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ABSTRACT Wireless energy harvesting can improve the performance of cognitive wireless sensor
networks (WSNs). This paper considers radio frequency (RF) energy harvesting from transmissions in the
primary spectrum for cognitive WSNs. The overall success probability of the energy harvesting cognitive
WSN depends on the transmission success probability and energy success probability. Using the tools
from stochastic geometry, we show that the overall success probability can be optimized with respect to:
1) transmit power of the sensors; 2) transmit power of the primary transmitters; and 3) spatial density of the
primary transmitters. In this context, an optimization algorithm is proposed to maximize the overall success
probability of the WSNs. Simulation results show that the overall success probability and the throughput of
the WSN can be significantly improved by optimizing the aforementioned three parameters. As RF energy
harvesting can also be performed indoors, hence, our solution can be directly applied to the cognitive WSNs
that are installed in smart buildings.

INDEX TERMS RF energy harvesting, success probability, spectrum sharing, stochastic geometry, wireless
sensor networks.

I. INTRODUCTION
Smart buildings will comprise the major portion of the smart
cities of the future. WSNs are widely used for surveillance
and control purposes of the smart buildings [1]. The sen-
sors usually sense some physical activity in the surrounding
environment and report it to the information sink (IS). The
frequency band that is used by the sensors is also used simul-
taneously by some other applications (e.g. wifi). This results
in interference at the receiving end. The other major problem
is linked with the batteries of the sensors. The process of
reporting information to the IS can exhaust the batteries of
the sensors quite quickly. Replacing the batteries may not
be feasible due to the physical location of the sensors or
due to the dependence of the human activity for performing
battery replacement. The problem of battery exhaustion can
be solved by using wireless energy harvesting. The study of
wireless energy harvesting for communication networks is
gaining much interest from the research community [2]–[7].

The main reason for these research efforts is the vast avail-
ability of the energy present in the ambient environment.
The main advantages of energy harvesting are the decrease
in the carbon emission in the environment, improvement in
the life time of the network and the ability to provide power
to those devices that cannot be charged through fixed power
outlets [5]. Wireless energy harvesting in communication
networks can be performed from renewable sources [6] e.g.
wind, vibrations, solar, thermoelectric or from ambient radio
frequency transmissions [2]–[5], [7]. Energy harvesting from
renewable sources may not be reliable due to the dependence
on the weather conditions, time of day and physical location
of the energy harvesting device. In particular, energy harvest-
ing from solar energy can only be performed during the day
time.

The spectrum sharing with energy harvesting nodes is
discussed in [8]–[13]. In [8], the cognitive relay selection is
discussed, and the exact outage performance of the cognitive
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network is found. However, they have assumed that the
distance between cognitive nodes and the primary nodes is
same for all the cognitive relay nodes. Liu et. al. in [9]
have analyzed the performance of cognitive network when
time splitting protocol is used for energy harvesting at the
cognitive relay. Interference effects from primary transmitters
to cognitive receivers are analyzed in their work. Spectrum
sharing based on splitting of the spectrum for primary and
cognitive radio is discussed in [10]. The cognitive radio per-
forms relaying operations for the primary users on one part
of the primary spectrum while the cognitive radio uses the
other part of the spectrum to transmit its own information to
the cognitive receiver. A similar approach is discussed in [11]
where power splitting is used at the cognitive relay instead of
bandwidth splitting. Optimal power splitting at the cognitive
relay is found with the help of biconvex optimization for
maximizing the sum of primary and cognitive data rates.
In [12] and [13] the authors have used stochastic geom-
etry to evaluate the performance of the energy harvesting
D2D cognitive communication. In [12], dedicated RF power
transmitters are considered for powering the D2D devices
while in [13] the RF energy harvesting at the D2D devices
is performed from the transmissions of the primary network.

A. RELATED WORK AND MOTIVATION
The existing work on energy harvesting WSN can be catego-
rized into the following two types (i) energy harvesting from
renewable sources (solar, wind, etc.) and (ii) energy harvest-
ing from ambient radio frequency transmissions [14]. WSNs
relying on renewable sources are discussed in [15]–[20].
A framework for investigating the performance ofWSNswith
solar energy harvesting is presented in [15]. The authors have
considered the hardware architecture and software design for
a prototype of a WSN. An energy management system to
efficiently utilize the energy harvested from solar radiations
is provided in [16]. An energy storage device assisted by
a solar energy harvesting system is presented in [17]. The
system uses battery power when the weather is overcast or
rainy, and it resorts to solar radiations when sunshine is
sufficient. Different sleep and wake-up strategies for solar
powered WSNs are provided in [18]. The optimization of the
strategies is performedwith the help ofMarkov chain queuing
models. Energy harvesting from human bodies is discussed
in [19] and [20]. Energy harvesting from human body tem-
perature for WSNs was discussed in [19]. In [20], the Piezo
electric effect is used to harvest the energy from human body
motions to power wireless sensors. In all of the above works
spectrum sharing with a primary network is not considered.

The use of RF energy harvesting for WSNs is discussed
in [21]–[28]. In [21], the technical aspects including the RF
energy harvesting and delivery of the RF energy harvesting
WSNs were reviewed. It is shown that RF energy harvest-
ing can be a preferred solution for powering small sized
sensors. A distributed medium access protocol, named RF-
MAC, for RF energy harvesting sensors is proposed in [22].
The protocol is shown to achieve a gain of about 300% in

terms of throughput and 100% in terms of average harvested
energy. An efficient and high gain antenna design for RF
energy harvesting WSNs is proposed in [23]. Optimal mode
selection for battery assisted RF energy harvesting cognitive
WSN is provided in [24]. An optimal policy is developed
to find a tradeoff between the harvested energy and the
throughput of the WSN. The distribution of the harvested
energy from a fixed number of energy transmitters is found
in [25]. It is shown that the harvested voltages over the
network follow Rayleigh distribution. In cases when sensors
are equipped with energy storage devices it is possible to
accumulate energy over a number of time slots and hold
transmission until the harvested energy is above a given
threshold. In this case the performance of theWSN in terms of
update age and update cycle is investigated in [26]. However,
they have not considered the spectrum sharing in their work.
In [27] the performance of energy harvesting WSN is ana-
lyzed in presence of the interference from the primary net-
work. However, they have assumed that energy is harvested
from single primary transmitter and the interference is also
caused by a single primary transmitter. In a practical scenario
the sensors maybe distributed according to some point pro-
cess in the environment. Mekikis et al. [28] have considered
random distribution of sensors and derived the analytical
expression for the probability of successful communication
between two types of sensors. However, in their research, they
have considered communication among sensors only and not
the spectrum sharing with the primary network. In summary,
none of the above work jointly discuss the performance of
the primary network and the WSN. The transmit powers of
the primary network and sensor can affect the performance
of the whole system due to the interference caused among
networks to one another.

In this work, we have optimized the performance of the
energy harvesting cognitive WSN under the constraint that
the primary network coverage is above a given threshold.
The sensors use the downlink spectrum of the primary trans-
missions for reporting their sensed information to the IS.
The effect of transmit powers of the primary transmitters,
sensors and the density of the primary transmitters on the
performance of the WSN is analyzed. We have considered
RF energy harvesting for sensors. The individual sensors
harvest energy from RF transmissions in the primary spec-
trum. The reasons for choosing RF energy harvesting are
as follows. First, RF energy is controllable in comparison
to other renewable sources like solar, wind, etc. Secondly,
RF energy harvesting can be performed in indoor environ-
ments as well as outdoor environments. Third, the energy
harvesting efficiency for an RF case is much higher than the
harvesting efficiencies for other energy sources [29]. Further,
our work is different from existing works in that we have con-
sidered the communicating entities to be spatially distributed
according to the Poisson point process (PPP). Therefore, our
results are based on averaging over all the possible distances
between the communicating entities. The main contribution
of this paper are summarized below:
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• We have analytically shown that the performance of the
WSN in terms of the overall success probability can
be optimized with respect to the transmit power of the
primary transmitters, sensors and spatial density of the
primary transmitters.

• An optimization algorithm is proposed to optimize the
performance of the WSN with respect to the transmit
power of the primary transmitters, sensors and the den-
sity of the primary transmitters with the constraint that
primary network coverage remains higher than a given
threshold.

• Simulations are carried out to show the improvement
in the overall success probability and throughput of the
WSN after performing the optimization with respect to
transmit powers and density of the primary transmitters.

The paper is organized as follows. Section 2 discusses the
systemmodel and the relevant assumptions. The performance
evaluation is carried out in Section 3. The simulation results
are discussed in Section 4. Finally, conclusions are provided
in Section 5.

II. SYSTEM MODEL AND ASSUMPTIONS
In the following we describe the spatial distribution, channel
model, energy harvesting, spectrum allocation and perfor-
mance metric in detail. The important parameters that are
used in the rest of the paper are also provided in Table I.

TABLE 1. System parameters.

A. SPATIAL DISTRIBUTION
In the system model, we assume that primary transmitters
are internet access points (APs) e.g. wifi routers installed
within an indoor environment. The spatial distribution of
APs is assumed to follow a two dimensional homogeneous
Poisson point process (2D-HPPP) with density λp. The wire-
less sensors are also assumed to be spatially distributed with
2D-HPPP with density λs. It is assumed that sensors report
their sensed information to the nearest IS. The ISs are also
assumed to be spatially distributed with density λc. The PPPs
of the AP’s, IS’s and sensors are denoted by 8,8c and 8s
respectively. It is assumed that 8,8c and 8s are mutually
independent. A pictorial representation of the systemmodel is
provided in Fig. 1. Any primary device or sensor connects to
the corresponding nearest AP and IS according to the voronoi
tessellation to maximize the average received power. The
transmit power level of the APs is Pp and that of the sensors
is Ps.

FIGURE 1. System model comprising of sensors, information sinks and
access points.

B. CHANNEL MODEL
The channels are assumed to be quasi static. This means
the channels remain fixed over a given time slot; however,
the channels can assume different values at different time
slots. The channel among any two communicating entities is
affected by small scale fading as well as the path loss. The
small scale fading is assumed to follow exponential distri-
bution with parameter 1, and the path loss for a propagation
distance d is d−α where α is the path loss exponent. It is noted
in [31] that for obstructed indoor environments the value of
the path loss exponent varies from 4− 6.

C. ENERGY HARVESTING
The APs, primary receivers and ISs are assumed to be oper-
ating at fixed power supplies. However, the sensors rely on
wireless energy harvesting for their transmissions. The sen-
sors do not have any energy storage device and the energy
harvested in the current time slot can not be used for future
time slots [13]. In particular, the sensors harvest energy from
the concurrent transmissions from the APs and other sensors.
This means that the number of energy transmitters that are
available for the energy harvesting are equal to the number of
transmissions in the shared spectrum. In the event that the har-
vested energy is above a given threshold in a given time slot
then sensor will transmit [13] its sensed information to the
nearest IS. This implies that the overall success probability
of the sensor network depends on the cumulative distribution
function of the harvested energy in a time slot.

D. SPECTRUM USAGE
All the APs use the frequency spectrum with a frequency
reuse factor of 1 to maximize the spectrum efficiency. The
sensors use the same spectrum as used by the APs for
downlink communication. Therefore, the transmissions from
the sensors cause interference to the primary receivers in
the downlink. The interference can cause reduction in the
success probability of the APs downlink communication. We
assume that there is a minimum success probability, Ppsuc,
and the success probability of the AP downlink should not
be less than Ppsuc due to the interference from the concurrent
sensor transmissions and neighboring APs transmissions.
The success probability constraint on the AP transmission
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is met by imposing a constraint on the maximum spectrum
access probability of the sensors. Therefore, according to
the coloring theorem, the PPP of the sensors that can access
the spectrum for a given spectrum access probability pSA is
another PPP (8ts) with density λspSA. The network perfor-
mance is assumed to be interference limited and therefore
noise is not considered in the analysis to simplify the notation.

E. PERFORMANCE METRIC
The performance metric in this paper is the overall success
probability of the sensor communications under the con-
straint that the success probability of the primary communi-
cation is higher than Ppsuc. The overall success probability of
WSN depends on two factors. First, the probability that the
received SIR of a typical sensor at its nearest IS is higher than
a given threshold and secondly the probability that a typical
sensor has harvested enough energy to be able to transmit.

III. PERFORMANCE ANALYSIS
First, we find the maximum spectrum access probability for
the sensor for a given success probability constraint on the
primary network. After that, we analyze the secondary per-
formance. To find the signal to interference ratio (SIR) of a
particular primary receiver we use the Sliynyak theorem and
place the primary receiver at the origin. The received signal
at the primary receiver is the sum of the desired signal and
the interference from the primary transmissions and sensor
transmissions. Therefore, the SIR for a particular primary
receiver can be written as

γp =
Ppg0x

−α
0

Pp
∑

i∈8\0 gix
−α
i + Ps

∑
j∈8ts

hjy
−α
j

, (1)

where gi(hj) capture the small scale fading effect of the
transmissions from i(j)-th primary (secondary) transmitter,
xi(yj) is the distance from the i(j)-th primary (secondary)
transmitter,8(8ts) denote the PPP of the primary (secondary)
transmitters. To find the maximum value of pSA which will
make sure that success probability of the primary receiver for
a given SIR threshold Tp is greater than Ppsuc, we solve the
following equation [32]

Psuc =
∫
∞

0
Pr
[
γp ≥ Tp|x0

]
px0 (x0)dx0 ≥ P

p
suc, (2)

where px0 (x0) = 2πλpx0e−πλpx
2
0 is the probability density

function of the distance of a typical primary receiver to its
nearest primary transmitter [30]. First, we find the inner prob-
ability then we will integrate it over all possible values of x0.
Since, the small scale fading is distributed exponentially with
parameter 1 therefore we can write the inner probability
as [32]

Pr
[
γp ≥ Tp

∣∣ x0] = Egi,xi
[
e−Tpx

α
0
∑

i∈8\0 gix
−α
i

]
︸ ︷︷ ︸

A

×Ehj,yj

[
e
−Tpxα0

Ps
Pp

∑
j∈8ts hjy

−α
j

]
︸ ︷︷ ︸

B

, (3)

where EX [.] denotes the expectation operation over random
variable X . Now, using the independence between small scale
fading and the spatial distribution we can write [32]

A = Exi

 ∏
i∈8\0

Egi
[
e−Tpx

α
0 gix

−α
i

] . (4)

Using the fact that all the gi’s are i.i.d. and probability gener-
ating functional (PGFL) [32] we can write

A = Exi

 ∏
i∈8\0

Egi
[
e−Tpx

α
0 gix

−α
i

]
= e−2πλp

∫
∞

x0
(1−Eg[e

−Tpxα0 gx
−α

])xdx
, (5)

Since g is exponentially distributed with mean 1 therefore
Eg[e−Tpx

α
0 gx
−α
] = 1

1+Tpxα0 x
−α and we can write

A = e
−2πλp

∫
∞

x0

(
Tpxα0 x

−α

1+Tpxα0 x
−α

)
xdx
, (6)

here the lower limit is x0 because the nearest primary inter-
ferer has a distance > x0. After doing some mathematical
manipulations as mentioned in appendix we can write

A = e−πλpx
2
0ϑ(Tp), (7)

where ϑ(Tp) =
2Tp
α−2 2F1(1,

α−2
α
;
2α−2
α
;−Tp) and

2F1(u, v;w; x) is the Gauss Hypergeometric function. In a
similar way by using the independence between hj, yj and
using the PGFL we can write

B = e
−2πλspSA

∫
∞

0

(
Tp

Ps
Pp

xα0 y
−α

1+Tp
Ps
Pp

xα0 y
−α

)
ydy

, (8)

where the lower limit is 0 because the secondary interferers
can have any distance from 0 to∞. After carrying out inte-
gration as mentioned in appendix we can write

B = e
−πλspSA(Tp

Ps
Pp

)
2
α x200(

α−2
α

)0( α+2
α

)
, (9)

where 0(x) is the Gamma function of x. Using (9), (7) and
(3) we can write (2) as follows

Psuc =
∫
∞

0
e
−πλpx20ϑ(Tp)−πλspSA(Tp

Ps
Pp

)
2
α x200(

α−2
α

)0( α+2
α

)−πλpx20

2πλpx0dx0. (10)

After carrying out the integration with respect to x0 we can
write

Psuc =
λp

λpϑ(Tp)+
(
Tp

Ps
Pp

) 2
α 2
α
0( 2

α
)0(α−2

α
)λspSA + λp

,(11)

and the corresponding value of pSA,max can be obtained by
putting (11) in (2) as follows

pSA,max =
α2κ

2
α

[
Ppsuc(ϑ(Tp)+ 1)− 1

]
40( 2

α
)0(− 2

α
)PpsucT

2
α
p

,

(12)
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where κ =

(
λ
α
2
p Pp

λ
α
2
s Ps

)
. It is to be emphasized here that the

density of the sensors that can access the spectrum is assumed
to be pSAλs. Now we analyze the performance of the sensor
network. As discussed above the overall success probability
of the sensor network depends on two factors. First, the ability
of the sensor to communicate successfully with its nearest IS
in the event that the sensor transmits. This factor is calculated
to account for the channel imperfections and interference
effect when a sensor transmits. Second, the ability of the
sensor to harvest enough energy from the transmissions in
the primary frequency band to be able to transmit. This
factor is calculated to account for the uncertainty in the
ability of the sensor to transmit due to random harvested
energy and the condition that a sensor will transmit only if
the harvested power is greater than a given threshold. We
denote the first factor as the transmission success proba-
bility and the second factor will be called energy success
probability. By multiplying these factors we make sure that
overall success probability measures the probability of the
event that a sensor is able to transmit and its transmitted
signal is correctly decoded at the IS. The transmission success
probability of typical sensor can be computed with the help
of the received SIR at the nearest IS. By using the Slivnyak
theorem and placing the nearest IS at the origin the received
SIR at the IS for a typical sensor in 8s can be written
as

γs =
Psh0y

−α
0

Pp
∑

i∈8 gix
−α
i + Ps

∑
j∈8ts\0 hjy

−α
j

. (13)

The transmission success probability of the sensor for a given
SIR threshold Ts is given as follows [32]

Ptr,s =
∫
∞

0
Pr (γs > Ts|y0) py0 (y0)dy0, (14)

where py0 (y0) = 2πλsy0e−πλsy
2
0 is the probability den-

sity function of the distance of a typical sensor to
its nearest IS. The inner probability can be written as
follows

Pr (γs > Ts|y0)

= Egi,xi,hj,yj

[
Psh0y

−α
0

Pp
∑

i∈8 gixi + Ps
∑

j∈8ts\0 hjy
−α
j

> Ts

]
.

(15)

Since, h0 follows an exponential distribution with mean 1
therefore we can write

Pr (γs > Ts|y0)

= Egi,xi,hi,yi

[
e−Tsy

α
0
Pp
Ps

∑
i∈8 gixi−Tsy

α
0
∑

j∈8ts\0 hjy
−α
j

]
.

(16)

By using the independence of hj,gi, xi and yj we can write the
above probability as follows

Pr (γs > Ts|y0) = Egi,xi

[
e−Tsy

α
0
Pp
Ps

∑
i∈8 gixi

]
︸ ︷︷ ︸

C

×Ehi,yi
[
e−Tsy

α
0
∑

j∈8ts\0 hjy
−α
j

]
︸ ︷︷ ︸

D

.

(17)

Following the same line of reasoning, the independence
between hj,gi,xi, yj and PGFL, that was used to obtain A in (7)
and B in (9) we can obtain the values of C and D as follows

C = e
−2πλp

∫
∞

0

Tsyα0
Pp
Ps

x−α

1+Tsyα0
Pp
Ps

x−α
xdx

,

D = e
−2πpSA,maxλs

∫
∞

y0

Tsyα0 y
−α

1+Tsyα0 y
−α ydy

. (18)

The mathematical form of C and D is similar to the form
of B and A, respectively. Therefore, same steps that were used
to simplify A and B can be used to simplify C and D also.
After performing the simplification mentioned in appendix
we can write C and D as follows

C = e
−πλp

(
TsPP
Ps

) 2
α y200(1+

2
α
)0(1− 2

α
)
,

D = e−πpSA,maxλsy
2
0ϑ(Ts). (19)

Using (19), (17) and (14) we can write the transmission
success probability as

Ptr,s =
∫
∞

0
e
−πλp

(
TsPP
Ps

) 2
α y200(1+

2
α
)0(1− 2

α
)−πpSA,maxλsy20ϑ(Ts)

× e−πλsy
2
02πλsy0dy0. (20)

After carrying out integration with respect to y0 we can write
the Ptr,s as follows

Ptr,s =
1

1+ pSA,maxϑ(Ts)+ κ
2
α 0(1+ 2

α
)0(1− 2

α
)T

2
α
s

.

(21)

After putting (12) in (21) we can easily observe that for
fixed values of λs, λp,Pp the value of Ptr,s increases with
increasing Ps. Although the interference contribution due
to the increase in Ps increases however according to (21)
the increase in interference is outweighed by the increase
in received signal power. Similarly, it can be observed that
Ptr,s decreases with increasing Pp and λp. This is because
increasing λp and Pp increases the interference at the IS
thereby decreasing Ptr,s.

Now, we find the energy success probability that is the
probability that the harvested power at a typical sensor is
greater than a given threshold Ps. First, we consider the case
when energy harvesting is performed from AP’s transmission
only. After that we show the energy success probability for
the case when energy harvesting is performed from the AP’s
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transmissions as well as sensors transmissions in the primary
band. This is because we have considered the interference
from the sensors while computing the success probability of
the primary transmissions. In our energy harvestingmodel we
have assumed that energy harvesting is performed in the same
frequency band that is used for transmission of the sensed
information. We have assumed, widely used, harvest then
transmit protocol. In this protocol [13] it is assumed that the
RF energy harvesting and DC conversion circuits of a sensor
are activated only when the available power in the time-slot is
at least equal to a given threshold. There is no energy storage
assumed where a sensor can save extra energy for the future
time slots. The same assumption for energy harvesting are
used in [13] where energy harvesting is performed in the
frequency band [c1, c2 · · · cd , · · · c|C|] and cd band is used
by the D2D device to transmit its own information. To cal-
culate the energy success probability we note that the power
available at any given time slot is proportional to the received
powers from all the APs in 8. Mathematically, we can write
the received power in any time slot as follows [33]

Ph = ν
∑
i∈8

Ppgix
−α
i , (22)

where 0 < ν ≤ 1 is the energy harvesting efficiency. The
energy success probability is given as follows

Pe,s = Pr(Ph > Ps) = Pr

(
ν
∑
i∈8

Ppgix
−α
i > Ps

)
. (23)

The Laplace transform of the probability density function of
ν
∑

i∈8 Ppgix
−α
i can be written as [33]

LPh = e
−

2π2λp(Ppνs)
2
α

α sin( 2πα ) , (24)

and the corresponding Pr(Ph > Ps) can be found using the
complex inversion integral formula for Laplace transforms
and the proper Bromwich contour [33]. After mathematical
simplifications the complementary cumulative distribution
function (CCDF) of the Ph is given as follows [33]

Pe,s =
∫
∞

0

1
πx

e
−xPs−

2π2λp(νxPp)
2
α

α tan
(
2π
α

)
sin(

2π2λp
(
νxPp

) 2
α

α
)dx.

(25)

Although it is easy to solve the above expression numerically
however it is difficult to find a close form expression for
general values of α. For α = 4 we can obtain the close form
expression as given below

Pe,s|α=4 = 1− erfc

π2ν
1
2 λpP

1
2
p

4P
1
2
s

. (26)

Now, we consider the case when energy harvesting is
performed from AP transmissions as well as from sensors
transmissions. We are considering sensor transmissions for
energy harvesting because we have considered the impact

of their transmissions while finding the success probability
of the AP transmissions. In this case the harvested power
is Ph,s = ν

[∑
i∈8 Ppgix

−α
i +

∑
j∈8ts

Pshjy
−α
j

]
where the

subscript s denote that sensor transmissions are also consid-
ered in energy harvesting. The corresponding Laplace trans-
form of the probability density function of Ph,s is given as
follows [33]

LPh,s = e
−

2π2(νs)
2
α

[
λpP

2
α
p +pSA,maxλsP

2
α
s

]
α sin( 2πα ) . (27)

The corresponding probability that Ph,s is greater than Ps can
be obtained with the help of appendix B and is given below

PSe,s =
∫
∞

0

1
πx

e
−xPs−

2π2(νx)
2
α χ

α tan
(
2π
α

)
sin

(
2π2 (νx)

2
α χ

α

)
dx,

(28)

where χ = λpP
2
α
p + pSA,maxλsP

2
α
s and superscript S denotes

that sensors transmissions are also considered for energy
harvesting. The corresponding expression for α = 4 can be
found to be [33]

PSe,s|α=4 = 1− erfc

π2

4
ν

1
2

λpP 1
2
p

P
1
2
s

+ pSA,maxλs

 .
(29)

From this expression we can conclude that energy success
probability decreases with increasing Ps for α = 4 even if we
consider energy harvesting from sensor transmissions. This
is because erfc(x) is decreasing function of x and pSA,max is
inversely proportional to Ps. It can be easily deduced that
the same trend will also follow for α > 4 because for the
same distances the propagation loss will increase and hence
the available power for energy harvesting will decrease.
This means that for the obstructed indoor environment
(4 ≤ α ≤ 6) the energy success probability decreases with
increasing Ps whether energy harvesting from sensor trans-
missions is considered or not considered. It can be observed
from (29) that the energy success probability increases with
increasing λp and Pp. On the other hand it can be observed
that energy success probability decreases with increasing
value of Ps. The overall success probability of the sensor
network can be written as the product of the energy success
probability and transmission success probability as follows

POA,s = Ptr,sPSe,s, (30)

where Ptr,s is given in (21) and PSe,s is provided in (28). The
behavior of the transmission success probability with respect
to λp,Pp and Ps was inverse to the behavior of energy success
probability. Therefore, we can say that the overall success
probability can be optimized with respect to Ps, Pp and λp.
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A. REMARK
The above analysis is carried out on the basis of single
frequency band. However in practical systems, every AP
transmits over a number of frequency bands. The optimality
with respect to the three parameters provides more degrees
of freedom for network optimization as compared to when
optimization can be performed only on the basis of one
parameter. Further, with the collaboration among APs the
value of λp and Pp can be adjusted for different frequency
bands in order to improve the performance of the sensor
network. In addition, in some cases it is possible that one or
two of the (Pp,Ps, λp) parameters are fixed. In these situations
the optimization can be performed on the remaining nonfixed
parameters to enhance the performance of WSNs.

In Fig. 2 we have provided an optimization algorithm for
maximizing the overall success probability of the sensor net-
work with respect to λp,Pp and Ps. The value of POA,s for any
Pp, Ps and λP can be obtained from (30). Due to complexity
of the optimization problem it is difficult to obtain close form
expressions for λ∗p,P

∗
p and P∗s . Therefore, the optimization

can be performed numerically and stopping criteria can be
based on the convergence of the maximized value. It can be
observed that the complexity increases with decreasing the
step sizes 1λ,1P,1Ps . The complexity can be reduced by
compromising the performance of the system and changing
the stopping criteria PstopOA,s for the algorithm.

FIGURE 2. Optimization algorithm for maximizing the overall success
probability of sensor network.

It can be noted that if PstopOA,s is less than 1 then the algorithm
can provide suboptimal values. This can be explained by
considering the following case. In the proposed optimization
algorithm, when the stopping criteria is met, then the current

values of λ(p, i), P(p, j) and P(s, i, j)∗ are used as potential
optimal point and the algorithm finds the next potential opti-
mal point by choosing another value of λp. Let us consider
the following case:

POA,s(λp,i0,Pp,m,P∗s,i0,m) > POA,s(λp,i0,Pp,n,P∗s,i0,n)

> PstopOA,s for m > n. (31)

In this case the proposed algorithm stops (because of the
Break command which terminates the inner loop asso-
ciated with Pp) when it reaches the first optimal point
(λp,i0,Pp,n,P∗s,i0,n) and, it will not scan the next val-
ues of Pp,i. However, there may exist a better point
POA,s(λp,i0,Pp,m,P∗s,i0,m) at the same spatial density λp,i0.
Although the proposed algorithm may provide subopti-
mal solution when PstopOA,s < 1 it will provide the opti-
mal solution if we set PstopOA,s = 1. This point can be
explained as follows. Suppose we have set PstopOA,s = 1 and
assume that there are k optimal values [(λ∗p,1,P

∗

p,1,P
∗

s,1),
(λ∗p,2,P

∗

p,2,P
∗

s,2).(λ
∗
p,k ,P

∗
p,k ,P

∗
s,k )] of λp,Pp,Ps that can

achieve POA,s = 1 then the proposed algorithm will ter-
minate at the first such event when POA,s = 1 and will
return the corresponding optimal values (λ∗p,1,P

∗

p,1,P
∗

s,1).
Now instead, if the algorithm does not stop and search for
further optimal values then it will compute optimal values
as [(λ∗p,1,P

∗

p,1,P
∗

s,1), (λ
∗

p,2,P
∗

p,2,P
∗

s,2).(λ
∗
p,k ,P

∗
p,k ,P

∗
s,k )]. The

corresponding overall success probability for all of these
optimal values will have same value 1 because the probability
can not have value greater than 1. Therefore, nothing extra
will be achieved in terms of overall success probability by
running the algorithm for all the possible values of λp,Pp
and Ps. It is due to this reason we have putted a Break
condition to terminate the loop and reduce complexity.

IV. SIMULATION RESULTS
We have performed simulations in MATLAB to obtain the
results. The simulation parameters are λp, Pp, Ps, λs, Tp, Ts,
Ppsuc, ν and α. The values of different parameters are provided
in Table II. The value of transmit power for sensors is chosen
according to the transmit power of CC2420 transceivers.
In the following we discuss seven types of results. The first
three results show that the overall success probability of
the sensor network can be optimized with respect to Ps, Pp
and λp. The following two results show the performance of

TABLE 2. Simulation parameters.
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the sensor network when optimization with respect to these
three parameters is performed. Then we compare the overall
success probability and throughput of a typical sensor for the
proposed optimization scheme with the scheme in [13]. We
use α = 4 unless otherwise stated.

Fig. 3 shows the overall success probability as a function
of sensor transmit power for different values of Pp. It can be
observed that for different values of Pp there exists a corre-
sponding optimal Ps for which the overall success probability
is maximum. Further, it can be observed that as Pp increases
the optimal point shift towards right side. This is because the
interference at the nearest IS increases with the increase in Pp
and hence higher transmit power is required for the sensors
to overcome the effect of interference in the SIR. This results
in higher optimal transmit power for the sensors.

FIGURE 3. Overall success probability as a function of Ps for different
values of Pp and λp = .1.

In Fig. 4 we present the overall success probability as a
function of Pp for different values of sensor transmit power.
The presence of an optimal Pp for different values of Ps
can be easily observed from Fig. 4. In this case the optimal
transmit power of the AP increases with the increase in Ps.
This is because higher transmit powers from the APs increase
the received power at the sensor. This in turn increases
the harvested energy at the sensor and the energy success
probability decreases slowly for higher Pp as compared to
smaller Pp. This results in a higher overall success probability
for higher Pp. Thus, shifting the optimal point of the Pp
to the right side for higher values of Ps. However, if Pp is
increased further then the interference contribution at the IS
also increases which causes the reduction of transmission
success probability and hence we observe the decrease in
overall success probability for higher values of Pp.

FIGURE 4. Overall success probability as a function of Pp for different
values of Ps.

FIGURE 5. Overall success probability as a function of λp for different
values of Pp and Ps = .2mW .

The existence of optimal density of AP for different values
of Pp is shown in Fig. 5. The optimal number of AP per
unit area increases as the transmit power of the individual
AP decreases. The reason for this behavior is the energy
success probability of the sensor network. As the transmit
power of the AP decrease the probability that a sensor har-
vest enough energy to be able to transmit decreases and
hence the overall success probability also decrease. To over-
come this, the density of the APs can be increased which
will increase the energy success probability. The increase in
λp will also increase the interference at the IS which will
decrease the transmission success probability. However, for
relatively smaller values of λp the effect of interference is
overcome by the improvement in the energy success prob-
ability. Due to these reasons we see that the optimal point of
the λp moves to right side for smaller Pp.

FIGURE 6. Optimized overall success probability as a function of λs.

The result of the optimization of overall success probability
with respect to Pp, λp and Ps is shown in Fig. 6. We have
used the algorithm shown in Fig. 2 for performing the opti-
mization. For comparison purposes, we have also shown the
results of optimization with respect to Ps with different fixed
values of Pp and λp. The smallest values of Pp and λp refers
to .1 watt and .03 m−2, respectively. Similarly highest values
refer to λp = .3 m−2, Pp = 1 watt and middle values refer to
λp = .165m−2, Pp = .5 watt. It can be seen that the result for
optimizing with respect to all three parameters outperforms
the other results. This improvement is due to the increase
in number of degrees of freedom available for optimization.
Further, we see that the overall success probability increases
with the increase in λs. This is because with increasing λs the
distance between a typical sensor and its nearest IS decreases
which result in reduced path loss. Hence, the transmission
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success probability increases and overall success probability
also increases.

FIGURE 7. Improvement in overall success probability as a function of α
for λs = 5.

In Fig. 7 we show the improvement in overall success
probability for α = 4, 5, 6. It can be observed that the
improvement increases with increasing α. This is because
the optimal values of Pp, Ps and λp depends on α. Although
highest values of Pp and λp are desirable for increasing
the energy success probability however these highest values
may not be suitable for transmission success probability.
In a similar way if the smallest values are chosen forPp and λp
then these values are suitable for transmission success prob-
ability however they may not be suitable for energy suc-
cess probability. Therefore, if optimization is performed with
respect to all these parameters then performance will be better
in comparison to the case when optimization is performed
only on the basis of a single parameter.

Now, we compare the overall success probability of the
proposed scheme with the scheme in [13]. For comparison,
we assume that the D2D cognitive users defined in [13] are
the sensors and they harvest energy from the transmissions
in the shared primary spectrum only. The transmit power
of the sensors is found from the channel inversion power
control [13]. In channel inversion power control, the transmit
power depends on the distance between the transmitter and
receiver. The interested reader can find the details of channel
inversion power control in [33, Sec. III-B]. According to [13]
the cognitive users, sensors in our case, will transmit only
if the average power received from the nearest transmitter
is below a certain threshold ω. The overall success proba-
bility achieved by scheme in [13] for different values of ω
is compared with our proposed scheme in Fig. 8. It can be

FIGURE 8. Overall success probability comparison between proposed
optimization scheme and [13].

observed from Fig. 8 that the overall success probability of
the proposed algorithm is better than that achieved by [13]
for different density of sensors. This improvement can be
explained as follows. A particular value of ω will translate
into some protection region around the transmitter within
which no transmitter of the shared spectrum can be active.
This means that a sensor will transmit only if the nearest
transmitter of the shared spectrum is out of some protection
region and the harvested power is greater than the required
transmit power of the sensor. This event, denoted by energy
success in our work, becomes less probable with the decrease
in ω due to reduction in the received power. This means the
energy success probability reduces with decrease inω. On the
other hand the transmission success probability increases due
to the reduction in ω. However, the increase in transmission
success probability is not sufficient to overcome the reduction
in energy success probability. This is because the ω is defined
in accordance with the transmitter and not in accordance with
the receiver in [13] and the interference at receiver may still
be higher even if the interference perceived by the transmitter
is small. One other advantage of our scheme is the ability of
sensor to transmit. This point can be explained as follows.
In [13] a cognitive user will be able to transmit only if there
is no active primary transmitter within the protection region.
This means that the sensors which are deployed nearby pri-
mary transmitter will never be able to transmit according to
the scheme of [13]. On the other hand in our scheme the
sensors transmit in such a manner so that the outage prob-
ability of the primary network is below a certain threshold. In
this way, the sensors which are deployed nearby a primary
transmitter can also get a chance to transmit their sensed
information to nearest IS.

FIGURE 9. Throughput comparison between proposed optimization
scheme and [13].

In Fig. 9, we have compared the throughput of a typical
sensor node for the proposed scheme with the throughput of
the scheme proposed in [13]. The throughput is defined as
the product of the data rate and the overall success proba-
bility. Therefore, throughput can be considered as the over-
all performance metric of the communication system. The
throughput of the proposed scheme is considerably better
than that achieved by [13]. The same reasoning that was
used to explain the improvement of the overall success
probability can be used to explain the improvement of the
throughput.
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V. CONCLUSIONS
In this paper we have analyzed overall success probability
for the energy harvesting and spectrum sharing WSN. It is
considered that overall success probability is a product of the
transmission success probability and energy success prob-
ability. The transmission success probability accounts for
channel imperfections and interference effects while energy
success probability considers the randomness in the harvested
energy. It is shown that transmission success probability
increases with increasing Ps and decreases with the increase
in λp, Pp. However, the energy success probability decreases
with increasing Ps and increases with the increase in λp, Pp.
Therefore, it is concluded that the overall success probability,
being a product of transmission success and energy success
probabilities, can be optimized with respect to Ps, λp and Pp.
Based on this conclusion we have proposed an algorithm
to perform optimization with respect to Ps, λp and Pp.
It is shown that considerable improvements in overall success
probability can be made by performing optimization over Ps,
Pp and λp. Simulation results show that the overall success
probability and throughput of the proposed scheme are better
than those of the existing scheme. We have considered RF
energy harvesting therefore our proposed solution for maxi-
mizing the overall success probability can also be applied to
WSNs that are located in indoor environments. Further, as the
optimization can be performed on Pp, Ps, λp individually, our
solution is therefore also applicable to the scenarios where
one or two of these (Pp, Ps, λp) parameters are fixed and
optimization can be performed on one or two parameters only.

APPENDIX A
THE VALUES OF A, B, C AND D
In this appendix we derive the expressions for A and B how-
ever similar steps can be carried out to obtain the values of C
and D also. We know that

A = e
−2πλp

∫
∞

x0

(
Mx−α

1+Mx−α

)
xdx
, (A1)

where M = Tpxα0 is used for simplification of notation.
By using change of variable with xα

M = v the integral∫
∞

x0

(
Mx−α

1+Mx−α

)
xdx in the above expression can be written as

follows ∫
∞

x0

x

1+ xα
M

dx =
T

2
α
p x20
α

∫
∞

1
Tp

v
2
α
−1

1+ v
dv. (A2)

Now using
∫
∞

u
xµ−1

(1+βx)v dx = 2F1(v, v− µ; v− µ+ 1;− 1
βu )[

uµ−v
βv(v−µ)

]
[34, eq. 3.194] we can write∫

∞

x0

x

1+ xα
M

dx = 2F1(1, 1−
2
α
; 2−

2
α
;−Tp)

x20Tp
α − 2

. (A3)

Now putting (A3) into (A1) we can obtain the value of A as
defined in (7). NowwefindB. In this case the value of dummy
variable M = Tp

Ps
Pp
xα0 and the lower limit of the integration

is 0. By using yα

M = v, the integral
∫
∞

0

(
Tp

Ps
Pp
xα0 y
−α

1+Tp
Ps
Pp
xα0 y
−α

)
ydy in

B can be written as∫
∞

0

 Tp
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xα0 y
−α

1+ Tp
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−α

 ydy =
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0
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2
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0
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2
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(A4)

where the integral
∫
∞

0
v
2
α −1

1+v dv = 0( 2
α
)0(1 − 2

α
)

[34, eqs. (3.194) and (8.384)]. Putting (A4) into (8) and using
the fact that 0(1+ z) = z0(z) we can obtain the value of B as
presented in (9).

It can be easily seen that the integration term∫
∞

0
Tsyα0

Pp
Ps
x−α

1+Tsyα0
Pp
Ps
x−α

xdx in C is similar to the integration term

of B evaluated above. Therefore, same steps can be carried
out again to obtain the result of C presented in (19). In a
similar waywe can see that integration term

∫
∞

y0
Tsyα0 y

−α

1+Tsyα0 y
−α ydy

in D is similar to the integration term of A evaluated
above. Therefore, same steps can be used to get the result
of D presented in (19).

APPENDIX B
CDF OF Ph,s
The CDF of Ph,s for a certain value t is obtained by inte-
grating the inverse Laplace transform of Ph,s from 0 to t .
It can be observed that our expression for Laplace transform
of Ph,s (27) is same as the expression provided
in [33, eq. (8)] with λ1 = λp, λ2 = pSA,maxλs,P1 = Pp,
P2 = Ps, a = v,K = 2. Therefore, the CDF of Ph,s can be
obtained as follows [32, eq. (9)]

FPh,s (t) = 1−
∫
∞

0

1
πx

e
−xt− 2π2(νx)

2
α χ

α tan
(
2π
α

)
sin

(
2π2 (νx)

2
α χ

α

)
dx.

(B1)

The probability that the harvested power is greater
than Ps is obtained by PSe,s = 1 − FPh,s (Ps) =

∫
∞

0
1
πx e
−xPs−

2π2(νx)
2
α χ

α tan
(
2π
α

)
sin
(

2π2(νx)
2
α χ

α

)
dx.
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