54 research outputs found

    Relationship Between Time-constants and 3dB Cutoff of High-Order Damped LTI Systems

    Get PDF
    This paper deals with linear time-invariant (LTI) systems and examines the link between the 3dB cutoff and time-constants. It shows that the cutoff frequency of a low-pass damped network can be estimated from the reciprocal of a p-norm calculated from the system\u27s time-constants. Furthermore, to achieve good accuracy the p factor must have a fractional value, for example, p=1.7. Two formulas are derived, and their performance evaluated using Monte Carlo simulations which reveal a sub-3% error for most cases

    Orion Guidance and Control Ascent Abort Algorithm Design and Performance Results

    Get PDF
    During the ascent flight phase of NASA s Constellation Program, the Ares launch vehicle propels the Orion crew vehicle to an agreed to insertion target. If a failure occurs at any point in time during ascent then a system must be in place to abort the mission and return the crew to a safe landing with a high probability of success. To achieve continuous abort coverage one of two sets of effectors is used. Either the Launch Abort System (LAS), consisting of the Attitude Control Motor (ACM) and the Abort Motor (AM), or the Service Module (SM), consisting of SM Orion Main Engine (OME), Auxiliary (Aux) Jets, and Reaction Control System (RCS) jets, is used. The LAS effectors are used for aborts from liftoff through the first 30 seconds of second stage flight. The SM effectors are used from that point through Main Engine Cutoff (MECO). There are two distinct sets of Guidance and Control (G&C) algorithms that are designed to maximize the performance of these abort effectors. This paper will outline the necessary inputs to the G&C subsystem, the preliminary design of the G&C algorithms, the ability of the algorithms to predict what abort modes are achievable, and the resulting success of the abort system. Abort success will be measured against the Preliminary Design Review (PDR) abort performance metrics and overall performance will be reported. Finally, potential improvements to the G&C design will be discussed

    Deterministic Jitter in Broadband Communication

    Get PDF
    The past decade has witnessed a drastic change in the design of high-speed serial links. While Silicon fabrication technology has produced smaller, faster transistors, transmission line interconnects between chips and through backplanes have not substantially improved and have a practical bandwidth of around 3GHz. As serial link speeds increase, new techniques must be introduced to overcome the bandwidth limitation and maintain digital signal integrity. This thesis studies timing issues pertaining to bandwidth-limited interconnects. Jitter is defined as the timing uncertainty at a threshold used to detect the digital signal. Reliable digital communication requires minimizing jitter. The analysis and modeling presented here focuses on two types of deterministic jitter. First, dispersion of the digital signal in a bandwidth-limited channel creates data-dependent jitter. Our analysis links data sequences to unique timing deviations through the channel response and is shown for general linear time-invariant systems. A Markov model is constructed to study the impact of jitter on the operation of the serial link and provide insight in circuit performance. Second, an analysis of bounded-uncorrected jitter resulting from crosstalk induced in parallel serial links is presented. Timing equalization is introduced to improve the signal integrity of high-speed links. The analysis of deterministic jitter leads to novel techniques for compensating the timing ambiguity in the received data. Data-dependent jitter equalization is discussed at both the receiver, where it complements the operation of clock and data recovery circuits, and as a phase pre-emphasis technique. Crosstalk-induced, bounded-uncorrected jitter can also be compensated. By detecting electromagnetic modes between neighboring serial links, a transmitter or receiver anticipates the timing deviation that has occurred along the transmission line. Finally, we discuss a new circuit technique for submillimeter integrated circuits. Demands of wireless communication and the high speed of Silicon Germanium transistors provide opportunities for unique radio architectures for submillimeter integrated circuits. Scalable, fully-integrated phased arrays control a radiated beam pattern electronically through tiling multiple chips. Coupled-oscillator arrays are used for the first time to subharmonically injection-lock across a chip or between multiple chips to provide phase coherence across an array.</p

    Assessment of catheter-manometer systems used for invasive blood pressure measurement

    Get PDF
    Direct measurement of blood pressure using a fluid-filled catheter and an electromechanical transducer is widely accepted in clinical practice. However, errors associated with the measurement are often not appreciated and these catheter-manometer systems are frequently unable to accurately reproduce applied pressures. To assess the accuracy of catheter-manometer systems used for invasive arterial blood pressure measurements, in vitro and in vivo evaluations were performed. The frequency response (described in terms of damped natural frequency and damping factor) for a variety of cannulae, pressure tubing and stopcocks (and combinations thereof) and their dependence on various parameters (catheter length, lumen diameter, fluid temperature and catheter material) were measured using an hydraulic pressure generator. The design and construction details of the pressure generator are presented. It was found that the damped natural frequency of the catheter-manometer system is directly proportional to lumen diameter of the pressure tubing/catheter. Furthermore, damping factor is inversely related to the damped natural frequency and stiffer catheter material (for identical radius ratios) results in higher damped natural frequency. Catheter length is inversely related to damped natural frequency and the resonant frequency decreases for an increase in fluid operating temperature. It was established that all catheter-manometer systems tested were under-damped (0.15 < β < 0.37) and that the damped natural frequency ranged from 10.5 Hz for 1500 mm to 27.0 Hz for pressure tubing of 300 mm in length. Furthermore, catheter-manometer systems which had pressure tubing in excess of 300 mm in length did not comply with the bandwidth requirements for accurate dynamic blood pressure measurement. For the in vivo assessment of the catheter-manometer system, the blood pressure waveform was analysed in the time and frequency domains. It was established that in 60 percent of the cases, the systolic pressure peak was higher when measured by a narrow bandwidth catheter-manometer system compared to that measured by a wide bandwidth system. Furthermore, values of dp/dt maximum were lower for wide bandwidth catheter-manometer systems than those measured by narrow bandwidth systems for heart rates above 90 beats per minute. In the frequency domain analysis, artifact was sometimes found to occur at frequencies higher than the bandwidth of the catheter-manometer system. This high frequency artifact was found to distort the blood pressure waveform and resulted in false high dp/dt and peak systolic pressures

    Scale invariance and critical balance in electrostatic drift-kinetic turbulence

    Get PDF
    The equations of electrostatic drift kinetics are observed to possess a symmetry associated with their intrinsic scale invariance. Under the assumptions of spatial periodicity, stationarity, and locality, this symmetry implies a particular scaling of the turbulent heat flux with the system's parallel size, from which its scaling with the equilibrium temperature gradient can be deduced under some additional assumptions. This macroscopic transport prediction is then confirmed numerically for a reduced model of electron-temperature-gradient-driven turbulence. The system realises this scaling through a turbulent cascade from large to small perpendicular spatial scales. The route of this cascade through wavenumber space (i.e., the relationship between parallel and perpendicular scales in the inertial range) is shown to be determined by a balance between nonlinear-decorrelation and parallel-dissipation timescales. This type of "critically balanced" cascade, which maintains a constant energy flux despite the presence of parallel dissipation throughout the inertial range (as well as order-unity dissipative losses at the outer scale) is expected to be a generic feature of plasma turbulence. The outer scale of the turbulence, on which the turbulent heat flux depends, is determined by the breaking of drift-kinetic scale invariance due to the existence of large-scale parallel inhomogeneity (the parallel system size).Comment: 44 pages, 15 figure

    Theory of the microfluidic channel angular accelerometer for inertial measurement applications

    Get PDF
    Please read the abstract in the front pages of the file named 00dissertationDissertation (MEng (Mechanical))--University of Pretoria, 2007.Mechanical and Aeronautical Engineeringunrestricte

    Advanced hardware and software approach to seismic site response investigations

    Get PDF
    Vibration measurement is an essential aspect of modern geotechnical engineering. It is particularly vital task for measuring the dynamic soil parameters, estimating seismic hazards and evaluating influence of industrial, traffic and construction vibrations on the surrounding buildings, structures and their elements. Meanwhile, commercial exploration seismic stations and data acquisition systems require significant professional knowledge and training in geophysics or vibration measurement, as well as practical skills and experience in adjusting data acquisition parameters. Furthermore, available seismological investigation and vibrometry sensors are not universally suitable for field applications in geophysical studies, soil-structure interaction investigations or structural vibrations. The frequency range suitable for seismic studies and industrial vibration measurement vary from 1 Hz to 300 Hz with sensitivity corresponding to the expected vibration level. To address these challenges, the first part of this thesis was focused on developing an innovative data acquisition system and sensors that are easy to use in a wide range of field applications. Geophysical techniques, including the Multichannel Analysis of Surface Waves (MASW) and Horizontal to Vertical Spectral Ratio (HVSR) methods, are gaining popularity in site investigations and seismic hazard characterization applications. The second part of this thesis involved conducting field studies using MASW and HVSR methods to evaluate the influence of challenging site conditions such as sloping surface topography, complicated soil stratigraphy and sloping bedrock boundaries on the results of the applied methods. The application of theoretical or numerical models of site amplification often poses a challenge under real field conditions. In the third part of the thesis, an analytical model was developed to allow for the removal of site effects from strong motion records and proposed a method for HVSR curve parameterization that resulted in an analytical expression for the amplification factor based on HVSR results
    • …
    corecore