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Abstract

We present models for allocating limited healthcare resources efficiently among target

populations in order to maximize society’s welfare and/or minimize the expected costs. In

general, this thesis is composed of two major parts.

Firstly, we formulate a novel uncapacitated fixed-charge location problem which con-

siders the preferences of customers and the reliability of facilities simultaneously. A central

planner selects facility locations from a set of candidate sites to minimize the total cost of

opening facilities and providing service. Each customer has a strict preference order over a

subset of the candidate sites, and uses her most preferred available facility. If that facility

fails due to a disruptive event, the customer attends her next preferred available facility.

This model bridges the gap between the location models that consider the preferences of

customers and the ones that consider the reliability of facilities. It applies to many health-

care settings, such as preventive care clinics, senior centers, and disaster response centers.

In such situations, patient (or customer) preferences vary significantly. Therefore, there

could be a large number of subgroups within the population depending on their preferences

of potential facility sites. In practice, solving problems with large numbers of population

subgroups is very important to increase granularity when considering diverse preferences

of several different customer types. We develop a Lagrangian branch-and-bound algorithm

and a branch-and-cut algorithm. We also propose valid inequalities to tighten the LP

relaxation of the model. Our numerical experiments show that the proposed solution al-

gorithms are efficient, and can be applied to problems with extremely large numbers of

customers.

Secondly, we study the allocation of colorectal cancer (CRC) screening resources among

individuals in a population. CRC can be early-detected, and even prevented, by undergoing

periodic cancer screenings via colonoscopy. Current guidelines are based on existing med-

ical evidence, and do not explicitly consider (i) all possible alternative screening policies,

and (ii) the effect of limited capacity of colonoscopy screening on the economic feasibility of

the screening program. We consider the problem of allocating limited colonoscopy capacity

for CRC screening and surveillance to a population composed of patients of different risk

groups based on risk factors including age, CRC history, etc. We develop a mixed inte-
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ger program that maximizes the quality-adjusted life years for a given patient population

considering the population’s demographics, CRC progression dynamics, and relevant con-

straints on the system capacity and the screening program effectiveness. We show that the

current guidelines are not always optimal. In general, when screening capacity is high, the

optimal screening programs recommend higher screening rates than the current guidelines,

and the optimal screening policies change with age and gender. This shows the significance

of incorporating screening capacity into the decisions of optimal screening policies.
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)

Values for R = HR and o = T− . . . . . . . . . . . . . 174

C.5 p
(
si
′

j′,k′,h′|sij,k,h, â, o
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)
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Xi(t) Random variable that represents the number of individuals transi-

tioning from health state si during the interval [t, t+ ∆t],

uij(t) Random variable that represents the number of individuals transi-

tioning from health state si to health state sj during the interval

[t, t+ ∆t],

u(t) A vector of uij(t) for all i ∈ {0, . . . ,M},
tmax The duration (in years) that the model is run for,

ai(t) Action taken at time t, which is the proportion of individuals in core

health state si to undergo colonoscopy,

aR(t) Action taken at time t, which is the proportion ofR risk level individ-

uals to undergo colonoscopy, where Equations (3.3b)-(3.3d) apply,

a(t) Action vector at time t ∈ T , or a(t) = {aLR(t), aHR(t), aPC(t)} ∈ A,

and t ∈ T ,

â Treatment given to an individual patient; either undergo

colonoscopy, or do nothing. â ∈ {dn, cl},
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Lmax The CRC screening capacity limit,

pt(sj|si, â, o) The probability that an individual patient will be in core health

state sj in year t + 1 given that the patient is in core health state

si, treatment â ∈ {dn, cl} is selected, and screening result o ∈ O is

observed in year t, where sj ∈ si,
q(si, â, o, sj) The expected reward (in QALYs) of individual patient for going

from core health state si at time t to core health state sj, sj ∈ si, i ∈
{0, . . . ,M} at time t + 1 when treatment â ∈ {dn, cl} is taken and

observation o ∈ O is seen,

gt(sj|si, â) The probability that a patient will be in core health state sj ∈ si

in year t + 1 given that the patient is in core health state si and

treatment â ∈ {dn, cl} is selected in year t,

Puij(t)(c|ai(t)) The probability that the c individuals would move from core health

state si at time t to core health state sj ∈ si at time t + 1 when

action ai(t) is performed,

rt(c|si, ai(t)) The immediate reward of transitioning c patients from core health

state si to core health state sj after action ai(t) is taken,

Pt(X
′, X, a(t)) The probability of going from system state X at time t ∈ T to

system state s′ at time t+ 1 when action a(t) ∈ A is taken,

ûij(t) A realizations of uij(t), sj ∈ si,
û(X ′, X) The vector of ûij such that the transition from system state X at

time t to health state X ′ at time t+ 1 is feasible,

Û(X ′, X) The set of all û(X ′, X) vectors,

V ∗t (X) The maximum expected TQALYs from for a system at state X in

year t to year tmax,

rtmax(X) Terminal reward,

λ Discount factor.

Chapter 3 MIP Model

I The set of disease progression states, indexed by i,

J The set of age groups, indexed by j,
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K The set of genders, indexed by k,

R The set of risk levels, indexed by R, R := {LR,HR,PC,UCT,D},
O The set of observations, indexed by o, O := {T-,P+,C+, SD},
A The set of all action vectors at,

H The set of all history states, indexed by h,

T The set of time periods, indexed by t, T = {0, 1, . . . , tmax}, where

tmax represents the last time epoch for which the model is run,

L The set of possible policies,

sij,k,h The health state defined by disease progression stage i ∈ I, age

group j ∈ J , gender k ∈ K, and disease history h ∈ H,

X i
j,k,h(t) The number of people in the health state defined at time t by disease

progression stage i ∈ I, age group j ∈ J , gender k ∈ K, and disease

history h ∈ H,

X̃ i
j,k,h(t) The adjusted X i

j,k,h(t) after aging,

aRj,k,h(t) The action of individuals in state sij,k,h to either undergo colonoscopy

or not at time t. Since disease progression is unobservable within

each risk level, the index i does not appear here,

at The vector of all actions aRj,k,h(t) at time t, at =
{
aRj,k,h(t)

}
∀ R, j, k,

and h. Thus, at ∈ A,

â The type of treatment a subgroup is subjected to, â ∈ {cl, dn},
f
(
o|sij,k,h, â

)
The rate of observing observation o ∈ O at time t when action

â ∈ {cl, dn} is taken on state sij,k,h,

p
(
si
′

j′,k′,h′ |sij,k,h, â, o
)

The rate at which individuals will be in state si
′

i′,j′,k′ given that they

are in state sij,k,h, action â ∈ {cl, dn} is taken, and screening result

o is observed,

q
(
si
′

j′,k′,h′ , s
i
j,k,h, â, o

)
Immediate rewards (in expected QALYs) for all individuals going

from state sij,k,h to state si
′

j′,k′,h′ given action â and screening result

o is observed,

qtmax(sij,k,h) Terminal reward for individuals in state sij,k,h at the last time period,

tmax,

Lmax The capacity limit for colonoscopy resource available.
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υj Rate of aging to age group j from an immediate predecessor age

group j,

θRj,k,h Compliance rate for age individuals in states sij,k,h ∀i,
τP Sensitivity of colonoscopy to polyps,

τC Sensitivity of colonoscopy to cancer,

ωâ Probability of CRC self-detection given action â,

ρi,i
′

j Lesion progression rate from states i to state i′,

δi,jâ,o Rate of mortality in state i given treatment â and observation o.

γi,j Rate of completion within year t of treatment initiated at state i,

h An immediate predecessor of h (e.g., if h = 1 then h = 0),

j An immediate predecessor of j (e.g., if j = 1 then j = 0),

h0 1 if h = 0, 0 otherwise,

λt Discount factor in year t,

qiJ,h,k Terminal reward (QALYs after age J) for state sij,k,h,

dC , dCT , dUCT Disutility of undetected CRC, CRC treatment, and being in the

UCT state,

dpoly(cl) Disutility of undergoing colonoscopy with polypectomy,

d¬poly(cl) Disutility of undergoing colonoscopy without polypectomy,

κi,jâ,o Probability of immediate mortality from screening complications,

κjUCT Probability of immediate mortality from treatment at age j.

m` Binary variable set to one if policy ` ∈ L is selected, zero otherwise.
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Chapter 1

Introduction

The resource allocation models discussed in this thesis are part of a wider umbrella of

Operations Research/Management Sciences (OR/MS) techniques. This chapter starts with

a quick overview of OR/MS applications in healthcare industries. This is followed by a

section focused on some OR/MS applications in resource allocation in healthcare. Then,

the target problems of this thesis are introduced, as well as the research questions this

thesis aims to answer.

1.1 Preface

Healthcare industry represents approximately 15% of the Gross Domestic Product (GDP)

of the United States (The Economist, 2004), and about 16% of GDP or $2.1 trillion in

2006 even though 50 million Americans do not have health insurance and another 25 mil-

lion remain underinsured (Catlin et al., 2008). US national health spending is expected

to account for 20% of GDP or $4 trillion in 2015 (Dobrzykowski, 2012). Corresponding

figures in Canada indicate that health spending was $214.9 billion in 2014, a $4.5 billion

increase from the year before. This represent 11% of Canada’s GDP in 2014. Health ex-

penditure, on average, accounts for about 40% of provincial/territorial government budgets

(CIHI, 2015b). The growth of healthcare spending can be attributed to the increase in life

expectancy, new government policies, and improvements in the service quality.
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Healthcare professionals are required to carry out their tasks in an effective and effi-

cient manner. Healthcare institutions face new challenges such as increased complexity of

processes, the need for efficient utilization of resources, increased pressure to improve the

quality of services, and the need to control the workload of healthcare personnel (De Vries

et al., 1999). This is where optimization models and tools are most useful.

Operations Research (OR) has been used considerably in healthcare decision making.

Early applications include nurse staffing and operations room scheduling, and applications

are increasing rapidly (Brailsford and Vissers, 2011). Healthcare has become a major indus-

try, with large number of workers in healthcare organizations and consumers of healthcare

services. OR is being utilized recently more to address day-to-day hospital management,

resource-constrained operations, or treatment planning aspects in healthcare (Royston,

2009). Key healthcare optimization issues include service planning, resource scheduling,

logistics, medical therapeutics, disease diagnosis, and preventive care (Rais and Viana,

2011). Several articles discuss the OR applications in healthcare (Brailsford et al., 2009;

Cayirli and Veral, 2003; Dobrzykowski et al., 2014; Fakhimi and Propert, 2013; Gupta and

Denton, 2008; Hulshof et al., 2012; Jun et al., 1999).

Many problems faced by OR researchers in healthcare are not analytically different

from problems in other industries. However, healthcare delivery systems have quite unique

characteristics. Some of these are: the possibilities of death or low quality of remaining

life, the difficulty in measuring quality and value of outcomes, the sharing of decisions

among several decision makers (physicians, nurses, and administrators), third party pay-

ment mechanisms for diagnoses and treatments, and the concept of healthcare access as

a right of citizens in society (Pierskalla and Brailer, 1994). Jarrett (1998) indicates a

reluctance to implement supply chain management principles in healthcare operations.

He attributes this reluctance to healthcare organizations’ emphasis on the differences in

their operations and the vitality of the services they offer compared to manufacturing in-

dustries. Research has shown that implementing supply chain management concepts can

reduce costs (Poulin, 2003), while increasing the quality of services as labor productivity

is improved (Baltacioglu et al., 2007).

Healthcare applications are modeled and solved using OR tools available to other in-

dustries. However, the characteristics of healthcare industry dictate the usage of these
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methodologies. Carter (2002) provides a brief insight into the methodologies used in

healthcare. Simulation is a popular choice since most healthcare queuing problems are

too complex to be analyzed theoretically. Günal and Pidd (2010) provide a recent review

on simulation models in healthcare. One of the major issues in healthcare is waiting times

(e.g., wait lists for transplants, waiting at the emergency room, etc.). Simulation offers

a great tool to visualize local decisions, and the effect of different scenarios on the whole

system. One major drawback of simulation is the difficulty of collecting data. Practical

and ethical issues arise when it comes to measuring input data related to patients. Also,

since caregivers provide service to multiple patients at the same time, it is hard to measure

the time needed for each patient.

Linear, goal, and integer programming have been used in a number of applications

including facility and staff scheduling, budget allocation, and case-mix management. One

major obstacle in using these models is that doctors, not administration, eventually decide

what the hospital does. They are generally more concerned about the patient care than they

are about the hospital’s case-mix issues. Systems dynamics models are used in areas like

AIDS epidemic modeling. The large number of stakeholders (governments, public-health

agencies, and healthcare providers) requires input from many directions to allocate limited

resources. System dynamics models are suited for such environments. However, these

models require further work to model overall epidemic control strategy, and to improve the

usefulness of outcomes. Queuing models are used to find and improve waiting times. In

healthcare perspective, as the queues increase, people either look elsewhere, their health

states worsen, or perhaps they die waiting. This is an important aspect to consider. Finally,

quality management is used most in pharmaceutical industry. Other fields are behind in

terms of applying statistical tools to monitor and control quality. This is mainly because of

the reluctance of the medical community to acknowledge and report errors and problems.

Hans et al. (2012) suggest a two dimensional framework for healthcare planning and

control that spans four hierarchical levels of control and four managerial areas. The four

levels of control are: (1) Strategic, which addresses structural decision making, and it

involves dimensioning and development of the healthcare delivery process, (2) Tactical,

which involves the organization of operations and execution of that delivery process, and

(3 and 4) Operational (online and offline), which involves the short term decision planning

3



regarding the execution of the healthcare delivery process.

The managerial areas in the framework of Hans et al. (2012) are: (1) Medical planning,

which comprises decision making by clinicians regarding medical protocols, treatments and

diagnoses, (2) Resource capacity planning, which addresses the dimensioning, planning ,

scheduling, monitoring, and control of renewable resources. These include staff, equipment

and facilities (bed linen, sterile instruments, physical therapy equipment), (3) Material

planning, which addresses the acquisition, storage, and distribution of all consumable re-

sources such as suture materials, blood, bandages, and food, and (4) Financial planning,

which addresses how an organization should manage its costs and revenue to achieve its

objectives, given the current and future circumstances. The applications discussed in this

thesis lie at the intersection of resource capacity planning on the managerial dimension,

and at the strategic level on the hierarchy of control. Other applications with similar char-

acteristics include case-mix planning (the volume and composition of patient groups that

an ambulatory facility serves), capacity dimensioning, and workforce planning.

1.2 Resource Allocation Models in Healthcare

We now give examples of resource allocation models in healthcare. This is not intended to

be a comprehensive analysis. A full review of literature in this area is beyond the scope of

this work. Interested readers are referred to the excellent review by Rais and Viana (2011).

1.2.1 Facility Location

When deciding on the number and locations of facilities to open and operate, the decision

maker needs to balance between customer satisfaction and associated costs. On the one

hand, opening too many facilities increases customer satisfaction and setup costs while

reducing the traveling costs. On the other hand, opening fewer facilities decreases customer

satisfaction and setup cost while increasing the traveling cost. This type of setting is known

in literature as the facility location problem.
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Location problems are characterized by four components (ReVelle and Eiselt, 2005),

namely: (1) customers, who are already located at points or on routes, (2) facilities that

will be located, (3) a space in which customers and facilities are located, and (4) a met-

ric that indicates distances or times between customers and facilities. The problem of

locating facilities and allocating customers to them is in the core business of many in-

dustries. A logistics company must locate warehouses, an industrial firm must locate

assembly plants, and a government must locate new hospitals, care centers, and schools,

etc. Location problems are not new to OR researchers and practitioners. A wide range

of models has been explored and solved. Formulations range in complexity from sim-

ple linear, single-stage, single-product, uncapacitated, deterministic models to non-linear

probabilistic models. Algorithms include, among others, local search and mathematical

programming-based approaches (Klose and Drexl, 2005). Recent reviews of the literature

include Klose and Drexl (2005), where they classify and review different types of location

models (including continuous and network location models), Revelle et al. (2008), who

review discrete location modeling, and Melo et al. (2009) who review facility location in

the context of supply chain management.

It is worth mentioning that some project management applications can be modeled

as facility location models. For example, vendor selection problems can be modeled as

location models, as discussed in Current and Weber (1994), Demirtas and Üstün (2008),

and Jayaraman et al. (1999).

Location problems in healthcare have much in common with those in other industries

which have a geographically dispersed customer base that requires easy-to-access quality

facilities while the cost is as low as possible. Healthcare facilities are different, however,

because they may be subject to national and international control regulations and stan-

dards such as maximum response time of emergency vehicles. Daskin and Dean (2005)

give a review of location models in healthcare.

Pierskalla and Brailer (1994) differentiate location (or siting) problems in healthcare

into five categories. The first category is the regionalization, which is sought to improve the

cost or quality of a healthcare system through more effective distribution of services, such as

determining the number and distribution of CT scanners in a given region. Regionalization

problems are either optimal clustering problems or resource allocation problems. The

5



second category is the locating or removal of a single facility, such as an acute care hospital

which needs to be geographically close to its customer base, and major consideration is

given to the current location of similar facilities or institutions in the region. The third

category is the location of ambulatory neighborhood clinics, which are used primarily for

touring outpatient medical care and for preventive care. Proximity to patients is also an

important criterion in the decision making process, as well as network linkage and structure

to other institutions in the region. The fourth category is the location of specialized

long-term care facilities, where the primary criteria for these locations are costs (of site

acquisitions, construction, and operation), rather than closeness to customers. The fifth

category is the siting of emergency medical services (EMS) where the primary criterion

is the speed of response. Speed of response includes distance to the problem occurrence

location, together with the distance from the occurrence location to the treatment facility.

Different location models in healthcare deal with different aspects of location-allocation

decisions. Li et al. (2002) study the impact of strategic decisions on community hospitals

in the US, while Griffin et al. (2008) use statistical techniques to estimate the demand for

community health centers. Gu et al. (2010) model preventive healthcare facilities given a

requirement of minimum patients to retain accreditation. Syam and Côté (2010) develop

a model for specialized healthcare clinics that has a minimum service requirement. Mahar

et al. (2011) investigate the effect of pooling of specialized services in a multi-hospital

setting. Mestre et al. (2015) also consider multi-hospital networks but with uncertain

parameters. These models provide great insights into how unique the healthcare location

models are compared to other location models. These models, however, differ significantly

from the models discussed in this thesis in terms of objectives, parameters, and/or scope.

Uncertainty may arise from many factors in location models. Owen and Daskin (1998)

provide a review on the facility location research addressing uncertainty in some of the

system’s parameters, including travel times, construction costs, and demand quantities.

There are, however, other sources of uncertainty that are not discussed in their review.

One of which arises from damages to facilities which cause disruptions in the allocation

decisions. Models that consider this possibility and account for it are named reliable

models. The models discussed in this thesis are reliable models in the sense that it is

assumed that facilities may fail (become unavailable).
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The location models in this thesis incorporate the concepts of reliability into the health-

care setting. Moreover, they also account for customer choices and preferences.

1.2.2 Cancer Screening

According to the American Cancer Society, about 1,688,780 new cancer cases are expected

to be diagnosed, and about 600,920 are expected to die of cancer in the United States

in 2017 (American Cancer Society, 2017). Furthermore, the Canadian Cancer Society

estimated that 206,200 Canadians will develop cancer and 80,800 will die of cancer in

2017 (Canadian Cancer Society, 2017). Cancer is the leading cause of death (about 30%

of all deaths) in Canada, and the second most common cause of death (about 25% of all

deaths) in the US, exceeded only by heart diseases.

Screening for cancer is an important weapon in the fight against cancer. Colorectal

cancer (CRC), for example, mostly originates from benign growths on the inner surface of

the colon and rectum (Loeve et al., 2004). Thus, detecting suspicious tissues and removing

them before they become malignant is an effective method for the prevention of cancer,

and can have significant impact on the patient’s health.

The American Cancer Society currently provides screening guidelines for cancers of the

breast, cervix, colorectum, endometrium, lung, and prostate, and general recommendations

for a cancer-related component of a periodic checkup to examine the thyroid, oral cavity,

skin, lymph nodes, testicles, and ovaries.

Cancer screening is among the common preventive healthcare programs, which also

include flu shots, blood tests, and anti-smoking advice. Zhang et al. (2009) categorize

preventive healthcare programs into three groups based on their objectives: (1) primary

prevention aims at reducing the likelihood of diseases in people with no symptoms, for

example, by immunizations of healthy children, (2) secondary prevention aims at identi-

fying and treating low-risk people, for example, detecting colorectal polyps before their

transition to cancerous lesions, and (3) tertiary prevention aims at treating symptomatic

patients in an effort to decrease complications, for example, sugar control in a diabetic

person.
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Preventive healthcare is inherently different from healthcare for acute problems, and

current healthcare systems worldwide fall remarkably short (Zhang et al., 2009). Only

5% of the $1.4 trillion spent on direct health care in the United States goes to preventive

health measures and the promotion of general health (Falkenheimer, 2004). Cohen et al.

(2008) compare selected preventive measures and treatments and conclude that preventive

services, in general, are no more and no less likely to save money than treatments. They

note, however, that screening for colorectal cancer reduce mortality either at low cost or

at a cost savings (Ness et al., 2000).

It is economically infeasible to screen every individual in the population very often. In

fact, a screening procedure itself has its own health risks. Esserman et al. (2009) suggest

that screening may be increasing the burden of low-risk cancers without significantly re-

ducing the burden of more aggressively growing cancers, and therefore, not resulting in

the reduction in cancer mortality. This suggests that a trade-off is required whenever an

optimal screening policy is planned.

Alagoz et al. (2011) and Pierskalla and Brailer (1994) provide reviews on OR models

used for cancer screening, while Stevenson (1995) summarizes statistical models of planning

and evaluation of cancer screening. Heidenberger (1996) provides a review of quantitative

studies that aim at determining the best screening strategy to be used.

1.2.3 Other Applications

Some other significant applications of operations research models in healthcare are pre-

sented here. This, however, is not intended to be a comprehensive list. Such a comprehen-

sive review is beyond the scope of this thesis.

Staffing

Staffing is part of patient scheduling, which involves setting the timetable to match patients

with caregivers. The time of appointment, the length of time between appointments, the

specific type of caregiver who will be responsible for treating patients, and the physical

space that will be required to deliver the necessary treatment may all be involved in making
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scheduling decisions. The goal is to ensure the maximum utilization of personnel and

facility resources and patient flow without incurring additional costs or excessive patient

waiting.

A number of studies have addressed the problem of bottlenecks in healthcare clinics

by scheduling staff to meet patient demand. Alessandra and Grazman (1978) vary staff

patterns to accommodate patient arrival rate. They recommend distributing the current

morning appointment patients to the afternoon shift, while keeping the staffing and arrival

rate the same. Chan et al. (2002) use integer programming and discrete-event simulation to

study a medical records department to determine the optimal staff schedule and understand

the workflow. Klafehn et al. (1989) address the linkage between patient flow and the

number of staff available in an emergency department. They conclude that moving one

nurse from the regular emergency area to a triage position reduces patient waiting lines

and patient waiting times. Butler et al. (1996) report significant savings in nurse staffing

as well as length of stay of chemotherapy patients at a hospital in Detroit by applying OR

tools.

Bed Requirement

It is important for the hospital or clinic to decide how many beds are needed to meet the

demand, while maintaining reasonable bed utilization rates. Most bed planning simulation

models in the literature attempt to overcome bed shortages or policies that lead to patient

misplacement, bumping, or rejection (Jun et al., 1999).

Lowery and Martin (1991) study the the critical care bed requirement. They consider

the interrelationships between different hospital units and demonstrate improvements in

their methodologies over previous models. Lane et al. (2000) use system dynamics simula-

tion to show that reductions in dedicated emergency bed capacities for patients admitted

from an emergency room may increase cancellation rates for elective treatments, rather

than increasing waiting times. They conclude that looking at one performance measure

in the system can be misleading. Harrison et al. (2005) suggest a simulation model for

stochastic bed occupancy problem. Akkerman and Knip (2004) show that the number of

beds could be reduced in a cardiac surgery center if recovering patients are transferred
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once they no longer require the center’s specialized care services.

Moreover, Berman et al. (2007) study the situations where some emergency rooms reach

their capacity limit, and therefore, signal to the ambulance dispatch to redirect to another

hospital. Their model does not incorporate patients’ preferences, which might be related

to availability of staff and/or equipment.

Resources for Disease Prevention

One rule for resource allocation suggests that resources be allocated to interventions in

an increasing order of their incremental cost-effectiveness ratios. The incremental cost-

effectiveness ratio is defined as the total incremental cost associated with an intervention,

divided by the total incremental benefits of the intervention. However, this approach may

not account for nonlinear scaling of interventions, may ignore nonlinear epidemic growth,

and may not capture potential interactions between interventions (Zaric and Brandeau,

2001). Epidemics tend to follow nonlinear growth curves, and incremental investment

in an epidemic control program may not yield constant reductions in the chance of dis-

ease transmission (Brandeau et al., 2003). Linear and integer programming models for

healthcare resource allocation problems have been proposed (e.g., Earnshaw et al., 2002;

Earnshaw and Dennett, 2003; Epstein et al., 2007; Stinnett and Paltiel, 1996; Van Zon and

Kommer, 1999).

Simple epidemic models with single population have been analyzed using control the-

ory (e.g., Blount et al., 1997; Müller, 1998). The goal here is to determine optimal control

over time (e.g., the optimal vaccination rate). Another setting includes allocation of re-

sources among multiple populations with the goal of eradication of the disease or optimiza-

tion of some function of the equilibrium state of the epidemic (e.g., May and Anderson,

1984; Zaric and Brandeau, 2002).

Zaric and Brandeau (2001) analyze the optimal allocation of investment funds to HIV

prevention programs to maximize life years saved by estimation of a production function

relating the investment to change in risky behavior. They note that the effectiveness of a

particular intervention may depend on the population to which it is targeted (e.g., a high-
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risk vs. a low-risk group), the amount already invested in the intervention, and the level of

investment in other HIV prevention programs (e.g., television ads to increase awareness).

Vaccine Allocation: influenza

Influenza is a highly contagious disease. Each year 5-15% of the population is infected

with influenza resulting in around 3-5 million sever cases and 250,000 - 500,000 deaths

worldwide (CDC, 2014). The annual burden of influenza epidemics on the US economy

extends to $87.1 billion in 2003, factoring in the cost of medical treatments and work-

ing day losses (Molinari et al., 2007). There are many common intervention methods for

mitigating the effects of pandemic influenza including social distancing strategies (e.g.,

school closure, quarantine, isolation), public health measures (e.g., improved hygiene, res-

piratory protection), and using vaccination or prophylaxis with antiviral medications to

reduce the susceptibility of individuals against influenza virus (Chao et al., 2010). Among

them, immunization with a well-matched vaccine provides the most efficient and durable

response (Talbot et al., 2013).

Medlock and Galvani (2009) develop a compartmental model to determine the optimal

age-specific allocation of vaccine stocks for mitigating an influenza pandemic in the US

population, based on different outcome measures including number of infections, mortality,

and economic cost. Uribe-Sánchez et al. (2011) use simulation to optimize the allocation

of the influenza intervention resources over multiple regions. The goal is to minimize the

adverse effect of the pandemic given the budget limitations.

Organ Transplantation

Human organs are very scarce resources. Candidates for organ transplantation are placed

on waiting lists. In the United States, as of 2013, these lists had approximately 58,000

candidate patients for kidney transplant, 13,000 for liver transplant, 2,500 for heart trans-

plant, and 1,300 for lung transplant (OPTN, 2014). In Canada, the numbers as of 2013

are 3,200 for kidney transplant, 700 for liver transplant, 160 for heart transplant, 300 for

lung transplant (CIHI, 2015a). At the same time, some available organs end up being
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wasted. Each year about 18% of kidneys, 10% of livers, and 5% of lungs are discarded in

the United States. This shows the importance of having an effective allocation system in

place. Moreover, the transplantation process is costly. As indicated in Akan et al. (2012),

the base cost of a liver transplant is around US$450,000, and around US$1 million when

the costs of surgery and medication are factored in. These figures show the significance of

improving the efficiency of donated organ usage.

Several researchers model the accept/decline model for organ transplantation (e.g.,

Alagoz et al., 2004, 2007; Sandikci et al., 2008). Some authors provide simulation to

demonstrate and compare different allocation policies (e.g., Bertsimas et al., 2013; Shechter

et al., 2005). Kong et al. (2010) develop a set-partitioning model for a liver allocation

system that takes into account the geographic composition of donors and candidates.

1.3 Target Problems

In this thesis, two main problems are discussed; a reliable facility location problem with

customer preferences, and an allocation of limited cancer screening resources among indi-

viduals in a population.

In the first problem, a central authority is looking to locate facilities (e.g., hospitals,

warehouses, etc.) among a set of candidate locations. The aim is to decide how many

facilities to open, where to open them, and how to allocate demand (patients, customers,

etc.) to them. Adding to the complexity of the problems, the patients have preferences

over which facility to be assigned to. This means that each patient, when faced with a

choice between two available facilities A and B, an order is present (say, B is preferred over

A), and must be considered in the allocation decision. Moreover, it will be assumed that

there is a possibility of failure for each facility. In case of failure, the patients originally

assigned to the failed facility need to be re-allocated to the next preferred available facility.

For the location problem, the development of the model is discussed, and a Lagrangian

relaxation scheme is developed and embedded within a branch-and-bound structure. The

methodology exploits the special characteristics of the model to arrive at an efficient solu-

tion. Three different implementation strategies are discussed and tested. Extensive numer-
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ical results are shown. Later on, a reformulation and more advanced solution methodologies

are presented in which extremely large datasets are solved. A developed branch-and-bound

scheme as well as a branch-and-cut technique are presented and tested to verify their ef-

fectiveness. Moreover, a constraint is proposed to significantly tightens the LP relaxation

of the formulation.

The aim of the cancer screening resources problem is to suggest an optimal screening

policy such that the welfare of the society is maximized, according to some quality mea-

sure (e.g., quality-adjusted life years). The decision maker is required to allocate limited

screening capacity among a population of individuals. The disease progression for each

individual patient follows a stochastic process of its own. The problem is formally intro-

duced, and two modeling approaches are presented. The mixed-integer program approach

is solvable using commercial software and the computing power of a personal computer.

Insights on the recommended policies are shown and recommendations for future lines of

research are discussed.

1.4 Research Questions

The main question of this thesis is how to allocate or assign resources in various healthcare

settings so that the society welfare is maximized (based on some welfare measure). To

answer this question, two main applications are considered. Within each application, a

number of questions are answered.

The first application is a reliable facility location model with customer preferences.

This model attempts to answer the following questions:

• How many facilities to open, given the possibility of failure of some (or all) facilities?

• Where to locate open facilities?

• How many customers should be assigned to each open facility?

• Which customers to assign to each facility?
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• If a facility randomly fails, to which facility are customers re-assigned?

• What is the total expected cost of opening the desired facilities?

• How can such models be solved efficiently?

• What are the possible implementation strategies for the solution methodology?

• How do different implementation strategies compare with respect to time needed to

converge?

• How can the solution methodology be improved to allow for extremely large in-

stances?

The other application is allocating CRC screening capacity to individuals in a popula-

tion. The developed framework is an attempt to answer the following questions:

• What is the optimal CRC screening policy for a population with varying health

states, given limited screening capacity?

• What are the shortcoming of existing CRC screening guidelines?

• What is the effect of key system parameters on the overall resource allocation rec-

ommendations?

1.5 Thesis Outline

This thesis is organized as follows. Chapter 2 presents the reliable facility location model

with customer preference. The motivation, description, and formulation of the model are

presented. Three different implementation strategies are introduced and thoroughly tested.

Next, a formulation with fewer variables is presented, and enhanced solving techniques for

the model are discussed. Comprehensive testing is shown to highlight the superiority of

the solution methods and their ability to solve extremely large instances, as well as the
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effectiveness of the constraints which aim to tighten the LP relaxation. Directions for

future research are then discussed.

Chapter 3 then formally introduces an analytical framework for modeling a colorectal

cancer screening problem for a representative population. The limited screening resources

are considered. A Markov Decision Process model is first given, together with the challenges

associated with it. In a following section, a mixed integer program is discussed and solved

to extract optimal screening policies. Finally, possible directions for extended models are

presented.

A summary and a highlight on the conclusions are shown in Chapter 4. The lessons

and insights learned from the different problems and models of this thesis are mentioned

as well as recommendations on future research work.

1.6 Connection of Models

The connection between the models presented in this thesis is best viewed by considering

a case study. In CRC screening setting, there are two main phases of designing a system

to allocate available screening resources among individuals in the population. The first

phase deals with finding the optimal locations at which service is provided and allocate

patients to these facilities. To do so, it is essential to know the preferences of patients.

The second phase utilizes the available capacity and recommends screening guidelines that

aim at improving the health status of the whole population.

The decisions of the first phase are considered in Chapter 2, where two models are

presented. The two models consider the preferences of patients when deciding on the

number and location of service facilities to have in the system. Unlike the Preliminary

Model, the Modified Model allows patients to completely control their choices.

Once the locations are decided on, the second phase of this case study deals with

allocating available resources of screening among the population in order to maximize the

society’s welfare. Two modeling approaches are introduced in Chapter 3. The MDP model

is first discussed. However, since the MDP model is found to be hard to solve, the MIP
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model is introduced with additional factors like age and personal history. The MIP model

can be solved for reasonably-sized instances. The results of the MIP model constitute

optimal policies of CRC screening.

In conclusion, this thesis considers and solves the two phases of a typical preventative

healthcare application. Incorporating the two phases into a single model is theoretically

possible, and may provide great insights. However, doing so is beyond the scope of this

thesis.
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Chapter 2

Reliable Facility Location Model

with Customer Preference

In this chapter, we introduce the facility location model, where it is assumed that each

facility has a probability of failure, and customers order available facilities according to

their preferences. The following section motivates the problem, provides a review of related

literature, and discusses the contributions. Section 2.2 introduces the preliminary model,

which is solved in Section 2.3. The numerical results of the preliminary model are shown

in Section 2.4. Then, Section 2.5 discusses the modified model, which is solved and tested

in sections 2.6 and 2.7, respectively.

2.1 Introduction

Several studies report that firms can save millions through redesigning their distribu-

tion systems by determining the optimal number, capacity, and location of their facili-

ties (Camm et al., 1997; Teo and Shu, 2004). The classical facility location models aim to

balance the cost of opening facilities and logistics/service costs considering spatial, bud-

getary, service-quality related constraints (Klose and Drexl, 2005).

Facility location is a vital strategic decision in the design of supply chains and service
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networks. In classical facility location models, a central planner setups perfectly-reliable

facilities and makes customer allocations in order to balance the cost of opening facilities

against the cost of providing service (Daskin, 1995). Such classical models, however, are not

applicable if customers patronize the facility of their choice. For instance, in the context

of preventative healthcare, patients’ choices of care provider depend on both quality and

accessibility (Haase and Müller, 2015). That is, patients may not patronize the closest or

cheapest health facility to seek better care (Baldwin et al., 2008; Charlton et al., 2015).

Furthermore, in real life, facilities may fail to serve customers due to several types of

disruptions including natural disasters, road/weather conditions, unplanned maintenance

breaks, and not having the necessary capacity or expertise (Snyder et al., 2016).

The aim of this chapter is to propose a novel uncapacitated fixed-charge location prob-

lem which considers the preferences of customers and the reliability of facilities simultane-

ously. Although there are facility location models in the literature that consider customer

preferences and reliability of facilities separately, studies incorporating both of these as-

pects are limited (Herrera et al., 2008).

A central planner selects facility locations from a set of candidate sites to minimize

the total cost of opening facilities and providing service to customers. The central planner

does not allocate customers to constructed facilities. Rather, each customer has a strict

preference order over the candidate sites, and patronizes her most preferred available facil-

ity. If that facility fails due to a disruptive event, the customer attends her next preferred

available facility. If none of the available facilities is a preferred location for a customer,

then she does not seek service and incurs a disutility. The proposed model bridges the gap

between the location models that consider the preferences of customers and the ones that

consider the reliability of facilities.

The proposed model will be referred to as the Reliable Uncapacitated Fixed-charge Lo-

cation Problem with Order (RUFLO). We formulate a preliminary version of the RUFLO

in Section 2.2, and develop a Lagrangian branch-and-bound procedure to solve it efficiently

in Section 2.3. We implement the procedure in three different ways, and conduct extensive

numerical analysis in Section 2.4. The results show that the proposed algorithm is able to

solve small and medium instances efficiently. After that, a modified version of the RUFLO
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model is discussed in Section 2.5. In Section 2.6, we develop a Lagrangian branch-and-

bound algorithm and a branch-and-cut algorithm to solve a strengthened reformulation

of the RUFLO model. We also propose a neighborhood search method to generate upper

bounds from feasible solutions. Our numerical experiments in Section 2.7 show that the

proposed solution algorithms are efficient, and can be applied to problems with extremely

large number of customers. This is an important contribution because solving real-life loca-

tion problems may require considering large number of different customer types regarding

their preferences. We conclude the chapter in Section 2.9 with final remarks and potential

future research directions.

2.1.1 Review of Related Literature

Hanjoul and Peeters (1987) first introduced the so-called Simple Plant Location Problem

with Order (SPLPO) to consider customers’ preferences when locating facilities. They

assume that each customer has a known preference order over the candidate sites, and

attends her most preferred available facility. Cánovas et al. (2007) strengthen the formu-

lation of SPLPO with valid inequalities. Hansen et al. (2004) present a bilevel location

model to consider customer preferences. At the upper level, a set of facilities is selected,

whereas at the lower level, customers attend open facilities according to their preferences.

Camacho-Vallejo et al. (2014) and Marić et al. (2012) develop heuristic methods to solve

this bilevel formulation.

Vasilev et al. (2009) present new lower bounds for the SPLPO by introducing valid

inequalities and show improvements in the linear relaxation and integrality gap. Vasilyev

and Klimentova (2010) add valid inequalities related to the preferences as a single-level

integer linear program. Other papers discuss the bilevel p-median problem by considering

customers’ preferences, including Aksen et al. (2013). Lee and Lee (2012) present a facility

location problem with covering constraints and preferences as a mixed integer program,

and propose a heuristic based on Lagrangian relaxation.

Zhang et al. (2012c) propose an optimal-choice model and a probabilistic-choice model

for locating preventive health care facilities. In the first model, each patient attends the

most attractive facility similar to the SPLPO. The second model assumes that a patient
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may patronize each facility with a certain probability, which is modeled by a multinomial

logit function increasing with the attractiveness of the facility. Haase and Müller (2015)

present a mixed-integer formulation for this probabilistic-choice model. Verter and Zhang

(2015) give a detailed discussion on the location models for preventative healthcare facili-

ties. Ishii et al. (2007) present a fuzzy modeling structure for the facility location problem

with customer preferences. They represent the satisfaction degree of the customer based

on the distance to the facility site. Their objective is to find the site of the facility which

maximizes the minimal satisfaction degree among all demand points and maximizes the

preferences of the site. Our study differs from the aforementioned studies in the literature

as we consider the reliability of facilities in addition to the preferences of customers.

It is assumed that open facilities are always operational in classical facility location

models. Due to the fast growing awareness of service sustainability and reliability, an

increasing number of studies have incorporated uncertain environmental and social factors

into facility location decisions (Baron et al., 2011; Chen et al., 2014; Mestre et al., 2015).

In principle, when a facility fails, it cannot provide the intended service, and consequently,

customers who originally are assigned to that facility need to be forwarded (reassigned) to

other facilities.

There is a big literature on the reliable supply chain. Snyder and Daskin (2005) study

the reliable facility location problem in which customers are assigned to a number of

backup facilities. They formulate a p-median problem and an Uncapacitated Fixed-Charge

Location Problem (UFLP) for selecting facility locations. Snyder and Daskin (2005) assume

that all locations have identical and independent failure probabilities. Cui et al. (2010)

present a model for the reliable UFLP with site-specific failure probabilities. They propose

a continuum approximation and also formulate a mixed-integer program which is solved by

Lagrangian decomposition. Aboolian et al. (2013) extend the model in Cui et al. (2010) by

relaxing the limit on the number of backup facilities, and develop an efficient search-and-

cut algorithm. Shen et al. (2011) formulate the reliable UFLP as a two-stage stochastic

program, and then as a nonlinear integer program. Their stochastic programming model

can capture the dependence among site-specific failure probabilities. Furthermore, Lu

et al. (2015) also present a model that allows disruptions to be correlated, and apply

distributionally robust optimization to minimize the expected cost under the worst-case
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distribution. We refer the reader to Snyder et al. (2016) for a comprehensive review of

facility location models with disruption.

Peng et al. (2011) take a different modeling approach, and use the p-robustness crite-

rion (Snyder and Daskin, 2006) to explicitly bound the cost in disruption scenarios with

the objective of minimizing the nominal cost, that is, the cost when no disruptions occur.

Lu et al. (2015) present a model that allows disruptions to be correlated with an uncertain

joint distribution, and apply distributionally robust optimization to minimize the expected

cost under the worst-case distribution for given marginal disruption probabilities. Li and

Ouyang (2010) develop a continuum approximation approach to reliable facility location

design under correlated probabilistic disruptions. In a similar fashion, Lim et al. (2013)

use a stylized continuous location model to investigate the impact of misestimating the

disruption probability in the presence of correlated disruptions and finite capacity.

As with other location models, researchers try to incorporate other levels of the supply

chain decisions into a single integrated model. In the context of reliable supply chains,

Chen et al. (2011) incorporate location and inventory costs, and formulate the model as a

mixed integer program. Their model is solved using Lagrangian relaxation. Ahmadi-Javid

and Seddighi (2013) consider location-routing under various risk scenarios. Moreover, Qi

et al. (2010) present a location-inventory-routing model with random supply disruptions at

either the supplier or retailer. Their model is formulated as a nonlinear integer program.

The objective function is approximated to make the model easier to analyze, and it is

solved using a Lagrangian relaxation approach embedded in a branch-and-bound proce-

dure. Garcia-Herreros et al. (2014) extend that work to capacitated distribution centers

and to multiple commodities.

In another direction of research, facilities can be subjected to hardening (or fortifica-

tion), at an additional cost, to make them more reliable. Lim et al. (2010) propose two

types of facilities; one that is unreliable (has a probability of failure), and another that is

reliable but more expensive. Li et al. (2013) build on that and incorporate a fortification

budget constraint. These models are solved using Lagrangian relaxation-based algorithms.

Moreover, Scaparra and Church (2008) assume that attacks (or damages) can occur to

only a subset of locations, and hence, resources for fortification are used accordingly.
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Considering the preferences of customers and the reliability of facilities might be im-

perative in facility network design (An et al., 2013; Wagner et al., 2010; Zhang et al., 2009)

especially when customers choose a facility to attend based on their preferences (which

may be based on distance, quality, familiarity, etc.), and open facilities face disruption

risk (Akgün et al., 2015; Teng et al., 2014; Verma and Gaukler, 2015; Zhang et al., 2009).

In this chapter, we also consider the reliability of facilities with independent and differ-

ent failure probabilities. However, we do not assign customers to their closest facilities.

Instead, we let each customer attend her most preferred facility as long as it remains oper-

ational. Less preferred facilities work as a backup, and serve that customer only if all more

preferred facilities have failed. The main aim is to open facilities at a subset of the poten-

tial sites in such a way that each customer is assigned up to a certain number of facilities

in the order of preference, and that the total cost of opening facilities plus the expected

service cost is minimized. This problem will be referred to as the reliable uncapacitated

fixed-charge location problem with order (RUFLO). It bridges the gap between the facility

location models that consider customers’ preferences and those that consider reliability of

candidate sites.

We propose a novel mixed-integer programming formulation for the RUFLO. Unlike,

Cui et al. (2010) and Daskin (1995), who employed Lagrangian relaxation to solve the

RUFLP, and unlike Aboolian et al. (2013), who proposed a search-and-cut algorithm,

we develop an efficient decomposition method through a split variable reformulation. This

proposed approach can easily be adapted to solve the p-median-based version of our model.

2.1.2 Motivation

To demonstrate the importance of incorporating customer preferences, we look at the

optimal solution for the 49-node US map (USmap49) dataset with two levels of reliability

as reported in Cui et al. (2010). Column (1) of Table 2.1 shows the five locations open

according to the optimal solution of their model. The Dummy facility will be discussed

later. However, for now, it can be thought of as lost demand due to high service cost. The

customers are then assigned to the nearest open facility as their first level of assignment.

This assignment is shown in column (2). The failure cost of a facility is the extra cost
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endured by the system due to a failure in that facility (with all other open facilities still

available). For example, if the facility in Sacramento, CA fails, a total of $838, 308 will

be endured by the system due to re-allocation of the %19 of demand originally assigned

to it. The failure costs of all locations are shown in column (3) where re-allocation is

also based on distance. The Dummy facility does not fail. Hence, it has no failure cost.

Alternatively, in column (4) we show a scenario in which the same locations are open.

However, we assume random preferences for each customer, and assign customers based

on their preferences. This is equivalent of opening locations based on the model of Cui

et al. (2010), but customers choose the location of service based on their preferences. This

result in changing the allocation decisions for the first level as it is apparent in column (4).

Similarly, in this case, the failure costs, column (5), are also different. If a facility fails,

the customer will go to the next available facility on their list. The difference in costs is

significant and upward of 100%, as shown in column (6).

To conclude, the values in column (5) represent the actual failure cost if customer indeed

have preferences, and these preferences were not taken into consideration while optimizing

the model. Obviously, the values of column (5) can never be less than those in column

(3) since the model of Cui et al. (2010) always assign customers to the nearest facility.

The assignments for the second level in both cases are omitted for clarity. However, since

|R| = 2, all customers not assigned to the Dummy in the first level, will be assigned to it

in the second level. In particular, 100% of demand would go to the Dummy at the second

level in the case of no consideration for preferences, while 60% of the demand would be

assigned to the Dummy in the case of preferences. It is important to note that the overall

costs (i.e., the objective function) of the system described by column (2) is less than that of

the system described by column (4). In particular, the total cost of the system described

by column (2) is 916, 068, while the model described by column (4) has a total cost of

3, 189, 260. This follows from the fact that when no preferences are considered, allocation

is done based on distance, which by definition has the minimum costs.

Facility disruption is common in some settings. Many facilities may become unavailable

due to natural disasters, terrorist attacks, or labor strikes. Qi et al. (2010) mention exam-

ples of disruptions caused by hurricanes Katrina and Rita in 2005. In healthcare context,

Berman et al. (2007) describe a situation where some hospitals reach their capacity limit
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Table 2.1: Effect of Customer Preferences on Failure Costs. Column (3) Shows the failure

costs when no preference is considered, while column (6) shows the failure costs when

preference is considered in the original allocation and the re-allocation.

(1) (2) (3) (4) (5) (6)

Cui et al (2010) Cui et al (2010) + Preferences

Demand
Failure Cost

Demand
Failure Cost

Cost increase

Covered (%) Covered (%)

Sacramento, CA 19 838,308 13 1,812,526 116%

Austin, TX 9 594,411 14 1,459,756 146%

Harrisburg, PA 29 714,066 6 1,735,023 143%

Lansing, MI 12 537,818 14 1,914,027 256%

Montgomery, AL 17 634,892 11 1,562,375 146%

Des Moines, IA 15 547,005 3 1,647,376 201%

Dummy 0 - 40 - -

in emergency rooms, and they notify the ambulance dispatch, which redirects ambulances

to the next closest open facility.

Therefore, this chapter incorporates the possibility of disruption for facilities, together

with customer preferences into a facility location model. The aim is to minimize the costs

of assigning and reassigning of customers, as well as the fixed cost of opening facilities at

candidate locations. The model balances a trade-off between opening too many facilities

and the excessive travel costs resulting from opening too few. Applications of this model

can be found in locating service centers, warehouses, hospitals, etc.

2.1.3 Contributions

The contributions of this chapter are mainly in two areas. Firstly, the reliable location

model with customer preferences is introduced in two forms: preliminary and modified.

This model is shown to be able to save cost significantly. Secondly, branch-and-bound
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and branch-and-cut algorithms are developed to solve this model. Using a combination of

techniques, the proposed algorithms are able to solve instances of different sizes, including

extremely large datasets.

2.2 Preliminary Model

The RUFLO model is described and formulated here. Section 2.3 present a solution mech-

anism for this model. Another formulation that changes the way preferences are enforced

and with smaller number of variables is shown in Section 2.5.

2.2.1 Model Description

A central authority is responsible for opening and operating facilities among a set of can-

didate locations. Each customer has a preference ordering over the candidate facility

locations. The preferences of customers are strictly followed whenever the assignment de-

cision is made. In other words, if a customer prefers facility m over n (and both are open),

then the customer is initially assigned to facility m regardless of their proximity to the

customer.

Preferences of each customer are exogenous inputs to the model. Details about the

underlying utility functions that may produce these preferences are beyond the scope of this

work. However, different preferences sets are generated based on some criteria (including

measures of distance, size, and quality of service), and are used in Section 2.4 to study the

behavior of the model.

Each candidate facility has a distinct fixed probability of failure. The events of facility

disruptions are assumed to be independent. When an open facility fails, the clients as-

signed to this location have to be reassigned to another open facility. Because of customer

preferences, the customers are assigned to the most preferred facility that is still available.

In our model, it is assumed that failures happen, if any, before customers make trips to any

facilities. In other words, by the time the demand requires fulfillment, it will be known
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with certainty which facilities are available and which are not. Available facilities from

that point on are expected to remain available throughout the fulfillment period.

Each customer is assigned (and reassigned) to up to |R| facilities, where |R| is the num-

ber of backup levels in the model. We assume that customers have complete information

about failures. Unlike models that assume incomplete information (e.g., Albareda-Sambola

et al., 2015; Berman et al., 2009), customers in our model travel from their location to the

intended available facility directly (i.e., without re-routing or backtracking).

We introduce a penalty cost φi of not serving customer i. To model this, a dummy

facility, indexed by j = J , is introduced. This dummy facility has fixed cost fJ = 0, failure

probability qJ = 0, and transportation cost diJ = φi for all customers i ∈ I. In the current

model, φi can be incurred even if some facilities are open, if φi is less than the cost of

serving customer i through any of these open facilities. This means the central planner

would intervene and ‘override’ customers’ preference lists if needed. This assumption is

changed in the modified model of Section 2.5, where customer preferences are enforced

regardless of the values of service costs.

The aim of the model is to decide how many facilities to open, where to open them,

and how customers are assigned and reassigned to available facilities. The objective is to

to minimize the total cost consisting of the fixed cost for opening and operating facilities,

and the expected transportation cost across all levels.

2.2.2 Notation

Sets
I : Set of customers, i ∈ I = {1, . . . , I},
J : Set of candidate facilities, j ∈ J = {1, . . . , J}, (facility J is the Dummy facility)

R : Set of backup levels, r ∈ R = {1, . . . , R},

Parameters
fj : Fixed cost for opening and operating location j ∈ J ,

qj : Probability of failure of location j ∈ J , where 0 ≤ qj ≤ 1,

ηi : Demand for customer i ∈ I,

dij : Cost of serving customer i ∈ I from location j ∈ J ,
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Decision Variables

Xj =

{
1 if facility j ∈ J is open;

0 otherwise,

Yijr =

{
1 if customer i ∈ I is assigned to facility j ∈ J at level r ∈ R;

0 otherwise,

Pijr : Probability that customer i ∈ I is served by facility j ∈ J at level r ∈ R.

Note that we could have defined d̂ij = ηidij and used it in the objective function.

However, we still need to know dij to compare with φi, as explained above. Also, the

datasets used in testing report dij and ηi separately. Therefore, the formulation will keep

these parameters separated.

2.2.3 Model Formulation

The mixed integer program (MIP) formulation of the problem is as follows.

min
∑
j∈J

fjXj +
∑
i∈I

∑
j∈J

∑
r∈R

ηidijPijrYijr (2.1a)

s.t.
∑

j∈J\{J}

Yijr +
∑

s∈R:s≤r

YiJs = 1 i ∈ I, r ∈ R (2.1b)

∑
r∈R

Yijr ≤ Xj i ∈ I, j ∈ J (2.1c)∑
r∈R

YiJr = 1 i ∈ I (2.1d)

1−Xm +
∑

s∈R:s≤r

Yimk ≥ Yinr, i ∈ I, r ∈ R, m, n ∈ J (2.1e)

Pij1 = 1− qj i ∈ I, j ∈ J (2.1f)

Pijr = (1− qj)
∑
k∈J

qk
1− qk

Pi,k,r−1Yi,k,r−1 i ∈ I, j ∈ J , r ∈ R \ {1} (2.1g)

Xj, Yijr ∈ {0, 1}, Pijr ≥ 0 i ∈ I, j ∈ J , r ∈ R (2.1h)
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The objective function (2.1a) minimizes the sum of the opening and operating the

centers, and the expected transportation costs. Constraints (2.1b) enforce each customer

i either to be assigned to a regular facility at level r, or assigned to the dummy facility

J at certain level s ≤ r. Assignment to a closed facility is prohibited by constraints

(2.1c). Constraints (2.1d) guarantee that each customer is assigned to the dummy facility

at exactly one assignment level. Constraints (2.1e) are the preference enforcing constraints.

They state that if both m and n are open, and m is preferred over n by customer i, then

m must be given a lower backup rank than n. This, however, depends on if they are both

to be assigned. Recall that not all open facilities are assigned to a particular customer i;

a maximum of |R| facilities can be assigned. Moreover, these constraints allow that if n

is open and m is closed, then n can be given any rank. Constraints (2.1f) and (2.1g) are

the assignment (and reassignment) probability equations. In the first level r = 0 (primary

assignment), Constraints (2.1f) state that Pijr is the probability that j remains available.

These probability equations are similar to those in Cui et al. (2010). Finally, the binary

requirements on Xj and Yijr are enforced by constraints (2.1h).

The nonlinear term in the objective function and in constraint (2.1g) , PijrYijr, i ∈
I, j ∈ J , r ∈ R, is a product of a continuous variable and a binary variable. Thus, we

replace each PijrYijr by Wijr, and enforce Wijr = PijrYijr using the following set of new

constraints for all i ∈ I, j ∈ J , r ∈ R: Wijr ≤ Pijr, Wijr ≤ Yijr, Wijr ≥ Pijr + Yijr − 1,

Wijr ≥ 0.

The number of variables in this models is |J |+ 3× |I| × |J | × |R|.

2.3 Solution Techniques: Preliminary Model

The model in Section 2.2 is hard to solve using commercial software. As such, a dedicated

algorithm is developed here to solve the model efficiently. The methodology is mainly

a Lagrangian relaxation embedded into a branch-and-bound structure. The details and

development of the algorithm are presented below.

We start by defining a variable Zij for each customer i ∈ I as the copy of the variable
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Xj, and adding constraint (2.2) to model (2.1).

Xj − Zij = 0 j ∈ J , i ∈ I. (2.2)

For each customer i ∈ I, let Zi := {Zij, j ∈ J }, Wi := {Wijr, j ∈ J , r ∈ R},
Yi := {Yijr, j ∈ J , r ∈ R}, Pi := {Pijr, j ∈ J , r ∈ R}, and define the solution set

Si := {(Zi,Yi,Wi,Pi) : (2.3a)− (2.3h)}.

∑
j∈J\{J}

Yijr +
∑

s∈R:s≤r

YiJs = 1 r ∈ R (2.3a)

∑
r∈R

Yijr ≤ Zij j ∈ J (2.3b)∑
r∈R

YiJr = 1 (2.3c)

1− Zim +
∑

s∈R:s≤r

Yims ≥ Yinr m,n ∈ J , r ∈ R (2.3d)

Pij1 = 1− qj j ∈ J (2.3e)

Pijr = (1− qj)
∑
k∈J

qk
1− qk

Wi,k,r−1 j ∈ J , r ∈ R \ {1} (2.3f)

Wijr ≤ Pijr, Wijr ≤ Yijr, Wijr ≥ Pijr + Yijr − 1, j ∈ J , r ∈ R (2.3g)

Zij, Yijr ∈ {0, 1},Wijr, Pijr ≥ 0 j ∈ J , r ∈ R. (2.3h)

Then, the split-variable formulation of model (2.1) is given by:

Ψ∗ = min
∑
i∈I

(∑
j∈J

1

|I|
fjZij +

∑
j∈J

∑
r∈R

ηidijWijr

)
s.t. (Zi,Yi,Wi,Pi) ∈ Si i ∈ I

Xj − Zij = 0 j ∈ J , i ∈ I

Let Si denote the index set of Si, that is, Si = {(Ẑs
i , Ŷ

s
i ,Ŵ

s
i , P̂

s
i ) : s ∈ Si}. We can

express any solution in Si by:

(Zi,Yi,Wi,Pi) =
∑
s∈Si

λsi (Ẑ
s
i , Ŷ

s
i ,Ŵ

s
i , P̂

s
i ),
∑
s∈Si

λsi = 1, λsi ∈ {0, 1}. (2.4)
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Using (2.4), the linear relaxation of the Dantzig-Wolfe reformulation of the split variable

formulation is given by:

[DW] min
∑
i∈I

∑
s∈Si

(∑
j∈J

1

|I|
fjẐ

s
ij +

∑
j∈J

∑
r∈R

ηidijŴ
s
ijr

)
λsi

s.t. Xj −
∑
s∈Si

Ẑs
ijλ

s
i = 0 j ∈ J , i ∈ I, (µij)∑

s∈Si

λsi = 1 i ∈ I, (θi)

λsi ≥ 0 i ∈ I, s ∈ Si.

The DW can be solved efficiently using column generation. In this chapter, we use a

subgradient method to solve the dual of the DW, which is stated as:

[DW-Dual] max
∑
i∈I

θi

s.t.
∑
i∈I

µij = 0 j ∈ J ,

θi −
∑
j∈J

Ẑs
ijµij ≤

∑
j∈J

1

|I|
fjẐ

s
ij +

∑
j∈J

∑
r∈R

ηidijŴ
s
ijr i ∈ I, s ∈ Si.

Let Li(µi) =
∑

j∈J
1
|I|fjZij +

∑
j∈J

∑
r∈R ηidijWijr +

∑
j∈J µijZij, and define

Di(µi) = min
Zi,Wi,Yi

{Li(µi) : (Zi,Wi,Yi) ∈ Si} i ∈ I. (2.5)

Then, DW-Dual, which is also known as the Lagrangian problem, can be simplified as:

Ψ∗LD = max
∑
i∈I

θi (2.6a)

s.t.
∑
i∈I

µij = 0 j ∈ J , (2.6b)

θi ≤ Di(µi) i ∈ I. (2.6c)
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Note thatDi(µi) is concave in (µi), and its subgradient at (µk
i ) is

(
Zk
i

)
, where (Zk

i ,W
k
i ,Y

k
i )

is an optimal solution to (2.5). It follows from the subgradient inequality that

θi ≤ Di(µi) ≤ Di(µ
k
i ) +

∑
j∈J

Zk
ij(µij − µkij).

We can solve the DW-Dual using a cutting plane method that replaces each Di(µi) with a

relaxation based on a set of subgradients K, and solves the linear program (2.7) at iteration

k:

max
∑
i∈I

θi (2.7a)

s.t.
∑
i∈I

µij = 0 j ∈ J , (2.7b)

θi ≤ Di(µ
k
i ) +

∑
j∈J

Zk
ij(µij − µkij) i ∈ I, k ∈ K. (2.7c)

However, that cutting plane method is unstable and converges slowly for practical

instances. To improve convergence, we use a proximal bundle method proposed in Lubin

et al. (2013) that subtracts a quadratic penalty term from the objective (2.7a) weighted

by τ ≥ 0:

max
∑
i∈I

θi −
1

2
τ
∑
i∈I

∑
j∈J

(µij − µ+
ij)

2,

where (µ+
i ) is the current proximity center. Table 2.2 presents the steps of the method.

Because of the nonconvexity caused by discrete variable sets X and Y , Ψ∗LD provides

a lower bound on Ψ∗, that is, the Lagrangian bound. To close the gap, we use Ψ∗LD in a

branch-and-bound algorithm, where branching is based on the disagreements in the copy

variables Zi, i ∈ I. This approach is first proposed by Carøe and Schultz (1999) for two-

stage stochastic integer programs. Table 2.3 presents each step of the branch-and-bound

algorithm. In Table 2.3, P denotes the list of current problems with associated lower

bounds Ψ∗LD(P ). This overall procedure will be referred to the Lagrangian Branch-and-

Bound (LBB) algorithm.
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Table 2.2: Proximal Bundle Method Used to Solve the DW-Dual (Equation 2.6)

Initialize: Choose a relative convergence tolerance ε. Set k ← 1, τ ← 1,

m ← 0.1, µ+
i ← 0, i ∈ I. Solve (2.5) with (µk

i ) = (µ+
i ) for

each i ∈ I, curObj←
∑

iDi(µ
+
i )

Step 1 Solve (2.7) to obtain (µk
i ), and let v =

∑
i θ

k
i − curObj . If

v/(1 + |curObj|) < ε, terminate. Else k ← k + 1.

Step 2 Solve (2.5) with (µk
i ) ∀i ∈ I, newObj←

∑
iDi(µ

k
i ).

Step 3 Update τ ← min (max (u, τ/10, 10−4), 10τ), where u = 2τ(1−
(newObj− curObj)/v).

Step 4 If (newObj− curObj > m.v), update (µ+
i )← (µk

i ), curObj←
newObj. Go to Step 1.
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Table 2.3: Branch-and-bound Algorithm Used to Close the Gap Between Ψ∗LD and Ψ∗.

Initialize: Set Ψ̄ =∞ and let P consist of problem (2.1)

Step 1 (Termination) If P = φ, then the solution corresponding to Ψ̄ is optimal.

Step 2 (Node Selection) Select and delete a problem P from P , solve the Lagrangian

problem (2.6) to obtain the lower bound Ψ∗LD(P ). If P is

infeasible (Ψ∗LD(P ) = −∞), go to Step 1.

Step 3a (Bounding) If Ψ̄ ≤ Ψ∗LD(P ), go to Step 1 (this step is executed as soon as

the ΨLD(P ) exceeds Ψ̄).

Step 3b (Feasible Solution) Else, if the customer solutions constitute a feasible solution

to problem (2.1) with an objective function value Ψ̂, then

Ψ̄ := min
{

Ψ̄, Ψ̂
}

, and delete from P all problems P ′ with

Ψ∗LD(P ′) ≥ Ψ̄. Go to Step 1.

Step 3c (Heuristic Solution) Else compute the average X̄j = 1
|I|
∑

i∈I Ẑij and round it to

the closest integer to obtain X̄R
j for j ∈ J . If X̄R is feasible

to problem (2.1) with an objective function value ΨR, then

Ψ̄ := min
{

Ψ̄,ΨR
}

, and delete from P all problems P ′ with

zLD(P ′) ≥ z̄. Go to Step 4.

Step 4 (Branching) Select a component j of X̄ such that X̄j is fractional. Add two

new problems to P obtained from P by adding the constraints

Xj = 0 and Xj = 1. Go to Step 1.
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2.4 Computational Results and Analyses: Prelimi-

nary Model

In this section, the model that is described in Section 2.2 is verified. Also, the algo-

rithm which is explained in Section 2.3 is tested for convergence and performance. First,

details regarding the computational environment and datasets used in these tests are pre-

sented. Then, preliminary testing is based on one implementation of the LBB algorithm

is presented. After that, two more implementations of the LBB algorithm are discussed

and extensively tested. Insights are drawn from each experimentation procedure. These

insights are essential to the development of the procedures in Section 2.6.

The machine used for testing is Intel Xeon CPU E-2680 with 2 processors and 24

threads each. The machine is running Windows Server 2012. The optimization software

is ILOG CPLEX 12.6 at 64-bit architecture. Unless otherwise mentioned, this machine is

used at full power for any implementation.

In different parts of this section, some parameters are fine-tuned to ensure desired

performance, while other parameters are varied to conduct sensitivity analysis on. The

implementation mechanism itself is varied to test the performance of each. In particular,

the type of the node queue is varied and the resulting performance is studied. In Section

2.4.2, the variation in preference will be studied through different values of b (defined

below). Changing the value of b may affect performance of the solution algorithm by

moving the optimal solution closer or further from the optimal solution had preference

constraints been neglected. Moreover, the effect of the number of assignment levels |R|,
dataset size, and φ will be studied. The number of levels affects directly the size of the

instance, while the choice of φ can have an effect on the time needed for the solution

algorithm to converge. In Section 2.4.3, different values of k (defined below) will be tested

to fine-tune the algorithm. Higher values of k indicates more iterations done, which means

more time spent at each node. A trade-off is potentially needed between the quality

generated by higher values of k and the time needed to achieve that. Also, some model

features will be examined such as the equality vs. inequality of probability constraints, and

the usage of reduced numerical precision and lazy constraints in the solution procedure.
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These features can have direct effect on the time required for the algorithm to converge.

Finally, Section 2.4.4 will run instances of different sizes and with different values of k.

In the tables below, the running time refers to the time to achieve optimality. Unless

otherwise mentioned, the algorithm (LBB or default CPLEX) is allowed to run until it

concludes with optimality. If running time exceeds some value (varies for each dataset),

the experiment is terminated, and the time is indicated with a ‘larger than’ symbol (>).

The gap reported in the tables represents the relative gap between the best lower

bound (found by relaxation), and the best integer feasible solution achieved up to that

point. Specifically,

Gap =
best integer - best LB

best integer

This formula is adjusted to account for values of zero in the denominator, as well as

the sign of each value, whenever necessary.

2.4.1 Data Sources

The datasets used in this section are as follows.

• Randomly Generated: these are datasets that were created based on the parameters

shown in Table 2.4. Unless mentioned otherwise, the randomly generated

instances are used in the numerical experiments.

• USmap49 and USmap88: The ‘real’ map of the US with one node for each state. The

demand is proportional to the population of each city. The data set is from Larry

Snyder’s data (http://coral.ie.lehigh.edu/larry/research

/data-sets-for-stochastic-p-robust-location-problems/). The failure prob-

ability of each location is proportional to the distance between that location and

New Orleans, LA. The parameter values are taken similar to those in Aboolian et al.

(2013). These datasets are based on 1990 census data, with each node representing

one of the 49 capitol cities in the United States. The demand ηi of city i is set to
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the city’s population divided by 104, and the fixed cost fj is set to the median home

value in the city. The transportation cost dij is calculated as the great circle distance

between node i and j. In these datasets, the set of candidate locations J is equal to

the set of customers I, which means that each demand node is a candidate location

for a facility. Penalty cost φi is set to 10,000 for all customers i. Failure probabilities

qj are calculated using qj = β + 0.1αe−dj/400, where β = 0.01 and dj is the great

circle distance (in miles) between point j and New Orleans. This formula is similar

to the one used in Aboolian et al. (2013) and uses the assumption that cities close to

New Orleans should have higher values of qj. This assumption is based on hurricane

Katrina disaster in 2005 which was centered around New Orleans.

• random50 and random100: these data sets were also drawn from Larry Snyder’s

datasets, and represent nodes in a unit square. Failure probabilities are randomly

generated. The value of φ used is 1, 000.

Table 2.4: Parameters for the Randomly Generated Instances

Parameter Range

Facility fixed cost [1, 000, 11, 000]

Service Cost [100, 500]

Failure probability [0.01, 0.11]

Demand [10, 110]

dummy cost 1, 000

Preferences of each customer can be random, based on distance, based on facility qual-

ity, or a combination of the distance and quality. Facility quality is measured based on

the population (demand) at any given facility; the more populated the node, the higher

quality is the facility. Random preferences are used for the randomly generated instances.

For other data sets, a utility function for generating preferences is created. The prefer-

enceScore formula provides an easy way to combine the effect of distance and the effect

of quality (in measures of demand) into a single parameter. The function considers the

distance and population of each facility, and, depending on a parameter b, combine the
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two measures and gives the preference ordering for each customer. In particular, customer

i gives the following the preference score preferenceScore for facility j:

preferenceScoreij = b(distanceScoreij) + (1− b)(demandScorej)

where b ∈ [0, 1] is a parameter used to control the preference scheme, and

distanceScoreij = 100− 100
dij − dimin
dimax − dimin

and

demandScorej = 100
ηj − ηmin
ηmax − ηmin

where dimin is the distance from i to its nearest facility, dimax is the distance from i to

its furthest facility, ηmin is the least demand among all facilities, and ηmax is the largest

demand among all facilities.

Obviously, the closest facility would get the highest distanceScoreij, and the most pop-

ulated node would get the highest demandScore. Based on the values of preferenceScoreij
for a particular i, facilities can be ordered accordingly. The value of b would be used in

the experiments to control the emphasis of the utility function.

Using the above formulas, for each customer i, the facility j with the highest score

preferenceScoreij is the most preferred, followed by facility k with preferenceScoreik such

that preferenceScoreik < preferenceScoreij, and so on.

2.4.2 Basic Analysis: CB-LBB

This section describes the preliminary analysis of running our algorithm, and compares

that with a default commercial software. The algorithm in this subsection is coded in C++

within callback functions of CPLEX, and therefore denoted by Callbacks Implementation

of Lagrangian Branch-and-Bound (CB-LBB). Using this structure, our implementation is

using the main skeleton of CPLEX structure, but amending some functions such that our

methodology is applied. This approach has the advantages of (1) using the well-organized

CPLEX structure, which means fewer code components to track, and (2) benefiting from
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the pre-processing and heuristics that CPLEX applies (by default) before starting the

branching process, which would greatly reduce the complexity and size of the problem,

making it easier and faster to solve.

Model Validation: Effect of Preference

Figure 2.1 shows the difference in location decisions when different preference schemes

are used for the USmap49 dataset with two levels of backup. In 2.1a, the preferences of

all customers are based on distance (the closer the facility, the more preferred it is). In

2.1b, the preferences of all customers are identical since it is based on quality (a particular

facility is the most preferred for all customers). As can be seen in this case, only one facility

is opened. This can be understood by noting that if more than one facility is open, all

customers would be assigned to the most preferred among them. Hence, there is no reason

to open another facility (in this case of |R| = 2). By increasing |R|, it may be feasible to

open more facilities accordingly. In 2.1c, random preferences are generated, and different

set of facilities are opened accordingly.
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(a) Distance-based preferences (b) Quality-based preferences

(c) Random preferences

Figure 2.1: Locations Open with Different Preference Orderings with Dataset USmap49 and

|R| = 2
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Effect of |R|

Recall that at each node, the LBB algorithm iterates between solving (2.7) and (2.5).

Solving these two problems once each is considered one iteration. The procedure of Table

2.2 suggests going through iterations until a stopping criterion is met. Specifically, when

the procedure does not improve the solution anymore, it stops. There is no limit on the

number of iterations to run at any node. In the tables below, the maximum number of

iterations needed at any node is recorded and listed under ‘Max k needed’. This value

provides a sense of the maximum time spent at any node in solving the original problem.

It is clear from the tables below that the behavior of the LBB algorithm and default

CPLEX is consistent, and predictable with respect to the number of levels |R|. Hence, the

numerical experiments below are limited to four levels of backup or less. Experimenting

larger values or |R| would not provide additional significant insights.

Table 2.5 shows the experiments conducted on the random50 dataset. Max k represents

the maximum number of iterations needed in any node. The running time for our algorithm

is compared to the running time of the default CPLEX MIP solver. The gap after the root

node, and Max k needed are also provided. As can be seen, the LBB algorithm outperforms

default CPLEX in all combinations of |R| and b presented. Also, for five out of the six

combinations, the LBB algorithm is able to arrive to optimality by only solving the root

node. Within these instances, the time needed by the default CPLEX is between 44 and

231 folds the time needed by the LBB algorithm. The CPLEX algorithm does little to

reduce the gap at the root node. Moreover, the LBB algorithm does not need to iterate

more than 13 in the worst case for any node. In fact, for half of the instances (3 out of 6),

the overall algorithm terminates at the root node, which in turn needed only one iteration.

This shows the efficiency of the procedure, which contributes in the short processing time

of the overall LBB algorithm. The instance which does not find the optimal solution at the

root node converges after few branches. It is not expected that all instances would converge

at the root node. Randomness in generating the dataset allows for such differences.

Table 2.6 shows the running times of data set USmap49, as well as the gap after the

root node. As can be seen, the processing times are higher for most instances using default

CPLEX. Also, the gap after the root node is much lower for the root node when the LBB
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Table 2.5: Effect of |R| on CB-LBB Performance with Dataset random50

CB-LBB CPLEX Default

|R| b
Time (sec)

Gap After

Root Node

Max k

Needed
Time (Sec)

Gap After

Root Node

3 0 27 0.00% 1 1,200 99.97%

4 0 212 0.00% 13 48,985 99.84%

3 0.5 40 0.00% 1 1,941 99.96%

4 0.5 167 67.40% 4 12,980 99.53%

3 1 29 0.00% 1 2,607 99.91%

4 1 134 0.00% 7 15,726 99.78%

Table 2.6: Effect of |R| on CB-LBB Performance with Dataset USmap49

|R| b
CB-LBB CPLEX Default

Time (Sec) Gap After Root Node Time (sec) Gap After Root Node

3 0 5,759 75.34% 577 76.55%

4 0 74,482 77.04% 2,273 76.30%

3 0.5 2,323 40.43% 15,289 66.94%

4 0.5 7,659 44.57% 7,102 69.28%

3 1 5,271 32.91% >32,400 66.76%

4 1 1,995 22.28% 14,480 69.06%
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algorithm is in use.

Table 2.7 shows the results for dataset random100. As can be seen, the default CPLEX

is unable to arrive at optimality in any instance before 5 hours, whereas the LBB algorithm

concludes optimal for four instances (with a maximum processing time of 70 minutes), and

reduces the gap for the other two instances into less than 0.5% within 5 hours or less.

Table 2.7: Effect of |R| on CB-LBB Performance with Dataset random100

|R| b
CB-LBB CPLEX Default

Time to Optimal (Sec) Gap After 5 Hours

3 0 413 99.9%

4 0 4,176 98.2%

3 0.5 190 99.9%

4 0.5 5 hours at 0.31% gap 99.9%

3 1 1,708 99.98%

4 1 4 hours at 0.1% gap 99.9%

Table 2.8 shows the results for the randomly generated instances. The preferences

were randomly generated. Max k represents the maximum number of iterations needed

in any node. These instances are combinations of either 20 or 40 facilities with 48 or

96 customers. Each combination is repeated three times with different random number

generator’s seed. The running times are limited to 3 hours (10,800 seconds). As can be

seen, the LBB algorithm arrives optimality much faster than the default CPLEX. Also,

the LBB algorithm is able to terminate immediately after the root node. The CPLEX

algorithm closes less than 1% gap for all instances.
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Table 2.8: Performance of CB-LBB with Randomly Generated Datasets

CB-LBB CPLEX Default

|I| × |J | × |R|
Time (sec)

Gap after Max k
Time (sec)

Gap after

root node needed root node

48× 20× 4 23 0.00% 1 >10,800 99.39%

48× 20× 4 64 0.00% 12 4,290 99.51%

48× 20× 4 120 54.14% 17 >10,800 98.02%

48× 40× 4 4,947 47.63% 59 >10,800 99.03%

48× 40× 4 1,675 48.99% 42 >10,800 99.61%

48× 40× 4 1,328 62.23% 26 3,405 99.62%

96× 20× 4 76 0.00% 23 1,632 99.48%

96× 20× 4 44 0.00% 7 3,880 99.51%

96× 20× 4 140 60.26% 9 2,859 99.71%

96× 40× 4 1,431 43.86% 23 >10,800 99.55%

96× 40× 4 4,444 92.06% 36 >10,800 99.61%

96× 40× 4 925 48.3% 24 >10,800 99.64%
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Effect of φ

The value of φ = φi, ∀i ∈ I, is an important parameter of the model. Higher values of

φ means higher penalties for not fulfilling demand. Accordingly, the assignment strategy

would be to avoid having this penalty at lower levels of backup, and push it to an advanced

level of backup (where the probability of enduring these penalties is small). Interestingly,

the LBB algorithm can exploit higher values of φ and arrive at optimal solutions faster, as

Table 2.9 shows, whereas default CPLEX would take a longer time as φ increases.

Table 2.9: Effect of Changing the Value of φ on the Performance of CB-LBB with Dataset

random50 and |R| = 3.

φ = 80 φ = 800 φ = 8, 000 φ = 80, 000

b CB-LBB CPLEX CB-LBB CPLEX CB-LBB CPLEX CB-LBB CPLEX

0 529 102 58 477 40 395 27 1,200

0.5 121 541 59 647 75 579 40 1,941

1 128 >1,000 47 >1,000 37 >1,000 29 2,607

Table 2.10 shows the effect of the value of the dummy cost on the location and allocation

decisions. The dataset used in USmap49 with two levels |R| = 2. For smaller values of φ,

higher portions of the demand is lost (assigned to the dummy facility). However, by

increasing the dummy cost, more facilities are opened, and less demand is lost.
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Table 2.10: Effect of φ on the Location and Allocation Decisions with Dataset USmap49

and |R| = 2

φ
% Assigned to Dummy Number of open locations

at first level (excluding Dummy)

100 100% 0

500 58% 1

800 19% 5

1,000 13% 5

1,200 6% 5

1,500 5% 5

1,800 4% 5

2,500 0% 5

Insights From Preliminary Analysis and CB-LBB Testing

From the results shown above, we can conclude that the preference of customers indeed

has an effect on the decisions of how many and where to locate facilities. This effect can be

significant if the preferences differ greatly from the distance-based preferences. Moreover,

as can be expected, increasing the value of |R| would result in increasing the size of the

problem, which in turn results in longer time needed to attain optimality. The effect of

φ is model-dependent. It seems that our algorithm is able to respond to higher values of

φ faster by pushing the assignment of the dummy facility to the last level R. CPLEX,

however, needs longer time as φ increase, which may be due to computational difficulties.

As explained at the beginning of this section, our algorithm was implemented by amend-

ing particular functions of CPLEX tree structure using callbacks. The goal was to have

fewer code components to write and to use the additional features that come with CPLEX

such as preprocessing and heuristics.

While the results above are promising, further experiments showed that the perfor-

mance of our algorithm is not consistent; for some instances of different sizes, CPLEX

is significantly better in terms of solution time and quality. Also, there was no trend

45



or explanation of why some instances are easier to solve by our algorithm than others.

This inconsistency and inability to explain behavior, encouraged us to look for further

implementation technique.

Furthermore, careful observation of the implementation showed that our implementa-

tion does not go through all the pre-processing and heuristics that default CPLEX does.

After investigation, it was revealed that using callbacks causes CPLEX to switch off the

use of some of these methods, since the data handling is no longer safe (i.e., when a default

function is replaced a user-defined callback, the output of that function is not guaranteed

to be in the same form and structure that the next function expects. Therefore, CPLEX

only keeps the main tree structure without going through the additional features). Know-

ing this, the use of CPLEX structure has proven to be less appealing. Consequently, a new

approach is required, which will be discussed in the following section.

2.4.3 Stack Queue Tree: Stack-LBB

In the previous section, it was argued that using callbacks is not ideal and does not provide

consistent results. In this section, the main branch-and-bound tree structure is built using

C++ without using the CPLEX callbacks. Thus, this implementation is independent

of the CPLEX skeleton. However, CPLEX is used to solve the DW-Dual and customer

subproblems as discussed in Section 2.3. These problems are sent to CPLEX and solved

to optimality with no other dependence on CPLEX.

A major feature in any branch-and-bound tree implementation is the order of nodes

to be explored and solved. In this particular implementation, the newly created nodes

are ordered in a stack (LIFO) queue. Therefore, this implementation will be referred to

as Stack Queue Implementation of Lagrangian Branch-and-Bound (Stack-LBB). Such or-

dering would process depth-first and explore one path of nodes until an integer solution

is found or it is proven to be unpromising. In doing so, and while going down the tree,

the upper bound is improved, which makes the exploration of the next branches faster

by fathoming all nodes with lower bound that exceeds the best integer solution found.

However, the disadvantage of such an approach is spending too much time within a par-

ticular branch because of the continued creation of nodes within that branch. This branch
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may eventually be fathomed without contributing significantly in improving the lower and

upper bounds. Unless the upper bound is significantly improved, the tree would keep on

growing and becomes harder to solve. Also, memory usage and tractability would become

serious issues that hinder the successful termination of the algorithm.

Stack-LBB Algorithm Performance

Table results below show the numerical experiments for different randomly generated in-

stances. Recall that k represents the maximum number of iterations (described in Section

2.3) allowed at each node. Once the k iterations are performed, the bounds are fixed

and the node branches accordingly. The procedure is compared with the default CPLEX

(with all preprocessing and heuristics features switched on) and with CPLEX when the

preprocessing methods are switched off. The former represents the best CPLEX can do.

The latter represents the embedded branch and bound structure in CPLEX without the

reductions done at the beginning before starting the tree, which makes it equivalent to our

method since we do not do preprocessing or reductions before starting the tree structure.

As can be shown in Table 2.11, the LBB algorithm needs less time than default CPLEX

to arrive to optimality in 12 out of 17 instances. In the other five instances, default

CPLEX outperforms the LBB algorithm. The LBB algorithm always outperforms the

no-preprocessing CPLEX. Moreover, the time needed for the LBB algorithm to converge

decreases as the value of k decreases. This suggests that the iteration process is more

computationally expensive than the branching and the creation of new nodes. Accordingly,

this also suggests that an improvement in the iteration process would significantly enhance

the performance of the algorithm.

Table 2.12 shows the number of nodes needed to arrive at optimality. It is immediately

apparent that the LBB algorithm requires far less nodes than the default CPLEX and

the no-preprocessing CPLEX. Another observation is that, generally, the number of nodes

needed decreases as k decreases. This is counterintuitive since one would expect that with

higher k, the node bounds would improve, which would lead to the fathoming of more

nodes and branches which, in turn, would result in smaller number of nodes needed. A

possible explanation for this pattern is that more nodes of good quality are created, which
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would require solving larger number of nodes. If the majority of nodes have poor bounds,

once the upper bound of the tree surpass a particular level, a large portion of these nodes

will automatically be fathomed.

Table 2.11: Processing Time (in Seconds) Using Stack-LBB Algorithm

|I| |J | |R| k = 10 k = 7 k = 5 k = 3 k = 1 k = 0
CPLEX CPLEX (no

Default preprocessing)

48 20 4 508 490 472 210 228 219 744 >3,600

48 20 20 882 891 845 427 447 450 5,890 >9,976

48 20 4 598 574 532 295 289 242 1,008 >3,600

48 20 20 34,560 1,055 961 552 514 514 >24 hrs >9,239

48 20 4 647 671 603 253 256 370 2,118 >3,600

48 20 20 1,102 1,019 507 489 489 >6 hrs >24 hrs >24 hrs

48 21 4 1,338 1,292 1,372 403 430 427 144 3,620

48 21 21 2,237 2,178 2,269 810 842 841 1,521 12,779

48 22 4 3,121 3,080 3,412 646 590 590 220 9,923

48 22 22 4,704 4,712 5,187 1,235 1,245 1,246 1,249 >24hours

48 23 4 6,106 6,077 5,945 1,267 1,251 1,257 211 8,219

48 23 23 9,398 9,755 9,556 2,413 2,355 2,349 1,722 48,564

48 24 4 7,915 9,510 6,865 665 676 676 619 13,660

48 24 24 11,784 13,666 10,771 1,406 1,459 1,458 4,621 >84,755

48 25 4 8,569 9,513 7,155 1,265 688 686 178 6,672

48 25 25 11,868 14,935 11,058 1,265 1,731 1,503 1,357 220,609

48 30 4 >50hrs >50hrs 120,907 9,076 11,192 11,016 1,134 43,367
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Table 2.12: Number of Nodes Explored Using Stack-LBB Algorithm

|I| |J | |R| k = 10 k = 7 k = 5 k = 3 k = 1 k = 0
CPLEX CPLEX (no

Default preprocessing)

48 20 4 715 697 719 535 559 559 1,771,376 >2,000,000

48 20 20 725 743 739 551 579 579 2,452,833 >243,693

48 20 4 849 801 793 665 671 671 2,735,558 >3,000,000

48 20 20 855 851 817 625 601 601 >1,000,000 >1,830,439

48 20 4 897 925 883 633 651 651 4,661,872 >5,000,000

48 20 20 897 897 863 633 629 629 >7,000,000 >504,369

48 20 4 1,419 1,445 1,515 829 871 860 187,274 3,814,008

48 21 21 1,415 1,439 1,519 873 873 873 441,039 1,872,257

48 21 4 2,465 2,501 2,783 1,077 1,009 1,009 314,785 5,285,216

48 22 22 2,323 2,435 2,703 1,073 1,091 1,091 276,388 >1,811,366

48 22 4 3,665 3,665 3,919 1,813 1,775 1,775 200,163 2,304,875

48 23 23 3,629 3,809 3,921 1,779 1,783 1,783 174,416 2,219,227

48 20 4 3,647 4,205 3,579 899 923 923 707,185 12,319,311

48 24 24 3,635 4,083 3,607 927 957 957 761,758 >11,844,992

48 24 4 3,661 4,071 3,601 945 963 963 150,631 1,927,315

48 20 25 3,617 4,361 3,663 945 1,143 1,023 61,916 1,401,060

48 20 4 >18,000 >18,000 15,401 3,861 4,411 4,411 1,040,130 12,250,381
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Evaluating Features

In pursuit of improving the performance of the algorithm, three main features of the Stack-

LBB implementation in C++ are analyzed.

Equality vs. Inequality in Probability Constraints

The constraints (2.1g) (and their equivalent in later reformulations) can have very small

variable coefficients. Due to various mathematical operations, numerical rounding would

result in computational difficulties. This is especially important since they are equality

constraints. Brief testing shows that the optimal point does not change by changing the

sense of constraints (2.1g) from = to ≥. However, the time needed and nodes explored

change. Since an equality constraint is more restrictive, it results in less time and fewer

nodes. Results are shown in Table 2.13.

Table 2.13: Effect of the Sense of Constraints (2.1g) on the Performance of Stack-LBB

Time (Seconds) Nodes Explored

|I| |J | |R| Precision ≥ = ≥ =

48 20 4 Default 12,937 1,909 16,720,240 2,868,844

48 20 4 Reduced 2,597 2,548 4,167,587 2,915,280

48 20 4 Default 2,271 839 3,760,331 1,492,474

48 20 4 Reduced 1,708 838 2,450,213 1,624,500

Reduced Precision

Another way to control the numerical errors resulting from rounding is by fixing the pre-

cision of the numbers by controlling the number of decimal digits. Table 2.13 shows that

by limiting the number of decimal digits, performance is improved.

Regular vs. Lazy DW-Dual Constraints

The algorithm in Section 2.3 describes how a new realization of constraint (2.7c) is added

to the DW-Dual problem (2.7) after each iteration. In building the DW-Dual problem

object in CPLEX, the constraints (2.7c) can be added either as regular constraints or as
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lazy constraints. In general, constraints are added to a problem as lazy constraints if there

is a belief that some of them might be redundant and/or to reduce the computational

footprint of the problem. The mathematical meaning and implications of lazy constraints

are beyond the scope of the current discussion. Table 2.14 shows that although there is

a slight advantage of regular constraints, the decision of adding (2.7c) as regular or lazy

constraint does not have a significant effect on the performance of the algorithm.

Table 2.14: Effect of Regular and Lazy Constraints on the Performance of Stack-LBB

Time (Seconds) Nodes Explored

|I| |J | |R| Regular Lazy Regular Lazy

48 20 4 5,741 5,561 913 913

48 20 4 4,397 5,532 583 563

48 20 4 5,059 >7,000 563 >1,100

48 20 4 5,179 8,987 659 649

Insights from Stack Queue Tree

The results of experiments done on the branch-and-bound tree with stack queue show that

the algorithm is efficient for some instances, especially small ones. However, for larger

instances, the algorithm performance deteriorates significantly. Moreover, while there is a

clearer pattern of behavior for this implementation compared to the implementation using

CPLEX callbacks structure, there are still unexplained points in this implementation as

well. Furthermore, the increase in the time needed to reach optimality with increasing k is

counterintuitive, problematic, and may be a sign of a bigger problem that we are unaware

of. Therefore, it is discouraged to move on with this implementation.

Ordering the nodes in a stack (LIFO) queue ignores the quality of the nodes in the

queue. The next implementation uses the properties of the created nodes to order them.

This has the potential of improving the performance of the whole algorithm.
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2.4.4 Priority Queue Tree: PQ-LBB

Each node created in the branch and bound tree comes with inherited and acquired charac-

teristics. These characteristics include the variable bounds and the objective value bounds.

Specifically, the lower bound (in a minimization problem) of the objective function value

of the node is a very important characteristic of the node. Let A and B be two nodes

that are waiting to be processed in a branch-and-bound tree. Whenever the upper bound

(feasible solution) for node A (equivalently, for a branch starting from node A) is found

to be less than the lower bound of node B, node B should be fathomed. Fathoming nodes

would reduce the size of the queue and potentially reduce the time needed to arrive to the

optimal solution. Therefore, it is justified to design a branch-and-bound tree such that the

queue of nodes prioritizes the nodes with the lowest lower bounds. Processing these nodes

first would potentially eliminate the need to process nodes of less quality.

This is how the tree is designed here; by ordering the created nodes in a queue such

that the ones with the lowest lower bound on top and processed first. Therefore, this im-

plementation will be referred to as Priority Queue Implementation of Lagrangian Branch-

and-Bound (PQ-LBB)

PQ-LBB Algorithm Performance

Table 2.15 shows the time required to arrive to optimality for randomly generated instances

using the priority queue tree implementation. It is apparent from the table that these times

are significantly less than those of the stack queue tree implementation above. This shows

that the algorithm indeed benefits from prioritizing nodes with lower lower bounds. More-

over, the algorithm is generally better than default CPLEX, and significantly surpasses

the no-preprocessing CPLEX. Table 2.16 shows the number of nodes explored. A similar

pattern is observed here too.
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Table 2.15: Processing Time (in Seconds) Using PQ-LBB

|I| |J | |R| k = 9 k = 7 k = 5 k = 3 k = 1 k = 0
CPLEX CPLEX (no

Default preprocessing)

48 20 4 66 80 71 71 67 71 744 3,253

48 20 20 542 568 498 472 481 459 5,890 >9,976

48 21 4 122 118 130 109 114 107 144 3,620

48 21 21 531 470 567 444 473 447 1,521 12,779

48 22 4 118 119 120 105 98 102 220 9,923

48 22 22 528 571 569 495 471 491 1,249 >24hours

48 23 4 186 212 203 183 156 175 211 8,219

48 23 23 985 975 1025 965 833 897 1,722 48,564

48 24 4 118 115 116 113 109 108 619 13,660

48 24 24 650 620 636 643 639 612 4,621 >84,755

48 25 4 106 105 111 104 99 104 178 6,672

48 25 25 629 656 657 633 586 619 1,357 220,609
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Table 2.16: Number of Nodes Explored Using PQ-LBB

|I| |J | |R| k = 9 k = 7 k = 5 k = 3 k = 1 k = 0
CPLEX CPLEX (no

Default preprocessing)

48 20 4 2,325 2,847 2,603 2,547 2,773 2,995 1,771,376 3,542,148

48 20 20 3,825 4,361 4,477 4,763 4,454 4,583 2,452,833 >2,574,439

48 21 4 4,825 4,863 5,387 4,409 4,933 4,717 187,274 3,814,008

48 21 21 4,937 4,351 5,511 4,191 4,997 4,615 441,039 1,872,257

48 21 4 4,275 4,389 4,481 3,897 3,909 4,115 314,785 5,285,216

48 22 22 4,059 4,417 4,519 3,903 3,933 4,315 276,388 >1,811,366

48 21 4 7,433 8,507 8,405 7,441 6,683 7,729 200,163 2,304,875

48 23 23 7,501 7,559 8,089 7,477 6,689 7,507 174,416 2,219,227

48 21 4 3,251 3,215 3,379 3,395 3,663 3,487 707,185 12,319,311

48 24 24 3,383 3,207 3,367 3,403 3,669 4,395 761,758 >11,844,992

48 25 4 2,999 3,011 3,395 3,155 3,247 3,445 150,631 1,927,315

48 25 25 3,159 3,225 3,415 3,291 3,255 3,459 61,916 1,401,060
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PQ-LBB Algorithm Performance: Larger Instances

Since this implementation shows promising results on small instances, larger datasets are

now tested to confirm the suitability of the procedure. Tables 2.17-2.20 show results for

randomly generated datasets. The LBB algorithm is applied only at the root node. After

the root node, the procedures performs branching without going into Lagrangian iterations.

As can be seen in Tables 2.17 and 2.18, the LBB requires far less time than CPLEX

and still achieve comparable gaps after the root node. The gap percentage after one hour

of running is significant for both methods. However, the LBB tends to close the gap more

than CPLEX most of the time (Table 2.19). Since the Lagrangian iterations are performed

only at the root node, the LBB algorithm is able to go through a large number of nodes,

as appears in Table 2.20.

Table 2.17: Processing Time (in Seconds) of the Root Node Using PQ-LBB with Large

Datasets

|I| |J | |R| k = 40 k = 30 k = 20 k = 10 k = 9 k = 7 k = 5 k = 3 k = 1 k = 0 CPLEX

96 30 4 35 26 16 9 8 6 5 1 1 1 536

96 40 4 65 46 30 15 14 12 10 8 3 2 245

96 50 4 109 72 46 23 21 17 15 10 6 2 487

96 50 4 117 80 49 25 21 18 15 11 5 3 635

Table 2.18: Gap (%) After Processing the Root Node Using PQ-LBB with Large Datasets

|I| |J | |R| k = 40 k = 30 k = 20 k = 10 k = 9 k = 7 k = 5 k = 3 k = 1 k = 0 CPLEX

96 30 4 42.11 44.56 45.72 46.98 47.46 48.92 52.31 55.32 55.32 55.32 46.11

96 40 4 42.63 43.29 44.07 45.24 45.79 46.92 50.51 52.84 52.84 52.84 44.10

96 50 4 45.11 45.65 46.30 47.39 47.80 49.30 52.49 53.74 53.74 53.74 84.66

96 50 4 43.79 44.34 45.05 46.19 46.58 48.36 51.15 53.22 53.22 53.22 41.69

Next, the US cities datasets are tested. Tables 2.21-2.24 show results of testing the

USmap88 dataset with |R| = 4 and preferences are randomly generated. Recall that in

this dataset, failure probabilities qj are calculated using qj = β + 0.1αe−dj/400, where
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Table 2.19: Gap (%) After 60 Minutes Using PQ-LBB with Large Datasets

|I| |J | |R| k = 40 k = 30 k = 20 k = 10 k = 9 k = 7 k = 5 k = 3 k = 1 k = 0 CPLEX

96 30 4 7.79 8.22 8.19 8.29 8.15 7.58 8.11 8.32 7.6 7.55 8.51

96 40 4 20.09 20.18 19.74 20.17 19.37 19.44 19.94 19.1 19.22 19.11 32.13

96 50 4 24.46 23.96 24.28 24.09 24.44 24.16 23.96 23.95 23.78 24.44 37.28

96 50 4 23.06 23.39 23.52 23.59 23.86 23.4 23.11 23.03 23 23.19 38.72

Table 2.20: Number of Nodes Explored After 60 Minutes Using PQ-LBB with Large

Datasets

|I| |J | |R| k = 40 k = 30 k = 20 k = 10 k = 9 k = 7 k = 5 k = 3 k = 1 k = 0 CPLEX

96 30 4 131,645 118,317 123,655 120,427 123,019 124,075 124,433 120,907 130,115 130,779 227,345

96 30 4 55,441 58,225 55,287 56,237 56,581 59,171 56,131 57,627 60,281 59,661 50,954

96 40 4 38,337 39,249 39,541 40,183 39,019 39,809 39,883 41,127 42,233 41,527 24,262

96 50 4 36,057 36,213 36,129 36,733 36,495 36,985 37,883 37,965 39,627 39,547 24,716

β = 0.01 and dj is the great cycle distance (in miles) between point j and New Orleans, LA.

Therefore, different values of α are used in the experiments. Since these runs took a long

time before convergence, all runs were stopped after 60 minutes and the important statistics

were collected. Also, the LBB algorithm is applied only on the root node. After the

root node, the procedure continues with branching without going through the Lagrangian

iterations.

The LBB algorithm requires far less time at the root node than the default CPLEX.

This is true across different values of k and α, as seen in Table 2.21. However, the two

methods are fairly comparative based on the efficiency at the root node (measured by the

gap after fathoming the root node), as it is represented in Table 2.22. This shows that the

extra time needed by CPLEX for some instances may be justified.

It is clear from Table 2.23 that the gap percentage is still significant after running both

methods for 60 minutes, except for one instance for which CPLEX found an optimal within

this time. Apart from this instance, the PQ-LBB algorithm appears to be reducing the

gap better than CPLEX. The number of nodes explored after running for 60 minutes is

comparable for both methods, as demonstrated in Table 2.24. Recall that in these runs,
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Table 2.21: Processing Time (in Seconds) of the Root Node Using PQ-LBB with USmap88

and |R| = 4

α k = 9 k = 7 k = 5 k = 3 k = 1 k = 0 CPLEX

1 30 28 23 19 13 6 352

1.05 31 27 23 19 12 5 444

1.1 33 28 24 20 12 5 368

1.15 34 28 23 19 12 5 524

1.2 34 31 25 21 13 6 260

1.25 34 29 24 21 13 6 377

1.3 35 31 26 23 14 6 330

1.35 35 29 26 21 13 5 343

1.4 35 30 26 21 14 5 235

1.45 35 32 26 21 13 6 380

Table 2.22: Gap (%) After Processing the Root Node Using PQ-LBB with USmap88 and

|R| = 4

α k = 9 k = 7 k = 5 k = 3 k = 1 k = 0 CPLEX

1 69.68 71.63 74.88 80.35 81.58 81.58 85.37

1.05 69.69 71.65 75.43 80.52 81.48 81.48 64.29

1.1 69.68 71.64 75.40 80.50 81.42 81.42 49.89

1.15 69.54 71.53 75.29 80.46 81.31 81.31 72.47

1.2 69.48 71.52 75.32 80.44 81.24 81.24 85.88

1.25 69.43 71.38 75.02 80.40 81.09 81.09 73.39

1.3 69.36 71.33 75.23 80.36 81.03 81.03 90.68

1.35 69.36 71.32 74.98 80.16 80.91 80.91 90.66

1.4 69.35 71.23 75.03 80.08 80.81 80.81 90.77

1.45 69.34 71.30 75.23 80.16 80.69 80.69 90.71
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PQ-LBB is applying the Lagrangian iterations at the root node only, which explains the

large number of nodes exposed within one hour.

Table 2.23: Gap (%) After 60 Minutes Using PQ-LBB with USmap88 and |R| = 4

α k = 9 k = 7 k = 5 k = 3 k = 1 k = 0 CPLEX

1 24.56 22.08 23.17 22.25 22.81 22.70 28.66

1.05 22.49 21.67 24.18 22.34 23.19 22.61 0

1.1 23.10 22.28 24.57 22.60 22.94 22.89 32.58

1.15 23.56 23.45 22.74 22.85 23.00 22.49 28.37

1.2 24.81 24.82 23.03 23.07 23.25 23.03 27.13

1.25 24.23 23.10 24.83 23.28 23.48 23.17 31.22

1.3 23.39 23.68 22.15 23.31 23.53 23.27 30.62

1.35 23.37 23.26 23.61 24.02 23.48 23.72 34.77

1.4 22.83 23.25 23.26 23.80 23.32 23.69 26.96

1.45 22.83 24.62 23.22 22.86 23.12 23.57 34.45
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Table 2.24: Number of Nodes Explored After 60 Minutes Using PQ-LBB with USmap88

and |R| = 4

α k = 9 k = 7 k = 5 k = 3 k = 1 k = 0 CPLEX

1 16,587 16,019 15,965 16,361 17,429 17,577 11,167

1.05 16,215 16,311 16,421 16,347 18,109 17,597 6,719

1.1 16,093 15,969 16,763 16,229 17,407 17,501 12,127

1.15 15,535 15,795 15,665 16,081 17,277 17,371 11,850

1.2 15,735 16,485 15,599 15,871 17,049 17,427 15,600

1.25 1,5473 15,635 16,087 15,813 16,959 17,295 21,123

1.3 15,551 15,675 15,515 15,807 16,831 17,109 11,567

1.35 15,321 16,075 15,341 16,225 16,647 16,907 11,053

1.4 15,141 15,411 15,073 15,743 16,321 16,833 15,958

1.45 15,483 14,931 14,779 15,485 16,425 16,697 14,983

Stack-LBB vs. PQ-LBB Comparison

The two implementations, Stack-LBB and PQ-LBB, are compared in Table 2.25 in terms

of running time in seconds. The values inside the table are averages over k for all instances

of the same size, if available. As shown, the PQ-LBB dominates Stack-LBB for all datasets

tested.
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Table 2.25: Processing Time (in Seconds) Using Stack-LBB and PQ-LBB: A Comparison

|I| |J | |R| Stack-LBB PQ-LBB

48 20 4 414 67

48 20 20 2,688 292

48 21 4 877 117

48 21 21 1,530 489

48 22 4 1,907 110

48 22 22 3,055 521

48 23 4 3,651 186

48 23 23 5,971 947

48 24 4 4,385 113

48 24 24 6,757 633

48 25 4 4,646 105

48 25 25 7,060 630

Shortcomings of PQ-LBB Algorithm

While the previous results show that PQ-LBB is superior to Stack-LBB, the behavior of

PQ-LBB is not consistent and not always explainable. Table 2.26 shows results of some

of the datasets for which PQ-LBB performed poorly. This poor performance can partly

be explained by the increased size of the problem, especially higher |J | values. However,

other instances are identical to the ones where PQ-LBB has performed very well. This

demonstrates the shortcomings of this implementation and the need to arrive at a better

implementation technique.
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Table 2.26: Processing Time (in Seconds) for Datasets with Poor Performance of PQ-LBB

Dataset LBB CPLEX

Random Gen. 40× 40× 4 1,967 672

Random Gen. 40× 40× 4 2,471 679

Random Gen. 48× 30× 4 >3,600 431

USmap49 1,525 114

USmap49 210 104

USmap49 1,699 619

Insights from PQ-LBB Algorithm

From the extensive analysis conducted on the priority queue implementation of the LBB

algorithm, it is obvious that the PQ-LBB is superior to the Stack-LBB in terms of the time

required and nodes explored until optimality. The PQ-LBB behavior is more consistent

and shows patterns.

The results also show that the PQ-LBB algorithm does not perform well with larger

datasets. When tested with still larger datasets, the PQ-LBB algorithm’s performance

deteriorates sharply, leading to excessive processing times and large optimality gaps. A

major consideration in the procedure is deciding on which nodes to apply the Lagrangian

iterations on. Applying the Lagrangian iterations on a high number of nodes means slower

progress at these nodes. This can be fruitful only if there was a significant improvement

in the bounds after processing these nodes. Experiments have shown that this is not

guaranteed with the current version of PQ-LBB.

Therefore, the procedure needs to be reviewed thoroughly. It is essential to find an

iteration procedure that requires less computational resources and needs less time to com-

plete. A suitable algorithm would start from a new formulation of the model itself that

reduces the size of the problem, and builds on that to tighten the relaxation in order to

have an efficient solution algorithm. This will be shown in Sections 2.5-2.7.
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2.5 Modified Model

The model developed in this section builds on the model in Section 2.2. The major dif-

ference between the two models relies on the way allocation of customers is done to open

facilities when the cost of service is higher than the penalty cost. A detailed discussion

is given after the model formulation. Moreover, the modified model has less number of

variables than the preliminary. This will help in improving the performance of the solution

algorithms.

In this section, we reformulate the uncapacitated fixed-charge location problem which

considers the preferences of customers and the reliability of facilities. A central planner

selects facility locations from a set of candidate sites to minimize the total cost of opening

facilities and providing service. Each customer has a strict preference order over a subset of

the candidate sites, and uses her most preferred available facility. If that facility fails due

to a disruptive event, the customer attends her next preferred available facility. This model

bridges the gap between the location models that consider the preferences of customers

and the ones that consider the reliability of facilities.

The main contribution of this section is providing a formulation of the problem that

(1) gives customers full power to decide on the allocation based on their preference order,

and (2) reduces the number of variables.

Let I be the set of customer types and J be the set of candidate facility sites. Each

customer type, referred to as “customer” hereafter, is characterized by a preference list

over the set of candidate facility sites, a service cost vector and a demand value.

We denote the demand of customer i ∈ I by ηi and the fixed cost of opening facility

j ∈ J by fj. Let dij be the cost of serving customer i at location j. Each customer i has

a strict preference order over a subset of the candidate sites. Let h(i, j) be the order of

facility j ∈ J in the preference list of customer i. If facility j ∈ J is less preferred than

facility k ∈ J for customer i, that is, h(i, j) > h(i, k), we denote it by j <i k.

The facility at site j fails with probability qj ∈ [0, 1] independent of other facilities.

Each customer may patronize up to |R| ≥ 1 backup facilities in the order of preference,

and attends the backup facility at level r ≤ |R| if and only if the facilities at levels
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Figure 2.2: Demonstration of Assignment Based on |R| and Preference List: There are

4 facilities and 3 customers in this small example. The number of backup levels |R| = 3

and J is the Dummy facility. The preference list of each customer is given on the left.

Customer 2 does not prefer to use facility A and B. Similarly, customer 3 does not prefer

to use facilities C and D. A feasible solution is given on the right. Facilities A, B and D

are open. Customers use their most preferred open facility in the first backup level. They

are served by the Dummy facility J in the last backup level.

1, . . . , r − 1 fail. Note that the preference list of a customer may include less than |R|
facilities (see Figure 2.2), in which case the number of backup facilities for that customer

will be limited by the size of her preference list. The first backup level always includes the

most preferred available facility that is used by the customer in the absence of any failure.

In other words, the facility at the first backup level is not actually a “backup” facility,

but rather it is used by the customer under normal operating conditions when there is no

disruption. Furthermore, the last backup level always includes a dummy facility J , which

is assumed to serve the customer when all facilities in the earlier backup levels fail (see

Figure 2.2). Customer i incurs a disutility cost of not accessing service, φi when she has to

use the dummy facility. For the dummy facility, it is assumed that the fixed cost fJ = 0,

the failure probability qJ = 0 and the service cost diJ = φi.

In our model, it is assumed that failures happen, if any, before customers make trips

to any facilities. In other words, by the time the demand requires fulfillment, it will be

known with certainty which facilities are available and which are not. Available facilities

from that point on are expected to remain available throughout the fulfillment period, and

no failed facility would become available again.
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Let binary variable Xj be one if facility j is open, and zero otherwise. If j ∈ J is the

sth most preferred facility for customer i, then she may have facility j only at a backup

level that is less than or equal to s. This is because, if customer i has facility j at backup

level r > s, then all facilities in the first (r−1) ≥ s backup levels should be more preferred

than facility j, but this contradicts the fact that j is the sth most preferred facility. For a

given backup level r and customer i, we denote the set of facilities that satisfy h(i, j) ≥ r

by Jir ⊆ J . The Dummy facility J is included in Jir. We denote the set of backup levels

by R = {1, . . . , R}. For a given facility j and customer i, the set of backup levels that

satisfy r ≤ h(i, j) is given by Rij ⊆ R. We define binary variable Yijr to be one if customer

i chooses facility j at backup level r, and zero otherwise. For customer i, binary variable

Yijr is defined only for (j, r) pairs such that j ∈ Jir and r ∈ Rij.

Finally, let variable Pir denote the probability that customer i seeks service at backup

level r.

The reliable fixed-charge facility location problem with order (RUFLO) is formulated

as:
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(RUFLO) Ψ∗ = min
∑
j∈J

fjXj +
∑
i∈I

∑
j∈J

∑
r∈Rij

ηidij(1− qj)PirYijr (2.8a)

s.t.
∑
j∈Jir

Yijr ≤ 1 i ∈ I, r ∈ R, (2.8b)

Yijr ≤
∑

k∈Ji,r−1,j<ik

Yi,k,r−1 i ∈ I, r ∈ R \ {1}, j ∈ Jir, (2.8c)

∑
r∈Rij

Yijr ≤ Xj i ∈ I, j ∈ J , (2.8d)

∑
r∈RiJ

YiJr = 1 i ∈ I, (2.8e)

1−Xm +
∑
s<r

Yims ≥
∑
j<im

Yijr i ∈ I, r ∈ R,m ∈ Jir, (2.8f)

Pi1 = 1 i ∈ I, (2.8g)

Pir ≥ Pi,r−1
∑

k∈Ji,r−1

qkYi,k,r−1 i ∈ I, r ∈ R \ {1}, (2.8h)

Xj, Yijr ∈ {0, 1} i ∈ I, j ∈ J , r ∈ Rij. (2.8i)

The objective function (2.8a) minimizes the fixed cost of opening facilities plus the

expected service cost. Constraints (2.8b) ensure that customers do not use more than one

facility at each backup level. Constraints (2.8c) state that if customer i chooses facility

j at backup level r then she should have chosen a more preferred facility at level r − 1.

Constraints (2.8d) prohibit using a closed facility and ensures that an open facility is used

at most in one backup level for each customer. Constraints (2.8e) guarantee that each

customer chooses the dummy facility at some backup level.

Constraints (2.8f) assert that if customer i chooses facility j at backup level r, she should

have chosen the more preferred facility m at an earlier level s < r given that m is open.

If facility m is closed (i.e., Xm = 0), constraints (2.8f) are not active. On the one hand,

constraints (2.8f) do not guarantee that if customer i uses a facility at level r, then she

should be using other facilities at all levels before r. On the other hand, constraints (2.8c)

do not ensure that if a facility preferred by customer i is open, then it must be used before
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any other less preferred facility is used. Thus, we need constraints (2.8c) and (2.8f) both.

Constraints (2.8g) and (2.8h) model the recursive probability equations. We set Pi1 = 1

because customers always seek service at the first backup level. For r > 1, Pir equals the

probability that customer seeks service at backup level r−1, and the facility at that backup

level fails. Finally, constraints (2.8i) enforce binary restrictions.

Note that we could have defined d̂ij = ηidij and used in the objective function. However,

the inclusion of capacity constraints (see Section 2.9) requires the knowledge of the demand

parameter separately. Also, the datasets used in testing report dij and ηi separately.

Therefore, the formulation will keep these parameters separated.

We now discuss the modifications of this model over the model of Section 2.2. Consider

customer i ∈ I that has facility j ∈ J in its preference list, and j is open. Facility j is

currently the most preferred available facility to customer i. If the service cost dij is higher

than the penalty cost φi, the model in Section 2.2 states that customer is assigned to the

Dummy facility J at that particular level. However, the modified model of this section

would respect the preferences of customers regardless of the service cost. In other words,

the central authority has no power in amending the preference list of customers. This is

a major change in the models, and can have significant impact on the resulting location

and allocation decisions. The other main difference between the preliminary and modified

models is the number of variables. Note that this formulation is almost similar in function,

but different in the number of variables compared to the model in Section 2.2. Specifically,

because Pijr is replaced by Pir, there are |I|×(|J |−1)×|R| less variables. This significant

difference will prove to be useful in faster convergence, as is shown in Section 2.7.

The nonlinear term PirYijr in (2.8a) and (2.8h) is a product of a continuous variable

and a binary variable. Thus, we can replace PirYijr with an auxiliary variable Wijr, and

enforce Wijr = PirYijr by Wijr ≤ Pir, Wijr ≤ Yijr, Wijr ≥ Pir + Yijr − 1, Wijr ≥ 0.

2.6 Solution Techniques: Modified Model

This section aims at developing solution techniques to the modified model presented in

Section 2.5. The main contribution of this section are: (1) proposing a constraint which
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significantly tightens the LP relaxation of the formulation, and (2) developing a Lagrangian

branch-and-bound approach and a branch-and-cut approach based on a relaxed formula-

tion. As a result of the modifications of the model itself which are presented in Section

2.5, and the solution techniques shown here, these contributions result in a significant im-

provement in the performance of the algorithm. More results and analysis are discussed in

Section 2.7.

2.6.1 Tighter LP

Our computational experiments reveal that formulation (2.8) has weak linear program-

ming (LP) relaxation, and therefore off-the-shelf solvers such as CPLEX may exhibit poor

performance for large problem instances. We propose a set of constraints to tighten the

LP relaxation of RUFLO based on the following observation that is valid for every integer

feasible solution. Customer i ∈ I either selects a facility j ∈ Jir \ {J} at backup level

r ∈ R, or she selects the Dummy facility J at an earlier backup level s < r. This relation

can be enforced by the constraint set offered in Remark 1.

Remark 1 There exist an optimal solution to RUFLO in which∑
j∈Jir

Yijr +
∑
s<r

YiJs = 1 i ∈ I, r ∈ R. (2.9)

Constraints (2.8b) are dominated by (2.9). We show that constraints (2.8c) are also

implied and not necessary after adding (2.9). In particular, constraints (2.8c) enforce that

Yijr ≤ u when
∑

k∈Ji,r−1,j<ik
Yi,k,r−1 = u ∈ [0, 1]. There can be three different cases when∑

k∈Ji,r−1,j<ik
Yi,k,r−1 = u.

Case 1: Yi,j,r−1 = 1− u. In this case, Yijr ≤ u from (2.8d).

Case 2:
∑

k∈Ji,r−1,k<ij
Yi,k,r−1 = 1 − u. In this case, 1 − Xj +

∑
s<r−1 Yijs ≥ 1 − u

from (2.8f). Therefore,
∑

s≥r−1 Yijs ≤ u, and so Yijr ≤ u from (2.8d).

Case 3:
∑

s<r−1 YiJs = 1 − u. In this case,
∑

s<r YiJs ≥ 1 − u, and thus Yijr ≤ u

from (2.9).
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As a result, Yijr ≤ u in all three cases when
∑

k∈Ji,r−1,j<ik
Yi,k,r−1 = u. The Reformula-

tion of RUFLO Using the Proposed Valid Inequality (RUFLO-R) is given by:

(RUFLO-R) min
∑
j∈J

fjXj +
∑
i∈I

∑
j∈J

∑
r∈Rij

ηidij(1− qj)Wijr (2.10a)

s.t.
∑
j∈Jir

Yijr +
∑
s<r

YiJs = 1 i ∈ I, r ∈ R, (2.10b)

(2.8d)− (2.8f)

Pi1 = 1 i ∈ I, (2.10c)

Pir ≥
∑

k∈Ji,r−1

qkWi,k,r−1 i ∈ I, r ∈ R \ {1}, (2.10d)

Wijr ≤ Pir, Wijr ≤ Yijr, Wijr ≥ Pir + Yijr − 1, i ∈ I, j ∈ J , r ∈ Rij, (2.10e)

Xj, Yijr ∈ {0, 1},Wijr ≥ 0, i ∈ I, j ∈ J , r ∈ Rij. (2.10f)

Corollary 1 The LP relaxation of RUFLO-R is tighter than the LP relaxation of RUFLO.

Corollary 1 follows since constraints (2.8b) are dominated by (2.9). Next, we present

two solution algorithms: a Lagrangian branch-and-bound algorithm and a branch-and-cut

algorithm. We also propose a neighborhood search method to generate upper bounds.

2.6.2 Lagrangian Branch-and-Bound Algorithm

Let L be a partition of customers such that
⋃
`∈L I` = I. We define binary variable Z`j

to be a copy of the Xj variable for each customer subset ` ∈ L. In any feasible solution

to RUFLO-R, the value of Z`j must be the same in all customer groups for each facility

site j. We later relax this requirement to decompose the RUFLO-R into customer group

subproblems.

Let Z` := {Z`j, j ∈ J }, W` := {Wijr, i ∈ I`, j ∈ J , r ∈ Rij},
Y` := {Yijr, i ∈ I`, j ∈ J , r ∈ Rij}, P` := {Pir, i ∈ I`, r ∈ R}, and define the solution set

68



S` := {(Z`,Y`,W`,P`) : (2.11a)− (2.11h)}, where∑
j∈Jir

Yijr +
∑
s<r

YiJs = 1 i ∈ I`, r ∈ R, (2.11a)∑
r∈Rij

Yijr ≤ Z`j i ∈ I`, j ∈ J , (2.11b)

∑
r∈RiJ

YiJr = 1 i ∈ I`, (2.11c)

1− Z`m +
∑
s<r

Yims ≥
∑
j<im

Yijr i ∈ I`, r ∈ R,m ∈ Jir, (2.11d)

Pi1 = 1 i ∈ I`, (2.11e)

Pir ≥
∑

k∈Ji,r−1

qkWi,k,r−1 i ∈ I`, r ∈ R \ {1}, (2.11f)

Wijr ≤ Pir, Wijr ≤ Yijr, Wijr ≥ Pir + Yijr − 1i ∈ I`, j ∈ J , r ∈ Rij, (2.11g)

Zij, Yijr ∈ {0, 1},Wijr ≥ 0 i ∈ I`, j ∈ J , r ∈ Rij. (2.11h)

The split-variable reformulation of RUFLO-R is then given by:

Ψ∗ = min
∑
`∈L

∑
j∈J

1

|L|
fjZ`j +

∑
i∈I`

∑
j∈J

∑
r∈Rij

ηidij(1− qj)Wijr

 (2.12a)

s.t. (Z`,Y`,W`,P`) ∈ S` ` ∈ L, (2.12b)

Xj − Z`j = 0 ` ∈ L, j ∈ J . (2.12c)

Note that constraints (2.12c) ensure that the objective function (2.12a) is exactly equal to

the original objective function (2.8a). We relax the split-variable formulation by replacing

constraints (2.12b) with

(Z`,Y`,W`,P`) ∈ conv(S`), ` ∈ L, (2.13)

where conv(S`) denotes the convex hull of S`. Let S` be the index set of solutions in S`,

that is, S` = {(Ẑs
`, Ŷ

s
` ,Ŵ

s
` , P̂

s
`) : s ∈ S`}. Then, the convex hull of S` can be expressed as:

conv(S`) =

{∑
s∈S`

λs`(Ẑ
s
`, Ŷ

s
` ,Ŵ

s
` , P̂

s
`),
∑
s∈S`

λs` = 1, λs` ≥ 0

}
. (2.14)
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Based on (2.14), we obtain the relaxation of the split-variable formulation as:

min
∑
`∈L

∑
s∈S`

∑
j∈J

1

|L|
fjẐ

s
`j +

∑
i∈I`

∑
j∈J

∑
r∈Rij

ηidij(1− qj)Ŵ s
ijr

λs` (2.15a)

s.t. Xj −
∑
s∈S`

Ẑs
`jλ

s
` = 0 j ∈ J , ` ∈ L, (µ`j) (2.15b)∑

s∈S`

λs` = 1 ` ∈ L, (θ`) (2.15c)

λs` ≥ 0 ` ∈ L, s ∈ S`. (2.15d)

The number of λs` variables in formulation (2.15) equals
∑

`∈L |S`|, which can be enor-

mous even for moderate-size instances. Therefore, we use a subgradient-based cutting

plane method to solve the dual of problem (2.15) that is given by:

max
∑
`∈L

θ` (2.16a)

s.t.
∑
`∈L

µ`j = 0, j ∈ J , (2.16b)

θ` −
∑
j∈J

Ẑs
`jµ`j ≤

∑
j∈J

1

|L|
fjẐ

s
`j +

∑
i∈I`

∑
j∈J

∑
r∈Rij

ηidij(1− qj)Ŵ s
ijr, ` ∈ L, s ∈ S`. (2.16c)

Let F`(µ`) =
∑

j∈J

(
1
|L|fj + µ`j

)
Z`j +

∑
i∈I`

∑
j∈J

∑
r∈Rij

ηidij(1− qj)Wijr and define the

customer group subproblem ` ∈ L as:

D`(µ`) = min{F`(µ`) : (Z`,Y`,W`,P`) ∈ S`}, ` ∈ L. (2.17)

Then, formulation (2.16), also known as the Lagrangian dual problem, can be written as:

Ψ∗LD = max
∑
`∈L

θ` (2.18a)

s.t.
∑
`∈L

µ`j = 0 j ∈ J , (2.18b)

θ` ≤ D`(µ`) ` ∈ L. (2.18c)
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Note that D`(µ`) is concave in µ`, and its subgradient at µk
` is Zk

` , where (Zk
` ,W

k
` ,Y

k
` ,P

k
` )

is an optimal solution to (2.17). It follows from the subgradient inequality that

θ` ≤ D`(µ`) ≤ D`(µ
k
` ) +

∑
j∈J

Zk
`j(µ`j − µk`j), ` ∈ L. (2.19)

The Lagrangian dual problem (2.18) can be solved optimally by a cutting plane method

that enforces constraints (2.18c) with subgradient inequalities (2.19) as follows:

max
∑
`∈L

θ` (2.20a)

s.t.
∑
`∈I

µ`j = 0 j ∈ J , (2.20b)

θ` ≤ D`(µ
k
` ) +

∑
j∈J

Zk
`j(µ`j − µk`j) ` ∈ L, k ∈ K`, (2.20c)

where K` is the set of subgradients for ` ∈ L. The customer group subproblem (2.17)

must be solved to generate the subgradient inequality (2.19) for each ` ∈ L. This can be

computationally expensive if the size of (2.17) is large. We can alleviate this difficulty by

not optimally solving subproblem (2.17). In particular, let U`(µ`) be the objective function

of a feasible solution (Z̃k
` ,W̃

k
` , Ỹ

k
` , P̃

k
` ) to the customer group subproblem ` ∈ L. Then,

the subgradient inequality(2.19) can be formulated as:

θ` ≤ U`(µ`) ≤ U`(µ
k
` ) +

∑
j∈J

Z̃k
`j(µ`j − µk`j), ` ∈ L. (2.21)

The feasible solution (Z̃k
` ,W̃

k
` , Ỹ

k
` , P̃

k
` ) can be obtained using a heuristic, or it can be set

as the incumbent solution of a branch-and-bound algorithm after a certain running time.

The convergence of the proposed Lagrangian decomposition is usually slow. Especially

during the initial iterations, the algorithm can move from one µk to another one without

making significant progress. Therefore, we utilize a proximal bundle method that optimizes

the objective function (2.22) obtained by subtracting a weighted penalty term from the

objective function (2.20a).

max
θ,µ

∑
`∈L

θ` −
1

2
τ
∑
`∈L

∑
j∈J

(µ`j − µ+
`j)

2, (2.22)
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Table 2.27: Proximal Bundle Method to Solve the Lagrangian Dual problem (2.18)

Initialization Set ε ← 10−5, k ← 1, τ ← 10−5, µ+
` ← 0, ` ∈ L. Solve

problem (2.17) with µk
` = µ+

` for each ` ∈ L, curObj ←∑
`D`(µ

+
` )

Step 1 Solve problem (2.20) with objective function (2.22) to obtain

µk, and let v =
∑

` θ
k
` − curObj . If v/(1 + |curObj|) < ε,

terminate. Else k ← k + 1.
Step 2 Solve problem (2.17) with µk

` , for all ` ∈ L, newObj ←∑
`D`(µ

k
` ).

Step 3 Update τ ← min (max (u, τ/10, 10−7), 10τ), where u =

1.5τ(1− (newObj− curObj)/v).

Step 4 If newObj − curObj ≥ 10−5v, update µ+ ← µk, curObj ←
newObj. Goto Step 1.

where µ+ is the current proximity center and τ ≥ 0 is the weight of the quadratic penalty

term. We slightly modify the updating rules proposed by Lubin et al. (2013) based on

preliminary computations. Table 2.27 summarizes the steps of our implementation.

Due to the nonconvexities caused by binary variables Z` and Y` in constraints (2.12b),

Ψ∗LD will provide a lower bound on Ψ∗. We use the branch-and-bound algorithm presented

in Table 2.28 to reduce the gap between Ψ∗LD and Ψ∗. In Step 2 of this algorithm, problem

P , the parent of which has the lowest Lagrangian bound among all processed problems, is

solved. We fathom P if it is infeasible or if its lower bound is greater than the incumbent

objective value. In Step 3, a heuristic neighborhood search is performed to improve the

upper bound. In Step 4, branching is performed on the copy variables Z`, ` ∈ L. We select

facility j with the highest expected service cost that is not agreed by all customer group

problems for branching. This variable selection rule is used to make a significant impact

on the customer group subproblem solutions.
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Table 2.28: Lagrangian Branch-and-Bound Algorithm.

Step 0(Initialization) - Set the upper bound Ψ̄ =∞.

- Let the set of unsolved problems P include problem (2.10).

Step 1(Stopping) - If P = ∅, the solution corresponding to Ψ̄ is optimal.

Step 2 (Processing) - Select and delete a problem P from P .

- Solve problem (2.18) to get the Lagrangian bound Ψ∗LD(P ).

- If P is infeasible, or if Ψ∗LD(P ) ≥ Ψ̄, go to Step 1.

Step 3 (Heuristic Solution) - For each customer group ` ∈ L, let ΨN
` (P ) be the objective

value of the best solution in the neighborhood of ZP
` , update

Ψ̄ := min
{

Ψ̄,ΨN
` (P )

}
(see Eq. (2.24) for the neighborhood

definition).

- Delete from P all problems P ′ with ΨLD(P ′) ≥ Ψ̄.

Step 4 (Branching) - If customer group subproblem solutions ZP
` are the same for

all ` ∈ L, that is, ZP
` = ZP ∀` ∈ L, then go to Step 1.

- Select a facility j such that ZP
`j is not identical for all ` ∈ L.

- Add two new problems P1 and P2 to P obtained from P by

adding the constraints Z`j = 0 and Z`j = 1 ∀` ∈ L. Go to

Step 1.

2.6.3 Branch-and-Cut Algorithm

We propose a primal relaxation of the RUFLO-R by replacing (1−qj)Pir term in the objec-

tive function (2.8a) with fixed but optimistic failure probability estimates Qijr. Aboolian

et al. (2013) proposed a similar relaxation idea for the reliable facility location problem.

In this model, unlike Aboolian et al. (2013), we incorporate customer preferences. More-

over, we tighten the failure probability estimates progressively when solving the relaxed

problem. Consider assigning customer i ∈ I to facility j ∈ Jir at level r ∈ R. Let

q[1] ≤ q[2] ≤ . . . ≤ q[r−1] be an ordering of failure probabilities of the r − 1 most reliable

sites in {k ∈ Jir | j <i k}. We initialize Qijr = (1− qj)
∏r−1

t=1 q[t].
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Lemma 1 If Yijr = 1, then Qijr ≤ (1− qj)Pir for all i ∈ I, r ∈ R, j ∈ Jir in any feasible

solution to the RUFLO-R.

Proof: From constraints (2.8g) and (2.8h), if Yijr = 1, then (1 − qj)Pir is equal to the

probability that facilities serving customer i at backup levels 1, . . . , r − 1 all fail indepen-

dently, and facility j does not fail. Only those facilities that customer i prefers to j, that

is, from set {k ∈ Jir | j <i k}, can serve customer i at levels 1, . . . , r − 1. By definition,

Qijr assumes that the most reliable r − 1 facilities in {k ∈ Jir | j <i k} serves customer i

at levels 1, . . . , r − 1. �

Replacing (1 − qj)Pir with fixed failure probabilities Qijr in the formulation of the

RUFLO and using an auxiliary variable Z that represents the total service cost we obtain

the following mixed-integer program:

Ψ′ = min
∑
j∈J

fjXj + Z (2.23a)

s.t. (2.8d)− (2.8i), (2.10c)

Z ≥
∑
i∈I

∑
j∈J

∑
r∈Rij

ηidijQijrYijr, (2.23b)

Xj, Yijr ∈ {0, 1} i ∈ I, j ∈ J , r ∈ Rij.

It follows from Lemma (1) that Ψ′ ≤ Ψ∗. Note that constraint (2.23b) and auxiliary

variable Z are not necessary to formulate the relaxed problem, however they will be useful

in our implementation.

Any location vector X̂ ∈ {0, 1}|J | obtained by solving the relaxed problem (2.23) gen-

erates a feasible solution to RUFLO-R. This is simply achieved by assigning customers to

open facilities in X̂ with respect to their preferences. The value of this feasible solution

provides an upper bound to RUFLO-R. To improve this upper bound, we perform a neigh-

borhood search. In particular, distance-h neighborhood of a given facility location vector

X̂ is defined as:

Nh(X̂) = {X′ ∈ {0, 1}|J | : |
∑
j∈J

|X̂j −X ′j| ≤ h}. (2.24)
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The neighborhood search procedure calculates the objective value of all facility location

vectors inNh(X̂) and returns the best one. If the objective value corresponding to a location

vector in Nh(X̂) is better than the objective value associated with X̂, the search restarts

from this new location vector. This procedure is repeated until no further improvement

is achieved. All location vectors in Nh(X̂) can be removed from the feasible region of

problem (2.23) since their objective values are already examined. Let SX̂ denote the set

of open facility locations in X̂, that is, SX̂ = {j ∈ J : X̂j = 1}. We use the following

supervalid inequality to remove all location vectors in Nh(X̂) from the feasible region of

problem (2.23): ∑
j∈SX̂

Xj −
∑

j∈J\SX̂

Xj ≤ |SX̂| − h− 1. (2.25)

Note that an improved lower bound and another location vector can be obtained by

resolving the relaxed problem (2.23) after adding the cut (2.25). This overall process of

obtaining upper bounds from the neighborhood search and generating lower bounds by

solving the relaxed problem (2.23) with additional cuts of type (2.25) can be repeated a

given number of times or until the gap between the lower and upper bounds is sufficiently

small. As also noted by Aboolian et al. (2013), this search-and-cut procedure is very similar

to a branch-and-bound algorithm because it must exhaust all of the possible solutions to

find a global optimal solution.

When solving the relaxed problem (2.23), we use the lazyconstraint callback function

of CPLEX in which the neighborhood search is performed for each integer solution found in

the branch-and-bound tree. We then add the cutting plane (2.25) globally and update the

upper bound as necessary. Furthermore, we tighten the failure probability estimates Qijr

locally based on the local upper bound Uj ∈ {0, 1} of each Xj variable at the incumbent

branch-and-bound tree node. In particular, only those facilities that customer i prefers to

j whose upper bound is one, that is, from set {k ∈ Jir | j <i k and Uk = 1}, can serve

customer i at levels 1, . . . , r − 1. Let q′[1] ≤ q′[2] ≤ . . . ≤ q′[r−1] be an ordering of failure

probabilities of the first r − 1 most reliable sites in {k ∈ Jir | j <i k and Uk = 1}. We set

the updated failure probability estimate Q′ijr = (1− qj)
∏r−1

t=1 q
′
[t]. Note that if there is less

than r − 1 facilities in {k ∈ Jir | j <i k and Uk = 1}, then Q′ijr = 0. After updating the
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failure probability estimates, we add the following local cut to the node subproblem:

Z ≥
∑
i∈I

∑
j∈J

∑
r∈Rij

ηidijQ
′
ijrYijr (2.26)

This implementation turned out to be consistently faster than re-solving the relaxed prob-

lem each time a cutting plane is added to the model.

2.7 Computational Results and Analyses: Modified

Model

We test the computational performance of the proposed solution methods. Similar to

Cánovas et al. (2007), the datasets used in our experiments are partly taken from Beasley

(1990). Specifically, the facility opening cost fj, service cost dij and demand ηi values are

taken from the data file capa for the uncapacitated warehouse location problem in Beasley

(1990). This data file has 1,000 customers and 100 facilities. The number of facilities is

less than 100 in all of our test instances, so we sample facilities from the capa data file

without replacement. To generate an instance with less than 1,000 customers, we sample

customers from the capa data file without replacement. To generate an instance with more

than 1,000 customers, we first include all customers in the capa file, and generate additional

customers by taking the average of two randomly sampled customers.

If there are n customers, then for each facility j ∈ J , we multiply the opening cost

fj by n × 10−3 to adjust for the fact that facilities can serve up to 1,000 customers in

the capa data file. The failure probability of each facility except the dummy facility is

calculated using the formula qj = 0.01 + 1.5e−max{1,d1j/6000}. According to this formula,

failure probability of facility j decreases as the cost of serving customer 1 at j (or the

distance between customer 1 and facility j) increases. Aboolian et al. (2013) used a similar

formula to generate facility failure probabilities. Recall that qJ = 0 for the dummy facility.

We vary the number of backup levels |R| ∈ {4, 5, 6}, and set the disutility cost φi = 5×105

for all customers. Finally, we generate the preferences of the customers randomly using a

method proposed by Cánovas et al. (2007) (see Appendix A).
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The preliminary experiments showed that the Lagrangian branch-and-bound algorithm

(LB&B) and the branch-and-cut algorithm (B&C) may not be competitive for relatively

small instances which can be solved by CPLEX within 3 hours using default settings. The

results in Section 2.4 show that the previous implementations of the algorithm can handle

smaller instances. Therefore, the problem sizes in Table 2.29 are chosen such that most

instances cannot be solved by CPLEX within 3 hours.

The LP Ratio column in Table 2.29 shows the ratio of the LP relaxation of the RUFLO-

R to the LP relaxation of the RUFLO. The optimality gaps of the LB&B, B&C and

CPLEX are reported after 3-hour run time. For the LB&B algorithm, we partition the set

of customers into 12 groups, that is, |L| = 12, and fixed the distance parameter h = 3 in

the neighborhood search algorithm. We solve the group subproblems in parallel with 12

cores using CPLEX 12.7 in single thread mode on each core. Maximum 100 iterations are

allowed in the proximal bundle method after which we branch as described in Section 2.6.2.

The neighborhood search distance parameter h has more significant impact on the

performance of the B&C algorithm compared to the LB&B algorithm. Therefore, we run

the B&C algorithm three times with h ∈ {2, 3, 4} for each instance, and report the smallest

optimality gap along with the corresponding h. We run the B&C algorithm on a single

core as its implementation uses callback functions of CPLEX, and therefore do not allow

for parallelization easily. To ensure fair comparisons, we also run CPLEX in the single

thread mode.

As can be seen in Table 2.29, the LP relaxation of the RUFLO-R is at least 2.5 times

tighter than the LP relaxation of the RUFLO. Therefore, we consider the RUFLO-R in the

rest of our experiments. CPLEX 12.7 returns the smallest optimality gap for six instances

with 96 customers and 50 facilities after 3-hour run time. The B&C returns smaller gaps for

all other instances. The LB&B returns larger optimality gap than the B&C for all instances

in Table 2.29. The LB&B algorithm, however, is still practically valuable, because it can

be applied to instances with much larger number of customers than the ones reported in

Table 2.29. This is due to the fact that the LB&B algorithm can decompose the set of

customers into smaller groups, whereas the B&C does not allow for such decomposition.

We consider instances with extensively larger number of customers in Table 2.30. Each
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customer (or customer type) in our model has a preference list. In practice, solving prob-

lems with large number of customers might be required to increase granularity when con-

sidering diverse preferences of several different customer types. For the LB&B algorithm,

we partition the set of customers into 48 groups, that is, |L| = 48, and fix the distance

parameter h = 3 in the neighborhood search algorithm. We solve the group subproblems

in parallel with 48 cores using CPLEX 12.7 on each core. The group subproblems cannot

be solved optimally within a reasonable time due to their gigantic size. Therefore, we use

the lower bound obtained by CPLEX after one hour in the Lagrangian bound calculations.

We perform only one iteration in the proximal bundle method. We also attempt to solve

each instance using CPLEX 12.7 without applying any decomposition. We run CPLEX

for one hour with its default settings on a single compute node with 32 GB memory and

8 cores, which compose the global limits set by our computing environment.

The Lag/CPLEX column in Table 2.30 reports the ratio of the Lagrangian bound to

the lower bound of CPLEX after one hour. As can be seen, the Lagrangian lower bound is

at least ten times stronger across all instances. The optimality gap of the LB&B algorithm

is significantly smaller compared to CPLEX 12.7. Furthermore, the optimality gap of the

LB&B decreases as the number of facilities decreases, although the number of customers

increases. In summary, our results suggest that the LB&B algorithm outperforms CPLEX

for large-scale instances, while the B&C algorithm should be used for smaller problems.

Also, the results show that the gap generated after a fixed time does not grow with larger

instances. This is an important feature showing the stability of the algorithms.
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Table 2.29: Problem Sizes of Large Test Instances and Optimality Gaps After 3-Hour Run

Time

|I| |J | |R| LP Ratio LB&B (%) B&C (%) h CPLEX (%)

96 50 3 8.5 18.5 11.0 3 10.2

96 50 3 4.0 14.9 9.7 3 (3,026.6 s)†

96 50 3 10.9 15.7 8.0 3 3.9

96 50 4 25.6 24.3 9.3 3 8.8

96 50 4 10.5 12.8 6.4 3 (8,547.9 s)†

96 50 4 36.8 21.3 6.6 3 9.6

96 50 5 84.0 23.9 9.9 2 16.2

96 50 5 21.5 17.0 5.5 3 2.2

96 50 5 117.0 22.8 6.8 3 14.0

192 40 3 5.0 19.3 12.5 2 26.3

192 40 3 4.0 14.3 6.2 3 12.8

192 40 3 5.4 16.9 10.2 2 22.1

192 40 4 17.0 21.2 15.3 2 26.3

192 40 4 13.4 16.2 5.2 2 11.7

192 40 4 20.6 16.6 8.2 2 22.5

192 40 5 57.6 21.5 17.5 4 29.7

192 40 5 55.2 16.4 6.6 3 18.9

192 40 5 67.5 17.0 10.9 3 26.4

240 30 3 3.6 11.1 8.7 4 10.9

240 30 3 2.5 11.8 5.7 4 10.7

240 30 3 3.7 13.4 10.7 2 13.9

240 30 4 12.3 12.7 6.6 4 12.7

240 30 4 5.0 13.3 3.9 4 6.0

240 30 4 12.3 16.1 10.7 4 16.0

240 30 5 43.5 12.8 8.9 4 22.0

240 30 5 7.7 14.3 5.7 4 15.4

240 30 5 43.0 16.7 12.6 4 21.1

† CPLEX found the optimal solution in less than 3 hours.
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Table 2.30: Problem Sizes of Extremely Large Test Instances and Optimality Gaps After

1-Hour Run Time

|I| |J | |R| Lag/CPLEX LB&B (%) CPLEX (%)

7,200 50 3 21.9 31.6 99.8

7,200 50 3 23.9 31.0 99.8

7,200 50 3 18.7 32.0 99.8

7,200 50 4 21.3 32.4 99.8

7,200 50 4 23.8 30.4 99.8

7,200 50 4 18.5 31.3 99.8

7,200 50 5 20.8 33.9 99.8

7,200 50 5 23.8 30.4 99.8

7,200 50 5 18.5 31.2 99.8

8,382 40 3 14.0 28.2 95.4

8,382 40 3 16.5 27.3 96.1

8,382 40 3 23.5 28.2 97.2

8,382 40 4 17.2 27.7 99.8

8,382 40 4 19.4 26.6 99.8

8,382 40 4 26.3 27.1 99.8

8,382 40 5 17.1 27.9 99.8

8,382 40 5 19.4 26.6 99.8

8,382 40 5 26.1 27.5 99.8

9,600 30 3 12.3 21.5 94.4

9,600 30 3 10.4 21.0 93.3

9,600 30 3 19.3 21.1 99.8

9,600 30 4 14.7 21.6 99.7

9,600 30 4 13.4 20.6 99.6

9,600 30 4 19.1 21.3 99.8

9,600 30 5 14.4 23.1 99.7

9,600 30 5 13.4 20.7 99.7

9,600 30 5 19.1 21.1 99.7
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2.8 Applications on Healthcare

The models discussed here can be applied in various settings. Some applications are dis-

cussed here with the aim of showing importance and applicability of the model.

2.8.1 Cancer Screening

The proposed methodology can be applied in locating preventative healthcare facilities such

as those providing breast and colorectal cancer screening. Mammography and colonoscopy

screening reduce cancer risk and improve health-outcomes (Ayer et al., 2012; Erenay et al.,

2014). Therefore, several models are proposed for locating mammography and endoscopy

centers (Akhundov, 2015; Haase and Müller, 2015; Uzunlar et al., 2012; Verter and Lapierre,

2002; Verter and Zhang, 2015; Vidyarthi and Kuzgunkaya, 2015; Zhang et al., 2009, 2010,

2012c). These applications are important because accessibility of screening services is a

key factor for the compliance of individuals at risk to the screening programs (Zhang et al.,

2009).

However, the allocation of patients to the preventative healthcare facilities should be

based on user choice (Verter and Lapierre, 2002; Zhang et al., 2009). This is because

patients consider both ease of access and quality of care when choosing the facility they

attend. That is, a significant portion of patients bypass the closest endoscopy facility for

having their colonoscopy screening in a better clinic both in rural and urban areas (Charl-

ton et al., 2015). Furthermore, patients may not receive their service form a preferred

preventative medicine facility due to stochastic factors such as unfavourable road condi-

tions, scheduling issues, or congestion in the waiting list. In such a case, patients may need

to visit the next facility in their preference list. Therefore, it is desirable to consider patient

preferences and facility availability when determining the optimal locations of preventative

healthcare facilities.

Verter and Lapierre (2002) and Zhang et al. (2012c) assumed that patients attend

to the mammography center with shortest travel time. However, the probability of re-

questing breast cancer screening linearly decrease with the distance to the closest facility.

In the models of Zhang et al. (2009) and Zhang et al. (2010), patients choose attending
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the mammography center that serve them within the shortest expected service time and

participation rate to breast cancer screening linearly decreases as service time increases.

Zhang et al. (2012c) also proposed a second model assuming that patients may attend each

open mammography center with particular probabilities. These probabilities are modeled

as multinomial logit functions and they are proportional to patients’ utility of receiving

service from a facility which primarily depends on distance.

Particular facility location models allow customers to patronize one of the open facilities

based on various preference mechanisms. For instance, some studies used accessibility-

based proxy preference measures such as distance, travel time, and service time (Verter

and Lapierre, 2002; Zhang et al., 2010), while some other studies assumed stochastic facility

choice with probabilities proportional to utility of using the open facilities (Müller et al.,

2009; Haase and Müller, 2013). Most models for locating preventative healthcare facilities

used one of these preference mechanisms.

Cancer screening tests can improve survival and decrease mortality by detecting cancer

at an early stage when treatment is more effective. Moreover, regular use of cervical and

colorectal cancer screening tests can prevent the development of cancer through identifica-

tion and removal or treatment of premalignant abnormalities (American Cancer Society,

2017).

Most CRC cases originate from benign growths on the inner surface of the colon and

rectum (called adenomatous polyps), which may progress to CRC (Loeve et al., 2004). This

natural progression of the CRC makes it possible for testing procedures to discover these

lesions and adenomatous polyps early on. CRC screening is one of the preventive healthcare

operations that are recommended at certain time window, but not urgent. Hence, patients

are usually given option to choose the facility at which a test is conducted.

This system also can be modeled using assumptions discussed above. Patients have well

known preferences of clinics and health centers based on quality, distance, and familiarity

with physicians and staff. They would consider the most preferred available option, but

they also might decide to go to the next most preferred available option, depending on

other factors.
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2.8.2 Senior Centers

Senior centers have become one of the most widely used services among America’s older

adults; one million senior citizens are served every day through 11,000 senior centers (Na-

tional Council on Aging, 2015). Senior centers provide services like nutrition programs,

health and wellness programs, employment assistance, and social and recreational activ-

ities, among others. The National Council on Aging reports that 75% participants visit

their center 1 to 3 times a week (National Council on Aging, 2015). Also, it has been re-

ported that participants do not necessarily go to the nearest center to them (CMU Center

for Economic Development, 2007). Instead, they might choose the one with better services

or more friends.

This system can be solved by our model. We assume seniors have preferences, based

on quality, distance, and other factors. Since visiting a senior center is voluntary and

not urgent, seniors with known preference might decide not to go to their most preferred

center, even if it is open. Instead, they would consider the next one on their list, and so

on.

Considering these two factors (availability of facilities and preferences of patients) is

important when locating senior centers which provide recreational and social activities for

elderly (Hickerson et al., 2008). Existing location models for senior centers mainly con-

sider accessibility and distance-based service demand (Drobne and Bogataj, 2015; Johnson

et al., 2005). However, utilization of these centers depends on many other factors in-

cluding alternative activities, availability of friends, affiliation with the center (Demko,

1980). Therefore, a senior may prefer to travel longer to visit a center that is closer to

friends/relatives or provides more relevant activities rather than attending to the closest

facility. In addition, a center may temporarily fail to provide services due to stochastic

factors such as unplanned maintenances, accessibility issues, and health risks.

2.8.3 Emergency Response

The proposed models can also capture dynamics of locating emergency response facilities

such as emergency operation centers, medical aid stations, evacuation points, etc. Given the
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limited government funding, it is critical to locate such facilities efficiently. Citizens should

access to or should be accessed from these facilities as quickly as possible to provide timely

relief (Chen and Yu, 2016). However, the opened emergency response facilities may become

inaccessible due to the effect of the disaster/emergency, for example, unsafe/blocked roads,

or damaged/non-operational facilities (Akgün et al., 2015; An et al., 2013; Verma and

Gaukler, 2015). In addition, it may not be reasonable to expect the citizens to travel to

assigned emergency facilities as they may visit another one (possibly traveling more) due

to having close-by relatives, seeking better quality service, or safety and welfare concerns

(Teng et al., 2014). For example, in case of civil conflicts like that in Syria, refugees do

not always travel to the camps in the closest neighboring regions or countries, but travel

more distances (even under serious safety risks) to more developed countries for welfare

concerns (Pecanha and Wallace, 2015).

2.9 Conclusions

The classical facility location models assume that a central planner makes both the location

and allocation decisions. For example, this is the case when a firm ships products to its

customers from different distribution centers. However, if the customers travel to the

facilities to obtain service, they would attend the facility of their choice. That is, once

the facilities are open, customers may not comply with the minimum cost allocation of

the central planner any more. Furthermore, different customer types may have different

preferences over the set of available facilities based on several factors such as social class,

habits, work, age, to name a few.

We introduced the reliable facility location problem with customer preferences. This

model opens facilities and allocates customers to a number of facilities in the order of their

preferences. The goal of the model is to minimize the total cost of opening facilities plus the

expected service cost. Less preferred facilities work as a backup if more preferred facilities

fail. The proposed model bridges the gap between the location models that consider the

preferences of customers and the ones that consider the reliability of facilities.

The demand, and other parameters in the model, are considered known inputs and
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do not change. However, the demand values in this model are taken as proportion with

respect to other demand values in the system. Therefore, even if the demand grows in

absolute terms, the input to the model may still be valid, provided that the proportion of

each demand to other demands is preserved. In other words, the percentages of demand

are what matters in the system, not the actual values. Nevertheless, when designing for

the long term, and proportions of demand may change. In this case, the model can still

be used. Values of demand that are obtained from time series models or other forecast

techniques will be the inputs for the model. This would ensure that the model will still be

valid after the demand growth/change.

It was shown through experimentation that the preferences of customers do affect the

location and allocation decisions. This shows the value of incorporating such characteristics

in the model. If the decision maker does not include the preferences in the model, and

customers take actions based on their preferences, the realized cost of the system would

be significantly more than the expected cost.

The proposed model is more realistic, but at the same time it is more difficult to solve.

A Lagrangian-based branch-and-bound procedure was developed to solve the model. Com-

putationally, the LBB algorithm was presented and tested using three different implemen-

tations. Using callbacks within CPLEX did not prove useful due to the limitations imposed

by CPLEX to guarantee safe data handling. The PQ-LBB was shown to be superior to the

Stack-LBB. The three implementations were unable to perform well with larger instances.

The PQ-LBB algorithm required excessive amount of time to process each node, and the

improvement after each step was limited. Moreover, there was no clear pattern of the

the performance. In practice, solving problems with large number of customers might be

required to increase granularity when considering diverse preferences of several different

customer types.

The modified model was then introduced. Unlike the preliminary model, the modified

model gives the customers complete control over the allocation decisions The modified

model also reduces the number of variables defined. We developed a Lagrangian branch-

and-bound approach and a branch-and-cut approach based on a relaxed formulation. We

also proposed a constraint which significantly tightens LP relaxation of the formulation.

Our numerical experiments showed that the proposed solution algorithms can be applied to
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problems with extremely large number of customers. In real life location problems, decision

makers may need to consider a large number of customer types in terms of their prefer-

ences over the set of candidate sites. For instance, when choosing preventative healthcare

facilities, patients might decide based on proximity and service quality (Verter and Zhang,

2015). There could be several preference types because patients might weigh proximity

and service quality differently.

Some extensions of this work remain for future research. One direction would be im-

proving the solution algorithms. Solving the Lagrangian dual can be time consuming due to

the need to solve many mixed-integer subproblems. We may alleviate this difficulty using

a Benders decomposition within an LP based branch-and-bound method. A pure Benders

decomposition approach, however, may yield weak relaxations, leading to a large branch-

and-bound tree. Therefore, we will try to use integrality constraints to obtain improved

LP relaxations within the Benders decomposition framework (Bodur et al., 2017).

Another future direction would be adding a budget constraint or a limit on the num-

ber of facilities to open. This will be similar to the p-median problem. Also, we will

explore other applications of the reliability models with customer preferences, especially in

preventative healthcare.

Furthermore, if the demand is stochastic, and the variability is found to be significant

and cannot be ignored, this deterministic model can still be used. To account for the vari-

ability of demand, a sampling is done on the values of each demand, and these ‘realizations’

are used as model parameters. In particular, best/worst case analysis can be conducted to

examine the departure of the resulting solution from the deterministic case. The resulting

solutions found by using different realizations are then compared to find an estimate of the

sensitivity of the model to the variations in demand. In practice, if the variations are sig-

nificant, the estimates of demand are continuously updated to ensure the lowest deviation

of actual values from estimated ones. Alternatively, a set of possible scenarios, Ω, would

be created, and the parameter in question would be indexed by ω ∈ Ω. Then, a set of

constraints is added for each constraint in the original formulation representing different

scenarios. The size of the set Ω is decided on by the modeler. A bigger Ω would account

for more scenarios, but will also result in a bigger program, which will be computationally

more expensive to solve.
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Finally, it is possible to introduce capacity of facilities into the model. Allocating

customers to capacitated facilities based on preference would be a non-trivial extension

of our model, because in this case the model must determine which customers are denied

service if there is not enough capacity at a highly preferred facility. It is also possible to

model capacity levels for each facility as decision variables.

Capacity constraints can be incorporated in the model by adding the following set of

constraints. ∑
i∈I

∑
r∈R

ηiXjYijr ≤ Lmaxj ∀ j ∈ J (2.27)

where Lmaxj is the maximum capacity of location j ∈ J .

Constraints (2.27) can be added to the model (2.10) to form the Capacitated RUFLO-R

or RUFLO-RC.

The resulting RUFLO-RC can be solved using two approaches. The first approach is to

modify Step 3 of the LB&B algorithm in Table 2.28 to also include a check on the integer

solution found to guarantee it respects the capacity constraints (the model is initially solved

by ignoring the capacity constraints, then this check is performed). If the integer solution

is not feasible, a cut is added to remove this solution from all nodes. The procedure would

continue as usual afterwards.

The other approach is to add constraints (2.27) to (2.12) and relax it in a similar manner

as (2.12c) using Lagrangian relaxation. Given that there will be two sets of constraints

relaxed in this case, the lower bound obtained is expected to be worse than the lower bound

obtained by relaxing only one set of constraints.

The efficiency of these two approaches, and other practical issues associated with im-

plementing them are venues for future research.
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Chapter 3

Resource Allocation in Colorectal

Cancer Screening

Nearly 15.5 million Americans with a history of cancer were alive on January 1, 2016.

About 1.7 million new cancer cases are expected to be diagnosed, and approximately

600,920 Americans are expected to die of cancer in 2017 (about 1,620 people per day).

Nearly 1 of every 4 deaths in the US is caused by cancer, making cancer the second most

common cause of death in the US, exceeded only by heart disease. The five-year Relative

Survival Rate (RSR) for all cancers diagnosed in the US was 68% in 2006-2012, up from

49% in 1975-1977 (American Cancer Society, 2017).

About 810,045 Canadians (or 2.4% of all Canadians) had been diagnosed with cancer in

the decade leading up to 2009. It is estimated that 206,200 Canadians will develop cancer

and 80,800 will die of cancer in 2017. Cancer is the leading cause of death in Canada,

responsible for nearly 30% of all deaths, followed by cardiovascular diseases and chronic

lower respiratory diseases. The five-year RSR in Canada is 60% (Canadian Cancer Society,

2017).

Colorectal Cancer (CRC) is the third most common cancer in both men and women in

the US, with an estimated of 135,430 new cases expected to be diagnosed, and an estimated

50,260 deaths expected to occur from it in 2017. In Canada, colorectal cancer is the second

most common cancer in males, and the third most common in females. Approximately,
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26,000 new cases of colorectal cancer are expected to be diagnosed and 10,000 deaths

are expected to occur in 2017 (American Cancer Society, 2017; Canadian Cancer Society,

2017).

Declining incident rates and improvements in early detection and treatments have led

to decline in the overall death rate. From 2007 to 2011, the overall colorectal cancer death

rate declined by 2.5% per year in the US, and by 2.5% per year since 2004 for Canadian

males and by 1.8% per year since 2001 for Canadian females (American Cancer Society,

2017; Canadian Cancer Society, 2017). However, the American Cancer Society estimates

that the annual number of cancer deaths are growing. Between 2010 and 2015, the number

of cancer deaths grew by 3.5% (American Cancer Society, 2017).

This chapter is devoted to discuss analytical frameworks aimed at finding an optimal

screening policy for CRC for a representative population with limited screening resources.

Before discussing the mathematical models, Section 3.1 provides an overview and history

of CRC screening benefits and guidelines, as well as a review of related literature. Then,

Section 3.2 presents a Markov decision process model. Since this model is hard to solve due

the extremely large probability matrix, Section 3.3 discusses a mixed integer programming

model that can be solved in reasonable time. In addition, the latter model accounts for

factors not accounted for in the Markov decision process model, such as the age groups of

the population, gender, and personal history of colonoscopy. Since the accurate estimation

of different parameters is essential to obtain reasonable results in this model, a description

of the data sources is presented in Section 3.4. Numerical results and analysis are shown

in Section 3.5, followed by final remarks in Section 3.6.

3.1 Introduction

In this introduction, a description of the fundamentals in CRC screening is given, followed

by a brief history of the development of the CRC screening guidelines (mainly in the

US). Then, a review of the related literature is given. Finally, the model of CRC disease

progression is discussed. The goal is to extend this one-patient model to consider all

individuals in the target population.
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3.1.1 Colorectal Cancer Screening

Cancer screening tests can improve survival and decrease mortality by detecting cancer at

an early stage, when treatment is more effective. Moreover, regular use of cervical and col-

orectal cancer screening tests can prevent the development of cancer through identification

and removal or treatment of premalignant abnormalities (American Cancer Society, 2017).

Most CRC cases originate from benign growths on the inner surface of the colon and

rectum (called adenomatous polyps), which may progress to CRC (Loeve et al., 2004).

This natural progression of the CRC makes it possible for testing procedures to discover

these lesions and adenomatous polyps early on.

CRC screening can be accomplished using various methods. These include colonoscopy,

sigmoidoscopy, Computed Tomography (CT) colonography (virtual colonoscopy), double-

contrast barium enema, DNA stool test, and Fecal Occult Blood Test (FOBT) (Pignone

et al., 2002). The screening methods can be roughly categorized into two distinct groups:

tests that primarily detect cancer, and structural exams that detect both cancer and pre-

cancerous polyps. The methods for structural examinations, which detect both cancer

and advanced lesions, include flexible sigmoidoscopy, colonoscopy, CT colonography, and

double-contrast barium enema (McFarland et al., 2008). Methods in the cancer detection

group are mainly stool tests, which include occult blood or exfoliated DNA (Levin et al.,

2008).

The details of each testing procedure is beyond the scope of the current discussion.

However, it is worth mentioning that these tests vary in their accuracy and disutility (see

Table 3.1). Accuracy of a test is the chance of correctly detecting colorectal lesions (CRC

and polyps). The disutility arises from pain, uneasiness, and anxiety associated with

the screening procedures, preparations, complications, and time delay before obtaining

pathology results. The FOBT test, for example, requires drug and dietary restrictions

before the test, and may not detect a tumor that is not bleeding (National Cancer Institute,

2016). In general, invasive screening methods, such as colonoscopy, have higher disutility

but also higher accuracy. Other screening methods have lower accuracy as well as disutility.

There have been calls to state a preference for colonoscopy above all other options (Al-

lison and Lawson, 2006). Colonoscopy is the most accurate and commonly recommended
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Table 3.1: CRC Screening Methods

Screening Method Test Type Accuracy Disutility

Colonoscopy Invasive test Very high Very high

Sigmoidoscopy Invasive test High High

CT Colonography X-ray test High Low

Barium Enema X-ray test Low Low

DNA Stool Test Stool test High Lower

Fecal Occult Blood Test Stool test Lower Lower

Source: Erenay et al. (2014); National Cancer Institute (2016)

screening test in the US (Krist et al., 2007). Moreover, colonoscopy is the standard screen-

ing test for the CRC follow-up and surveillance (Winawer, 2007).

Randomized trials and observational studies have demonstrated mortality reductions

associated with early detection of invasive disease, as well as removal of adenomatous

polyps (Hardcastle et al., 1996; Kronborg et al., 1996; Mandel et al., 2000; Selby et al.,

1992). Moreover, there is both direct and indirect clinical evidence that CRC screening

methods are effective for CRC prevention (Pignone et al., 2002).

Screening is also beneficial after detecting and removing a polyp (polypectomy) because

the lifetime risk of CRC is not completely eliminated. After a polypectomy, a missed

(synchronous) or new (metachronous) adenomatous polyp may progress to CRC (Yang

et al., 1998). Thus, the risk of CRC remains even after CRC treatment because patients

may suffer recurrence of their disease (Kjeldsen et al., 1997; Scholefield and Steele, 2002).

In addition, patients who are successfully treated for CRC may develop new adenomatous

polyps and these new polyps may also progress to CRC (metachronous CRC) (Fajobi et al.,

1998; Park et al., 2006).

As such, screening guidelines were developed to help patients and physicians in pre-

venting and early detecting of CRC occurrence or re-occurrence. In the past decade, there

has been progress in reducing CRC incidence and death rates. These declines can be

attributed to improved utilization of CRC screening on early detection and prevention
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through polypectomy, risk-factor reduction (e.g., declining tobacco use), and improved

treatments (Edwards et al., 2010).

The prevalence of CRC screening has stabilized in more recent years and still lags

behind breast and cervical screening prevalence (American Cancer Society, 2015), although

CRC claims more lives. In addition, Klabunde et al. (2009) report that 43% of clinicians

recommend more frequent colonoscopy screening than the guidelines for low-risk patients.

Therefore, it is important to initiate CRC screening procedures for a larger portion of the

population in order to both prevent cancer and detect it early.

Howlader et al. (2015) note that the relative five-year survival rate is 90% for CRC

patients diagnosed at an early, localized stage, while only 40% of cases are diagnosed with

this stage. Table 3.2 shows the percentage of American adults that had undergone CRC

screening in 2013. Endoscopy is the general term used for medical procedures in which

an instrument, called an endoscope, is put into the body to look inside. In colon and

rectal regions, this procedure is referred to as colonoscopy and sigmoidoscopy. As can be

seen, 58.6% were up-to-date with screening (either an FOBT within the past year or a

sigmoidoscopy within the past five years or a colonoscopy within the past 10 years). Com-

pared to 46.8% in 2005 (American Cancer Society, 2009). This represents an increase in

cancer screening compliance in the US. The US Preventive Services Task Force (USPSTF)

recommends only routine screening for CRC up to age 75 (US Preventive Services Task

Force, 2008). For this population (ages 50-75 years), 57.2% were up-to-date with USPSTF

screening recommendations.

Most screening guidelines recommend initiating CRC screening at a later age. This

can be justified by looking at Table 3.3, which shows the probability of developing invasive

cancer during selected age intervals for American adults in 2009-2011. These figures are

for those who are free of cancer at the beginning of each age interval. “All sites” excludes

basal cell and squamous cell skin cancers and in situ cancers except urinary bladder. As

depicted in the table, there is a higher chance of developing cancer for older individuals.

The overall incident rate of CRC in Canada has decreased slightly since 2000 (Canadian

Cancer Society, 2016). This decline is prominent among older adults, as rates are increasing

among young adults (under the age of 50 years) in Canada (BC Cancer Agency, 2013; CCO,
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Table 3.2: Colorectal Cancer Screening Rate (%) in the US 2013

Fecal Occult Blood Test Endoscopy Combined FOBT/Endoscopy

50 to 75

years

50 years

and older

50 to 75

years

50 years

and older

50 to 75

years

50 years

and older

Male 8.0 7.8 53.6 56.1 56.3 58.8

Female 7.7 7.7 55.2 55.8 58.1 58.6

Overall 7.8 7.8 54.4 55.9 57.2 58.6

Source: American Cancer Society (2015)

Table 3.3: Probability (%) of Developing Invasive Cancer during Selected Age Intervals by

Sex, US, 2009-2011.

Birth to 49 50 to 59 60 to 69 70 and Older Birth to Death

All sites Male 3.4 (1 in 29) 6.7 (1 in 15) 15.1 (1 in 7) 36.0 (1 in 3) 43.3 (1 in 2)

Female 5.4 (1 in 19) 6.0 (1 in 17) 10.0 (1 in 10) 26.4 (1 in 4) 37.8 (1 in 3)

Colon & Rectum Male 0.3 (1 in 300) 0.7 (1 in 148) 1.3 (1 in 80) 3.9 (1 in 26) 4.8 (1 in 21)

Female 0.3 (1 in 326) 0.5 (1 in 193) 0.9 (1 in 112) 3.5 (1 in 28) 4.5 (1 in 22)

Source: American Cancer Society (2017)
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2016; Patel and De, 2016) and the United States (Austin et al., 2014).

CRC screening can identify and remove precancerous polyps and reduce cancer inci-

dence. Starting from 2007, CRC screening programs began in some provinces in Canada

for people aged 50 and older who are at average risk of the disease. As of 2016, all 10

provinces had implemented or considered implementing organized colorectal cancer screen-

ing programs (CPAC, 2017).

The discussion above shows the benefit of CRC screening in the prevention and early

detection of polyps and cancerous lesions. With improved awareness and various national

efforts to increase the compliance rate of CRC screening, the demand on medical screening

resources is expected to increase. Also, the aging population of western countries imposes

higher demand on healthcare resources including cancer screening procedures. These fac-

tors, coupled with the scarcity of cancer screening resources, make it vital for healthcare

systems to plan ahead for the best usage of resources. Mathematical and analytical mod-

els are powerful tools to understand the current challenges, and to provide solutions and

recommendations to the policy makers using statistical, mathematical, and computational

procedures.

3.1.2 Development of Colorectal Cancer Screening Guidelines

During the 1990’s, the US Agency for Health Care Policy and Research assembled an

expert panel to prepare clinical practice guidelines for colorectal cancer screening, and

an accompanying rationale based on the best available evidence. The Panel published a

report (Winawer et al., 1997) highlighting a substantial body of research evidence favoring

colorectal cancer screening. Afterwards, guidelines for CRC screening were published by

the American Cancer Society (Smith et al., 2001), the USPSTF (US Preventive Services

Task Force, 2002), the American College of Gastroenterology (Rex et al., 2000), and the

American Society of Colon and Rectal Surgeons (Simmang et al., 1999). This showed a

national consensus favoring colorectal cancer screening.

These guidelines are subject to change and update. Smith et al. (2015) list the major

updates these guidelines have been through, as shown in Table 3.4. The most recent Society
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guidelines, which were in collaboration with the American College of Radiology and the US

Multi-Society Task Force on Colorectal Cancer (a consortium representing the American

College of Gastroenterology, the American Society of Gastrointestinal Endoscopy, and the

American Gastroenterological Association), were released in 2016. The official statement

can be found in the US Preventive Services Task Force (2016).

Table 3.4: History of Recent Updates to American Cancer Society Cancer Early Detection

Guidelines for Colorectal Cancer

Year Update

2001: Complete update

2003: Technology update

2006: Update for postpolypectomy and postcolorectal cancer

resection surveillance

2008: Complete update

2016: Update for asymptotic patients †

Source: Smith et al. (2015). † Update was not announced at the time of Smith et al. (2015)

The 2016 update reaffirms the 2008 guidelines on the benefits of screening adults,

50-75 years of age. The new guidelines recommend screening of adults ages 76-85 on an

individualized basis, depending on the patient’s health and previous screening history. This

is different than the 2008 recommendation against subjecting individuals of this age group

to routine screening. In its 2008 recommendation, the task force discussed screening with

flexible sigmoidoscopy every five years, combined with either Fecal Immunochemical Test

(FIT) or gFOBT every three years. The current recommendation statement specifically

discusses screening with flexible sigmoidoscopy every 10 years, combined with an annual

FIT. Note that all these updates are for asymptomatic patients at low risk. Choi et al.

(2017) provide a comparison of the most recent recommendations of different organizations.

Table 3.5 shows the Society’s CRC screening guidelines for average-risk asymptomatic

people (American Cancer Society, 2017). The American Cancer Society and other organiza-
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tions recommend more intensive surveillance for individuals at higher risk 1 of CRC (Smith

et al., 2001; Winawer et al., 2003). The model developed here considers both low-risk and

high-risk patients. Moreover, post-CRC patients are clustered into a separate risk level to

more accurately describe the real-life dynamics.

Most Canadian provinces have organized colorectal cancer screening programs, each

with specific guidelines that may differ in each province and territory. Nevertheless, the

Canadian Cancer Society recommends that men and women of age 50 and over have a stool

test at least every 2 years, with appropriate follow up (Canadian Cancer Society, 2015).

The latest guidelines by the Canadian Task Force on Preventive Health Care can be found

in the Canadian Task Force on Preventive Health Care (2016).

While the knowledge of guidelines is considered high (Rex et al., 2015), the evidence

shows that the actual practice tend to both overuse the surveillance examination in low-

risk patients and underuse it in high-risk patients (Schoen et al., 2010). Therefore, the

impact of recommended policies as well as the actual practice need to be quantified. Models

discussed in this thesis help in this regard.

1These include: individuals with a history of adenomatous polyps, individuals with a personal history

of curative-intent resection of CRC, individuals with a family history of either CRC or colorectal ade-

nomas diagnosed in a first-degree relative, individuals at significantly higher risk because of a history of

inflammatory bowel disease of significant duration, or individuals at significantly higher risk because of the

known or suspected presence of a hereditary syndrome, such as Lynch syndrome, or familial adenomatous

polyposis (Smith et al., 2015)
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Table 3.5: American Cancer Society’s CRC Screening Guidelines 2016 for Men and Women

Ages 50+

Test or Procedure Frequency

gFOBT with at least 50%

test sensitivity for cancer,

or FIT with at least 50%

test sensitivity for cancer,

or

Annual testing of spontaneously passed stool

specimens. Single stool testing during a clinician office

visit is not recommended, nor are throw in the toilet

bowl tests. In comparison with guaiac-based tests for

the detection of occult blood, immunochemical tests

are more patient-friendly and are likely to be equal or

better in sensitivity and specificity. There is no

justification for repeating FOBT in response to an

initial positive finding.

Stool DNA test, or Every 3 years

Flexible sigmoidoscopy

(FSIG), or

Every 5 years alone, or consideration can be given to

combining FSIG performed every 5 years with a highly

sensitive gFOBT or FIT performed annually.

Double-Contrast Barium

Enema (DCBE), or
Every 5 years

Colonoscopy Every 10 years

CT Colonography Every 5 years

Source: American Cancer Society (2017)
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3.1.3 Review of Related Literature

There is a number of studies discussing different aspects of CRC screening. These includes:

the utility of screening for older patients (Schoen, 2006), the timing of CRC screening

termination (Maheshwari et al., 2008), and the impact of new screening modalities such

as CT colonography on CRC prevention (Regueiro, 2005). This chapter discusses models

that efficiently allocate limited cancer screening resources among a population of different

risk levels, ages, and personal cancer history.

Multiple risk factors need to be considered when a cancer screening policy is developed.

For example, an analysis based on a microsimulation model (Ramsey et al., 2010) suggests

that early screening colonoscopy in subjects with a family history of CRC may be cost-

effective. Ladabaum et al. (2010) suggest that persons with a family history of CRC could

benefit the most from screening, and screening for them could be most cost effective. Pfister

et al. (2004) discuss the best screening schedule for patients after curative treatment of

CRC. In the models discussed in this chapter, the family history is implicitly accounted

for by classifying a proportion of the population to be at high risk. Patients who undergo

CRC treatment are also considered in the model.

The mathematical models that are built to study various aspects of CRC, including

the one discussed in this chapter, depend on the understanding the natural history of the

CRC, such as the rate of progression from adenomatous polyp to CRC. Several studies on

CRC aim to estimate unobservable CRC progression parameters using publicly available

databases, such as Surveillance, Epidemiology, and End Results Program (SEER) database

as benchmark statistics. Erenay et al. (2011) estimate a set of parameters revealing some

of the characteristics of metachronous CRC. Moreover, Roberts et al. (2007) build a more

detailed discrete-time simulation model that mimics the progression of CRC. They also

use the simulation model to measure the performances of different CRC screening policies.

These studies, among others, will be used to specify the inputs of the models in this chapter.

Partially Observable Markov Decision Process (POMDP) models are important tools

used to solve stochastic systems. POMDP models are used in other cancer screening prob-

lems. Ayer et al. (2012) provide a POMDP model to determine patient-specific mammogra-

phy screening times. Maillart et al. (2008) use a partially observable Markov chain formu-
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lation to examine the value of dynamic screening policies in which the length of screening

interval can be a function of patient age. Zhang et al. (2012b) propose a POMDP model for

screening for prostate cancer, while Zhang et al. (2012a) develop another POMDP applica-

tion to determine the optimal timing of biopsy, based on annual prostate-specific antigen

test results. The model of Section 3.2 is a POMDP model that is specific to CRC screening

and aims at finding the optimal screening policy in a limited resource environment.

Leshno et al. (2003) develop a hidden Markov chain with two states for different polyp

sized and three states for CRC stages. They evaluate the performances of six screening

policies. Erenay et al. (2014) propose a similar model but with a dynamic programming

mechanism and solve it optimally. They also account for personal history of CRC. These

models of a single patient are referred to in building the models in this chapter.

Yaesoubi and Cohen (2011) propose a simplified Markov chain model for infectious dis-

ease spread. Their framework and some of their notation are used here as a building block

for our model. Ayvaci et al. (2012) develop a Markov Decision Process (MDP) model to

capture diagnosis decision after mammography under restricted resources. Their objective

differs from the objective of the models here, which is allocating screening resources among

a representative population.

The demand for cancer screening is projected to increase as a result of increased com-

pliance. The American Cancer Society joined the National Colorectal Cancer Roundtable

in its ‘80% by 2018’ initiative in 2013 (American Cancer Society, 2015). The goal of this

campaign is to increase the rate of regular colorectal cancer screening among adults 50 and

older to 80% by 2018, with an emphasis on economically disadvantaged individuals, who

are least likely to be tested. Higher rates of compliance would bring more challenges to the

screening programs regarding capacity and resources available. Some of these challenges

are discussed in Güneş et al. (2015), where they provide an analysis indicating what would

happen if clinicians use more frequent screening schedule, or if compliance rate increases.

They show that the benefits of screening programs can be realized only if the available ser-

vice capacity matches the increasing demand. The objective of their model is to minimize

the incidence rate or the mortality rate. This is different than our objective of maximizing

the total expected quality adjusted life years.
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The MDP model developed in this chapter is hard to solve. Therefore, a deterministic

mixed integer program is presented. The use of mathematical programs in healthcare

is well-established (see Chapter 1 for discussion). There are also applications of integer

or mixed integer programs in the context of cancer screening. For example, Kim et al.

(2006) develop binary integer programming model to identify an optimal package of health

services to be provided during a single visit for a particular target population. Demarteau

et al. (2012) present a linear program that determine the combination of the different

prevention options to minimize cervical cancer screening coverage and vaccination coverage

constraints.

Some of the other modeling and solution methodologies used in the cancer screening

applications are as follows. Güneş et al. (2015) develop a compartmental model for the

allocation of colonoscopy resource among preventive and diagnosis activities. Simulation

models have been used to study the effectiveness of cancer screening strategies. The MI-

crosimulation SCreening ANalysis (MISCAN) has been used to compare the effectiveness

of different colorectal screening strategies (Loeve et al., 1999). MISCAN has been applied

to other types of cancer as well (Fone et al., 2003). The models developed in this chapter

are not bound by a set of policies. Instead, they find the optimal policy based on the input

parameters and constraints.

3.1.4 Colorectal Cancer Natural Progression for a Single Patient

The current health state of a single CRC patient is represented using three cancer stages:

without lesion, (having adenomatous) polyp, and (having) CRC. Also, patients are cate-

gorized based on risk level into: low-risk, high-risk, and post-CRC. This is based on the

American Gastroenterology Association classification of patients based on personal history.

Low-risk patients are those asymptomatic without personal or family history of CRC. High-

risk patients are those with a history of adenomatous polyp, while post-CRC are patients

with history of CRC (Winawer et al., 2003). High-risk patients may also include individu-

als with a family history of either CRC or colorectal adenomas diagnosed in a first degree

relative, individuals with known or suspected presence of a hereditary syndrome, such as

Lynch syndrome, or familial adenomatous polyposis.
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These risk levels are completely observable, and the patient moves from one risk level to

another after a completely observable event occurs (Erenay et al., 2014). Having different

risk levels is important since current CRC screening guidelines provide different recommen-

dations for patients who already had polypectomy and CRC (see Table 3.5 for screening

guidelines for low-risk patients).

Figure 3.1: Core Health State Transitions for an Individual Patient According to the

Screening Results. Source: Erenay et al. (2014)

A colonoscopy may detect an adenomatous polyps, a CRC lesion, or nothing suspicious

in the colon or rectum. Furthermore, a patient may experience sever CRC symptoms and

undergo a diagnostic colonoscopy screening, which is termed self-diagnosis (SD).

Figure 3.1 shows how core health states for a single patient randomly change based on

colonoscopy results. Screening results T-, P+, C+, and SD refer to test negative, detection
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of adenomatous polyp via colonoscopy, detection of CRC via colonoscopy, and self-diagnosis

of CRC, respectively. There are 11 core health states. Arrows represent possible core state

transitions, each based on some screening result. When the colonoscopy test is positive,

the transitions P+ and C+ occur, whereas, T- and SD result from the natural progression

of the disease and can occur at any time period. Transition to mortality (D) can occur

from any core health state. However, the graph omits them to improve readability.

A complete description of Figure 3.1 can be found in Erenay et al. (2014). To under-

stand the process, it is important to introduce some concepts regarding the CRC screening

mechanism. The probability of accurately identifying the patients with no colorectal le-

sions is equal to 1 (Frazier et al., 2000). Moreover, the sensitivity of colonoscopy is the

probability of accurately detecting CRC lesions. A similar definition applies for sensitivity

of polyps.

A brief description of transition dynamics is now given for low-risk level. High-risk

and post-CRC levels follow a similar logic. A low-risk patient will always have a screening

result T-, as long as the patient has no lesions. A patient may develop an adenomatous

polyp and move to the polyp state within the year. Otherwise, the patient stays in the

same health state. If the patient has an adenomatous polyp at the beginning of the year,

and the test missed the polyp (T-), this polyp either stays as an adenomatous polyp or

turns into a CRC within the year. This can occur with probability equal to 1-sensitivity of

colonoscopy. If the test detects and removes the polyp (P+) at the beginning of the current

year, the patient either develops a new adenomatous polyp and moves to the polyp state

in the high-risk level or moves to the high-risk patient without lesion core health state. If

the cancer treatment is not successful, the patient either dies (D) or becomes under cancer

treatment (UCT ) during that year.

Thus, the core health (or disease progression) states of an individual patient are {LR0,

LR1, LR2, HR0, HR1, HR2, PC0, PC1, PC2, UCT, D}.

3.1.5 Contributions

In this chapter, two models are formulated for the problem of allocating CRC screening

resources among a representative population of individuals. The first is an MDP model
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that keeps track of the stochastic nature of the transitions in the system. The second model

is MIP that adds extra dimensions and population dynamics to the MDP model. However,

the MIP uses deterministic transitions to model the behavior of large group of individuals

in the system. The results from the MIP model show that the current guidelines are not

always optimal, and the system favors females and younger individuals, as will be discussed

later on.

3.2 Discrete-Time Markov Decision Process Model

A full description of a discrete-time MDP model is given here. It will be explained later

that this model is hard to solve. Therefore, a mixed integer program is introduced in

Section 3.3, which will be solved and analyzed.

This section starts with a description of the model and an explanation of the mathe-

matical notation. Then, the model is formally introduced. This is followed by a discussion

of state aggregation and approximate dynamic programming; two main techniques that

may help is solving the model. Finally, the last section explains the difficulties in solving

this model, and the need for alternative modeling concept.

The following is a verbal description of the model. The aim of this model is to develop

a screening policy for a representative population such that the capacity and available

resources are taken into consideration. The objective of the decision maker is to maximize

a social welfare measure, which is Quality Adjusted Life Years (QALYs) for the population.

Patients are categorized according to the risk level into: low-risk, high-risk, and post-CRC.

These levels are completely observable by the decision maker. Within each risk level, the

patients are divided into three unobservable clusters depending on cancer progression.

These clusters are: no lesions, (having) polyp, and (having) CRC. Given it is a standard

and commonly recommended procedure, colonoscopy is considered as the screening method.

The policy maker decides on the number (or percentage) of patients to undergo colonoscopy

with each level.

As such, the MDP model developed here defines a state as the number of individuals

in each core health state. As explained above, there are nine core health states (three risk
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levels, with three cancer progression levels in each of them), in addition to under cancer

treatment (UCT ) and death (D) core health states. This brings the total of core health

states to 11. Actions are defined as the percentage of patients in each risk level to undergo

colonoscopy at a given year. It is assumed in this model that the population starts at age

50, and colonoscopy is no longer performed after age 75.

3.2.1 Model Description

In this section, the MDP model is formally introduced. The model developed aims at find-

ing optimal screening policies for a representative population whose individuals are subject

the disease progression pattern described in the previous section. The major consideration

for the policy maker is the limited CRC screening resources available. The decision maker

must allocate scarce screening resource such that the society welfare (e.g., total QALYs)

is maximized.

One screening method is considered in this model, which is colonoscopy, since it is the

most commonly recommended screening procedure (Krist et al., 2007). A patient is faced

with a decision to undergo screening (colonoscopy) in each year or not. This decision is

made by the policy maker, and it is assumed that patients accurately follow the suggested

policy, that is, 100% of patients who are recommended to undergo a colonoscopy in a given

year will indeed perform it. This perfect compliance will be relaxed in Section 3.3.

Yaesoubi and Cohen (2011) use a discrete-time Markov model to formulate the spread

of infectious disease among a particular fixed size population. We adopt some of their

notations and definitions in this model. However, due to the significant difference in the

two areas of application, more/new notation is introduced to accurately model the CRC

screening system.

An individual patient can be in any one of the core health states of the system at

time 0. The core health states are denoted by si, where i ∈ {0, 1, . . . ,M}. Therefore,

there are M + 1 core health states in the system. In particular, (M + 1) = 11. This is

a discrete-time model, which starts at time 0, and terminates at time tmax. At a given

time t ∈ T = {0, 1, . . . , tmax}, the number of individuals in core health state si is Xi, i ∈
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{0, 1, . . . ,M}. In this model, it is assumed that the population is fixed and equal to N .

Thus, the following holds.

M∑
i=0

Xi(t) = N (3.1)

Equation (3.1) also means that the system state is fully identified by a sub-vector of

only M variables from X(t) = {X0(t), X1(t), . . . , XM(t)}. The variable remaining can be

determined by the values of the others.

The states of the system are defined as the number of individuals in each health state.

There are M+1 core health states, and a fixed population N . In general, without any more

restrictions, there are
(
N+(M+1)−1
(M+1)−1

)
=
(
N+M
M

)
states of the system. Hence, a system state

X(t) at time t ∈ T = {0, 1, . . . , tmax} can be defined as X(t) = {X0(t), X1(t), . . . , X10(t)} ∈
X , such that (3.1) holds.

Each core health state si, i ∈ {0, . . . ,M} is accessible from a set of core health states.

In other words, individuals in a particular core health state can transition to one of the

health states that are accessible from where they originally are. This can be thought of as

a set of inflows (denoted by si), or a set of outflows (denoted by si) of each core health

state, respectively. Indeed, these sets can be empty (denoted by φ). Table 3.6 shows these

sets for all health states in our model.

The driving event uij(t), sj ∈ si, i ∈ {0, . . . ,M} is a non-negative discrete random

variable representing the number of transitions (number of individuals transitioning) from

health state si to sj during the interval [t, t+∆t], t ∈ {0,∆t, 2∆t, . . . , tmax}. The assumption

in this model that ∆t = 1. Let Puij(t)(·) denote the probability mass function for the

random variable uij(t); that is

Puij(t)(c) = Pr{uij(t) = c}, sj ∈ si,

for some integer c.

Furthermore, the stochastic flow coming out of a health state si, i ∈ {0, . . . ,M} at

time t ∈ T = {0, 1, . . . , tmax} is Xi(t), and the flow coming into a health state si at time
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Table 3.6: Sets of States to and from All Health States si

si si si

s0 (LR0) φ {s1, s10}
s1 (LR1) {s0} {s2, s3, s4, s10}
s2 (LR2) {s1} {s6, s7, s8, s9, s10}
s3 (HR0) {s1, s4} {s4, s10}
s4 (HR1) {s1, s3} {s3, s5, s10}
s5 (HR2) {s4} {s6, s7, s8, s9, s10}
s6 (PC0) {s2, s5, s7, s8} {s7, s10}
s7 (PC1) {s2, s5, s6, s8} {s6, s9, s10}
s8 (PC2) {s2, s5, s7} {s6, s7, s9, s10}
s9 (UCT) {s2, s5, s7} {s6, s7, s10}
s10 (D) {s1, s2, . . . , s9} φ

t is Xi(t). This flow can be decomposed based on which health state it is coming from or

going to. Specifically, if an individual can transfer from health states sj and sk to health

state si, that is si = {sj, sk}, then uj,i(t) + uk,i(t) = Xi(t). Similarly, if individuals are

transferred from health state si to health states sy and sz, that is si = {sy, sz}, then

Xi(t) = ui,y(t) + ui,z(t). Table 3.7 shows the variables used in the MDP model and their

descriptions.

It is important to note that uij(t), sj ∈ si, i ∈ {0, . . . ,M}, and consequently, Xi(t)

and Xi(t) for i ∈ {0, . . . ,M} are action-dependent. This means that the values of these

variables depend on the action taken. The random variables ui,j(t) are assumed to be

independently distributed for all health states si and sj ∈ si, i ∈ {0, . . . ,M}. Also, these

random variables are only determined by the state of the system at time t, which is X(t) =

{X0(t), X1(t), . . . , XM(t)}.

The set of dynamic driving constraints summarizes the relationships among the driving

events during interval [t, t+ ∆t] and the state of the system at time t and t+ ∆t.
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X0(t+ ∆t) = X0(t)−X0(t) (3.2a)

Xi(t+ ∆t) = Xi(t) +Xi(t)−Xi(t) for i ∈ {1, 2, . . . ,M − 1} (3.2b)

XM(t+ ∆t) = XM(t) +XM(t) (3.2c)

This can be translated into:

X0(t) = u0,1(t) = X1(t) , X1(t) = u1,2(t) + u1,3(t) + u1,4(t) and so on.

The actions of the MDP model represent the proportion of individuals in each core

health state to undergo a colonoscopy at time t. However, disease progression is unobserv-

able within each risk level. There are five risk levels, R = {LR,HR,PC,UCT,D}. For

example, low-risk patients are indistinguishable to the policy maker, and are stochastically

distributed into without lesion, polyp, and CRC levels within the same risk-level. There-

fore, the decision maker performs action a(t) = {aLR(t), aHR(t), aPC(t)} ∈ A at time t ∈ T ,

where aLR(t), aHR(t), and aPC(t) are, respectively, the proportion of patients in LR, HR,

and PC level to undergo colonoscopy. Alternatively, action a(t) ∈ A at time t ∈ T can be

expressed as: a(t) = {a0(t), a1(t), . . . , a8(t)} ∈ A, such that:

8∑
i=0

ai(t)Xi(t) = Lmax (3.3a)

ai(t) = aLR(t) for i ∈ {0, 1, 2} (3.3b)

ai(t) = aHR(t) for i ∈ {3, 4, 5} (3.3c)

ai(t) = aPC(t) for i ∈ {6, 7, 8} (3.3d)

where Lmax represents the capacity limit for the available colonoscopy resources. Equation

(3.3a) enforces the number of people to undergo colonoscopy cannot exceed the capacity

limit. Equations (3.3b)-(3.3d) state that within each risk level, the actions must be identical

because of the unobservable disease progression levels.

Time periods are in years; t ∈ T = {0, 1, . . . , tmax}, which represents the number of

years after age 50. This assumption is made since almost all guidelines suggest initiating
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CRC screenings at or after age 50 (Levin et al., 2008; Winawer et al., 2003). The maximum

age tmax is the age after which colonoscopy offer little to no value. It is assumed in this model

that tmax = 25, meaning that no patient will undergo colonoscopy after age 75. Studies

on the termination of CRC screening suggest to stop screening at ages 75-85 (Maheshwari

et al., 2008; Zauber et al., 2008), and The USPSTF only recommends routine screening for

CRC up to age 75 (US Preventive Services Task Force, 2008).

The assumption of initiating screening at age 50 means the model is considering a

particular age group only. While this assumption would help computationally, future

extensions to this model would add more age groups, as well as gender-specific classification.

It is also worth noting that with larger population N and, consequently, large number of

individuals in each core health state, it is possible to approximate the binomial distribution

by the normal distribution. This is particularly useful since different normal distributions

with different variances can be added and characterized. This would be one direction of

future work in this model.

Table 3.7: Variable Description for MDP Model

Variable Description

I The set of disease progression states, indexed by i,

R The set of risk levels, indexed by R, R := {LR,HR,PC,UCT,D},
O The set of observations, indexed by o, O := {T-,P+,C+, SD},
A The set of action vectors, indexed by a(t),

T The set of time periods, indexed by t,

S The set of health states, indexed by s,

X The set of system states, indexed by X(t),

s The health state vector, s := {s0, s1, . . . , sM},
si The core health state, where i ∈ {0, 1, . . . ,M},

Xi(t) Number of individuals in state si, i ∈ {0, . . . ,M} at time t ∈ T ,

X(t) A vector of Xi(t) for all i ∈ {0, . . . ,M},
si The set of health states that leads to health state si,

si The set of health states that health state si leads to,
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Xi(t) Random variable that represents the number of individuals transi-

tioning into health state si during the interval [t, t+ ∆t],

Xi(t) Random variable that represents the number of individuals transi-

tioning from health state si during the interval [t, t+ ∆t],

uij(t) Random variable that represents the number of individuals transi-

tioning from health state si to health state sj during the interval

[t, t+ ∆t],

u(t) A vector of uij(t) for all i ∈ {0, . . . ,M},
tmax The duration (in years) that the model is run for,

ai(t) Action taken at time t, which is the proportion of individuals in core

health state si to undergo colonoscopy,

aR(t) Action taken at time t, which is the proportion ofR risk level individ-

uals to undergo colonoscopy, where Equations (3.3b)-(3.3d) apply,

a(t) Action vector at time t ∈ T , or a(t) = {aLR(t), aHR(t), aPC(t)} ∈ A,

and t ∈ T ,

â Treatment given to an individual patient; either undergo

colonoscopy, or do nothing. â ∈ {dn, cl},
Lmax The CRC screening capacity limit,

pt(sj|si, â, o) The probability that an individual patient will be in core health

state sj in year t + 1 given that the patient is in core health state

si, treatment â ∈ {dn, cl} is selected, and screening result o ∈ O is

observed in year t, where sj ∈ si,
q(si, â, o, sj) The expected reward (in QALYs) of individual patient for going

from core health state si at time t to core health state sj, sj ∈ si, i ∈
{0, . . . ,M} at time t + 1 when treatment â ∈ {dn, cl} is taken and

observation o ∈ O is seen,

gt(sj|si, â) The probability that a patient will be in core health state sj ∈ si

in year t + 1 given that the patient is in core health state si and

treatment â ∈ {dn, cl} is selected in year t,
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Puij(t)(c|ai(t)) The probability that the c individuals would move from core health

state si at time t to core health state sj ∈ si at time t + 1 when

action ai(t) is performed,

rt(c|si, ai(t)) The immediate reward of transitioning c patients from core health

state si to core health state sj after action ai(t) is taken,

Pt(X
′, X, a(t)) The probability of going from system state X at time t ∈ T to

system state s′ at time t+ 1 when action a(t) ∈ A is taken,

ûij(t) A realizations of uij(t), sj ∈ si,
û(X ′, X) The vector of ûij such that the transition from system state X at

time t to health state X ′ at time t+ 1 is feasible,

Û(X ′, X) The set of all û(X ′, X) vectors,

V ∗t (X) The maximum expected TQALYs from for a system at state X in

year t to year tmax,

rtmax(X) Terminal reward,

λ Discount factor.

3.2.2 Model Formulation

The model is formulated here by introducing the governing formulas of the MDP process.

The transition probability of the system is an important characteristic of the MDP

model. The following is a discussion regarding expressing this probability in terms of

known and estimated parameters. Two formulations are presented and discussed.

Define pt(sj|si, â, o) as the probability that a patient will be in health state sj in year t+1

given that the patient is in health state si, treatment â ∈ {dn, cl} is selected, and screening

result o ∈ {T−, P+, C+, SD} is observed in year t, where sj ∈ si. Thus, Puij(t)(c|si, ai(t))
is defined as the probability that the c individuals would move from core health state si at

time t to core health state sj, sj ∈ si at time t + 1 when action ai(t) is performed, which

is equivalent to:
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Puij(t)(c|ai(t)) = Pr(uij(t) = c|ai(t))

=
c∑

ĉ=0

 ∑
{mk}∈Ωm

 ai(t)Xi(t)!

m1! . . .mK !

 ∏
1≤k≤K

ft(ok|si, cl)mk

 ∑
{ck}∈Ωc

∑
1≤k≤K

(mk

ck

)
pt(sj |si, cl, ok)ck (1− pt(sj |si, cl, ok))mk−ck


+

∑
{m′

k
}∈Ω′

m

 (1− ai(t))Xi(t)!

m′1! . . .m
′
K !

 ∏
1≤k≤K

ft(ok|si, dn)m
′
k

 ∑
{c′

k
}∈Ω′

c

∑
1≤k≤K

(m′k
c′k

)
pt(sj |si, dn, ok)c

′
k (1− pt(sj |si, dn, ok))m

′
k−c′k




(3.4)

such that Ωm :=
{
{m1, . . . ,mK} :

∑
1≤k≤Kmk = ai(t)Xi(t)

}
,

Ω′m :=
{
{m′1, . . . ,m′K} :

∑
1≤k≤Km

′
k = (1− ai(t))Xi(t)

}
,

Ωc :=
{
{c1, . . . , cK} :

∑
1≤k≤K ck = ĉ

}
,

Ω′c :=
{
{c′1, . . . , c′K} :

∑
1≤k≤K c

′
k = c− ĉ

}
.

Equation (3.4) is mainly composed of two parts. The first line represents the probability

that ĉ individuals move from core health state si to core health state sj as a result of under-

going colonoscopy (â = cl). The number of individuals that are subjected to this treatment

is ai(t)Xi(t). These individuals are divided into K groups such that mk individuals would

get observation ok with probability ft(ok|si, cl), where 1 ≤ k ≤ K. Specifically, they are

divided into {m1, . . . ,mK} such that
∑

1≤k≤Kmk = ai(t)Xi(t). The set Ωm contains all

feasible values of the vector {m1, . . . ,mK}. This division process has a multinomial dis-

tribution. Now, of each mk individuals, ck individuals end up in core health state sj with

probability pt(sj|si, cl, ok), which has a binomial distribution. The values of {c1, . . . , cK}
must add up to ĉ. The set Ωc contains all such vectors. The second line of the equation has

a similar structure, but represents the probability that c − ĉ individuals move from si to

sj as a result of â = dn (not doing a colonoscopy). Finally, the whole equation is summed

over the possible values that ĉ can take, which is 0 ≤ ĉ ≤ c.

To simplify notation, let:

Lt(ck, si, cl, ok) =

(
mk

ck

)
pt(sj|si, cl, ok)ck(1− pt(sj|si, cl, ok))mk−ck (3.5a)

L′t(c′k, si, dn, ok) =

(
m′k
c′k

)
pt(sj|si, dn, ok)c

′
k(1− pt(sj|si, dn, ok))m

′
k−c

′
k (3.5b)

As such, Equations (3.4) can be written as:
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Puij(t)(c|ai(t)) = Pr(uij(t) = c|ai(t))

=

c∑
ĉ=0

 ∑
{mk}∈Ωm

 ai(t)Xi(t)!

m1! . . .mK !

 ∏
1≤k≤K

ft(ok|si, cl)mk

 ∑
{ck}∈Ωc

∑
1≤k≤K

Lt(ck, si, cl, ok)


+

∑
{m′

k
}∈Ω′

m

 (1− ai(t))Xi(t)!

m′1! . . .m
′
K !

 ∏
1≤k≤K

ft(ok|si, dn)m
′
k

 ∑
{c′

k
}∈Ω′

c

∑
1≤k≤K

L′t(c′k, si, dn, ok)




(3.6)

such that Ωm :=
{
{m1, . . . ,mK} :

∑
1≤k≤Kmk = ai(t)Xi(t)

}
,

Ω′m :=
{
{m′1, . . . ,m′K} :

∑
1≤k≤Km

′
k = (1− ai(t))Xi(t)

}
,

Ωc :=
{
{c1, . . . , cK} :

∑
1≤k≤K ck = ĉ

}
,

Ω′c :=
{
{c′1, . . . , c′K} :

∑
1≤k≤K c

′
k = c− ĉ

}
.

The reward of the system in each time period, is the sum of individual rewards of

patients in that time period. The immediate reward is expressed in QALYs, which is

defined as the difference between the total lifetime and total disutility of having undetected

CRC, undergoing CRC screening, and undergoing CRC treatment. Define q(si, â, o, sj) as

the expected reward (in QALYs) of individual patient for going from core health state si

at time t to core health state sj, sj ∈ si, i ∈ {0, . . . ,M} at time t + 1 when treatment

â ∈ {dn, cl} is taken and observation o ∈ O is seen. The reward rt(c|si, ai(t)) is defined as

the immediate reward of transitioning c patients from core health state si to core health

state sj after action ai(t) is taken. This is equivalent to:

rt(c|si, ai(t)) = r(uij(t) = c|si, ai(t))

=

c∑
ĉ=0

 ∑
{mk}∈Ωm

 ai(t)Xi(t)!

m1! . . .mK !

 ∏
1≤k≤K

ft(ok|si, cl)mk

 ∑
{ck}∈Ωc

∑
1≤k≤K

Lt(ck, si, cl, ok)q(si, cl, ok, sj)ck


+

∑
{m′

k
}∈Ω′

m

 (1− ai(t))Xi(t)!

m′1! . . .m
′
K !

 ∏
1≤k≤K

ft(ok|si, dn)m
′
k

 ∑
{c′

k
}∈Ω′

c

∑
1≤k≤K

L′t(c′k, si, dn, ok)q(si, dn, ok, sj)c
′
k




(3.7)

such that Ωm :=
{
{m1, . . . ,mK} :

∑
1≤k≤Kmk = ai(t)Xi(t)

}
,

Ω′m :=
{
{m′1, . . . ,m′K} :

∑
1≤k≤Km

′
k = (1− ai(t))Xi(t)

}
,

Ωc :=
{
{c1, . . . , cK} :

∑
1≤k≤K ck = ĉ

}
,

Ω′c :=
{
{c′1, . . . , c′K} :

∑
1≤k≤K c

′
k = c− ĉ

}
.
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Equation (3.7) has the same structure as Equation (3.6). The expected QALYs for

an individual patient q(si, â, ok, sj) is multiplied by the number of patients ck having the

action â, and seeing the same observation, ok.

For the system to transition from system state X at time t to system state X ′ at time

t + 1, the values of Xi(t) and Xi(t + 1), i ∈ {0, . . . ,M} must be known. Define a vector

û(X ′, X) as a vector of ûij(t) which makes the transition from X at time t to X ′ at time

t + 1 feasible for any t ∈ T . Recall that ûij(t) is a realization of uij(t). The set that

contains all û(X ′, X) vectors is Û(X ′, X).

Now, define Pt(X
′, X, a(t)) as the probability of going from state X at time t ∈ T to

state X ′ at time t+ 1 when action a(t) ∈ A is taken. We have:

Pt(X
′, X, a(t)) =

∑
û(X′,X)∈Û(X′,X)

 ∏
c∈û(X′,X)

Puij(t)(c|ai(t))

 (3.8)

The inner brackets of Equation (3.8) contain the multiplication of one realization array

û(X ′, X) that makes the transition from X to X ′ feasible. Since there are many possible

feasible paths to go from X to X ′, the products are summed over all members of the set

Û(X ′, X).

If it is impossible to transition from state X to state X ′ (i.e. there are no combination

values of uij(t), sj ∈ si, i ∈ {0, . . . ,M} that can make the transition valid), then the set

Û(X ′, X) is assumed to be empty, and the value of Pt(X
′, X, a(t)) is given a value of zero.

The total reward of the system which is at state X at time t after performing action

a(t) ∈ A, denoted by rt(X, a(t)), can be found by considering Equations (3.6) and (3.7),

as follows.

rt(X, a(t)) =
∑

û(X′,X)∈Û(X′,X)

 ∏
c∈û(X′,X)

Puij(t)(c|ai(t))rt(c|si, ai(t))

 (3.9)

The previous equations are complex and can be troublesome, especially Equations (3.6)

and (3.7). Although this form is required to analyze some aspects of the model (e.g., when
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allocation decision depends on observation like SD), a less complicated form can also be

beneficial, which will be the focus for the remaining of this section.

Define gt(sj|si, â) as the probability that a patient will be in core health state sj ∈ si
in year t+ 1 given that the patient is in core health state si and treatment â ∈ {dn, cl} is

selected in year t. That is,

gt(sj|si, â) =
∑
o∈O

pt(sj|si, â, o)ft(o|si, â) ∀si, i ∈ {0, . . . ,M}, sj ∈ si, â ∈ {dn, cl}, and t < tmax

(3.10)

Equation (3.10) is basically a weighted average of probabilities of going from core health

state si to core health state sj given treatment â, weighted to the probability of seeing

observation o ∈ O. Consequently, the following holds.

Puij(t)(c|si, ai(t)) = Pr(uij(t) = c|si, ai(t))

=
c∑
ĉ=0

{(
ai(t)Xi

ĉ

)
gt(sj|si, cl)ĉ(1− gt(sj|si, cl)ai(t)Xi−ĉ

+

(
(1− ai(t))Xi

c− ĉ

)
gt(sj|si, dn)c−ĉ(1− gt(sj|si, dn))(1−ai(t))Xi−c+ĉ

} (3.11)

Equation (3.11) is composed of two main parts. The first represents the probability

of having ĉ individuals move from core health state si to core health state sj as a result

of undergoing colonoscopy, â = cl. This has a binomial distribution with probability of

success equal to gt(sj|si, cl). The second part is explained similarly, but â = dn, and the

number of individuals to transfer in this case is c − ĉ. The summation at the beginning

of the equation is to account for the fact that ĉ can have any integer values between 0 and c.

The reward of the system state X at time t and action a(t) ∈ A is:

rt(X, a(t)) =
∑

i∈{0,...,M}

[ai(t)Xiqt(si, cl) + (1− ai(t))Xiqt(si, dn)] (3.12)

114



We end this section by giving a formula for the objective function. The objective is

to maximize the expected TQALYs, which is the sum of the expected immediate rewards.

Define V ∗t (X) as the maximum expected TQALYs from year t to year tmax. Also, define

rtmax(X) as the terminal reward, which is the QALYs after screening program is terminated,

tmax. We have:

V ∗t (X) = max
a(t)∈A;(3.3a)

rt(X, a(t)) + λ
∑
X′∈X

Pt(X
′, X, a(t))V ∗t+1(X) (3.13)

where λ is a discount factor. Equation 3.13 is a sum of immediate reward, and the dis-

counted expected value of future rewards.

3.2.3 State Aggregation

For a population of size N , the transition probability matrix of the Markov process

{X0(t), . . . , XM(t) : t ∈ T } can be of size
(
N+M
M

)
×
(
N+M
M

)
, which grows substantially with

larger values of M and N . Therefore, it would be hard to solve this model for moderately

large populations on personal computers.

One way to address this issue is by state aggregation, which would reduce the size of

the state space. This can be done through aggregating a number of states into one. This

can reduce the state space by a factor depending on the size of each state group.

Yaesoubi and Cohen (2011) propose an approach in which the state space

{X0(t), . . . , XM(t) : t ∈ T } can be represented by {Θ0(t), . . . ,ΘM(t) : t ∈ T }, where

Θi(t), i ∈ {0, . . . ,M} is the proportion of the population in core health state si at time

t, and can only take a limited number of values from the set {θ1i , θ2i , . . . , θ
di
i }, where di

represent the number of distinct possible values that Θi(t) can take.

To determine the set {θ1i , θ2i , . . . , θ
di
i }, define the points {b1i , b2i , . . . , b

di
i }, such that

b1i = 0, bdii = 1, and b1i < b2i < . . . < bdii . These points divide the interval [0, 1] into di

regions. Consequently, a possible value of Θi(t), say item j in the set {θ1i , θ2i , . . . , θ
di
i },

can be determined by the formula. θji =
bj−1
i +bji

2
, for j ∈ {1, . . . , di}. Then, the transition

probability for {Θ0(t), . . . ,ΘM(t) : t ∈ T } can be calculated for {X0(t), . . . , XM(t)} =

{bNΘ0c , . . . , bNΘMc}.
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Another method of aggregating states is the fixed-wight aggregation technique (Heyman

and Sobel, 1984). This method is used by Higginson and Bookbinder (1995) to simplify

their MDP model for shipment consolidation. This method sets a batch size b, then groups

the states of the original model to create a new, smaller state space. In this technique,

the new larger state is formed by grouping and giving each original state (commonly

equal) weights within that group. In particular, let α and β represent sets of original

unaggregated states, and k and m represent states in the new aggregated model. Also,

define a normalizing constant ωα ≥ 0, such that
∑

α∈k ωα = 1. Then,

g′t(k,m, â) =
∑
α∈k

[
ωα
∑
β∈m

gt(α, β, â)

]

Then the system probabilities and reward can be calculated accordingly. It is common

to have equal weights for the states within the larger states, that is, ωα = 1
b
. This assumes

that all original states are equally likely to happen within each new aggregated state. This

assumption may not always be justified, which represents a disadvantage of this method.

A more advanced method of reducing the size of a state space is the grid-based approxi-

mation technique. Lovejoy (1991) uses a uniform grid consisting of a finite subset of points

from the state space that do not change throughout an iterative procedure. This method

provides an efficient interpolation, although the grid exponentially grows as the number of

core health states increases. Moreover, Hauskrecht (1997) uses a nonuniform grid method

that starts from an arbitrary set of points and enhances the grid at each iteration by includ-

ing more points according to various heuristics. This method has the advantage of efficient

use of computation power, whereas its disadvantage is its use of heuristic rules throughout

the process. Sandikci et al. (2013) exploit the structure of their model by building a finite

subset of plausible (feasible) states, and assign a belief distribution over the subset. Also,

they select states such that all of the nonzero values in a selected state vector are positive

integer multiples of 1
q
, where q is a positive integer representing the grid resolution.

The structure of the MDP model can be exploited to eliminate the system states that

are unlikely to occur. For example, a patient who leaves the low-risk level cannot go back.

The same applies for high-risk level. Moreover, a patient in low-risk level with polyp cannot
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transfer to low-risk without lesion, and so on. Given these special characteristics of the

model, the state space reduces significantly.

Furthermore, by limiting computations on the states with higher chances to occur, the

method of Sandikci et al. (2013) provides a significant computational advantage. In their

case, the state space is reduced by a factor as high as one million.

3.2.4 Approximate Dynamic Programming

Given the intractability of the MDP model, the Approximate Dynamic Programming

(ADP) approach can be used to solve the model. The idea of this method is to approximate

the V ∗t (X) function using linear functions and continuously update the approximate func-

tion based on the new information generated by the X vector at each iterations. Interested

readers are referred to Powell and Topaloglu (2006) for general structure of the ADP.

The use of ADP is possible in theory to solve our MDP model. However, since the

state space is prohibitively large, the performance and quality of the ADP approach might

suffer. Further research can be done on this area to investigate the effectiveness of such an

approach.

3.2.5 Complexity of the Model

As mentioned above, for a population of size N , the transition probability matrix of the

Markov process {X0(t), . . . , XM(t) : t ∈ T} is of size
(
N+M
M

)
×
(
N+M
M

)
, which grows sub-

stantially with larger values of M and N . Table 3.8 shows sample values of N and the

resulting size of the transition matrix. As can be seen, the size of the probability transition

matrix is prohibitively large for even moderately large population size N . Therefore, it

would be hard to solve this model on personal computers.

An alternative approach to model and solve this problem is to use the fact that with

large populations, the stochasticity of the system can be approximated by a deterministic

model. When considering a collection of stochastic events that share the main features,

the detailed differences play insignificant role compared to the overall trend of the system.
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Table 3.8: The Size of Probability Transition Matrix for Different Population Sizes N

N M
(
N+M
M

)
10 10 184,756

50 10 75,394,027,566

100 10 46,897,636,623,981

1,000 10 291,098,519,807,782,000,000,000

Specifically, for patients of the same gender, age, and risk level, the trend of their behavior

can be approximated by a single flow. Although it is known that their individual behavior

can be different, the main features of the system are preserved, and therefore, it is possible

to make observations and recommendations on the overall system.

This is the idea of the next section. The deterministic optimization model developed

in Section 3.3 will be an approximation of the MDP model discussed in this section. The

loss of information and insights due to the usage of average values is justified by the less

complexity and the possibility of solving and analyzing. This approach is used in many

application in healthcare, including liver transplant (Akan et al., 2012).

Given that only very small values of N (N ≤ 10) can be solved in the current MDP

model form, solution generated would have insignificant insights. Also, as will be later

discussed, the next section adds more factors into consideration. Therefore, no numerical

results are discussed for the MDP model.

3.3 Mixed Integer Program Model

This section aims at building a mixed integer program to model the population dynamics

and resource allocation for CRC screening policies. Similar to Section 3.2, the objective

of the decision maker is to maximize a social welfare measure, which is QALYs for the

population. Patients are categorized according to the risk level into: low-risk, high-risk, and

post-CRC, which are completely observable by the decision maker. Within each risk level,

the patients are divided into three unobservable clusters depending on cancer progression:
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no lesions, (having) polyp, and (having) CRC. Once again, colonoscopy is considered as

the screening method in this method as well. The policy maker decides on the number (or

percentage) of patients to undergo colonoscopy with each level. Alternatively, the decision

maker would decides which patient group (classification of patients will be discussed later)

to undergo colonoscopy and which will not.

Adding the UCT and D, the total number of core health states is 11. Actions are

defined as whether or not patients in each risk level undergo colonoscopy at a given year.

An extension to the model would be by considering actions as percentages of individuals

in each group to undergo colonoscopy. This can have the action variables as either integer

or continuous, depending on the level of granularity required. A special case is to have

binary actions. In other words, the same action will be performed for all members of a

given group of patients. It is assumed in this model that the population starts at age 50,

and colonoscopy is no longer performed after age 75.

3.3.1 Model Description

In this section, the deterministic model is formally introduced. The model aims at finding

optimal screening policies for a representative population whose individuals are subject

the disease progression pattern described in Section 3.1.4. The major consideration for the

policy maker is the limited CRC screening resources available. The decision maker must

allocate scarce screening resources such that the total QALYs (or any other measure of

social welfare) is maximized.

While this model shares a lot of features with the one developed in Section 3.2, many

variable definitions and formulas are distinctively different. A full description is given

below. Please note that some variable definitions might overlap with the ones in Section

3.2, while others might be different from them.

In this model, the disease progression for an individual patient follows the pattern

described in Section 3.1.4 and depicted in Figure 3.1. Specifically, i ∈ I represent the

disease progression state. This model has 11 disease progression states, as explained in

Section 3.1.4. There are five risk levels, R ∈ R, in this model. Table 3.9 shows the risk

levels and the disease progression states associated with each.
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Table 3.9: Risk Levels and Associated Disease Progression States

Risk Level Associated Disease Progression State

0 {0, 1, 2}
1 {3, 4, 5}
2 {6, 7, 8}
3 {9}
4 {10}

Let j represent an age group, where j ∈ J . Since it is assumed in this model that

screening starts at age 50 for both genders, the age groups start at 50 and end at age

75. Age group’s length can range from one year up to several years. Shorter group’s

length would mean more accurate representation of the population because it is more

granular. However, adopting short group length poses computational challenges to the

model. Moreover, age groups of length of more than 10 years is not recommended due to

the possible loss of accuracy. Almost all guidelines suggest initiating CRC screenings at

or after age 50 (Levin et al., 2008; Winawer et al., 2003). The maximum age (the year at

the end of the last age group j ∈ J is the age at which the consideration for colonoscopy

stops. Normally, this is the age after which colonoscopy offer little to no value. Studies

on the termination of CRC screening suggest to stop screening at ages 75-85 (Maheshwari

et al., 2008; Zauber et al., 2008), and the USPSTF only recommends routine screening for

CRC up to age 75 (US Preventive Services Task Force, 2008).

The population is also divided based on gender, k ∈ K. The fourth factor in classifying

individuals in the population is the personal history. Screening tests with negative results

(i.e., no abnormal lesions found) do not change the disease progression state of a low risk

patient. An index for personal history, h ∈ H, is introduced to capture the dynamics that

might happen to patients who go through this experience. A discussion on how the value

of h changes will be presented later. Having an index for personal history allows, among

others, for tracking the disutility of repetitive screening tests, and personalize compliance

rates. It can be argued that a patient is less motivated to undergo, say, a third screening test

if the first two resulted in finding no abnormalities (the author is yet to found evidence
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of such behavior). Therefore, let sij,k,h represent the state of the system having disease

progression i, age group j, gender k, and history h. The number of individuals in this state

at time t is denoted by X i
j,k,h(t).

In this model, it is assumed that the initial population equals N0. Thus, the following

holds.

∑
i,j,k,h

X i
j,k,h(0) = N0 (3.14)

Time periods are in years; t ∈ T = {0, 1, . . . , tmax}, which represents time epochs for

which the model is run. The higher tmax, the more aging dynamics is allowed, which would

capture more details in the population transformations.

It will be assumed that h ∈ {0, 1, 2}. Recall that h is the index of colonoscopy history

indicating how many test negatives (o = T-) the patient (or group of patients) has received.

If a polyp or cancer has been detected and removed, h is reset to zero. If the patient tests

negative twice successively, h becomes 2, but further negative tests would not change the

value of h.

The actions of the this model represent whether or not the individuals at each core

health state undergo a colonoscopy at time t. However, disease progression is unobservable

within each risk level. For example, low-risk patients are indistinguishable to the policy

maker, and are stochastically distributed into: without lesion, polyp, and CRC levels within

the same risk-level. Therefore, the actions are denoted by aRj,k,h(t) omitting the index for

the disease progression within a certain risk level. Thus, the vector at is the vector of all

actions at time t, or at =
{
aRj,k,h(t)

}
∀ R, j, k, and h. The vector at is a member of the set

A, which represents the set of all action vectors (i.e., all possible actions).

Requiring a patient, or group of patients, to undergo screening does not guarantee

that they will comply. Only a proportion will comply, and actually undergo colonoscopy.

This is called compliance rate (denoted by θRj,k,h). Here again, the index i is omitted.

The subgroup of individuals that actually undergo colonoscopy are said to be subjected to

treatment â = {cl}, while those individuals who do not undergo colonoscopy (either not

scheduled or not compliant with regulations) are subjected to treatment â = {dn}.
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As a result of treatment â, the individual faces an observation. There are four observa-

tions available in this model, o ∈ {T-,P+,C+, SD}. These observations are: test negative

T-, polyp found P+, cancer found C+, and self-diagnosed SD. Depending on the action

and disease progression (see Section 3.1.4), some of these observations may not be possible.

A list of the variables used in this model are shown in Table 3.10.

Table 3.10: Variable Description for MIP Model

Variable Description

I The set of disease progression states, indexed by i,

J The set of age groups, indexed by j,

K The set of genders, indexed by k,

R The set of risk levels, indexed by R, R := {LR,HR,PC,UCT,D},
O The set of observations, indexed by o, O := {T-,P+,C+, SD},
A The set of all action vectors at,

H The set of all history states, indexed by h,

T The set of time periods, indexed by t, T = {0, 1, . . . , tmax}, where

tmax represents the last time epoch for which the model is run,

L The set of possible policies,

sij,k,h The health state defined by disease progression stage i ∈ I, age

group j ∈ J , gender k ∈ K, and disease history h ∈ H,

X i
j,k,h(t) The number of people in the health state defined at time t by disease

progression stage i ∈ I, age group j ∈ J , gender k ∈ K, and disease

history h ∈ H,

X̃ i
j,k,h(t) The adjusted X i

j,k,h(t) after aging,

aRj,k,h(t) The action of individuals in state sij,k,h to either undergo colonoscopy

or not at time t. Since disease progression is unobservable within

each risk level, the index i does not appear here,

at The vector of all actions aRj,k,h(t) at time t, at =
{
aRj,k,h(t)

}
∀ R, j, k,

and h. Thus, at ∈ A,

â The type of treatment a subgroup is subjected to, â ∈ {cl, dn},

122



f
(
o|sij,k,h, â

)
The rate of observing observation o ∈ O at time t when action

â ∈ {cl, dn} is taken on state sij,k,h,

p
(
si
′

j′,k′,h′ |sij,k,h, â, o
)

The rate at which individuals will be in state si
′

i′,j′,k′ given that they

are in state sij,k,h, action â ∈ {cl, dn} is taken, and screening result

o is observed,

q
(
si
′

j′,k′,h′ , s
i
j,k,h, â, o

)
Immediate rewards (in expected QALYs) for all individuals going

from state sij,k,h to state si
′

j′,k′,h′ given action â and screening result

o is observed,

qtmax(sij,k,h) Terminal reward for individuals in state sij,k,h at the last time period,

tmax,

Lmax The capacity limit for colonoscopy resource available.

υj Rate of aging to age group j from an immediate predecessor age

group j,

θRj,k,h Compliance rate for age individuals in states sij,k,h ∀i,
τP Sensitivity of colonoscopy to polyps,

τC Sensitivity of colonoscopy to cancer,

ωâ Probability of CRC self-detection given action â,

ρi,i
′

j Lesion progression rate from states i to state i′,

δi,jâ,o Rate of mortality in state i given treatment â and observation o.

γi,j Rate of completion within year t of treatment initiated at state i,

h An immediate predecessor of h (e.g., if h = 1 then h = 0),

j An immediate predecessor of j (e.g., if j = 1 then j = 0),

h0 1 if h = 0, 0 otherwise,

λt Discount factor in year t,

qiJ,h,k Terminal reward (QALYs after age J) for state sij,k,h,

dC , dCT , dUCT Disutility of undetected CRC, CRC treatment, and being in the

UCT state,

dpoly(cl) Disutility of undergoing colonoscopy with polypectomy,

d¬poly(cl) Disutility of undergoing colonoscopy without polypectomy,

κi,jâ,o Probability of immediate mortality from screening complications,

κjUCT Probability of immediate mortality from treatment at age j.
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m` Binary variable set to one if policy ` ∈ L is selected, zero otherwise.

3.3.2 Model Formulation

The system state transition rate function, g
(
si
′

j′,k′,h′|sij,k,h, aRj,k,h(t)
)
, is defined as

g
(
si
′

j′,k′,h′|sij,k,h, aRj,k,h(t)
)

=θRj,k,ha
R
j,k,h(t)

∑
o∈O

p
(
si
′

j′,k′,h′|sij,k,h, cl , o
)
f
(
o|sij,k,h, cl

)
+
[
1− θRj,k,haRj,k,h(t)

]∑
o∈O

p
(
si
′

j′,k′,h′ |sij,k,h, dn, o
)
f
(
o|sij,k,h, dn

)
(3.15)

The first term of equation (3.15) represents the rate of transition from state sij,k,h to state

si
′

j′,k′,h′ as a result of conducting colonoscopy. This rate is only applied to the proportion of

individuals in the state who are compliant with the guidelines. The second term represents

those who are not supposed to undergo colonoscopy, as well as non-compliant individuals

who are supposed to undergo colonoscopy but choose not to.

Detailed formulations of p
(
si
′

j′,k′,h′ |sij,k,h, â, o
)
, f
(
o|sij,k,h, â

)
, and q

(
si
′

j′,k′,h′ , s
i
j,k,h, â

)
(see

below) can be found in Appendix C.

Equation (3.15) can be written as

g
(
si

′
j′,k′,h′ |sij,k,h, a

R
j,k,h(t)

)
=aRj,k,h(t)θ

R
j,k,h

∑
o∈O

p
(
si

′
j′,k′,h′ |sij,k,h, cl , o

)
f
(
o|sij,k,h, cl

)
−
∑
o∈O

p
(
si

′
j′,k′,h′ |sij,k,h, dn, o

)
f
(
o|sij,k,h, dn

)
+
∑
o∈O

p
(
si

′
j′,k′,h′ |sij,k,h, dn, o

)
f
(
o|sij,k,h, dn

)
(3.16)

Let ĝ(s′|s, â) = ĝ
(
si
′

j′,k′,h′ |sij,k,h, â
)

=
∑
o∈O

p
(
si
′

j′,k′,h′ |sij,k,h, â, o
)
f
(
o|sij,k,h, â

)
. Therefore,

we can write equations (3.15) as

g
(
si
′

j′,k′,h′|sij,k,h, aRj,k,h
)

=aRj,k,hθ
R
j,k,h [ĝ(s′|s, cl)− ĝ(s′|s, dn)] + ĝ(s′|s, dn) (3.17)

Formula (3.17) will be used for its brevity.
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Aging Constraints

It is assumed that aging happens before other transitions in the population. Consequently,

actions will be applied to the adjusted number of individuals in each system state X̃ i
j,k,h(t),

which is defined as

X̃ i
j,k,h(t) = (1− υj)X i

j,k,h(t) + (υj)X
i
j,k,h(t) , j > 0 (3.18)

where j represents the age group immediately preceding age group j. Equation (3.18)

states that the number of individuals in a particular state after the event of aging is the

sum of two components. The first is the proportion of individuals who did not proceed to

the next age group. In other words, their new age is still within the range of the current

age group. The other component comes from the individuals who left their (younger) age

group to join the current, if applicable.

Also, it is assumed that the number of individuals in the youngest age group (j = 0)

remains constant over time. This stems from the assumption that the number of individuals

leaving this youngest age group is equal to the number of people joining (i.e., becoming

part of the target population). This assumption is expressed mathematically as follows.

For all i, k, h, and t, the following set of constraints hold.

X̃ i
0,k,h(t) = X i

0,k,h(t) (3.19)

Transition Function

It is now possible to write the main transition function in this model. The following

represents the formula governing the transition of individuals from any system state at

time t to the state X i
j,k,h(t + 1) at time t + 1. For a given action set at = {aRj,k,h}, the

transition equations have the form
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X i
j,k,h(t+ 1) =

(
1−

∑
i′,j′,k′,R′,h′

g
(
si
′

j′,k′,h′ |sij,k,h, aRj,k,h(t)
))

X̃ i
j,k,h(t)

+
∑

i′′,j′′,k′′,R′′,h′′

[
g
(
sij,k,h|si

′′

j′′,k′′,h′′ , a
R
j,k,h(t)

)
X̃ i′′

j′′,k′′,h′′(t)
] (3.20)

where si
′

j′,k′,h′ are the states that sij,k,h leads to, and si
′′

j′′,k′′,h′′ are the states that lead to

sij,k,h.

The first line of the right hand side of equation (3.20) represents the number individuals

who were in state X i
j,k,h at time t and did not leave to another state at time t + 1. The

second line represent all individuals who transferred to state X i
j,k,h(t+1) at time t+1 from

any other state at time t.

To provide visual clarity, whenever possible, the following replacements will be made.

s will be used instead of sij,k,h, s
′ will be used instead of si

′

j′,k′,h′ , and s′′ will be used instead

of si
′′

j′′,k′′,h′′ .

Equation (3.20) can be simplified as follows.

X(t+ 1) =

(
1−

∑
s′

g (s′|s, a(t))

)
X̃(t) +

∑
s′′

[
g (s|s′′, a(t)) X̃ ′′(t)

]
(3.21)

Substituting the value of g function of formula (3.17) into (3.21) gives

X(t+ 1) =

(
1−

∑
s′

ĝ (s′|s, dn)

)
X̃(t)−

∑
s′

[ĝ (s′|s, cl)− ĝ (s′|s, dn)]θa(t)X̃(t)

+
∑
s′′

ĝ(s|s′′, dn)X̃ ′′(t) +
∑
s′′

[ĝ (s|s′′, cl)− ĝ (s|s′′, dn)]θ′′a′′(t)X̃ ′′(t)

(3.22)

In the previous equation, the state s can be excluded from all summations since they

would add up to zero anyway. This gives
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X(t+ 1) =

1−
∑
s′\s

ĝ (s′|s, dn)

 X̃(t)−
∑
s′\s

[ĝ (s′|s, cl)− ĝ (s′|s, dn)]θa(t)X̃(t)

+
∑
s′′\s

ĝ(s|s′′, dn)X̃ ′′(t) +
∑
s′′\s

[ĝ (s|s′′, cl)− ĝ (s|s′′, dn)]θ′′a′′(t)X̃ ′′(t)

(3.23)

The explicit formulations of the transition equations are shown in Appendix B.

Capacity Constraints

The capacity constraints can be expressed as

∑
R,i,j,k,h

aRj,k,h(t)X
i
j,k,h(t) ≤ Lmax, ∀ t (3.24)

where Lmax is the maximum capacity of screening resources for the system.

Note that the capacity is calculated based on the scheduled colonoscopies, not the

actual.

Reward

The reward of the system at each time period, is the sum of individual rewards of patients

at that time period. The immediate reward is expressed in quality-adjusted life years

(QALYs).

The reward of the system is defined in the following manner. Define q
(
si
′

j′,k′,h′ , s
i
j,k,h, â

)
as the reward of the system resulted from going from state sij,k,h at time t to state si

′

j′,k′,h′

at time t+ 1 when treatment â is applied. q
(
si
′

j′,k′,h′ , s
i
j,k,h, â

)
is defined as follows.

q
(
si
′

j′,k′,h′ , s
i
j,k,h, â

)
=
∑
o∈O

p
(
si
′

j′,k′,h′|sij,k,h, â, o
)
f
(
o|sij,k,h, â

)
q
(
si
′

j′,k′,h′ , s
i
j,k,h, â, o

)
(3.25)
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Similarly, define q
(
sij,k,h, â

)
as the total reward achieved from going to any state at time

t+ 1 given the (group of) patients are in state sij,k,h at time t and treatment â is applied.

q
(
sij,k,h, â

)
=

∑
j′,k′,h′,i′

∑
o∈O

p
(
si
′

j′,k′,h′ |sij,k,h, â, o
)
f
(
o|sij,k,h, â

)
q
(
si
′

j′,k′,h′ , s
i
j,k,h, â, o

)
(3.26)

It is now possible to define r
(
sij,k,h, a

R
j,k,h(t)

)
, which is the total reward for all individuals

who are in state sij,k,h at time t when action aRj,k,h(t) is applied.

r
(
sij,k,h, a

R
j,k,h

)
=θRj,k,ha

R
j,k,h

∑
j′,k′,h′,i′

∑
o∈O

p
(
si
′

j′,k′,h′|sij,k,h, cl , o
)
f
(
o|sij,k,h, cl

)
q
(
si
′

j′,k′,h′ , s
i
j,k,h, cl , o

)
+
[
1− θRj,k,haRj,k,h

] ∑
j′,k′,h′,i′

∑
o∈O

p
(
si
′

j′,k′,h′ |sij,k,h, dn, o
)
f
(
o|sij,k,h, dn

)
q
(
si
′

j′,k′,h′ , s
i
j,k,h, dn, o

)
(3.27)

The first line of (3.27) represents the reward achieved from individual compliant with

the policy. Since the compliance rate θRj,k,h can be less than one (not all patients who are

instructed to undergo screening will actually do it), the second line of the formula accounts

for non-compliant individuals.

Let r̂(sij,k,h, â) =
∑

j′,k′,h′,i′

∑
o∈O

p
(
si
′

j′,k′,h′ |sij,k,h, â, o
)
f
(
o|sij,k,h, â

)
q
(
si
′

j′,k′,h′ , s
i
j,k,h, â, o

)
Then, equation (3.27) can be simplified as follows.

r
(
sij,k,h, a

R
j,k,h(t)

)
=θRj,k,ha

R
j,k,h(t)r̂(s

i
j,k,h, cl) +

[
1− θRj,k,haRj,k,h(t)

]
r̂(sij,k,h, dn) (3.28)

which can be re-written as

r
(
sij,k,h, a

R
j,k,h(t)

)
=
[
r̂(sij,k,h, cl)− r̂(sij,k,h, dn)

]
θRj,k,ha

R
j,k,h(t) + r̂(sij,k,h, dn) (3.29)
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Objective function

The model aims at maximizing the QALYs of the whole population. The objective function

is expressed as follows.

max
a

∑
i,j,k,h,t

r
(
sij,k,h, a

R
j,k,h(t)

)
X i
j,k,h(t) +

∑
i,j,k,h

qtmax(sij,k,h)X
i
j,k,h(t

max) (3.30)

The first term represents the reward achieved as a result of actions across all time

periods for all states. The second term represent the terminal rewards, which are the

estimated remaining QALYs from this point onwards. This is applied at the final time

period tmax.

Rewriting the formula above gives

max
a

∑
i,j,k,h,t

([
r̂(sij,k,h, cl)− r̂(sij,k,h, dn)

]
θRj,k,ha

R
j,k,h(t)X

i
j,k,h(t) + r̂(sij,k,h, dn)X i

j,k,h(t)
)

+
∑
i,j,k,h

qtmax(sij,k,h)X
i
j,k,h(t

max)
(3.31)

3.3.3 Full Problem

The full program is shown here. The variables are X i
j,k,h(t) and X̃ i

j,k,h(t),∀i, j, k, h, t are

continuous, while variables aRj,k,h(t),∀R, j, k, h, t are binary. The following formulation

omits the indices of the first constraints to make it visually clearer.
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max
∑
i,j,k,h,t

([
r̂(s, cl)− r̂(sij,k,h, dn)

]
θa(t)X(t) + r̂(s, dn)X(t)

)
+
∑
i,j,k,h

qtmax(s)X(tmax)
(3.32a)

s.t. X(t+ 1) =

1−
∑
s′\s

ĝ (s′|s, dn)

 X̃ i
j,k,h(t)−

∑
s′\s

[ĝ (s′|s, cl)− ĝ (s′|s, dn)]θa(t)X̃(t)

+
∑
s′′\s

ĝ(s|s′′, dn)X̃ ′′(t) +
∑
s′′\s

[ĝ (s|s′′, cl)− ĝ (s|s′′, dn)]θ′′a′′(t)X̃ ′′(t)

,∀ i, j, k, h, t
(3.32b)

X̃ i
j,k,h(t) = (1− υj)X i

j,k,h(t) + (υj)X
i
j,k,h(t), ∀ i, j > 0, k, h, t (3.32c)

X̃ i
0,k,h(t) = X i

0,k,h(t), ∀ i, k, h, t (3.32d)∑
i,j,k,h

X i
j,k,h(0) = N0 (3.32e)∑

R,i,j,k,h

aRj,k,h(t)X
i
j,k,h(t) ≤ Lmax, ∀ t < tmax

(3.32f)

aRj,k,h(t) ∈ {0, 1}, ∀ R, j, k, h, t (3.32g)

The model (3.32) is nonlinear. The product aRj,k,h(t)X
i
j,k,h(t) appears in the objective

function and the first constraint. However, this product of a binary variable and a contin-

uous variable can be replaced by W i
j,k,h(t) by enforcing the following

W i
j,k,h(t) ≤ N0a

R
j,k,h(t), ∀ i, j, k, h, t (3.33a)

W i
j,k,h(t) ≤ X i

j,k,h(t), ∀ i, j, k, h, t (3.33b)

W i
j,k,h(t) ≥ X i

j,k,h(t)− (1− aRj,k,h(t))N0, ∀ i, j, k, h, t (3.33c)

W i
j,k,h(t) ≥ 0, ∀ i, j, k, h, t (3.33d)

Similarly, the product aRj,k,h(t)X̃
i
j,k,h(t) appears in the objective function and the first

130



constraint. However, this product of a binary variable and a continuous variable can be

replaced by W̃ i
j,k,h(t) by enforcing the following

W̃ i
j,k,h(t) ≤ N0a

R
j,k,h(t), ∀ i, j, k, h, t (3.34a)

W̃ i
j,k,h(t) ≤ X i

j,k,h(t), ∀ i, j, k, h, t (3.34b)

W̃ i
j,k,h(t) ≥ X i

j,k,h(t)− (1− aRj,k,h(t))N0, ∀ i, j, k, h, t (3.34c)

W̃ i
j,k,h(t) ≥ 0, ∀ i, j, k, h, t (3.34d)

The full linear program is shown below.
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max
∑
i,j,k,h,t

([
r̂(sij,k,h, cl)− r̂(sij,k,h, dn)

]
θRj,k,hW

i
j,k,h(t) + r̂(sij,k,h, dn)X i

j,k,h(t)
)

+
∑
i,j,k,h

qtmax(sij,k,h)X
i
j,k,h(t

max)

(3.35a)

s.t. X(t+ 1) =

1−
∑
s′\s

ĝ (s′|s, dn)

 X̃(t)−
∑
s′\s

[ĝ (s′|s, cl)− ĝ (s′|s, dn)]θW̃ (t)

+
∑
s′′\s

ĝ(s|s′′, dn)X̃ ′′(t) +
∑
s′′\s

[ĝ (s|s′′, cl)− ĝ (s|s′′, dn)]θ′′W̃ ′′(t)

(3.35b)

X̃ i
j,k,h(t) = (1− υj)X i

j,k,h(t) + (υj)X
i
j,k,h(t) (3.35c)∑

i,j,k,h

X i
j,k,h(0) = N0 (3.35d)∑

R,i,j,k,h

W i
j,k,h(t) ≤ Lmax, ∀ t < tmax

(3.35e)∑
R,i,j,k,h

W i
j,k,h(t)C

i
j ≤ Cmax, ∀ t < tmax

(3.35f)

W i
j,k,h(t) ≤ N0a

R
j,k,h(t), ∀ i, j, k, h, t (3.35g)

W i
j,k,h(t) ≤ X i

j,k,h(t), ∀ i, j, k, h, t (3.35h)

W i
j,k,h(t) ≥ X i

j,k,h(t)− (1− aRj,k,h)N0, ∀ i, j, k, h, t (3.35i)

W̃ i
j,k,h(t) ≤ N0a

R
j,k,h(t), ∀ i, j, k, h, t (3.35j)

W̃ i
j,k,h(t) ≤ X̃ i

j,k,h(t), ∀ i, j, k, h, t (3.35k)

W̃ i
j,k,h(t) ≥ X̃ i

j,k,h(t)− (1− aRj,k,h)N0, ∀ i, j, k, h, t (3.35l)

(3.35m)

3.3.4 Set of Policies

The model above has ultimate freedom to choose a policy that is optimal. However, this

optimal policy might not be practical (e.g., too complicated for physicians and patients,
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too demanding on specific group of patients, etc.). Instead, the model can be adjusted

such that it chooses an optimal policy from a set of policies. Ideally, this set of policies

would be comprehensive and not restricting. Mathematically, the model can be amended

to account for this setup.

Let ` ∈ L be a specific policy. Therefore, the number of candidate policies is |L|.
Also, let m` be a binary variable that takes a value of one if policy ` is selected, and zero

otherwise. The action for individual system state, aRj,k,h, can be either part of policy ` (i.e.,

having a value of one) or not (i.e., having a value of zero), but not both. For clarity, let a`

represent any action that is part of policy `, and ā` represents any action that is not part

of policy `.

Therefore, amending the model with the following constraints makes it possible to select

from a set of policies.

∑
`∈L

m` = 1 (3.36a)

a` ≥ m` ∀` ∈ L (3.36b)

ā` ≤ (1−m`) ∀` ∈ L (3.36c)

Constraints (3.36a) guarantees that only one policy is selected. Constraints (3.36b)

state that if policy ` is selected, all actions belong to that policy should be equal to one,

and if policy ` is not selected, the constraints are non-restricting. Similarly, constraints

(3.36c) state that if policy ` is selected, all actions that do not belong to that policy must

equal to zero, and if policy ` is not selected, these constraints are non-restricting.

3.4 Data Sources

The accuracy of the our models depends largely on the quality of the input parameters.

Therefore, a special care is given to the choice and calibration of the data that is used
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as input to the models. The following is a brief description of the data sources that were

referred to to extract the necessary parameters.

The lesion progression rates, ρi,i
′

j , from disease progression state i to disease progression

state i′ for age group j are derived from Erenay et al. (2011) and Loeve et al. (2004). These

include the polyp onset probabilities, polyp-to-CRC progression probabilities, and lesion

progression probabilities after CRC treatment and for post-CRC individuals.

The probabilities of mortality, δti,o(â), at disease progression state i when treatment â is

taken at time t with observation o are extracted from the US life tables (Arias, 2015; Erenay

et al., 2011) and checked against Xu et al. (2016), where applicable. These include the

probabilities of mortality for CRC-free patients, mortality from undetected CRC, mortality

for post-CRC patients, mortality in the UCT disease progression state, mortality after

colonoscopy, and mortality after CRC treatment. The same for κi,jâ,o, the probability of

immediate mortality from screening complications, and κjUCT , the probability of immediate

mortality from treatment at age j.

The probabilities that the CRC treatment will be completed within one year, γi,j, are

withdrawn from SEER data (Erenay et al., 2014; Longo et al., 2000; Ohlsson and P̊alsson,

2003; Yun et al., 2008). The disutility values dC , dCT , dUCT , dpoly(cl), and d¬poly(cl) are

based on values from Erenay et al. (2011, 2014), and Howlader et al. (2017). This is also

the case for the terminal rewards qtmax(sij,k,h). Moreover, the sensitivity of colonoscopy and

CRC is based on Frazier et al. (2000) and Vijan et al. (2007), while the probability of CRC

self detection ωâ is extracted from Erenay et al. (2014) and Howlader et al. (2017).

Capacity parameters are estimated using methods used in Butterly et al. (2007) and

Güneş et al. (2015). Population demographic parameters are estimated using Ramsey

et al. (2010)’s simulation study. Initial number of individuals in each core health states

are estimated based on Loeve et al. (2004) for people with polypectomy, Wilschut et al.

(2011) for people with family history, and Erenay et al. (2011) for post-CRC patients.

Other sources of data consulted and checked include Arora et al. (2009); Brenner et al.

(2011); Butterly et al. (2007); Gatto et al. (2003); Ladabaum and Song (2005); and Seeff

et al. (2004).
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3.5 Computational Results and Analyses of MIP Model

In this section, we present preliminary results from the MIP model that would guide

further testing and analysis. The analysis will focus on the effects of changing particular

parameters on the overall optimal policy. For this preliminary analysis, the parameters

of interest are mainly the prevalence and capacity level. A sensitivity analysis will be

conducted on these parameters to see the significance of each. Other parameters (mainly

disease-related) are assumed to be fixed for now. Future work will include comprehensive

sensitivity analysis for all major parameters.

Butterly et al. (2007) estimate that 35% of the population (>50 years) are at increased

risk, while 65% of the population are at average risk. Matching figures appear in Ladabaum

and Song (2005). The 35% of the increased risk population include those with personal

history of polyps.

Regarding compliance, the base values for low risk, high risk, and post-CRC populations

will be assumed 0.6, 0.8, and 1.0, respectively. This in part is based on figures from Butterly

et al. (2007); Frazier et al. (2000); and Güneş et al. (2015).

Vijan et al. (2004) estimate the screening colonoscopy capacity at around two million

per year. This estimation is based on a database of 400 gastrointestinal endoscopists in the

USA. The sample is extrapolated to all gastroenterologists, and then extended to account

for screenings done by providers other than gastroenterologists. Seeff et al. (2004) estimate

the current capacity of colonoscopy (diagnosis and screening) at 14.2, and the potential

capacity (that could be available if there is demand for it) at 22.4 million. This estimate

is based on telephone surveys of medical facilities known to have purchased or leased

colonoscopy (or sigmoidoscopy) equipment within a certain time frame. Butterly et al.

(2007) and Güneş et al. (2015) estimate the percentage of colonoscopy capacity allocated

to screening at 55% (range 50%-60%). Therefore, the base case for capacity will be 5

million annually, with range (2-7.5) million.

The test instances shown in this section share some common parameters. The number

of age groups |J | = 5. These age groups are 50-54, 55-59, 60-64, 65-69, and 70-74.

Increasing the number of age groups would significantly increase the size of the model,
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as well as generate more accurate results. Also, tmax = 8. This will keep the model at

reasonable size. Future work includes increasing this value to better capture the aging of

the population.

The number of variables is |R||J ||K||H||T |+4×|I||J ||K||H||T |. Of those, |R||J ||K||H||T |
are binary.

3.5.1 Effects of Prevalence

To test the effects of having accurate estimates of the CRC prevalence in the target popula-

tion, we start with some hypothetical cases that would help in understanding the dynamics

of the model and the resulting policies.

The prevalence values are given to a total of 90 system states; given for both males and

females: |J | = 5, and number of disease progression 9 (states UCT and D are excluded),

with t = 0 and h = 0.

Equally Distributed Population

In this instance, we assume that the initial population is equally distributed among all

population groups at 1.11% for each group. Obviously, any capacity less than (1.11× 3 =)

3.33 % of the target population would mean that colonoscopy would never be applied

(at least at time t = 0). This is proven when experimenting with the lower limit of the

colonoscopy capacity. As mentioned above, the lower limit is 2 million annually, which

corresponds to 2.34% of the target population. The optimal policy in such a case calls

for screening of the youngest PC males and females at h = 2 almost annually. This is

accompanied by occasional screening for lower h values.

Increasing the capacity limit to 5 million annually corresponds to 5.84% of the popula-

tion. This gives more freedom to screen more population groups. The youngest PC females

with h = 0 and h = 2 are screened almost annually, while those with h = 1 are screened

biannually. The same trend appears for the second youngest age group. This shows the

emphasis on screening the PC females in general. For the LR population, screening is
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concentrated on males with j = 3, h = 2 almost annually after t = 6. It is necessary for

this to be feasible that there are some capacity allocated to the same population group at

h = 0 and h = 1 in order to be have patients at h = 2.

Finally, increasing the capacity limit to 7.5 million annually corresponds to 8.76% of

the target population. The optimal policy in this case is to screen the second youngest

LR males and females almost every 3 years, with T- results. The screening continues with

aging. Also, the males and females at PC risk level are screened annually covering more

age groups and h levels. This shows that when capacity is available, more resources are

directed toward LR. This can be explained by the tendency of the model to remove more

lesions, and have lesion free population.

The analysis here shows the significance of the capacity limit on the optimal policy.

As detailed above, the optimal policy can change dramatically based on the number of

screening tests available. This is very important since the current guidelines are insensitive

to the available capacity, and therefore, might be suboptimal as well.

Low-Risk-Dominated Population

In this scenario, the target population is of low-risk only. Out of this, 2.5% have polyps

and another 1% have cancer. Since the number of individuals in each initial population

group is either zero or a value higher than the lower bound of the capacity (2.34%), the

lower bound of capacity is of no use and offers no help in screening the population. When

using the base case capacity of 5.84%, the same happens. The capacity is so small that it

is not enough to meaningfully screen any group entirely. At the upper limit on capacity of

8.76%, the optimal policy focus on screening the oldest LR males at least once every 5 years.

Unlike previous optimal policies, this policy’s focus is on males, rather than females. This

is an interesting observation and will be studies further in future research. However, one

explanation for this might be that the model is tending to keep the bulk of the population

at the lowest risk possible. By screening the LR individuals at disease progression state

i = 0, it is more likely to keep them there with higher compliance. Hence, it would be a

high percentage of T- observations.
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Representative Population

For the representative population, we will assume the low risk population to be 65%, while

the high risk and post-CRC populations are, respectively, 30% and 5%. This is based on

figures given in Butterly et al. (2007) and Ladabaum and Song (2005). Within the low-

risk groups, it will be assumed that 96.5% have no polyps, 2.5% have polyps, and 1% have

cancers. Similarly, within the high-risk and post-CRC groups, it will be assumed that the

proportion of polyps and cancers are double those for low-risk patients. In particular, the

percentages for no polyps, polyps, and cancers are, respectively, 93%, 5%, and 2%.

When the capacity is scarce (2.34% of the target population), the optimal policy tends

to focus on the oldest HR males and females, with screening programs at least once every

7-8 years. A slightly more frequent screening program is given to PC patients, especially

the youngest age group. This is understandable given the limited capacity to prioritize

those patients with higher chances of survival and where impact is maximized. With a

moderate estimate of capacity at 5.84%, LR patients are screened almost every 5 years up

to age 60. HR and PC patients are screened annually from age 50-64. Afterwards, they are

screened biannually. With the upper bound on capacity (8.76% of the target population),

LR patients are screened every 3 years, while HR and PC are screened annually.

Table 3.11 shows a graphical representation of the results discussed earlier. As can

be seen, there is a clear trend regarding the effect of capacity on the optimal policies. A

sample policy is given in Table 3.12. Typically, the policies would differ for different age

groups. When designing an easy-to-follow policy, it is important to aggregate and combine

policies of different age groups and genders in order to arrive at a policy with minimal

number of variables. Patients and physicians are more likely to follow such policies.

3.5.2 Effects of Capacity

To study the effects of changing the available colonoscopy capacity, we will use the example

of representative population from the previous sections. In particular, we will assume we

have a population of 65% low risk, 30% high risk, and 5% post-CRC distribution. Within
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Table 3.11: Comparison between Optimal Policies and Current Guidelines

Prevalence Capacity

Low Base High

LR-Dominated LR,HR,PC LR,HR,PC LR ,HR,PC

Representative LR,HR,PC LR,HR ,PC LR ,HR ,PC

Legend:

underlined (and red): Less frequent than guidelines

normal (and black): As frequent as guidelines

upper bar (and green): More frequent than guidelines

Table 3.12: Sample Screening Policy: Optimal Policy for Representative Population with

Base Case Capacity

Age LR HR PC

50-54
5

155-59

60-64

1065-69
2

70-74
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the low risk groups, 96.5% have no polyps, 2.5% have polyps, and another 1% have cancers.

For high risk and post-CRC groups, the distribution is 93%, 5%, and 2%, respectively.

From previous experiments, we know that with shortage in available capacity, the

optimal policy tends to focus on HR and PC groups, especially young ones. Now, we

consider the potential capacity of 11 million screening colonoscopies annually. Recall that

this figure comes from an estimated potential capacity of 22.4 million annually from Seeff

et al. (2004), and a proportion of about 50% given to screening (Butterly et al., 2007).

With this scenario, capacity is around 12.85% of the target population. With this capacity,

HR and PC are screened almost annually, while LR are screened every 5 years.

It is apparent from analyzing different scenarios of available capacity that it is a very

important parameter to consider when designing the screening policy for a population.

The current guidelines are not necessary optimal for all capacity levels. Therefore, failure

to address capacity would result in suboptimal screening programs, which would translate

into poorer health outcomes.

3.6 Conclusions

This chapter presented two modeling procedures for the problem of allocating colonoscopy

screening resources among a population of potential CRC patients. The MDP procedure

is a stochastic technique that has the potential to be very accurate. However, due to

the extremely large number of system states, solving this model is a challenge. The MIP

procedure benefits from the large number of individuals in each population subgroup and

provides an approximation to the stochastic process. Consequently, the MIP model can

account for population dynamics that are not considered in the MDP model, such as

different age groups, gender, and personal history of screening tests.

The analysis of this chapter has focused on the significance and importance of incorpo-

rating capacity availability and requirements into the design of CRC screening guidelines. It

was found that the current guidelines are not always optimal. In particular, if colonoscopy

resources are abundant, optimal screening programs recommend higher screening rates

for low-risk patients than the current guidelines, and almost similar screening rate for
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post-CRC patients. When screening capacity is scarce, the low risk patients are screened

less frequently than the guidelines. This shows the significance of incorporating screening

capacity into the decision of optimal screening policies.

It was found that the population composition can have an influence on the optimal

policy. In particular, it was shown through experimentation that in situations where ca-

pacity is scarce, the optimal policy tends to favor females and post-CRC patients. This

is explained by the higher expected age and lower mortality rate for females, as well as

the major health benefits of removing potential polyps and cancerous lesions from the

post-CRC patients.

Extensions to this model include increasing the number age groups. Ideally, age groups

would be of length one year. This will cause |J | to increase, but also it would eliminate the

need for X̃. The resulting effect needs to be studied. Also, the changes in the population

distribution and dynamics, especially with large values of tmax are interesting research

questions to pursue.

Moreover, other considerations can be added to make the model more realistic. For

example, the cost of the screening represents a major factor in designing optimal policy

that would be sustainable and acceptable by the society and medical community. As such,

incorporating the budget constraint would be vital to successful implementation of the

guidelines. In particular, the following represents the cost limitation that considers the

available budget.

∑
R,i,j,k,h

aRj,k,h(t)X
i
j,k,h(t)C

i
j ≤ Cmax, ∀ t < tmax (3.37)

where Ci
j is the cost of conducting colonoscopy for one patient in risk level R and disease

progression stage i and age group j, and Cmax is the cost limit (budget) for colonoscopy in

one year.

Furthermore, to obtain the society’s support of preventive care policies, it is important

to quantify and limit the mortality rate that is likely to occur as a result of applying such

policy. The following constraints aim to do that.
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∑
R,i,j,k,h,â

aRj,k,h(t)X
i
j,k,h(t)δR,i,o(â)f

(
o|sij,k,h, â

)
≤ Mortalitymax, ∀ t < tmax (3.38)

where Mortalitymax is the limit on annual mortality that is set in priori. The discussion on

ethical issues associated specifying a mortality limit is worth having, but it is beyond the

scope of this work.
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Chapter 4

Conclusions and Future Work

This chapter gives a summary of the models and results discussed in this thesis. Also, a

glimpse into the future research work directions is presented, with a brief discussion on the

challenges and potential of each.

4.1 Summary

This thesis discussed resource allocation in healthcare applications. In Chapter 1, a review

of major resource allocation models in healthcare was presented. A brief introduction to

the target problems and research questions were then listed.

Chapter 2 discussed a facility location model where facilities are subject to failure,

and customers have preferences. The aim was to find the best number and location of

facilities to open, and the best assignment strategy for customer demand. It was shown

that this integration is important and would significantly save costs. Then, a solution

methodology was presented. The Lagrangian based procedure was then implemented in

three different ways. It was shown that each implementation has its own features. Among

them, PQ-LBB emerged as the most efficient due to its special characteristic of prioritizing

nodes that have the potential to be optimal. Later on, a reformulation with fewer number

of variables was presented, and solution methodologies based on a Lagrangian relaxation
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embedded within a branch-and-bound and a branch-and-cut structures. Also, important

results and characteristics of the methodology were proven. Moreover, the chapter proposed

a constraint which significantly tightens LP relaxation of the formulation. The numerical

experiments showed that the proposed solution algorithms can be applied to problems with

extremely large number of customers.

Chapter 3 discussed allocating CRC screening resources among a representative popula-

tion. Screening is effective in the prevention and early detection of CRC. However, the full

benefit of screening is attained by periodic testing. This can be a challenge given the lim-

ited screening resources available. An analytical framework was advised based on a MDP.

The challenges and advantages of using such model were presented. The model built on a

published model on the individual patient CRC screening process. A formal representation

of the MDP components was given, including the probability transition matrix, reward,

and objective function. The state space for this model would be huge as the population

size grows. As a result, some methodologies for state aggregation were discussed. Later

on, a MIP was developed for the same problem. This model was solved and significant

insights were drawn. It was found that current guidelines are not always optimal. In

particular, if colonoscopy resources are abundant, optimal screening programs recommend

higher screening rates for low-risk patients than the current guidelines, and almost simi-

lar screening rate for post-CRC patients. When screening capacity is scarce, the low risk

patients are screened less frequently than the guidelines. This shows the significance of

incorporating screening capacity into the decision of optimal screening policies.

4.2 Future Research Directions

There are many directions for future research. The following are some examples. These

suggestions are organized into two main problems: the reliable facility location model and

the CRC cancer screening allocation model.
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4.2.1 Reliable Facility Location Model with Customer Prefer-

ences

In preventive healthcare, patients (customers) have more chance of selecting when and

where to receive a service. As opposed to urgent healthcare interventions, customers’

preferences in preventive healthcare play a major part in service assignments. Examples of

preventive healthcare include screenings for cancers, diabetes, and cardiovascular diseases,

regular monitoring of weight and cholesterol levels, and general advice regarding tobacco

and alcohol use, to name a few. The decisions of how many preventive healthcare facilities,

where to locate them, and which customers to assign to them can be drawn upon building

on classical location models, as well as literature related to customer preferences.

We were able to solve extremely large instances. In real life location problems, decision

makers may need to consider a large number of customer types in terms of their preferences

over the set of candidate sites. For instance, when choosing preventive healthcare facilities,

patients might decide based on proximity and service quality (Verter and Zhang, 2015).

There could be several preference types because patients might weigh proximity and service

quality differently.

One possible extension for this work would be improving the solution algorithms. Solv-

ing the Lagrangian dual can be time consuming due to the need to solve many mixed-integer

subproblems. We may alleviate this difficulty using a Benders decomposition within an

LP based branch-and-bound method. A pure Benders decomposition approach, however,

may yield weak relaxations, leading to a large branch-and-bound tree. Therefore, we will

try to use integrality constraints to obtain improved LP relaxations within the Benders

decomposition framework (Bodur et al., 2017)

Another future direction would be adding a budget constraint or a limit on the number

of facilities to open. This will be similar to the p-median problem. It is also possible to

introduce facility capacities into the model. Allocating customers to capacitated facilities

based on preference would be a non-trivial extension of our model, because in this case the

model must determine which customers are denied service if there is not enough capacity

at a highly preferred facility. It is also possible to model capacity levels for each facility as

decision variables. Furthermore, we will explore other applications of the reliability models
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with customer preferences, especially in preventative healthcare.

Moreover, facility location models can be split into two interrelated problems. As

explained by Hanjoul and Peeters (1987), the two problems are solved under the assumption

that the other is optimized accordingly. The first subproblem is the locating (how many

and where facilities are to be opened), while the other is the allocation (which customer

is assigned to which facility). In this context and with assumption about the strategy and

optimality criteria of both ‘players’, the solution of this location-allocation problem can

be viewed as Stackelberg equilibrium. By introducing the preferences of customers into

this problem, it would be interesting to study the dynamics of the game if both players

have conflicting goals. For example, not revealing the true preferences of customers to

promote closer assignment for certain customers. Camacho-Vallejo et al. (2014) present an

algorithm to solve the bilevel UFLPUP based on a Stackelberg equilibrium scheme with

an evolutionary algorithm.

4.2.2 Resource Allocation in Colorectal Cancer Screening

The aim of the models described in Chapter 3 was to develop a framework to find an

optimal CRC screening policy for a representative population. For this purpose, an MDP

model was developed. Given the complexity of the problem, certain assumptions were

made to make it tractable. These assumptions are to be relaxed in future extensions of the

model, including: adding age- and gender-based groups to the population, and allowing

different or multiple initiation and termination times for CRC screening.

Moreover, it is assumed that the process is completely observable, and that actions

applied to the individual patient are partially observable. A more realistic representation

would be to assume that every individual in the population has a probability of developing

a polyp, and a probability of developing cancer. In this case, the system state would

consider this probability mix. This, however, can dramatically affect the state space as

well as solution efficiency.

Although the MDP model is capable of explicitly capturing the randomness, making

it more realistic, the difficulty of finding a solution calls for different modeling techniques.
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For example, in the compartmental model or the fluid model, transitions are deterministic,

and the system can be defined by a set of differential equations. This would allow to handle

a bigger population and, therefore, build more efficient solution.

Extensions for the MIP model include increasing the number age groups. Ideally, age

groups would be of length one year. This will cause |J | to increase, but also it would

eliminate the need for X̃. The resulting effect needs to be studied. Also, the changes in

the population distribution and dynamics, especially with large values of tmax are interesting

research questions to pursue.

Moreover, other considerations can be added to make the model more realistic. For

example, the cost of the screening represents a major factor in designing an optimal policy

that would be sustainable and acceptable by the society and medical community. As such,

incorporating the budget constraint would be vital to successful implementation of the

guidelines. Another modification in the model would be removing the index of time from

the action variables. This would allow for more intuitive policies that do not depend on

time.

Furthermore, to obtain they society’s support of preventive care policies, it is important

to quantify and limit the mortality rate that is likely to occur as a result of applying such

policy. The discussion on ethical issues associated specifying a mortality limit is worth

having, but it is beyond the scope of this work.

Finally, for average risk population, all organized CRC screening programs in Canada

target individuals in the 50-74 age group (CPAC, 2017). It is worth noting that approxi-

mately 75% of all CRCs occur among persons at average risk, at any age (Winawer et al.,

1991). Therefore, the current guidelines have not helped in increasing identification and

prevention of CRC among younger adults at average risk. In fact, around 60-75% of young-

onset of CRC cases are attributed to reasons other than family history of the disease and

genetic predisposition (Patel and De, 2016). This high, and trending upwards, percentage

of undetected cancers would result in excessive costs and strain the healthcare system due

to costly and long projected treatments in the near and far future. There are significant

health and cost benefits associated with analyzing the average risk population and even-

tually designing targeted screening programs that would help in identifying early onset of
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CRC among average risk individuals. This is a direction of research that the author is

currently investigating.
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Appendix A

Generating Customer Preferences in

Section 2.7

This appendix describes how the preferences of customers are generated for the problem

instances considered in computational studies in Section 2.7. We use a method from

Cánovas et al. (2007) to generate preferences randomly based on service costs dij with

some rationality. For example, if di1 and di2 are the two lowest costs facilities for customer

i and there is a significant gap up to the third lowest cost, it is likely that one of these two

facilities will be the most preferred by this customer. Moreover, in this method the bigger

(smaller) the differences among costs are, the easier (more difficult) for the customer to

decide which facility is more attractive. We describe the outline of the procedure.

• Generate fake costs d̃ij for each pair (i, j) from triangular probability distribution.

Let mi = minj∈J {dij} and Mi = maxj∈J {dij}. The triangular distribution is defined

over [mi,Mi] and dij is the peak point.

• Order this fake cost {d̃ij}j for each customer i. Then, facility j1 with the lowest value

d̃ij1 will be the most preferred for customer i and so on until the highest fake cost

for the least preferred facility.
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Appendix B

Detailed Transition Equations of the

MIP Model

The explicit formulation of equation (3.20) are given here.
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(t)

170



X5
j,k,h(t+ 1) = (1− τclC )(1− ωcl )θ

H
j,k,ha

H
j,k,h

(
ρ4,5
j

(
1− δ4,cl

j,T-

)
X̃4

j,k,h(t) +
(
1− δcl5,T-

)
X̃5

j,k,h(t)
)

+(1− ωdn )
[
1− θHj,k,ha

H
j,k,h

] (
ρ4,5
j

(
1− δ4,dn

j,T-

)
X̃4

j,k,h(t) +
(
1− δdn5,T-

)
X̃5

j,k,h(t)
)

X6
j,k,h(t+ 1) =

(
θPj,k,ha

P
j,k,h

(
1− δ6,cl

j,T-

)
+
[
1− θPj,k,ha

P
j,k,h

] (
1− δ6,dn

j,T-

))
ρ6,6
j X̃6

j,k,h(t)

+
(
θUj,k,ha

U
j,k,hγ9,j

(
1− δ9,cl

j,T-

)
+
[
1− θUj,k,ha

U
j,k,h

] (
1− δ9,dn

j,T-

))
ρ6,6
j X̃9

j,k,h(t) + h0τP ρ
6,7
j

(
1− δ7,cl

j,P+

)∑
ĥ

θP
j,k,ĥ

aP
j,k,ĥ

X̃7
j,k,ĥ

(t)

+h0

∑
â∈{cl,dn}

∑
o∈{C+,SD}

τ âo
∑

(i,R)∈{(2,L),(5,H),(8,P )}
ρi,6j γi,j

(
1− δi,âj,o

)∑
ĥ

θR
j,k,ĥ

aR
j,k,ĥ

X̃i
j,k,ĥ

(t)

X7
j,k,h(t+ 1) = (1− τP )

 ∑
i∈{6,7}

θPj,k,ha
P
j,k,hρ

i,7
j

(
1− δi,clj,T-

)
X̃i

j,k,h(t) + θUj,k,ha
U
j,k,hρ

6,7
j γ9,j

(
1− δ9,cl

j,T-

)
X̃9

j,k,h(t)


+
[
1− θPj,k,ha

P
j,k,h

] ∑
i∈{6,7}

ρi,7j

(
1− δi,dnj,T-

)
X̃i

j,k,h(t) +
[
1− θUj,k,ha

U
j,k,h

]
ρ6,7
j γ9,j

(
1− δ9,dn

j,T-

)
X̃9

j,k,h(t)

+h0τP θ
P
j,k,ha

P
j,k,hρ

6,7
j

(
1− δ7,cl

j,P+

)
X̃7

j,k,h(t)

+h0

∑
â∈{cl,dn}

∑
o∈{C+,SD}

τ âo
∑

(i,R)∈{(2,L),(5,H),(8,P )}
ρi,7j γi,j

(
1− δi,âj,o

)∑
ĥ

θR
j,k,ĥ

aR
j,k,ĥ

X̃i
j,k,ĥ

(t)

X8
j,k,h(t+ 1) = (1− τP ) θPj,k,ha

P
j,k,h

(
ρ7,8
j

(
1− δ7,cl

j,T-

)
X̃7

j,k,h(t) +
(
1− δ8,cl

j,T-

)
X̃8

j,k,h(t)
)

+
[
1− θPj,k,ha

P
j,k,h

] (
ρ7,8
j

(
1− δdn7,T-

)
X̃7

j,k,h(t) +
(
1− δ8,dn

j,T-

)
X̃8

j,k,h(t)
)

+h0

∑
â∈{cl,dn}

∑
o∈{C+,SD}

τ âo
∑

(i,R)∈{(2,L),(5,H),(8,P )}
ρi,8j γi,j

(
1− δi,âj,o

)∑
ĥ

θR
j,k,ĥ

aR
j,k,ĥ

X̃i
j,k,ĥ

(t)

X9
j,k,h(t+ 1) =

(
θUj,k,ha

U
j,k,h

(
1− δ9,cl

j,T-

)
+
[
1− θUj,k,ha

U
j,k,h

] (
1− δ9,dn

j,T-

))
(1− γ9,j)X̃

9
j,k,h(t)

+h0

∑
â∈{cl,dn}

∑
o∈{C+,SD}

τ âo
∑

(i,R)∈{(2,L),(5,H),(8,P )}
(1− γi,j)

(
1− δi,âj,o

)∑
ĥ

θR
j,k,ĥ

aR
j,k,ĥ

X̃i
j,k,ĥ

(t)

X10
j,k,h(t+ 1) =

∑̂
a

∑
o

∑
i
δi,âj,o
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Appendix C

Parameter Tables

C.1 f
(
o|sij,k,h, â

)
The values of the observation rates are derived from (Erenay et al., 2014).

Table C.1: f
(
o|sij,k,h, â

)
Values

T- P+ C+ SD

s0j,k,h, ∀j, k, h 1 0 0 0

s1j,k,h, ∀j, k, h 1− τ âP τ âP 0 0

s2j,k,h, ∀j, k, h (1− τ âC)(1− ωâ) 0 τ âC (1− τ âC)ωâ

s3j,k,h, ∀j, k, h 1 0 0 0

s4j,k,h, ∀j, k, h 1− τ âP τ âP 0 0

s5j,k,h, ∀j, k, h (1− τ âC)(1− ωâ) 0 τ âC (1− τ âC)ωâ

s6j,k,h, ∀j, k, h 1 0 0 0

s7j,k,h, ∀j, k, h 1− τ âP τ âP 0 0

s8j,k,h, ∀j, k, h (1− τ âC)(1− ωâ) 0 τ âC (1− τ âC)ωâ

sUj,k,h, ∀j, k, h 1 0 0 0

sDj,k,h, ∀j, k, h 1 0 0 0
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Table C.2: τ âo Values

â C+ SD

cl τC (1− τC)ωcl

dn 0 ωdn

C.2 p
(
si
′
j′,k′,h′|sij,k,h, â, o

)
The following represent the values of p

(
si
′

j′,k′,h′ |sij,k,h, â, o
)
. To ease demonstration, the

following notation will be used. When an observation at state sij,k,h results in o = T- and

the no polyp is formed, the system state will transfer to state sij,k,h+ for given R, i, j, k and

h. In this context, h+ means the immediate succession of the value of h. If h assumes

the maximum value (in this case, h = 2), then h+ would simply mean that h remains the

same h = 2. This would allow to have only two ‘categories’ of sij,k,h for particular R, i, j, k;

namely sij,k,0 and sij,k,h+.

Tables (C.3 - C.6) show the values of p
(
si
′

j′,k′,h′|sij,k,h, â, T−
)
. The values missing from

these tables are p
(
sDj′,k′,h′|sDj,k,h, â, T−

)
= 1, ∀j, k, h.

Table C.3: p
(
si
′

j′,k′,h′|sij,k,h, â, o
)

Values for R = LR and o = T−

s0j,k,0 s0j,k,h+ s1j,k,0 s1j,k,h+ s2j,k,0 s2j,k,h+ s10j,k,h+

s0j,k,h 0 ρ0,0j
[
1− δ0,jâ,T-

]
0 ρ1,0j

[
1− δ0,jâ,T-

]
0 0 δ0,jâ,T-

s1j,k,h 0 0 0 ρ1,1j
[
1− δ1,jâ,T-

]
0 ρ2,1j

[
1− δ1,jâ,T-

]
δ1,jâ,T-

s2j,k,h 0 0 0 0 0 1− δ2,jâ,T- δ2,jâ,T-
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Table C.4: p
(
si
′

j′,k′,h′ |sij,k,h, â, o
)

Values for R = HR and o = T−

s3j,k,0 s3j,k,h+ s4j,k,0 s4j,k,h+ s5j,k,0 s5j,k,h+ s10j,k,h+

s3j,k,h 0 ρ3,3j
[
1− δ3,jâ,T-

]
0 ρ4,3j

[
1− δ3,jâ,T-

]
0 0 δ3,jâ,T-

s4j,k,h 0 0 0 ρ4,4j
[
1− δ4,jâ,T-

]
0 ρ5,4j

[
1− δ4,jâ,T-

]
δ4,jâ,T-

s5j,k,h 0 0 0 0 0 1− δ5,jâ,T- δ5,jâ,T-

Table C.5: p
(
si
′

j′,k′,h′|sij,k,h, â, o
)

Values for R = PC and o = T−

s6j,k,0 s6j,k,h+ s7j,k,0 s7j,k,h+ s8j,k,0 s8j,k,h+ s10j,k,h+

s6j,k,h 0 ρ6,6j
[
1− δ6,jâ,T-

]
0 ρ7,6j

[
1− δ6,jâ,T-

]
0 0 δ6,jâ,T-

s7j,k,h 0 0 0 ρ7,7j
[
1− δ7,jâ,T-

]
0 ρ8,7j

[
1− δ7,jâ,T-

]
δ7,jâ,T-

s8j,k,h 0 0 0 0 0 1− δ8,jâ,T- δ8,jâ,T-

Table C.6: p
(
si
′

j′,k′,h′ |sij,k,h, â, o
)

Values for R = UCT and o = T−

s6j,k,0 s6j,k,h+ s7j,k,0 s7j,k,h+ s8j,k,0 s8j,k,h+ s9j,k,0 s10j,k,0

ρ6,6j γ9,j
[
1− δ9,jâ,T-

]
0 ρ7,6j γ9,j

[
1− δ9,jâ,T-

]
0 0 0 (1− γ9,j)

[
1− δ9,jâ,T-

]
δ9,jâ,T-

Table C.7: p
(
si
′

j′,k′,h′ |sij,k,h, â, o
)

Values for â = Co, and o = P+

s3j,k,0 s4j,k,0 s5j,k,0 sPC,0j,k,0 sPC,1j,k,0 sPC,2j,k,0 s10j,k,h

s1j,k,h ρ3,3j
[
1− δ1,jcl ,P+

]
ρ4,3j

[
1− δ1,jcl ,P+

]
0 0 0 0 δ1,jcl ,P+

s4j,k,h ρ3,3j
[
1− δ4,jcl ,P+

]
ρ4,3j

[
1− δ4,jcl ,P+

]
0 0 0 0 δ4,jcl ,P+

s7j,k,h 0 0 0 ρ6,6j
[
1− δ7,jcl ,P+

]
ρ7,6j

[
1− δ7,jcl ,P+

]
0 δ7,jcl ,P+
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Table C.8: p
(
si
′

j′,k′,h′|sij,k,h, â, o
)

Values for All â when o ∈ {C+, SD}

s6j,k,0 s7j,k,0 s8j,k,0 s9j,k,0 s10j,k,0

s2j,k,h ρ6,2j γ2,j
[
1− δ2,jâ,o

]
ρ7,2j γ2,j

[
1− δ2,jâ,o

]
ρ8,2j γ2,j

[
1− δ2,jâ,o

]
(1− γ2,j)

[
1− δ2,jâ,o

]
δ2,jâ,o

s5j,k,h ρ6,5j γ5,j
[
1− δ5,jâ,o

]
ρ7,5j γ5,j

[
1− δ5,jâ,o

]
ρ8,5j γ5,j

[
1− δ5,jâ,o

]
(1− γ5,j)

[
1− δ5,jâ,o

]
δ5,jâ,o

s8j,k,h ρ6,8j γ8,j
[
1− δ8,jâ,o

]
ρ7,8j γ8,j

[
1− δ8,jâ,o

]
ρ8,8j γ8,j

[
1− δ8,jâ,o

]
(1− γ8,j)

[
1− δ8,jâ,o

]
δ8,jâ,o

C.3 q
(
si
′
j′,k′,h′, s

i
j,k,h, â, o

)
It is assumed here that the value of q

(
si
′

j′,k′,h′ , s
i
j,k,h, â, o

)
is dependent only on the disease

progression states. I.e., the only parameter effecting its value is i ∈ I. In all of the following

tables, it is assumed that j = j′, k = k′, h = h′. If these conditions are not met, then

automatically q
(
si
′

j′,k′,h′ , s
i
j,k,h, â, o

)
= 0.

Table C.9: q
(
si
′

j′,k′,h′ , s
i
j,k,h, â, o

)
Values for All â, j, k, h When o = T- and i′ ∈

{0, 1, 2, 3, 4, 5}

s0j,k,h s1j,k,h s2j,k,h s3j,k,h s4j,k,h s5j,k,h

s0j,k,h 1− d¬poly(â) 1− d¬poly(â) 0 0 0 0

s1j,k,h 0 1− d¬poly(â) 1− d¬poly(â) 0 0 0

s2j,k,h 0 0 1− dC 0 0 0

s3j,k,h 0 0 0 1− d¬poly(â) 1− d¬poly(â) 0

s4j,k,h 0 0 0 0 1− d¬poly(â) 1− d¬poly(â)

s5j,k,h 0 0 0 0 0 1− dC
s6j,k,h 0 0 0 0 0 0

s7j,k,h 0 0 0 0 0 0

s8j,k,h 0 0 0 0 0 0

s9j,k,h 0 0 0 0 0 0

s10j,k,h 0 0 0 0 0 0
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Table C.10: q
(
si
′

j′,k′,h′ , s
i
j,k,h, â, o

)
Values for All â, j, k, h When o = T- and i′ ∈

{6, 7, 8, 9, 10}

s6j,k,h s7j,k,h s8j,k,h s9j,k,h s10j,k,h

s0j,k,h 0 0 0 0 (0.5− d¬poly(â))
(
1− κi,jâ,o

)
s1j,k,h 0 0 0 0 (0.5− d¬poly(â))

(
1− κi,jâ,o

)
s2j,k,h 0 0 0 0 0.5 (1− dC)

(
1− κi,jâ,o

)
s3j,k,h 0 0 0 0 (0.5− d¬poly(â))

(
1− κi,jâ,o

)
s4j,k,h 0 0 0 0 (0.5− d¬poly(â))

(
1− κi,jâ,o

)
s5j,k,h 0 0 0 0 0.5 (1− dC)

(
1− κi,jâ,o

)
s6j,k,h 1− d¬poly(â) 1− d¬poly(â) 0 0 (0.5− d¬poly(â))

(
1− κi,jâ,o

)
s7j,k,h 0 1− d¬poly(â) 1− d¬poly(â) 0 (0.5− d¬poly(â))

(
1− κi,jâ,o

)
s8j,k,h 0 0 1− dC 0 0.5 (1− dC)

(
1− κi,jâ,o

)
s9j,k,h 1− dUCT 1− dUCT 0 1− dUCT 0.5 (1− dUCT )

(
1− κjUCT

)
s10j,k,h 0 0 0 0 1

Table C.11: q
(
si
′

j′,k′,h′ , s
i
j,k,h, â, o

)
Values for â = cl and All j, k, h When o = P+

s3j,k,h s4j,k,h s5j,k,h s6j,k,h s7j,k,h s8j,k,h s10j,k,h

s1j,k,h 1− dpoly(ĉl) 1− dpoly(ĉl) 0 0 0 0 (0.5− dpoly(cl))
(

1− κi,jcl,P+

)
s4j,k,h 1− dpoly(ĉl) 1− dpoly(ĉl) 0 0 0 0 (0.5− dpoly(cl))

(
1− κi,jcl,P+

)
s7j,k,h 0 0 0 1− dpoly(ĉl) 1− dpoly(ĉl) 0 (0.5− dpoly(cl))

(
1− κi,jcl,P+

)

Table C.12: q
(
si
′

j′,k′,h′ , s
i
j,k,h, â, o

)
Values for All â, j, k, h When o ∈ {C+, SD}

s6j,k,h s7j,k,h s8j,k,h s9j,k,h s10j,k,h

s2j,k,h 1− dCT 1− dCT 1− dCT 1− dCT 0.5 (1− dUCT )
(
1− κjUCT

)
s5j,k,h 1− dCT 1− dCT 1− dCT 1− dCT 0.5 (1− dUCT )

(
1− κjUCT

)
s8j,k,h 1− dCT 1− dCT 1− dCT 1− dCT 0.5 (1− dUCT )

(
1− κjUCT

)
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