226 research outputs found

    Potential of ALOS2 and NDVI to estimate forest above-ground biomass, and comparison with lidar-derived estimates

    Get PDF
    Remote sensing supports carbon estimation, allowing the upscaling of field measurements to large extents. Lidar is considered the premier instrument to estimate above ground biomass, but data are expensive and collected on-demand, with limited spatial and temporal coverage. The previous JERS and ALOS SAR satellites data were extensively employed to model forest biomass, with literature suggesting signal saturation at low-moderate biomass values, and an influence of plot size on estimates accuracy. The ALOS2 continuity mission since May 2014 produces data with improved features with respect to the former ALOS, such as increased spatial resolution and reduced revisit time. We used ALOS2 backscatter data, testing also the integration with additional features (SAR textures and NDVI from Landsat 8 data) together with ground truth, to model and map above ground biomass in two mixed forest sites: Tahoe (California) and Asiago (Alps). While texture was useful to improve the model performance, the best model was obtained using joined SAR and NDVI (R2 equal to 0.66). In this model, only a slight saturation was observed, at higher levels than what usually reported in literature for SAR; the trend requires further investigation but the model confirmed the complementarity of optical and SAR datatypes. For comparison purposes, we also generated a biomass map for Asiago using lidar data, and considered a previous lidar-based study for Tahoe; in these areas, the observed R2 were 0.92 for Tahoe and 0.75 for Asiago, respectively. The quantitative comparison of the carbon stocks obtained with the two methods allows discussion of sensor suitability. The range of local variation captured by lidar is higher than those by SAR and NDVI, with the latter showing overestimation. However, this overestimation is very limited for one of the study areas, suggesting that when the purpose is the overall quantification of the stored carbon, especially in areas with high carbon density, satellite data with lower cost and broad coverage can be as effective as lidar

    Integration of Multi-Sensor Data to Estimate Plot-Level Stem Volume Using Machine Learning Algorithms–Case Study of Evergreen Conifer Planted Forests in Japan

    Get PDF
    The development of new methods for estimating precise forest structure parameters is essential for the quantitative evaluation of forest resources. Conventional use of satellite image data, increasing use of terrestrial laser scanning (TLS), and emerging trends in the use of unmanned aerial systems (UASs) highlight the importance of modern technologies in the realm of forest observation. Each technology has different advantages, and this work seeks to incorporate multiple satellite, TLS- and UAS-based remote sensing data sets to improve the ability to estimate forest structure parameters. In this paper, two regression analysis approaches are considered for the estimation: random forest regression (RFR) and support vector regression (SVR). To collect the dependent variable, in situ measurements of individual tree parameters (tree height and diameter at breast height (DBH)) were taken in a Japanese cypress forest using the nondestructive TLS method, which scans the forest to obtain dense and accurate point clouds under the tree canopy. Based on the TLS data, the stem volume was then computed and treated as ground truth information. Topographic and UAS information was then used to calculate various remotely sensed explanatory variables, such as canopy size, canopy cover, and tree height. Canopy cover and canopy shapes were computed via the orthoimages derived from the UAS and watershed segmentation method, respectively. Tree height was computed by combining the digital surface model (DSM) from the UAS and the digital terrain model (DTM) from the TLS data. Topographic variables were computed from the DTM. The backscattering intensity in the satellite imagery was obtained based on L-band (Advanced Land Observing Satellite-2 (ALOS-2) Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2)) and C-band (Sentinel-1) synthetic aperture radar (SAR). All satellite (10–25 m resolution), TLS (3.4 mm resolution) and UAS (2.3–4.6 cm resolution) data were then combined, and RFR and SVR were trained; the resulting predictive powers were then compared. The RFR method yielded fitting R2 up to 0.665 and RMSE up to 66.87 m3/ha (rRMSE = 11.95%) depending on the input variables (best result with canopy height, canopy size, canopy cover, and Sentinel-1 data), and the SVR method showed fitting R2 up to 0.519 and RMSE up to 80.12 m3/ha (rRMSE = 12.67%). The RFR outperformed the SVR method, which could delineate the relationship between the variables for better model accuracy. This work has demonstrated that incorporating various remote sensing data to satellite data, especially adding finer resolution data, can provide good estimates of forest parameters at a plot level (10 by 10 m), potentially allowing advancements in precision forestry

    An evaluation of the ALOS PALSAR L-band backscatter—Above ground biomass relationship Queensland, Australia: Impacts of surface moisture condition and vegetation structure

    Get PDF
    Focusing on woody vegetation in Queensland, Australia, the study aimed to establish whether the relationship between Advanced Land Observing Satellite (ALOS) Phased Array L-band SAR (PALSAR) HH and HV backscattering coefficients and above ground biomass (AGB) was consistent within and between structural formations (forests, woodlands and open woodlands, including scrub). Across these formations, 2781 plot-based measurements (from 1139 sites) of tree diameters by species were collated, from which AGB was estimated using generic allometric equations. For Queensland, PALSAR fine beam dual (FBD) 50 m strip data for 2007 were provided through the Japanese Space Exploration Agency’s (JAXA) Kyoto and Carbon (K&C) Initiative, with up to 3 acquisitions available for each Reference System for Planning (RSP) paths. When individual strips acquired over Queensland were combined, ‘banding’ was evident within the resulting mosaics, with this attributed to enhanced L-band backscatter following rainfall events in some areas. Reference to Advanced Microwave Scanning Radiometer-EOS (AMSR-E) data indicated that strips with enhanced L-band backscatter corresponded to areas with increased effective vegetation water content kg m and, to a lesser extent, soil moisture g cm . Regardless of moisture conditions, L-band HV topographically normalized backscattering intensities backscatter increased asymptotically with AGB, with the saturation level being greatest for forests and least for open woodlands. However, under conditions of relative maximum surface moisture, L-band HV and HH was enhanced by as much as 2.5 and 4.0 dB respectively, particularly for forests of lower AGB, with this resulting in an overall reduction in dynamic range. The saturation level also reduced at L-band HH for forests and woodlands but remained similar for open woodlands. Differences in the rate of increase in both L-band HH and HV with AGB were observed between forests and the woodland categories (for both relatively wet and dry conditions) with these attributed, in part, to differences in the size class distribution and stem density between non-remnant (secondary) forests and remnant woodlands of lower AGB. The study concludes that PALSAR data acquired when surface moisture and rainfall are minimal allow better estimation of the AGB of woody vegetation and that retrieval algorithms ideally need to consider differences in surface moisture conditions and vegetation structure

    ALOS-2/PALSAR-2 Calibration, Validation, Science and Applications

    Get PDF
    Twelve edited original papers on the latest and state-of-art results of topics ranging from calibration, validation, and science to a wide range of applications using ALOS-2/PALSAR-2. We hope you will find them useful for your future research

    Quantitative Estimation of Surface Soil Moisture in Agricultural Landscapes using Spaceborne Synthetic Aperture Radar Imaging at Different Frequencies and Polarizations

    Get PDF
    Soil moisture and its distribution in space and time plays an important role in the surface energy balance at the soil-atmosphere interface. It is a key variable influencing the partitioning of solar energy into latent and sensible heat flux as well as the partitioning of precipitation into runoff and percolation. Due to their large spatial variability, estimation of spatial patterns of soil moisture from field measurements is difficult and not feasible for large scale analyses. In the past decades, Synthetic Aperture Radar (SAR) remote sensing has proven its potential to quantitatively estimate near surface soil moisture at high spatial resolutions. Since the knowledge of the basic SAR concepts is important to understand the impact of different natural terrain features on the quantitative estimation of soil moisture and other surface parameters, the fundamental principles of synthetic aperture radar imaging are discussed. Also the two spaceborne SAR missions whose data was used in this study, the ENVISAT of the European Space Agency (ESA) and the ALOS of the Japanese Aerospace Exploration Agency (JAXA), are introduced. Subsequently, the two essential surface properties in the field of radar remote sensing, surface soil moisture and surface roughness are defined, and the established methods of their measurement are described. The in situ data used in this study, as well as the research area, the River Rur catchment, with the individual test sites where the data was collected between 2007 and 2010, are specified. On this basis, the important scattering theories in radar polarimetry are discussed and their application is demonstrated using novel polarimetric ALOS/PALSAR data. A critical review of different classical approaches to invert soil moisture from SAR imaging is provided. Five prevalent models have been chosen with the aim to provide an overview of the evolution of ideas and techniques in the field of soil moisture estimation from active microwave data. As the core of this work, a new semi-empirical model for the inversion of surface soil moisture from dual polarimetric L-band SAR data is introduced. This novel approach utilizes advanced polarimetric decomposition techniques to correct for the disturbing effects from surface roughness and vegetation on the soil moisture retrieval without the use of a priori knowledge. The land use specific algorithms for bare soil, grassland, sugar beet, and winter wheat allow quantitative estimations with accuracies in the order of 4 Vol.-%. Application of remotely sensed soil moisture patterns is demonstrated on the basis of mesoscale SAR data by investigating the variability of soil moisture patterns at different spatial scales ranging from field scale to catchment scale. The results show that the variability of surface soil moisture decreases with increasing wetness states at all scales. Finally, the conclusions from this dissertational research are summarized and future perspectives on how to extend the proposed model by means of improved ground based measurements and upcoming advances in sensor technology are discussed. The results obtained in this thesis lead to the conclusion that state-of-the-art spaceborne dual polarimetric L-band SAR systems are not only suitable to accurately retrieve surface soil moisture contents of bare as well as of vegetated agricultural fields and grassland, but for the first time also allow investigating within-field spatial heterogeneities from space

    Mapping growing stock volume and biomass carbon storage of larch plantations in Northeast China with L-band ALOS PALSAR backscatter mosaics

    Get PDF
    Reliable spatial information on growing stock volume (GSV) and biomass is critical for creating management strategies for plantation forests. This study developed empirical models to map the GSV and biomass of larch plantations (LPs) in Northeast China (1.25 million km(2) total area) by integrating L-band synthetic aperture radar (SAR) data with ground-based survey data. The best correlation model was used to map the GSVs and biomasses of LPs. The total GSV and biomass carbon storage were estimated at 224.3 +/- 59.0 million m(3) and 113.0 +/- 29.7 x 10(12) g C with average densities of 85.1 m(3) ha(-1) and 42.9 10(6) g x C ha(-1), respectively, over a total area of 2.64 million ha. The saturation effect of SAR was determined beyond 260 m(3) ha(-1), which was expected to influence the estimations for a small proportion of the study area. The accuracy of the estimations has limitations mainly due to the uncertainties in the GSV inventories, discrimination of natural larch and the SAR dataset. Based on the mapping results of the GSVs of LPs, a planning strategy for multipurpose management was tentatively proposed. This study can inform policies and management practices to assure broader and sustainable benefits from plantation forests in the future.ArticleINTERNATIONAL JOURNAL OF REMOTE SENSING.39(22):7978-7997(2018)journal articl

    Assessing the performance of random forest regression for estimating canopy height in tropical dry forests

    Get PDF
    Accurate estimation of forest canopy height is essential for monitoring forest ecosystems and assessing their carbon storage potential. This study evaluates the effectiveness of different remote sensing techniques for estimating forest canopy height in tropical dry forests. Using field data and remote sensing data from airborne lidar and polarimetric synthetic aperture radar (SAR), a random forest (RF) model was developed to estimate canopy height based on different indices. Results show that the normalize difference build-up index (NDBI) has the highest correlation with canopy height, outperforming other indices such as relative vigor index (RVI) and polarimetric vertical and horizontal variables. The RF model with NDBI as input showed a good fit and predictive ability, with low concentration of errors around 0. These findings suggest that NDBI can be a useful tool for accurately estimating forest canopy height in tropical dry forests using remote sensing techniques, providing valuable information for forest management and conservation efforts
    corecore