1,823 research outputs found

    Optimization of the overall success probability of the energy harvesting cognitive wireless sensor networks

    Get PDF
    Wireless energy harvesting can improve the performance of cognitive wireless sensor networks (WSNs). This paper considers radio frequency (RF) energy harvesting from transmissions in the primary spectrum for cognitive WSNs. The overall success probability of the energy harvesting cognitive WSN depends on the transmission success probability and energy success probability. Using the tools from stochastic geometry, we show that the overall success probability can be optimized with respect to: 1) transmit power of the sensors; 2) transmit power of the primary transmitters; and 3) spatial density of the primary transmitters. In this context, an optimization algorithm is proposed to maximize the overall success probability of the WSNs. Simulation results show that the overall success probability and the throughput of the WSN can be significantly improved by optimizing the aforementioned three parameters. As RF energy harvesting can also be performed indoors, hence, our solution can be directly applied to the cognitive WSNs that are installed in smart buildings

    Improving performance of far users in cognitive radio: Exploiting NOMA and wireless power transfer

    Get PDF
    In this paper, we examine non-orthogonal multiple access (NOMA) and relay selection strategy to benefit extra advantage from traditional cognitive radio (CR) relaying systems. The most important requirement to prolong lifetime of such network is employing energy harvesting in the relay to address network with limited power constraint. In particular, we study such energy harvesting CR-NOMA using amplify-and-forward (AF) scheme to improve performance far NOMA users. To further address such problem, two schemes are investigated in term of number of selected relays. To further examine system performance, the outage performance needs to be studied for such wireless powered CR-NOMA network over Rayleigh channels. The accurate expressions for the outage probability are derived to perform outage comparison of primary network and secondary network. The analytical results show clearly that position of these nodes, transmit signal to noise ratio (SNR) and power allocation coefficients result in varying outage performance. As main observation, performance gap between primary and secondary destination is decided by both power allocation factors and selection mode of single relay or multiple relays. Numerical studies were conducted to verify our derivations.Web of Science1211art. no. 220

    Information exchange in randomly deployed dense WSNs with wireless energy harvesting capabilities

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As large-scale dense and often randomly deployed wireless sensor networks (WSNs) become widespread, local information exchange between colocated sets of nodes may play a significant role in handling the excessive traffic volume. Moreover, to account for the limited life-span of the wireless devices, harvesting the energy of the network transmissions provides significant benefits to the lifetime of such networks. In this paper, we study the performance of communication in dense networks with wireless energy harvesting (WEH)-enabled sensor nodes. In particular, we examine two different communication scenarios (direct and cooperative) for data exchange and we provide theoretical expressions for the probability of successful communication. Then, considering the importance of lifetime in WSNs, we employ state-of-the-art WEH techniques and realistic energy converters, quantifying the potential energy gains that can be achieved in the network. Our analytical derivations, which are validated by extensive Monte-Carlo simulations, highlight the importance of WEH in dense networks and identify the tradeoffs between the direct and cooperative communication scenarios.Peer ReviewedPostprint (author's final draft
    corecore