450 research outputs found

    Lattice QCD based on OpenCL

    Get PDF
    We present an OpenCL-based Lattice QCD application using a heatbath algorithm for the pure gauge case and Wilson fermions in the twisted mass formulation. The implementation is platform independent and can be used on AMD or NVIDIA GPUs, as well as on classical CPUs. On the AMD Radeon HD 5870 our double precision dslash implementation performs at 60 GFLOPS over a wide range of lattice sizes. The hybrid Monte-Carlo presented reaches a speedup of four over the reference code running on a server CPU.Comment: 19 pages, 11 figure

    Molecular dynamics description of an expanding qq/qˉ\bar{q} plasma with the Nambu--Jona-Lasinio model and applications to heavy ion collisions at RHIC and LHC energies

    Full text link
    We present a relativistic molecular dynamics approach based on the Nambu--Jona-Lasinio Lagrangian. We derive the relativistic time evolution equations for an expanding plasma, discuss the hadronization cross section and how they act in such a scenario. We present in detail how one can transform the time evolution equation to a simulation program and apply this program to study the expansion of a plasma created in experiments at RHIC and LHC. We present first results on the centrality dependence of v2v_2 and of the transverse momentum spectra of pions and kaons and discuss in detail the hadronisation mechanism.Comment: 25 pages, 28 figure

    Simulation techniques for cosmological simulations

    Get PDF
    Modern cosmological observations allow us to study in great detail the evolution and history of the large scale structure hierarchy. The fundamental problem of accurate constraints on the cosmological parameters, within a given cosmological model, requires precise modelling of the observed structure. In this paper we briefly review the current most effective techniques of large scale structure simulations, emphasising both their advantages and shortcomings. Starting with basics of the direct N-body simulations appropriate to modelling cold dark matter evolution, we then discuss the direct-sum technique GRAPE, particle-mesh (PM) and hybrid methods, combining the PM and the tree algorithms. Simulations of baryonic matter in the Universe often use hydrodynamic codes based on both particle methods that discretise mass, and grid-based methods. We briefly describe Eulerian grid methods, and also some variants of Lagrangian smoothed particle hydrodynamics (SPH) methods.Comment: 42 pages, 16 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 12; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Refactoring the UrQMD model for many-core architectures

    Get PDF
    Ultrarelativistic Quantum Molecular Dynamics is a physics model to describe the transport, collision, scattering, and decay of nuclear particles. The UrQMD framework has been in use for nearly 20 years since its first development. In this period computing aspects, the design of code, and the efficiency of computation have been minor points of interest. Nowadays an additional issue arises due to the fact that the run time of the framework does not diminish any more with new hardware generations. The current development in computing hardware is mainly focused on parallelism. Especially in scientific applications a high order of parallelisation can be achieved due to the superposition principle. In this thesis it is shown how modern design criteria and algorithm redesign are applied to physics frameworks. The redesign with a special emphasise on many-core architectures allows for significant improvements of the execution speed. The most time consuming part of UrQMD is a newly introduced relativistic hydrodynamic phase. The algorithm used to simulate the hydrodynamic evolution is the SHASTA. As the sequential form of SHASTA is successfully applied in various simulation frameworks for heavy ion collisions its possible parallelisation is analysed. Two different implementations of SHASTA are presented. The first one is an improved sequential implementation. By applying a more concise design and evading unnecessary memory copies, the execution time could be reduced to the half of the FORTRAN version’s execution time. The usage of memory could be reduced by 80% compared to the memory needed in the original version. The second implementation concentrates fully on the usage of many-core architectures and deviates significantly from the classical implementation. Contrary to the sequential implementation, it follows the recalculate instead of memory look-up paradigm. By this means the execution speed could be accelerated up to a factor of 460 on GPUs. Additionally a stability analysis of the UrQMD model is presented. Applying metapro- gramming UrQMD is compiled and executed in a massively parallel setup. The resulting simulation data of all parallel UrQMD instances were hereafter gathered and analysed. Hence UrQMD could be proven of high stability to the uncertainty of experimental data. As a further application of modern programming paradigms a prototypical implementa- tion of the worldline formalism is presented. This formalism allows for a direct calculation of Feynman integrals and constitutes therefore an interesting enhancement for the UrQMD model. Its massively parallel implementation on GPUs is examined

    FIAS Scientific Report 2011

    Get PDF
    In the year 2010 the Frankfurt Institute for Advanced Studies has successfully continued to follow its agenda to pursue theoretical research in the natural sciences. As stipulated in its charter, FIAS closely collaborates with extramural research institutions, like the Max Planck Institute for Brain Research in Frankfurt and the GSI Helmholtz Center for Heavy Ion Research, Darmstadt and with research groups at the science departments of Goethe University. The institute also engages in the training of young researchers and the education of doctoral students. This Annual Report documents how these goals have been pursued in the year 2010. Notable events in the scientific life of the Institute will be presented, e.g., teaching activities in the framework of the Frankfurt International Graduate School for Science (FIGSS), colloquium schedules, conferences organized by FIAS, and a full bibliography of publications by authors affiliated with FIAS. The main part of the Report consists of short one-page summaries describing the scientific progress reached in individual research projects in the year 2010..

    Sustainability in astroparticle physics

    Get PDF
    The topic of sustainability is becoming increasingly important in research activities in astroparticle physics, both in existing and also in future instrument. At this year\u27s International cosmic ray conference (ICRC 2021) one session was dedicated to this topic. This publication will summarise the findings of this well-attended online session
    corecore