45,362 research outputs found

    Phonon Band Structure and Thermal Transport Correlation in a Layered Diatomic Crystal

    Full text link
    To elucidate the relationship between a crystal's structure, its thermal conductivity, and its phonon dispersion characteristics, an analysis is conducted on layered diatomic Lennard-Jones crystals with various mass ratios. Lattice dynamics theory and molecular dynamics simulations are used to predict the phonon dispersion curves and the thermal conductivity. The layered structure generates directionally dependent thermal conductivities lower than those predicted by density trends alone. The dispersion characteristics are quantified using a set of novel band diagram metrics, which are used to assess the contributions of acoustic phonons and optical phonons to the thermal conductivity. The thermal conductivity increases as the extent of the acoustic modes increases, and decreases as the extent of the stop bands increases. The sensitivity of the thermal conductivity to the band diagram metrics is highest at low temperatures, where there is less anharmonic scattering, indicating that dispersion plays a more prominent role in thermal transport in that regime. We propose that the dispersion metrics (i) provide an indirect measure of the relative contributions of dispersion and anharmonic scattering to the thermal transport, and (ii) uncouple the standard thermal conductivity structure-property relation to that of structure-dispersion and dispersion-property relations, providing opportunities for better understanding of the underlying physical mechanisms and a potential tool for material design.Comment: 30 pages, 10 figure

    The applicability of physical optics in the millimetre and sub-millimetre spectral region. Part II: Application to a three-component model of ice cloud and its evaluation against the bulk single-scattering properties of various other aggregate models

    Get PDF
    The bulk single-scattering properties of various randomly oriented aggregate ice crystal models are com- pared and contrasted at a number of frequencies between 89 and 874 GHz. The model ice particles consist of the ten-branched plate aggregate, five-branched plate aggregate, eight-branched hexagonal aggregate, Voronoi ice aggregate, six-branched hollow bullet rosette, hexagonal column of aspect ratio unity, and the ten-branched hexagonal aggregate. The bulk single-scattering properties of the latter two ice particle models have been calculated using the light scattering methods described in Part I, which represent the two most extreme members of an ensemble model of cirrus ice crystals. In Part I, it was shown that the method of physical optics could be combined with the T-matrix at a size parameter of about 18 to compute the bulk integral ice optical properties and the phase function in the microwave to sufficient ac- curacy to be of practical value. Here, the bulk single-scattering properties predicted by the two ensemble model members and the Voronoi model are shown to generally bound those of all other models at fre- quencies between 89 and 874 GHz, thus representing a three-component model of ice cloud that can be generally applied to the microwave, rather than using many differing ice particle models. Moreover, the Voronoi model and hollow bullet rosette scatter similarly to each other in the microwave. Furthermore, from the various comparisons, the importance of assumed shapes of the particle size distribution as well as cm-sized ice aggregates is demonstrated.Peer reviewedFinal Accepted Versio

    Susceptibility analysis of complex systems

    Get PDF
    A study of electromagnetic coupling effects on systems containing distributed elements and lumped linear components is presented. The structure is decomposed into sections containing multiconductor transmission lines and interconnection blocks holding lumped elements. The external field is assumed to interfere with line sections, but mutual influences among different sections are neglected. Both the sections and the blocks are treated as multiport components and characterized by their scattering parameters. The analysis is based on a correspondence matrix that accounts for the topology of connections between sections and blocks. Closed-form solutions are derived in the Laplace domain, and the temporal evolution of voltages and currents at any of the system ports is obtained by a numerical inversion. This method makes it possible to predict the susceptibility of complex systems and to verify the intra-system compatibility (especially crosstalk). The relative influence of circuit components and of line layouts on the severity of interferences is evidenced by simulation result

    The Effect of Random Surface Inhomogeneities on Microresonator Spectral Properties: Theory and Modeling at Millimeter Wave Range

    Full text link
    The influence of random surface inhomogeneities on spectral properties of open microresonators is studied both theoretically and experimentally. To solve the equations governing the dynamics of electromagnetic fields the method of eigen-mode separation is applied previously developed with reference to inhomogeneous systems subject to arbitrary external static potential. We prove theoretically that it is the gradient mechanism of wave-surface scattering which is the highly responsible for non-dissipative loss in the resonator. The influence of side-boundary inhomogeneities on the resonator spectrum is shown to be described in terms of effective renormalization of mode wave numbers jointly with azimuth indices in the characteristic equation. To study experimentally the effect of inhomogeneities on the resonator spectrum, the method of modeling in the millimeter wave range is applied. As a model object we use dielectric disc resonator (DDR) fitted with external inhomogeneities randomly arranged at its side boundary. Experimental results show good agreement with theoretical predictions as regards the predominance of the gradient scattering mechanism. It is shown theoretically and confirmed in the experiment that TM oscillations in the DDR are less affected by surface inhomogeneities than TE oscillations with the same azimuth indices. The DDR model chosen for our study as well as characteristic equations obtained thereupon enable one to calculate both the eigen-frequencies and the Q-factors of resonance spectral lines to fairly good accuracy. The results of calculations agree well with obtained experimental data.Comment: 17+ pages, 5 figure

    A fisheries acoustic multi-frequency indicator to inform on large scale spatial patterns of aquatic pelagic ecosystems

    Get PDF
    Fisheries acoustic instruments provide information on four major groups in aquatic ecosystems: fish with and without swim bladder (tertiary and quaternary consumers), fluidlike zooplankton (secondary consumers) and small gas bearing organisms such as larval fish and phytoplankton (predominantly primary producers). We entertain that this information is useable to describe the spatial structure of organism groups in pelagic ecosystems. The proposal we make is based on a multi-frequency indicator that synthesises in a single metric the shape of the acoustic frequency response of different organism groups, i.e. the dependence of received acoustic backscattered energy on emitting echosounder frequency. We demonstrate the development and interpretation of the multi-frequency indicator using simulated data. We then calculate the indicator for acoustic water-column survey data from the Bay of Biscay and use it to create reference maps for the spatial structure of the four scattering groups as well as their small scale spatial variability. These maps provide baselines for monitoring future changes in the structure of the pelagic ecosystem
    • …
    corecore