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Abstract— this paper deals with linear time-invariant (LTI) 

systems and examines the link between the 3dB cutoff and time-

constants. It shows that the cutoff frequency of a low-pass 

damped network can be estimated from the reciprocal of a p-

norm calculated from the system’s time-constants. Furthermore, 

to achieve good accuracy the p factor must have a fractional 

value, for example, p = 1.7. Two formulas are derived, and their 

performance evaluated using Monte Carlo simulations which 

reveal a sub-3% error for most cases.         
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I. INTRODUCTION

This paper discusses the relationship between time-

constants and 3dB bandwidth of damped linear time-invariant 

(LTI) systems. A brief review of the time and frequency 

domain descriptions of such systems is offered. Then, a 

comparison between three known methods for estimating the 

3dB cutoff is provided. This discussion is important because it 

frames the rest of the paper. 

A. Damped LP Systems in Time and Frequency Domain

Damped low-pass systems are popular because their step

response exhibits no overshoot or ringing; a step response 

with no overshoot implies unipolar impulse response [1].  

As captured by (1), the impulse response h(t) of a damped 

low-pass system is the convolution of n decaying 

exponentials. Since the individual exponential functions are 

non-negative for t ≥ 0, their convolution, h(t), is also non-

negative. This is true irrespective of the system order n or the 

values of the time-constants τk. 

 



Expression (2) captures the frequency-domain behavior of 

a low-pass damped network. H(jω) ,  the Laplace transform of 

(1) evaluated at s=jω,  is an all-real-pole transfer function.

Here a reciprocal relationship holds between the magnitudes

of the poles and the system time-constants.




B. The 3dB Cutoff of Damped LP Systems

The magnitude of (2) is a monotonically decreasing

function of frequency. This implies a unique 3dB cutoff; the 

ω3dB calculates from (3). 





While no closed-form solution of (3) exists, many formulas 
offer estimates for the ω3dB. Three such formulas are given 
below [2-6]. Among them, (4) is the simplest and arguably the 
most intuitive one; it states that the 3dB cutoff frequency is less 
than the magnitude of the lowest pole frequency. 








In the context of an amplifier design, the method of open 
circuit time-constant (OCTC) is often discussed [2-7]. 
Conspicuously, the OCTC strategy relies upon (6). We note 
that despite their differences (4), (5) and (6) are closely related. 
This fact is demonstrated in the following summary. 

Expressions (4), (5), and (6) are Reciprocals of Lp norms of τ. 

This becomes clear when (4), (5), and (6) are recast with time-
constants and the resulting sums are compared to (10) where 
(10) defines an Lp norm [8].
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Not only (7) but also (8) and (9) are bounds to ω3dB 




Inequality (11) shows that 1/L2 is a tighter upper bound than 

1/L∞. This is a direct consequence of a key property of norms: 

a norm with a larger p-factor has a smaller value [8]. 

Inequality (11) is not new, but not widely known.  Since we 

could not find a complete derivation elsewhere, we offer one in 

the appendix of this paper. 

 

Under repeated-pole (same τ) conditions the bandwidth 

estimation accuracy of both (8) and (9) is poor 

The comparison of (12) and (13) to the exact value of ω3dB 
given in (14) proves this point. For large n, (12) severely 
underestimates the bandwidth while (13) overestimates it by as 
much as 20%. 




 


 


The three observations above motivate our search for a 1/Lp 
formula that predicts the ω3dB more accurately than 1/L1 and 
1/L2. 

II. FORMULA WITH AN IMPROVED ACCURACY 

A. Derivation 

Inequality (11) suggests that to improve the accuracy of a 

1/Lp formula one must use a p-factor with a fractional value 

between 1 and 2. A ‘good’ value for the p-factor is found by 

requiring zero error under repeated-pole (same-τ) condition. 

This requirement is satisfied when (15) is met.  





Solving (15) gives the desired optimum p value (16). 





Despite its complexity, (16) is well behaved. As seen in 

Figure 1, for n=2 the p factor has a value of approximately 

1.57. The value grows slowly with n, asymptotically 

approaching 2 when n approaches infinity. For most cases in 

practice the optimum p value would be between 1.6 and 1.8. 

B. Performance 

To confirm the bandwidth modeling capabilities of the 

proposed inverse-of-norm formula we resort to Monte Carlo 

simulations. The study carried in MatLab, uses 5,000 

randomly generated τ-vectors of length 3,4,5,6, and 7. The 

vectors define 1,000 systems of 3
rd

, 4
th

, 5
th

, 6
th

, and 7
th

 order.   

The elements of each τ-vector are uncorrelated, random 

variables with values uniformly distributed between 1 and 20. 

Hence, the greatest possible pole spread in all cases is 20. The 

MatLab script determines the exact   by a half-interval 

search, calculates the approximate cutoff by evaluating 

1/Lp with p=popt, and computes the percent error using (17). 




For a comparison, the same calculations are also performed 

for three p-factors with fixed values of 1, 1.7, and 2. The data 

are then processed to extract median, max, and min errors 

resulting in the plots shown in Figure 2 and Figure 3.  

Figure 2 compares the performance of 1/L1 and 1/L2. The 

error associated with 1/L1 is always negative whereas that 

associated with 1/L2 is always positive. This finding is 

consistent with (11) which states that 1/L1 and 1/L2 bound the 

3dB cutoff from below and above, respectively. We also see 

that 1/L2 offers a reasonably accurate approximation for the 

cut-off frequency. The median error is sub-12% while the 

range is 0 to 16% for all 5,000 cases studied.  

As depicted in Figure 3, the percent error is reduced to 

sub-3.1% by using a fractional p value.   

 

 
Fig. 1. Depending on system order, the optimum p factor typically ranges 

from 1.6 to 1.8. To reach a value of 2, n must go to infinity. 



 
 
Fig. 2. Bandwidth estimation using 1/L1 and 1/L2. The plot depicts the 

median value and the range of the percent error. 

 
Fig. 3. Bandwidth estimation using 1/Lp with p=popt and p=1.7.The plot 

depicts the median value and the range of the percent error. 

III. BANDWIDTH OF A TWO-STAGE CASCADE 

In the following we derive a formula that calculates the 

3dB cutoff of a two-stage cascade from the cut-off frequencies 

of the individual stages. 

Let us assume two damped low-pass systems A and B are 

connected in a cascade forming system C where the poles (and 

the time-constants) of C are those of A and B. Further, let us 

assume that the 3dB frequencies of all three systems calculate 

with an acceptable accuracy from the same reciprocal-of-norm 

formula; these assumptions are captured in (18), (19), and (20) 

where the p factors have the same fixed value p=1.7. 




 


 


Expression (20) rewrites as (21) and allows us to calculate 

the 3dB cutoff of the cascade from the cutoff frequencies of 

the individual stages. 




To get an appreciation for (21), consider the following 

numerical example. One of the stages in a cascade has three 

poles with magnitudes 1 kHz, 2 kHz, and 3 kHz whereas the 

other stage has four poles with magnitudes 2.5 kHz, 3 kHz, 5 

kHz, and 7 kHz. Unfortunately, none of this information is 

available to the user; so, they cannot use 1/Lp with p 

determined from (16). In lieu of the complete transfer 

functions, the cutoff frequencies of the stages, 788 Hz and 1.54 

kHz, are provided. Substituting those into (21) produces 669 

Hz - an estimate only 2% less than the actual cutoff frequency 

of 682 Hz. For comparison, 1/Lp with p = popt provides an 

estimate of 686 Hz and an error of 0.6%, but all the pole 

information is required.  

IV.  SIGNIFICANCE OF LP NORMS OF TIME-CONSTANTS 

The reader might wonder about the significance of Lp 

norms of time constants as related to damped systems: Do 

these norms have any physical meaning? As far as L1 and L2 

are concerned the answer is affirmative:   they are the so-

called Elmore delay TD and Elmore rise-time TR.  

As captured in (22) and (23), TD and TR are the first two 

moments of the system impulse response (1). 




 



Elmore’s delay and rise-time are important quantities because 

they offer a concise description of the system’s response to a 

step input. They also allow the designer to find the TD and TR 

of a cascade from the TD and TR of the individual stages [1, 2]. 
In the context of this paper, (22) and (23) offer an 

insightful interpretation of (11). The inequality relates three 
key parameters that reflect the ‘speed’ of an LTI low-pass 
circuit – the delay, the rise-time, and the 3dB bandwidth.  

Curiously, to obtain the L1 and the L2 of a system one need 
not work in the time domain or carry any integration upon the 
impulse response. The norms can be read from the 
denominator coefficients of H(s). For the transfer function 
(24), ||τ||1 equals b1 and ||τ||2 calculates from b1 and b2 using 
(26) [1,2]. 




 



 


Expressions (24), (25), and (26) show that to obtain ||τ||1 and 

||τ||2 one does not have to know the individual time-constants, 

so it is not necessary to factor the denominator of H(s). This 

explains the popularity of (5) and (6).  

V. CONCLUSIONS 

Norms, a family of multi-variable functions, offer a 

convenient way of relating performance specifications of 

damped systems to time-constants. While Elmore delay and 

Elmore rise-time calculate from the first two integer norms of 

τ, capturing the 3dB cutoff requires a fractional Lp norm. 

Depending on the system order, p-values of 1.6 to 1.8 are 

required to estimate the 3dB cut-off accurately. We suspect 

1/Lp formulas with properly selected p factors can estimate 

other bandwidth specifications, such as the noise bandwidth of 

a circuit.  

APPENDIX 

The decision to explore fractional Lp norms for bandwidth 

estimation was born out of the observation that the 3dB cutoff 

of a damped network is bounded by the 1/L1 and 1/L2. 

Because of the importance of inequality (11) we include a 

derivation.  

The starting point is (3) which rewrites as (27). 





Taking log-base-10 of both sides changes the product in (27) 

into a sum and produces (28). 





According (7) all ratios  are less than 1. 

Furthermore, as depicted in Figure 4, over the range 0 to 1, the 

normalized logarithmic function log10(1+x
2
)/log102  lays 

between a line and a parabola. This fact allows us to produce 

inequality (29) which leads to (30) and (31). 





 


 



An alternative proof of (30) can be found in [9]. 

 
Fig. 4. Over the range x=0-1 the normalized logaritmic function is bounded 

by a line and a parabola 
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