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ABSTRACT 

 

TWO-STAGE LOGISTICS NETWORK DESIGN IN 

HUMANITARIAN OPERATIONS 

 

Seyed Soroush Moeini 

 

March 3, 2014 

Natural disasters such as floods and earthquakes can cause multiple deaths, injuries, and 

severe damage to properties. In order to minimize the impact of such disasters, 

emergency response plans should be developed well in advance of such events. 

Moreover, because different organizations such as non-governmental organizations 

(NGOs), governments, and militaries are involved in emergency response, the 

development of a coordination scheme is necessary to efficiently organize all the 

activities and minimize the impact of disasters.  

The logistics network design component of emergency management includes 

determining where to store emergency relief materials, the corresponding quantities and 

distribution to the affected areas in a cost effective and timely manner. In a two-echelon 

humanitarian relief chain, relief materials are pre-positioned first in regional rescue
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centers (RRCs), supply sources, or they are donated to centers. These materials are then 

shipped to local rescue centers (LRCs) that distribute these materials locally. Finally, 

different relief materials will be delivered to demand points (also called affected areas or 

AAs). 

Before the occurrence of a disaster, exact data pertaining to the origin of demand, 

amount of demand at these points, availability of routes, availability of LRCs, percentage 

of usable pre-positioned material, and others are not available. Hence, in order to make a 

location-allocation model for pre-positioning relief material, we can estimate data based 

on prior events and consequently develop a stochastic model. The outputs of this model 

are the location and the amount of pre-positioned material at each RRC as well as the 

distribution of relief materials through LRCs to demand points. 

Once the disaster occurs, actual values of the parameters we seek (e.g., demand) 

will be available. Also, other supply sources such as donation centers and vendors can be 

taken into account. Hence, using updated data, a new location-allocation plan should be 

developed and used. It should be mentioned that in the aftermath of the disaster, new 

parameters such as reliability of routes, ransack probability of routes and priority of 

singular demand points will be accessible. Therefore, the related model will have 

multiple objectives.  

In this dissertation, we first develop a comprehensive pre-positioning model that 

minimizes the total cost while considering a time limit for deliveries. The model 

incorporates shortage, transportation, and holding costs. It also considers limited 

capacities for each RRC and LRC. Moreover, it has the availability of direct shipments 
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(i.e., shipments can be done from RRCs directly to AAs) and also has service quality. 

Because this model is in the class of two-stage stochastic facility location problems, it is 

NP-hard and should be solved heuristically. In order to solve this model, we propose 

using Lagrangian Heuristic that is based on Lagrangian Relaxation. 

Results from the first model are amounts and locations of pre-positioned relief 

materials as well as their allocation plan for each possible scenario. This information is 

then used as a part of the input for the second model, where the facility location problem 

will be formulated using real data. In fact, with pre-positioned items in hand, other 

supplies sources can be considered as necessary. The resulting multi-objective problem is 

formulated based on a widely used method called lexicography goal programming. The 

real-time facility location model of this dissertation is multi-product. It also considers the 

location problem for LRCs using real-time data. Moreover, it considers the minimization 

of the total cost as one of the objectives in the model and it has the availability of direct 

shipments. This model is also NP-hard and is solved using the Lagrangian Heuristic. 

One of the contributions of this dissertation is the development of Lagrangian 

Heuristic method for solving the pre-positioning and the real- time models. Based on the 

results of Lagrangian Heuristic for the pre-positioning model, almost all the deviations 

from optimal values are below 5%, which shows that the Heuristics works acceptably for 

the problem. Also, the execution times are no more than 780 seconds for the largest test 

instances. Moreover, for the real-time model, though not directly comparable, the 

solutions are fairly close to optimal and the execution time for the largest test instance is 

below 660 seconds. Hence, the efficiency of the heuristic for real-time model is 

satisfactory.
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CHAPTER 1  

INTRODUCTION 

1.1 Definition of disaster 

According to the International Federation of Red Cross [1] , “A disaster is a sudden, 

calamitous event that seriously disrupts the functioning of a community or society and 

causes human, material, and economic or environmental losses that exceed the 

community’s or society’s ability to cope using its own resources”. Both natural causes 

and human activities can create a disaster. There is almost a general agreement that there 

is a significant difference between “every day emergencies” and “serious disasters” [2]. 

Routine or everyday emergencies include small fires or car accidents. Such cases are 

often covered quickly by ambulances, firefighters and other emergency response 

vehicles. But serious disasters cannot be handled in a short amount of time and requires a 

long term response. Also, many entities will need to participate in responding to such 

emergencies. 

Disasters can be categorized according to two major factors: the speed of onset 

and the source that causes the disaster to occur [3]. Table.1 presents some examples for 

each category: 

 

 



2 
 

Table 1 Examples of different categories of disasters 
 

 Natural Man-made 
Slow on-set Drought, Famine Political crisis 

Sudden on-set Earthquake, Flood Chemical leak, Terrorist attack 
 

Disasters with sudden on-set require an emergency response.  

 

1.2 Emergency Response  

In the United States, emergency management includes four major phases: 

Mitigation, Preparedness, Response, and Recovery [2, 4, 5].  

1. Mitigation: This step is ideally done before the disaster. It includes activities that 

minimize or at least reduce the negative consequences of a disaster (such as 

injuries or property damage). In fact, in the mitigation stage, activities that 

minimize the risk to people’s lives and properties in case of disasters are 

investigated. At a microscopic level, it may contain activities such as fastening 

bookshelves or heaters to walls so that they do not fall in an earthquake. At a 

macroscopic level, it consists of higher level activities such as identifying 

appropriate safe areas, designing and constructing buildings differently, locating 

temporary housing areas during a disaster, and performing engineering studies in 

the designing process of buildings so that they can withstand natural forces. It 

should be mentioned that a separate but very important part of mitigation is 

insurance (for people, properties, and businesses). Other activities related to 

mitigation stage are as follows: 

o Constructing barriers to deflect disaster forces 
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o Tax disincentives to locate in disaster prone areas and incentives to 

construct in safe areas. 

 

2. Preparedness: Simply put, this phase pertains to planning, organizing, training, 

exercising, evaluating and correcting in order to have an efficient coordination of 

activities that should be undertaken in response to a disaster. This phase involves 

the development of a DSS (Decision Support System) for the duration of a 

disaster. It also involves division of work and responsibilities of the emergency 

activities as well as prepositioning necessary materials such as food, blanket and 

medical supplies required for responding to a disaster. Generally, major activities 

that should be done in this phase are as follows: 

o Hiring and training personnel for emergency services 

o Training citizens  

o Education about do’s and don’ts during emergency periods 

o Preserving emergency supplies 

o Preparing budget for vehicles and ambulances 

o Developing a DSS and emergency communication system. 

   

3. Response: In this phase, the emergency response actions that were developed for 

specific scenarios predicted in the preparedness phase should be executed subject 

to the updated information available immediately after the occurrence of a 

disaster. Time is the most important element of this phase. Moreover, donations 
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play an important especially in severe disasters such as earthquakes. A list of 

important activities of the response phase is provided below. 

o Continuous update of information related to disaster (e.g. availability of 

roads, quantity of demand for different relief materials, statistics of 

affected population, and percentage of usable pre-positioned material) 

o Activating the emergency plans 

o Evacuating affected areas 

o Firefighting equipment 

o Performing medical care 

o Sheltering 

o Fatality management 

  

4. Recovery: The response phase starts immediately after the disaster. But recovery 

involves activities that restore the situation to normalcy. Recovery stage has two 

steps: short term recovery and long term recovery. Short term recovery overlaps 

in many areas with the response phase. In fact, in short term recovery, the goal is 

to return life-support systems to minimum standards. On the other hand, long term 

recovery is about returning the situation to normalcy or improved status. Re-

establishing damaged routes is an example of short term recovery activities while 

complete re-building a fully damaged building pertains to long term recovery. The 

following list shows important activities of the recovery phase. 

o Debris clean-up 

o Rebuilding bridges, roads and buildings 
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o Mental health services 

o Financial assistance to people and organizations 

The focus of this dissertation is on the preparedness and response stages.  

 

1.3 The prepositioning problem 

One of the most important activities in the preparedness stage is the pre-positioning of 

different relief materials. In case of a war, the pre-positioning problem plays a vital role. 

In that case, different types of materials such as weapons, tanks, and meals are pre-

positioned in order to facilitate the military in taking a quick action (reaction) in case of a 

war. In humanitarian logistics, the pre-positioned materials are required to cover at least 

the immediate period of the aftermath of a disaster. After a disaster occurs, the pre-

positioned materials will be shipped from regional rescue centers (RRCs) to local rescue 

centers (LRCs) and then will be delivered to affected areas (AAs). In practice, LRCs help 

improve the response time. If all the relief materials are shipped directly from RRCs to 

AAs, there will be too much empty back-haul for transportation vehicles, but when we 

have LRCs, a set of vehicles can cover a certain route (e.g. from an LRC to an AA) 

which has less empty back-haul. Moreover, in LRCs, different materials coming from 

different RRCs can be sorted and packed in order to become ready to be shipped to AAs. 

If each RRC is designed to store a certain quantity of relief materials, an LRC will be 

assigned to different RRCs and from there, required materials for each demand point can 

be grouped together and delivered. Figure 1 shows the material flow between RRCs, 

LRCs and AAs. 

The objective of the problem is to minimize the total cost (including transportation,  
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Figure 1. Material flow between supply sources, distribution nodes and affected areas 

shortage, and fixed operational costs) subject to meeting delivery constraints. The 

decisions made include: 

1) The set of RRCs to open. 

2) The amount of each relief material that should be pre-positioned in opened 

RRCs 

3) The set of LRCs to open under each scenario. 

4) Under each scenario, the amount of the material that should flow between 

RRCs, LRCs and AAs. 

5) The set of  scenarios to include in the reliable set (i.e., the scenarios for which 

all the demand must be met) 
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6) Direct shipments (i.e. direct transportation between RRCs and AAs) if any. 

 

1.4 The real-time facility location problem 

The modeling and analysis activities in the preparedness stage are based on possible 

scenarios and estimations of the real disaster. But when a disaster occurs, the actual 

values of parameters of the problem will be available. In fact, this is one of the most 

important activities of the response stage (other important activities of this phase include 

alerting and warning, protecting, and restoration). After the disaster, data related to 

following must be updated. 

 Exact locations of demand points 

 Demand at each demand point 

 Availability of routes and roads between the different sets of nodes (RRCs, LRCs 

and AAs) 

 Availability of pre-defined LRCs 

 Exact amounts of usable pre-positioned materials 

 Reliability of routes (in terms of accessibility and availability) 

 Ransack probabilities of routes. 

According to the updated data, it is possible that the distribution scheme, obtained 

from the preparedness stage, is not optimum. Moreover, the amount of usable pre-

positioned materials might not be adequate to satisfactorily cover the demand. Thus, 

other supply sources can be taken into account. In fact, there will be a new facility 

location problem that has some pre-positioned materials in hand and aims to optimize 
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multiple objectives such as demand satisfaction, cost minimization, and ransack 

probability minimization. The following decisions will be made in this model: 

1) Should donation centers be used? 

2) Should we provide more relief items from vendors? 

3) According to real-time data, which LRCs should be opened? 

4) What is the new distribution plan according to real-time data? 

5) Should we have direct shipments? 

Figure 2 shows the map of the two-stage network. Pre-positioning model is built 

up based on estimations of parameters of the disaster (e.g., amount of demand at demand 

points, travel times, and transportation costs). Values of decision variables of the period 

before the occurrence of the disaster (e.g., location of the pre-positioning facilities) along 

with real-time values of all other parameters are inputs of the real-time model. The major 

output of the real-time model is the complete distribution plan. 

 

Figure 2. The map of the two-stage network 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Surveys about 4-stage emergency response 

The Federal Emergency Management Agency (FEMA) [4] in the US describes the 

features of each of the four stages while giving guidelines about the important activities 

that must be done in each. It also presents comprehensive information about the 

relationship between the four stages. This reference is actually an online course about 

emergency management.  

Altay et al. [2] list some of the most important papers (mainly related to 

Operations Research and Management Science) done on different aspects and activities 

of each stage and as conclusion, introduce the fields that require more effort. They also 

mention that by year 2006, most papers had concentrated on only the mitigation stage. 

They present a list of valuable resources about disaster operations. The list includes 

journals, research centers, and data bases.  

The Electronic Encyclopedia of Civil Defense and Emergency Management [5] is 

another source that defines and explains the four stages. 

 

2.2 Literature related to humanitarian logistics and relief chains 

http://www.fema.gov/
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Balcik et al. [6], first, list different fields of a relief supply chains that require 

coordination. Some instances are transportation and relief procurement. Then, they 

investigate different coordination mechanisms and papers pertaining to each. They also 

name the NGOs (non-governmental organizations) as well as military and local 

government as main entities of a relief chain. 

Holguín-Veras et al. [7] mention the “decision support tools” as one of major 

research areas that needs attention and effort. Decision support in emergency 

management pertains to preparedness and response phases. The preparedness phase is 

before the occurrence of disaster (pre-disaster). They also investigate the effects of 

different parameters of the problem in the decision making process. These parameters 

include the severity of the event (disaster or catastrophe), features of the demand, and the 

complexities of the required decision support system. They also provide the areas that 

require more effort. 

Heaslip et al. [8] list the stakeholders in the occurrence of a disaster and highlight 

the importance of coordination between them. They mention that in order to respond 

effectively to a disaster, NGOs, Logistics Firms, Military agencies and even Citizens 

should be prepared. They, then, mention the complexities of establishing effective 

relationships between each group of stakeholders and suggest a method called SADT 

(System analysis and design technique) as an appropriate solution to analyze such 

relationships.  



11 
 

Days et al. [9] define the concept of humanitarian and disaster relief supply chain 

(HDRSC) and its differences with other supply chains. They also provide guidelines on 

how one should study such a chain.  

References [2, 6, 9] were actually surveys and literature review papers about the 

efforts done on emergency management. Some other papers investigate certain previous 

disasters. 

Gatignon et al. [10] explains how the IFRC (International Federation of the Red 

Cross) uses a decentralized supply chain for its activities. They investigate different 

aspects of a decentralized supply chain. And finally, as an assessment of this change, they 

analyze the effect of that on the earthquake that occurred in Yogyakarta, Indonesia on 

2006 and make a comparison between that and some other earthquakes such as the one in 

Pakistan (2005). They show that using decentralized supply chain leads to better outcome 

in terms of cost, time and service quality.  

Holguín-Veras et al. [11] conduct a comparison between various structures related to 

humanitarian logistics that was formed in response to the 2010 earthquake in Port-au-

Prince, Haiti. The three structures are as follows: 

1. Agency Centric Efforts (ACE): Most of the emergency activities are done by an 

external group. 

2. Collaborative Aid Networks (CANs): Activities are performed by entities that are 

part of both impacted land and other communities (such as religious groups). 
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3. Partially Integrated Efforts (PIEs):  This structure is between the two previous 

ones. Each side will perform different levels of activities. Note that there are 

many possibilities. 

The study showed that the CAN structure should be considered because solely 

leaning on ACE is not effective. 

Argollo da Costa et al. [12] focus on four large disasters (Indian Ocean 2004, 

Pakistan 2005, Brazil 2011, and Japan 2011) and study the effect of logistics procedures 

on the emergency response to each of them. Their paper emphasizes on important 

activities that should be done in the immediate aftermath of a disaster. They mention that 

in Japan’s earthquake, because activities such as health team training, using professional 

managers as assessors, and implementing screening systems for medical services helped 

create the best (among four) response to the disaster. 

 

2.3 Literature related to facility location problem 

2.3.1 Taxonomy of facility location problems 

The remainder of this chapter reviews literature on quantitative models similar or related 

to those that are considered in this dissertation. The major models of the dissertation are 

facility location and allocation models with different assumptions. Hence, we first review 

the literature of facility location problem. 

According to Brandeau et al.[13], facility location problems can be categorized 

according to three major factors:  
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1. Objective: Examples are minimizing total travel distance, and maximizing 

minimum travel time/cost 

2.  Decision variables: Location of and capacity of facilities 

3. Parameters: Deterministic versus probabilistic, and constrained versus 

unconstrained 

Then, according to different combinations of each category, they list 54 different 

facility location problems. Klose et al. [14] developed a taxonomy and use nine criteria to 

categorize the facility location problem. Then, according to how each problem is 

formulated, they list three categories for the problem.  

Network Location Models: Nodes are demand points as well as possible locations 

for facilities. P-median, p-center and set-covering are three major problems of this 

group. Revelle et al. [15] conducts a comprehensive literature review on papers 

related to these three problems).   

Continuous Location models: The solution space is continuous and an appropriate 

metric is chosen to calculate distances (e.g. Euclidian and right-angle metrics). 

Weber problem and multi-source Weber problems pertain to this branch. 

Mixed-integer programming models: this type is similar to network models, but 

the major difference is that here, the distances between nodes (facilities and 

demand points) are considered as input parameters while in network models, they 

have different metrics. 

Farahani et al. [16] review papers on the multi-objective facility location problem. 

The categorization here, is based on the decision making approach each paper has used. 

They present three types of problems: bi-objective problems, k-objective problems, and 



14 
 

multi-attribute problems. In bi-objective problems, decisions are made according to two 

objectives whereas in k-objective problem, more than two objectives are considered. The 

multi attribute problem is solved using techniques such as Analytical Hierarchy Process 

(AHP). Arabani et al. [17] review literature related to several types of facility location 

problems. 

We now briefly review Network Location Models as well as Continuous Location 

models. 

 

2.3.1.1 Network Location Models 

P-median model: 

One the most basic formulations of the facility location literature is the p-median model. 

It was first developed by Hakimi [18] in 1964. In this model, there is a set of nodes that 

contain demand points as well as candidate locations for building facilities. The distances 

between nodes are weighted. The model locates p facilities in way that minimizes the 

total weighted distance between facilities and their assigned demand points. The 

mathematical formulation is as follows. 

    ∑ ∑         

      

 

Subject to 

∑    

   

                      

    -    ≤ 0                k   K ,  j   J 
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∑   

   

   

z and y are binary variables 

Where k is a set of nodes, j (a subset of k) is set of potential facilities,       is the 

weighted distance between nodes j and k.    = 1 if demand point k is assigned to facility 

j, and    = 1 if a facility is located at node j. 

Mladenovic et al. [19] review the literature on solution methods for this problem. 

The various well-known heuristics used are greedy, stingy and composite. Genetic 

search, simulated annealing and ant colony are mentioned as popular meta heuristics for 

solving the problem.  

Berman et al. [20] have developed a variant of the p-median problem. According 

to this model, not necessarily all, but at least α percent of total demand will be satisfied. 

This type of approach is called α-reliable modeling which is also used in this dissertation. 

 

p-center problem: 

This problem was also first addressed in [18] and locates p facilities in a way that 

maximum distance between facilities and demand points is minimized. 

Min r 

Subject to 

   ∑ ∑         

      

                  

∑    
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    -    ≤ 0                k K , j J 

∑   

   

   

x, y are binary variables 

There are 2 other problems called “conditional p-median” and “conditional p-

center”. Both models assumes that there is an existing set of facilities and attempts to 

locate new facilities with respect to the current ones according to regular p-median and p-

center problems. The first reference that addressed these problems was [21]. 

Later, Berman et al. [22], used a new formulation for those problems, assuming 

that each demand point will be served by the closet facility, whether it is an existing or a 

new one. 

 

Set-covering problem: 

The objective of this problem is to locate a minimum number of facilities so that the 

distance between the locations of facilities and demand points do not exceed a threshold. 

  

    ∑   

   

 

Subject to 

∑    

   

                      

   is a binary variable 
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Here,    = 1 if the distance between node k and facility j is no more than a 

predetermined value. 

Farahani et al. [23] have done a comprehensive review of the literature on set 

covering problem. It also presents all the mathematical formulations related to each paper 

it reviews.  

There is also a two-stage set covering problem (called as hub covering) that was 

first addressed by Campbell [24]. Supplies are first sent from facilities to distribution 

nodes (i.e. hubs) and then shipped to demand points. The location of hubs will be 

determined in a way that covers all the demand.  

 

2.3.1.2 Continuous models:  

Weber problem: The original Weber problem locates a facility in a way that the sum of 

its weighted distances form k demand points (each located at (  ,  ) is minimized. The 

formulation is as follows. 

 

          
   

∑     (   )

   

          (   )   √(     )   (     )  

 

Multi-source Weber problem: This is an extension of Weber’s original problem. Here, the 

location of p (more than 1) facilities should be determined with the same objective. Also, each 

demand point should be assigned to only one facility. 

 

   
   

∑ ∑(    (   )) 

 

      

             (   ) 
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Subject to 

∑    

   

            

    is a binary variable 

    = 1 if the demand of node j be assigned to j 

 

An interesting variant of Weber problem was developed by Bhattacharya [25] where a 

multi-objective model was developed so that the minimum distance of facilities is 

maximized (the closeness of facility is hazardous). This problem also pertains to maximal 

covering class because one of its objectives is to maximize the number of covered 

demand points. 

 

2.3.2 Mixed integer programming models 

In mixed integer programming models, there is a tradeoff between the fixed cost of 

opening facilities and variable transportation cost. This type of models themselves can be 

categorized according to following criteria [14]: 

 Single stage (echelon) vs. Multi-stage  

 Capacitated vs. Uncapacitated 

 Single products vs. Multiproduct 

 Single period vs. Multi period (Dynamic models) 

 Deterministic vs Stochastic. 

 

Single stage (echelon) vs. multi-stage  
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The simplest form of mixed integer facility location models is provided below 

 

   ∑      

   

   ∑ ∑       

      

 

Subject to 

∑    

   

                          

    ≤                                                 

   and     are binary variables 

In this single-stage model,    is fixed cost of opening a facility at location i,     is 

unit transportation cost between facility i and demand point k,    equals 1 if a facility is 

opened at location i, and     equals 1 if demand of demand point k is satisfied by facility 

i. The first constraint assures that each demand point will be allocated to exactly one 

facility. The second constraint allows shipments from a facility only if it is opened. If we 

assume that     is non-negative variable, then we will have a mixed-integer linear 

programming model.     is the unit transportation cost between facility i and demand 

point k. 

On the other hand, in multi-stage models, the demand of each demand point is not 

directly shipped from facilities. It is first sent to one or more intermediate nodes and from 

there to demand points. Depending of the nature of the problem, these nodes can be 

warehouses, distribution nodes, or even retailers. The most widely used form of multi-

stage models is the two-stage model where there is only one set of intermediate nodes. 

Figure 3 shows the general structure of two-stage models. 
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Figure 3. Two-echelon business supply chain  

Syarif et al. [26] perform an analysis on such models. There is no single way of 

modeling this problem, but two general ways of modeling it are transshipment and 

complete allocation models. In a complete allocation model, each demand point can be 

satisfied by only one facility via exactly one intermediate node. But in transshipment, this 

assumption is not considered. The simplest way of formulating the complete allocation 

problem is as follows. 

 

   ∑      

   

 ∑      

   

 ∑ ∑ ∑           

         

 

Subject to 

∑ ∑          

      

          

     ≤                                            

     ≤    
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where i is set of facilities, j is set of warehouses, k is set of demand points,    and    are 

fixed costs of opening a facility at location i and a warehouse at location j, respectively. 

     = 1 if the demand point of location k is satisfied by facility i via warehouse j.        

equals one if a facility is opened at location i and a warehouse is opened at location j, 

respectively. The first constraint guarantees that demand is satisfied. The second and 

third constraints assure that shipments from a facility to a warehouse and then to a 

demand point can occur only if the corresponding facility and warehouse are open. 

 

Capacitated vs. Uncapacitated 

In a typical facility location problem, the facilities are considered to have unlimited 

supply capacity. But in reality, this assumption rarely holds because the total number of 

facilities as well as the capacity of each is not unlimited. In two stage problems, the 

intermediate nodes (such as warehouse) can also have limited capacity. In network 

models, the arcs (i.e. the links between facilities and demand points) can be capacitated. 

Ghosh [27] compares three heuristics for the uncapacitated problem in terms of their 

performance.   

Dasci et al.[28] impose capacity limits to the problem in an interesting manner. In 

fact, instead of assigning a fixed value for facility capacity, they include an increasing 

function for operational cost of a facility. The model allocates optimal capacity at each 

facility. 
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Single products vs. multiproduct 

In many cases, more than one product is produced or supplied at a facility. In the simplest 

case, more than one product is produced in facilities and will be shipped to different 

demand points. In more realistic models, each facility will incur a certain fixed cost 

related to each product type, if it desires to produce that product (Barros [29]).  

Also, Chandra et al. [30] assumed that each product type is made of different 

combinations and quantities of different raw materials and consequently, before 

production, the producers should buy each material type (related to the product types it is 

going to produce) from raw material vendors first.  

 

Deterministic vs. Stochastic 

Models that have complete deterministic inputs (especially parameters) are called 

deterministic models. In many cases, some of inputs are probabilistic. Such models are 

called stochastic (or probabilistic models). In most of the stochastic models, demand is 

considered to be probabilistic. Other parameters such as traveling time between locations 

and production capacity of facilities can also be probabilistic. If the probability 

distribution is discrete, the model may be converted to a deterministic facility location 

problem so that can easily be solved. For instance, Lin [31] considers Poisson demand for 

demand points and converts the problem into a single-source capacitated facility location 

problem.  If the distribution is continuous, then other solving methods become necessary.  

For example, when they consider, a normally distributed demand, they convert the 

problem into a mixed integer non-linear model, which is hard to solve.  
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In a different work, Sambola et al. [32] assume that demand has Bernouli 

distribution. By using two different strategies (facility outsourcing and customer 

outsourcing) and considering the expected value of each they convert the stochastic 

model into a deterministic one. 

 

Single period vs. Multi period (Dynamic models) 

Most of the problems that have been studied in the literature consider only one period. In 

fact, a one-time decision about the location of facility and the allocation of demand points 

to them is made. But in another group of problems, the planning horizon is longer and 

each period of the horizon has its own parameters (i.e. demand, capacities, availability 

and other parameters are different in different periods). These models are similar to 

inventory models. In many cases, demand of one period can be postponed and satisfied in 

other periods.  

Hinojosa et al. [33] developed a two-stage multi-period facility location problem 

and permit the opening of facilities in any period. In [34], Thanh et al. [34] mention that 

facilities can be opened, closed, and even enlarged (in terms of capacity) in different 

periods.  

Canel et al. [35] solve the dynamic problem in three phases. First they identify the 

facilities to be opened at each period. Then, appropriate combinations of those facilities 

are generated, and finally, by means of dynamic programming technique, the optimal 

solution is obtained. 
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Recently, Romauch [36] developed a stochastic dynamic model and solved it 

optimally for small-scale problems (almost all dynamic facility location models in the 

literature are deterministic).  

 

2.3.3 Facility location models related to humanitarian logistics 

As mentioned in the first part of this chapter, there are four stages for emergency 

management. Most facility location problems in humanitarian logistics pertain to the 

“preparedness” and “response” stages.  

Caunhye et al. [37] review optimization models that are used in both pre-disaster 

and post-disaster activities. This classification (i.e. pre-disaster and post-disaster) is 

further broken down for different activities or combination of activities. Most available 

optimization models are for pre-disaster and short-term post-disaster (i.e. response stage). 

The short term post-disaster response includes activities such as evacuation of affected 

people, distribution of relief materials, and performing medical care on injured people. 

Figure 4 shows the framework for emergency operations, before and after a disaster. As 

can be seen, in pre-disaster period, stock pre-positioning as well as facility location are 

major challenges. After the occurrence of a disaster, relief distribution among AAs 

(which can also be a facility location problem) plays an important role. Although 

evacuation is an important activity in post-disaster response, because it has its own 

formulation and logic, it will not be reviewed here. A comprehensive definition of that 

problem can be found in [38]. A sheltering model for people of areas affected by flood 

events is developed by Konsomsaksakul [39].  

http://link.springer.com/search?facet-author=%22Martin+Romauch%22
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Figure 4. Emergency operations framework 

 

Before reviewing the literature related to pre-positioning and post-disaster facility 

location problems, we should mention that another important challenge in emergency 

response is the vehicle routing problem (VRP). The models related to the VRP in 

emergency response management are surveyed by Ghiani et al. [40]. These models are 

labeled as “real-time vehicle routing”. Yuan et al. [41] developed two models for path 

selection problem: a single-objective model aiming to minimize total travel time, and a 

multi-objective that considers not only time minimization, but also path-complexity 

minimization. Path-complexity is defined as the number of arcs (i.e. links between 

different nodes, including supply centers, distribution centers, and demand points). 

 

2.3.3.1 Pre-positioning related literature 

Lakovou et al. [42] develop a model to determine the location of facilities that are going 

to preserve equipment that are used in order to clean oceanic areas in case of oil spilling. 
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The prevention process should be done as fast as possible so that the leaks cannot spread 

through the oceans or seas. Different spill types as well as different equipment types are 

considered. The main objective is to minimize the total cost that includes items such as 

response cost, evacuation cost, and pollution thread cost. Another important objective is 

the minimization of total travel time (for vehicles that are carrying different equipment).  

In Wilhelm et al. [43], a problem similar to that in [42] is considered. The major 

difference in the assumptions is that there currently exist some storage facilities, each 

containing a specified amount of the required equipment and items. The presented model 

locates new facilities or expands the current ones at pre-specified costs. 

Another pre-positioning model is introduced by Balcik et al. [44]. There are 

different scenarios for the level of damage to different AAs (a discrete distribution) and 

the objective is to minimize the total cost. A novelty of this paper is the assignment of an 

importance coefficient called “criticality weight” for each relief material defined. By 

using this concept, relief materials can be prioritized and those with higher importance 

rise to the top of satisfaction list.  

 Chang et al. [45] build a decision support tool that can manage the emergency 

response in case of a flood. The model first considers different rain events. Associated 

with each rainfall event, there are different affected urban locations. Each location or 

group of locations is under the responsibility of a certain rescue center. Objectives are 

minimizing the cost as well as the distance traveled to deliver rescue materials. 

Dessouky et al. [46] present an emergency response scheme in order to respond to 

an anthrax emergency. The facility location problem is formulated as p-median and p-
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center problems. The model also requires that all located facility should be within a 

certain pre-specified distance from demand points. Then, a VRP is formulated to 

distribute relief materials to AAs. The problem considers multiple relief materials. It 

should be mentioned that although the facility location model is deterministic, the vehicle 

routing part is based on stochastic parameters. 

 McCall [47] presents a mixed-integer programming model for pre-positioning 

items such as food, water, mask, and blanket. This model was be used by the United 

States Navy in case of war in certain countries (e.g. Australia). The model considers 

budget limitations as well as capacity constraints.  

Jia et al. [48] develop a p-median, a p-center, and a covering model for large-scale 

emergencies. In those models, there can different levels of damage at each AA and each 

area is affected by a certain probability. 

 An optimization model for hurricane is presented by Hormer et al. in [49]. In the 

paper, the supply centers are called Logistical Staging Areas (LSA). The model assumes 

there are different facility types and that the AA is divided into multiple neighborhoods, 

with each neighborhood served by a facility. 

Campbell et al. [50] mention that the location of pre-positioned materials should 

be close enough to the AA so that the relief materials can be delivered in a reasonable 

amount of time. The location must be at a reasonable distance from the center of the 

disaster so that the risk of damage to the material is minimized. Hence, the optimal 

location and amount of pre-positioned materials should be obtained from a trade-off 
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between delivery time and damaging probability. The paper develops a model to optimize 

the problem. 

Akkihal [51] studies the pre-positioning problem. He categorizes the problem as a facility 

location problem and develops a simple model based on the p-median formulation. Yushimito 

[52] extends the model by considering the reliability of routes. It should be mentioned that the 

model of [52] was a location-routing model (i.e. a model that solves the location allocation and 

routing problems in a single model). 

Tean [53] was probably the first person to present a broad model for the pre-

positioning problem. His main novelty was making the model “scenario-based”. In fact, 

because the prepositioning decisions are done before the occurrence of a disaster, they 

should be based on a set of some (or all) possible disaster scenarios in terms of factors 

such as severity of the disaster or the center of the disaster. Then, these scenarios are 

considered in a model and the location decision is made according to the probability of 

occurrence of each scenario. He also considers different vehicle types so that the 

commodities can be transported to several demand points in one route of a vehicle. Tean 

[53] did not consider costs in his model although he minimizes unmet demand and 

maximizes the number of survivors. Rawls et al. [54] define a similar, but cost-based 

model by considering transportation, holding and shortage costs. Their model was single-

stage, subject to arc capacities, meaning that between each pair of locations, a limited 

amount of relief material can be transported. In the solution procedure, the problem was 

divided into two sub-problems: the first one includes variables that are independent from 

scenarios (e.g. amount of prepositioning in different locations) and the second sub-

problem pertains to scenario-based variables. They diminish the second sub-problem 
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using L-shaped methods and then, because the remaining sub-problem is convex, they 

solve it using approximation-based methods. Duran et .al [55] also developed a mixed-

integer programming model in order to minimize the average response time over all the 

demand points. In fact, they considered a larger weight (priority) for areas with higher 

amounts of demand. 

 Alper et al. [56] extend Rawls model by considering two echelons. First, supplies 

come to distribution nodes, and then they are distributed to different demand points. 

Their model is capacitated (i.e. distribution nodes have limited capacities). Each 

distribution node can be assigned to only one supply center and each demand point can 

be allocated to only one distribution node. The travel time between supply centers and 

distribution nodes is considered to be negligible. Wang et al. [57] formulated the model 

according to region division problem. In region division problem, each point (location) 

can be a supply source as well as an AA. Points are grouped into rescue regions. Through 

regional division and resource sharing, the groupings can be improved so that the 

efficiency of rescue (i.e. the cost and time of satisfying the demand of AAs) increases. 

The first stage of this model is the grouping process while the second stage pertains to 

distribution of supplies. 

 Rawls et al. [57] extend their model in [55] twice. First, they add service quality 

constraints to the model so that at least a certain percentage of scenarios are completely 

satisfied (in terms of demand). The fully satisfied scenarios are placed in a set called the 

reliable set. Moreover, for scenarios in the reliable set, there is a maximum value on the 

shipment distance for the supplies [58]. This enhancement is really helpful because for 

certain scenarios, a complete satisfaction of the demand might be vital. Rawls et al. [57] 
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also made the deliveries dynamic so that both the demand and transportation become 

variable, representing scenarios that are closer to reality [59]. In this new model, the 

allocation part has two stages. The first stage pertains to the first 72 hours of the 

aftermath of the disaster, and the second stage, covers the time after that. It should be 

mentioned that the model can have more than 2 stages. The allocation of the demand to 

the demand point at each stage can be different. 

A new type of pre-positioning logic is presented by Amiri et al. [60], where pre-

positioned materials are stored not in supply centers, but in specific AAs. In the aftermath 

of the disaster, it is possible to transport more supplies to AAs from supply centers. The 

models attempts to achieve two objectives: 1) Minimizing the total cost including setup, 

shortage, transportation, and holding costs. 2) Minimizing the maximum shortage in 

AAs.  

 

2.3.3.2 Post-disaster 

Most of the previous mentioned models were pre-positioning models. They were based 

on the fact that the disaster has not yet occurred. Hence, different scenarios about the type 

and location of the disaster are estimated and appropriate facility location decisions are 

made. In all these models, cost minimization is the major objective though some of the 

models consider maximizing the delivery of relief materials as another objective. But in 

facility location models related to the aftermath of a disaster, there is only one scenario. 

Recent models tend to become multi-objective. In fact, other objectives such as 

maximizing the reliability of chosen routes and minimization of ransack probability of 

routes are considered. These objectives are hard to predict prior to the occurrence of a 
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disaster (in pre-positioning stage). Now we review some of works done in this area 

below. 

Some papers considered pure inventory control (as well as supply chain 

management) formulations and models for the problem.  Lodree et al. [61], for instance, 

used the Newsvendor technique to estimate the extra cost caused by disruption in 

inventory planning for a disaster. Beamon et al. [62] defined an inventory model with all 

parameters (e.g. lead time and cost of placing order) to minimize the entire cost to the 

system. 

Fredrich et al. [63] exerted a combination of dynamic programming and graph 

theory to build a model and solved it heuristically.  

Other papers have developed OR models for supplying, transporting and 

distributing supplies for AAs. Each model has its own assumptions, objectives and 

parameters. 

Crarnes et al. [64] is one of earliest papers related to this area. It presents a 

deterministic single-period allocation model for assigning different equipment to marine 

environment that have had an oil spill. The problem is modeled via goal programming in 

which the importance weights of different objectives can be changed by the user. Three 

years later, that model was upgraded to a multi-period model ([64]).  

Haghani et al. [65] develop a single-objective multi-period network model for 

emergency response. The demand at AAs can be met at different periods. Hence, this 

model pertains more to the long-term rather than the short-term response. All parameters 
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are deterministic and the objective is to minimize the fixed cost of opening facilities and 

transportation cost of relief material. 

Tzeng et al. [66], first, conduct a comparison between the features of a general 

distribution system and a relief distribution system. The results show that in relief 

distribution systems, the objective is maximization of efficiency rather than profit, 

facilities are temporary, and decisions are urgent and based on available information 

(compared to general systems where decisions are long term). Then, they develop a 

model, containing three objectives (i.e. minimization of cost, minimization of total travel 

time, and maximization of demand satisfaction). The model, also, considers vehicle 

capacities. 

 In the model developed by Barbarosoglu et al. [67], there are two stages. First, 

according to the probability distribution of the demand at the AAs, and the reliability of 

different arcs (i.e. routes between facilities and demand points), some amount of supplies 

will be determined to be pre-positioned in open facilities. Then, in the second stage 

(which is the after-math of the disaster) the amount of usable pre-positioned materials 

will become known but, the arc capacities and demand values remain probabilistic. In 

this stage, no further supply is allowed and only the pre-positioned materials can be used. 

In order to make the second stage feasible for all situations, shortage and excess amounts 

are allowed, each having its own cost. In summary, the supply decisions are made in the 

first stage (and a preliminary allocation scheme is also developed), but the actual 

allocation decisions are made in the second stage.  
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 Rottkemper et al. [68] developed a single-objective allocation model for demand 

satisfaction after a disaster in multi-period horizon. (In fact, they considered two 

objectives: minimization of cost and minimization of unsatisfied demand, but because the 

latter can be defined in the constraints which eliminated the need for multi-objective 

optimization techniques, one can consider their work as a single objective model). Their 

model had only one echelon (supply flow from central depot to regional depots as well as 

between regional depots) although they considered international donations. On the other 

hand, Ortuno et al. [69] considered multiple objectives such as minimizing travel time, 

fitting maximum ransack probability and minimum reliability, and minimizing the cost. 

They also considered different vehicle types, but just one planning period. They, then 

extended their model by making it two-echelon as well as adding parameters such as arc 

capacities (flow capacities of the links between depots) [70]. In both [69] and [70], 

lexicographic goal programming method was used and only a single product was 

considered. 

 

2.4 Heuristics for Facility Location Problem  

Many heuristic and meta-heuristics have been used to solve alternate facility location 

problems. We review some of them here. 

A heuristic concentration (HC) metaheuristic is developed by Rosing et al. [71] to 

solve the p-median problem. This metaheuristic has two stages. In the first stage, many 

different fundamental solutions are randomly chosen and tested (this is called 1-opt 

heuristic) and those that have a better objective function are selected. Then, all the 
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facilities of all solutions are gathered in a set called concentration set or CS. In the second 

stage, those facilities are located using another heuristic called the 2-opt heuristic.  

Tragantalerngsak et al. [72], develop a Lagrangian relaxation heuristic for the 

complete 2-stage capacitated location problem in which each distribution node can be 

served by only one facility and each demand point can be served by only one distribution 

node. Six different lagrangian heuristics are tested. For the same problem, Chen et al [73] 

develop a hybrid algorithm, consisting of Lagrangian relaxation and ant colony 

optimization (ACO) algorithm to solve the problem. In fact, two different ACO 

algorithms are used - one for location and another for allocation. Based on the results 

presented, it appears that the developed hybrid algorithm performs better than multiple 

ant colony system (MACS). In fact, the MACS coordinate the solutions of facility 

location and demand assignment solutions whereas the hybrid algorithm solves them 

separately. 

Escudero et al.[74],by means of lagrangian relaxation, convert the capacitated 

facility location problem to an uncapacitated problem, and solve the transformed problem 

using a branch and bound algorithm. 

A heuristic developed by Mazzola et al. [75] performs the same procedure on 

capacitated multi-product facility location problem. For the same problem, Keskin et al. 

[76] present a solution procedure based on scatter search metaheuristic. 

Christiansen et al. [77] mention that solving the capacitated facility location 

problem using Lagrangian relaxation has the disadvantage that no fractional optimal 

solution for the master (i.e. capacitated) problem is obtained. Hence, they use a column 
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generation technique to get some information about the primal fractional solution and 

then solve sub-problems using branch and price algorithm. 

For solving capacitated, multi-product, multi-period facility location problems, a 

two-stage heuristic are developed Canel et al. [78]. First, by using branch and bound, a 

set of solutions for each period as generated and then, by using dynamic programming 

techniques, the best sequence of solutions through all periods is selected. 

Marić et al. [79] conduct a comparison between the performance of three heuristic 

methods (i.e. Simulated Annealing, Particle Swarm Optimization and a combination of 

Variable Neighborhood Search and Reduced Variable Neighborhood Search methods). 

The results show that the combined method has the best outcomes in terms of time and 

quality of the solution. 

Arostegui et al. [80] conduct a comprehensive comparison between the 

performance of Genetic Algorithm, Simulated Annealing, and Tabu Search. The 

comparisons are done separately for capacitated problem, multi-period problem, and 

multi-product problem. According to the results, Tabu search works best for capacitated 

as well as multi-period problem, but for multi-product problem, best performance 

belongs to Genetic Algorithm. 

 

 



36 
 

CHAPTER 3  

A COMPREHENSIVE PRE-POSITIONING MODEL 

3.1 Introduction 

As seen in section 2.3.3.1, the two-echelon pre-positioning model is still preliminary and 

none of the upgrades that have been done on single echelon model has been applied to it. 

Moreover, the current two-echelon models do not consider supply capacity constraints. In 

fact, a majority of current papers assume that some number of facilities preserve the 

supply materials with unlimited capacity until a disaster occurs. But, according to 

Beamon et al. [44], when a disaster occurs, three main sources will provide the supply: 

prepositioning facilities, donations, and regular suppliers who often vend supplies. 

Consequently, considering unlimited supply capacity for pre-positioning facilities is 

neither practical nor needed. Finally, the current two-echelon model, developed in [56], 

confines maximum delivery durations only between RRCs (Regional Rescue Centers or 

suppliers) and LRCs (Local Rescue Centers or local distribution centers) and not to the 

demand points. Also, it is not a complete transshipment model because each demand 

point can be allocated only to one distribution node and each distribution node should be 

assigned to only one supply source. For overwhelming these limitations, we need to 

define the main decision variable of the system in a way that the total shipping distance 

for relief materials become observable. Finally, we add the capability of direct shipment 

(i.e., relief materials can be shipped directly from RRCs to 
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AAs) to our model to make it more comprehensive. This technique was first used by Sun 

[81].  

Before presenting the full details of the model, we review its mission. In the 

aftermath of a disaster, there are different types of materials that should be distributed 

among the people of affected areas and volunteers. Basically, these materials are food, 

water, medical supplies, digging tools, blankets and other relief items. Because it is very 

important to take care of affected people in a very short amount of time, such materials 

should be readily available in the aftermath of the disaster. Therefore, these materials 

should be pre-positioned in safe places (e.g. RRCs) so that the procurement time becomes 

zero and the distribution process starts instantly after the occurrence of the disaster. The 

pre-positioned materials can be shipped to the affected areas either directly or via 

regional rescue centers (LRCs). The travel time and cost between RRCs, LRCs, and AAs, 

as well as the amount of demand at AAs for different relief materials are not completely 

known before the occurrence of the disaster. Hence, the pre-positioning model should 

give a solution for each possible scenario (of the real disaster) in a way that the average 

cost over all possible scenarios becomes minimized. The more the pre-positioning 

materials, the better the demand coverage in the aftermath of the disaster. But, more pre-

positioning materials will increase the holding costs. Hence, the optimal solution for this 

two contradicting objectives should be developed. Figure 1 schematically shows the 

general picture of the pre-positioning problem. It should be mentioned that in this model, 

it is assumed that not necessarily all the pre-positioned materials are usable after the 

occurrence of the disaster, and therefore, for each scenario, a certain percentage of pre-

positioned materials will survive the disaster as well as expiration dates are usable. Also, 
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the capacities of LRCs are also scenario-based and probabilistic. This is regarding the 

fact that candidate facilities for LRCs are chosen from routinely operative and active 

places such as stadiums, sport centers and schools, because otherwise, new facilities must 

be built and maintained or a set of existing facilities should remain idle until the 

occurrence of a disaster, which is very costly. On the other hand, such facilities can be 

affected by the disaster and consequently, their capacities in the aftermath of the disaster 

can be affected by the type and severity of the disaster [56].  

In the pre-positioning model, there are 3 sets of locations: set of RRCs, set of 

LRCs and set of AAs. There is a set of relief materials as well. In the model, a subset of 

locations of RRCs is chosen to hold different relief materials to cover the aftermath of a 

disaster. After the occurrence of a disaster, these materials will be shipped to AAs, either 

directly or via LRCs. There is also another set, called set of scenarios. Each scenario is a 

set of different values for some of the parameters of the model. Theses parameters are 

called scenario-based parameters and are as follows:  

 Capacity of LRCs 

 Amount of demand at AAs 

 Transportations times between different locations (i.e., RRCs, LRCs, and AAs) 

 Fixed cost of opening and operating LRCs 

 Transportation costs 

 Shortage cost of different relief materials 

 Usable percentage of pre-positioned materials 
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In fact, each scenario is a prediction of the situation of the aftermath of the 

disaster. For instance, according to a rather severe scenario, amount of demand at AAs is 

high and usable percentage of pre-positioned materials is low. Each scenario has a certain 

probability of occurrence. The pre-positioning model is a cost-based model (i.e. the 

objective is the minimization of the total cost). This model minimizes the “average cost 

over all the scenarios”. In other words, it minimizes the weighted average cost.  

 

3.2 The pre-positioning problem 

3.2.1 The pre-positioning model 

The comprehensive pre-positioning model is provided below. 

Sets 

 I: set of candidate RRCs 

 J: set of candidate LRCs 

 K: set of demand points (AAs) 

 L: set of relief types 

 S: set of scenarios 

 
Parameters 

  : Probability of scenario s 

  : Unit volume of relief item l 

  
 : Capacity of      under scenario s 

   : Capacity of      for item l 



40 
 

   
 : Amount of demand at demand point k for relief type l under scenario s 

     
 : Transportation time from      to demand point k via      under scenario s 

     
 : Direct transportation time from      to demand point k  

  : Fixed cost of opening and operating      

   
 : Fixed cost of opening and operating      under scenario s 

     
 : Transportation cost for one unit of item l shipped from      to demand point k 

via                    under scenario s 

    
 : Transportation cost for one unit of item l shipped directly from      to demand   

           point k under scenario s 

   : Procuring and holding cost for one unit of item l at      

   
 : Unit shortage cost of item l under scenario s at demand point k 

   
 : Usable percentage of total pre-positioned amount of item l at      under scenario s 

α : Service quality proportion 

     : Maximum allowed delivery duration 

 

Decision Variables 

   : Amount of item l stored at      

     
 : Amount of item l shipped from      to demand point k via      under scenario s 

    
 : Amount of item l shipped directly from      to demand point k under scenario s 

   
 : Shortage amount of relief item l at demand point k under scenario s 

    {
                            
                                 

 

  
   {
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   {

                                                                                            

                                                                                                                                                              
 

   
   {

                                                                                      
                                                                                                                                                

 

 
    {

                                                    
                                                                         

 

 

 

Objective function: 

Min ∑        + ∑ ∑       
    

 
   + ∑  ∑  ∑            

  .    
  + 

∑ ∑ ∑ ∑ ∑          
 

           
  + ∑ ∑ ∑ ∑         

 
      

 
    + ∑ ∑                         (1) 

 

Constraints: 

   
 
 - ∑ ∑ (     
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                  k , l , s                                                  (2)  

   
 .     ≥  ∑ ∑ (     

 
  ) - ∑ (    

 )                     i , l , s                                                 (3)   

    ≤     .                                                               i,l                                                      (4)   

∑ ∑ ∑      
         ≤   

 .   
                            j , s                                                         (5)   

∑        
≥ α                                                                                                                      (6)   

   
      

 
. (1 -  

  
)                                        k , l  , s                                                    (7)     

∑      
 

 ≤ M .     
                                             i , j , k , s                                               (8) 

∑     
 

 ≤ M .    
                                                 i  , k , s                                                 (9) 

     
 
.     

 ≤                                                  i , j , k , s                                             (10)       

    
 
.    

 ≤                                                  i , k , s                                                   (11)    

 

The terms, in order of their appearance in objective function (1), are as follows: 
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 Fixed cost of opening RRCs 

 Fixed cost of opening LRCs 

 Shortage cost 

 Indirect transportation cost 

 Direct transportation cost 

 Holding cost. 

It should be mentioned that all the terms in the objective function except the 

holding cost and fixed cost of opening RRC, are scenario-based. The holding and fixed 

costs of opening RRCs are not scenario-based regarding the fact are incurred before the 

occurrence of the disaster and the severity of the actual disaster does not affect them: a 

certain number of RRCs should be opened and a certain amount of different relief 

materials should be pre-positioned in them, and thus, the related costs are incurred 

regardless of the disaster. However, transportation costs, shortage costs, and fixed cost of 

opening LRCs are scenario-based because their values will be known after the occurrence 

of the disaster. Hence, they all have    as coefficient. In fact, the objective function for 

scenario-based terms acts as a weighted average over all of scenarios. If there is not 

enough pre-positioned materials in RRCs, we will have more shortage cost. On the other 

hand, pre-positioning such materials will cause more fixed cost of opening RRCs as well 

as more holding cost. There is a trade-off between these two sets of costs in the objective 

function.  

Constraints (2) show that under scenario s, the shortage amount of item l at 

demand point k is the difference between the demand of the demand point k and amounts 

of item l transported to demand point k. According to constraint (3), under scenario s, for 
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each item l, the total shipments (direct and indirect) from RRCi cannot exceed the total 

amount of usable pre-positioned materials in that RRC. Constraints (4) guarantee that the 

all pre-positioned items at RRCi do not exceed its capacity. They also assure that a 

shipment can start from an RRC only if that RRC is opened. Constraints (5) guarantee 

that not all LRC need to be opened to be able to accept shipments, but an open LRC 

cannot store more items than its capacity.  Constraint (6) is actually the definition of the 

reliability set. In fact, if for a certain s,    =1, then the scenario associated with that s will 

be reliable (i.e., all the demands of demand points for different items under scenario s are 

covered). Constraints (7) guarantee that if a scenario is in the reliable set, then all the 

shortage amounts associated with it are zero. Constraints (8) are complementary 

constraints for constraints (10). In fact, routes from RRCs to LRCs and then to AAs that 

are going to be used to ship different items under different scenarios” are identified 

(using     
  binary variables) in (8), and in constraints (10), a maximum delivery time is 

assigned to those routes. The relationship between constraints (9) and (11) are the same 

as that between (8) and (10), except for the fact that constraints (9) and (11) are related to 

direct shipments (i.e., for routes starting from RRCs and directly ending in AAs under 

different scenarios). It should be mentioned that the combination of constraints (3) and 

(4) guarantees that shipments are allowed only from opened RRCs: According to 

constraints (4), different materials can be pre-positioned only in opened RRCs, and 

according to constraints (3), shipments are possible only from locations with pre-

positioned materials. Therefore, it is implicitly guaranteed that only opened RRCs can 

send shipments.  
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3.2.2 Experimental Results 

According to [56], the second stage of the pre-positioning model (i.e., the scenario-based 

part) is a two-echelon stochastic facility location problem, which falls under the category 

of NP-hard problems. Before proving this fact, we run some random experiments to 

assess the solution time of the problem. In Table 2, a summary of the results from 

running 23 randomly generated instances of the model in Lingo software is presented. 

These experiments are conducted in a computer with Microsoft Windows 7 (2009), 2.40 

GHz Intel Pentium, and 4 Gb of RAM, and Microsoft windows XP Profession 2002. The 

table includes data on the number of constraint, number of decision variables, and 

software running time for each case. It appears that the number of RRCs and number of 

scenarios are the two key factors that determine the run time values. 

Table 2 Lingo software execustion times (in seconds) for 23 random problems 

# I J K L S 
# of Non-
negative 

Variables 

# of 
Binary 

Variables 

# of 
Constraints 

Time 

1 2 15 5 3 3 1509 530 1120 35 

2 2 15 10 3 3 2994 1010 2170 47 

3 2 15 20 3 3 5964 1970 4270 59 

4 2 15 40 3 3 11904 3890 8470 95 

5 2 15 80 3 3 23784 7730 16870 354 

6 2 15 100 3 3 29724 9650 21070 425 

7 2 15 150 3 3 44574 14450 31570 853 

8 2 30 20 3 3 11364 3815 7915 116 

9 2 30 50 3 3 28374 9395 19615 487 

10 2 30 80 3 3 45384 14975 31315 1006 

11 2 30 20 3 5 18936 6357 13185 324 

12 2 30 20 3 10 37866 12712 26367 919 
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13 2 30 50 3 10 94566 31312 65367 >4000 

14 2 30 20 5 3 18940 3815 8167 105 

15 2 30 50 5 3 47290 9395 20227 746 

16 2 45 20 3 3 16764 5660 11557 247 

17 2 45 50 3 3 41874 13940 28657 882 

18 2 45 80 3 3 66984 22220 45757 2202 

19 4 30 20 3 3 22548 7537 15379 408 

20 4 30 50 3 3 56298 18697 38239 1480 

21 6 30 50 3 3 84222 27999 56863 > 2700 

22 2 0 50 3 3 1374 305 1525 121 

23 2 0 500 3 3 13524 3005 15025 3383 

 

According to the Table 2, sets I and S have the highest impact in running times. 

This can also be verified by observing the variables, parameters and constraints: all the 

parameters, decision variables, and constraints (except the parameter   ) contains 

elements i, s, or both. Therefore, increasing the values of I and S, increases the problem 

dimensions more, compared to the case where values of other sets increase. In the next 

section, we prove that the pre-positioning problem is NP-hard. 

 

3.3 Pre-positioning model solving procedure 

The main contribution of this dissertation is the development of a heuristic method for 

solving the pre-positioning problem. Hence, we comprehensively present the details and 

steps of this heuristic. According to Alper et al. [56], the two-stage facility location 

problem (TSLP) belongs to the category of NP-hard problems. It should be mentioned 

that, in general, TSLP is the problem of opening a set of RRCs and a set of capacitated 

LRCs, and assigning the demand of demand points to the LRCs that are fed by RRCs. In 
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fact, it is proven that single source capacitated facility location problem, which in other 

words is the second echelon of the prepositioning problem (i.e., opening LRCs and 

assigning the demand of each AA to them), is NP-hard. Hence, TSLP which includes the 

single source capacitated facility location problem is also NP-hard.  

 

3.3.1 Model complexity 

Theorem 1: The two stage facility location problem is NP-hard. 

Proof: The TSLP model of this dissertation belongs to the category of transshipment 

problems: in a transshipment problem, there are three types of vertices: supply (  ), 

demand (  ), and transit (  ). The system is a digraph. The set of demand and supply 

vertices is fixed while the transit vector is permutable (equivalently, the location of transit 

vertices should be determined). The objective is to minimize the total transportation cost 

([82]). The transshipment problem is already proven to be NP-hard ([82,83]). The general 

form of transshipment problem is as follows: 

 

        ∑ ∑         ∑ ∑        

        

 

        

 ∑      

    

 

s.t 

∑        
                                                                                                ( )                                                                      

∑        
  ∑        

                                                                      (2) 

∑        
                                                                                    (3) 
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∑        
                                                                                     (4) 

In order to prove that our version of TSLP problem is NP-hard, we need to show 

that our model can be reduced to the above mentioned model: Considering the pre-

positioning model of section 3.1, if we eliminate maximum delivery duration and service 

quality constraints (i.e, (6-11)) we will have the following model: 

 Min ∑        + ∑ ∑       
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  + ∑ ∑ ∑ ∑         
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 .     ≥ ∑ ∑ (     
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 )                  i , l , s                                                   (3)   

       ≤     .                                                      i,l                                                          (4)   
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         ≤   

 .   
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Now, if we eliminate direct shipment option as well as capacity constraint of 

RRCs, we will have the following model:  

Min ∑        + ∑ ∑       
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                                                                                         (1) 
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 - ∑ ∑ (     

 
  ) =    

                  k , l , s                                                                  (2)  
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Then, if we fix the location of RRCs and eliminate the shortage cost and capacity 

of LRCs, the following model will be obtained: 

Min ∑ ∑       
    

 
    + ∑ ∑ ∑ ∑ ∑          

 
           

                                             (1)                                                                         

Constraints: 

   
 
 = ∑ ∑ (     

 
  )                  k , l , s                                                                           (2)  

   
 .     ≥ ∑ ∑ (     

 
  )                i , l , s                                                                        (3)   

∑ ∑ ∑      
      ≤ M.   

               j , s                                                                             (5)   

If we exclude the scenario-related indices as well as item-related indices (which 

will reduce the number of decision variables), the model will be reduced to the following: 

Min ∑         + ∑ ∑ ∑                                                                                      (1)                                                                         

Constraints: 

   =  ∑ ∑                                  k                                                                           (2)  

  .    = ∑ ∑                       i                                                                                  (3)   

∑ ∑       ≤  M .                    j                                                                                 (5)                                       

Now if we compare the above model with the classic transshipment model, the 

only difference is the way we defined the transportation decision variables (i.e.,     ). In 

fact, here, instead of     and     of classic transshipment model, we have      so that we 

can set a limit on delivery durations. It is obvious that both models lead to the same 

solution because: 
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1.      =     +      : unit transportation cost of an item from RRC i to AA k via LRC 

j is equal to the sum of unit transportation cost from RRC i to LRC j and from 

LRC j to AA k 

2.   .    =    

3. ∑ ∑ ∑         = ∑ ∑       = ∑ ∑       : if we sum up constraints (3) in the 

transshipment model, we obtain ∑ ∑       = ∑ ∑      . Also if we sum up 

constraints (1) and constraints (4) separately, we will have: ∑ ∑       = ∑     and 

∑ ∑       = ∑     . Because the problem should be balanced, we have: ∑     = 

∑     (i.e. total supply is equal to total demand). Now in the above model, if we 

sum up constraints (2) and (3) separately, we obtain:  

∑ ∑ ∑         = ∑      ,   ∑ ∑ ∑         = ∑         = ∑     .  

Consequently:  ∑ ∑ ∑         = ∑ ∑       = ∑ ∑      . 

By reducing our prepositioning model to the classic transshipment model (which 

is proven to be NP-hard) we proved that our model is also NP-hard and needs to be 

solved heuristically for large instances. 

 

3.3.2 Summary of lagrangian relaxation and Sub-gradient optimization 

As mentioned in section 2.4, most of the papers in the literature proposed the 

Langrangian relaxation method to solve the pre-positioning (and in general, the TSLP) 

problem. In fact, they relax the capacity constraints and solve the resulting problem using 

other heuristics. Also, by relaxing specific constraints, Alper et.al [56] divided the 

problem into two sub-problems: in the first sub-problem, the decisions about the location 
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as well as pre-positioning amount are made and in the second sub-problem, the 

distribution decisions are made.  

The solving time of OR problems depends mainly on the number of constraints 

included in the problem. In many cases, some of the constraints make the solving 

procedure hard even if the problem is solved heuristically. Relaxing such constraints may 

improve the solving time and process significantly. In lagrangian relaxation method, such 

constraints are relaxed and added to the objective function, using lagrangian multipliers. 

The multipliers are selected in a way that violating their related constraints leads to a 

worse objective function value. To better clarify the issue, we consider the following 

example: 

Original problem 

Min    cx 

s.t. 

      Ax ≥ b 

      Bx ≥ d 

      x ≥ 0 

Suppose we relax the first set of constraints. Using         as lagrangian multipliers, the 

relaxed problem will be as follows: 

 

Relaxed problem    

Min    cx +    (b – Ax) 

    s.t. 
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        Bx ≥ d 

        x ≥ 0 

As can be seen, whenever the term “b – Ax” becomes positive, the first set of constraints 

in the original problem is violated. On the other hand, because   values are non-negative, 

the objective function value of the relaxed problem will increase, which is not desirable. 

In other words, the relaxed constraint is added to objective function as a penalty cost. 

Hence, the relaxed problem, internally will tend to determine x values in a way that “b – 

Ax” becomes non-positive. Solving the relaxed problem will lead to obtaining a lower 

bound (LB) of the original problem because: 

1. We excluded some of the constraints of the original problem. By eliminating the 

constraints in a mathematical programming problem, the objective function value 

(OFV) will become better (or at least no worse) than the OFV of the original 

problem. 

2. We added some terms to the objective function. The lagrangian multipliers are 

non-negative, and “b – Ax” terms only give this opportunity to the problem to get 

a lower OFV. 

The best lower bound to the problem is achieved by solving the following 

problem, called the maximum dual problem [84]: 

 

   
     

{

         (      )
    

      
     

} 
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Ideally, the solution of the dual problem will be equal to the solution of the 

original problem. Otherwise, there will be a difference between the two OFVs, which is 

referred to as the duality gap. The sub-gradient optimization updates the lagrangian 

multiplier values in a way that this gap is minimized. The process can be summarized in 

the following algorithm: 

 

Subgradient optimization formula 

  Initialize μ   [0,2] 

  Initialize    

  While       -     > α    do 

               Solve relaxed problem given σ values and get the x and     

               Calculate sub-gradients:      =       ∑        

            Calculate the step size   T = 
  (          ) 

∑   
 

 
 

               = max (0 ,    + T.   ) 

where α is a predetermined value, and     is the OFV of the original problem for a 

feasible solution. It is advisable to insert a feasible solution into the algorithm. If one 

considers a superior algorithm for obtaining high-quality feasible solutions, the 

corresponding     should be inserted into the above algorithm. Moreover, it should be 

mentioned that the choice of μ value is subjective, but generally it is considered to be 

equal to 2, and if the algorithm does not yield appropriate solutions, the value will be 

decreased.  
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3.3.3 Proposed heuristic method for the pre-positioning problem 

The pre-positioning problem has two major parts: the location problem (of RRCs and 

LRCs), and the distribution problem (of relief materials among AAs). In order to solve 

the model efficiently, we need to relax some set of constraints in a way that each of the 

two mentioned parts can be solved separately. By relaxing constraints (3) and (5) we 

achieve this goal and divide the problem into the following sub problems: 

 

Model 3.1  

This is the first sub-problem: 

 

    ∑        ∑ ∑ (      ∑    
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Model 3.2  

This is the second sub-problem: 
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∑      
 

 ≤ M .     
                                             i , j , k , s                                               (8) 

∑     
 

 ≤ M .    
                                                 i  , k , s                                                 (9) 

     
 
.     

 ≤                                                  i , j , k , s                                             (10)       

    
 
.    

 ≤                                                  i , k , s                                                   (11)    

Theorem 2: Model 3.1 can be solved by inspection. 

Model 3.1 can be easily solved using Lingo or CPLEX. Yet it is better to solve it using 

another analytical method that does not involve matrix manipulation: 

1. for all l:  if (    - ∑    
 

     
 ) ≥ 0    then      = 0 

                else      = 
   

  
 

2. if  ∑ (      ∑    
 

     
 )     +    < 0   then       = 1 

else    for all l :     = 0   ,       = 0 

Proof: First of all, variables   
  only exist in objective function (and not in constraints). 

Because the model is of minimization type, each   
  will get value of 1 if and only if its 

objective function coefficient is negative: 

for all j,s:  if (      
     

    
 ) < 0   then     

  = 1 

                    else   
  = 0 

Second, after excluding the terms related to the   
  variables, the problem can be 

divided into I Integer Linear Programming problems (I is the number of RRCs). We can 

generalize the analytical method for solving each of these problems to all others: 

for all i: 
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          ∑(   

 

  ∑    
 

 

    
 )     

s.t. 

       ≤     .                                                           l 

Again, because the problem has a minimization objective, the     variables will 

take positive values only if their objective function coefficients are negative. On the other 

hand, according to the constraints, each     variable can become positive only if its 

related binary variable    is equal to 1. If    =1, then the OFV will be increased by 

positive value    (fixed cost of opening and operating     ). Hence,      will be opened 

only if we can make up for its related fixed cost by giving positive values to     

variables. According to the constraints:     ≤ 
   

  
 , and according to one of the 

fundamental theorems of mathematical modeling, each     will take its maximum 

allowable value if it is a basic variable (i.e., it has positive value). That theorem is as 

follows: When a decision variable becomes a basic variable, it will take its maximum 

possible value because all the basic solutions are located on the edges of the feasible 

region and such edges consist of extreme (yet feasible) values of the related basic 

variables. Using all the above mentioned arguments, one can develop the following 

simple heuristic to solve each of the I Integer Linear Programming models related to 

model 3.1: 

Algorithm 3.1 

3. for all l:  if (    - ∑    
 

     
 ) ≥ 0    then      = 0 

                else      = 
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4. if  ∑ (      ∑    
 

     
 )     +    < 0   then       = 1 

else    for all l :     = 0   ,       = 0 

The outputs of model 3.1 are as follows: 

1. List of opened RRCs 

2. List of opened LRCs 

3. Amount of pre-positioned relief materials of each type at each RRC 

 

Lagrangian Heuristic Method 

Model 3.2 needs to be solved heuristically. Because the proposed Lagrangian 

Heuristic (LH) method is fairly complicated, we first show the general scheme of the 

entire heuristic in Figure 5 and then, describe its different stages in the remainder of this 

chapter. 

 

Algorithm 3.2.1 

Model 3.2 has no capacity constraints. Hence, under each scenario, the demand of 

different relief materials in different AAs should either be completely satisfied (using 

direct or indirect shipment) or completely backlogged (according to the Theorem 2). The 

decision will be made by comparing the cost of direct shipment, indirect shipment (using 

opened RRCs and opened LRCs), and backlogging. The related costs can be viewed in 

objective function of Model 3.2: 

1. Indirect shipment:          
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2. Direct shipment:         
     

   

3. Backlogging:   .    
  =    

4. For each k and l (under each scenario), we first find the combination of i and j 

(out of opened RRCs and LRCs) that minimizes the indirect shipment cost: 

5. (i* , j*) = arg        {         
     

    
      ,                 

      
     

     

=    

6. Then, we find the i, according to which the direct shipment cost is minimized: 

7. i** = arg               
     

 },                
       

      

Then, by comparing   ,   , and   , we determine the values of      
 ,     

 , and    
 : 

1) if min {  ,   ,   } =   , then    
  =    

 ,            
  = 0       i, j   ,         

  = 0       i 

2) if min {  ,   ,   } =   , then    
  =  ,                  

  =    
 ,                

  = 0       i 

3) if min {  ,   ,   } =   , then    
  =  ,               

  = 0    i, j,                
  =    

  

The process is repeated for all the scenarios. 

 After that, we check to see if service quality constraints (i.e. constraints (6) and 

(7) ) are satisfied: 

  if ∑ ∑    
 

    = 0 then     = 1        s    

          else:     = 0               

If ∑       
  ≥ α, then those constraints are satisfied. Otherwise, we need to make more 

scenarios reliable. This will be an easy task because no capacity constraints are involved: 

For each unreliable scenario, we need to obtain the extra cost we should pay to 
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Figure 5. Flow chart of lagrangian heuristic for the pre-positioning model 
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make it reliable. For unreliable scenarios, there are    
  values that are not equal to zero. 

For each of those    
 values (i.e., for each k and l under each scenario) we have 

previously calculated the minimum indirect and direct shipment costs (i.e.    and   , 

respectively). Now we only need to find the: 

    = min{   and   }.  

Then, “   -   ” will be the extra cost of satisfying the related    
 demand. Now, we sum 

up “   -   ” values of each unreliable scenario: the total sum will be the cost of making 

that scenario reliable.  

On the other hand, each unreliable scenario has a probability of occurrence (i.e. 

  ). Hence, selecting a sub-set of unreliable scenarios in order to satisfy the service 

quality constraints (after making those scenarios reliable) should not only be based on the 

cost, but also the probability of that scenario. Hence we need to consider    

   
 as the 

criteria for choosing such scenarios, where     is the cost of making scenario s reliable. 

Hence, we rank the scenarios according to the criteria (the larger the criteria, the higher 

the rank of the scenario), and choose the minimum number of scenarios that satisfies the 

service quality constraints. It should be mentioned that, some of scenarios are already 

reliable, and the selection of the sub-set of unreliable scenarios should be such that: 

∑       
  ≥ α     s 

Once all the values of decision variables are determined, we sum up the OFVs of models 

3.1 and 3.2, and achieve a supposed LB to the problem.  
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It should be mentioned that in order to eliminate constraints (8) through (11), we 

need to make all      
 ,     

  variables equal to zero before running the above algorithm 

and make their related shipment costs equal to M. This way, the problem will indirectly 

forbid the shipments through routes with long delivery times. Also, for scenarios for 

which     > 1 – α:    
  = M, because if any of those scenarios are not fully covered, it 

may violate the service quality constraints.  

On the other hand, UB can be obtained in a different algorithm. First, we know 

that results of Model 3.1 are always feasible (because they are the list of opened RRCs, 

opened LRCs, and amount of pre-positioned materials). We use these results 

(simultaneously with procedure of achieving LB) and by using modified “regret-based 

greedy heuristic”, we generate an UB for the problem. The only difference between the 

process of obtaining UB and LB is the consideration of capacity of LRCs and pre-

positioned amounts in RRCs. In fact, the demand of each combination of k and l, will not 

necessarily be subjected exclusively to the direct shipment, indirect shipment and 

backlogging and can become subjected to any combination of these three cases. In order 

to get a feasible solution, we use the following heuristic, however, before running the 

heuristic, both of the changes that were mentioned in the above paragraph should be 

implemented. In other words, the shipping costs for routes with long delivery duration as 

well as shortage cost of all AAs of scenarios for which    > 1 – α, must be set to M)). 

For all combinations of k and l, regardless of capacities, we calculate the two minimum 

cost ways of handling the demand and calculate the difference between them as the 

regret. The combination of k and l that has the maximum regret will rise to the top of the 

list of decision.  
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Set s = 1; 

For all     
  ≠ 0: 

If for any i, l:     = 0, then: for all j,k:      
  = M and      

  = M 

If for any j:   
  = 0, then: for all i,k,l:      

  = M 

For all k,l,s: (  ,   ),  = arg       {     
 } 

                     (   ,    )  = arg       {     
         

 }  

                         = arg     {    
 } 

                          = arg     {    
       

 } 

  
  

  = Min {   
 ,        

 ,          
 ,      

 ,       
  }  

  
  

 = Min {(  
 ,        

 ,          
 ,      

 ,       
 ) \   

  
 
  

   
  =   

  
  -   

  
  

(k* , l*) = arg           
  

 If   
    

  =   
  then:    

  =    
 ,      

 =     
 = 0,    

  = 0 

 If   
    

  =     
 , then:      

 = min{   ,   
 ,    

 },    
 =   

  -      
 ,    =     - 

     
 ,   

  =   
  -      

  

 If   
    

  =     
  then:     

  = min {       
  ,    

 =   
  -     

 ,    =     -     
  

We continue until: 

    
  = 0                      

Now we investigate whether or not each scenario is in reliable set: 

if ∑  ∑       
   = 0 then     = 1        s 

          else:     = 0                                        



62 
 

Now we need to check if the service quality constraint is satisfied. In fact, if ∑  
  

  ≥ α 

then final solution is obtained. Otherwise we need to place more scenarios in the reliable 

set so that:     ∑  
  

  ≥ α. We define    as the set of scenarios that are not in the reliable 

set. In order to derive a feasible solution, we need to re-run the entire algorithm, this time 

by considering the following steps: 

1. For all scenarios that are in reliable set (according to the obtained solution): 

    
  = M 

2. Finding a subset of scenarios that are not in reliable set (by using the algorithm 

3.2.2) and re-running the algorithm 3.2.1 after making    
  = M for all scenarios 

in the subset. 

Now we describe the second algorithm: 

Algorithm 3.2.2 

In each scenario in   , there exists at least one demand that is fully or partially 

backlogged. There are four reasons for each scenario, not to be in the reliable set: 

1. According to the list of opened RRCs, there is not sufficient pre-positioned 

material in RRCs to be shipped to AA’s. 

2. According to the list of opened LRCs, there is not enough capacity to ship pre-

positioned materials indirectly (i.e., via LRCs) to AAs. 

3. Shortage cost is low. 

4. Time constraints do not allow shipments to certain AAs (again, according to list 

of opened RRCs and LRCs). 

In order to make the unreliable scenarios reliable, we need to find out which of 

above four reasons (or their combination) cause the backlogging. If the cause is the RRC 
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capacity, the body of the solution will be drastically affected if we want to make it 

feasible. This is due to the fact that, first of all, RRC selection belongs to first stage of the 

problem and also, fixed cost of opening and maintaining RRCs has often the highest 

contribution OFV and opening a new RRC will likely cause the new solution to have 

significantly higher OFV than the optimal solution. In this case, the modifications to the 

solution will be judgmental [75]. But for other cases, it might be possible to satisfy the 

service quality constraints without drastically changing the solution.  

In order to find the reason, we first need to check the capacities. For each scenario 

in   (set of unreliable scenarios), if the total backlogged demand exceeds the total 

remained capacity of all opened RRCs (subject to the percentage of usable relief 

materials or    
  values) that scenario cannot become reliable without opening a new 

RRC. Then, we need to check the possibility of direct or indirect shipments to the AAs 

with backlogged demands. Because the fixed cost of opening and maintaining an LRC is 

much higher than individual shipping costs, it is better to use an opened LRCs as much as 

possible. Hence, we first check if the remaining capacity of currently opened LRCs is 

adequate, by comparing the total backlogged demand with total remained capacity. If this 

capacity is greater than or equal to the backlogged demand, there will be no need to open 

new LRCs. Otherwise, we need to check the possibility of direct shipments, using the 

remaining capacity of RRCs and delivery durations. If this is not possible, we should 

open one or more LRCs in order to cover all the backlogged demands. If there is no new 

LRC to open, or time constraints do not allow shipments via newly opened LRCs, then 

the problem does not have a feasible solution, at least regarding the current set of opened 

RRCs. Details of all algorithms for obtaining LB and UB are as follows: 
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LB Algorithms  

Algorithm 3.2.1 

I = set of opened RRCs (based on the results of algorithm 3.1) 

   = set of opened LRCs under scenario s (based on the results of algorithm 3.1) 

K = set of demand points 

L = set of relief items 

S = set of scenarios 

for all s that    > 1 – α:    
  = M 

 set s=0; 

Step 1) s = s+1, k=0; 

Step 2) k = k+1; 

Step 3) l = l+1; 

Step 4)     
  =    

 , 

(i* , j*) = arg        {         
     

    
      ,          

             
      

     
     

i** = arg               
     

 },        
  =           

       
  

if min {    
 ,     

 ,     
  } =     

 , then    
  =    

 ,            
  = 0       i, j   ,         

  = 0   

    i 

else if min {    
 ,     

 ,     
  } =     

 , then    
  =  ,        

  =    
 ,      

  = 0   i ≠  , 

j≠  ,       
  = 0    i 

else if min {    
 ,     

 ,     
  } =     

 , then    
  =  ,      

  = 0    i, j,         
  =    

  

   if l < ǀLǀ go to step 2 



65 
 

   else l=0  

        if k< ǀKǀ go to step 2 

        else if s < ǀSǀ go to step 1, 

        else end. 

 

Algorithm 3.3.2 

This is actually the process of satisfying service quality constraints: 

            s:   if ∑ ∑    
 

    = 0 then     = 1.      

                   else:     = 0              

if  ∑       
  < α: 

       = set of scenarios for which     = 0  (s   ) 

   Initialize s = 0 

  Step 1) Set s=s+1    

  Step 2) For all k,l: if    
  > 0 : 

                                 if     
  <     

  then     
  = (    

  -     
 ).        

  

                                 else     
  = (    

  -     
 ).       

  

                               else if s < ǀ  ǀ: go to step 1 

                                 

   Step 3)    = ∑ ∑     
 

    for all s  

              Sort s according to   

   
 in a descending order (name the ranks as    ) 

               Set     = 0 

Step 4) For the unreliable scenarios:     =    +1: 
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While (for all k , l:    
  > 0) do  

                                               if     
  <     

  then        
  =    

  

                                                        else       
  =    

  

 

Step 5)    = 1 

                if ∑       
 < α, then go to step 4. 

                else end. 

 

UB Algorithms: 

Algorithm 3.3.1 

I = set of opened RRCs (based on the results of algorithm 3.1) 

   = set of opened LRCs under scenario s (based on the results of algorithm 3.1) 

K = set of demand points 

L = set of relief items 

S = set of scenarios 

For all s that    > 1 – α:    
  = M 

s = 0; 

Step 1) If      s = ǀSǀ, go to step 4 

            else   Set s = s + 1; 

Step 2) For all     
  ≠ 0: 

If for any (i*, l*):       = 0, then: for all j,k:        
  = M and      

  = M 
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If for any j*:   
  = 0, then: for all i,k,l:      

  = M 

  
  

  = Min {   
 ,      

 ,      
 } 

  
  

 = Min {(  
 ,      

 ,      
 ) \   

  
 
  

   
  =   

  
  -   

  
  

(k* , l*) = arg           
  

Step 3) 

 if   
    

  =   
  then:    

  =    
 ,      

 =     
 = 0,    

  = 0 

 else if   
    

  =     
 , then:      

 = min{   ,   
 ,    

 },    
 =   

  -      
 ,    = 

    -      
 ,   

  =   
  -      

  

 else if   
    

  =     
  then:     

  = min {       
  ,    

 =   
  -     

 ,    =     - 

    
  

If for any k,l:      
  ≠ 0, go to step 2. Otherwise go to step 1. 

 

Algorithm 3.3.2 

This is actually the process of satisfying service quality constraints: 

            s:   if ∑ ∑    
 

    = 0 then     = 1.      

                   else:     = 0              

if  ∑       
  < α: 

       = set of scenarios for which     = 0  (s   ) 

s =0 

   
  = Remaining capacity of      under scenario s 

for all i,s:   
  

  =      {   
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Step 1) Do while s ≤ ǀ  ǀ 

Set s = s +1 

if ∑  ∑       
  > ∑ (  

  

 
    

 
   ) then exclude s 

else s        (     is the set of unreliable scenarios that potentially can become reliable) 

    

Step 2) For all s        (separately): 

     = set of unopened LRCs 

j        

j = 0 

while j < ǀ      do 

  
  = 1 

for all     
  ≠ 0: 

If for any (i*, l*):       = 0, then: for all j,k:        
  = M and      

  = M 

If for any j*:   
  = 0, then: for all i,k,l:      

  = M 

  
  

  = Min {      
 ,      

 } 

  
  

 = Min {(     
 ,      

 ) \   
  

 
  

   
  =   

  
  -   

  
  

(k* , l*) = arg           
  

 If   
    

  =     
 , then:      

 = min{   ,   
 ,    

 },    
 =   

  -      
 ,    =     

-      
 ,   

  =   
  -      

  

 If   
    

  =     
  then:     

  = min {       
  ,    

 =   
  -     

 ,    =     -     
  

    = total extra cost of satisfying s while opening new LRC j 
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       sort     in ascending order (ranks are called   ).  

      if there are multiple j’s that have feasible solution, the one with the minimum cost 

will be chosen to  make the s reliable. 

            else   
  = 1 for first two j’s in the ranking. Repeat the do-while loop. 

                        If no feasible solution exists:  

                                   
  = 1 for the first three js in the ranking Repeat the do-while loop. 

                       else related     will be equal to     

Step 4) Sort s according to   

   
 in a descending order (name the ranks as    ) 

               Set     = 0 

While ∑       
 < α : 

    =     + 1; 

      reliable set 

Step5) Re-run algorithm 3.3.1 while considering    
  = M, for all scenarios in the reliable 

set. 

The efficiency of the proposed LH method as well as experimental results is presented in 

chapter 5 of this dissertation. 
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CHAPTER 4  

THE REAL-TIME FACILITY LOCATION PROBLEM 

 

4.1 Introduction 

This chapter, first of all, will be the continuation of the prepositioning problem that was 

fully discussed in chapter 3. In fact in the pre-positioning model, decisions for locations 

of supply centers (RRCs) as well as the amount of different relief materials at each RRC 

would have been made. Now, we are in the aftermath of the disaster and those supplies 

should be transported and distributed. Emergency coordinator department decides about 

the details of relief materials distribution. Finally, according to such decisions, RRCs 

starts the distribution process as supply sources. Different relief materials will either be 

shipped to AAs directly from RRCs or indirectly via LRCs (this way, LRCs play the role 

of intermediate distribution nodes where relief materials are received, sorted, packed and 

stored in order to be ready for final shipment to the AAs). Figure 6 shows multi-stage 

logistic network of the problem. 

While making the distribution decisions, there might be a need for more supplies 

(than what is already pre-positioned) because the exact amount of required supplies was 

not clear before the occurrence of the disaster, and also, the demand amounts at demand 

points might be different than initial estimations. Hence, two more supply sources
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Figure 6. Multi-stage logistics network of the real-time model 

 (donations and vendors) can be considered [44]. Using real-time data (e.g. demand at 

AAs), the real-time model will be a location-allocation model with some inventory 

already in hand. The basis of the work will be the model of [70]. Two major upgrades 

will be considered: first, the model will be multi-product (instead of single product) and 

second, the model will be location-allocation (instead of a sole allocation model). 

Generally, there are the four sets of inputs for this new model: 

1. Outputs of pre-positioning model: As mentioned before, locations and pre-

positioned amounts of various relief materials are the major outputs of the pre-

positioning model. In fact, one can look at the pre-positioned materials as “in-

hand” inventory for the real-time facility location model. 
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2. Updated data related to parameters of the pre-positioning problem: Several 

parameters such as demand values, shortage costs and transportation costs were 

used in the pre-positioning model. Here, we need to upgrade these values because 

the disaster has already occurred and they are available. However, some of thr 

parameters of the pre-positioning model will not be used in the new model (e.g. 

holding costs). 

3. Data related to new supply sources: Donation centers and vendors are main 

additional supply sources. Their capacity as well as locations can be inputs of the 

new model. 

4. Data related to new parameters: These parameters were mentioned in section 

1.4. Some examples are the reliability of routes and ransack probability of routes. 

While the pre-positioning model tries to develop a preliminary plan for allocation 

of relief materials to AAs based on predictions about the quality and quantity of the 

disaster (that were incorporated into the pre-positioning model using the concept of 

scenarios), the real-time model uses real-time data to plan the final allocation scheme. 

The locations of RRCs are already known and there is a set of opened LRCs related to 

each scenario. Because in reality, none of the scenarios can be the same as the actual 

disaster, the ultimate location of LRCs should be determined in the real-time model. 

Hence, this model is a location-allocation model. 

Another major difference between the real-time model compared to the pre-

positioning model is that the real-time model is multi-objective. Although the pre-

positioning model also has objectives other than cost minimization (e.g., setting a 

maximum delivery duration), because such objectives were not truly optimized, the pre-
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positioning model cannot be categorized as a multi-objective model. A list of considered 

objectives in the real-time model will be mentioned and described later in this chapter. 

After the occurrence of the disaster it is possible that the amount of pre-positioned 

relief materials is not adequate to cover the entire real-time demand at AAs. Thus, other 

supply sources should be added to the model. The donated relief materials usually take 

some time to be gathered and are used in the recovery stage, but vendors are readily 

available [44]. The locations of vendors are known and also, there is no fixed cost related 

to opening or operating such facilities. Therefore, there is no location problem of RRCs 

in the real-time model and only the location of LRCs should be determined. 

 

There are common objectives related to the real-time facility location problem, 

extracted from different studies. Yet, there are different criteria, suggested for measuring 

each of them. The list of such objectives is as follows: 

1. Minimization of time: As mentioned before, time is the most important element 

in the aftermath of a disaster (especially in the response stage). By minimizing the 

delivery duration of distributing relief materials, the severity of the negative 

effects of the disaster can be significantly reduced. Two major measurements are 

suggested in the literature for assessing the element of time: maximum arrival 

time, and total travelling time of relief materials. The first one basically focuses 

on the latest arrival time of shipments to AAs while the latter focuses on the entire 

delivery process. Minimization of maximum arrival time will fit a maximum 

value for every single delivery duration to AAs while minimization of total travel 

time does not consider single deliveries and only focus on the total time. Hence, 
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in the latter, it is possible that for some of the AAs, delivery duration is much 

longer than that of the other AAs.  

2. Minimization of ransack probability of routes: In the aftermath of a disaster, 

there usually are groups of thieves that try to rob the relief materials while they 

are being delivered to AAs. Even normal people may steal the supplies from 

vehicles in the aftermath of a severe disaster because of the huge mental pressure 

and immediate need to vital materials [12]. Estimation techniques of ransack 

probabilities of different routes are beyond the scope of this dissertation. It is 

worthwhile to mention that data related to magnitude of population of districts, 

economical status of the population and structural type of routes (i.e. streets, 

highways, and roads) are some of the factors that are considered in such 

estimation techniques. There are two criteria suggested for measuring the ransack 

probability of the system: maximum ransack probability in the distribution system 

and overall security (or equivalently, overall ransack probability).  

3. Maximization of reliability of routes: While ransack probability pertains to the 

relief materials, reliability is directly related to the availability of routes between 

different nodes (i.e. RRCs, LRCs, and AAs) in terms of infrastructure status. 

Reliability as an objective is more appropriate in the aftermath of a disasters such 

as floods and earth quakes because such disasters can have significant impact on 

infrastructure. Different factors (other than the severity of disaster) such as the 

age of infrastructure, durability of used materials in building the infrastructure, 

and type of route (i.e. road, street, and highway) should be considered in the 

estimation of reliability of routes. Moreover, tools such as Google map can also 
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be used to investigate the reliability of routes in the aftermath of the disaster. 

Similar to time and ransack probability, there are two measurements for 

reliability: Minimum reliability of routes and overall system reliability. 

4. Maximization of demand satisfaction: As mentioned in the pre-positioning 

model, having shortage in AAs has severe consequences (e.g. death of injured 

people). Therefore, the distribution plan should be developed in a way that 

maximizes the total served demand. If the supply sources are considered to have 

unlimited supply capacity (or at least have total supply capacity that is not less 

than the total demand), the total served demand should be considered equal to the 

total demand. Otherwise, maximization of the total served demand should be 

considered.  

Also, there are a few objectives that are suggested specifically in some of the 

studies: 

5. Cost minimization: Although cost minimization should not be considered a 

highly important objective in humanitarian relief chains, in many cases, there are 

budget limits that naturally prevent the system from being developed in an ideal 

manner (in terms of other objectives). Limiting the cost to a budgeted amount 

minimization of the total system cost are two types of optimization, suggested in 

the literature.  

6. Fairness of distribution: In case for some reason, the total demand cannot be 

served, demand satisfaction percentage (i.e. the ratio of total served demand to the 

total demand) for some of the demand points will be greater than others. In this 

case, it is suggested that the total supply is distributed to AAs in an equitable 
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manner so that such ratio is equal for all AAs. This can be obtained by 

minimizing the maximum ratio of satisfied demand for all of AAs.  

Appropriate objectives should be chosen and inserted into the model. It should be 

mentioned that considering too many objectives in the model can significantly reduce the 

efficiency of the model in terms of both the accuracy and the solving process.  

 

Contributions 

The real-time model is formulated as a mixed integer programming model. There are two 

major contributions in the model: 

 Multi-product consideration: Because we are formulating the problem as a 

mixed integer model, we can add another dimension to the currently developed 

model (i.e., network-based model) for different relief materials. Consequently, 

this model is closer to reality. 

 Location-allocation: Unlike models that might just be allocation models, our 

model is a location-allocation model. As mentioned before, the location of RRCs 

is already known, but the optimal location of LRCs is to be. Therefore, because 

the second echelon of the problem is location-allocation, the overall model is 

location-allocation as well. Unlike network model, our model will be NP-hard and 

should be solved. 

 Consideration of fixed and variable costs: Although cost minimization may not 

be a very important objective in life and death, in reality, there are always budget 

limits that cause reconsiderations in the humanitarian operations. Most of the 

papers in the literature assume a limited to cover the transportation costs. In [70], 
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this budget is used to recover some of the possibly damaged routes. In our model, 

the fixed cost of opening and operating the LRCs are also considered.  

 Availability of direct shipments: Just as direct shipments were possible in the 

pre-positioning model, we also allow this possibility for the real-time model. 

According to this feature, different relief materials can be shipped directly from 

RRCs to AAs. This feature is useful for cases where the distances from certain 

AAs to certain RRCs are very short and it is more beneficial to ship directly rather 

than using LRCs for such routes. 

In [69], a Humanitarian Aid Distribution System (HADS) is developed in order to 

optimize the allocation of a single relief material type to affected areas. This system is 

more of a vehicle routing problem. In [70], HADS is evolved and converted into an 

allocation problem and the new system is called RecHADS. That model is the basis for 

the real-time model of this dissertation. In RecHADS, objectives such as minimization of 

ransack probability, maximization of total served demand and maximization of reliability 

of routes are considered and mathematical model is developed. It is then solved using the 

Lexicographical optimization method. This method is proven to work effectively in this 

area [69,70].  

 

4.2 The real-time facility location model definition 

Many of the parameters of the real-time model are similar to those of pre-positioning 

model though the dimensions are different because the real-time model is not scenario-

based. The details of the real-time model are as follows: 
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Sets 

 I: set of RRCs 

 J: set of LRCs 

 K: set of demand points (AAs) 

 L: set of material types 

Parameters 

  : Unit volume of relief item l 

  : Capacity of       

   : Supply amount of item l at       

   : Amount of demand at demand point k for relief item l under scenario s 

    : Transportation time from      to       

    : Transportation time from      to demand point k  

    : Direct transportation time from      to demand point k  

    : Reliability of route between      and       

    : Reliability of route between      to demand point k  

    : Reliability of direct route between      to demand point k  

    : Ransack probability of route between      and       

    : Ransack probability of route between      and demand point k  

    : Ransack probability of direct route between      and demand point k  
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  : Fixed cost of opening and operating      under scenario s 

    : Transportation cost for one unit of item l shipped from      to        

    : Transportation cost for one unit of item l shipped from      to demand point k  

    : Transportation cost for one unit of item l shipped directly from      to demand point k  

  : Coefficient of importance of satisfaction of demand of material type l 

Decision variables 

    : Amount of item l shipped from      to      

    : Amount of item l shipped from      to demand point k  

    : Amount of item l shipped directly from      to demand point k 

    : Maximum Arrival time of shipments to       

    : Maximum Arrival time of shipments to demand point k 

    {
                                           

                                                
 

      {
                                                                                      

                                                                                                                       
 

      {
                                                                                   

                                                                                                                              
 

      {
                                                                           
                                                                                                                              

 

An important part of our model accounts for vendors and donation centers as new 

supply sources. In fact, when the total demand exceeds total supply, decision makers 

utilize capacity from all sources. Vendors are usually readily available while donations 

centers take some time to setup and become available [44]. In order to insert these two 
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supply sources to the model, one should add the purchase cost of supplies to 

corresponding      and      parameters, where i is the vendor indicator. Note that the 

purchase cost is added to transportation cost. For instance, if purchase cost of item l from 

vendor i is equal to p units, then:  

  j,k:   
    =      + p      ,         

    =      + p 

where   
    and   

    are updated transportation costs. This means that, if any shipments 

are done from vendor i, an extra cost is added to the model. On the other hand, if we 

assume that relief items of donation centers have zero purchase cost, they will take time 

to become available. In this case, we need to add the preparation time of relief items in 

donations centers to all the related      and      values. For instance, if preparation time of 

relief items in donation center i is equal to w, then:  

  j,k:    
   =      + w      ,          

  =      + w 

where    
   and    

   are updated transportation times. 

List of attributes 

SD: satisfied demand       
 
TT: total travel time                 U1 

MA: maximum arrival time     U2 

CO: total cost                           U3 

GR: global reliability               U4 

GS: global security                  U5 
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Each attribute has its own constraints and objective function. Also there are some 

general constraints in the model. All the constraints and their explanations are as 

provided below: 

Supply constraint: As mentioned before, the pre-positioning facilities have limited 

capacity. Also, donation centers and vendors can also have their own supply capacities. 

Total shipment from each supply facility (both direct and indirect shipments) cannot 

exceed its capacity: 

∑       + ∑      ≤                      i,l                                                                                  (1) 

Constraints (1) guarantee that sum of all the direct and indirect shipments of a relief 

material from a RRC cannot exceed the supply capacity of that RRC for that relief 

material. 

LRC capacity constraint: LRCs have limited capacity: 

∑ ∑            ≤    .                            j                                                                           (2) 

Constraints (2) guarantee that no shipments via an LRC are possible unless that LRC is 

opened. They also guarantee that total shipments via each LRC cannot exceed that LRC’s 

capacity. 

Flow conservation constraint: In indirect shipments, all the flow that goes into an LRC 

should leave that LRC and arrive at AAs: 

∑       = ∑                                  j, l                                                                               (3) 
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Shipment indication constraints: In order to build up constraints for most of the 

objectives, we need to keep track of the used routes. Hence, a set of constraints should be 

defined in order to identify the used routes via binary variables: 

∑       ≤  M.                                i,  j                                                                            (4) 

∑       ≤  M.                                j, k                                                                             (5) 

∑       ≤  M.                                i, k                                                                             (6) 

Constraints (4-6) guarantee that no shipments of any type are allowed unless their related 

indicator variables take the value of 1. 

Now we define the constraints related to different attributes: 

1) Demand satisfaction: Obviously, the main objective of the problem is to deliver 

different relief materials to AAs. Shortage, in this case, may lead to severely negative 

consequences such as death of people. Hence, maximization of satisfied demand is 

considered. If we know that total supply capacity exceeds the total demand, we may 

make the total shipments equal to the total demand. But in general, total shipment is less 

than or equal to the total demand: 

∑       + ∑       ≤                              k, l                                                                        (7) 

And the satisfied demand can be measured as: 

    = ∑ ∑        + ∑ ∑                     l                                                                           (8) 
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2) Total shipment time: this attribute is suggested in [69] and is of great importance 

because as mentioned before, time is the most important element of the Response stage of 

emergency management.  

TT ≥ ∑ ∑ ∑ (             ) + ∑ ∑ ∑ (             ) + ∑ ∑ ∑ (             )                       (9) 

In constraints (9) total travel time of all relief materials are calculated. 

3) Maximum arrival time: The process of distribution of relief materials starts in a point 

of time and finishes in another. It is important to minimize the full distribution time (the 

time that final latest load is delivered):  

     ≥      –  M.(1 -     )                              i, j                                                           (10) 

     ≥      +      –  M.(1 -     )               j, k                                                           (11) 

     ≥      –  M.(1 -     )                            i, k                                                           (12) 

MA ≥                                                           k                                                             (13)  

In constraints (10), the maximum arrival (visit) time of shipments (indirect) at each LRC 

is calculated. In constraints (11), the maximum arrival time of indirect shipment to each 

AA is calculated. In constraints (12), maximum arrival time of direct shipment to each 

AA is recorded. It should be mentioned that in constraints (10-12), M is a value greater 

than or equal to the longest related travel time. For instance, in constraints (9), M is 

greater than or equal to the maximum travel time between RRCs and LRCs (i.e. M = 

      {    }).  If any shipment is made from any RRC to     , then      will be equal 

to 1 and the maximum arrival time at      (i.e.,     ) will be greater than or equal to 
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    . Otherwise,     will be greater than or equal to “M -      ” which is a non-positive 

value. Therefore,      will eventually be equal to the greatest      value among all used 

routes between RRCs and LRCs. Constraints (13) record the maximum value of all the 

arrival times at all the AAs.  

4) Total cost: Although cost is not a very important attribute in life and death situation, in 

many cases, the budget limits must be considered. In our model, total cost include fixed 

cost of opening and operating LRCs as well as transportation costs: 

CO = ∑ ∑ ∑               ∑ ∑ ∑               ∑ ∑ ∑               ∑                             (14) 

Constraint (14) records the total cost of the solution. 

5) Global reliability: As mentioned before, each route may be damaged during or after a 

disaster. Therefore, each route has a reliability value. The global reliability criterion 

refers to the case in which, all the shipments are successfully and safely done (meaning 

that damaged routes cause no delay in the delivery process). Logically, this criteria is 

calculated by multiplying the     ,     , and      values of all used routes:  

∏     

          

 ∏     

          

  ∏     

          

 

Because we wish to use linear programming, we linearize such a measurement by 

considering the logarithm of reliability values [69,70]: 

GR = ∑ ∑    (      ).      + ∑ ∑    (      ).      + ∑ ∑    (      ).                          (15) 

Constraint (15) calculates the global reliability criterion. 
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6) Global security: Similar to global reliability, global security refers to the case where 

all the shipments are securely made without any ransack. As mentioned before,     , 

    , and      are ransack probabilities for routes between RRCs and LRCS, LRC and 

AAs, and RRCs and AAs, respectively. Hence, the probability of finishing those routes 

securely are      = 1 -     ,      = 1 -     , and      = 1 -     , respectively. And the 

global security will be obtained from the following: 

∏     

          

 ∏     

          

  ∏     

          

 

We need to linearize such a measurement by considering the logarithm of security values: 

GS = ∑ ∑    (         ).      + ∑ ∑    (         ).      + ∑ ∑    (         ).       (16) 

Constraint (16) records the newly defined global security value. It should be mentioned 

that in GR and GS formulas, it is assumed that all the routes are independent in terms of 

reliability and ransack probability. This may not be true in reality, but in order to keep the 

problem in the category of OR models, such simplifying assumption is considered in the 

literature. 

Thus far, all the possible constraints are defined and one can separately optimize 

the problem according to each criteria. Because we prefer to consider all the objectives at 

the same time, a multi-objective technique is applied to fully formulate and solve the 

problem. In similar problems in literature, the Lexicographic goal programming is used 

and is proven to work effectively [69,70].  

 

4.3 Lexicographic goal programming 
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Among different goal programming techniques, lexicographic method is the most widely 

used method [86] (It is fully in [86]). The following section discusses that method: 

When there are multiple objectives in an OR model, a solution will lead to 

different values for each of those objectives. If one solves the model optimally for every 

single objective, the best possible value (optimal) for each objective will be achieved and 

obviously, no other solution can give a better value to that objective. Hence, any solution 

will cause deviation from optimal value for at least one of the objectives. The negative 

impact of deviations on the final outcome may not be equal for each of the objectives. In 

other words, if there are two objectives, for example, time and cost, deviation from 

optimal value for cost may not be as important as that of time.  

There are three major goal programming techniques:  

 Lexicographic goal programming 

 Weighted goal programming 

 Chebyshev goal programming 

In lexicographic optimization, the decision maker assigns priority levels to 

different objectives. For instance, in a bi-level lexicographic optimization model, in the 

first level, a model is solved while only considering “time” as the objective and recording 

the OFV. Then, in the second level, a new model for optimizing both the time and the 

cost is developed, while considering a maximum limit for deviation from optimal value 

for objective “time” by adding a constraint (e.g.,    – t ≤ q, where    is the value for 

“time” obtained from a solution, t is the minimum possible value for “time”, and q is the 

maximum desirable deviation). In fact, in this example, a higher priority is given to the 

“time”. It should be mentioned that in each of the levels, different criteria for the 
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relationship between objectives can be considered. For instance, in the previous example, 

it is possible to minimize the sum of deviations of both the objectives, by assigning a 

higher priority to “time” (e.g. “minimizing    .   +       , where    is the deviation 

from optimal “time” value,    is the deviation from optimal “cost” value,    is the 

coefficient of importance of “time” and    is the coefficient of importance of “cost” and 

   >   ). 

In general, if there are I priority levels and J objectives, the lexicographic optimization is 

shown as: 

Lex Min c = [  ( ⃗    ),   ( ⃗    ), …,   ( ⃗    )]  

s.t. 

   +    -    =              ,   j = 1 to J  

  ,    ≥ 0                      ,   j = 1 to J 

where  ⃗  and    are vectors of negative deviations (under-achievements) and positive 

deviation (over achievements) of each of the J objectives,    is achieved value of 

objective j, each    is a function of those deviations,    is a predetermined target for 

objective j. In each lexicographic level, one of the    functions are optimized (starting 

from   = 1).  

 A Weighted Goal Programming model is obtained by replacing the objective 

function of lexicographic method with the following: 

Min c = ∑ (   
          

    ), 



88 
 

where    
  and    

  are normalized relative importance coefficient of minimization of    

and   , respectively. As can be seen, trade-offs between deviations are directly possible. 

A major variant of goal programming is Chebyshev goal programming that is 

based on minimax logic of Chebyshev. In fact, it aims to minimize the maximum 

deviation of any objective as opposed to the sum of all the deviations (of all the 

objectives). This deviation (distance) is usually shown as   . Unlike the lexicographic 

method that prioritizes some of the objectives over some others, and unlike weighted goal 

programing that minimizes the achievement function, the Chebyshev method tries to 

achieve a more balanced solution. The mathematical formulation of Chebyshev method is 

as follows: 

Min c = L 

s.t. 

   
         

     ≤ L      ,   j = 1 to J 

   +    -    =                  ,   j = 1 to J  

  ,    ≥ 0                         ,   j = 1 to J 

It should be mentioned that in all of the above three methods, there are subjective 

importance weights (preferential weights), but the difference between the methods is the 

fact that these weights appear in the constraints for lexicographic and Chebyshev 

methods while for the weighted method, they appear in the objective function.  

The approach of this dissertation for solving the multi-objective model is similar 

to that of [70]. The method is based on lexicograophic method (i.e., prioritizing some of 
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the goals over some others). However, in some of the lexicographic levels, the logics of 

Chebyshev and Weighted methods are used.  

 

4.4 The real-time model formulation and solving procedure 

In this section we completely formulate the model, assess its complexity, and present the 

solving procedure. The model has three levels. Each level has a separate formulation, 

complexity and solving procedure. Hence, each level is formulated, assessed and solved 

separately in the content of the dissertation. 

4.4.1 Lexicographic level #1: maximization of satisfied demand (SD) 

The most important purpose of humanitarian logistics is the distribution of relief 

materials among people of affected areas. Therefore, the most important objective among 

all of the six previously mentioned objectives is the SD. Consequently, the first level of 

the lexicographic optimization is dedicated to maximization of SD.  

As mentioned in the beginning of this chapter, if the total demand of AAs exceeds 

the total pre-positioned materials, one can benefit from other supply sources such as 

vendors or donation centers. Yet, for a general case, it is possible that the total demand 

exceeds total supply and not all the demand can be satisfied. For our model, 

mathematically, it will be very easy to achieve this goal. The following model is used: 

 

Model 4.1 

Max ∑         

s.t. 
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∑       + ∑      ≤                      i,l                                                                                  (1) 

∑ ∑            ≤    .                    j                                                                                   (2) 

∑       = ∑                                 j, l                                                                                (3) 

∑       + ∑       ≤                              k, l                                                                        (7) 

One can measure the satisfied demand as follows: 

    = ∑ ∑        + ∑ ∑                        l                                                                        (8) 

In the objective function, total weighted demand satisfaction is calculated. Hence, the 

priority of using capacities (supply capacities and LRC capacities) is on the items with 

larger   value. The above model is actually not a location-allocation model because the 

binary variables    do not exist in the objective function. Hence, the solving method is 

free to open all the LRCs. The resulting model is a simple LP model and can be solved 

with commercial software. Basically, this model has multiple optimal solutions since any 

combination of indirect and direct shipments that can maximize the total demand 

satisfaction without violating capacity constraints is optimal. The determination of final 

solution will be done in the other lexicographic levels. 

After obtaining the maximum possible shipments for each relief material (i.e., 

   
  values in other lexicographic levels), we add the following constraint so that 

maximum possible demand is always satisfied: 

   
  = ∑ ∑        + ∑ ∑                                 l                                                       (17) 

4.4.2 Lexicographic level #2: Chebyshev goal programming model 
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In this level, we formulate the problem based on Chebyshev goal programming method. 

As mentioned in the previous section, Chebyshev method minimizes the maximum 

distance from the ideal (best) value for all of the attributes. Therefore, we need to first 

obtain the best and worst values for each of the attributes: 

An arbitrary solution gives a value to each of the attributes. In other words, a plan 

for distributing the relief materials, regardless of being feasible or not, has a total 

distribution time (TT), total cost (CO), global security (GS) and so on. Therefore, when 

optimizing one of the attributes, the resulting solution gives values to other attributes as 

well: 

 Best value of an attribute is obtained by solely optimizing its related objective 

function. For instance, solution for the model that minimizes the total cost, gives 

the best value for attribute CO.  

 Worst value of an objective is equal to the minimum of all obtained values for 

that attribute while optimizing other objectives one at a time. 

In order to find the best and worst values for each of the attributes, we need to run 

the model for all the attributes, one at a time. As mentioned before, attribute SD is 

already considered. Hence, we need to run the model 5 times for other attributes. Each 

time, the objective function of the model optimizes one of the attributes and records the 

value of the other attributes for the resulting solution. As a result, a 5ˣ5 matrix is 

obtained: 

     is the value of attribute a obtained as a result of optimizing attribute   . Because we 

have already considered attribute SD, a and    will be a member of the following set: 
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a ,      {TT,MA,CO,GR,GS}. The     values are obtained from solving the following 

model:  

 

Model 4.2 

Minimizing (or maximizing)    

s.t. 

∑       + ∑      ≤                      i,l                                                                                  (1) 

∑ ∑            ≤    .                    j                                                                                   (2) 

∑       = ∑                                  j, l                                                                               (3) 

   
  = ∑ ∑        + ∑ ∑                                 l                                                           (17) 

TT ≥ ∑ ∑ ∑ (             ) + ∑ ∑ ∑ (             ) + ∑ ∑ ∑ (             )                       (9) 

     ≥      –  M.(1 -     )                              i, j                                                           (10) 

     ≥      +      –  M.(1 -     )               j, k                                                           (11) 

     ≥      –  M.(1 -     )                            i, k                                                           (12) 

MA ≥                                                           k                                                            (13)  

CO = ∑ ∑ ∑               ∑ ∑ ∑               ∑ ∑ ∑               ∑                             (14) 

GR = ∑ ∑    (      ).      + ∑ ∑    (      ).      + ∑ ∑    (      ).                          (15) 

GS = ∑ ∑    (         ).      + ∑ ∑    (         ).      + ∑ ∑    (         ).       (16) 
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In the above model, each time an attribute is optimized, the values of the other 

attributes are recorded as decision variables. Also, fundamental constraints such as 

capacity constraints are considered. Moreover, constraints (17) that maximize the demand 

satisfaction are a part of the model. After solving the model for all the attributes, the 

resulting matrix, called pay-off matrix (P matrix), and is as follows: 

P = 

[
 
 
 
 
                    

                    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    ]
 
 
 
 

 

The above model is not difficult to solve for TT, MA, GR, and GS as long as the 

number of relief items is low (this is usually the case) because for those attributes, the 

location problem does not apply and the solution procedure is free to open all the LRCs. 

If we do not consider multiple items, the resulting problem will have [I + 2J + K + I.J + 

J.K + I.K + 4] constraints, [J + K + I.J + J.K + I.K + 5] non-negative and [J + I.J + J.K + 

I.K ] binary variables. This is proven not to be NP-Hard in [70] because its solving time 

is not polynomial. But for attribute CO, the model is a location-allocation one. As 

mentioned in chapter 3, a capacitated location-allocation model is NP-hard and should be 

solved heuristically. Since this model is similar to that of pre-positioning, we use the 

same heuristic (lagrangian heuristic) to solve it: Constraints (2) should be relaxed to 

make the model solving relatively easy. Because there are total of J constraints, we need 

J lagrangian multipliers. By doing so, the resulting problem is as follows: 

 

Model 4.3.1 
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Min CO + ∑ (  (∑ ∑ (       )          ))    

s.t. 

supply capacity constraints of model 4.2    (1) 

flow balance constraints of model 4.2    (3) 

attribute-related constraints of model 4.2    (9-16) 

flow-maximization constraint    (17) 

It should be mentioned that constraints (9-16) are only considered (in the above model) in 

order to record the value of four other attributes and in practice, they have no impact on 

the final solution. The above model generates a LB for the problem. In the solution of 

LB, values of    variables are known. If we call the set of opened LRCs (i.e. j |    = 1) 

as   , we can run the optimization model for CO, in order to get an UB for the problem: 

 

Model 4.3.2 

Min CO  

s.t. 

supply capacity constraints of model 4.2    (1) 

LRC capacities constraints of model 4.2    (2) 

flow balance constraints of model 4.2    (3) 
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attribute-related constraints of model 4.2    (9-16) 

flow-maximization constraint of model 4.3.1   (17) 

  = 1  for j      

The above model is equivalent to a two-stage transportation problem, which is an 

LP problem (as mentioned previously, constraints (9-16) only record the values for other 

attributes and have no impact on the solution) and can be solved using any OR 

programming software. After obtaining an LB and an UB, one can use subgradient 

optimization formula (described in chapter 3) to upgrade the lagrangian multipliers and 

run the LB and UB models again, until either the difference between LB and UB 

becomes non-significant or the computation time to run the LB and UB models exceeds a 

predetermined value. At the end of the heuristic, the solution that belongs to the best 

obtained UB is the final solution. The obtained values for 5 attributes are inserted into the 

third row of pay-off matrix. 

After obtaining the above matrix, we need to find the best and worst values of 

each column. The best values are obviously the     ,     ,     ,     , and     for 

attributes TT, MA, CO, GR, and GS, respectively. In general, for attribute a: 

      =    

For TT, MA, and CO, the worst values are the maximum vales in their related column 

because we want the values of these three attributes to be minimized: 

        = min {         ,     ,     ,       
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        = min {         ,     ,     ,       

        = min {         ,     ,     ,       

But, for GR and GS, because we try to maximize them, their worst values are equal to the 

minimum values of their related columns: 

        = max {         ,     ,     ,       

        = max {         ,     ,     ,       

For simplicity, from this point forward, we use    and    instead of       and       , 

respectively.  

In [70], in order to minimize the maximum distance of attributes from their best 

values, a decision making technique, called Compromise Programming is used. In this 

technique, the following function that is called distance function is minimized: 

d(a,t,β) = [∑ (  
        

             
) 

        ]
 

 ⁄

, 

where    is the current value of attribute a,    is the importance weight assigned to 

attribute a, and t is the order of the norm. The distance function is normalized because we 

divide the distance between current value and best value of each attribute by the distance 

between best and worst values of that attribute. By doing so, the ratios become 

comparable and consequently, one can sum them up. It is also assumed that the 

importance weights are normalized (i.e.  ∑ (  )          ). The choice of norm (i.e. the 

value of t) is subjective, but as mentioned before, because we are using the Chebyshev 

method, we apply the Chebyshev norm which makes the t equal to infinity: 
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d(a,∞,β) =           {  |
        

             
|} 

We call the value, obtained from above function,   . In order to insert the    

into our model, we need to add the following constraints: 

   ≥    
        

             
  ,                                                                                  (18) 

   ≥ 0                                                                                                                             (19) 

Constraints (18) guarantee that    is greater than or equal to each of the deviation 

ratios. Now we can write down the second lexicographic optimization model: 

Model 4.4 

  
  = Min    

s.t. 

∑       + ∑      ≤                      i,l                                                                                  (1) 

∑ ∑            ≤    .                    j                                                                                   (2) 

∑       = ∑                                  j, l                                                                               (3) 

   
  = ∑ ∑        + ∑ ∑                                 l                                                           (17) 

TT ≥ ∑ ∑ ∑ (             ) + ∑ ∑ ∑ (             ) + ∑ ∑ ∑ (             )                       (9) 

     ≥      –  M.(1 -     )                              i, j                                                           (10) 

     ≥      +      –  M.(1 -     )               j, k                                                           (11) 
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     ≥      –  M.(1 -     )                            i, k                                                           (12) 

MA ≥                                                           k                                                            (13)  

CO = ∑ ∑ ∑               ∑ ∑ ∑               ∑ ∑ ∑               ∑                             (14) 

GR = ∑ ∑    (      ).      + ∑ ∑    (      ).      + ∑ ∑    (      ).                          (15) 

GS = ∑ ∑    (         ).      + ∑ ∑    (         ).      + ∑ ∑    (         ).       (16) 

   ≥    
        

             
  ,                                                                                  (18) 

   ≥ 0                                                                                                                             (19) 

In this model, the maximum weighted normalized distance of all attributes from 

their ideal values is minimized. Because this model can be reduced into a capacitated 

facility location problem, it is NP-hard and should be solved heuristically. Again, if we 

relax constraints (2), the location part of the problem will be eliminated. This way, we 

will have [I + J + K + I.J + J.K + I.K + 10] constraints, [J + K + I.J + J.K + I.K + 5] non-

negative and [I.J + J.K + I.K ] binary variables. This model can be solved using MIP 

solvers such as CPlex [70]. If we use lagrangian heuristic to do so, the result will be a LB 

to model 4.4, and similar to heuristic for minimizing CO, one can use the list of opened 

LRCs and run the following model to obtain an UB. The LB and UB models are as 

follows: 

 

Model 4.5.1 

LB model: 
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Min   + ∑ (  (∑ ∑ (       )          ))    

s.t. 

supply capacity constraints of model 4.2   (1) 

flow balance constraints of model 4.2   (3) 

attribute-related constraints of model 4.2   (9-16) 

flow-maximization constraint of model 4.3.1  (17) 

Chebyshev distance constraints of model 4.4  (18,19) 

Model 4.5.2 

UB model: 

  
  = Min    

s.t. 

supply capacity constraints of model 4.2    (1) 

LRC capacities constraints of model 4.2    (2) 

flow balance constraints of model 4.2    (3) 

attribute-related constraints of model 4.2    (9-16) 

flow-maximization constraint of model 4.3.1    (17) 

Chebyshev distance constraints of model 4.4    (18,19) 
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  = 1  for j      

After running the LB and UB models, one can use subgradient optimization 

formula to upgrade the lagrangian multipliers and run the LB and UB models again, until 

either the difference between LB and UB becomes non-significant or the computation 

time of LB and UB models exceeds a predetermined value. The major output of the 

heuristic is the value of   
  which is used as an input for the lexicographic optimization 

model#3.  

4.4.3 Lexicographic level #3: norm one distance minimization 

In the second lexicographic level, we forced the optimal OFV (i.e.,   
 ) to be non-

negative according to constraint (19). This was because otherwise, if we wanted    to be 

greater than or equal to all normalized deviations, negative deviations could make the 

entire problem infeasible (i.e., if one of the deviations is negative, all other deviations are 

also negative). In third lexicographic level we consider a criterion, according to which the 

negative deviations are allowed in order to eliminate this bias. This criterion is the norm-

one distance. According to the compromise programming technique that was discussed in 

the 4.4.2, the norm one distance formula is as follows: 

d(a,1,β) = [∑ (  
        

             
)        ] 

In this formula, the sum of all normalized distances from ideal values for all the 

attributes is considered. In the lexicographic level#2, we guaranteed that the normalized 

distance from best value for each off attributes is less than or equal to   
 . Now, in the 

third optimization level, by fixing the minimized maximum distance we try to minimize 
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the sum of all distances. In order to fix the   
 , we need to add the following constraint 

to the new model: 

  
   ≥    

        

             
                                                                            (20)             

According to constraints (20), the normalized distances from best value for all the 

attributes should be less than or equal to   
  . In order to minimize the sum of 

normalized distances, the following constraint is also added to the problem: 

    ∑ (  
        

             
)                                                                                                (21)   

Constraint (21) records the sum of normalized distances. Now we can finalize the 

third level model: 

 

Model 4.6 

  
  = Min    

s.t. 

∑       + ∑      ≤                      i,l                                                                                  (1) 

∑ ∑            ≤    .                    j                                                                                   (2) 

∑       = ∑                                  j, l                                                                               (3) 

   
  = ∑ ∑        + ∑ ∑                                 l                                                           (17) 

TT ≥ ∑ ∑ ∑ (             ) + ∑ ∑ ∑ (             ) + ∑ ∑ ∑ (             )                       (9) 
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     ≥      –  M.(1 -     )                              i, j                                                           (10) 

     ≥      +      –  M.(1 -     )               j, k                                                           (11) 

     ≥      –  M.(1 -     )                            i, k                                                           (12) 

MA ≥                                                           k                                                            (13)  

CO = ∑ ∑ ∑               ∑ ∑ ∑               ∑ ∑ ∑               ∑                             (14) 

GR = ∑ ∑    (      ).      + ∑ ∑    (      ).      + ∑ ∑    (      ).                          (15) 

GS = ∑ ∑    (         ).      + ∑ ∑    (         ).      + ∑ ∑    (         ).       (16) 

  
   ≥    

        

             
                                                                           (20)  

    ∑ (  
        

             
)                                                                                                (21)   

 In above model, the sum of normalized weighted distance of all attributes from 

their best value is minimized while the maximum weighted normalized distance of all 

attributes from their ideal values is fixed. Because this model can be reduced into a 

capacitated facility location problem, it is NP-hard and is solved heuristically. Again, if 

we relax constraints (2), the location part of the problem will be eliminated. We will have 

[I + J + K + I.J + J.K + I.K + 10] constraints, [J + K + I.J + J.K + I.K + 5] non-negative 

and [I.J + J.K + I.K ] binary variables. This model can be solved using MIP solvers such 

as CPlex [70]. If we use lagrangian heuristic to do so, the result will be a LB to the 

lexicographic model#2, and similar to heuristic for minimizing CO, one can use the list of 
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opened LRCs and run the following model to obtain an UB. The LB and UB models are 

as follows:  

 

Model 4.7.1 

LB model: 

Min   + ∑ (  (∑ ∑ (       )          ))    

s.t. 

supply capacity constraints of model 4.2    (1) 

flow balance constraints of model 4.2    (3) 

attribute-related constraints of model 4.2    (9-16) 

flow-maximization constraint of model 4.3.1    (17) 

fixed Chebyshev distance constraints of model 4.4   (19) 

Norm one distance of model 4.6    (21) 

 

Model 4.7.2 

UB model: 

  
  = Min    

s.t. 

supply capacity constraints of model 4.2    (1) 
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LRC capacities constraints of model 4.2    (2) 

flow balance constraints of model 4.2    (3) 

attribute-related constraints of model 4.2    (9-16) 

flow-maximization constraint of model 4.3.1    (17) 

fixed Chebyshev distance constraints of model 4.4    (19) 

Norm one distance of model 4.6    (21)  

  = 1  for j      

After running the LB and UB models, one can use subgradient optimization 

formula to upgrade the lagrangian multipliers and run the LB and UB models again, until 

either the difference between LB and UB becomes non-significant or computation time to 

run the LB and UB models exceeds a predetermined value. The solution of the 

lexicographic level#3 is the final solution of the real-time facility location model. Figure 

7 schematically shows the overall solution algorithm. It should be mentioned that this 

algorithm is developed for a case where number of relief items is a small value (e.g. 3, 4 

or 5). Otherwise, for large instances, model 4-2 will become NP-Hard for all the 

attributes and should be solved using a separate heuristic.  
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Figure 7. Flow chart of heuristic method of real-time facility location model 

 

 



106 
 

CHAPTER 5  

EXPERIMENTS AND ANALYSES 

In this chapter, we perform comprehensive analysis of the pre-positioning as well as real-

time models and their related heuristics in order to both prove the efficiency of the 

heuristics and obtain a better idea about the two-stage network problem. Figure 8, shows 

the inputs and outputs of the two-stage network. 

 

Figure 8. Inputs and outputs of the two-stage logistics network 

A list of opened RRCs as well as amount of different pre-positioned materials in each of 

them is decided in the pre-positioning model. These are used as the inputs of the second 

stage of the network, which is the real-time facility location model. There are other inputs 

such as real-time costs and travel times as well as new parameters such as ransack
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probabilities of the routes. As a result of solving the real-time model, the final 

distribution plan, i.e., the flow of materials between RRCs, LRCs, and AAs, is 

determined. 

 

5.1 Experimental results of the pre-positioning model 

5.1.1 Design of the experiments 

The pre-positioning model has several sets of constraints, e.g. delivery durations and 

service quality. Hence, in many cases, the actual problem is infeasible. For instance, if 

the total capacity of RRCs is low compared to the total demand, and reliability value α is 

relatively high (e.g., over 90%), then the problem is likely to be infeasible. In order to 

generate the instances, we use the procedure that is presented in Alper et al. [56]. In order 

to have a better understanding of the difference between scenarios and their effect on 

   
  values, a new factor, called   , is presented. It shows the intensity of each scenario. 

Minimum intensity is equal to 1. Therefore, for instance, if     = 2, it means that the 

intensity of earth quack under scenario s is twice as big as that under scenario with 

minimum intensity.    values affect many aspects of scenarios: 

 The occurrence probability of each scenario is proportional to    (the larger the 

   the lower the occurrence probability of scenario s) 

 The      
 ,     

 ,      
 , and      

  values depend on both the    and actual 

distances between RRCs, LRCs, and AAs (the larger the   , the higher the 

transportation time as well as transportation cost). This means that both the 

transportation costs and delivery durations are larger for more intense scenarios. 
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 The amounts of demand in AAs are assumed to be directly proportional to    

variables. For more intense scenarios, demand values are considered to be larger. 

 

Two sets of scenarios, each including four scenarios, are considered. In the first 

set, all scenarios have equal severities. In the second set,    are as follows: (1.0, 1.1, 1.3, 

1.8). Hence, for the first set, probabilities are all equal to 0.25 and for the second set, the 

vector of the    values is as follows: (0.4, 0.25, 0.25, 0.1). Number of RRCs, LRCs and 

AAs are chosen from {5, 10}, {10, 20, 40} and {50, 75, 100, 200, 400, 600, 800}, 

respectively. The locations of the above points are randomly generated on a 2-

dimensional surface that has length and width of 100 units.    and   
  values are chosen 

randomly between [60’000, 140’000] and [6’000, 12’000] intervals, respectively. Only 

one item is considered. Also, in order to generate demand values, using the regression 

analysis performed by Sengezer et al. [85], we consider that    
  =    .   

  
  , where 

  
  

 is the demand of the scenario with lowest intensity (it is considered to be randomly 

chosen from interval [5, 12]) and    is a coefficient related to scenario s:    = (1.0, 2.25, 

4.0, 6.25). Also, we further categorize the test instances as low-cap and high-cap. In a 

low-cap set, the ratio of the weighted average demand (averaged over all scenarios are 

based on their occurrence probabilities) to total capacity of RRCs is randomly chosen 

from interval [1.01, 1.05], while in high-cap set, the ratio is chosen randomly from 

interval [0.55, 0.7]. In fact, in high-cap scenario, there is extra capacity that gives the 

solution more flexibility. Finally, in order to observe the effect of different α values on 

the model, we add two more categories to the experiment. In the first category, α = 0.25, 

which is a relatively low value, and in the second category, α = 0.75, which is high. It 
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should be mentioned that the α value has a direct relationship with the shortage cost 

values (i.e.,    
 ). If    

  are considered to be very high, then the heuristic will tend to 

solve the problem in a way that α becomes almost equal to 1, which makes the 

experiment biased. Hence, we need to consider lower values for the    
  parameter 

(compared to the shipment cost) so that a trade-off between shipping cost and shortage 

cost becomes meaningful. The    
  values are chosen randomly from interval [8,12] 

when is multiplied by the maximum transportation cost value. In fact, the occurrence 

probability of each scenario is proportional to   .  

5.1.2 Results of the experiments 

A summary of the results are shown in four tables 3 through 6. Table 3 and Table 4 

summarize the results of high-capacity sets with equal and unequal severities, 

respectively. Table 5 and Table 6 summarize the results of low-capacity sets with equal 

and unequal severities, respectively. 

 

Table 3 Results of high-cap test instances with equal severities 

# 
dimensions 

(RRC-LRC-
AA) 

alpha 

# of 

opened 

RRC 

# of 

opened 

LRC 

reliability 
OFV 

(Heuristic) 

Cplex 

(Optimal) 

% of 

Deviation 

1 5-10-50 0.25 4 13 0.25 529354 517618 2.267 

2 5-10-50 0.75 5 16 1 539700 524085 2.979 

3 5-10-75 0.25 5 14 0.25 579339 562736 2.950 

4 5-10-75 0.75 5 15 0.75 587478 562752 4.412 

5 5-10-100 0.25 4 12 0.25 609142 588537 3.501 

6 5-10-100 0.75 5 18 0.75 609301 588711 3.497 

7 5-20-100 0.25 4 26 0.25 581407 571644 1.707 

8 5-20-100 0.75 4 35 0.75 581963 571803 1.776 
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9 5-20-200 0.25 4 35 0.25 619758 601583 3.021 

10 5-20-200 0.75 4 32 0.75 689801 669302 3.062 

11 5-40-100 0.25 4 60 0.25 601736 584286 2.986 

12 5-40-100 0.75 4 58 0.75 619634 584375 6.033 

13 5-40-200 0.25 4 53 0.25 675466 663715 1.770 

14 5-40-200 0.75 4 61 0.75 666483 664557 0.289 

15 5-40-400 0.25 4 11 0.25 800661 792665 1.008 

16 5-40-400 0.75 4 12 0.75 800716 792737 1.006 

17 5-40-600 0.25 5 58 0.25 1024811 977091 4.883 

18 5-40-600 0.75 4 58 0.75 1032326 977091 5.653 

19 5-40-800 0.25 4 53 0.25 1110648 1074175 3.395 

20 5-40-800 0.75 4 58 0.75 1104043 1074175 2.780 

21 10-40-200 0.25 7 63 0.25 952391 926739 2.767 

22 10-40-200 0.75 8 61 0.75 989466 958371 3.244 

23 10-40-400 0.25 7 19 0.25 1084613 1060633 2.260 

24 10-40-400 0.75 9 65 1 1089372 1060633 2.709 

25 10-40-600 0.25 7 20 0.25 1199450 1185735 1.156 

26 10-40-600 0.75 8 23 0.75 1202182 1185749 1.385 

27 10-40-800 0.25 8 30 0.5 1348094 1315421 2.483 

28 10-40-800 0.75 10 50 1 1363675 1315421 3.668 

 

Table 4 Results of high-cap test instances with unequal severities 

# 
dimensions 

(RRC-LRC-
AA) 

alpha 
# of 

opened 
RRC 

# of 
opened 
LRC 

reliability OFV 
(Heuristic) 

Cplex 
(Optimal) 

% of 

Deviation  

29 5-10-50 0.25 4 4 0.4 552557 533518 3.568 

30 5-10-50 0.75 5 17 0.9 557541 533694 4.507 

31 5-10-75 0.25 4 12 0.5 582752 563389 3.436 

32 5-10-75 0.75 4 10 0.9 588305 563409 4.418 

33 5-10-100 0.25 5 10 1 602616 598996 0.604 

34 5-10-100 0.75 4 17 0.9 603236 599103 0.689 

35 5-20-100 0.25 5 8 0.25 575706 571710 0.698 
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36 5-20-100 0.75 5 7 0.9 577313 571813 0.961 

37 5-20-200 0.25 5 31 0.6 659207 655987 0.490 

38 5-20-200 0.75 4 22 0.9 665531 656083 1.440 

39 5-40-100 0.25 5 29 0.4 599693 586050 2.327 

40 5-40-100 0.75 5 32 0.9 599976 586123 2.363 

41 5-40-200 0.25 4 67 0.4 674928 673045 0.279 

42 5-40-200 0.75 4 46 0.9 675281 673843 0.213 

43 5-40-400 0.25 4 14 0.4 834515 813681 2.560 

44 5-40-400 0.75 5 15 0.9 861730 813876 5.879 

45 5-40-600 0.25 4 24 0.4 1030466 1005245 2.508 

46 5-40-600 0.75 5 21 0.9 1049677 1006541 4.285 

47 5-40-800 0.25 5 31 0.4 1155176 1107286 4.324 

48 5-40-800 0.75 5 21 0.9 1164010 1107286 5.122 

49 10-40-200 0.25 8 14 0.65 941883 932589 0.996 

50 10-40-200 0.75 7 58 0.75 998343 967111 3.229 

51 10-40-400 0.25 10 40 0.9 1097539 1074270 2.166 

52 10-40-400 0.75 10 48 0.9 1102988 1074335 2.667 

53 10-40-600 0.25 8 30 0.5 1232984 1208332 2.040 

54 10-40-600 0.75 9 49 0.9 1254529 1208332 3.823 

55 10-40-800 0.25 9 54 0.65 1365556 1342932 1.684 

56 10-40-800 0.75 9 60 0.9 1378043 1342932 2.614 

 

 

Table 5 Results of low-cap test instances with equal severities 

# 
dimensions 

(RRC-LRC-
AA) 

alpha 
# of 

opened 
RRC 

# of 
opened 
LRC 

reliability OFV 
(Heuristic) 

Cplex 
(Optimal) 

% of 

Deviation  

57 5-10-50 0.25 5 4 0.5 664775 661062 0.561 

58 5-10-50 0.75 infeasible 
59 5-10-75 0.25 5 13 0.25 695274 680736 2.135 
60 5-10-75 0.75 Infeasible 
61 5-10-100 0.25 5 16 0.25 711045 698662 1.772 
62 5-10-100 0.75 infeasible 
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63 5-20-100 0.25 5 21 0.5 724951 707878 2.411 
64 5-20-100 0.75 infeasible 
65 5-20-200 0.25 5 19 0.25 797425 784407 1.659 
66 5-20-200 0.75 infeasible 
67 5-40-100 0.25 5 23 0.25 745060 712216 4.611 
68 5-40-100 0.75 5 infeasible 
69 5-40-200 0.25 5 20 0.25 824258 796241 3.518 
70 5-40-200 0.75 infeasible 
71 5-40-400 0.25 5 11 0.25 931355 924653 0.724 
72 5-40-400 0.75 infeasible 
73 5-40-600 0.25 5 48 0.25 1131006 1080522 4.672 
74 5-40-600 0.75 infeasible 
75 5-40-800 0.25 5 14 0.25 1223230 1206340 1.400 
76 5-40-800 0.75 infeasible 
77 10-40-200 0.25 10 49 0.25 1354799 1333786 1.575 
78 10-40-200 0.75 infeasible 
79 10-40-400 0.25 10 42 0.25 1511248 1472230 2.650 

80 10-40-400 0.75 10 50 0.75 1522329 1472230 3.402 

81 10-40-600 0.25 10 37 0.5 1632259 1602331 1.867 
82 10-40-600 0.75 infeasible 
83 10-40-800 0.25 10 10 0.5 1795256 1728975 3.833 

84 10-40-800 0.75 infeasible 

 

 

Table 6 Results of low-cap test instances with unequal severities 

# 
dimensions 

(RRC-LRC-
AA) 

alpha 
# of 

opened 
RRC 

# of 
opened 
LRC 

reliability OFV 
(Heuristic) 

Cplex 
(Optimal) 

% of 

Deviation  

85 5-10-50 0.25 5 14 0.35 672343 667137 0.780 

86 5-10-50 0.75 infeasible 
87 5-10-75 0.25 5 6 0.25 701773 693063 1.256 
88 5-10-75 0.75 infeasible 
89 5-10-100 0.25 5 3 0.25 722517 717518 0.696 
90 5-10-100 0.75 infeasible 
91 5-20-100 0.25 5 16 0.25 736807 702541 4.877 
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92 5-20-100 0.75 infeasible 
93 5-20-200 0.25 5 9 0.4 809015 791278 2.241 
94 5-20-200 0.75 infeasible 
95 5-40-100 0.25 5 37 0.65 714244 713621 0.087 
96 5-40-100 0.75 infeasible 
97 5-40-200 0.25 5 28 0.4 831585 801157 3.798 
98 5-40-200 0.75 infeasible 
99 5-40-400 0.25 5 7 0.25 1006202 972578 3.457 
100 5-40-400 0.75 infeasible 
101 5-40-600 0.25 5 32 0.4 1152449 1110927 3.737 
102 5-40-600 0.75 infeasible 
103 5-40-800 0.25 5 8 0.25 1283925 1228252 4.532 
104 5-40-800 0.75 infeasible 
105 10-40-200 0.25 10 61 0.6 1364422 1337157 2.039 
106 10-40-200 0.75 infeasible 
107 10-40-400 0.25 10 4 0.4 1520252 1485269 2.355 

108 10-40-400 0.75 10 8 0.75 1532541 1485439 3.170 

109 10-40-600 0.25 10 9 0.4 1647418 1620546 1.658 
110 10-40-600 0.75 infeasible 
111 10-40-800 0.25 10 12 0.4 1800041 1749449 2.891 

112 10-40-800 0.75 inf 

 

In Table 5 and Table 6 all the instances except for instances #80 and #108 for 

which α is set equal to 0.75, are infeasible. When potential supply is almost equal to total 

demand and not all the supplies are available after the disaster, at least some of the 

scenarios will not be reliable, i.e., their demand cannot be fully satisfied, which makes 

the model infeasible. We eliminate the infeasible instances in the analysis of the data. 

In Table 3, the deviations of the heuristic solutions from the optimal solutions 

have a mean of 2.88% and a standard deviation of 1.34%. In Table 4, the deviation has a 

mean of 2.497% while its standard deviation is 1.587%. For the data in table 5, the 
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average deviation is 2.453% while the standard deviation of deviations is 1.297%. 

Finally, for table 6, mean of the deviation is 2.505% and standard deviation is 1.44%. All 

the deviations are significantly below 5% and often below 3%). Also, there is no 

significant difference between mean deviations of Tables 4 through 6, but the mean of 

Table 5 is a little more than that in the other three tables. It appears that the lagrangian 

heuristic works better for instances with unequal severities.  

 

5.1.3 Analysis of the experimental results 

In this section we perform several analyses on the results of the experiments in order to 

investigate the role and the effect of parameters of the model on the solutions and OFVs. 

 

5.1.3.1 Cost increase for different alpha values 

Figures 9 and 10 show the cost increase as the result of increasing the α values. The even 

instances of the experiment have α = 0.25 while for the odd instances, α = 0.75. Each 

even instance has the same dimensions and parameters as the odd instances. When 

solving one of the odd instances, the solution has a reliability value. If this reliability 

value is greater than or equal to 0.75, then the solution is also optimal for the next even 

instance. Otherwise, the solution will change in order for the model to reach the 

reliability value of 0.75. Because there is no solution better than the optimal solution, the 

OFV of even instances are always greater than or equal to the OFV of their previous 

immediate instance. Figures 9 and 10, show this difference (increasing percentage) for 

even instances compared to their previous immediate instance for high-cap sets with 

equal and unequal severities, respectively. Only instances #10, #22, and #50 have 
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significantly higher cost than their immediate previous instance. In fact, because we only 

minimize the cost, it is possible that by increasing the cost of the final solution by a short 

amount, a significant improvement in reliability value occurs. In other words, two 

solutions with very slight difference in total cost may have significant difference in their 

reliability values. Therefore, for practical cases, sensitivity analysis of the reliability over 

total cost should be considered. 

 

 

0.75 compared to α = Percentage of cost increase for instances with  .Figure 9

instances with α = 0.25 for high-cap set and equal severities 

5.1.3.2 Deviation for different α values 

In order investigate the effect of α value on the deviation of OFV of LH from optimal 

OFV, we compare such deviations for two α values for instances with equal dimension. 
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0.75 compared to α = Percentage of cost increase for instances with  .Figure 10

instances with α = 0.25 for high-cap set and unequal severities  

Figure 11 shows such a comparison for set of scenarios related to Table 3 while Figure 12 

shows this comparison for instances related to Table 4. Except for instances #13,14 and 

#19,20, the cost deviation percentage for α = 0.75 dominates that of α = 0.25. This is 

reasonable because when α = 0.75, there is less flexibility in the solving procedure due to 

the smaller feasible region, which makes the problem harder to solve. Therefore, the 

percentage of deviation increases. Yet, there is no significant relationship between the 

dimension of the instance and the deviation percentage.  

 

5.1.3.3 Number of opened LRCs 

When the value of α is increased from 0.25 to 0.75, the amount of shipments will not be 

reduced. New shipments are done directly or indirectly. In order to verify the effect of 

increasing α value on the number of opened LRCs (indirect shipments), we compare the 
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cap set -LH method from optimal OFVs for highOFVs of Deviation of  .Figure 11

instances with equal severities 

 

cap set -method from optimal OFVs for highLH OFVs of Deviation of  .12 Figure

instances with unequal severities 

diagrams related to α = 0.25 and α = 0.75 in Figures 13 and 14 (for high-cap scenarios 

for equal and equal severities, respectively). In Figure 13, the diagram for α = 0.75 

dominates the one of α = 0.25, meaning that the model opens more (or at least equal 
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number) LRCs when α = 0.75. But in Figure 14, for some of the instances, number of 

opened LRCs for α = 0.25 are greater than that of α = 0.75. This means that for those 

instances, direct shipments are considered more often and the details of the solution have 

changed significantly. The same analysis can be done about the number of opened RRCs.  

 

 

cap set -0.25 of highα = 0.25 and α = Ratio of opened LRCs for  .Figure 13

instances with equal severities 

 

5.1.3.4 Ratio of opened RRCs: 

We are also interested in observing the effect of instance dimensions on the ratio of 

opened RRCs (i.e. number of opened RRCs divided by total number of RRCs). Figure 15 

shows this ratio for high-cap set instances with equal severities while Figure 16 shows 
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cap set -0.25 of highα = 0.25 and α = Ratio of opened LRCs for  .Figure 14

instances with unequal severities 

this ratio for high-cap set instances with unequal severities. In Figure 15, only in 

instance#1, number of opened RRCs for α = 0.25 is more than that of α = 0.75. For other 

instances, the diagram of related to α = 0.75 dominates that of α = 0.25. But in Figure 16, 

for some of the instances, α = 0.25 dominates α = 0.75 while for some other instances, α 

= 0.75 dominates α = 0.25. Aggregately, it can be concluded that when the probabilities 

of the scenarios are equal (first figure), the results are more balanced and predictable 

while for the case where scenarios have different probabilities (second figure), the system 

becomes more complicated and patterns are not predictable. Also, as can be seen in 

Tables 5 and 6, all RRCs are opened for each instance (either 5 or 10 existing RRCs). 

This is due to the fact that the RRC capacities are not flexible compared to the total 

demand and the heuristic is forced to open all the RRCs and use their supplies to be able 

to cover α percent of the demand.  
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Figure 15. Ratio of opened RRCs for α = 0.25 and α = 0.25 of high-cap set instances 

with equal severities  

 

 

Figure 16. Ratio of opened RRCs for α = 0.25 and α = 0.25 of high-cap set instances 

with unequal severities 
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Other types of analysis, based on different criteria, can be done on the data. 

Unfortunately there are no similar comprehensive models to compare the results of our 

model with. Even, the data that is used in [56] are generated based on the fact that 

shortage cost is extremely high which automatically leads to reliability of 1 for most of 

the cases. Solving our pre-positioning model using other heuristics or meta heuristics and 

conducting comparisons with our results can be an opportunity for future studies.   

 

5.1.3.5 Effect of number of scenarios 

As mentioned in section 3.2.2, number of scenarios has significant effect on execution 

time. Hence, for experiment with more scenarios involved, it may not be possible to 

obtain the optimal solution (using Cplex) in a reasonable amount of time. Yet, we run an 

experiment with the same design, this time using 20 scenarios with equal severities. Also, 

all α values are considered to be equal to 0.5. The maximum execution time for Cplex is 

considered to be 12 hours, which was sufficient for considered instances. Figure 17 

shows the deviations of OFVs of LH method from optimal OFVs (obtained by Cplex). As 

can be seen, all the deviations except for instance #8 are below 5% with the average of 

4.312% and standard deviation of 0.642. This means that the LH works effectively for 

experiments with up to 20 scenarios. It should be mentioned that average deviation is 

significantly more than the experiments with only 4 scenarios which is reasonable. 

 

5.2 Experiments and analysis of the real-time model 

5.2.1 Design of the experiments 



122 
 

 

Figure 17. Deviation of OFVs of LH method from optimal OFVs for experiment set with 

20 scenarios 

After solving the pre-positioning model, we use part of its outputs as inputs of the real-

time facility location model. In [70], a similar real-time model (sole-allocation model 

without heuristic methods) is applied to the 2010 Haiti earth quack and is proven to work 

effectively. The experiment had a maximum of 347 constraints, 321 non-negative and, 42 

binary variables. Our model can be solved in a reasonable amount of time for small or 

medium size data. But we have developed a heuristic in order to be able to solve the 

model for large instances as well. In order to prove the efficiency of the heuristic, we 

design a set of experiments. Because the current model is the continuation of the pre-

positioning model, we will use the same experiments that we used for pre-positioning 

model. It should only be considered that here, there is no longer the set of scenarios, and 

some of decision variables such as    variables do not exist anymore. Also, new 

parameters such as ransack probability of routes and reliability of routes are added. In the 

next paragraph, details of the experiments are explained.  
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First, we mention the mutual parameters: Number of RRCs, LRCs and AAs are 

chosen from {5, 10}, {10, 20, 40} and {50, 75, 100, 200, 400, 600, 800} respectively. 

The locations of the above points are randomly generated between a planar surface with 

length and width of [0,100].    values are chosen randomly between [60’000, 140’000] 

and [6’000, 12’000]. Then, we assume that there are three relief items (e.g. food, blanket, 

and medical supplies). Because there are no more scenarios, we assume that the occurred 

disaster has a medium severity, and the amount demand for items 1, 2, and 3 are 

randomly chosen from the interval [5,10], [10,20], and [40,60], respectively. The ratio of 

the total demand to the total capacity of RRCs (for each item) is randomly chosen from 

the interval [0.55,0.7]. The indirect transportation costs are considered to be distance 

based. For direct shipment, because separate transportation vehicles should be assigned, 

which induces extra cost, they are randomly chosen from the interval [200,750]. 

Reliability values are randomly chosen from the interval [0.63, 0.98] and ransack 

probabilities are chosen from the interval [0.8,0.98].  

 

5.2.2 Results of the experiments 

Table 7 shows the optimal and heuristic values for 14 test instances. The comparisons 

over the results of LH and optimal values for the real-time model is different from that of 

pre-positioning model due to the fact that in the objective function of different 

lexicographic levels of real-time mode, there can be different parameters. These 

parameters are the best and worst values for different objectives. Recalling from the 

heuristic, in the calculations of the trade-off matrix, we use the LH method to obtain the 

values of the row related to attribute CO. These values can affect the final worst and best 
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values of all the attributes. In fact, when we solve model 4.2 for attribute CO optimally, 

we obtain the minimum cost. But, when we solve it heuristically (using models 4.3.1 and 

4.3.2), there will be deviation, not only from the cost, but also from other attributes. 

These deviations will affect the values of trade-off matrix and because these values are 

parameters of lexicographic models level 2 and 3, the optimal solutions and heuristic 

solutions of these two methods are not directly comparable. In other words, for a single 

model, any heuristic method will lead to a solution which is never better than the 

optimum. But in the real-time model, because there is not necessarily a single model, the 

heuristic results and optimal results do not necessarily have that relationship. We can 

only compare the values of attribute CO obtained optimally and heuristically, which will 

be discussed later.  

Table 7 Summary of results of LH and Cplex for real-time model 

Instance 
# 

# of 
RRC 

# of 
LRC 

# of 
AA 

# of 
opened 
LRC 

ratio of 
opened 
LRC 

Cplex 
HADS 

2 
 

Cplex 
HADS 

3 

LH 
HADS 

2 

LH 

HADS 

3 

1 5 10 50 5 0.5 
 

0.0297 
 

0.11556 0.03 0.118 

2 5 10 75 7 0.7 0.0306 0.11906 0.0315 0.122 

3 5 10 100 4 0.4 0.0249 0.09310 0.0249 0.094 

4 5 20 100 8 0.4 0.0271 0.07753 0.0283 0.0812 

5 5 20 200 10 0.5 0.0268 0.07654 0.0272 0.0734 

6 5 40 100 13 0.325 0.0239 0.06783 0.0238 0.0451 

7 5 40 200 15 0.375 0.0253 0.06820 0.0247 0.0428 

8 5 40 400 18 0.45 0.0257 0.04744 0.0263 0.0468 

9 5 40 600 17 0.425 0.0256 0.05964 0.0263 0.0539 

10 5 40 800 18 0.45 0.0249 0.07798 0.0257 0.0529 

11 10 40 200 14 0.35 0.0258 0.05445 0.0278 0.0529 
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12 10 40 400 18 0.45 0.0263 0.05967 0.0263 0.0509 

13 10 40 600 21 0.525 0.0259 0.05859 0.0261 0.0451 

14 10 40 800 26 0.65 0.0265 0.03888 0.0268 0.0404 

 

In Table 7, the first four columns show the instance number and dimensions. Column five 

shows the number of opened LRCs in the optimal solution. Column six shows the 

number of opened LRCs divided by total number of LRCs Columns seven and eight 

shows the optimal values for lexicographic models of levels number 2 and 3, 

respectively. Column nine shows the OFV value obtained from LH method for 

lexicographic level number 2, and column ten shows OFV values obtained from LH 

method for lexicographic level number 3. In Table 8, best and worst values of attributes 

obtained in lexicographic level#1 are shown. Also, in Table 9, values of attributes 

obtained from LH as well as Cplex are shown. This table also shows the number of 

opened LRCs at each instance. The rest of this chapter contains different analysis on the 

data obtained from running the experiments.  

 

Table 8 Best and worst values of attributes obtained from Cplex in lexicographic level#1 

Instance # 
Solution 
type TT MA CO GR GS 

1 
Best 277151 86 470543.6 -1.79028 -1.06632 

Worst 439805 160 1426787 -81 -40 

2 
Best 413951 91 570623.8 -2.51249 -1.58824 

Worst 663475 160 2150744 -118 -59 

3 
Best 551145 91 461039.9 -3.318 -2.09086 

Worst 780944 160 1482581 -156 -78 

4 Best 550180 88 920980.5 -3.13703 -1.94639 
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Worst 903993 160 2952261 -263 -131 

5 
Best 1096308 88 1698384 -5.69888 -3.64731 

Worst 1807441 160 5879333 -514 -256 

6 
Best 548310 87 1024027 -3.06946 -1.90968 

Worst 880195 160 2903745 -475 -236 

7 
Best 1094142 89 1784876 -5.29496 -3.6401 

Worst 1736096 160 5752543 -929 -459 

8 
Best 2201707 85 3319030 -9.43951 -6.1612 

Worst 3529817 160 11412335 -1828 -905 

9 
Best 3311968 88 4848360 -13.3753 -8.9586 

Worst 5255355 160 17169512 -2726 -1351 

10 
Best 4407319 89 6370062 -17.1196 -11.5379 

Worst 7101291 160 22490736 -3630 -1797 

11 
Best 1063338 84 1767502 -4.69873 -3.17749 

Worst 1772108 160 6069337 -1049 -519 

12 
Best 2128548 86 3281403 -8.61496 -5.88134 

Worst 3467031 160 12561601 -2046 -1015 

13 
Best 3202278 88 4798297 -12.3817 -8.50604 

Worst 5298785 160 18625647 -3042 -1509 

14 
Best 4269813 88 11201723 -28.7363 -17.2213 

Worst 5280626 160 25299695 -4050 -2005 

 

Table 9 Values of attributes obtained from Cplex and LH in lexicographic level#3 

Instanc
e # 

Solutio
n 

# of 
opened 
LRCs 

% of 
opened 
LRCs 

TT MA CO GR GS 

1 
Opt. 5 50 293258.3 93 754675.8 -9.027 -4.715 

LH 6 60 292518.6 93 773433.6 -9.433 -4.978 

2 
Opt. 7 70 439435.3 97 1054780 -14.52 -7.400 

LH 7 70 438569.4 97 1093750 -13.34 -6.988 

3 
Opt. 4 40 570219.5 96 715439.8 -14.69 -7.346 

LH 6 60 570266.6 96 723311 -14.87 -7.654 
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4 
Opt. 8 40 582259 92 703475.5 -19.92 -9.170 

LH 8 40 551376.7 95 704568 -18.99 -8.265 

5 
Opt. 10 50 1159831 92 2818794 -37.23 -18.78 

LH 8 40 1162705 92 2858978 -34.28 -17.31 

6 
Opt. 13 32.5 574722.5 92 1472810 -22.08 -10.44 

LH 16 40 574802.5 87 1494923 -20.89 -10.37 

7 
Opt. 15 37.5 1148336 92 2789737 -42.52 -20.60 

LH. 18 45 1150457 90 2816309 -39.29 -19.62 

8 
Opt. 18 45 2315703 87 5403170 -64.03 -31.91 

LH 21 52.5 2316251 87 5491474 -59.96 -28.37 

9 
Opt. 17 42.5 3477804 91 8002571 -113.5 -55.91 

LH 25 62.5 3438987 91 8178315 -112.2 -55.28 

10 
Opt. 18 45 4630919 90 10384105 -142.5 -70.39 

LH 29 72.5 4630078 90 10556308 -142.3 -70.16 

11 
Opt. 14 35 1124302 88 2877559 -45.97 -22.03 

LH 22 55 1126010 87 2992279 -41.68 -20.13 

12 
Opt. 18 45 2245993 89 5724273 -88.53 -42.35 

LH 27 67.5 2247096 87 5757479 -87.06 -41.92 

13 
Opt. 21 52.5 3383247 89 8379001 -127.1 -62.53 

LH 29 72.5 3384198 89 8464194 -114.9 -56.18 

14 
Opt. 26 65 4423467 91 12846358 -166.2 -81.36 

LH 40 100 4406482 89 13511382 -158.3 -77.76 

 

5.2.3 Analysis of the experimental results 

In this section we perform several analyses on the results of the experiments in order to 

both assess the efficiency of heuristic method and investigate the role and the effect of 

some of the model parameters on the solutions and the OFVs. 

 

5.2.3.1 Efficiency of heuristic for attribute CO 
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The only direct comparison of solutions can be done over optimal and heuristic solutions 

of attribute CO. Figure 18 shows the deviation of best value for attribute CO obtained 

from LH (in HADS3) from that of Cplex software. All the deviations are below 5%. And 

there is no pattern in the diagram, meaning that the instance dimensions is independent 

from the amount of deviation. 

 

 

Figure 18. Deviations (in percent) of attribute CO values obtained from LH method from 

optimal values 

 

5.2.3.2 Efficiency of calculations of trade-off matrix arrays  

As can be seen, the percentage of deviation of obtained total cost from the heuristic 

method compared to optimal cost does not have any trend for different instances and it 
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fluctuates between 1% and 4.5%. Therefore, it can be concluded that the LH works 

reasonably well for the attribute CO.  

As mentioned before, it is not possible to directly compare the results of the 

second and the third lexicographic levels of LH and Cplex. But, different analysis can be 

conducted. In the experiments of this dissertation, the heuristical results of the trade-off 

matrix for attribute CO affect two values of the final best and worst vectors of attributes: 

the best CO and the worst TT. In fact, for the LH, because it is a heuristic, the best CO is 

always greater than that of Cplex. Also, the worst TT of the LH is often less than that of 

Cplex. This looks reasonable because there is always a trade-off between time and cost, 

and a solution with higher cost is likely to have lower time. First, we compare the values 

for each attribute obtained from two methods in lexicographic level#3.  

Figures 19 shows the deviations of TT attribute values obtained by LH method 

from that of Cplex. Also, Figure 20 shows the TT values obtained from the two methods. 

For most of the instances, the results are fairly close, but for some instances such as #4 

and #9, the LH results in significantly better solutions. This is due to the fact that the best 

TT value from trade-off matrix is equal for both methods while the worst TT value is 

higher for Cplex compared to LH (as mentioned before). Therefore, the LH is more likely 

to get a better value for attribute TT. Now, if we plot the deviations for attribute CO, 

based on same analysis we would expect better values from Cplex than LH:  
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Figure 19. Deviations (in percent) of TT attribute values obtained from LH method from 

Cplex results 

 

 

Figure 20. Comparisons of TT attribute values obtained from LH method and Cplex  
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Figures 21 shows the deviations of CO attribute values obtained by LH method from that 

of Cplex. Also, Figure 22 shows the CO values obtained from the two methods. As 

expected, all the deviations are positive, meaning that all optimal CO values are better 

than values that are obtained from LH although they are not directly comparable. 

 

Figure 21. Deviations of CO attribute values obtained from LH method from Cplex 

results 

 

 

Figure 22. Comparisons of CO attribute values obtained from LH method and Cplex  



132 
 

Same analysis can be done for attribute MA. Figures 23 shows the deviations of MA 

attribute values obtained by LH method from that of Cplex. Also, Figure 24 shows the 

MA values obtained from the two methods. For many of the instances, MA values are 

equal while for some others, either method can work well. Now we plot the deviations of 

LH method from Cplex, for attribute GR. It should be mentioned that because all GR 

values are negative, in order to calculate the deviations, we need to divide the difference 

between results of Cplex and LH by the absolute result of Cplex. 

 

Figure 23. Deviations of MA attribute values obtained from LH method from Cplex 

 

Figure 24. Comparisons of MA attribute values obtained from LH method and Cplex  
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Figures 25 shows the deviations of GR attribute values obtained by LH method 

from that of Cplex. Also, Figure 25 shows the GR values obtained from the two methods. 

As can be seen, except for first instance, the LH values are non-negative, meaning that 

the solutions of LH have higher GR value. 

Same fact can be concluded from the chart related to attribute GS. Figures 27 

shows the deviations of GS attribute values obtained by LH method from that of Cplex.  

 

 

Figure 25. Deviations of GR attribute values obtained from LH method from Cplex 

results 

Also, Figure 28 shows the GS values obtained from the two methods. As can be 

seen, except for first instance, the LH values are non-negative, meaning that the solutions 

of LH have higher GR value. 
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Figure 26. Comparisons of GR attribute values obtained from LH method and Cplex  

 

 

Figure 27. Deviations of GS attribute values obtained from LH method from Cplex 

results 
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Figure 28. Comparisons of GS attribute values obtained from LH method and Cplex  

 

5.2.3.3 Efficiency of the heuristic of second lexicographic level 

Now, the results of second lexicographic levels will be compared. Figure 29 shows the 

deviations of OFVs of HADS2 obtained by LH from that of Cplex. As can be seen, 

except for instance#7, the Cplex results are better than LH results. In fact, although the 

two methods are not directly comparable, it is worthwhile to mention that the maximum 

standardized weighted deviation from best values of attributes is lower for Cplex than 

that of LH.  

 

5.2.3.4 Effect of lexicographic level#3: 

The objective of the HADS2 model is to minimize the maximum standardized deviation 

from best values of different attributes. When solving this model, the criteria of total 
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Figure 29. Deviations of OFVs of HADS2 OFVs obtained from LH method from Cplex 

results 

standardized weighted deviation can also be calculated. In other words, each HADS2 

solution has a value for total deviation. When solving HADS3, using the results of 

HADS2, the objective is to minimize the total deviation. By comparing the values of total 

deviation obtained from HADS2 and HADS3, we can assess the amount of improvement 

that HADS3 causes on the total deviation. Figure 30 shows the total deviation values 

obtained in HADS2 and HADS3. As can be seen, the effect of HADS3 is significant 

(total deviation values of HADS3 are significantly lower). This justifies the use of third 

lexicographic level in the system. 

 

5.2.3.5 Efficiency of the heuristic of third lexicographic level 

Now we investigate the difference between Cplex and LH for lexicographic level#3. 

Figure 31 shows the deviations of OFVs of HADS3 obtained by LH from that of Cplex. 
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Figure 30. Comparisons of total standardized weighted deviations of attributes in HADS2 

compared to that in HADS3 

 

 

Figure 31. Deviations of OFVs of HADS3 values obtained from LH method from Cplex 

results 
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Unlike HADS2, the deviations of LH from Cplex for HADS3 are mostly negative, 

meaning that total weighted deviation is lower for LH compared to that of Cplex. This 

result was expected because in HADS2, using LH, almost all the results were worse than 

those of Cplex, meaning that maximum standardized deviation from best values of 

attributes (i.e.,   
 ) were higher for LH method. This causes the solution of HADS3 to 

be more flexible: in HADS3, considering the result of HADS2 (i.e. maximum deviation), 

the total standardized deviation is calculated. The higher the maximum deviation (  
 ), 

the larger the feasible region of HADS3. In other words, if one tries to minimize the total 

weighted deviation while keeping the maximum deviation to a low value, he or she will 

have more limited choices. But, if this maximum deviation is a high value, it is possible 

to keep the actual maximum deviation lower than   
 , while having more choices (i.e., 

larger feasible region) for the total deviation (i.e.,   
 ). Hence, as a valuable conclusion, 

there is a trade-off between the results of HADS2 and HADS3: by increasing the result of 

HADS2 (as an input for HADS3), the result of HADS3 can be improved. In order to be 

more specific about this conclusion, we run this trade-off for data of instance #5. Figure 

32 shows the selected values for HADS2 (i.e., maximum deviation percentages) as well 

as their related HADS3 values (i.e., total deviation percentages). The original (optimal) 

HADS2 result is 2.6798 percent and its related HADS3 value is 7.6545. Now, as an input 

for HADS3, if we assume that HADS2 value is say, 3 percent, then the HADS3 result 

will be 6.5685, which has an improvement of 14%. Based on the opinions of the decision 

makers, the sensitivity analysis can be performed and ideal combination of HADS2 and 

HADS3 values can be chosen. 



139 
 

 

Figure 32. Results of trade-off between OFVs of HADS2 and HADS3 

 

5.2.3.6 Percentage of opened LRCs 

Finally, we plot the percentage of opened LRCs for each instance, in Figure 33. As can 

be seen, there is no trend in the plot, meaning that percentage of opened LRCs is 

independent from dimensions of instances, for our experiment.  

As a conclusion of this chapter, it should be mentioned that both of the LH 

heuristics that is used to solve the pre-positioning and real-time facility location problems 

performs efficiently and the deviations from optimal values are below 5%. Moreover, 

because the pre-positioning and the real-time models of this dissertation are novel 

variants of basic models, their solutions are not comparable with other models. Thus, in 

order to prove the efficiency of the LH method, we compared the results of LH with the 
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results of the Cplex. As a future study, both the models can be solved using other 

heuristics and the results can be compared with those from LH. 

 

Figure 33. Ratio of opened LRCs for all the instances 
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CHAPTER 6  

CONCLUSIONS 

In this dissertation, we developed a two-stage network for humanitarian logistics which is 

also called as relief chains. The first stage should be used before the occurrence of the 

disaster while the second stage covers the aftermath of the disaster. Each model has two 

stages. In the pre-positioning model, the first stage is the location problem for RRCs and 

the pre-positioning amount at each RRC while the second stage is the location problem 

for LRCs as well as the flow of material between RRCs, LRCs, and AAs. In the real-time 

model, the first stage is the location problem for LRCs while the second stage is the 

material flow problem between RRCs, LRCs, and AAs. 

 

6.1 Conclusions 

The main contributions of this dissertation are as follows: 

 The comprehensive pre-positioning model and its heuristic (LH) provides a 

solution for the relief chains where relief materials should be pre-positioned and 

distributed in the aftermath of a disaster. In none of the current two-echelon 

models, the service quality, direct shipments, and capacitated supply sources are 

considered. Also, here, the maximum delivery duration is considered not only in 

first echelon, but in the entire delivery process. Therefore, this model and its
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solutions are closer to reality. 

 

 The real-time facility location model, which is a continuation of the pre-

positioning model, completes the two-stage network design. The first aspect of 

this model is that it is location-allocation, not solely location. This way, the 

location of the LRCs will be determined according to real-time data. Also, the 

model is multi-product and considers different relief materials such as food, 

blankets, water and medical supplies as distinguishable elements. Moreover, 

availability of the direct shipments allow the model to use many elements of the 

Lagrangian heuristic, which is based on exact methods such as Cplex and 

therefore, the solutions are close to optimum.  

 

 In current literature, the trade-off between lexicographic levels #2 and #3 in the 

real-time model is not considered. In this dissertation, we concluded that such a 

trade-off exists, meaning that there is a relationship between the maximum 

variation among all attribute values and total variation of attributes. Minimizing 

the maximum variation causes the sum of variations to be less flexible (higher 

value). Hence, after obtaining the initial values of maximum and total deviations, 

a sensitivity analysis can be performed in order to obtain the best combinations of 

the two values. 

 

6.2 Future studies 
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 The most important opportunity for future studies is the third echelon of the 

network, which would be the vehicle routing problem. In the dissertation, the 

facility location problem is solved in two stages and as a result, a distribution 

scheme for different relief materials is developed. The next step will be the 

allocation of different transportation vehicles the different routes to perform the 

distribution task. 

 

 Another opportunity is the development of a location-routing model for first or 

second echelon of the current network. The two-stage network of this dissertation 

is developed in a way that it does not incorporate the vehicle routing problem in 

any of the echelons. But, it is possible to apply the location-routing problem to 

each of the echelons. For the first echelon, the hypothetical location-routing 

problem will result in the determination of locations RRCs, LRCs, preliminary 

distribution scheme, and vehicle routing plan. This way, in the second echelon, 

only the locations of RRCs and LRCs (as well as the amount of pre-positioned 

materials) will be used as inputs. Then, it is again possible to conduct a location-

routing problem for the second echelon. The resulting system will be s two-stage 

location-routing network and there will be no need to a separate vehicle routing 

stage.  

 
 

 In terms of solving methods, for both of the models, other heuristic methods can 

be considered. For instance, in the pre-positioning model for very large instances, 

the number of constraints and decision variables are very large. It is possible that 
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meta heuristics such as simulated annealing that use randomization work better 

for such instances. And generally, other methods such as Branch and Price or 

Bender Decomposition that are popular for similar problems can also be tested.
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APPENDIX A  

LINGO CODE OF PRE-POSITIONING MODEL 

sets: 
rrc/1..5/:f,u; 
lrc/1..20/; 
demandp/1..100/; 
item/1..1/:v,e; 
scenario/1..4/:alpha,pr,gam; 
store(rrc,item):h,h1,s; 
indirect(rrc,lrc,demandp,item,scenario):a,x; 
direct(rrc,demandp,item,scenario):b,y; 
demand(demandp,item,scenario):dem,p,c; 
extra(rrc,item,scenario):r,z; 
fixed2(lrc,scenario):g,q,m; 
bin1(rrc,lrc,demandp,scenario):ti,b1; 
bin2(rrc,demandp,scenario):tim,b2; 
shortage(item,scenario); 
endsets 
 
data: 
pr = @OLE( 'Prep.xls' ,pr); 
f = @OLE( 'Prep.xls' ,f); 
s = @OLE( 'Prep.xls' ,s); 
e = @OLE( 'Prep.xls' ,e); 
v = @OLE( 'Prep.xls' ,v); 
h = @OLE( 'Prep.xls' ,h); 
a = @OLE( 'Prep.xls' ,a); 
b = @OLE( 'Prep.xls' ,b); 
dem = @OLE( 'Prep.xls' ,dem); 
r = @OLE( 'Prep.xls' ,ro); 
g = @OLE( 'Prep.xls' ,g); 
ti = @OLE( 'Prep.xls' ,ti); 
tim = @OLE( 'Prep.xls' ,tim); 
c = @OLE( 'Prep.xls' ,co); 
q = @OLE( 'Prep.xls' ,q); 
enddata 
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min= @sum(rrc(i):f(i)*u(i)) + 
@sum(fixed2(j,n):pr(n)*g(j,n)*m(j,n))+@sum(demand(k,l,n):pr(n)*c(k,l,n)*p(k,l,n)) 
 + 
@sum(indirect(i,j,k,l,n):pr(n)*a(i,j,k,l,n)*x(i,j,k,l,n))+@sum(direct(i,k,l,n):pr(n)*b(i,k,l,n)*y(
i,k,l,n)) 
+ @sum(store(i,l):h(i,l)*h1(i,l)); 
 
 
@for(bin1(i,j,k,n):@sum(indirect(i,j,k,l,n):x(i,j,k,l,n)) <= 10000000*b1(i,j,k,n)); 
 
@for(bin2(i,k,n):@sum(direct(i,k,l,n):y(i,k,l,n)) <= 10000000*b2(i,k,n)); 
 
@for(demand(k,l,n):dem(k,l,n)-@sum(indirect(i,j,k,l,n):x(i,j,k,l,n))-
@sum(direct(i,k,l,n):y(i,k,l,n)) = p(k,l,n)); 
 
@for(extra(i,l,n):r(i,l,n)*h1(i,l)-@sum(indirect(i,j,k,l,n):x(i,j,k,l,n))-
@sum(direct(i,k,l,n):y(i,k,l,n)) >= 0); 
 
@for(store(i,l):(h1(i,l)) <= s(i,l)*u(i)); 
 
@for(fixed2(j,n): @sum(indirect(i,j,k,l,n):x(i,j,k,l,n)*v(l)) <= q(j,n)*m(j,n)); 
 
@for(demand(k,l,n):p(k,l,n)  <=  dem(k,l,n)*(1-gam(n))); 

@sum(scenario(n):pr(n)*gam(n))  >=  alpha; 

@for(bin1(i,j,k,n):ti(i,j,k,n)*b1(i,j,k,n) <= 150); 

@for(bin2(i,k,n):tim(i,k,n)*b2(i,k,n)<= 150); 

 

@for(rrc:@bin(u)); 
@for(bin1:@bin(b1)); 
@for(bin2:@bin(b2)); 
@for(scenario:@bin(gam)); 
@for(fixed2:@bin(m)); 
 
 
END 
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APPENDIX B  

CPLEX CODE OF REAL-TIME FACILITY LOCATION 
MODEL 

 
There are total of three models in the real-time facility location system. In order to get the 

idea of how they are coded, the Cplex model of lexicographic level #2 is presented. 

 
range rrc = 1..RRC ; 
range lrc =1..LRC; 
range AA = 1..aa; 
range items=1..ITEMS; 
range att=1..ATT; 
int v[i in items] = ...; 
float q [j in lrc]= ... ; 
float g [j in lrc]= ... ; 
float s [l in items][i in rrc] = ...; 
float d [l in items][k in AA]= ...; 
float t1 [i in rrc][j in lrc]= ...; 
float t2 [j in lrc][k in AA]= ...; 
float t3 [i in rrc][k in AA]= ...; 
 
float logr1 [i in rrc][j in lrc]= ...; 
float logr2 [j in lrc][k in AA]= ...; 
float logr3 [i in rrc][k in AA]= ...; 
float logq1 [i in rrc][j in lrc]= ...; 
float logq2 [j in lrc][k in AA]= ...; 
float logq3 [i in rrc][k in AA]= ...; 
float a [i in rrc][l in items][j in lrc] = ...; 
float b [j in lrc] [l in items] [k in AA]=...; 
float c [i in rrc] [l in items] [ k in AA]=...; 
dvar float+ x [rrc][items][lrc]; 
dvar float+ y [lrc][items][AA]; 
dvar float+ z [rrc][items][AA]; 
dvar boolean b1 [i in rrc][j in lrc]; 
dvar boolean b2 [j in lrc][k in AA]; 
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dvar boolean b3 [i in rrc][k in AA]; 
dvar boolean m [j in lrc]; 
dvar float+ at1 [j in lrc]; 
dvar float+ at2 [k in AA]; 
dvar float U[s in att]; 
 
float alpha [s in att]=...;float Ub[s in att]=...; 
float Uw[s in att]=...; 
dvar float obj2; 
  
dvar int opened; 
  
 
dvar float obj; 
minimize obj; 
subject to  
{ 
   
forall(i in rrc,l in items) 
   ct1: 
 sum (j in lrc)(x[i][l][j])+sum (k in AA)(z[i][l][k]) <= s[l][i]; 
  
  forall(j in lrc) 
    ct2: 
      sum(i in rrc , l in items)(x[i][l][j]*v[l]) <= q[j]*m[j]; 
       
      forall(j in lrc,l in items) 
   ct3:  
   sum(i in rrc)(x[i][l][j]) == sum(k in AA)(y[j][l][k]); 
    
    forall(k in AA,l in items) 
   ct4: 
     sum(j in lrc)(y[j][l][k]) + sum(i in rrc)(z[i][l][k]) == d[l][k]; 
      
      forall(i in rrc,j in lrc) 
   ct5: 
     sum(l in items)(x[i][l][j]) <= 1000000000*b1[i][j]; 
      
       forall(j in lrc,k in AA) 
   ct6: 
     sum(l in items)(y[j][l][k]) <= 1000000000*b2[j][k]; 
      
       forall(i in rrc,k in AA) 
   ct7: 
     sum(l in items)(z[i][l][k]) <= 1000000000*b3[i][k]; 
      
      
      
   ct8: 
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     U[1] == sum(i in rrc,j in lrc,l in items)(x[i][l][j]*t1[i][j]) + sum(j in lrc,k in AA,l in 
items)(y[j][l][k]*t2[j][k])+sum(i in rrc,k in AA,l in items)(z[i][l][k]*t3[i][k])+ sum(j in lrc) 
(m[j]*0.0000000001); 
      
     forall(i in rrc,j in lrc) 
   ct9: 
      at1[j] >=t1[i][j] - 100000000*(1-b1[i][j]);   
       
     forall (k in AA,j in lrc) 
    ct10: 
       at2[k]>=at1[j]+t2[j][k] - 100000000*(1-b2[j][k]); 
        
        forall (k in AA,i in rrc) 
    ct11: 
          at2[k]>=t3[i][k]- 100000000*(1-b3[i][k]); 
           
          forall(k in AA) 
     ct12: 
            U[2]>=at2[k]; 
             
     ct13:       
    U[5]== sum(i in rrc , j in lrc)(logq1[i][j]*b1[i][j]) +  sum(k in AA , j in 
lrc)(logq2[j][k]*b2[j][k]) +  sum(i in rrc , k in AA)(logq3[i][k]*b3[i][k])- sum(j in lrc) 
(m[j]*0.0000000001);        
        
          
    ct14:       
    U[4]== sum(i in rrc , j in lrc)(logr1[i][j]*b1[i][j]) +  sum(j in lrc,k in AA)(logr2[j][k]*b2[j][k]) 
+  sum(i in rrc , k in AA)(logr3[i][k]*b3[i][k])- sum(j in lrc) (m[j]*0.0000000001);        
        
 
           U[3] == sum(i in rrc, j in lrc, l in items)(a[i][l][j]*x[i][l][j]) + sum(j in lrc, k in AA, l in 
items)(b[j][l][k]*y[j][l][k])+sum(i in rrc, k in AA, l in items)(c[i][l][k]*z[i][l][k])+  
           sum(j in lrc)(g[j]*m[j]); 
 
           
forall (s in att) 
    ct15: 
    obj >= alpha[s]*(Ub[s]-U[s])/(Ub[s]-Uw[s]); 
    
     
  
    
    ct16: 
         obj2 == sum(s in att)(alpha[s]*(Ub[s]-U[s])/(Ub[s]-Uw[s])); 
          
     ct17: 
          sum(j in lrc)(m[j]) == opened; 
           
                  forall(i in rrc,j in lrc) 
     ct18: 
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                at1[j] >=0; 
                 
                 forall (k in AA,i in rrc) 
      ct19: 
         at2[k] >=0;  
 
     ct20: 
    obj>=0; 
 
 
           
              
} 
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