacturing 

Access to 

warehousing 

and storage 

Access to 

key 

markets 

Modal 

access 

4 Eastern Creek 3,983,884 170,857 0.0206 0.9079 0.3305 0.4116 0.1003 

3 Camellia 3,006,532 159,981 0.0425 0.8902 0.3507 0.2521 0.0186 

6 Ingleburn 1,538,224 51,862 0.0434 0.8905 0.3508 0.2484 0.0176 

7 Minto 1,487,379 50,454 0.0439 0.8903 0.3511 0.2459 0.0170 

1 Enfield 136,763 1,287 0.1125 0.8876 0.3687 0.1028 0.0021 

9 Chullora 250,046 2,102 0.1223 0.8878 0.3699 0.0945 0.0018 

8 Villawood 594,263 10,419 0.1824 0.8878 0.3747 0.0635 0.0011 

2 Yennora 986,043 61,337 0.1872 0.8879 0.3750 0.0618 0.0011 

5 Moorebank 228,098 7,660 0.2009 0.8877 0.3757 0.0577 0.0010 
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Figure 7.11 : Cost sensitivity parameter associated with each candidate IMT 

 

7.4.2 Selecting the best IMT location 

The previous section identified the key factors governing the mode choice and distribution 

model and how the location decisions of intermodal terminals influence the magnitude or 

impacts of these factors on modal decisions and cargo distributions. This section finds the most 

promising location among the candidate IMT locations. The selection criterion is maximum 

entropy which based on Proposition 4.7, the IMT with the maximum entropy is also the location 

which provides the largest consumer surplus or welfares for users. The results for the location 

of one IMT is presented in Table 7.4 and Figure 7.12. The table shows that the location that 

generates the largest consumer surplus also attracted the largest cargo demand and this location 

is Eastern Creek. Camellia is also very promising and closely follows Eastern Creek both in 

terms of consumer surplus and demand.  

 

The distribution of demands of each candidate IMT location in shown in Figure 7.12 

with Enfield being the least promising location. Figures 7.13 and 7.14 present the key areas in 

the study area where the demands for the two most promising IMTs (Eastern Creek and 

Camellia) are greatest. Figure 7.13 shows Eastern Creek obtaining almost half of its demand 

from cargo destinations in Blacktown (the largest cargo destination), Fairfield contributing 

about 14% and Penrith, and Paramatta and Holroyd contributing 12% each. The cargo 

destination zones within these four areas contribute about 87% of Eastern Creek’s demand or 

market for intermodal transport. Camellia attracts demand from more areas than Eastern Creek, 
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although it also has Blacktown as its biggest market. Paramatta and Holroyd also contributes 

significantly (about 35%) to Camellia’s demand. The other notable areas of demand are 

Fairfield (9%), Penrith (9%) and Auburn (5%). These five areas contribute about 95% of 

Camellia’s demand. Thus, Blacktown, Fairfield, Penrith and Paramatta and Holroyd could be 

considered as the main catchment areas for Eastern Creek IMT whilst Blacktown, Fairfield, 

Penrith, Paramatta and Holroyd and Auburn are the catchment areas for Camelia IMT.  

 

 

Figure 7.12 : Estimated demand for each candidate IMT location 

 

 

Figure 7.13 : Key Market for located (Eastern Creek) IMT 
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Figure 7.14 : Key markets for Camellia IMT 

 

The analysis above shows Eastern Creek and Camellia competing for almost the same 

markets. To test this, two IMTs were simultaneously located (p=2) with Eastern Creek and 

Camellia emerging as the best locations, having the largest entropy and hence the largest 

consumer surplus and demand. The contribution of each key market in the demand for the two 

IMTs are shown in Figure 7.15. The Figure shows Eastern Creek capturing about 79% of 

intermodal transport demand to Blacktown, 61% to Penrith, 56% to Campbelltown and 43% to 

Fairfield. Camellia on the other hand takes the bigger share of intermodal transport demand to 

Parramatta and Holroyd (86%), Auburn (91%), Bankstown (91%), Liverpool (71%) and 

Fairfield (57%). The location of the two IMTs increased the overall intermodal transport 

demand from 174,408 TEUs (Eastern Creek) to 255,756 TEUs, about 48% increase in 

intermodal transport demand and representing about 28% of the total cargo demand in the study 

area.  Camellia contributes about 51% of the total intermodal transport demand and the rest 

(41%) by Eastern Creek. Although the results show some level of competition between these 

two IMTs, they can be developed simultaneously with minimum market saturation and also the 

fact that the overall demand for intermodal transport improved significantly from 19% to about 

28%.   

 

Similar analysis was carried out for the simultaneous location of 3 and 4 IMTs with the 

market shares of each optimal IMT shown in Figures 7.16 and 7.17 respectively. All the results 

show Eastern Creek as consistently captive to the Blacktown and Penrith markets, Camellia 

controls the intermodal market to Auburn, Parramatta and Holroyd. For the 3 located IMTs 
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(p=3), Ingleburn IMT controls the markets in Campbelltown and Liverpool, whilst for the four 

(p=4) located IMTs, Villawood has taken over the markets in Liverpool, Bankstown and 

Fairfield but Ingleburn still controls the intermodal market in Campbelltown.   

 

 

Figure 7.15: Market share for Eastern Creek and Camellia IMTs 

 

 

Figure 7.16: Market share for Eastern Creek, Camellia and Ingleburn IMTs 
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Figure 7.17: Market share for the four located IMTs 

 

The overall contribution of each located IMT in total intermodal transport demand are 

shown in Figure 7.18 with the contribution of Eastern Creek decreasing from 100% under p=1 

(number of required IMTs to locate) to 32% under p=4.  The figure also shows that contribution 

to intermodal transport usage by Camellia is on average higher than Eastern Creek for 𝑝 = 3. 

These results are expected since as shown in Figures 7.13 (Eastern Creek) and 7.14 (Camellia) 

both IMTs have Blacktown as their biggest market and so they are expected to share the 

intermodal market in Blacktown if both are located. Additionally, Camellia has more 

catchments areas than Eastern Creek as shown in Figures 7.13 to 7.17. It is also worth noting 

that Eastern Creek is among the best places to locate IMTs for all 𝑝 ≥ 1. Similar observation 

is true for the Camellia IMT for 𝑝 ≥ 2. These imply that if the volume realized is currently not 

enough to justify the running and setup costs of two IMTs, then Eastern Creek could be 

developed first and add Camelia when cargo volumes grows.  
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Figure 7.18: Robustness of optimal IMT selection 

 

7.4.3 Impacts of cost variables on location decisions 

The various components of the generalised cost of each mode were derived from existing data 

in 2001 and updated with factors to reflect the modelled year 2011. Thus, these cost variables 

may not accurately reflect market conditions and the construction of the generalised costs may 

contain some measurement errors. The cost of rail in particular, is lower than expected, whilst 

the fixed cost of final delivery by truck along the intermodal transport chain is higher than 

expected. This section investigates how variations in each cost component influence location 

decisions and demands. Figure 7.19 illustrates how the variations in rail cost influence each 

candidate intermodal demand. The rail cost was varied from a low value of $100 with a 10% 

increment in turn to a maximum of $200. The figure shows that low rail cost (less than $110) 

favours Camellia over Eastern Creek whilst higher cost favours Eastern Creek more. It can be 

seen from the figure that with the exception of Eastern Creek, the demand for the remaining 

candidate IMTs and hence intermodal demand falls sharply with increasing rail cost. This 

makes the viability and sustainability of these IMTs highly vulnerable to higher than expected 

rail cost. The figure also shows the reduction in intermodal mode (Eastern Creek) share with 

increasing rail cost-a decrease of 23% mode share under $100 rail cost to less than 0.5% under 

$200 rail cost. In summary, Figure 7.19 was used to demonstrate the significance of rail cost 

in intermodal location decisions and demands. A rail cost of less than $110 suggest Camellia 
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is more promising but the sensitivity test indicate it is more vulnerable to variations in rail 

costs. The intermodal demand for Eastern Creek is much more robust to variations in rail costs 

and hence a safer choice for the location of intermodal terminal among the candidate set.   

  

The other important variable considered for sensitivity analysis is the fixed cost 

associated with the cost of final delivery by truck along the intermodal transport chain. It should 

be expected that this fixed cost can be significantly lower than the fixed cost of road alone 

transport. However, for the location exercise both costs were fixed at $218. This section 

investigates how lowering this fixed cost associated with intermodal transport affects the 

location decision and demand for the candidate IMTs. Starting with the same fixed cost as road 

alone transport, this fixed cost (intermodal fixed cost) was reduced in turn and impacts on IMT 

demands is shown in Figure 7.20. As expected all the candidate IMTs are promising promoters 

of intermodal transport with low fixed intermodal transport cost. The figure also shows the 

vulnerability or unsustainability of some IMT locations (especially, Moorebank, Enfield and 

Chullora) due to variations in fixed intermodal transport cost. Overall fixed transport cost of 

less than $210 makes Camellia more promising whilst higher values makes Eastern Creek 

location more desirable.  

 

 

Figure 7.19: Impacts of rail cost on location decisions 

100, 23%

110, 21%

120, 18%

130, 16%

140, 13%

150, 11%

160, 9%

170, 7%

180, 4%

190, 1%200, 0%0%

5%

10%

15%

20%

25%

30%

100 110 120 130 140 150 160 170 180 190 200

In
te

rm
d
a
l 
sh

a
re

 (
%

)

Variable rail cost ($ per TEU)

Enfield

Yennora

Camellia

Eastern Creek

Moorebank

Ingleburn

Minto

Villawood

Chullora



   

  196 

 

 

 

Figure 7.20: Impacts of rail plus fixed road costs on location decisions 

 

This section looked at the sensitivity of the cost variables governing the choice of mode 

and hence the choice of locations for the development of intermodal terminals. The analysis 

shows that the demand for each candidate location is generally vulnerable to changes in cost 

variables. But the degree of vulnerability is less severe for Eastern Creek, making Eastern 

Creek, the most promising and economically safest place among the candidate IMT locations 

to develop an intermodal terminal. Eastern Creek is therefore carried forward for further 

analysis, forecasting and policy testing. The next section determines the optimal terminal user 

fee to charge at Eastern Creek.  

 

7.4.4 Optimal IMT Charge Analysis 

Based on the analysis in the section above, Eastern Creek IMT was carried forward to 
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levels.  It is expected that as the terminal user fee is increased from zero, those that used the 
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which increases in fee would not lead to more revenue because those diverting away would 

lead to loss of more revenue than that gained from the extra money paid by the remaining users. 

It was expected that there would therefore be an optimum user fee level which would give the 

maximum revenue.  

 

As shown in Figure 7.21, the optimal fee to charge at the terminal is $70.00 ($ 35 for 

each lift assuming two lifts are required). This figure compares favourably with average costs 

of $60 (Shipping Australia 2011), $60-$80 reported by the Sea Freight Council (SFC 2007) 

and $50 reported in IPART (2007). The $70 charge is expected to reduce traffic by about 57% 

compared to the zero charge scenario (i.e., from 170,857 TEUs to 74,053 TEUs) and generate 

revenue of about $5.2 million per year.  Clearly, IMT charges have significant impacts on its 

use and could be considered as an important area for government intermodal-oriented policy 

interventions. A fee of say $40 (see Figure 7.21) could reduce demand by only 36% relative to 

the zero charge. Thus, any level of government subsidy is expected to have significant positive 

impact on IMT usage as shown in Figure 7.21. It may be that the terminal user fee adopted may 

be below or above the optimal value but it is important to establish the revenue consequences 

of this decision. The optimal user terminal fee of $70 will be coded into the model and used in 

forecasting and policy testing in the next section.   

 

 

Figure 7.21: Optimal charge of using Eastern Creek ($ per TEU) 
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7.4.5 Eastern Creek as promising IMT location 

Here, the Eastern Creek IMT is assumed located and coded as part of the transport network of 

the study area, where containers can be transferred between modes and where warehousing and 

storage activities can be performed. This section provides detail discussion on the factors 

governing both the distribution and mode choice models with the Eastern Creek being the 

transfer node along the intermodal transport chain. The cost sensitivity parameter governing 

the mode choice model was estimated to be 0.0206 and the estimated parameters governing the 

cargo distribution model are presented in Table 7.5. The results in the table shows expected 

positive marginal utilities for increasing access to manufacturing and warehousing businesses, 

accessibility to the key markets and multiple modes of transport (mode choice logsums). For 

example, the positive value (0.9079) associated with manufacturing indicates that zones with 

high manufacturing jobs are more likely to be cargo (container) destinations and may be 

indicating the existence of agglomeration of freight related businesses in the area. This is also 

true for zones with high warehousing and storage jobs. The access to the key markets variable 

is also positive (0.4116) indicating that all things being equal zones with easy access to the key 

markets (Sydney and Paramatta) are more attractive container destinations.  This analysis is 

also true for zones with access to multiple modes of transport derived from the mode choice 

model. All the estimated parameters except access to multiple modes parameter are significant 

at 95% confidence interval.  

 

          Looking at the magnitude of the estimated variables, access to manufacturing businesses 

has the biggest influence on the distribution of containers in the metropolitan region and hence 

the location and use of IMTs. The second most important factor is the access to key markets. 

Together, access to manufacturing, warehousing and storage may be revealing the 

agglomeration effect associated with the containerised trade. This makes agglomeration 

(access to freight-related business) and access to key markets the key drivers in the choice and 

usage of intermodal terminals. Access to multiple modes, though not significant at 95% 

confidence interval (though significant at 85%) has the expected sign and provides the 

important link between the mode choice model and the cargo distribution model. The low 

variability in this variable may be linked to the two fixed costs components (fixed rail cost and 

the fixed truck cost) of the intermodal transport cost. The study therefore concluded it is 

important to carry this variable forward in further analysis.  
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Table 7.5: Estimated factors governing the cargo distribution model 

  Distribution model 

Variables                                 Coefficient t stats 

   
Access to Manufacturing 0.9079 

 
t-stats 6.1 

   
Access to Warehousing and Storage 0.3305 

 
t-stats 2.3 

   
Access to key Markets 0.4116 

 
t-stats 2.5 

   
Access to Multiple Modes 0.1003 

 
t-stats 1.3 

   
No of Estimated Parameters 80 

No of observations 4 

R Square 98.7% 

Adjusted R Square 98.6% 

 

Figure 7.22 reveals the catchment areas of Eastern Creek in the study area. Bigger 

markets are represented by darker blue, implying Blacktown South and South-West are the 

biggest markets, followed by Penrith-East and Fairfield-West. Essentially, zones in Blacktown, 

Penrith, Fairfield, Paramatta, Holroyd and The Hills Shire form the market for the Eastern 

Creek terminal. Figure 7.23 shows the savings in truck-km travelled due to the development of 

the Eastern Creek terminal. The figure shows that the total-km travelled by trucks in the Sydney 

GMA will be reduced by about 8.4% if the Eastern terminal is open. The darker green areas in 

the figure represent bigger savings in truck-km travelled. Figure 7.22 corresponds very well 

with Figure 7.23 indicating that the market areas for the Eastern Creek terminal contributes 

more to the savings in total truck-km travelled. Thus, the location of the Eastern Creek terminal 

is expected to have significant positive impacts on the environment and also leads to less 

damage to roads as many container trucks will be taken off the road network.  
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Figure 7.22: Main markets for Eastern Creek terminal 

 

 

Figure 7.23: Reduction in truck kilometres travelled due to Eastern Creek 

 

7.4.6 Forecasting and Policy Testing 

The forecasting process starts by first extracting network variables (e.g., travel time and 

distances between the freight analysis zones) from the network using existing model of the 

study area. The network variables go into the mode choice model, where they are used to 

construct the generalised costs of each mode of transport. The parameters (fixed and variable 
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road cost, rail cost and terminal user fees) may be updated to reflect the forecast or policy year. 

The mode choice model uses the generalised cost values to compute the logsums; access to key 

markets and modal access to each cargo destination zone. The accessibility measures then go 

into the distribution model where they are combined with land use variables (also updated to 

reflect the forecast or policy year) and forecast port throughput to determine the distribution of 

cargo in the study area and hence the quantity of cargo reaching each destination. These outputs 

then go into the model choice model to determine the demand for each mode of transport (road 

vs intermodal) and the demand for intermodal transport is used to determine the demand for 

each located intermodal terminal. Thus, once, the port throughput of the forecast year is known 

and the other inputs variables are known, the demand and revenue for the located IMTs can be 

readily predicted and can be used in cost and benefit analysis.  

 

 This section, however, focusses on investigating plausible policies that the government 

can put in place to support intermodal transport. These policies can be linked to the variables 

used in the mode and distribution models such that impacts of these on intermodal transport 

usage could be measured through changes in these variables. The policies to be tested are 

grouped into land use and transport policies. Detailed discussions on the policies under each 

group are presented in the sections below.  

7.4.6.1 Land use policies 

Land use policies generally comprises policies whose impacts on intermodal transport usage 

can be translated into the number of people employed in manufacturing, warehousing and 

storage jobs. Some of these policies include encouraging shippers to co-locate their 

warehousing and storage activities near or to the located terminal either through re-zoning or 

some form of tax rebate or tax exemptions for participating shippers. Additionally, due to the 

relatively easy access to key markets from the terminal, large manufacturing and retail 

companies can site their distribution and warehousing centres close to the terminal to at least 

benefit from access to multiple modes of transport such that imported goods can be transported 

to the local markets more cheaply or used as inputs for local manufacturing (IPART 2007; 

Solomon 2014).  

 

The Eastern Creek terminal itself can supply a range of value-added activities such as 

warehousing and storage of empty containers. All these freight activities are expected to 
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generate jobs, and the number of manufacturing and warehousing jobs can be used to quantify 

the amount of intermodal transport usage. In modelling terms, the zone encompassing Eastern 

Creek (Blacktown (C) - South-East) was used for this testing. The number of employees in 

manufacturing in the zone was increased by 1% in turn and the results are presented in Figure 

7.24. The increase in jobs produced two responses; the re-distribution of cargo to the reference 

zone and more use of Eastern Creek as transfer node. If the jobs are created within the Eastern 

Creek IMT, then intermodal demand reduces to rail demand as there will be no need for final 

delivery by trucks. The figure shows that increasing manufacturing jobs in Blacktown (C) - 

South-East by 1% has the potential of attracting an extra 587 TEUs (about 0.8% increase) of 

cargo to the zone, out of which about 248 TEUs (about 42%) would be transported through the 

terminal or make use of intermodal transport (about 0.3% increase in intermodal transport 

demand). This makes the impacts of manufacturing jobs on cargo distribution more severe than 

mode switch.  

 

Similar analysis was conducted on the impact of jobs creation in warehousing and 

storage on mode switch and cargo re-distribution and the results are presented in Figure 7.25. 

The results as expected in Figure 7.25 are not as strong as that of manufacturing. A 1% increase 

in warehousing jobs in Blacktown (C) - South-East can attract about 215 TEUs cargo to the 

zone, with less than half (92 TEUs) been transported intermodally. Thus, jobs created in 

manufacturing are expected on have more impacts on cargo distribution and modal switch than 

creating equivalent number of jobs in warehousing and storage. In general, a 1% change in the 

number of manufacturing jobs to a zone will result in about 0.8% change in the quantity of 

cargo expected to be attracted to that zone. For warehousing, the change is lower at about 0.3% 

for a 1% change in the number of warehousing and storage jobs as shown in Figure 7.25. In 

both scenarios about 42% of the increase in demand will be transported intermodally.  
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Figure 7.25: Impacts of warehousing and storage activities on the IMT usage 
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Figure 7.24: Impacts of manufacturing activities on the IMT usage 
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7.4.6.2 Transport policies 

The next set of policies relate to changes in the transport network conditions. In particular, the 

study investigated polices that reduce the cost of rail, cost of final delivery along the intermodal 

transport chain or penalise the use of road alone transport through some form of road pricing 

or restricting truck access to certain parts of the road network. Policies with the potential of 

reducing the cost of rail, may include investing in dedicated freight rail lines between the port 

and the terminal for the provision of uninterrupted services between the port and the located 

terminal; better alignments of stevedores’ operation time windows and rail paths to improve 

the flexibility of train operations (Shipping Australia 2011) and standardizing the length of rail 

sidings at port terminals to reduce or avoid the need to split trains accessing port terminals, 

which causes unnecessary delays at ports. The government can also subsidise rail service 

providers to encourage them to take loads that may not be commercial viable to take but can 

help achieve a broader policy objective of increasing rail model share.  

 

Policies with the potential of reducing the cost of final delivery along an intermodal 

transport chain may include encouraging as many shippers as possible to co-locate their 

warehousing and storage activities near to the terminal. The success of this policy depends 

critically on the geographical locations of the terminals with respect to cargo 

origins/destinations, which is why a model is useful to determine the best places to locate these 

facilities. Another policy option is for the government to relax restrictions on the use of high 

productivity vehicles on certain part of the road network for intermodal transport users in order 

to reduce the cost of pickups and final deliveries through economies of scale. The restrictions 

can be relaxed for certain time of day or during the weekends (IPART 2007). The government 

can also invest in new roads or upgrade existing roads, especially intermodal connector roads 

to improve the connectivity between the terminals and the highway network.  

 

Finally, the government can implement policies that can specifically target road alone 

transport users in order to make intermodal transport more competitive. Some of these policies 

include imposing a direct ‘congestion’ charge on road alone transport users accessing the port 

at certain of time of the day to dissuade some to switch to intermodal transport. Another policy 

may be to restrict truck access to the parts of the road network that are vital for truck container 

movements to and from the port. The restriction could be put in place permanently or could be 

operational during certain times of the day or week. The impacts of these or equivalent policies 
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on intermodal demand can be quantified through their contribution in reducing the cost of 

intermodal transport.  

 

 Policies on rail were captured in the model by varying the cost of rail and observing the 

impacts on intermodal usage as shown Figure 7.26. The figure shows that a 10% increase in 

the cost of rail (from $100 to $110) will decrease intermodal demand by about 13% (from 

80,770 TEUs to 92,866 TEUs), indicating the strong impact rail cost has on intermodal 

demand. A rail cost at $250 has the potential of rendering the terminal almost unsustainable or 

unviable as demand is expected to fall below 15,000 TEUs, which with the $70 terminal user 

fee translate to an annual revenue of less than $ 0.5 million. In Table 7.1 a viable terminal is 

expected to generate an annual revenue of more than $5million (Meyrick 2006).   

  

 

Figure 7.26: Impacts of rail cost on the IMT usage 

 

 The second variable of interest is the cost of final delivery along the intermodal chain. 

The total truck cost component (both fixed and variable for each origin-destination) was 

reduced gradually by 1% in turn to as high as 20% and the impact on intermodal demand from 

each reduction is shown in Figure 7.27. It can be seen from the figure that for example, a 10% 

reduction in the cost of final delivery has the potential of increasing intermodal demand by 
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almost 50% (from 74,053 TEUs to 110,419 TEUs). The results make it a very attractive policy 

to pursue with the potential of significantly reducing the cost of final delivery.  

 

 

Figure 7.27: Impacts of final intermodal delivery costs on the IMT usage 

 

 Finally, the study turns to the cost of road alone transport to ascertain how changes in 

each cost component affects intermodal demand. Implementing the policy on road pricing or 

port congestion charge is expected to increase the fixed cost component of road alone cost, 

whilst general congestion due to increasing traffic demands can be reflected in the variable cost 

(function of travel time). The outcomes on varying these two cost components are shown in 

Figure 7.28. The figure shows that the impact of some form of road pricing on intermodal 

demand is stronger than that of the cost of congestion. For example, a 5% increase in the fixed 

cost (e.g., through congestion charge) of road can result in about 17% (from 74,053TEUs to 

86,528 TEUs) increase in intermodal demand whilst a similar increase in the variable cost of 

road (e.g., delays in traffic) has the potential of increasing intermodal demand by 14% (from 

74,053 TEUs to 84,094 TEUs). These results in general, suggest a positive future outlook for 

the located IMT as congestion in the study area is set to get worse in the future. In other words, 

the cost of transporting containers by trucks to and from the port is set to go up significantly 

due to congestion and/or through some form of road pricing.  
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Figure 7.28: Impacts of road pricing and congestion on IMT usage 

 

7.5 Conclusion   

This case study demonstrates some of the key features of the proposed entropy framework for 

locating multi-user intermodal terminals. The entropy framework allows the facility location 

problem to be linked to a behavioural mode and distribution problems such that the facility 

location problem can be seen as conditioning the distribution of cargo and mode choice whilst 

mode and cargo distribution influence intermodal location decisions. Data used for this exercise 

were synthesised from several sources including Sydney freight council (SFC), existing 

integrated transport model of the study area (MetroScan-TI), transport for NSW (TfNSW), and 

the Australian Bureau of Statistics (ABS). The model has been shown to produce intuitive and 

realistic results both in terms of locating the facilities and testing of various policy options.  

 

  The results of the models have several implications for policy makers. One important 

outcome is the effect of container distribution on intermodal location and usage, accounted for 

through the cargo distribution model. The distribution model has been shown to be governed 

by four important policy variables, two (access to manufacturing and warehousing variables) 

of which reveal the existence of agglomeration (i.e., clusters of industries in a single location) 

associated with containerized trade. The results suggest that the access to manufacturing has 

the biggest impact on the distribution of containers in the metropolitan region of Sydney. This 
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result is consistent with recent study by Chandler et al. (2015) who provided empirical evidence 

of the strong relationship between the number of manufacturing businesses and the location of 

intermodal freight terminals in the US.  Similar conclusion was also reached in the recent study 

by Tsekeris (2016). Thus, the catchment area (market) of a located intermodal terminal is more 

likely to include areas with high manufacturing businesses. Also, of importance to policy 

makers are the results that container destinations must have convenient access to key markets. 

The access to key market variable, measured as function of truck travel cost from container 

destinations to the key markets emerged with positive value and statistically significant, 

suggesting that easy access from container destinations to key markets is essential. Finally, 

proximity and convenient access to multiple modes of freight transport also have significant 

effect on container distribution, although its impact is relatively small compared with access to 

manufacturing or warehousing businesses.   

 

There is strong evident to suggest that the best place to locate an intermodal terminal in 

Sydney GMA is in Eastern Creek partly, due to its proximity to major container destinations 

(e.g., Blacktown) and hence its access to manufacturing and warehousing businesses. The 

results show that performing auxiliary activities such as warehousing at the terminal will 

provide a significant source of revenue due to potential container re-distribution and increase 

in the use of intermodal transport. Policy testing shows a positive future outlook for the located 

terminal at Eastern Creek as intermodal terminal use is set to go up significantly partly due to 

worsening traffic congestion in the study area especially around the seaport and also through 

government interventions to achieve certain policy objectives such as promoting sustainable 

modes of transport like rail or solving the problem of truck driver shortages or promoting local 

enterprises.  In summary, the results of this empirical work have shown that the proposed 

entropy framework of locating intermodal terminals has the potential of working very well in 

practice. The empirical work has also addressed the research question IV that motivated the 

work, by identifying the factors governing the distribution of cargo and the choice of mode in 

the metropolitan containerised market and how changes in these factors alter the distribution 

pattern and the location and use of intermodal container terminals.  
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Chapter 8 Conclusions 

 

 

 

 

 

 

8.1 Background 

A new method for finding the best locations for multi-user facilities is proposed. The method 

is underpinned by the principle of entropy maximisation. The proposed entropy framework 

allows the linking of a location model with behaviour models to simultaneously determine the 

location and usage of the facilities. An equivalence has been shown between entropy and 

shipper welfare, following from the random utility interpretation of the discrete choice model, 

which in turn is a consequence of entropy maximisation. The method has been successfully 

applied to locate inland intermodal terminals to maximise the benefit to shippers. This chapter 

provides a summary of the models proposed, the algorithms developed and illustrations of how 

the models were implemented using numerical examples and a case study. The chapter is 

organised in the following way. The fulfillment of the research objectives and questions are 

concluded in Section 8.2. Section 8.3 details the key contributions made in this study to the 

literature and in practice. Finally, the limitations of this study and the directions for further 

research are outlined in Section 8.4. 

 

8.2 Fulfilment of research objective and questions 

The objective of this research was to develop mathematical models suitable for planning the 

development of inland intermodal terminals to maximise shipper utility or welfare. The 

hinterland is the area behind the seaport where cargo to the port (export cargo) originate or 

cargo from the port (import cargo) are destined or where cargo productions and/or 

consumptions take place. Two hinterland containerised transport markets were identified; 

metropolitan transport market and the regional transport market. The metropolitan market 

comprises the import and export (IMEX) markets where imported cargo are transported to their 

various destination areas in the hinterland and cargo from production areas in the hinterland 

are transported to the port for export. Two modes of transport are available for the transport 

tasks in this market; road alone transport and metropolitan intermodal transport. The 
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metropolitan intermodal transport comprises a combination of rail (or high carrying capacity 

mode) for the movements of cargo between the seaport and inland terminals and trucks for 

local pickups and deliveries. The use of the port requires only one intermodal terminal to be 

used along the intermodal chain. The economies of this mode as discussed in Chapters 1 and 4 

are based on the economies of scale of using rail and potential savings in transport costs as a 

result of avoiding congestion around ports and between ports and delivery/pickup centres in 

the hinterland. This mode of freight transport is particularly attractive for city ports like Sydney 

with limited space for physical expansion but experiencing continuous growth and poor or 

inadequate transport infrastructure connecting the port to the hinterland.   

 

The regional market on the other hand comprises the movements of cargo between their 

production and consumption areas in the hinterland without making use of the seaports. Two 

modes of transport are also available for the transport tasks in this market; the road alone 

transport and regional intermodal transport. Regional intermodal transport comprises two 

terminals as transfer nodes along the intermodal transport chain. Here, the cargo are first 

consolidated at a terminal close to the cargo origin using trucks and then transported by rail (or 

a high capacity mode) to another terminal close to cargo destination areas where the cargo are 

finally distributed by trucks to their various destinations. The economics of this mode is based 

on both the economies of scale of using rail and the economies of distance due to the long 

distance separating the areas of cargo production and cargo consumption as discussed in 

Chapters 1 and 5.  

 

In addition to the potential cost savings by individual shippers, governments or local 

authorities can use the promotion of intermodal transport as a tool for achieving certain policy 

objectives such as achieving a pre-defined target of rail mode share in the transport tasks, some 

percentage reduction of truck related greenhouse gas emissions, promotion of local enterprise 

and economic development or as a more sustainable alternative to road network expansions.   

As discussed in Chapter 7, government promotion of this mode can take several forms 

including some form of road pricing, subsidies and general network improvements, especially 

connector links to the terminals. 

 

 The problem of locating intermodal terminals is analogous to the classical facility 

location problem and comprises two linked sub-problems; the location problem and the 

allocation problem. As discussed in Chapter 1 and 2, the location problem determines the 
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locations of the required number of terminals on the network. The allocation problem on the 

other hand determines the usage of the located terminals. These two sub-problems share a 

common objective, namely the optimisation of shipper welfare or benefit, which is measured 

by entropy. It was demonstrated that the allocation problem is a mode choice problem with the 

choice alternatives being road alone and intermodal transport, whereas the choice of intermodal 

transport leads to a choice of one or more of the located terminals. It also turns out that the 

choice of mode depends on cargo destination. Conversely, cargo destination must be connected 

to the transport network or, more generally, must be accessible by at least one mode of 

transport. It is expected and also demonstrated in Chapter 7 that destinations that are more 

accessible by multiple modes of transport are more likely to attract more cargo. Thus, the 

problem of determining the production and distribution of cargo conditions the choice of mode 

(mode choice problem) whilst the production and distribution of cargo is influenced by modal 

accessibility.  

 

The overall intermodal location problem therefore comprises three linked sub-

problems; the facility location problem, the mode choice problem and the cargo production 

and/or distribution problems. Analogous to the classical facility location problem, the 

allocation problem now comprises linked mode choice and cargo production and/or 

distribution problems. The combined problem was referred to as the cargo flow problem. This 

reduced the intermodal location problem into linked facility location problem which determines 

the location of the terminals and the cargo flow problem, which determines the demand or 

usage of the terminals. The mathematical formulation of the problem was based on the principle 

of entropy maximisation. The entropy principle and its suitability for solving the problem were 

discussed in Chapter 3. The method was shown to provide a universal means of constructing 

probability distribution about a system based on all known information about it (system). 

Additionally, it allows probabilities to be updated when new information about the system 

become available, making the entropy probability distribution describing the system at any 

given time reflects all known properties about the system. The system in this instance is the 

containerised transport system. The thesis investigated four broad research questions and the 

fulfilment of each question is assessed in the following subsections.  
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8.2.1 Locating intermodal terminal in metropolitan markets 

 

Research question 1: Given the distribution of containerised cargo and candidate terminal 

locations on the transport network, what are the best places to locate p intermodal terminals 

to best serve the metropolitan containerised market? 

 

The answer to the above question was model based. Under the assumption of fixed cargo flow 

matrix (demand) the research question was cast as a mathematical problem – the metropolitan 

intermodal terminal location problem (MIMTLP) – with an entropy objective function to be 

optimised and a set of constraints imposed by the metropolitan market in Chapter 4. It was also 

shown in Chapter 4 that maximising entropy is equivalent to maximising the shippers’ expected 

utility or welfares. Thus, the best p terminals are selected on the basis of providing shippers 

with the largest consumer surplus.  

 

The fixed demand assumption means that the cargo flow problem of MIMTLP reduces 

to a mode choice problem. The formulated problem was solved by decomposing it into a facility 

location sub-problem and a mode choice sub-problem using Lagrangian relaxation technique. 

For any given set of located terminals, the solution to the mode choice problem was proved to 

exist and is unique. The mode choice sub-problem was then converted into a two-level nested 

logit model with the upper model determining the demand for each mode (intermodal versus 

road alone) and the lower model determining the demand of the located terminals. The 

parameters in the resulting nested logit model were estimated using a modified version of the 

Bregman’s algorithm in Chapter 4. Once it was shown that the mode choice sub-problem can 

be solved, an enumeration algorithm that embeds the solution of the mode choice problem was 

proposed for selecting the required places to locate the p intermodal terminals. The algorithm 

is a complete enumeration algorithm and guarantees an optimal solution and was considered to 

be computationally feasible since there are limited number of places in the metropolitan region 

where terminals can be located.   

 

Once the best locations of the required number of terminals are determined, the nested 

logit model (probability distribution) derived from the mode choice sub-problem contains the 

properties of the metropolitan market. It was shown that the resulting nested logit model can 

then be carried forward to forecast future demand for the located terminals and use to test for 

various policies to promote their usage. The model developed can be used to locate a given 
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number of terminals in any metropolitan region and hence fulfilled research question I. An 

application of this model in practice was illustrated in Chapter 7.   

   

8.2.2 Locating intermodal terminals in regional markets   

 

Research question 1I: Given the distribution of containerised cargo and candidate terminal 

locations on the transport network, what are the best places to locate p intermodal terminals 

to best serve the regional containerised market? 

 

Research question III: Given limited demand for intermodal transport in either or both 

markets, what are the best places to locate p intermodal terminals to serve both the 

metropolitan and the regional containerised markets? 

 

These research questions were answered together in Chapter 5, where the model developed in 

Chapter 4 was extended and made suitable for also locating terminals to serve the regional 

containerised market. The extended problem was made flexible to locate terminals to serve the 

metropolitan containerised market or the regional containerised market or both markets through 

the incorporation of user-defined switch variables. Important properties of this generalised 

problem were also presented in a form of propositions. Solution techniques employed in 

solving the extended problem were similar to those employed in solving the metropolitan 

intermodal terminal location problem and involves first using Lagrangian relaxation to 

decompose the problem into facility location and mode choice sub-problems. Here, the mode 

choice sub-problem was converted into a three-level nested logit model of main mode choice 

(road alone versus intermodal transport), intermodal transport choice (metropolitan intermodal 

transport vs regional intermodal transport) and intermodal terminal choice (determines the 

demand for located terminals). Bregman’s algorithm was then extended to estimate the 

parameters governing the behaviour of the three-level nested logit model.  

 

Due to the complexity associated with the generalised problem, the complete 

enumeration algorithm developed to answer research question I was found not to be 

computationally efficient enough for answering research questions II and III. By exploiting 

some properties of the entropy function, a fast heuristic algorithm with embedded Bregman’s 

algorithm was proposed and its solution quality was demonstrated through extensive numerical 
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examples. The proposed heuristic algorithm was shown to be computationally efficient and its 

computational complexity grows only linearly with respect to the number of terminals to locate.  

In terms of solution quality of the heuristic, it returned the optimal solution on all test instances. 

Although the heuristic has not been proven to return optimal solution for every instance of the 

problem, it has been shown by extensive numerical examples to work satisfactorily. In 

summary, the complete enumeration or the heuristic algorithm with embedded Bregman’s 

algorithm for solving the mode choice algorithm provides adequate answers to research 

questions II and III. A specific application of the model was illustrated using test data where 

2,3,4, and 5 terminals were located in turn to serve either or both markets in Chapter 5.  

 

8.2.3 Variable cargo demands  

 

Research question IV: What are the key factors governing the distribution of cargo in the 

containerised markets (metropolitan or regional) and to what extent do changes in these 

factors alter the distribution pattern and the location of intermodal container terminals?   

 

This question was answered through model enhancement and a case study implementation of 

the models developed. The fixed cargo demand matrix assumption was relaxed in Chapter 6 to 

allow cargo production and/or distribution to be influenced by modal accessibility and land use 

factors, whilst the production and/or distribution of cargo continues to condition the choice of 

mode.  In addition to the inherent link between the cargo distribution problem and mode choice 

problem, the cargo distribution problem is required to determine the potential use of the 

terminal for warehousing and storage activities.  

 

The model used in answering research question III was extended to also include a 

variable cargo demand model. Two methods were proposed to allow the incorporation of cargo 

demand models as constraints within the entropy framework; Poisson method and weighted 

mean method. It turns out that the Poisson method is a special case of the weighted mean 

method as shown in Chapter 6. The overall problem was called intermodal terminal location 

with variable cargo demand problem. The overall problem was again decomposed into facility 

location and cargo flow sub-problems. Here, the cargo flow sub-problem comprised the mode 

choice problem and the cargo production and/or distribution problem, and are connected 

through accessibility measures. Several special cases of the cargo flow problem depending on 

data availability were presented and the ways each can be solved to optimality were also 
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discussed. The overall problem was solved by adapting the complete enumeration algorithm 

for small instances and the heuristic algorithm for larger problem instances.  

 

The model was implemented using the Sydney greater metropolitan area (GMA) as a 

case study in Chapter 7. The study found Eastern Creek as the most promising location for the 

development of intermodal terminal in the study area, with container destinations in Blacktown 

as its key markets. Other significant catchment areas were found to be Penrith, Paramatta and 

Fairfield. These four areas together represent over 86% of the market for Eastern Creek. The 

location of two terminals yielded Eastern Creek and Camellia as the best solutions and together 

increase intermodal transport share from 19.5% to about 29%.  The catchment areas for these 

two terminals are Blacktown, Fairfield, Parramatta and Holroyd, Penrith, Auburn, and 

Bankstown. Together, these areas captured over 90% of the intermodal markets, with Eastern 

Creek controlling the market in Blacktown and Penrith whilst the other markets are largely 

controlled by Camellia. The test for the location of three and four terminals simultaneously 

were also conducted. However, for forecasting and policy testing, the location of only one 

terminal was assumed to be of interest, which from the location analysis yielded Eastern Creek 

as the best location.  

 

The choice of mode was governed by the generalised cost and together with the shadow 

price and sensitivity parameter form the utilities of the available modes where for each origin-

destination pair a mode with higher utility has higher probability of been used for the transport 

task. The distribution of cargo in the study area was found to be governed by four main factors; 

access to manufacturing activities, access to warehousing and storage activities, access to key 

markets, which in the study represent the two central business districts – Sydney and Paramatta 

–  and finally access to multiple modes of transport, which is a combined measure of access by 

road alone and access by intermodal transport modes. Once Eastern Creek was determined as 

the best terminal location and coded into the transport network as a transfer facility, the mode 

choice and distribution model were carried forward for policy testing. The study found that 

charging terminal user fee of $70 per TEU yielded the maximum revenue though at the expense 

of losing about 44% usage compared with a zero fee. This is one of the several areas that the 

government or local authority can intervene to boost intermodal demand. For example, it was 

shown that a reduced terminal user fee of $50 (subsidy by government) will reduce intermodal 

demand by just 20% rather than the 44% decrease under the $70 fee.   
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Policies relating to improving the cost of intermodal transport or making intermodal 

transport more competitive were also investigated. These include implementing policies with 

the potential of reducing the cost of rail in the overall cost of intermodal transport. Such policies 

may include investing in a dedicated freight rail lines between the port and the terminal and/or 

subsidising the cost of rail use long the intermodal chain. The study shows that a 10% increase 

in the cost of rail has the potential of decreasing intermodal demand by about 13%, assuming 

all other factors remains unchanged. Several values of rail costs were tested and the impacts of 

intermodal demand were presented in Chapter 7. The other important area that the government 

can support is the cost of final delivery or local pickups, which are essentially the truck cost 

component of intermodal transport cost. Government can improve the connector roads to the 

located terminals and improve the connectivity between the terminals and the major highways 

through road expansion and/or investments in new roads. The government can also give tax 

incentives to truck companies who make their vehicle available for use along the intermodal 

transport chain. It was shown that reducing the cost of final delivery along the intermodal 

transport chain by just 10% can trigger about 43% increase in intermodal demand.  

 

Finally, the study investigated the impacts of policies such as road pricing and natural 

growth in traffic congestion on intermodal demand. The road pricing policy and congestion 

effect were implemented by varying the fixed cost component and the variable cost component 

of the overall road alone transport cost respectively. It was shown that a 5% increase in the 

fixed cost of road alone transport can boost intermodal demand by about 17% whilst a 5% 

increase in the variable cost can increase intermodal demand by about 14%. The later outcome 

suggests a positive outlook for the located terminal as congestion in the study area is set to 

worsen in the future. 

 

The study also investigated the impact of the distribution model on intermodal demand. 

As expected, the study found the impacts of changes in the factors governing the distribution 

model on intermodal terminal demand in two ways; through cargo re-distribution and through 

modal switch. For example, a 1% increase in the number of manufacturing jobs in Blacktown 

(C)-South-East (the zone encompassing Eastern Creek) has the potential of attracting an extra 

587 TEUs (about 0.8% increase) of cargo to the zone, out of which about 248 TEUs (about 

42%) would be transported through the terminal or make use of intermodal transport. This 

makes the impacts of manufacturing jobs on cargo distribution more severe than mode switch. 

For warehousing, the impact is expected to be lower at about 0.3% increase in cargo to the zone 
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for a 1% increase in the number of warehousing and storage jobs.  In conclusion, the study 

found that among the plausible policies tested, those directed at reducing the cost of final 

delivery has the greatest impact on intermodal demand, albeit based on this case study.  This 

cost component of intermodal transport can undo any cost advantage due to economies of scale 

of rail if not checked and kept to a minimum. 

  

8.3 Thesis contributions  

This thesis made several methodological contributions to the literature. Perhaps the most 

important contribution is the recognition that behavioural models can be embedded in a facility 

location problem to determine the best locations of multi-user facilities in general and 

intermodal terminals in particular. This was achieved by an entropy framework, which 

comprises an objective function capturing all possible states of the decision variables subject 

to a set of constraints representing all known information about the system of interest. In the 

intermodal terminal location application, the objective function captures all possible states of 

modal flows and the constraints comprised a linked facility location problem, a mode choice 

problem and a cargo production/distribution problem. The study has shown the equivalence 

between entropy and shipper welfare and thus, by maximising entropy, we maximise shippers’ 

welfares. The framework can in general be expanded to include other relevant problems, which 

for the purpose of this study can include the problem of empty container distribution. 

 

   As a way of generalisation, the framework is applicable to locating a facility whose 

usage is determined by the choice outcomes of many individual decision makers. The proposed 

framework is also suitable for applications with the following features; first, applications where 

it is almost impossible to track every potential user of the facility and extract the factors 

governing his/her decision making process; second, available data for modelling are aggregate 

in nature or are both aggregate and disaggregate with each explaining some aspect of the system 

under consideration. Lack of data in sufficient detail and quality for modelling is common in 

the freight sector as potential facility users, shippers, carriers or other logistics providers are 

generally unwilling to provide data at the level of detail required to fully understand their 

choice processes, due to fear of losing competitive advantage of their businesses; third, 

acknowledging the fact that even if we have all the information about each decision maker, 

many of them cannot be quantified and included in the modelling process. These and other 
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related factors make the proposed entropy framework for determining facility location and 

usage more desirable. 

 

The second important contribution within the framework is the general construction of 

the mode (Chapter 4 and 5) and cargo production and distribution (Chapter 6) problems and 

how they can be embedded within the entropy framework as constraints. The solution to the 

entropy model are probability distributions describing aspects of decision makers’ behaviour. 

For example, the mode choice component describes modal decisions of the decision makers in 

an aggregate fashion, whilst the distribution model describes the choice of cargo destinations.  

Several properties of the entropy model were presented in a form of propositions including a 

general method of dealing with capacity constraint when constructing the probability 

distributions. 

 

The third contribution relates to the development of algorithms for solving the 

formulated problems. Although several solution approaches may exist, the study exploit the 

structure of the framework and found that the formulated problem can be solved efficiently by 

separating the location aspect of the problem from the demand/usage part (also called the cargo 

flow problem) of the problem using Lagrangian relaxation technique. The study shows that the 

cargo flow part of the problem can then be converted into a nested logit choice model to explain 

the choice behaviour of facility users and the parameters governing this model can be estimated 

using the proposed modified Bregman’s algorithm. To solve the overall model, two main 

general solution algorithms were proposed; complete enumeration and a more efficient entropic 

greedy heuristic algorithm with Bregman’s algorithm embedded in both for solving the cargo 

flow problem.  

 

The complete enumeration algorithm was proposed to deal with small to medium sized 

problems and proved to be very useful and feasible for locating terminals to serve the import 

and export container market. It also provided a benchmark for gauging the quality of the 

proposed heuristic. The geographical region making up the regional intermodal market are 

usually large and encompass a whole country or several countries or economic regions. The 

entropic greedy heuristic was developed to solve large problems of this kind. The study shows 

that the computational time of this algorithm grows only linearly with the number of terminals 

to locate making it very efficient for solving large problem instances. As a heuristic, there was 

no formal proof of it returning an optimal solution for every instance, but the extensive 
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numerical examples show that the quality of solutions are comparable to those found using 

complete enumeration.  

 

 The fourth contribution deals with the implementation of a case study based on the 

proposed model.  Specifically, the model was used to determine the best places in Sydney 

GMA to locate terminals to serve the import containerised market. The full model comprised 

linked location model, mode choice model and the cargo distribution model. The study found 

Eastern Creek as the most promising location for the development of intermodal terminal in 

the study area, with container destinations in Blacktown as its key markets. Other significant 

catchment areas were found to be Penrith, Paramatta and Fairfield. The choice of mode was 

governed by the generalised cost and together with the shadow price and sensitivity parameter 

form the utilities of the available modes where for each origin-destination a mode with higher 

utility has higher probability of been used for the transport task. The distribution of cargo in 

the study area was found to be governed by four main factors; access to manufacturing 

activities, access to warehousing and storage activities, access to key markets, which in the 

study represent the two central business districts – Sydney and Paramatta – and finally access 

to multiple modes of transport, which is a combined measure of access by road and access by 

intermodal transport.  

 

It is important to note that the data for the case study were derived from secondary 

sources and the source of each data set is provided in the thesis. This study is not responsible 

for the quality or accuracy of these data as several attempts made to verify the accuracy of these 

data proved futile. The verification process includes comparing data from several sources and 

contacting representatives of relevant bodies but none was satisfactory. Thus, the results and 

conclusions reached by this empirical analysis are conditioned on the assumption that the data 

are accurate.  Readers must therefore be cautious about wider applications of the results.  

 

8.4 Limitations and future direction  

This thesis has developed a policy-oriented and flexible model to help develop terminals to 

promote shipper welfare. Important features of the model and how it works in practice have 

been illustrated through a case study implementation. The study so far has not considered the 

movements and management of empty containers in the hinterlands. Proper management of 

empty containers is generally considered as one of the important factors driving the 
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development and usage of intermodal terminals (AHRCR 2007; Meyrick 2006). In addition to 

the empties providing extra revenue for the terminal, the terminals can serve as a market for 

empty containers where importers can return (off-hire) empties and exporters can hire empties 

for the export of their products. The model can be readily extended with appropriate constraints 

to also capture the empty container movements in the study area. The extension can be done 

by either extending existing constraints to also capture the flows of empties and/or add new set 

of constraints to both reflect the flow of empties and their relationships with non-empty 

container flows.  

 

Another important extension that can benefit the literature is to extend the model or 

develop another model to determine the optimal capacity to create at the located terminals in 

the opening year and subsequent years as demand grows. This problem is generally known in 

the literature as capacity expansion (or staging) problem. The objective of this problem is to 

determine how much capacity to add and when. One significant reason for considering such a 

problem is that the cost of adding capacity typically comprises a fixed cost and a variable cost, 

which is a function of the amount of capacity to create. Creating large capacities at a given 

time benefits from economies of scale, and hence a reduction in overall cost and although the 

capacity may not be needed immediately it is expected to be needed eventually to meet an 

increased future demand. However, creating excess unused capacity may tie up much needed 

capital that could yield more returns when invested elsewhere. The outcome of this model will 

also help to plan the capacity expansion more efficiently as capital and other administrative 

requirements can be made in good time before the terminal reaches it capacity. The forecast 

demand for the located terminal(s) at any given year can be estimated using the cargo flow part 

of the problem (converted into a nested logit of mode, production and distribution models) 

given that the inputs to the model can be forecast/known for the given year. The forecast 

demand are in turn used to determine the required capacity for the given year.  

 

In an application context, the case study did not include assigning the demands by 

modes from the entropy model to the transport network to determine potential changes in 

network conditions due to the located terminals and how these changes can alter the demand 

and possibly the optimal locations of the terminals. This process will also help to identify the 

roads, especially connector roads, that need expanding to accommodate the extra growth in 

traffic and where such expansions are not physically possible due to local opposition or lack of 

available affordable lands, the location decisions can be altered. As discussed in Section 6.5, 
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the demand for each mode can be converted into matrices for assignment. These matrices can 

then be added to matrices from other non-containerised modes such as passenger cars and 

busses and then assigned to the road network. It is important to note that the model developed 

is not restricted or limited by any particular transport model or assignment method, although 

an opportunity exists to explore the effects of several assignment methods (for a classification, 

see Bliemer et al. 2017) on location decisions and demands. In practice, any existing transport 

model of the study area can be used for this exercise. The transport model provides as output 

the travel times and distances, which reflect the prevailing network conditions, which then go 

into the proposed entropy model as inputs and outputs matrices for assignment to the transport 

network.   

 

Furthermore, implementing the model to locate terminals to serve the regional market 

and/or both the regional and metropolitan markets will be desirable. A case study that allows 

these three scenarios (metropolitan, regional or both) to be investigated can benefit both the 

literature and practice. The outcome of this investigation as illustrated in Chapter 6 can lead to 

the selection of locations that are neither the optimal locations for the metropolitan nor the 

regional market but best for serving both markets.  
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