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Summary 
 
The angular accelerometer is a versatile inertial instrument with applications ranging from 
stabilization to navigation and satellite pointing. The performance state-of-the-art in angular 
accelerometry is set by the large fluid-rotor concept with low bandwidth while Micro-
Electromechanical System (MEMS) angular accelerometers offer a compact lower accuracy 
option. A novel angular accelerometer is proposed by the author to improve on 
contemporary angular accelerometers and MEMS gyroscopes. The sensor consists of spiral 
channels micromachined into multiple wafers to construct a spiral helix fluid column with 
high angular pressure generating potential. The two ends of the fluid column are joined at a 
central measurement chamber where a diaphragm-based pressure transducer outputs a 
signal proportional to the applied angular acceleration. The objective of this research is to 
derive and synthesize the theory necessary for simulation of the sensor and thereafter 
investigate the potential of the sensor. A wave speed corrected discrete multi degree of 
freedom model simulates pressure generation and -propagation. The pressure theory is 
verified by means of a 200mm diameter spool using 3mm polyurethane tubing with diesel or 
water as the inertial fluid. Accelerations of up to 480rad/s2 are imposed on 1.5m and 20m 
tube lengths using a rate table and the generated pressure sampled at 2kHz. Channel flow is 
simulated by means of a model directly derived from Szymanski’s unsteady laminar flow 
theory, while the pressure transducer diaphragm model is based on linear flat plate theory. 
Two pressure transducers are studied, the strain-gaged plain circular diaphragm and a 
piezo-based transducer with an annular diaphragm. All sensor theory is synthesized into a 
linear sensor model and the dynamic response optimized by means of the Kuhn-Tucker 
method. The application of the optimization routine is somewhat restricted by the presence 
of multiple minima in the sensor’s cost function and selection of various starting conditions 
points out available envelopes of sensor design. Designer judgment is applied within these 
local envelopes to achieve the desired sensor performance. When referenced against a noise 
level of Hz/V1μ , a sensor with resolution of 2/6 sradμ and bandwidth of 50Hz is 
simulated as feasible in a sensor of 22mm diameter by 22mm height.     
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Opsomming 
 
Die hoekversnellingsmeter is ‘n veelsydige inersiële instrument met toepassings wat strek 
van stabilisering na navigasie en satelietrigting. Die huidige tegnologies toonaangewende 
hoekversnellingsmeter is die vloeistofrotorkonsep met lae bandwydte terwyl Mikro-
Elektromeganiese Stelsel (MEMS) hoekvernellingsmeters 'n kompakte opsie met laer 
akkuraatheid bied. ‘n Nuwe hoekversnellingsmeter word voorgestel deur die outeur om te 
verbeter op hedendaagse hoekvernellingsmeters en MEMS giroskope. Die sensor 
funksioneer deur gebruik te maak van mikrogemasjineerde spiraalkanale in veelvoudige 
skyfies om ‘n spiraalheliks te konstrueer met hoë drukgenerasie tydens hoekversnelling. Die 
twee eindpunte van die vloeistofkolom ontmoet by ‘n sentrale meetkamer waar ‘n 
diafragma-gebaseerde druksensor ‘n sein eweredig aan die toegepaste hoekversnelling 
lewer. Die doel van hierdie navorsing is om die teorie benodig vir simulasie van die sensor af 
te lei en saam te stel en daarna die potensiaal van die sensor vas te stel. ‘n Golfspoed-
aangepaste diskrete multivryheidsgraad model simuleer drukopwekking en -voortplanting. 
Die drukteorie is bevestig deur middel van ‘n 200mm diameter spoel gewen met 3mm polie-
uretaan pyp. Diesel of water is gebruik as traagheidsvloeistof. Versnellings van tot 480rad/s2 
is toegepas op 1.5m en 20m pyplengtes met behulp van ‘n tempotafel en die resulterende 
drukke is teen 2kHz gemonster. Kanaalvloei word gemodelleer deur middel van teorie direk 
afgelei van Szymanski se ongestadigde laminêre vloeiteorie, terwyl die drukomsetter 
diafragmamodel gebasseer is op linieëre platplaat teorie. Twee drukomsetters word 
bestudeer, die rekstrokie met ‘n gewone sirkelvormige diafragma en ‘n piezo-gebaseerde 
drukomsetter met ‘n annulêre diafragma. Alle teorie is saamgestel in ‘n lineëre sensormodel 
en die dinamiese respons geoptimiseer met behulp van die Kuhn-Tucker metode. Die 
toepassing van die optimisasieroetine is ietwat beperk deur die teenwoordigheid van 
veelvoudige minima in die sensor kostefunksie en verskeie beginkondisies het beskikbare 
sensorontwerpgebiede uitgewys. Ontwerpersoordeel is toegepas binne hierdie lokale 
gebiede om die verlangde werkverrigting te verkry. ‘n Sensor van 22mm diameter en 22mm 
hoogte met 2/6 sradμ resolusie en 50Hz bandwydte is gesimuleer as lewensvatbaar as die 

sensoruitset teen ‘n agtergrondruis van Hz/V1μ verwys word. 
 
Sleutelwoorde: hoekversnellingsmeter, mikrovloeïdiese kanaal, inersiële navigasie 
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Nomenclature 
 
Lower case symbols 
(Bold symbols denote vectors or matrices) 
 
a Linear acceleration (m/s2), outside radius of cylindrical channel (m) or speed 

of sound (m/s) 
α Angular acceleration (rad/s2), coefficient of decay for a wave or angle where 

transition arc starts in linear pseudo-spirals (rad) or the Womersley flow 
parameter 

αk Roots of J0 

αt Angular acceleration sensitivity or threshhold (rad/s) 
β Angle where transition arc ends in linear pseudo-spirals 
d Channel diameter (m) 
δ Deflection of a point in an elastic body (m), or angle to discontinuity in linear 

pseudo-spiral with a transition arc of zero 
e Inertial measurement drift error 
e0 Wheatstone bridge output (V) 

ε Angle between channel and local acceleration (rad) or material strain 
f  Frequency  (rad/s or Hertz) or friction factor (dimensionless) 
h  Linear pressure potential (m) 

angh  Angular pressure potential (m2/rad) 

fh  Laminar steady state head loss (m) 
η Dimensionless time-length variable for flow, or Wheatstone non-linearity 

factor 
k  Spring rate (N/m), gain or constant of linear equation in general 
λ  Wave length (m) 
m Slope of line (dimensionless) or mass of body of matter (kg) 
μ  Dynamic viscosity of fluid (Ns/m2) 
ν  Kinematic viscosity of fluid (m2/s) or Poisson’s ratio 
π The ratio of the circumference of a circle to its diameter 
p Cost function power 
q Differential pressure across diaphragm (Pa) 
θ  Angle of a line measured from the x-axis upwards in the first quadrant  
r  Radial position or distance of a point from the origin (m) 
ρ  Mass density (kg/m3) 

s  Arc length (m) 
σ Material stress (Pa) 
t  Time (in seconds) or diaphragm thickness (m) 
τ Shear stress (Pa) 
τw Shear stress at channel wall (Pa) 

ω Velocity vector of flow (m/s in all directions) and the frequency of the 
harmonic pressure input to Womersley flow (rad/s) 

ωn  Fundamental natural frequency (rad/s)   
x Horizontal Cartesian coordinate  
x State vector or system input parameters in the case of optimization 
y Vertical Cartesian coordinate or deflection of diaphragm (m) 
y Output state vector (may be scalar as well) 
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Upper case symbols 
(Bold symbols denote vectors or matrices) 
 
A  Area (m2) or horizontal offset of circle from the origin 
A State-space system matrix 
B Horizontal offset of circle from the origin 
B State-space input matrix 
C State-space output matrix 
D Diaphragm plate constant (Nm) 
D State-space direct feed-through matrix 
E Young’s modulus of elasticity (Pa) 
Δ  Prefix to a symbol signifying the difference between two cases  
Fo Fourier number of flow (seconds) 
Φ  Wave speed constant (m2) 
G Gravitational acceleration of Earth (9.81 m/s2) 
G0 Flow impetus constant for unsteady flow 

J0 Zero’th order Bessel function of the first kind  
J1 First order Bessel function of the first kind 
K  Bulk modulus of fluid (N/m2) 
L  Length of curve or channel (m) 
M Moment in diaphragm (Nm), or total mass of body of matter (kg) 
N Flow constant of first order flow development 
P  Fluid pressure (Pa) 
Pw Wetted perimeter on cross section of fluid containing channel (m) 
Q Volume flow (m3/s) 
Qss Steady state flow (m3/s) 
R Radius of circle (m) 
R0 Outside radius of diaphragm  
Rc Radius of transition arc for linear pseudo-spiral 
T Time constant of first order step response 
U Flow speed (m/s) 
V  Volume (m3) or rigid body velocity (m/s)
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Abbreviations 

 
AHRS  Attitude-Heading Reference System 
CAC  Conventional Arms Control 
DETF  Double Ended Tuning Fork 
DC  Direct Current 
DTG  Dynamically Tuned Gyroscope 
DOF  Degree of Freedom 
ESG  Electrostatic Gyroscope 
FET  Field Effect Transistor 
FOG  Fibre-Optic Gyroscope 
FRAA  Fluid Rotor Angular Accelerometer 
FS  Full Scale 
G  Gravitational acceleration of Earth (9.81 m/s2) 
GPS  Global Positioning System 
IC  Integrated Circuit  
ICBM  Intercontinental Ballistic Missile 
IO   Input/Output 
ITAR   International Traffic in Arms Regulations 
INS   Inertial Navigation System 
LTI   Linear Time Invariant 
ppm  parts per million 
MEMS  Micro Electro-Mechanical System 
MFCAA  Microfluidic Channel Angular Accelerometer 
MDOF  Multi Degree of Freedom 
MTCR  Missile Technology Control Regime 
mph   mile per hour 
nmph   nautical mile per hour 
ODE  Ordinary Differential Equation 
NP   Nuclear non-Proliferation 
PCB  Printed circuit board 
PDE  Partial differential equation 
RLG   Ring Laser Gyroscope 
RLSN   Recursive Linear Smoothed Newton 
rms  root-mean-squared 
SDOF   Single Degree of Freedom 
VSG   Vibrating Structure Gyroscope
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Chapter 1 
 
Introduction and literature survey 
 
1.1 Introduction 
 
Navigation is the art of obtaining knowledge of an object’s location and velocity. 
Dependence on information from outside the vehicle’s confines in order to perform 
navigation constitutes non-inertial navigation. This method is in fact the one that early 
maritime navigators used, because they used the stars often to acquire their position. The 
light of the star traveling onto the eye of the navigator is information crossing the confines of 
the ship; hence this type of navigation is non-inertial. The sailors had to have sight of the 
stars to do their navigation in this manner. When no stars were visible, navigators had to 
approximate their current position by using only the compass and the last known position. 
Even the compass is non-inertial since the enveloping magnetic field of the earth is also 
information passed to the ship. 
 
Navigation, whether inertial or not, is done by a process called dead-reckoning. Dead-
reckoning is the process of using the latest available information on position to calculate the 
vehicle’s current position by taking account of the path traveled since departure from that 
point: a type of extrapolation of space in time. Heading and speed are therefore important 
quantities to acquire as well as time elapsed. If navigation is purely inertial, the starting point 
is the only place where the current position is recorded and set as the starting point by a non-
inertial method. An example of this is an autonomous submarine that performs its whole 
mission underwater and only resurfaces on return to its pen. It is more common though that 
navigation is a mixture between inertial and non-inertial technology. Commercial or civilian 
aircraft is an example here since commercial aircraft rely on inertial systems as well as 
outside information from radio beacons/satellites or fed via a two-way radio from air-traffic 
control towers.  
 
Pure inertial navigation rarely occurs today, but most navigational systems possess inertial 
equipment of some sort. In fact, commercial aircraft flights are in the great majority purely 
non-inertial in the sense that position updates are constantly received via satellite. Not even 
during landing, when the pilot has sight of the landing strip do the transmissions stop. The 
Instrument Landing System (ILS) that gives the pilot the correct ingress and approach angle 
is constantly fed with information from radio beacons. Yet none of these aircraft fly without 
inertial equipment on board.  
 
 
1.1.1 Inertial navigation 
 
Inertial navigation has its foundations firmly set in applications where systems either have 
no way of extracting information of its position from its environment. (like submarines), or 
the system is a weapon that needs to be failsafe and autonomous (like Inter-Continental 
Ballistic Missiles, also known as ICBMs. Gates (1968) and Stovall (1997)). The applications 
have since expanded to vehicles that have non-inertial navigation systems on board, but 
require redundancy from an independent system like an Aircraft Heading Reference 
Systems (AHRS) in modern aircraft. Systems with autopilots also benefit from angular 
acceleration feedback by improving stability or accuracy of navigation. 
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According to Kayton and Fried (1969), inertial navigation has the following advantages: 
 

1) Its indication of position and velocity is instantaneous and continuous. 
2) It is completely self-contained since it is based on measurements of acceleration made 

within the vehicle itself. It is non-radiating and non-jammable.  
3) Navigation information (including azimuth) is obtainable at all latitudes (including 

the polar regions), in all weather, and without the need for ground stations. 
4) Navigation information is substantially independent of vehicle manoeuvres (in 

contrast to, for example, Loran and Doppler systems). 
5) The inertial system provides outputs of position, groundspeed, azimuth and vertical. 

It is the most accurate means of measuring azimuth and vertical on a moving vehicle. 
 
The disadvantages are: 
 

1) The position-and-velocity information degrades with time. This is called drift, and 
occurs whether the vehicle is moving, or is stationary. 

2) The equipment is expensive and relatively difficult to maintain. This is truer of the 
older inertial systems. Strapped-down solid-state gyros and accelerometers are mass 
produced and very cheap relative to the old stabilised platforms. 

3) Initial alignment is necessary. Alignment is simple on a stationary vehicle at 
moderate latitudes, but it degrades at latitudes greater than 75° and on moving 
vehicles. 

 
While navigation is performed, the location of the object is generalized to be in three-
dimensional space; hence three displacement quantities are needed to describe its position. 
This is the function of the accelerometer cluster, which may be either stabilized or “strapped-
down”. A stabilized platform is designed to keep its orientation fixed to an external 
reference, which may be the local vertical, or a fixed point like a star. This has the advantage 
that each accelerometer always measures in the same orthogonal direction in inertial space 
relevant to the user. The disadvantage of this configuration is of course high cost. Strapped-
down systems eliminate the need for a stable platform by fixing the accelerometers to the 
body of the vehicle and resolving the correct components of the acceleration by means of an 
on-board computer, with knowledge of the vehicle orientation. 
 
Orientation is obtained by means of any device that can provide the direction the vehicle is 
pointed in. An inertial device capable of doing this, whether close to earth or in outer space, 
is the gyroscope. A “gyroscope” (loosely Greek for turn-measure) is a term that is generally 
understood to output an angle by default. This is partly due to the fact that this is indeed the 
most desirable output for navigational purposes, but also because the first rotor gyroscopes 
gave this output by default. An inertial device that outputs angular velocity, by this lore, is 
called a rate-gyroscope. Devices that output angular acceleration are called angular-
accelerometers and not “acceleration-gyroscopes”, but the function is exactly that of a 
gyroscope only in another dependent kinematical quantity. The reason for calling them 
angular-accelerometers stems from their evolution from modified linear accelerometers 
rather than gyroscopes. Angular displacement, -velocity and -acceleration are quantities 
dependent on successive differentiation or integration. In theory, if a person obtains any one 
of these quantities, any one of the others is obtainable. 
 
In practice, this is unfortunately not as easy as a quick integration or differentiation. The 
reasons for this are: 
 

1) Differentiation (to transform displacement to velocity to acceleration to jerk) is a 
noise-amplifying operation. Seemingly good data of displacement may be totally 
noise-corrupted when differentiated twice to obtain acceleration. 

2) Integration is a noise attenuating operation, but may have gain problems when used 
inside control loops. Even more importantly, it introduces drift that is difficult to 
control. 
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3) Differentiation, integration and filtering take time and introduces filter lag. In 
feedback loops that require up-to-date data this may be a problem. The problem is 
addressed with predictive-filtering, which introduces some uncertainty to the system, 
especially in highly dynamic systems. 

4) Integrating twice to obtain angular information from angular acceleration causes drift  
(angular error) adding up with the square of time instead of a normal gyroscope’s 
drift that increases linearly with time. This has been the main obstacle in an angular 
accelerometer being used as a gyroscope. If an angular accelerometer is used for 
navigation the cross-track error can be found in Anthony (1993): 

 
 
 
 
where tα is the angular acceleration threshold, V the vehicle velocity and t the mission time. 
 
It is therefore preferable that the kinematical quantity required is measured directly. If this is 
not possible, the operation that is performed to obtain it should rather be integration to avoid 
noise problems. In spite of this, circumstances sometimes necessitate both indirect 
measurement and differentiation to be performed. Examples of this are given in following 
pages.  
 
 
1.1.2 Strapped-down inertial systems 
 
The gimbaled stabilized platform is an expensive, complex mechanization for accomplishing 
inertial navigation. Development of cheaper and simpler strapped down systems was 
already under way in the sixties. A computer performs the function of the stabilized 
platform in strapped-down systems by resolving the accelerometer outputs into local level 
coordinates. The resolved accelerometer outputs can then be processed as if they originated 
from a stabilized platform.  
 
The first challenges to be met are that the gyroscopes must be able to output any angle 
accurately since they will be fixed to the arbitrary orientation of the vehicle. Such a “wide-
angle” gyro or even “infinite-angle” gyro is often a solid-state type of sensor. High angular 
rates and the varying gravitational vector on the sensor are further complications in 
strapped-down mechanization. Strapped down systems only really became practicable in the 
1970s. The Ring Laser Gyroscope (RLG) was the first gyro technology widely applied to this 
field. 
 
 
1.1.3 General inertial measurement industry 
 
Due to the historical preference for displacement or rate gyros (drift error being the main 
reason for this), the use of angular accelerometers in inertial navigation applications is far 
less prevalent. Applications for the direct measurement of angular acceleration for non-
navigational purposes include: 
 

1) Stabilization of computer hard disk heads. Angular acceleration feedback allows 
more robustness against shock in portable computers. (Hernden, 2000). 

2) Road vehicle stabilization and testing. Extensive use is made of angular 
accelerometers for this application since the advent of MEMS. Insalaco (2000) 
describes one such application. 

3) Ship roll-stabilization. Samoilescu and Radhu (2002) describe methods available. 

)1.1(
6

3Vt
e tα

=
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4) Aircraft stabilization and testing, particularly for elevator and aileron control. 
Hartzell (1985) describes one example of successful application of an angular 
accelerometer as a gyroscope in aircraft testing. 

 
Navigational angular acceleration measurements are commonly used in: 
 

1) Satellite pointing systems. Le Du (1995) documents an example of an accurate 
satellite payload pointing. 

2) Navigation of many aerial vehicles including aircraft and missiles (Khivrich and 
Belkin, 1985). 

3) Increasing accuracy of gyro-stabilized platforms. (Neusypin, 1991). 
 

Beyond the angular accelerometer, the domain of the gyroscope starts, which is much older 
and more celebrated. As mentioned above, the gyroscope outputs a kinematical quantity that 
is closely related to angular acceleration. When reference is made to a “gyroscope”, this 
quantity is by and large understood to mean either angular rate, or displacement. The 
angular accelerometer may therefore be used for gyroscopic measurements, and vice versa. 
The gyroscope represents the historical and contemporary industry into which the angular 
accelerometer is introduced. As such, it is prudent to include an account of the current and 
expected near-future state of the art in gyroscopes. 
 
 
1.1.4 Gyroscopes 
 
Gyroscopes fall in two categories, mechanical gyroscopes and optical gyroscopes.  
 
 
1.1.4.1 Mechanical gyroscopes 
 
The mechanical types include the:  
 

1) Conventional Gyro 
A Gyroscope functioning on the gyroscopic precession principle of a spinning mass 
supported on a single gimbal in the case of single degree of freedom (SDOF) gyros. 
The modern derivative of this type of gyro is the Dynamically Tuned Gyro (DTG), 
which is a two degrees of freedom (2DOF) gyro also referred to as a “free” gyro. The 
main advantage of this mid 1960s technology is that it does not require a flotation 
liquid or precise temperature control. 
 

2) Floated and Levitated Gyros 
Some gyroscopes make use of spinning inertias that are levitated by some means to 
limit friction. This could be accomplished with superconducting suspension coils in 
the case of superconducting gyroscopes (a.k.a. cryogenic gyros) or capacitor plates in 
the case of the Electrostatic Gyros (ESGs). These gyroscopes may be “free” (in which 
case the spinning inertia has no mechanically constrained degrees of freedom) or only 
partially free as with air-bearing gyros.  
 

3) Vibrating Structure Gyro (VSG) 
This solid-state technology is now used for micromachined gyros (by BAe Systems, 
among others). Coriolis effect is utilized on a vibrating resonator to measure angular 
rate. 
 

     4)  MEMS Gyros 
Like VSGs, MEMS Gyros are late additions to the art and Coriolis force sensing is 
used for angular rate measurement. Tuning fork rate gyros are one of the earlier 
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successful MEMS devices. The simplicity of the sensor allows micromachining to be 
done on a mass-production scale.  

 
 
1.1.4.2 Optical gyroscopes 
 
Optical Gyros function on the Sagnac principle, which occurs due to differences in the 
propagation time (or beam path length) between clockwise and counter-clockwise beams of 
light about a closed optical path. Optical Gyroscopes include the: 
 

1) Ring Laser Gyro (RLG) 
A relatively large and heavy device that is selfresonating; the RLG utilizes three 
mirrors of high optical quality (low beamscatter) to construct the closed optical path. 
A corner prism is used to reflect the beam onto the detector. The RLG in its passive 
form may experience problems at low rates where the two counter propagating 
beams are locked together in frequency, causing an effective deadband. To overcome 
this problem, periodic switching is used to change the effective optical pathlength of 
the two beams. This may be done by one of numerous methods, some of which are 
mechanical dithering (predominant method), an intracavity quartz crystal or 
saturable absorber.  

 
2) Fiber-optic gyroscope (FOG) 

A more compact interferometric device where coherent light is injected into the 
system. In its simplest, passive form the closed optical path is built out of a coil of 
fiber-optic wire and the counterpropagating light beams are generated by a central 
beamsplitter. Appropriate placement of a spatial filter and polarizer ensures that the 
beams transverse the same path in the coil. The beams mix in the coil and fall onto the 
detector, which measures cosinusoidal intensity changes caused by rotation. 

 
Many other types of gyroscopes exist, some only on experimental or demonstration level and 
others on prototype or product level. A chronicle of all gyroscopes ever devised is not the 
intent of this section, but rather the performance and cost that the current state of the art 
entails. For this goal, the gyroscopes mentioned above are adequate since they have become 
entrenched in gyroscope design through many years of representing the state of the art. This 
has been accomplished through constant evolution of the basic concepts and the components 
used in their construction. MEMS gyros are the exception in this respect as it is still a 
relatively late addition.  
 
 
1.1.5 Contemporary inertial navigation industry 
 
Ingram (2003) gives a strategic point of view on the inertial measurement industry. From this 
perspective, an inertial sensor is not only a decision of performance vs. cost, but also a matter 
of the strategic autonomy of a nation to provide in its own inertial measurement 
requirements. Inertial measurement is an essential technology in military applications and is 
thus export-controlled beyond certain performance levels. The objective of the restrictions is 
to limit distribution of gyros suitable for military use, and thus the regulations are in essence 
application specific. The contents of regulations (which include International Traffic in Arms 
Regulations (ITAR), Nuclear non-Proliferation (NP), Conventional Arms Control (CAC), 
Wassenaar Arrangement and the Missile Technology Control Regime (MTCR)) reflect this 
objective, but enforcement requires quantification to distinguish between military- or 
commercial use gyros. Currently, the MTCR limit is a drift rate stability of less than 0.5 
degree/hour in a 1G environment. Due to the increase in performance of the mass-produced 
MEMS devices, these restrictions are set to be relaxed somewhat. Still, MEMS devices are far 
from satisfying all industry requirements, especially on the high performance end. This 
makes the type of gyro technology used still very much application dependent.  
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Figure 1.1 shows gyroscope applications and their required accuracies. The required scale 
factor stability and bias stability covers a range of many orders of magnitude. Bias stability 
refers to the fraction of bias (erroneous output at zero instrument input, in parts per million) 
that cannot be corrected by bias estimation techniques during instrument initialization 
because of continuing change after sensor initialization. Scale factor stability refers to the 
instrument scale factor (ratio of a change in output to a change in input) that cannot be 
correctly characterized by instrument calibration because of continuing change after sensor 
initialization. The overlap in required performance is clear from the figure, especially in 
lower performance gyros. In recent years, the overlap of the sensors used in commercial and 
military applications has been increasing making the control on military suitable gyros more 
difficult. 
 
Figure 1.2 shows the performance and cost inherent to the principal gyroscope types. The 
MEMS range of gyros can be seen only to marginally satisfy the performance critical to some 
military applications, though this does not preclude military application of MEMS products. 
Commercially available MEMS accelerometers are in fact used as gun-hardened sensors for 
artillery rounds and many other weapons. The high performance gyro applications are still 
firmly seated in more mature non-MEMS technologies. The DTG covers the greatest range of 
performance. This may be attributed in part to the length of time this has been developed 
and applied, as it originates from the earliest gyro technology used. 
 
The same performance expansion tendency may be expected from the MEMS gyros as they 
mature. The main driving forces behind the use of MEMS are size and cost, while the 
performance criterion is slightly compromised relative to other gyroscope types. In state-of-
the-art applications where cost and size is of smaller importance, MEMS is not as likely to 
impose on other technologies. One of the few technologies where size and mass come at high 
enough premiums for the displacement of large accurate devices to occur is satellites and 
space travel. The cost of putting mass in space is still astoundingly expensive, but even this is 
set to become cheaper as more conventional aircraft reaches orbit. The successful flight of 
SpaceShipOne in June 2004 is a case in point. Furthermore, the drive for higher performance 
gyroscopes has almost ceased after the Cold War. With the advent of Global Positioning 
Systems (GPS) the focus is shifting to cheaper lower performance equipment to be used in 
conjunction with non-inertial technologies.  
 
The cost and complexity of floated gyros and RLGs make them other candidates for 
replacement by something cheaper. MEMS devices reaching this level of performance is still 
leaps away, although far from impossible. The scale factor of MEMS gyros is the clear 
challenge in this respect, as well as the stability thereof. Ingram (2003) predicts the 
performance levels below for the period leading up to 2010. These predictions provide a 
benchmark for what performance would make a new technology worthwhile in the near 
future. 
 
RLG     Drift rate stability < 0.005 °/h for <10G 

   Drift rate stability < 25 °/h for 10 – 100G 
RLG system performance from 1nmph to 0.1nmph. System performance implies the 
integrated inertial measurement unit performance with vehicle position as output, 
in other words the user-level output. 

FOG    Drift rate stability < 0.01 °/h for <10G 
   Drift rate stability < 0.25 °/h for 10 – 100G 
   FOG system performance from 2nmph to 0.4nmph 

MEMS   2000: 100°/h @ $50 
   2002: 10°/h offset stability 
   2005-2010: Drift rate stability < 0.05 °/h for <10G 

      2005-2010: Drift rate stability < 0.5 °/h for 10 – 100G 
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Figure 1.1: Gyroscope applications and their required performance. (Adapted from Ingram, 
2003) 
 
 

Figure 1.2: Principal gyroscope technologies in use today and their approximate cost per 
measured gyro axis. (Adapted from Ingram, 2003) 
 
 
1.2 Angular acceleration measurement literature survey 
 
Ovaska and Väliviita (1998) did a review on angular accelerometry inside and beyond 
inertial applications. The emphasis in this paper is on delay-sensitive real-time applications, 
which make it especially relevant for the current field of study. The authors are quoted in the 
next sentence: “Direct measuring of linear acceleration is in wide everyday use, but the 
angular acceleration sensors, especially those with unlimited rotation angle, can still be 
considered as emerging devices. ”   
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1.2.1 Indirect angular acceleration measurement 
 
Ovaska and Väliviita give an account of methods available for indirect angular acceleration 
measurement. These include: 
 

1) Differentiation with Predictive Postfiltering  
A technique normally performed in the discrete time domain where easing 
constraints can be placed upon the incoming signal characteristics in the shape of low 
order polynomials. The required output is differentiated and filtered.  The methods 
available here include the p-step predictive filter and the Recursive Linear Smoothed 
Newton (RLSN) predictor. Examples may be found in Pasanen et al. (1994).  Vainio 
and Ovaska present an analogue filter (1997). 
 

2) Linear State Observation  
Well-known as a “Kalman-filter”, which originates from state space theory. This 
method is attractive when no assumption on the polynomial nature of the 
acceleration curve is possible. A stochastic state space model is developed with zero-
mean white noise imposed on the acceleration. For the use of state space methods on 
guided projectiles see Burchett (2001). More specific examples on angular acceleration 
estimation are found in Bèlanger (1992) or Schmidt and Lorenz (1992). 

 
A MEMS version of the vibration beam concept was developed by Roszhart et al. (2000) for 
inertial navigation application at Kearfott Guidance and Navigation Corporation. A single 
flexure mounted proof mass functions as a coupled-mode Coriolis sensor and an 
accelerometer. In this manner, both linear acceleration and angular rate is measured about 
one common axis. To obtain angular acceleration, the rate output may be differentiated and 
postfiltered. A system similar in function was developed by Hulsing (1988). Because this 
document’s emphasis is placed on direct measurement of angular acceleration, the list is 
limited to these although many other examples exist. Ovaska and Väliviita also includes a 
researched base of application tailored methods that are seated firmly in rotating machinery 
disciplines of various types and are thus non-inertial in nature. This is elaborated on in the 
next section. 
 
 
1.2.2 Non-inertial angular acceleration measurement 
 
As mentioned above many situations arise where angular acceleration may be measured 
from non-inertial reference frames. Ovaska and Väliviita (1998) report on some of these 
methods. For navigational purposes these methods may not have direct application, but 
important uses may even be found in this document’s scope in the ground testing of inertial 
systems. Non-inertial ground-based rotational systems can be made extremely accurate. 
Inertial problems like drift and noise are easily eliminated in optical encoders, and thus are 
more than ten times more accurate than an inertial system, so that it may be used as a 
verifying measurement. For an example of angular accelerometer testing see McDonnel 
(2001). The more conventional angular displacement measuring equipment is omitted from 
this list, which includes theodolites and inclinometers.  
 
Restivo and Gomes de Almeida (2004) describe a method of measurement of either linear- or 
angular relative acceleration. The difficulties experienced in getting relative angular 
acceleration have incited direct measurement of the quantity. The sensor functions on the 
formation of eddy currents (Foucault currents) within a conductor when moving through 
magnetic flux. The current generated will be proportional to the velocity of the conductor 
and the magnetic field that originated the current. Changes in the relative velocity cause 
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changes in the current. A pick-up coil in this conductor is used as a sensing element to 
generate a voltage proportional to the relative acceleration.  
 
Measurement of angular acceleration (and other kinematical quantities) with an optical 
encoder is covered by Kadhim et al. (1992). The measurement of acceleration by this method 
proved difficult when acceleration in excess of 50 rad/s2 was present. 
 
A passive fiber-optic class angular accelerometer was developed by Listvin et al. (1993). 
Development of calibration equipment and the characterization of the sensor are also 
discussed. An angular displacement sensitivity of 4x10-10rad/Hz1/2 was obtained.  Sensitivity 
is defined here as the ratio of a change in output to a change in an undesirable or secondary 
input, which is in this case white noise. White noise in turn is measured in V/Hz1/2, an 
undesirable voltage output (in root mean squared magnitude) when measured with a 
noiseless bandpass filter of certain bandwidth in Hz. Noise is discussed further in section 6.7. 
 
Hancke and Viljoen (1990) treated a special case in rotating machinery where only one speed 
reference signal per revolution is available. Emphasis is placed on the measurement of low 
values of rotational speed and acceleration. Extrapolation of the last two pulses is used to 
calculate the value of speed and acceleration between consecutive pulses. The success in 
using this method is partially attributable to the fact that high inertia components (as found 
in a turbo generator plant) were measured. Applicability must therefore be reserved. 
 
Another method for the measurement of angular acceleration is using diffraction grating 
interferometry. Two improved methods (based on homodyne and heterodyne techniques) 
are described by Täubner and von Martens (1998). The application of grating interferometry 
to the calibration of angular accelerometers is also described. 
 
 
1.2.3 Direct inertial angular acceleration measurement 
 
Meydan (1997) gives a survey of direct linear and angular acceleration measurement, where 
short descriptions on most of the concepts mentioned below may be found. Accelerometers 
in general may classify among the following sensors that may be customized for linear or 
angular measurements: 
 

1) Piezoelectric accelerometers 
2) Strain-gage accelerometers 
3) Piezoresistive accelerometers 
4) Capacitive accelerometers 
5) Reluctive accelerometers 
6) Cantilever magnetic accelerometers  
7) Clamped-Clamped magnetic accelerometers 

 
The dedicated angular accelerometers are: 
 

1) Amorphous wire angular accelerometers 
2) Fluid rotor angular accelerometers 

 
Most of the above may fall in either the open loop or servo (closed loop) categories. The 
generic concept contribution from the angular side of accelerometry clearly confirms the 
finding of Ovaska et al. on the low presence of angular accelerometers relative to their linear 
counterparts. A survey on the state of angular accelerometry revealed the following angular 
accelerometer sensors developed mostly from the mid-eighties onwards: 
 
Brosnihan et al. (1995) describe a surface micromachined force feedback angular 
accelerometer for computer hard drive applications. The use of angular acceleration 
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feedback has the advantage of reducing the positioning overshoot of the read/write head 
and so reduce seek times by 10% when compared to previously used methods. In this 
application, the MEMS approach to accelerometers proves to be ideal because it brings down 
both the cost and size of the product. The whole package is chip integrated. Unlike MEMS 
gyroscopes, these angular accelerometers contain no vibratory motion so the direct effect of 
acceleration is measured. The pick-up is capacitive in nature and the accelerometer includes 
an analogue feedback to improve scale factor. The first generation sensor has a scale factor of 
0.24 μVrms/(rad/s2) with a noise floor of 75 rad/s2/Hz1/2.  
 
Other chip-integrated packages may also contain useful processing functions like 
temperature sensors, analogue-to-digital signal conversion, pulse width modulated output, 
filtering and interface functions to improve scale factor. The LIS1RO2 (L6671) Rotational 
Accelerometer system by Gola et al. (2000) from ST Microelectronics provides a digital 
output with an included interface chip. The interface chip enhances the scale factor of the 
sensor by use of a single bit electromechanical ΣΔ conversion loop. This enables the 
measurement of acceleration as low as 2.5rad/s2. By use of feed-forward compensation on 
external disturbances acting on HDD packaging, the system keeps the read/write head on 
track, which in turn allows greater track densities in portable computers. 
 
Another micromachined sensor that includes a linear sensor and possibly two axes of 
angular sensitivity was proposed by Mizuno et al. (1997). The seismic mass is ring-shaped 
and surrounds a central pillar. The ring is suspended to the pillar by means of a pair of 
flexible torsion bars in the case of one axis of angular sensitivity, and by a gimbal structure 
incorporating two pairs of torsion bars for two axes of sensitivity. The sensor was proposed 
as open loop with an envisaged future closed loop (force-balance) sensor to improve angular 
bandwidth. In an alternative configuration even angular rate is measurable, but a question 
was raised on how the device’s sensitivity to angular rate can be discriminated from its 
sensitivity to angular acceleration. 
 
For the measurement of the rotational degrees of freedom in a large dynamic system (like 
automotive studies), Insalaco (2000) describes two different angular accelerometers. The first 
type of angular accelerometer is a high sensitivity bimorph piezoelectric concept that is 
capable of simultaneously measuring linear and angular acceleration for general low shock 
experimental studies. The bimorph is coupled to a remote signal processor to accommodate 
sensor element deficiencies. An earlier version of the bimorph system of Insalaco is the 
Translational-Angular-Piezobeam (TAP) system described by Bill and Wicks (1990). The 
system contains two identical beams which each consists of a bilaminar piezoceramic flexure 
with polarization direction normal to the beam axis. Charge amplifiers are integrated into the 
sensor yielding an output proportional to one axial and one rotational sensitive axis. The 
second angular accelerometer for use in crash testing consists of a rugged quartz shear 
element. Correct design of the shear element’s fundamental parameters eliminates the need 
for post-processing in this sensor. The quartz shear concept only measures angular 
acceleration, which necessitates the addition of linear sensors if linear acceleration 
measurement is desired.  
 
Lassow and Meydan (1995) developed an angular accelerometer using a seismic mass on 
ferromagnetic amorphous wire. Angular acceleration causes torsional stress in the wire, 
which in turn causes a Matteucci voltage over the clamps of the wire. A solenoid-
magnetized, highly magnetostrictive amorphous wire is required to obtain the voltage that is 
modulated and measured. The main advantage of this angular accelerometer over a 
piezoelectric derivative is superior low frequency response and less supporting electronics. 
A scale factor of 0.56 mV/rad/s2, non-linearity of 0.19% full scale (FS) and repeatability of 
4.62% FS was obtained. 
 
Shirron et al. (1996) developed a monolithic superconducting angular accelerometer capable 
of resolving angular acceleration in one axis to 10-10 rad/s2/Hz1/2. Angular acceleration is 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  WWoollffaaaarrddtt,,  HH  JJ      ((22000077))  
  



 

 11

sensed by changes in inductance of superconducting coils near a proof mass of niobium. The 
proof mass is attached to the housing via a torsional spring and operated at a temperature 
below 9.2K so that the proof mass becomes superconducting. The angular accelerometer has 
a very low bandwidth and was designed for use with a superconducting gravity 
gradiometer at frequencies below 1Hz. The supporting systems required to operate this 
device is considerable, but the advantage of accuracy is clear. 
 
An earlier superconducting accelerometer capable of measuring both linear and angular 
acceleration was developed at the University of Maryland, by Canavan et al. (1991). This 
accelerometer functions by magnetically levitating the proof mass against gravity, or any 
other proof force. The relative positions and orientations with respect to the levitation 
platform are measured with six superconducting inductance bridges sharing one amplifier. 
All six degrees of freedom is measured simultaneously in this way, thus the sensor offers a 
full inertial measurement unit. The sensor is servoed by feeding sensed deviations back to 
the levitation coils and so improves the sensor’s linearity and dynamic performance. 
Expected intrinsic noise is 4x10-12 m/s2/Hz1/2 for linear acceleration, and 3x10-11 
rad/s2/Hz1/2 for angular acceleration.  
 
Where Lassow et al. and Shirron et al. uses a torsional wire to support the seismic mass, 
Minbang and Pen (1992) use a fluid floated mass that is force balanced to obtain a resolution 
of up to 10-4 rad/s2. The sensor is temperature compensated. 
 
Evans (1970) describes a triaxial angular accelerometer by use of a seismic mass suspended 
in a buoyant fluid. The neutral buoyancy is set up by temperature control of the suspension 
fluid with heating from a printed circuit heater. The system also contains a float centering 
system serving as active internal feedback.   
 
Hartzell (1985) built another fluid based system. Here the fluid assumes the function of the 
seismic mass. Statham (1957) patented this concept. The functioning of the sensor is based on 
the rotation of a suspended paddled mass that rotates due to the inertia of the fluid when 
angular acceleration is applied. The fluid is contained in an annularly shaped channel 
coupling the fluid inertia with the paddles, and a DC servomotor directly driving the 
paddles provides feedback. A washout integrator electronic circuit is used to take the sensor 
output to angular displacement. 
 
Marat-Mendez et al. (1999) developed two dedicated angular accelerometer tranducers, one 
with a pre-polarized PVDF film and the other with a polymer/ceramic piezo-composite, and 
compared the results. The research extended only as far as the transducers and no sensor 
electronics are mentioned, hence the sensor output is in Coulomb. The sensitivities achieved 
varied from 0.03 pC/rad/s2 to 0.06 pC/rad/s2. One conclusion of the research was that the 
measurement error obtained from PVDF is lower than the composite piezoelectric.  
 
Other force transducers have also been used to devise angular accelerometers. The Double 
Ended Tuning Fork (DETF) is a resonating device that generates a frequency shift 
proportional to applied force. A characterization of the DETF is given by Cheshmehdoost, 
Jones and O' Connor (2001).  
 
Current commercially available angular accelerometers and angular displacement devices 
include: 
 
1) Endevco Model 7302B: a 5000 and 50 000 rad/s2 sensor for high shock applications. 
2) BEI Technologies Model 8301 Fluid Rotor angular displacement device: a highly accurate 

device operating within a range of ±10 mrad or ±10 μrad. 
3) ST Microelectronics L6674. 
4) Columbia Sensors SR-107VFR. Full-scale range of between 1 and 100rad/s2 and 

resolution as good as 50 μrad/s2. 
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5) Jewell ASXB10   
 
The Columbia sensors, Jewell and BEI Technologies accelerometers use fluid rotor 
technology. 
 
 
1.2.4 Survey conclusions 
 
From the literature survey, direct angular acceleration measurement can be divided into two 
main categories. The first category of sensor is a small, cheap micromachined sensor that is 
mass-produced for applications where low scale factor is satisfactory, like the automotive 
industry. The second category sensor is a large elaborate device with high scale factor and 
cost. Between these two types of sensors a niche exists that can be exploited. The high-
performance end of angular accelerometers has large size, high cost and also limited rotation 
angle (in some cases) as the biggest drawbacks. 
 
 
1.3 Scope of research 
 
A niche has been identified in the angular accelerometer industry for a high scale factor 
MEMS device. The available range of truly dedicated angular accelerometers is limited and 
the high performance sensors have prominent disadvantages of large size and low 
bandwidth: 
 

1) Dimensions from 40mm diameter and 60mm length are the norm when mounting 
structure is excluded. 

2) Sensors exceeding 30Hz bandwidth are likely to be low scale factor, or non-dedicated 
devices. 

 
It is proposed that fluid inertia could be used to achieve high angular acceleration sensitivity 
inside a small package with suitable bandwidth for most inertial measurement applications, 
thereby improving on the two main drawbacks of the fluid rotor angular accelerometer 
(FRAA). The design of the proposed sensor will endeavor to contain fluid in the optimum 
manner for pressure generation in one axis of angular acceleration input. The pressure 
generation must be insensitive to linear acceleration in any direction and angular 
acceleration on the two non-sensitive angular axes. The generated pressure is transduced 
into a signal proportional to the input acceleration by a central pressure transducer.  
 
The research done in the remainder of this document addresses the theory necessary for the 
modeling of the sensor. The aim of this research is to theorize a concept offering a 
worthwhile performance, size or cost improvement on current angular accelerometer 
varieties, thus increasing the scope of application for MEMS-based inertial products. The 
attempted contribution of the sensor is an increase in scale factor offered by current MEMS 
angular inertial devices. The attempt will be embarked on with the Microfluidic Channel 
Angular Accelerometer (MFCAA) concept defined in chapter 2. 
 
The aims of this document are: 
 

1) Acquisition, development, synthesis and verification of the theory necessary to 
develop an MFCAA and evaluate its potential.  

2) Perform a trade-off and/or optimization of important variables in the sensor. 
3) Study the viability of such a sensor and recommend applications for which it might 

be favored.  
4) Make recommendations on further work to be done. 
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The research focus is on mechanical theory pertaining to the MFCAA, but electronics is 
addressed as far at it influences the feasibility and potential of the sensor. The detail and 
spectrum of theory is also governed by the requirements set by successful modeling of the 
sensor. New fundamental theory presented here will be verified by experiment.  
 
 
1.4 Overview of research 
 
Chapter 2 presents the function and general structure of the envisaged angular accelerometer 
conceptually. This allows identification of the fundamental natural phenomena relevant to 
the sensor. The mathematical description of these natural phenomena is the subject of 
chapters 3 to 6 and 8. 
 
Chapter 3 addresses matters regarding the pressure in the spiral-helical channels. The 
fundamentals of steady acceleration-generated pressure are covered first. A general 
mathematical description of a spiral’s dimensions is presented in 3.3 and angular pressure 
potential is defined in Cartesian and polar coordinates in 3.4. Sections 3.5 onward cover the 
propagation of pressure through the channels by using a discrete model. Some inherent 
deficiencies of this model is addressed by a modification performed in 3.6. 
 
Chapter 4 studies various spiral shapes as candidates for use in the sensor. The mathematical 
theory of chapter 3 is used to generate and compare various spiral schemes. Three spirals are 
proposed to allow a trade off between ease of manufacture and performance. 
 
Chapter 5 studies flow in the sensor channels arising from the pressure differences predicted 
by chapter 3 that interacts with the finite stiffness of the pressure transducer. The expected 
laminar flow regime is described in 5.2 and an analytical solution for the limiting case of flow 
with constant pressure gradient starting from rest is reproduced in 5.3 (from the solution 
first derived by Szymanski). A more general solution is developed from this limited 
analytical solution in the shape of a transfer function in section 5.4. 
 
Chapter 6 covers the pressure transducer. Sections 6.1 to 6.5 study a strain-gage based 
transducer used with a plain circular diaphragm while sections 6.6 to 6.9 study the 
characteristics of the piezo-based pressure transducer with an annular diaphragm. A 
Wheatstone bridge (section 6.3) is used to measure change in resistance of the strain-gage 
and a charge amplifier (section 6.6.2) is used to measure piezo crystal deformation. Noise of 
the charge amplifier is covered superficially in section 6.7. 
 
Chapter 7 experimentally verifies the pressure generation theory presented in chapter 3. 
Urethane tubing wound on a spool is used on a rate table to input angular acceleration and 
generate pressure. The pressure is measured absolutely at the two tube ends by means of an 
integrated circuit (IC) sensor and subtracted to obtain differential pressure. The effect of free 
air and radial offset of the spool is studied in section 7.4. Experimental results for 1.5m and 
20m tubes are presented in 7.5. The theory of chapter 3 is used directly to predict pressure 
versus time and then compared with the measured pressure. 
 
Chapter 8 synthesizes the sensor theory of chapter 3 to 6 into a mathematical model of the 
whole sensor. Sensor DC characteristics are described in 8.4 and the dynamical model 
architecture in 8.2. General sensor characteristics versus main sensor parameters are 
described in 8.6. In section 8.7 a sensor optimization is performed to satisfy a high- and low-
bandwidth requirement.  
 
Chapter 9 concludes the research and makes recommendations on further work. 
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Chapter 2 
 
Proposed microfluidic channel angular accelerometer 
concept 
 
 
2.1 Principle of operation 
 
The MFCAA aims to utilize fluid inertia to measure angular acceleration. The main result of 
fluid inertia in an acceleration field is variation of pressure in the fluid, which is transduced 
to a signal in the MFCAA as a measure of angular acceleration. The principle of operation is 
clarified by starting with the effect of linear acceleration on a body of fluid. 
 
Any body of fluid undergoing steady linear acceleration different to that of the local gravity 
field eventually causes a steady pressure in the fluid due to that acceleration. A fluid falling 
to earth (in the absence of drag) generates no such pressure because the fluid acceleration 
equals the gravitational acceleration. An acceleration differential has to be caused in order to 
generate a pressure. The acceleration differential is defined as the difference between the 
gravitation and translational acceleration subtracted as vectors. The generated pressure 
increases linearly in the direction of the acceleration differential.  
 
The body of fluid under consideration has to be contained to sensibly cause an acceleration 
differential. Consider a stationary beaker containing a fluid as shown in figure 2.1. The 
container contents give a color representation of the pressure in the fluid. Increasing 
brightness of red indicates an increase in pressure from atmospheric level, while a blue 
brightness scale indicates a drop in pressure. White indicates atmospheric or nominal 
pressure. The beaker in figure 2.1 has an open top; hence the free surface of the fluid is at 
atmospheric pressure. The gravitation pull of the earth causes an increasing pressure in the 
direction of the acceleration differential (which is downward in this case due to the 
stationary container). The pressure at the bottom of the beaker equals atmospheric pressure 
plus the gravitational pressure of ha potρ . Here ρ is the fluid density and apot is the 

acceleration differential, which can also be expressed as apot = G - a. The factor apot is in this 
case simply G (the gravitational acceleration) because a (the body acceleration) is zero. h is 
the depth of the fluid parallel to the acceleration differential. 
 
The acceleration differential direction can be changed into any direction by applying linear 
acceleration to the beaker. To illustrate this, consider figure 2.2. The beaker is completely 
filled with liquid with an airtight lid on top. Furthermore, the support is removed and a 
force is applied downward. The beaker will accelerate downward faster that the local 
gravitational acceleration, reversing the acceleration differential. If no lid were in place, the 
fluid would spill out the top but now a pressure is generated in the constrained fluid. Unlike 
figure 2.1 the pressure increases upward (due to the reversed acceleration differential) but a 
drop in pressure is found at the opposite end of the beaker. The drop in pressure is caused 
by the lid, which prevents pressure equalization of the fluid’s free surface with the 
atmosphere. Since the amount of fluid in the beaker is constant under constant temperature, 
the increase in pressure against the lid comes at the cost of pressure elsewhere. 
 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  WWoollffaaaarrddtt,,  HH  JJ      ((22000077))  
  



 

 15

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 Pressure distribution   Figure 2.2 Pressure distribution in  
in stationary, open-top beaker. downward accelerated closed beaker. 
 
The pressure still increases in the direction of the acceleration differential (upwards), and the 
pressure difference between the top and bottom is still ha potρ . In the examples above, 

gravity plays an important role in the pressure generated. Linear accelerometers have no 
way of distinguishing between gravity and kinematic acceleration also due to this effect. 
Dedicated angular accelerometers should however not be influenced by the earth’s 
gravitational pull. To accomplish this, the MFCAA does not measure absolute pressure but 
rather differential pressure. The following paragraphs explain how. 
 
A fluid filled thoroidal (circular and endless) tube is shown in figure 2.3. The tube is 
stationary initially, and all the fluid inside as well. A blockage is also shown in the tube, 
preventing any flow inside. If the blockage and any internal friction were absent and the 
tube was rotated about its Z-axis as shown, the fluid inside would remain stationary. With 
the blockage present in the tube, the inertia of the fluid will generate a pressure in the event 
of angular acceleration.  
 
Figure 2.4 shows what occurs at the start of counterclockwise angular acceleration around 
the Z-axis with a blockage present. A high-pressure wave propagates from the blockage in 
the direction of the angular acceleration and a low-pressure wave propagates in the opposite 
direction. 
 

 
Figure2.3: A thoroid-shaped tube filled with liquid. 
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These pressure waves propagate at the speed of sound in the fluid. The fluid at the top 
experiences no pressure change yet. Eventually the pressure waves will damp out due to 
various mechanisms and assume the steady state pressure distribution in figure 2.4B.  
 

Figure 2.4: Thoroidal tube under angular acceleration about axis orthogonal to tube plane. A) 
Immediately after start of angular acceleration input B) After pressure transients have 
decayed. 
 
The pressure distribution of figure 2.4B is exactly that of figure 2.2 except that it applies to 
angular and not linear acceleration. The mechanism for the generation of pressure in figure 
2.4B is also linear acceleration, but here it is caused at a distance from the center of the 
angular acceleration. The difference in steady pressure across the blockage is a measure of 
the imposed steady angular acceleration on the tube. This is the principle of operation of the 
MFCAA. An MFCAA aims to maximize the differential pressure generation across a 
diaphragm (channel blockage) due to angular acceleration input about the sensitive axis. In 
figure 2.3 the Z-axis is therefore the sensitive axis. 
 
A rigid body can reasonably approximate the tube, if suitably supported. A single rigid body 
contains six degrees of freedom (DOFs), three translational and three rotational. To make the 
MFCAA a successful angular accelerometer it has to be possible to distinguish between 
pressures generated by angular acceleration about its sensitive axis and accelerations in the 
other five DOFs. The MFCAA is particularly well suited to this requirement.  
 
In Figure 2.3, the tube is shown in the XY-plane. Linear acceleration of the tube along the Z-
axis will clearly not generate a differential pressure across the blockage since the pressure 
would increase along the Z-axis. Similar scenarios occur for angular acceleration in the X or 
Y axes. Pressure distributions for acceleration and angular velocity in two degrees of 
freedom is shown in figure 2.5. The top two drawings show linear acceleration in the X and Y 
axes respectively while the bottom drawings do the same for angular velocity input. The 
tube obstructions have been removed to see the pressure distribution clearly. As a matter of 
fact, the pressure distributions would essentially be the same with or without obstructions 
for these inputs. The pressure distributions in figure 2.5 do not generate flow in the absence 
of a blockage and hence will not generate a differential pressure across a blockage. Any 
combination of the acceleration or velocity motions in figure 2.5 (or linear acceleration in the 
Z axis) will also not contribute to the differential pressure across the blockage. Since linear 
acceleration in any axis is rejected, gravity is also rejected. The tube differential pressure 
therefore rejects all angular or linear accelerations except that of the sensitive axis, and is 
insensitive to angular velocity in any axis. 
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Figure 2.5: Pressure distributions generated by kinematics in the degrees of freedom of the 
XY plane. 
 
The rejection of unwanted inputs is due to the closed infinite loop construction. Any distance 
between the ends of a broken loop causes failure of the closed loop assumption and indeed 
causes differential pressure for various kinematic inputs.   
 
2.2 Micromachined spiral helix channels 
 
The MFCAA customizes the tubular loop shape of section 2.1 into a helix shaped micro-
fluidic channel that is optimized to generate pressure for angular acceleration inputs. The 
MFCAA is still designed to disregard linear accelerations (including gravity) and angular 
acceleration input to the non-sensitive axes. In order to maximize pressure generation, the 
single loop tube is replaced by a system of channels. The channels are etched from wafers 
with micro-machining techniques and then bonded to form the spiral-helix. Figure 2.6 shows 
a coarse scheme of the wafers to illustrate the concept. The channels are built up out of two 
wafers differing only in port position and the direction of the spiral. A spiral is used on each 
wafer to maximize pressure generation; while a central area is left for the measurement 
chamber. Bonding an alternating set of wafers in an equal number completes the channel 
array. The machined wafers complete a continuous helix by lining up the ports for each 
wafer to feed onto a subsequent wafer. The top wafer is covered with a lid that contains a 
port leading to the top chamber feed chute. The top and bottom ends of the fluid channel are 
thus fed to the measurement chamber where the pressure is transduced into a signal 
proportional to the applied angular acceleration. The channels are square in cross-section, 
therefore the wafer thickness depends on the channel width. Narrower channel width allows 
a longer spiral and thinner wafer so that the total channel length increases inversely 
proportional to the square of channel width (on the same annular area). 
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2.3 Working fluid 
 
The working fluid could be any fluid that is liquid in the sensor's temperature range, but 
mercury is especially suitable due to the following reasons: 
 

1) Mercury has a density of 13550 kg/m3  (the highest of any fluid at room temperature) 
and a dynamic viscosity of 1.561x10-3 kg/ms. The pressure generated in the channels 
is proportional to the fluid density, but high viscosity adversely influences fluid flow. 
Mercury presents the most favorable ratio between density and viscosity (kinematic 
viscosity) of any fluid. 

2) Mercury has a very low vapor pressure of 1.1x10-3 Pa. This allows the pressure at the 
low-pressure end of the diaphragm to drop farther than any other fluid before the 
mercury boils, allowing a greater angular acceleration range in the sensor. 

 

 
Figure 2.6: Illustration of the use of two wafers to build a spiral-helix. 
 
Contrary to the expected, mercury does not have a very high wave propagation speed. The 
speed of sound in mercury is in fact lower than that of water at some temperatures. The high 
density of mercury is the reason for this, even though the bulk modulus of mercury is an 
order of magnitude higher than that of water. 
 
2.4 Measurement chamber 
 
The center of the sensor would not generate linear acceleration during angular rotation so 
this region is used for the pressure transducer. The wafers are thus manufactured to occupy 
a cylinder with an annular cross-section. Figure 2.7 shows one whole view and one sectioned 
view of the resulting bonded wafer structure. The measurement chamber has a cross-
sectional area much larger than that of the channel, making the flow negligible in this 
volume. The chamber contains the diaphragm with a transducer, which may be a piezo-
electric crystal, diaphragm mounted strain-gage or any other displacement/deformation 
transducer. In the case of a piezo-crystal, internal support would be needed against which 
the crystal can deform. One possible configuration is shown in figure 2.8. The support for the 
piezo-crystal is shown at the top, and one baffle on either side of the diaphragm. The baffle is 
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a possible measure under consideration to minimize the effect of unsteady pressure waves 
on the measurement chamber. In a strain-gaged diaphragm there would be no support rods 
necessary, except if baffles are used. 
 

 
Figure 2.7: Set of bonded wafers showing the top and bottom chamber feed chutes. Half-
sectioned view on the right shows channel detail. 
 
 
2.5 Bladder system 
 
A gas-filled bladder system is also included to perform the following functions: 
 

1) Allow for expansion of the working fluid. The thermal volumetric expansion 
coefficient of mercury is significant at 1.82x104 K-1. This is considerably higher than 
glass or silicone, which is what the channels will probably be fabricated from. 
Without the bladder present, the sensor stands risk of bursting at higher 
temperatures than it was filled at. Conversely, evaporation bubbles may form inside 
the channels under lower temperatures that at which the sensor was filled at. The use 
of a bladder will provide for this volume change by compression and expansion of 
the gas inside it. 

2) Provide passive damping of wandering pressure waves inside the fluid. The 
differential pressure applied inside the sensor is low relative to the yield of the 
material and low damping materials are used. The deformation and damping 
contributed by the wall material may therefore not be sufficient to obtain a favorable 
pressure transient response. The bladder will be much more deformable with higher 
damping. 

3) Allow for bleeding of the working fluid during assembly to avoid gas bubbles in the 
channels. Any bubbles in the channels will be very undesirable since a gas-fluid 
boundary will result in surface tension, which in turn will cause considerable flow 
losses. Gas also has a significant effect on the pressure wave propagation. 

4) Pre-pressure the working fluid to alleviate under-pressure problems, which also 
causes localized boiling of the fluid. This is caused by the dropping pressure on the 
one side of the diaphragm, which compromises fluid column continuity and may 
even cause cavitation of the channel walls. 
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Figure 2.8: Pressure transducer chamber. 

 
An illustration of the bladder is shown in figure 2.9. The gas filled bladder is shown in a 
slender thoroidal shape. The bladder will require a sealed interface to the outside for filling 
of the gas. The bladder will have one inlet (not shown) leading to the measurement chamber 
to allow exchange of working fluid. This interface has to be designed to also allow pressure 
waves to enter the bladder and thus achieve damping. A third inlet may be required for 
additional working fluid during the bleeding operation in the assembly of the sensor. The 
bladder may also be installed inside the measurement chamber to simplify the assembly. All 
the necessary inlets would then be installed on the measurement chamber walls. 
 

 
      Figure 2.9: Two installed bladders, above and below  
      the measurement chamber. 
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Figures 2.10 and 2.11 show the integrated sensor, which will be hermetically sealed with 
high internal pressure. Using a closed fluid column in this manner prevents linear 
acceleration from causing differential pressure in the measurement chamber. Only an 
angular component in acceleration around the sensitive will cause a differential pressure by 
means of the inertia of the working fluid. Maximizing the length of channel perpendicular to 
the local acceleration field, (within the limits of imposed constraints) maximizes the 
differential pressure generated in the sensor.  
 

 
Figure 2.10: Sensor packaging.  

 

 
                   Figure 2.11: Section view of whole MFCAA sensor assembly. 
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Chapter 3 
 
 
Pressure generation and propagation theory 
 
 
3.1 Introduction 
 
The only purpose the spiral has in the angular accelerometer is creating the maximum 
possible pressure differential in the smallest possible space. Increasing the differential 
pressure generated across the diaphragm per unit angular acceleration is the key method for 
increasing sensor scale factor. Pressure generation is therefore central to the function of the 
MFCAA. The relation of fluid pressure in a finite length closed channel to the imposed 
angular acceleration on the channel is covered in this chapter. 
 
The aims of this chapter are: 
 

1) The development of a method for the description of channel characteristics that is 
amenable to quick calculation for use in optimization. 

2) Modeling of the pressure inside the channels (both transient and steady state) for real 
fluids and channel wall materials.  

 
An angular accelerometer utilizes inertia to measure angular acceleration. Exactly the same 
method is used universally in linear accelerometers, except that linear inertia is the 
mechanism and not rotational inertia. In recent years some angular accelerometers have been 
constructed by directly mounting two linear accelerometers a known distance apart to 
measure angular acceleration. Any accelerometer (be it angular or linear) uses linear inertia 
on a fundamental level to measure acceleration. To make this simple connection consider the 
length of a circular arc, which is: 
 
 
 
where r is the radius of the arc, s is the arc length and θ is the arc angle in radians. 
Differentiating s with respect to time gives: 

       
with α the angular acceleration and a the tangential acceleration in the channel. Equation 3.2 
states that the magnitude of linear acceleration, due to rotational acceleration increases 
linearly with the radius of rotation. Using this information from the outset to design an 
angular accelerometer makes it possible to design a more sensitive and compact angular 
accelerometer than those derived from linear accelerometers. 
 
Since most of the curves worked with (in deriving their pressure potential) will be spiral in 
nature, it is logical to expect that the curves would need to be expressed in polar co-ordinates 
to efficiently handle them. In textbook calculus the applications for polar co-ordinates are 
usually clear-cut polar graphs to explain their usefulness best, but unfortunately the 
boundaries fade for this application. The expression of some seemingly “polar-natured” 
curves (like an off-centre circle) is an unexpected laborious matter in polar co-ordinates, 
while it is simple in Cartesian co-ordinates.  
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Some equations will thus need to be transformed from Cartesian co-ordinates into the polar 
system. For this purpose, the following equations that relate Cartesian to polar co-ordinates 
are useful. 
 
 
 
 
From equations 3.3 and 3.4, the polar equation for any Cartesian curve can be derived. 
Furthermore, the slope of a straight line can be related to its polar angle by: 
 
 
 
 
According to Pythagoras, the distance of any point from the origin is: 
 
 
 
 
 
3.2 Pressure generated by angular acceleration 
 
Fluid pressure in a static body of fluid close to earth changes with the depth of the body of 
fluid along the gravity vector. The equation describing this pressure is: 
 
 
 
 
with ΔP the pressure difference between the two points in question, adift the acceleration 
differential and Δh is the difference in pressure potential height between the two points. The 
fluid density is ρ.  
 
In equation 3.7, the pressure is generated due to earth’s gravity field or applied acceleration, 
but it could also be generated by kinematical acceleration of the fluid as in section 2.1. 
Analogous to equation 3.7, if a fluid in a straight channel of finite length ΔL is accelerated 
linearly, without any rotation or gravity present, the pressure difference between the two 
endpoints of the channel is: 
 
 
with ε the angle between the linear acceleration field and the channel, and a the linear 
acceleration. Equation 3.8 is of course written on the assumption that the linear acceleration 
is constant in the entire channel, but according to equation 3.2 this is often not the case when 
rotational acceleration is present. Another complication is that a straight channel is likely to 
constitute a small portion (or none) of the total spiral length. The solution to both these 
problems is the creation of a Riemann sum to derive an integration formula. With a Riemann 
sum, the curve can be meaningfully divided into small pieces that are easy to handle 
mathematically and then added up to derive the integral, or directly added numerically in a 
computer routine. Consider a general curve in a plane as depicted in figure 3.1.  
 
When the curve is divided up into small pieces, it is reasonable to assume firstly, that each 
small piece approximates a straight line, which will comply with the assumption of equation 
3.7. In addition to this, each line segment (a distance r from the centre of rotation) is then 
inside an approximately constant acceleration field. Therefore, provided a small line segment 
is considered, the pressure difference that a segment of line contributes is well approximated 
by equation 3.8. 
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UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  WWoollffaaaarrddtt,,  HH  JJ      ((22000077))  
  



 

 24

)9.3(cos kkkk LrP εαρ Δ=Δ

  Figure 3.1: A two dimensional curve in a plane that contains  
  an angular acceleration field about the origin. 

 
In figure 3.1, line l3 from the origin intercepts the curve C at the point Ck. Two other 
intercepts are also shown. An arc about the origin, which is placed at the centre of rotation of 
the proposed spiral, defines the local acceleration field. The placement of this arc relative to 
the spiral is arbitrary (as far as the integral of pressure generation is concerned), if the sensor 
is successful at disregarding linear acceleration effects. It is prudent to base the decision of 
origin placement on the effort required to describe the entire spiral from that proposed 
position. If the point Ck is considered closer on an infinitesimal scale, it would correspond to 
the schematic shown in figure 3.2:  
 
Line l1 is the infinitesimal line segment at point Ck.  
Line l2 is the direction of the local acceleration field of point Ck.  
Line l3 runs from the origin to Ck and is orthogonal to l2. 
 
Equation 3.2 is substituted into equation 3.7 to yield, for the k’th segment: 
 
 
 
 
Equation 3.9 states the pressure contributed by one infinitesimal channel segment in the 
channel for a general case. 
 
 
3.3 Spiral length 
 
The following derivation conveys the spiral length in terms of both Cartesian and polar co-
ordinates and is taken from Ellis and Gulick (1994). This is expanded separately to provide 
the length of the fluid column resulting from a spiral. The development of the length formula 
is first made in Cartesian co-ordinates and then transformed to polar co-ordinates. 
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Figure 3.2: View of infinitesimal line segment at point Ck. 

 
 
Suppose the channel curve C is parametrically represented by: 
 
 
 
where both the functions have continuous derivatives on [ ]ba, . Now let 

{ }ntttP ......,, 10= be a partition of [ ]ba,  and for 1 ≤ k ≤ n let ( ) ( ) ( )( )kkkk tftfyx ,, =  

be the corresponding point on C.  Let ΔLk be the portion of the curve joining ),( 11 −− kk yx and 
),( kk yx . If kxΔ is small, ΔLk is approximately equal to the line segment joining ),( 11 −− kk yx and 
),( kk yx , or in other words: 

 
 
 
By the Mean Value Theorem there are numbers kt ′  
and kt ′′  in [ ]kk tt ,1−  such that ( ) ( ) ( ) ( ) ( ) ( ) kkkkkkkk ttgtgtgandttftftf Δ′′=−Δ′′=− −− 11 . 

Therefore the total length L of the graph of the curve ΔL1 , ΔL2 .…. , ΔL3 , should be 
approximately: 
 
 
 
 
Now follows that: 
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Therefore the length of the curve can be defined as:  
 
 
 
 
which is in Leibniz notation expressed as: 
 
 
 
 
In equation 3.11, t represents any parameter, and may be θ as well. So if a nonnegative polar 
graph is considered on [α , β ] , equation 3.11 can be applied if f ′  is continuous on [α , β ]. 
Then the length is defined in Cartesian co-ordinates as: 
 
 
 
 
 
But from equations 3.3 and 3.4: 
 
 
 
 
 
By differentiating the terms it yields: 
 
                         
 
 
 
 
 
 
 
So the length of a polar graph is given by: 
 
 
 
 
and in Leibniz notation it becomes: 
 
 
 
 
 
3.4 Angular pressure potential 
 
The formula for pressure potential of a spiral is now derived. First, the angular pressure 
potential is defined in general: 
 
 
 
with P the pressure generated by the spiral or helix, ρ the fluid density and α the angular 
acceleration imposed on the spiral in rad/s2. angh has the unit m4/rad. The angular pressure 
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potential is defined in this manner to obtain the same equation form as for linear pressure 
potential, which is defined by a rearrangement of equation 3.7: 
 

 

Formulas for angh  will now be derived for any curve that is expressed in either Cartesian or 
polar form. 
 
 
3.4.1 Pressure potential in Cartesian coordinates 
 
The derivation for a Cartesian curve is included here for cases where a polar equation of a 
channel is not available. In some cases, a graph that is simple in Cartesian form is not even a 
function in polar form (the converse is also true). As may be expected intuitively, the 
derivation of the pressure potential is quite involved in Cartesian form due to the polar 
nature of angular acceleration. 
 
Consider equation 3.9:                       kkkk LrP εαρ cosΔ=Δ  
 
If the density and acceleration terms are taken to one side of the equation to rearrange to the 
form of equation 3.13, it yields.  
 
 
 
The partition P = {t0 , t1 , ……….. , tn} of [ ]ba, on 1 ≤ k ≤ n used in section 3.3 is also valid here, 
so the length ΔLk  that has already been derived in equation 3.10 may be substituted: 
 
                               
 
 
Equation 3.6 is now substituted for the radius of each segment: 
 
 
 
 
 

Strictly speaking, ( )[ ] ( )[ ]22
kk tgtf + is the radial position of the one end of the segment and 

not the centre of the segment. The assumption is reasonable though for a fine partition. 
 
The core of the rest of the derivation is finding ε, the angle between the channel and the local 
acceleration. To find ε for each segment, it is best to simplify ε as a function of a single 
variable so that integration can be performed. ε  is expressed first in terms of the slopes of the 
lines l1  and l2    (in figure 3.2).  
 
Firstly, from the trigonometric identity: 
 
 
 
 
 
 
 
where θ1 and  θ2  is defined in figure 3.2. But from equation 3.5:  
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This applies only where the two lines l1 and l2 are: 
  

• Not perpendicular: because the product of the slopes equals –1 and thus makes the 
denominator zero. 

• Non-vertical: because slope is infinite for vertical lines in Cartesian co-ordinates. 
 
Line l1 is on the integrated function, so m1 is simply f‘(x). Line l2 is not dependent on the 
function, but rather on its position relative to the origin. This complicates matters even more, 
and is a further reason why polar equations are more readily integrated for the pressure 
potential of the spiral. The gradient of l2 for each line segment has to be found by locating to 
one end of the segment in both x and y co-ordinates, which is now done.  
 
If the angle is taken from point k on the partition, the gradients for point k is: 
 
  
 

Lines l2 and l3 are perpendicular so: 
 
 
 
 
Equation 3.17 is substituted into 3.16 and solved for ε : 
 

 
 
 
 
Equation 3.18 is now in turn substituted into equation 3.15, and the result is: 
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The limit is now taken where the partition size approaches zero:  
 
 
 
 
 
resulting in the integral: 
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3.4.2 Pressure potential in polar coordinates 
 
Taking equation 3.14 again:                    kkkkang Lrh εcosΔ=  

 
The first variable r is already in the correct form for integration in polar co-ordinates since r 
is already a function of angle for a polar graph. A formula for kLΔ  has also been derived 
(equation 3.12), so the only outstanding variable to be elaborated on is kε .   
 
From figure 3.2 it is found that, for a fine partition: 
 
 
 
 
 
 
 
If equation 3.12 and equation 3.21 is substituted into equation 3.14 and the limit taken as 
before: 
 
 
 
 
 
or in Leibniz notation: 
 
 
 
 
 
This equation is clearly a lot simpler than equation 3.20. This may often be reason enough to 
go to considerable lengths to get a Cartesian equation into polar form. When coding spirals 
in a finite difference procedure, equation 3.16 may be used directly from Cartesian 
coordinates to find kε , so the trouble of using either equation 3.20 or equation 3.22 is 
avoided. When doing this, the following must be ensured: 
 

1) Care must be taken to comply with the caveats of equation 3.16. The first requisite of 
non-verticality is easily ensured by using an angular difference between two 
consecutive points as a fraction of π. The irrational nature of π makes a vertical line 
element very unlikely. The second requisite of non-perpendicularity has to be 
satisfied by an exclusion statement in the routine that assumes full efficiency of 
rotation-centered circles. 

 
2) Each element must be sufficiently small to make the finite difference procedure 

feasible. When calculating general spiral characteristics, an angular difference 
between two consecutive points of π/100 (31 mrad) was found to give sufficient 
accuracy (without overwhelming a standard 2004 AMD-based personal computer). 
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3.5 Pressure propagation in the channels 
 
The generation of pressure potential is only part of the theory required to simulate channel 
operation. If incompressibility of the working fluid is assumed (as in the case for flow), the 
speed of wave propagation through the fluid has to be infinite. This is of course not possible. 
The assumption of infinite wave speed (which results in a relation of pressure to acceleration 
the same as in equation 3.7) would result in a grossly over-optimistic time response of the 
sensor. Depending on the length of the channels used, the realization of the maximum 
pressure potential for constant angular acceleration input may take considerable time. The 
main challenge of the sensor’s modeling is to capture the time dependence of all variables 
accurately.  
 
In this section the following objectives are set: 
 

• To find an accurate relation of the differential pressure generated across the 
diaphragm due to an arbitrary angular acceleration input to the sensor channels. 

• To obtain theory for the propagation of the pressure beyond the confines of the 
measurement section where the diaphragm is situated, and to understand the 
propagation of pressure waves past imperfections in the channel and changes in cross 
sectional area. 

 
All fluids are compressible to a greater- (in the case of gasses) or lesser extent (in the case of 
liquids). The compressibility of a liquid is defined as the change in fluid pressure 
experienced because of a change in volume (without the addition of liquid): 
 
 
 
where K is called the bulk modulus of the liquid. The bulk modulus is quite similar to the 
modulus of elasticity (Young’s modulus) used for solids. The bulk modulus is also assumed 
as linear around the state of rest, which is generally taken to be atmospheric pressure. The 
formation of a wave through a liquid when pressure is applied to a fluid is partially due to 
the presence of this inherent compressibility and also in part due to deformation of the fluid 
container. 
 
The analysis of pressure wave propagation through matter can be subdivided into two main 
sub-categories, steady harmonic excitation and arbitrary excitation. Harmonic excitation 
theory originated primarily through the study of sound of which a major contributor was 
Lord Rayleigh with his 1877 treatise “The Theory of Sound”. Later (in the twentieth century) 
the theories of harmonic pressure propagation through fluids were considered more closely. 
Publications of pressure wave propagation are ever expanding to account for novel materials 
and boundary conditions. 
 
 
3.5.1 Harmonic excitation models 
 
The main advantage of using a harmonic excitation as input to the system is the simplifying 
assumption of harmonic output. This allows an analytically exact answer from the Partial  
Differential Equations (PDEs) for a linear infinite degree of freedom system and yields a very 
useful result for many engineering disciplines. Of these, acoustics and electricity are the 
principal ones. 
 
The earliest authors recognized the analogy between general vibration and sound 
propagation. Henceforth some of the results obtained from harmonic assumptions are 
directly applicable in the pressure propagation through the sensor’s channels.  Rayleigh 
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derived solutions for the longitudinal vibration of a bar for the two cases of both extremities 
being either fixed or free. The fixed-fixed scenario is more comparable to the fluid column 
used than the free-free case. For the ends-fixed bar model a result for the deflection of any 
point in the bar is given as the infinite series: 
 
 
 
 
where δ is the displacement at a point x along the bar of length L. A and B are arbitrary 
constants found by application of the initial values of δ and its derivative. The speed of 
sound wave propagation is a. For the case of both extremities of the bar being free, the first 
term of equation 3.24 is simply omitted.  
 
Equation 3.24 results in a series of tones (or harmonic scales, one for every integer i) of which 
the one with lowest frequency and longest wavelength is for i = 1. The period of this 
fundamental wave is the time taken for the wave to travel twice the length of the rod. 
Although this solution cannot directly be used in the modeling of the pressure propagation 
in the channels, it allows the important deduction that the lowest natural frequency of the 
system is directly linked to the speed of wave propagation by: 
 
 
 
 
where nω  is the fundamental (lowest) natural frequency of the system in radians/second. 
 
 
3.5.2 Pressure wave speed in a fluid 
 
The speed of wave propagation in a fluid predicted in equation 3.25 is not of much use 
unless the fundamental frequency of the system is known. A formula for the wave speed 
propagation based on fluid properties is therefore required. The result is taken from theory 
in the study of the waterhammer phenomenon, which occurs in pipes when any change in 
flow rate occurs. For the complete derivation refer to Pickford (1969). 
 
Pickford relates the wave speed for fluid in a rigid channel as: 
 
 
 
 
Pickford also gives the speed of wave propagation for other boundary conditions. Stiffer 
pipes may cause faster fluid propagation only up to the maximum value predicted by 
equation 3.26 for a rigid pipe. A more in-depth analysis of the channel array may show that 
channel deflection causes flow in adjacent channels. This implies that wave propagation may 
not only be due to applied acceleration but also due to inter-channel relationships. These 
effects are assumed to be negligible in the current analysis and this assumption may be 
improved upon in subsequent work done on the matter. The influence of the wall material 
type and channel support method on the wave speed can however not be neglected since the 
effect is undisputedly large. The impact of pipe stiffness on the wave speed velocity is 
included by means of a modified bulk modulus. Taking into account the longitudinal and 
circumferential stresses and strains in an elastic cylindrical pipe, the modified bulk modulus 
of the fluid filled pipe is:  
 
 
 
where d is the pipe inside diameter and e is the pipe wall thickness while c is a constant 
dependent on the method of pipe anchoring: 
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21 ν−=c  for a pipe constrained against longitudinal movement 
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−=c  for a pipe with expansion joints 

 
The wave speed in an elastic pipe becomes: 
 
 
 
 
 
From equation 3.28 the wave speed is seen to be dependent on: 
 

1) Pipe size: a smaller diameter results in larger wave speed. This is a direct result of a 
smaller pipe having greater stiffness than a larger pipe with the same wall thickness. 
Thicker walls result in a higher wave speed. 

 
2) Liquid: the density and bulk modulus of the liquid is important.   

 
3) Pipe material stiffness: Young’s modulus varies greatly in materials used for pipes. 

Polycrystalline silicon used commonly to do etching has a modulus of 168GPa and 
glass (also used for fabrication of microfluidic channels) has a Young’s modulus of 
48-83 GPa. 

 
4) Temperature: the density and bulk modulus of fluids are affected by temperature and 

therefore the wave speed as well. 
 

5) Pressure: at high pressures the bulk modulus tends to increase which increases the 
wave speed. The pressures implied here are too high to be of use inside the sensor. 

 
6) Free gas in fluid: gas will cause a marked drop in bulk modulus. Whether or not this 

results in extra damping is dependent on the flow caused by the lower modulus. 
 
 
3.5.3 Wave damping in a fluid 
 
The chief reason for pressure loss in fluids is the presence of shear. Sir Rayleigh did an 
analysis of wave attenuation in fluids due to viscosity. To simplify the analysis, Rayleigh 
assumes harmonic input and thus may assume that the axial flow in the channel varies as: 
 
 
 
where: 
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The coefficient of decay is α. For most fluids (and especially mercury) the magnitude of ν is 
small and thus its square is negligible. Furthermore, the factor n is replaced by 2π aλ-1 (with λ 
the wave length) to yield: 
 

)28.3(' 1−

⎟
⎠
⎞

⎜
⎝
⎛ +==

eE
dc

K
Ka ρρ
ρ

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  WWoollffaaaarrddtt,,  HH  JJ      ((22000077))  
  



 

 33

3

22

3

8

a

fνπ
α =

 
 
 
This shows that the coefficient of decay is strongly dependent on the wavelength. Shorter 
wavelength waves will decay sooner and over shorter distances. The decay constant can also 
be represented versus frequency where 1−= λaf :   
 
 
 
 
In mercury, the following is valid: 

 
If an input frequency of 100Hz is assumed, a very small α of 3.92x10-10 results. The time for 
the pressure wave to damp out half of its amplitude, based only on fluid shear, is then >1.2e6 
seconds. In this time the wave will have traveled a total length of >1.7e9 m. The damping to 
be expected in the frequency range where the sensor will be operated is clearly negligible.  
 
Damping of pressure waves is greatest when acoustical waves of high frequency are sent 
through fluids. Of course, other mechanisms for wave damping exist. The main damper of 
waves in the MFCAA is flow caused by the strain of the diaphragm. Deformation of the fluid 
container may also present damping and the designer can introduce chambers where 
damping is added similar to surge tanks that damp out pressure waves.   
 
If considerable oscillation of induced pressures is still present, other measures may be taken 
to “clean up” the pressure signal, which include: 
 

• The flow area expansions necessary for transition from the channel diameter to the 
diaphragm diameter will afford considerable reflection of the pressure wave. 

• A wave reflection baffle inside the test section to prevent waves from reaching the 
diaphragm. 

• Places of wave reflection can be inserted in the channel at intervals to create high 
frequency standing waves that damp out more rapidly than the applied acceleration 
input frequency. 

 
The low inherent damping of the fluid column is in a sense fortunate for the designer of the 
sensor since it provides some control over the damping that is present. The added damping 
may assume the form of a passive unit inside the sensor or an active control loop. The clear 
result of this analysis is that the matter of damping in the channels cannot be ignored. If no 
extra damping is present, the pressures fed to the measuring chamber will accumulate into a 
gradually increasing noise floor, since acceleration long gone still make itself felt through 
transient pressures at the diaphragm. 
 
 
3.5.4 Arbitrary pressure excitation models 
 
Finding a solution to the pressure at any position in a channel for an arbitrary acceleration 
cannot be approached as easily in an analytical manner as the case for the steady harmonic 
input. The options available to model the pressure is: 
 

1) The use of Computational Fluid Dynamics (CFD) in a time-marching scheme: This 
would also consider all flow characteristics, and thus make any need for further flow 
theory redundant. The CFD software would have to be able to simulate 
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compressibility (wave propagation) in addition to flow if the whole sensor model is 
to be included. A numerical solution, via CFD in a time-marching scheme is possible, 
but requires massive computational power and coding to efficiently calculate results 
in an optimization routine. Each optimization run would require its own solution 
convergence and if the optimization is to run independently from user-input, many 
3D models and meshes will have to be computer generated. The result obtained from 
a CFD calculation will also (at best) be in the time domain; the user will have to write 
postprocessing code in order get the required result. Another limitation of 
contemporary CFD is the types of boundary conditions available, which does not yet 
include unsteady pressure inlets and outlets. CFD does however provide a 
convenient method for a supplementary answer to the flow theory of chapter 5 in the 
case of unsteady flow for a step pressure input. 

 
2) A single degree of freedom (SDOF) approximation of the acceleration to pressure 

transfer function: A simple second order system results for which the theory is 
simple and fast to code and process in a computer.  This method stands at the 
opposite extreme of the CFD option and is an over-simplification of the pressure 
propagation at work here. This would give an idea of the pressure transients 
involved if formulated properly, but since proper reformulation of the second order 
model is needed to fit the fluid column anyway, another model that better represents 
the infinite DOF fluid column is more suited 

 
3) A multi degree of freedom (MDOF) model of the fluid in the channel: The MDOF 

system is an apt analogy for the pressure propagation taking place within the 
channels because the compression of the fluid closely resembles the compression of 
springs between masses. The connection between the one dimensional MDOF system 
and the three dimensional channels is possible since the designer is only interested in 
the differential pressure across the diaphragm (in the test section) to know what the 
flow potential is.  The pressure in the channels is assumed only dependent on the 
one-dimensional length along the channel. Since the channels feed into the relatively 
massive test section, the dependence of the pressure upon the radial position of the 
channel fades, and only the integral effect is substantive. The model adopted is 
shown in figure 3.3.  

 

 
          Figure 3.3: Multi degree of freedom model of pressure generation in channels. 
 
The designer makes the decision regarding the number of masses used in the model 
according to the complexity of frequency response desired. The order of the MDOF model 
transfer function would be twice the number of degrees of freedom permitted. A minimum 
of four orders (for a single mass model) would exist, since the body of the sensor also 
constitutes a degree of freedom. The MDOF model shown in figure 3.3 is drawn as if linear 
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acceleration is applied. This is permissible by the definition of angular pressure potential in 
equation 3.13, which is of the same form as equation 3.7 for the linear case. The 
transformation is accomplished by including channel radial displacement into the gross 
angular pressure potential. Each mass represents a section of the working fluid, and obeys 
rigid body motion caused by forces from two springs and three dampers. The springs 
represent the bulk modulus of the fluid, thereby permitting wave propagation. One shear 
damper (cs1 ,cs2… csn) is inserted per mass to account for flow shear losses and the inter-mass 
dampers (c1 , c2...cn+1) convey inter molecular damping to the system. All boundaries are 
assumed rigid. The deflection of the pressure transducer is handled separately from pressure 
generation (in chapter 6). 
 
Requirements for MDOF approximation 
 
To make the MDOF system similar to the infinite degree of freedom fluid column, the 
following requirements are set: 
 

1) The speed of wave propagation in the MDOF system must be similar to that of the 
real fluid column. 

2) The steady state pressure predicted must be identical to the value predicted by 
equation 3.13. 

                       
 

3) The modes of the true fluid column must be reproduced in the frequency range of 
interest. This will also provide a realistic transient wave shape. The range of 
frequency input is assumed to extend only up to 150 Hz.  

 
 

3.5.5 Fluid column to spring-damper array analogy 
 
The force exerted by a spring is by the MDOF analogy similar to the pressure experienced at 
a specific point in the fluid column. The number of points where the pressure is 
approximated by a spring is therefore only as much as the number of springs present. The 
only pressure in the system the designer is truly concerned with is the differential pressure 
across the diaphragm. The simplest model of this pressure would comprise of a single mass 
with a spring on either side. This will satisfy requirement two above, but probably not the 
rest. Provision must be made to include many degrees of freedom so that the infinite degree 
of freedom fluid column may be approximated and studied further.  
 
The first relation needed is the pressure caused by a spring if its force were to be uniformly 
distributed to cause pressure. The predicted pressure caused by a spring is simply: 
 
 
 
 
where Pn is the pressure, kn is the spring stiffness, Achannel is the channel cross sectional area. In 
order to fulfill requirement 1, a relation must be found between the bulk modulus and the 
spring stiffness.  
 
From equation 3.23:  
 
 
 
 
 
 
 

anghP αρ=
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If the pressure is assumed to be constant across the cross section then: 
 
 
 
 
Hence: 
 
 
 
where ktot is the combined stiffness of all the springs in the array and Δxtot is the total 
deflection under force F.  Furthermore, the stiffness of a set of springs in series is: 
 
 
 
 
for a set of n springs in series. When all the springs have the same stiffness, the equation 
reduces to: 
  
 
 
 
The stiffness for each spring by this analogy is then: 
 
 
 
 
where n is the number of springs used. The total fluid mass is divided equally between the 
inserted masses. The masses will then each have inertias of: 
 
 
 
 
Equation 3.35 enables conformance to the steady state pressure predicted in equation 3.13 
despite the fluid column model being a linear one. The total column length would simply be 
substituted for the angular pressure potential, if the fluid column had been a linear one as in 
figure 3.3.  
 
 
3.5.6 Dynamics of multi degree of freedom system 
 
A numerical model is now derived for the discrete fluid column representation of figure 3.3. 
The solving of the equations of motion for the MDOF system may be done by two main 
methods. The first method is a matrix representation of the dynamic system into separate 
stiffness, mass, damping, force and displacement matrices. The matrix system is then 
reformulated into a set of first order differential equations called Hamilton’s canonical 
equations to make them treatable with matrix algebra. 
 
The second method similarly transforms the system into a set of first order differential 
equations, but matrix representation is done according to the State Space method (borrowed 
from control system theory). This may be done directly from the equations of motion. If the 
system is linear and time invariant (an LTI system), these matrices are constant according to 
the equations: 
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where A is the system matrix or characteristic matrix which defines the system and x is the 
state vector. B is the input matrix defining how the input u is applied to the system. C is the 
output matrix and contains any constants contributing to the system output vector y, and 
also determines which states become outputs. D is the direct feedthrough matrix which 
relates the contribution of inputs that are not influenced by A but rather directly adds to the 
output.  
 
In a system of N degrees of freedom the matrices will have the following sizes, representing 
the system as a set of N first order differential equations. Matrix A will be of size 2NX2N, 
which is the minimum size to fully describe the system, namely two states per degree of 
freedom in this one dimensional case. These two states will be displacement and velocity for 
this model. Matrix B will have 2N rows and the same number of columns as the system has 
inputs. With acceleration as the only input required for the system in figure 3.3, B will be a 
vector. C also has 2N rows, with columns depending on the outputs required up to a 
maximum of 2N. Figure 3.3 has no direct feedthrough; hence matrix D will be an empty one 
of a size the same as the product of C and x.  
 
The model starts off with the equations of motion for the system in figure 3.3: 

 
 
 
 

 
 

 

The term i

n

i
Fcs

1=
Σ  in the body’s equation of motion is the sum of all the shear dampers’ force 

experienced by the body. Since N is any positive integer corresponding to the total degrees of 
freedom, this term can be any size (N=n +1). For the sake of this document the term is 
condensed. The number of terms condensed here is as many as the number of masses 
included in the model.  
 
A choice is now made for the state vector x. Note that only the states contained in this vector 
can be used as outputs. To get equations 3.37 into state space form, a simple state vector is 
first chosen so that minimum manipulation is necessary. The state vector chosen is: 
 
 
 
which results in the system matrix: 
 
 
 
 
 
The product Ax directly simplifies to the left hand side of equation 3.37, except for the 
“body” equation, which accounts for the first empty row in J. The top left matrix is an empty 
array while I is the identity matrix that links the deflections of the various masses with their 
first derivatives. The dotted lines subdivide A into four sub-matrices of equal size.  
 
The J and F matrices are: 
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The first row of the J and F matrices are empty when the body acceleration is chosen as input 
to the system. This removes the body equation of motion from the A matrix and takes the 
input acceleration as a single parameter to the B matrix, which thus becomes: 
 
 
 
 
The input u in equations 3.36 is the applied acceleration, which is multiplied with B. The C 
matrix contains information about which states are taken as outputs and any modification of 
the output is done here. In the current case, the spring deflection has to be transformed to the 
predicted pressure by using the equation: 
 
 
 
The C matrix is a NX2N empty matrix with the only exception being the states taken for 
output.  The choice of the state vector (containing positions and velocities) in equation 3.38 is 
however not yet suitable to define a useful C matrix yet. In the MDOF model, the pressure is 
approximated by spring deformation and not the absolute positions of masses provided by 
equation 3.38. To get sensible pressure output, the absolute positions of neighboring masses 
may be subtracted to obtain spring deformation. This method is elaborate and causes 
calculation with very large numbers because most accelerations cause ever-increasing 
displacements. A better method is to transform the state vector in equation 3.38 to a more 
favorable one, namely spring deformation and its derivative. If the state vector is x and the 
required state vector that x must be transformed into is z then the transformation matrix is 
defined by: 
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and if T is a non-singular matrix:  
 
 
 
Equation 3.36 may then be transformed to an equivalent system:  
 
 
 
 
where:  
 
 
 
 
 
 
For this transformation to succeed, T must be non-singular. As an example, when the system 
is transformed to a state vector: 
 
 
 
This enables the system to output any spring deflection within the system but results in a 
singular A matrix that makes the transformation impossible. Another state vector is 
recommended for any system with an even number of masses that gives a non-singular state 
vector. 
 
 
 
The new state vector z still has a length of 2(N+1). To make space for the included two body 
states, the δ-term of the centre spring is omitted. The deflection of the centre spring is zero 
for any input anyway so its output is redundant. The only requirement for this system is that 
it must have an even number of masses so that a centre spring is present. The transformation 
matrix is now found from substitution of equation 3.47 into equation 3.42:  
 
 
 
 
with: 
 
 
 
 
 
 
 
 
 
 
 
The diagonal starting at the top left corner ends at row (N+1)/2 rounded up to the closest 
integer. In the row after that, the bottom right diagonal starts. The reader will find that this 
transformation gives reasonable results for systems with an uneven number of masses too at 
high degrees of freedom. The most marked error by using and uneven number of masses is 
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an erroneous steady state gain, or unstable step response for the case of one mass. The 
frequency response will not exhibit any obvious errors. 
 
With the availability of a suitable state vector, a suitable C matrix can be selected. To single 

out the first and last spring deflection, C will be an empty NX2N matrix with A
kn (from 

equation 3.41) entered at the 22 and NN positions, in order to output 1P  and 1+nP . The 
difference between these two pressures is the diaphragm differential pressure. 
 
 
3.6 Transfer function 
 
With the state space system definition complete, the transfer function can be calculated from: 
 
 
 
This results in (N+1) transfer functions of which only the second and last transfer functions 
are of interest, corresponding to the deflection of the first and last spring. From these transfer 
functions, the following is clear: 
 

1. The transfer functions are mirror images of each other. The differential pressure can 
therefore be approximated simply by multiplying one of the transfer functions by 
two, and the appropriate sign. 

2. The coefficients of the transfer functions are exceedingly large and become even 
larger when more degrees of freedom are added. This is typical of a badly 
conditioned system for which a matrix balancing exercise would be beneficial. Matrix 
balancing makes the A matrix more diagonal and thus more docile during inversion. 

3. Depending on the damping, the transfer function goes unstable at a certain degree of 
freedom where the matrices become too badly conditioned for the inversion required 
by the transfer function calculation. 

 
The matrix condition problem makes the use of the transfer function less attractive for 
calculation of dynamic responses.  
 
An evaluation of the quality of the formulation is now made for a 10m long channel. A very 
low damping of 1% of critical is taken to make the natural frequencies more perceptible. The 
damping is half shear damping and half inter-molecular damping. 
 
STIFFNESS: Each spring is from equation 3.34: 
  314.4 N/m for the 2 mass system. 
  524 N/m for the 4 mass system. 
  733 N/m for the 6 mass system. 
 
MASS: The inertia of each mass is calculated from equation 3.35 to be: 
   2.71e-3kg for the 2 mass system. 
  1.355e-3kg for the 4 mass system. 
  9.033e-4kg for the 6 mass system. 
 
SOUND SPEED: Using equation 3.26, the speed of sound in the fluid is predicted to be 
1390.53 m/s. This is slightly lower than the quoted 1450 m/s for mercury that the reader will 
find in literature. A higher bulk modulus will have to be assumed to reach the quoted speed 
of sound. The fundamental frequency caused by this sound speed is from equation 3.25 
calculated to be 69.527 Hz. 
 
The transfer functions are shown in a magnitude Bode graph in figure 3.4.  
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Figure 3.4: Bode magnitude plot for MDOF approximation for a 10m long fluid column 
showing the frequency predicted for speed of sound in mercury. 
 
The following is clear from figure 3.4: 
 

1) The first natural frequency increases asymptotically toward the sound speed as the 
degrees of freedom increase. At 101 degrees of freedom, the wave propagation speed 
is 99.5% of the true value. The frequency of subsequent resonances is even more in 
error than the first. 

2) As the degrees of freedom increase, more resonances are added into the Bode plot. 
More mode shapes are therefore accounted for in higher DOF systems. 

3) The higher resonances occur at lower amplitudes than that of the fundamental 
frequency. This is typical of a homogenous infinite degree of freedom system. 

 
A true fluid column will essentially be an infinite DOF system and hence if a finite DOF 
system is used to model a fluid column: 
 

1) The wave propagation speed is under-estimated. 
2) Only a finite number of resonances and mode shapes are predicted 
3) The frequency intervals (bands) between resonances are under-estimated. 

 
These inherent errors must be eliminated or controlled in order for the MDOF approximation 
to be successful. An obvious solution is to use a very large DOF system, say a 1000-DOF 
system. This would result in a transfer function with a numerator and denominator 
potentially containing 1001 terms each, which take prohibitively long to calculate. In 
addition to this, it would only be possible to calculate the transfer function if mathematical 
stability of the matrices could be assured. To make dynamical simulation of the system 
possible, a more conveniently sized system has to be addressed in its deficiencies.  
 
 
3.6.1 Wave speed error correction 
 
The following relation, which equation 3.26 also obeys, expresses the wave speed for a more 
general system: 
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where Φ is a dimensionless coefficient called the wave speed constant.  
 
Any measure of the system stiffness and inertia in the system may be used as reference in 
equation 3.51. For the following analyses, the individual spring stiffness and point-mass 
inertias are substituted for these two variables. To increase the wave speed to a more 
acceptable level, the stiffness can be increased, or the inertia decreased. It is preferred that 
the stiffness is increased as opposed to decreasing the mass, since any increase in stiffness 
will still predict the correct steady state pressure by virtue of equation 3.41 (or equivalently 
3.29). A decrease in mass would necessitate other modifications to the modeling equations to 
make this possible. If Φ is known for a system, a corrected stiffness can be selected to give 
any wave speed by rearranging equation 3.51 into: 
 
 
 
 
Equation 3.52 replaces equation 3.33 with the assumption that the correct Φ is available. Note 
that the true wave speed is calculated by means of equation 3.25, where ωn is the first natural 
frequency in radians per second.  
 
 
 
In a state space system, the natural frequencies are found by finding the system eigenvalues. 
This is achieved by solving for λ in: 
 
 
 
Equation 3.53 results in a polynomial in λ with 2(N+1) terms, called the characteristic 
equation. The characteristic equation will clearly be an arduous one to solve on paper for 
higher number DOF systems. Each λ gives one pole of the system and the natural frequency 
corresponding to that pole is found from: 
 
 
 
 
ΦLN, referenced to any k and m is then found from: 
 
 
 
 
 
where k and m can be any positive real values for the stiffness and mass used. N is the 
number of degrees of freedom used in the MDOF approximation and L the length of the 
channel being approximated. ωnN is therefore the natural frequency of any N-DOF system 
with the configuration of figure 3.3.  
 
The transformation performed on the system in equations 3.42 to 3.49 requires the use of an 
even number of masses in order for a center spring to be present. This requirement hampers 
the search for a relation between the number of DOFs and the natural frequency since half of 
the possible configurations are prohibited. The transformation does not change the 
characteristics of the system; it simply rearranges the matrix for a different set of states to 
become available in an equivalent system. A successfully transformed system is identical to 
the original, also in terms of its natural frequencies. Hence, in order to find the natural 
frequencies for a system with an even or uneven number of masses, the untransformed 
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system is now used. To find nNω , the corresponding Nλ is first found by solving equation 
3.53. Exact solutions for λN is shown below for the first nine systems. N refers to the degrees 
of freedom, hence 2λ applies to a single mass system. The first nonzero pole is found from 
equation 3.53 for a single mass system to be: 
 
 
 
The negative square root argument makes the pole complex as indeed all the non-zero poles 
are. Applying equation 3.54 to 2λ , the natural frequency for this pole is: 
 
 
 
 
From elementary vibration theory, a single excited mass-spring combination is known to 

have a natural frequency of 
m
k . The system described by equation 3.56 has two springs in 

parallel resulting in twice the stiffness; hence a factor 2 is present. 
 
The fundamental poles of the higher DOF systems are now found in order to find a relation 
between the DOF of the system and its natural frequency. All poles occur in conjugate pairs, 
and only the positive pole is extracted here for the purpose of finding natural frequency. The 
complex conjugates of the exact answers result in the same natural frequencies. The 
fundamental poles up to the ninth possible system are:  
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Larger systems become too elaborate or numerically unbalanced for an exact answer as 
shown above. Diagonalization of the characteristic matrix may provide limited help in this 
regard, but still no clear indication could be deduced from the exact answers on the function 
that describes λN‘s dependence on N.  
 
Only the following is clear from the exact answers: Each pole λN includes a factor k/m so ΦLN 
is proportional to L and N but independent of k and m, which is eliminated from by the 
square-rooted k/m in the denominator of equation 3.55. Any values for k and m can therefore 
be employed to plot ΦLN versus N. ΦLN is plotted in figure 3.5 up to 201 degrees of freedom 
for an L of 1m. The wave speed constants plotted in figure 3.5. 
 
The wave speed constant seems to be either a hyperbolic-, power-, or exponential function of 
N. Surprisingly, the function does not fit even one of these satisfactorily enough to be used in 
equation 3.52. The fit may be visually gratifying for either the power or exponential function, 
but the square present in equation 3.52 amplifies the error and gives a mediocre result. 
 

)56.3(2
2 m

k
n =ω
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Figure 3.5: Wave speed constant for a 3 - 201 DOF system. 
 
A good fit is found in the shape of a rational function of two polynomials. The fit was 
performed by the sum-of-least-squares method and results in: 
 
 
 
 
 
 
Equation 3.57 offers an alternative in cases where a table of ΦLN cannot be generated.  A table 
for an even number of fluid column masses up to 200 is given in appendix A.1.   
 
 
3.6.2 Higher mode fluid column resonances 
 
Requirement 3 of section 3.5.4 for successful modeling of the fluid column is the only one left 
to be satisfied, and the most difficult. There is no way to make a finite DOF system have an 
infinite number of modes and resonances. The designer must decide where the frequency 
range of interest lies and make a compromise to approximate the true fluid column in this 
range. 
 
The first modal frequency is corrected for, so the only errors under consideration here are 
from the second resonance and onwards. The frequency range chosen is taken conservatively 
as a first approximation to be 150Hz. This will account for the most dynamic systems 
devised in inertial navigation and will exceed the achievable sensor bandwidth by a great 
margin. After the sensor potential is clearer, the frequency range may be decreased. 
 
If the system is kept in its state space LTI form, a computer can very efficiently calculate the 
response and provide considerable freedom for degrees of freedom available. The type of 
response desired is also of great importance. For harmonic inputs it will be important to 
match the bode plot of the true fluid column. For step or impulse inputs it is far less 
important since the transients for systems with widely varying DOFs show similar transient 
responses. The number of degrees of freedom required will increase as the length of the fluid 
column approximated increases. This occurs because the first resonance mode decreases in 
frequency with increasing fluid column length.  
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3.6.3 Real fluid columns 
 
Despite the measures taken thus far in this chapter to make the theoretical fluid column 
model of figure 3.3 simulate a real fluid column, there are still differences.   
 
Vapor pressure limits: In real fluid columns, the differential pressure generated does not 
faithfully follow increasing acceleration without limit. The fluid at the low-pressure end of 
the diaphragm will boil if the pressure there drops below the vapor pressure of the fluid. The 
low vapor pressure of mercury (1.1x10-3 Pa at 20°C) makes this fluid suitable even in this 
respect. The use of hydraulic oils can decrease the impact of vapor pressure, albeit at a great 
cost to the fluid density.  
 
Channel array shape: The fluid column model originates from a one-dimensional column 
with acceleration longitudinal to the column (see figure 3.3). The pressure potential of the 
modeled spiral-helix is calculated by use of equation 3.14. The assumption is still made that 
the linear acceleration in the channels resulting from angular acceleration of the sensor is the 
same along any position in the channel. This is not the case. By definition, a spiral has 
channel sections at varying radii and thus it has channel section in varying linear 
acceleration fields (according to equation 3.2). Equation 3.14 serves to give the total 
differential pressure regardless of the channel shape – not pressure generated at a specific 
channel end. Two spiral channels of the same pressure potential and fluid but different 
shape will always provide the same differential pressures. The only difference between the 
channels is the fraction of total pressure contributed by each end of the channel. For an 
asymmetric channel, the generated outputs will also be asymmetric. Only the total 
differential pressure is of interest to the sensor’s function. In the theory verification of 
chapter 7, an asymmetric channel is used with asymmetric outputs. 
 
Free gas: The observation made in section 3.6 that the generated gage pressures at the two 
ends of the channel are symmetric is also dependent on the continuity of the medium in the 
channel. The model assumes that the fluid column has constant bulk modulus throughout 
the fluid. If free gas is present in the fluid, the pressures at the two ends of the channel will 
not be symmetric. Gas that is distributed in perfect symmetry with respect to the two 
channel ends will have no effect on pressure symmetry but this is of course not the tendency. 
A good indication of free gas presence in the fluid column is therefore an asymmetric output 
(if channel shape is already taken into account). This will only be discernable from other 
effects if the pressures are measured separately. 
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Chapter 4  
 

Spiral planform shape 
 
 
4.1 Introduction 
 
Angular acceleration is measured in the sensor. Angular acceleration creates linear 
acceleration proportional to the radius from the center of rotation that is tangent to an arc 
around the center of rotation. Intuitively the planform shape (top view) of a spiral should be 
circular in shape around the center of the accelerometer; the shape used in the Fluid Rotor 
angular accelerometer. Geometrically however, a circular arc will only be able to have an 
angular span of 360 degrees taking it back where it started, completing a circle. This limits 
the spiral length to a single revolution. One possible scheme to maximize pressure 
generation around one axis of rotation with the use of a circle is to use a helix. The planform 
view of a mathematical helix is a circle; hence the pressure would be generated in a circular 
arc relative to the axis of rotation. 
 
This would be ideal from efficiency point-of-view, but a lot of space would go to waste 
where extra measurable pressure potential could be generated. If more pressure potential 
length is desired (as is the case here) a spiral of some sort is needed at different levels to 
create an array of spirals inside a helix. The helix can be subdivided into different levels with 
one spiral at each level. The shape of the spiral at each level of the helix needs to be 
optimized, as well as the transitions to different levels.  
 
The objective of this chapter is: 
 

1) To model different spiral concepts with a view to maximizing pressure potential 
generation and manufacturability of the sensor. 

2) To compare different spiral shapes in terms of their efficiency at generating pressure 
potential during angular acceleration. 

 
Before any losses are taken into account, a better understanding should be formed of the 
gross pressure generation capability of a spiral.  
  
First consider equation 3.9:                 kkkk LrP εαρ cosΔ=Δ  
 
The fluid density ρ and angular acceleration α do not describe the channel. It is clear that the 
channel “shape-and-size” variables in equation 3.9 (that also govern the pressure generated) 
is r the radius from the center of rotation, L the length of the spiral, and ε the angle between a 
section of channel and the local acceleration.   
 
Furthermore, r and L describe mainly the size of the spiral and ε describes only the shape. 
The last portion of the equation contains a cosine, which can only vary between unity (if the 
angle is zero) and zero (where the angle is 90 degrees). The cosine term in effect expresses 
the fraction of the channel that generates pressure at any point. From this, the pressure 
potential efficiency is defined.  The flow loss in the spiral is kept aside for the moment, as it 
will be addressed in a later section. The pressure potential efficiency is defined as: 
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4.2 Spiral shapes 
 
The pressure potential efficiency will be analyzed for various spiral shapes:  
 

1) The Archimedes spiral 
2) The pseudo-spiral with straight-line transitions  
3) The circular arc pseudo-spiral.  

 
The attributes of these spirals are now elaborated on. 
 
4.2.1 Archimedes spiral 
 
This is a simple continuous spiral that gains constant radius with each revolution. It is 
described by the equation θkr = with r the radius from the origin, k the radius gained per 
angle rotation and θ the angle rotated. The Archimedes spiral is a continuous polar function 
through any real angle. If an Archimedes spiral of both positive and negative angle is 
plotted, the spiral causes a mirror image on itself as shown in figure 4.1. 
 

 
    Figure 4.1: The spiral of Archimedes. 

 
 
4.2.2 Pseudo-spiral with straight line transitions 
 
The linear pseudo-spiral consists of a set of concentric circles and uses a tangent straight line 
to progress from one circle to the next. The objective of a linear pseudo-spiral is to simplify 
manufacturing of the channel array. The linear channel portions aid in the fabrication and 
alignment of the inports and outports of the wafers. The concentric circles minimize loss of 
efficiency and are also a simple geometric shape to fabricate. A diagram of the pseudo-spiral 
for one transition between two concentric circles is shown in figure 4.2. The transition (in 
red) shows two different ways for the transition to take place. If only a straight line is used as 
a transition, a discontinuity results in each circle in the spiral at point P on the larger circle. 
To remove the discontinuity, a second circular arc may be used as also illustrated in red. The 
transition arc is placed so that the one end is tangent to the straight line and the other end 
tangent to the larger circle, which results in a circle that is off-center with the origin. This 
tangency requirement limits the radius of the transition arc to the radial difference between 
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two consecutive circles. The transition arc improves pressure potential efficiency and has the 
added advantage that flow losses are also less. 

         Figure 4.2: A pseudo-spiral with straight-line transitions. 
        

The geometry of the transition arc is now defined for use in equation 3.9. The angles 
α and β  (measured below the horizontal) between which the transition arc exists is found 
from analysis of figure 4.2: 
 
 
 
 
 
 
 
 
Relative to the main concentric circles, the transition circle is offset by (A ;  -B). The transition 
circle is shown in figure 4.3. In order to find the contribution of the channel in the transition  
circle to angh , the radial displacement must be found for entry into equation 3.14.  For the 
moment, the negative sign on B is dropped, it may be added later when the resulting 
formula is used. To obtain the distance of any point on the transition circle from the origin, 
the circle is best described in polar coordinates. The off-center circle in Cartesian coordinates 
is then simply: 
 
 
 
To change this equation to polar coordinates, the x and y variables are replaced by their 
polar equivalents: 
 
 
 
 
Rearrange to obtain: 
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The roots of this equation give the required radial displacement at θ, which is: 
 
 
 
 
 

 

 
Figure 4.3: Transition circle, showing the required radius in blue.  
The maximum portion of the circle that may be used for the  
transition is shown in red. 

 
The larger of the two solutions is R in figure 4.3. Equation 4.3 is only valid between angles 
where the intersection of a straight line is possible with the circle. Care must also be taken 
that only the fourth quadrant of the circle is used, so that equation 4.3 is not used beyond its 
applicability.  
 
When no transition arc is used, a discontinuity will result at point P in figure 4.2. The 
negative angle from the horizontal to this point (δ) is then: 
 
 
 
 
 
 
4.2.3 Circular arc pseudo-spiral 
 
The circular arc spiral is the only spiral that consists only of circular arcs. This spiral aims to 
simplify the construction of the channel by using only circular arcs with maximum pressure 
potential and flow efficiency. A constant gain in radius per revolution is achieved by using 
circles of increasing radius, each placed off-center to achieve a continuous curve. A 
schematic of the circular pseudo-spiral is shown in figure 4.4. The top and bottom arcs in 
figure 4.4 are both semi-circles. 
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   Figure 4.4: The circular arc pseudo-spiral. 
 
 
4.3 Spiral comparison 
 
4.3.1 Spiral shape 
 
Four spirals that illustrate the general shape are plotted in figure 4.5. The four plots are done 
according to the same spiral parameters and on the same axes to highlight the differences 
between the spirals. 
 

1) The Archimedes spiral evenly distributes the change in radius on each rotation, but is 
never a rotation-centered circular arc (which is the ideal shape for angular pressure 
potential). 

2) The pseudo-spiral with linear transitions aims to maximize the use of concentric 
circles and concentrates the deviation from a circular arc in one region. The refined 
version of this installs an arc where the discontinuity is, since the deviation from the 
circle is most severe in that position. 

3) A circular-arc pseudo-spiral compromises the concentricity of the arcs in order to 
build the entire spiral out of circular arcs. A circular arc spiral and an Archimedes 
spiral with the same parameters can be seen to closely resemble each other. The 
difference in shape is more apparent at the center of the spiral as shown in figure 4.6. 

 
Due of the adverse efficiency effects of starting spirals close to the origin; a spiral of the 
shape in figure 4.6 is not feasible. At large radii the two types of spirals are almost identical; 
hence the differences plotted in figure 4.6 are not apparent in applicable spirals. 
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Figure 4.5: Plots of the four types of spirals over four revolutions with a line spacing of unity. 
 

 
Figure 4.6: Archimedes spiral and circular arc pseudo-spiral starting at the origin. 
 
 
4.3.2 Spiral shape efficiencies 
 
A plot of the pressure potential efficiency (equation 4.1) is made of these four types of spirals 
in figure 4.7. It can be seen that the general efficiency of all the spirals are high. The 
Archimedes spiral and the circular spiral have only a small difference in terms of efficiency, 
while the linear and curved-linear spiral show a more significant drop in efficiency at high 
angles. At very low angles, close to the center of the spiral, the linear spirals are perfectly 
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efficient. This difference would be even more evident for a sub-single rotation spiral, 
although the utilization of such a spiral is highly unlikely in this application.  
 

 
Figure 4.7: Pressure potential efficiencies for spirals starting at a radius equal to the line 
spacing. The plot shows the graph from one revolution onwards. Angular span denotes the 
total angular domain (or sweep) of the spiral. 
 
A plot of the tangency (angle to the tangent of a rotation-centered arc) shows where the 
efficiency of each spiral is lost. A higher tangency angle corresponds to lower efficiency, with 
zero efficiency at a tangency angle of 90 degrees. Clearly, the Archimedes spiral is the best 
choice in terms of pressure potential efficiency at high rotations for the graphs plotted. 
However, there is an exception.  
 
The Archimedes spiral is only efficient far from the origin in a spiral with a small difference 
in radius per turn. In fact, the Archimedes spiral has zero efficiency at the origin (tangency 
angle of 90 degrees). It is therefore possible for cases where very low flow losses are 
experienced that the areas in the center of the spiral may also be utilized for pressure 
generation. If this were the case, an Archimedes spiral or circular spiral would be used on 
the outside only, while a curved linear spiral would be better for the center region. If the 
sensor has a very stiff pressure sensing system or a good feedback system, then the flow 
would be further minimized which makes the length of useful spiral longer. Therefore, there 
may be several types of spirals involved on a single level. The port alignment advantages of 
the linear pseudo-spiral may be obtained by only constructing the innermost and outermost 
loop of the spiral in this shape. 
 
Figures 4.7 and 4.8 are valid for any spiral with constant line spacing.  To make any further 
deduction of the size and type of spiral that is optimal, a good understanding of the minor 
flow losses involved is required. A detail design of the spiral and subsequent CFD analysis 
of the through-ports will be the subject of a prototype design. 
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Figure 4.8: Tangency angles of the four spiral types. Angular span denotes the total angular 
domain (or sweep) of the spiral. 
 
 
4.4 Conclusions on planform shape 
 
Various planforms have been proposed to make trade-offs between efficiency and 
manufacturability possible. The three types of spirals presented have very similar efficiencies 
at large radii, which make the use of any type feasible in the channels envisaged for the 
sensor. For subsequent calculations and simulation, the Archimedes spiral will be assumed 
as the default planform. For a channel of width 0.2mm starting at a radius of 5mm, the 
angular span is 25 revolutions, which makes the loss of efficiency negligible for any spiral 
type (figure 4.7). 
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Chapter 5 
 
Flow in sensor channels 
 
 
5.1 Introduction 
 
If the fluid contained in the channels had zero viscosity, flow modeling would be a simple 
matter of applying Newton’s second law without regard for a boundary layer formation or 
flow losses. The motion of the fluid would be very similar to rigid body motion. The 
viscosity in the fluid has the effect of causing a shear force proportional to any velocity 
gradient in the flow, which always opposes the motion of the fluid. The velocity gradient is 
in turn caused by a no-slip condition imposed at the wall. This is unfortunately unavoidable. 
The only way to limit pressure loss is to limit flow so that a large velocity gradient does not 
form. This places a requirement on the diaphragm to stay rigid if no pressure losses are to 
occur. Of course, any diaphragm used in the sensor transduces the pressure generated by the 
helical channels into a signal by deflecting. The deflection might be very small, but does exist 
nonetheless and this causes flow in the channels, and thus also pressure loss. The only option 
left to the designer is to limit that flow to as small a value as possible, and so maximize the 
measured differential pressure. Due to pressure loss, fluid viscosity is generally an 
undesirable attribute of the working fluid, but viscosity also provides valuable sensor 
damping without which no measurement is possible. A fluid with large bulk damping (to 
provide pressure wave damping) and negligible viscosity (to limit pressure loss due to flow) 
would be ideal in terms of pressure transmission and flow. Of course, other fluid attributes 
like density also play an important role and must be considered. The ratio of dynamic 
viscosity to density is a better benchmark of fluid suitability, in which mercury is the clear 
choice. 
 
The aims of this chapter are: 
 

1) Identify the variables governing the flow in the sensor channels to gain an 
understanding of the mechanisms involved. 

2) Describe flow mathematically in a manner amenable to rapid simulation of the 
sensor. 

 
 
5.2 Characteristics of flow 
 
The flow is expected to have the following characteristics: 
 
5.2.1 Laminar flow 
 
Flow can be taken as laminar below a Reynolds number of 2300 for most conditions. The 
Reynolds number for flow is defined as: 
 
 
 
where ρ is the fluid density, U is the characteristic flow velocity, L is the characteristic length, 
μ is the fluid’s dynamic viscosity and ν is the fluid’s kinematic viscosity. For channel flow, 
another version of the Reynolds number Red is adopted where the channel diameter d is 
substituted for the characteristic length. For a non-circular cross-section channel the hydraulic 
diameter concept was derived to use as the duct diameter. The hydraulic diameter is: 
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with A, the flow cross-sectional area, and Pw the wetted perimeter around the flow area. The 
wetted perimeter is described as the total length around the flow on which shear stress is 
acting. The hydraulic diameter concept is unfortunately only accurate to ±40% and used in 
fully developed flow rather than for flow transients.  Laminar, fully developed flow has 
considerable simplifications that make the application of its theory tempting even though it’s 
clear that transient flow dominates the regime. The flow rate at steady state can be found 
from application of Bernoulli’s principle for a horizontal pipe, which results in: 
 
 
 
 
with a the outside radius of the channel. In fully developed laminar flow in a straight 
circular channel, the velocity profile will be: 
 
 
 
 
 
with r the radial ordinate anywhere along the channel. This is known as Hagen-Poiseuille 
flow, or simply Poiseuille flow. Around 1859 E. Hagenbach and F. Newman gave the head 
loss in a circular channel for Poiseuille flow as: 
 
 
 
 
 
where Q is the volume flow, and all other variables the same as before and the average flow 
speed for Poiseuille flow is half of the maximum. Unfortunately this is only for flow that has 
reached steady state (fully developed), but the linear simplicity and availability of the 
formula makes a trial application of this head-loss formula hard to resist. The application of 
this formula is not as limited as may be first expected because it gives a good representation 
of the flow loss at the two extremes of laminar flow, namely zero flow and when the flow has 
reached steady state. A fluid, by definition, has no resistance to shear force so there cannot be 
any flow loss at zero flow. On the other extreme, a laminar flow cannot contain higher 
velocity gradients for a specific applied pressure gradient than at steady flow where its 
pressure loss equals the applied pressure gradient. This is clear since the flow has stopped 
accelerating and hence the losses must equal the applied gradient to ensure force 
equilibrium. 
 
It has been found by experiment (by Coulomb in 1800) that the effect of channel wall 
roughness in channels with laminar flow is negligible. Moreover, there is readily available 
data on many cross-section shapes. It is here that the hydraulic diameter concept is 
successfully employed, but as mentioned the accuracy leaves something to be desired. It is 
envisaged that the channel cross section will be square. White (1994) recommends a 
hydraulic diameter correction for laminar flow in a rectangular channel. This correction is 
necessary to account for varying wetted area shape of the channel. For a square channel it is 
recommended that the following be used: 
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5.2.2 Incompressible flow 
 
The compressibility of the fluid undergoing a specific flow regime is of great importance 
because of the simplifications made possible by the incompressible flow assumption. For 
incompressible flow to occur, the following two conditions have to be met: 
 

Requirement 1: The Mach number (M=v/c with v the flow speed and c the speed of sound 
in the fluid) must be low, which is the most important requirement. 
Requirement 2: The flow must occur within adiabatic boundaries. Hence no heat transfer 
must take place between the fluid and its environment. 

 
Generally, a truly incompressible fluid has the following characteristics: 
 

1) The innate result of incompressible flow is that the density (ρ in kg/m3) remains 
constant throughout the flow. When this condition is substituted into the equation of 
continuity: 

 
 
 

where ω is the velocity vector ω =  u i +  v j + w k, it is found that:  
 
 
 
2) From the flow speed requirement (requirement 1 above) it follows that if flow does 

occur (with u, v or w a finite value), the speed of sound inside the fluid must equal 
infinity to ensure incompressibility. It is important to note that no fluid possesses an 
infinitely large speed of sound, and that the true speed of sound of the fluid (however 
large) should be used to calculate pressure transfer delays.  

 
The flow occurring in the sensor ducts will be a negligible fraction of the fluid’s sound speed 
even at extreme acceleration frequencies, which satisfies the first requirement for 
incompressibility. Furthermore, the second requirement will be met by the fact that the ducts 
will be in thermal equilibrium with its surroundings with no possibility of kinetic heating in 
the ducts caused by high speed flows. 
 
 
5.2.3 Newtonian flow 
 
The general Navier-Stokes equation which form the basis of analytical fluid mechanics, 
assumes a linear relation between the shear stress in the fluid and the slope of the velocity 
profile in the flow according to: 
 
 
 
where μ signifies a constant viscosity and u is the flow speed. 
 
Not all fluids exhibit a linear relation as in equation 5.4. The shear characteristics of each 
fluid considered should be taken into consideration as the Newtonian fluid assumption can 
be in gross error at high strain rates (for dilatants, pseudoplastics and plastics) and even at 
zero strain rates for a Bingham plastic. Non-Newtonian fluids may also have other 
deviations from the linear assumption such as a time varying viscosity. Here, an increasing 
viscosity is referred to a rheopectic fluid whereas a thinning fluid is thixotropic. Deviations 
such as these will often disqualify a fluid only due to this unfavourable idiosyncrasy alone so 
that the choice of a Newtonian fluid for the sensor is probable. 
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5.3 Analytical unsteady flow solutions 
 
The flow in the channels is highly dependent on the deflection of the diaphragm. As 
mentioned before, it is desirable that the diaphragm deflects as little as possible to limit flow 
losses, which demands high diaphragm stiffness. The diaphragm stiffness in turn results in a 
self-centering diaphragm that causes unsteady flow even if the acceleration input is steady. 
Unfortunately, flow theory is best developed for steady state flow cases where the velocity 
profile in the channel  (boundary layer) is fixed in time. Any flow starting from rest requires 
a certain time to reach steady state and since the flow under consideration occurs over very 
short distances, it will rarely reach steady state and the parameters governing transient flow, 
i.e. inertial forces, will dominate.    
 
An inherent ambiguity exists in the term “unsteady flow”. In general technical literature, this 
may firstly refer to internal flow that possesses velocity derivatives in time for a wall-fixed 
inertial frame. For a particle fixed inertial frame, such a flow will also contain time 
derivatives. On the other hand, unsteady flow may also refer to velocity derivatives with 
respect to length in the direction of flow for a fixed inertial frame. This can be done because 
in the particle fixed reference the equations of flow will contain time derivatives and so justly 
be called “unsteady”. Hence any flow that changes its average velocity in space or in time 
may be called “unsteady” depending on the inertial reference considered. The former type of 
flow is the one analyzed here, while the latter type is flow that transitions through channels 
of changing sectional area or around objects in external flow. The second type of “unsteady” 
flow in fact may not contain a time derivative in its Navier-Stokes formulation at all. The 
absence of a time derivative in the Navier-Stokes equation simplifies the process of finding 
an exact solution. The application of such solutions is also more common than ones 
containing time derivatives, which makes these sources prevalent. Hence to avoid any 
confusion: In all references to unsteady flow in this document it is implied that a substantial 
time derivative is present in the flow when analyzed in the channel fixed inertial frame. To 
make matters more interesting, the flow analyzed in this document will in fact also occur 
through varying cross sections and is unsteady due to both effects. The entrance effects are 
expected to be of small consequence though and are neglected as far as pressure loss is 
concerned. 
 
The first analytical resource for channel transient flow is the solution derived by Szymanski 
(1932). Szymanski derived velocity profiles for sudden imposition and maintenance of a 
pressure gradient on a liquid in a cylindrical pipe. The solution involves a method that 
employs Bessel functions and persists (to some extent) even in solutions obtained in the 21st 
century. Russian contribution to this theory starts in 1955 with a comprehensive analytical 
publication by Slezkin (1955) on incompressible fluids. Slezkin simplifies the theory started 
by Szymanski but still only gives a solution for the one-dimensional, cylindrical case. The 
latest additions to exact analytical solutions in unsteady flow were made by Avramenko 
(2001) who expanded the solvable geometries to rectangular and curvilinear ducts. All 
solutions rely heavily on symmetry, thus a general geometry analytical solution for the 
Navier Stokes equation is still very much elusive. For more on unsteady flow see Bernardin 
(1999) who gave solutions for the unsteady Couette flow formed by a cylinder rotating 
concentrically inside another. The work of Bernardin is especially applicable to the fluid 
floated rotor, like the sensor proposed by Minbang and Pen (1992) or the traditional 
gyroscope, which is described in Gates (1968). For general theory on unsteady 
incompressible flow see Ladyzhenskaya (1969). 
 
It is probable that the flow generated in the accelerometer will rarely (if ever) reach steady 
state. Furthermore, a pressure gradient reversal may often be imposed long before the 
boundary layer is fully developed. This flow is closely related to the problem of Szymanski, 
except for the differences of pressure gradient imposition and maintenance. In the angular 
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accelerometer the pressure would not be instantaneously applied as Szymanski and 
Avramenko assumes. The pressure in the channel will be generated by an applied angular 
acceleration via the inertia of the fluid inside and thus; the nature of the pressure increase is 
entirely dependent on the dynamic system measured. The solutions of Szymanski and 
Avramenko give an applicable solution for the flow at different levels of flow development, 
which is applicable regardless of the governing variables that brought the flow to that stage. 
This is clear since for a laminar Newtonian fluid (equation 5.4) the shear (and pressure loss) 
is only dependent on the slope of the velocity profile at the wall. 
 
 
5.3.1 Slezkin's flow solution for channel flow starting from rest 
 

 
      Figure 5.1: Cylindrical channel for which transient flow is solved  
      by Szymanski and Slezkin. 

 
Slezkin derives the transient flow solution for a straight cylindrical channel, hence the 
Navier-Stokes equation is used in cylindrical coordinates: 
 
 
 
 
 
The time derivative is clear in equation 5.5, so there is no doubt that the flow is in fact 
unsteady. The last term is assumed constant during the flow and non-existent before the 
flow starts. That is: 
 
 
 
 
Furthermore:  
  
 
 
The solution for this case is given as: 
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with J0 and J1 Bessel functions of the first kind (zero and first order respectively) and αk the 
zeros of J0. Equation 5.6 may be simplified by making some substitutions that have become 
customary. As will be seen shortly, the degree of development of the boundary layer 
depends on the factor νt/a2. This factor is called the Fourier number of the flow or: 
 
 
 
 
The Fourier number is measured in seconds and is as such a time constant of the flow. The 
variable P1 and Fo is substituted into equation 5.6, which yields: 
 
 
 
 
 
 
The effect of density on the flow acceleration (that seems to be included with the formulation 
for P1) has apparently disappeared. This is a false impression since density still makes itself 
felt in the Fourier number. Equation 5.7 is plotted in figure 5.2 for a series of Fourier 
numbers. The Bessel series is solved for the first 104 roots calculated to a tolerance of 10-6. 
Convergence errors are most apparent at zero Fourier number, so a measure of the quality of 
the convergence is to test the maximum flow speed at zero Fourier number. The accuracy of 
the convergence will improve approximately by an order of magnitude if the number of 
zeros used increases also by an order of magnitude. 
 
The following is clear from the figure:  
 

1) In the first stages of flow, the boundary layer is still thin and only reaches the central 
regions of the flow as the flow develops. 

2) The steady state flow (at infinite Fourier number) has the parabolic velocity 
distribution of Poiseuille flow (equation 5.2). 

3) The velocity gradient for each Fourier number is maximal at the channel wall (after 
motion has started). The highest gradient is reached at infinite Fourier number. 
According to equation 5.4, the wall shear is therefore also a maximum at steady state 
and hence the flow pressure loss is also a maximum at steady state. Equation 5.3 
gives the maximum pressure loss for laminar flow in a circular pipe for a certain 
pressure gradient. 

4) At the start of motion (Fo=0) there is no velocity gradient because there is no flow. 
The wall shear and pressure loss are zero for this case. 

5) The flow at a Fourier number of 0.75 is very close to full development. (The 
maximum normalized velocity at Fo=0.75 is 98.5%.) A flow with a Fourier number of 
unity can thus be safely assumed as steady state for speed profile purposes. (At Fo=1 
the maximum normalized velocity is 99.66%.) 

 
The flow rate is found by integrating equation 5.7 over the cross sectional area: 
 
 
 
 
 
Equation 5.8 is normalized to unity (like equation 5.7 in figure 5.2), which is plotted in figure 
5.3. Like flow speed, the flow rate levels off at a Fourier number of one. Equation 5.8 gives 
the best indication of how mass is transferred inside the channel and shows directly the 
application of Newton’s second law in laminar flow with viscous pressure losses taken into 
account. This is advantageous when simulating the flow because of the elimination of 
pressure loss feedback (as a function of flow speed) as an additional applied pressure.   
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Figure 5.2: Szymanski’s solution for unsteady flow in a cylindrical channel starting from rest, 
plotted from Slezkin’s solution (equation 5.7).  
 
  
5.3.2 Pressure loss 
 
The pressure loss generated by developing flow is now derived (as a function of time) by 
means of evaluating equation 5.4 at the channel wall for the flow described by equation 5.7: 
 
 
 
 
 
According to the Darcy-Weisbach equation (which is derived from momentum conservation) 
the head loss of duct flow at steady state is: 
 
 
 
 
With f the Darcy friction factor (a dimensionless value), d the channel diameter and U the 
average flow speed. The shear induced pressure loss is: 
 
 
 
The friction factor is derived from dimensional analysis to be: 
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Figure 5.3: Flow rate versus Fourier number for Slezkin’s solution for unsteady flow starting 
from rest. 
 
Equation 5.10 and 5.12 is substituted into equation 5.11, which makes the shear induced 
pressure loss in the channel: 
 
 
 
 
Substituting equation 5.9 into equation 5.13 yields: 
 
 
 
 
This result could have been anticipated at equation 5.9 already because as mentioned before, 
the pressure loss must equal the applied pressure at steady state. Unlike the flow speed, the 
pressure loss is independent of the radial position in the channel, but directly proportional to 
the channel length and pressure gradient that caused the flow. The effects of time, viscosity, 
density and pipe diameter are contained in the Fourier number as before. After full 
development, all terms in the square brackets add to unity. A normalized result of equation 
5.14 is shown in figure 5.4. 
 
Figure 5.4 shows a pressure loss of 93.7% at a Fourier number of unity even though the 
maximum flow speed is at 99.66% of the Poiseuille distribution according to equation 5.7. For 
the purposes of pressure loss a Fourier number of 2.5 may be assumed as the maximum 
possible flow development (99.8%) whereas a Fourier number of one is sufficient for flow 
speed, or volume rate purposes.  
 
Equations 5.7 and 5.14 are pressure gradient dependent, but equation 5.3 is not (since 
developed flow is assumed). Yet the result of equation 5.14 at an infinite Fourier number 
must equal the result of equation 5.3. This is used as a verification of the validity of equation 
5.14. 
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Figure 5.4: Pressure loss in unsteady flow expressed as a fraction of the maximum steady 
state loss predicted by Hagen-Poiseuille flow. 
 
 
5.3.3 Avramenko's solutions for flow starting from rest 
 
The derivation of the previous set of equations for unsteady flow dates from as early as 1932 
and into the 1950s for the equations of Slezkin. With the enormous rise of numerical flow 
analysis in recent years relative to analytical flow analysis, it is somewhat surprising that a 
significant publication on incompressible unsteady flow solutions was done by Avramenko 
in 2001. It covers laminar and turbulent flow for many differently shaped channels in one 
and two dimensions. Curvilinear channels are also covered, which is where this document 
finds interest because the channels manufactured into the wafers will mostly be curved. The 
ratio of the channel effective diameter to the curve diameter will be below 1 percent, thus 
straight channel theory will be applied in this document. Yet, at smaller channel curvatures it 
may become necessary to have more apt theory for curved channels. 
 
From the conditions set in previous sections, namely Newtonian, incompressible, laminar 
flow the Navier-Stokes equation describing the dynamics of the flow is: 
 
 
 
 
 
The first term on the right of contains the pressure gradient that causes motion in the fluid. 
This pressure gradient (assumed as constant by Szymanski and Slezkin) is expanded to a 
more general case by Avramenko. The first right hand term now becomes: 
 
 
 
 
The pressure gradient becomes an exponential function of time. Avramenko provides 
ordinary differential equations for many cases, of which the curvilinear channel is most 
relevant to this document’s scope. The channel has an inner curve radius of R1 and an outer 
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radius of R2. Avramenko proposes the following ordinary differential equation for one-
dimensional curvilinear flow that may be solved with a boundary value problem method:  
 
 
 
 
 
 
 
 
where u is the normalized flow as a fraction of the maximum flow. The boundary conditions 
for the problem is: 
 
 
 
 
 
 
A two dimensional curvilinear solution is also provided, in partial differential equation form: 
 
 
 
 

where
t

z
ν

ξ =  , which gives the self-similar variable for the second dimension. All other 

variables are as before. The two dimensional problem is solved with the four boundary 
conditions: 
 
 
 
 
 
 
5.4 Modeling of flow 
 
Equations 5.7, 5.8 and 5.14 are not directly useful for simulating flow in a finite time 
difference scheme because a very large series will have to be solved for each time step. 
Another complication is that these equations are only valid for step pressure gradient inputs. 
In an optimization exercise the simulation may be required to handle many varied types of 
inputs.  
 
Two options exist for the mathematical modeling of the flow in a simulation. The first 
method entails the calculation of the Fourier number based on flow conditions and applying 
a change in flow in each time step taken from the derivative of equation 5.8. The simulation 
for this method requires an exceedingly large relational logic base to remove pressure 
singularities and assure the correct flow changes take place for all conditions. 
 
The more effective method that readily befits any shape input is a transfer function, which 
gives the output of a process for any input. A transfer function is generally derived from first 
principles according to the physics of the problem. An ordinary differential equation of the 
system is first derived which includes time derivatives of all relevant states. A Laplace 
transformation is then used to transform the differential equation into an algebraic equation 
and so derive the transfer function itself. In the case of unsteady flow, a differential equation 
(namely the Navier Stokes equation) is already available, but unfortunately it is a partial 
differential equation that is not so easily treatable by a Laplace transformation. It is due to 
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the difficulty of solving the Navier Stokes equation that Bessel functions are employed to 
solve the flow. The result for flow rate given in equation 5.8 is a time-based solution to which 
a suitable transfer function must be fitted so that proper simulation of the flow may be done.  
 
On first glance of figure 5.4, the flow rate development looks remarkably like either that of a 
first order system, or an over damped second order system. Where figure 5.4 differs notably 
from a second order step response is in its time derivatives. The volume flow rate in figure 
5.4 has an initial maximum rate that decays to zero at steady state whereas a second order 
system by default starts with zero rate. The flow development therefore better fits a first 
order system that also starts with maximum rate. This does not imply that flow development 
is in fact perfectly first order. The fit quality of the flow rate development to a first order 
system transfer function has to be tested.  
 
 
5.4.1 Test for first order system 
 
By virtue of the fact that the pressure imposition is a step input, a test may be done to 
ascertain whether the system is in fact first order as suspected. In order to determine 
experimentally whether a system is of first order, the curve of log|c(t) - c(∞)| is plotted where 
c(t) is the system output as a function of time (or Fourier number in this case). If the curve is 
a straight line, the system is of first order.  
 
Equivalently, it may be more convenient to plot |c(t)-c(∞)| / |c(0)-c(∞)|versus t on a semilog 
scale. A first order the transfer function is: 
 
 
 
 
of which the step response is: 
 
 
 
where T is the time constant, s is the Laplace operator, R(s) and C(s) is the Laplace 
transformed output and input respectively. Assuming a system passes the first order test, the 
time constant can be found as the time T that satisfies the relation: 
 
 
 
 
Also, when taking the derivative of equation 5.16 at time zero: 
 
 
 
 
Thus the time constant can also be found as the reciprocal of the starting slope of the output. 
Note that both the methods for calculating the response time constant assumes first order 
response, so when using equation 5.18 to calculate the time constant a good first order fit is 
required at time zero. 
 
The flow relation of equation 5.8 is now subjected to the test for a first order system and 
plotted in figure 5.5. Figure 5.5 confirms that unsteady volume flow response is indeed close 
to first order. Although figure 5.5 seems to be perfectly straight, the plot is now investigated 
closer for linearity errors. Figure 5.6 shows the slope error of figure 5.5 as a measure of the 
deviation from a straight line. The slope error presents more clearly than visual inspection of 
figure 5.7 because the error is amplified by the derivative. 
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Figure 5.5: Test for first order response of unsteady volume flow versus Fourier number. 
 
Figure 5.6 shows that the flow response fit to a first order system is worst at the start of flow, 
but improves to good linearity beyond a Fourier number of 0.2. The deviation from the 
straight line is still minimal at low Fourier number (as shown in figure 5.5) yet due to the 
slope deviation at the start of flow the Fourier number region of 0 to 0.2 should not be used 
for the purpose of determining time constants. The slope error at Fo=0.205 is 0.1%. 
 

 
Figure 5.6: Deviation from first order response for volume flow. 
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5.4.2 First order model of flow 
 
Equation 5.8 is now fitted to a first order response with account for the limitations set by the 
linearity test. When the flow response to a constant pressure gradient is assumed as first 
order in nature, the flow develops according to a modification of equation 5.16: 
 
 
 
 
where N is a dimensionless constant that allows the time constant of equation 5.16 to be set 
according to the correct Fourier number. In order to fit equation 5.19, it is normalized by 
dividing by the steady state quotient on both sides: 
 
 
 
 
 
 
 
where Qss is the flow at steady state. The transfer function’s time constant T then becomes: 
 
 
 
 
 
The information contained in figure 5.3 is substituted into equation 5.20 to find N for any 
Fourier number and cross-referenced normalized flow. The N calculated in this method will 
make the flow development line run through the selected point and assumes first order 
response everywhere else. Figure 5.7 shows the constant N calculated for the whole range of 
development. 
 

 
Figure 5.7: Dimensionless constant for fitting of flow theory to first order response.  
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The decision on which Fourier number to take is the designer’s, but for unsteady flow that 
may reach full development, a good fit is required over the whole range. The main impact of 
different N factors is on the starting slope and the time taken to reach steady state. A fit at 
any Fourier number will start at zero and reach the same steady state because the steady 
state error on any first order system for a step input is zero. For this reason, it is 
advantageous to take the smallest N possible that still represents a realistic flow settling time 
since it implies the smallest starting slope error. A good fit is acquired at Fo=0.21 just beyond 
the domain of high linearity errors predicted by figure 5.6. The fit is plotted in figure 5.8. 
 

Figure 5.8: Fit of first order response to flow data for an N of 5.9925. 
 
As intended, the fit is perfect at Fo = 0.21, but deviates slightly on either extreme. The 
starting slope error can be seen to be minor with this fit and may be improved at the expense 
of quality in fit elsewhere. 
 
 
5.5 Validation and conclusions on flow relations 
 
Whether unsteady flow is indeed prevailing in this application can be tested with the Fourier 
number. The time required for mercury to reach a Fourier number of 2.5 for up to 0.2mm 
diameter is shown in figure 5.9.  
 
Steady state can take considerable time to achieve, which means that the sensor will function 
in unsteady flow conditions, even with small channels at low frequencies. The necessity for 
unsteady flow theory is confirmed by this graph. The recommended transfer function for 
pressure gradient input to flow output is: 
 
 
 
 
 
 
with Q(s) and P(s) the Laplace transforms of the flow and differential pressure respectively. 
The numerator originates from the steady state flow defined in equation 5.1. 
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Figure 5.9: Time required (in seconds) for mercury to reach pressure loss steady state. 
Volume flow steady state is reached earlier at a Fourier number of unity. 
 
Because no experimental verification is to be done on the flow relations in this document, the 
Szymanski flow fit (equation 5.22) is now compared to another unsteady flow regime, 
namely harmonic pulsatile flow to determine the validity of the assumptions made. The 
pulsatile flow of blood in arteries has been studied by Womersley (1955). The pressure input 
is assumed harmonic in the form: 
 
 
 
 
where A is a constant representing the amplitude of the applied pressure gradient, ω is its 
frequency in rad/s and t is time is seconds. According to Womersley the resulting flow for 
the layout illustrated in figure 5.1 is: 
 
 
 
 
 
 
 

where 
μ
ωρα

2
2 a

=  and i is the imaginary number. α is known as the Womersley number; an 

unsteady analogue to the Reynolds number. Womersley models flows resulting from non-
harmonic pressure inputs (like that resulting from the human heart) by approximating the 
non-harmonic input with a Taylor series. The solution assumes that the harmonic flow rate 
has reached steady state, thus no initial condition is applicable like the stationary fluid initial 
condition of Szymanski. This assumption befits cardiac output modelling well and many of 
the scenarios that the MFCAA will be subjected to, therefore a comparison to the first order 
fit of Szymanski flow is illustrative of the quality of the fit.  
 
The harmonic nature of the Womersley solution makes a Bode plot readily calculable to be 
compared to the Szymanski fit. Since Womersley flow is harmonically steady at any time no 
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transients have to be accounted for. The flow potential is taken as input to the system for the 
bode plot, while volume flow is the output hence a transfer function of unity (0dB) indicates 
steady flow. The first order Szymanski fit is also easily converted to a Bode plot, which is 
compared to that of Womersley flow for a mμ500  outer diameter pipe in figure 5.9.  
 
The two graphs coincide at zero frequency because both flows assume the Poiseuille steady 
flow scenario. At higher frequency the graphs diverge slightly, with the Szymanski fit 
offering lower magnitude and more lag than the Womersley response. Compared to 
Womersley flow theory, the Szymanksi flow fit is therefore conservative throughout its 
frequency response. With larger pipe diameters the phase response of Womersley flow 
approaches that of the Szymanski fit with increasing frequency, confirming the 1st order 
dominant nature of unsteady flow. The good correlation verifies the suitability of the 
Szymanski flow fit for use in dynamic simulation of the sensor channel flow. 
 

 
Figure 5.9: A comparison between the Womersley flow model and the 1st order Szymanski 
flow fit of equation 5.22 for a mμ500  outer diameter pipe. 
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Chapter 6 
 
Pressure transducer 
 
 
6.1 Introduction 
 
The type of pressure transducer is a decision of great implication to the sensor performance, 
and there are a myriad of methods to measure pressure that can be self-contained in a small 
volume. In the decision of the transducer type, the following priorities are set (in no 
particular order): 
 

1) Signal to noise ratio: The only motive for the existence of the transducer is the output 
of a linear, clean signal. High output sensitivity and low noise across the frequency 
range is thus important. 

2) Low frequency response: The pressure transducer should have a DC response, or at 
least response down to very low frequencies. This is an important requirement for 
inertial navigation. 

3) Stiffness is of high importance to the bandwidth of the sensor.  A stiffer transducer 
will cause less flow, which is where most bandwidth is lost or gained. 

4) The pressure transducer must be contained within the channel array. Larger ultra-
sensitive pressure transducers do exist that would have to be installed externally, but 
this is in conflict with the sensor objective of miniaturization. 

 
Two concepts are evaluated in this chapter. The Strain-gaged diaphragm is the first, and the 
the piezo-electric transducer, which is very popular in dynamic pressure measurement 
systems is the second. The piezo concept will still contain a diaphragm to transmit the 
pressure from the fluid to the piezo crystal; hence diaphragm theory is still applicable here, 
although most of the transducer stiffness is obtained from the piezo crystal itself. 
 
The aim of this chapter is to acquire necessary theory for the design theory for the design of 
the strain-gaged diaphragm, and the piezo-diaphragm pressure transducer. The suitability of 
each concept will be evaluated in chapter 8. 
 
 
6.2 Strain-gaged diaphragm pressure transducer 
 
The strain-gage is essentially a displacement (strain) to signal transducer. The strain-gage 
functions on the principle of the change in a conductor’s resistance when it is deformed 
longitudinally. A wire under tension will reduce in thickness due to Poisson’s ratio, which in 
turn increases the wire’s resistance. Similarly, a wire under longitudinal compression will 
decrease in resistance. Generally the strain is miniscule and the change in resistance as well. 
Electric circuits are available to measure this small change in resistance; the most popular of 
which is the Wheatstone bridge. The diaphragm central to the MFCAA experiences strain 
when differential pressure is generated across it, which makes a strain-gage a candidate in 
this application. 
 
For the MFCAA, the strain-gaged diaphragm has the following pros: 
 

• Cheap and simple to implement. 
• Minimal supporting electronics. 
• One gage provides measurement of differential pressure in any direction. 
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and cons 
 

• Low stiffness, which degrades sensor bandwidth. 
• Low sensitivity. 
• Temperature instability. 

 
A strain-gaged diaphragm may use many types of strain-gages, even ones generally used for 
beam, rod or bar deformation since it also deforms in similar modes. Strain-gages do exist 
that that are specifically designed for diaphragms though, that are just as readily available as 
normal ones. They have the following features: 
 

1) One full Wheatstone-bridge is completed by using one diaphragm strain-gage foil. 
This provides for temperature compensation in the bridge while only using one face 
of the diaphragm. 

2) One gage measures both compressive and tensile strains simultaneously and 
averages it across the diaphragm. Sensitivity for a diaphragm is therefore optimized 
for use with a diaphragm. 

 
An example of an implementation of a diaphragm strain-gage into a simple Wheatstone-
bridge arrangement is shown in figure 6.1. 
 

 
   Figure 6.1: A diaphragm strain-gage. 
   (Taken from Sydenham and Hancock (1989)) 

 
An unfortunate result of using a diaphragm is that its linearity leaves much to be desired, 
even at very small deflections. A general rule to achieve good linearity is for the maximum 
diaphragm deflection not to exceed the diaphragm thickness. For 0.3% linearity this has to be 
limited to a quarter of the thickness. This doesn’t leave much room for deformation of the 
diaphragm in a linear system. In the MFCAA application, the diaphragm will probably only 
be used well within its linear range since flow has to be limited anyway. The small linear 
range of the diaphragm is therefore not a direct drawback; it has to be ensured due to other 
considerations too.  The issue of linearity is addressed further in the following section. 
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6.2.1 Circular diaphragm stress and strain 
 
Using a thinner diaphragm for a more sensitive measurement will cause bigger deflection 
and bigger flow losses and linearity errors. These two conflicting requirements are the main 
trade-offs being made in the diaphragm; the only way to partially avoid this conflict is a 
proper internal control system that controls diaphragm deflection even for very thin 
diaphragms. This is the main reason for the inclusion of such a control system.  
 
The aim of this section is to provide optimization inputs for the strains and stresses in the 
diaphragm and their relation to the flow in the system. As is the case many scenarios in 
structural design, the main analytical source of theory for diaphragms is found in Young and 
Budynas (2002). For a solid circular plate (diaphragm) that is loaded with constant pressure 
over its entire surface and fixed at its edge, Young and Budynas gives the deflection of the 
diaphragm as: 
 
 
 
where cM is the diaphragm center moment, q is the pressure across the diaphragm, ν is 
Poisson’s ratio and r is the radius from the diaphragm center. The diaphragm center 
deflection is cy and D is the plate constant, which is defined as: 

 
where E is Young’s modulus, t is the diaphragm thickness. Furthermore, the center deflection 
of the diaphragm is: 

 
where R0 is the diaphragm outside radius. Bending stress in the diaphragm is related to the 
moment at that point according to the formula: 

  
The moment at the center of the diaphragm is: 
 
 
 
 
 
While at the edge the moment is: 
 
 
 
 
In most cases the stress at the edge of the diaphragm will govern the design. The diaphragm 
deflection shape according to linear theory is shown in figure 6.2. 
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Figure 6.2: Deflection shape of the diaphragm under linear theory. 
 
The maximum strain experienced by the diaphragm in linear theory is the radial strain at the 
edges of the diaphragm according to: 
 
 
 
 
The strain becomes a design limitation, among other reasons, due to the fatigue 
characteristics of strain-gage materials. A higher strain promotes sensitivity of the 
measurement at the cost of durability of the strain-gage. Although the strain-gage’s cost 
presents a very small portion of the cost of the measurement system, it will be difficult to 
replace in the MFCAA’s case. The gage durability becomes more important when the sensor 
reaches maturity and has to function for prolonged periods in dynamic environments. 
 
 
6.2.2 Circular diaphragm non-linear theory 
 
All the theory given thus far by Young and Budynas is under linear assumptions. The fact 
that only the bending stresses (equations 6.4-6.6) are accounted for in the calculation of stress 
is the first indication that the diaphragm stresses are in fact ignored completely. This 
assumption can only reasonably be done for maximum deflections smaller than half the 
diaphragm thickness, as mentioned in the introduction of this section. The addition of the 
diaphragm stress enables the diaphragm to carry some of the load in direct tension and 
makes the diaphragm stiffer at higher strains, making the load deflection and load stress 
relation non-linear. For maximum deflections larger than half the diaphragm thickness these 
effects have to be taken into account. 
 
Care must be taken here not to apply the non-linear theory without cognizance of all the 
effects of a non-linear diaphragm. Although the non-linear theory may predict the true stress 
and strain of the diaphragm and the optimization occurs correctly, the sensor will have 
greatly degraded performance in the non-linear region.  
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The following formulas give these non-linear relations of stress and strain according to 
Young and Budynas. The diaphragm stress is now taken into account so that the maximum 
stress is that of bending and tension combined: 
 
 
 
Then:  
 
 
 
For stresses at the center of the plate:  
 
 
 
 
And for stresses at the edge:  
 
 
 
 
 
6.2.3 Volumetric deflection of plain circular diaphragm 
 
The relations given above must be integrated to find the volume displaced by a deflected 
diaphragm. Only the linear case is treated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

But according to equation 6.3: 
D

qR
yc 64

4
0−=  , which is substituted into equation 6.11 to give: 

 
 
 
 
 
The second term in brackets can be simplified in the following manner with 
equation 6.5: 
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which is substituted back into equation 12 to give: 
 
 
 
 
 
 
 
 
6.3 The Wheatstone bridge equations  
 
A diaphragm type strain-gage (with a gage factor of two) gives an output e0 when wired in a 
full Wheatstone-bridge as shown in the following figure: 
 

 
  Figure 6.3: The Wheatstone bridge (taken from Wright (1994)). 
 
The bridge equations can be found in most books on measurement systems or strain-gages 
and are well known. The total bridge output for the Wheatstone bridge is: 
 
 
 
 
 
In the third bracket, a is defined as R2/R1=R3/R4 for a symmetric/balanced bridge. In general 
this will not be remain true for the bridge when one of the gauges (resistors) are strained, 
hence the bridge is normally operated in an unbalanced state. In this mode of operation, 
resistance changes in the arms cause changes in the currents I1 and I2 (in figure 6.3), which 
causes non-linearity. The last bracket contains the non-linearity term. And if r = Ry/Rx, with Ry 

the gauge resistance after deformation and Rx the resistance before, the non-linearity is 
written: 
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In most mechanical applications it does not influence equation 6.14 significantly since a 
strain gauge can only deform about 3% (hence r generally varies between 0.97 and 1.03). To 
find the output for a diaphragm gage the strain distribution has to be averaged across the 
tangential strain and radial strain sections that is used by the gage. This empirical formula is 
provided by the gage manufacturer, Vishay Measurements Group, which is:   
 
 
 
 
 
6.3.1 Strain-gaged diaphragm relations 
 
From equation 6.16 it is important to note the following: The output is directly dependent on 
the strain levels in the strain-gage. Deciding on a specific output (which is similar to 
sensitivity) of the strain-gage sets the level of the maximum strain regardless of anything 
else, whether it is pressure, diaphragm thickness, or type of material. Equation 6.16 changes 
the diaphragm thickness to the required value to provide the scale factor. This is more 
evident in equation 6.7, which is reproduced here: 
 
 
 
 
The diaphragm maximum strain and gage output is in fact directly proportional according 
to:  
 
 
The output must of course be maximized for a favorable signal to noise ratio, and the price of 
that output is felt as:  
 

1) A thinner diaphragm that is more difficult and costly to manufacture. 
2) High strain levels in the gage that limits its fatigue life and causes unwanted channel 

flow.  
 
Equation 6.16 is more useful when the thickness is solved for, which results in: 
 
 
 
 
Equation 6.16 applies to the steady state where the diaphragm has settled at a position 
governed by the pressure. For dynamic applications it is better to get the output in terms of 
the diaphragm center deflection: 
 
 
 
More can be deduced from the equations. Since the material is used in its linear range, the 
maximum strain also has to be directly proportional to the maximum stress. The maximum 
stress level is found from equation 6.6 into equation 6.4. 
 
 
 
 
From equation 6.7 can be shown that: 
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6.4 Strain-gaged diaphragm design and characteristics 
 
Going through a design exercise the equations will be utilized in the following manner: 
 
STEP 1: The diaphragm diameter and maximum pressure that is to be measured is decided 
on.  
STEP 2: Equation 6.17 is used to decide on the maximum possible output that will still 
provide sufficient fatigue life in the strain-gage and not cause too much flow.  
STEP 3: Calculate the maximum stress (equation 6.21) for the strain from equation 6.17. It is 
here that the material properties (Young’s modulus and Poisson’s ratio) come into play first. 
Hence a specific material is chosen here. 
STEP 4: Equation 6.18 is used to calculate the diaphragm thickness based on parameters 
found in steps 1 to 3. 
STEP 5: Check for maximum diaphragm deflection to confirm whether linear theory is 
applicable. The deflection shall not exceed half the diaphragm thickness. 
 
The first step where the material parameters are used is now investigated closer to 
understand its effect on the rest of the design. Poisson’s ratio is in fact quite constant in a vast 
range of completely different materials. Most Poisson’s ratios are 0.3, and seldom reaches 
0.35 (in polymers and composites). It makes sense to leave the Poisson ratio’s contribution 
out of a relational study because Young’s modulus varies roughly by a factor 200 in 
engineering materials. When Young’s modulus is varied from 1 to 200GPa and the 
diaphragm thickness, deflection, stress and strain is plotted the result is shown in figure 6.4. 
A strain gauge factor of 2 is assumed with a sensitivity of 2mV/V. Applied pressure is 1kPa.  
 
From figure 6.4 the following is clear: 
 

1) The diaphragm thickness drops in a hyperbolic fashion as the material becomes 
stiffer, which is intuitively expected. 

2) The diaphragm strain is constant for all elasticities. This confirms equation 6.17’s 
prediction that strain is independent of stiffness for implied output. 

3) The maximum stress increases linearly as stiffness increases. The cause of this can be 
seen most clearly in equation 6.21 for a constant strain and increasing stiffness. 

4) The diaphragm deflection increases for increasing stiffness. A designer will in fact 
have to use a less stiff material to get a smaller maximum diaphragm deflection.  

 
When equation 6.3 is written out with the plate constant substituted it becomes: 
 
 
 
 
The elasticity is in the denominator of equation 6.22, so how is it possible that deflection 
decreases as E increases? The thickness used in equation 6.22 is calculated be means of 
equation 6.18. Equation 6.22 can thus also be written as: 
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Figure 6.4: The influence of Young’s modulus (from 1Gpa to 200GPa) on diaphragm design 
according to linear theory. 
 
Equation 6.23 confirms the shape of the right bottom graph in figure 6.4 and confirms that a 
lower Young’s modulus indeed results in smaller diaphragm deflections. The diaphragm 
strain-gage governs the dimensions of the sensor to a certain extent because of the limited 
number of gage sizes available. It must be known what options exist for the diaphragm so 
that the optimization can be done with these values in mind. The following are available: 
 
HBM supplies diaphragm strain-gages with nominal gage factors (strain sensitivity) of two. 
The transducer gages are available in sizes 10, 15 and 25mm at resistances from 120Ω to 
350Ω. Micro-Measurements corp. supplies gages in sizes of 5mm, 6.4mm, 10mm and 13mm 
and at resistances of 350Ω to 1kΩ. The choice of gage resistance is a trade-off of temperature 
sensitivity versus signal/noise ratio. Gages with smaller resistance will generate less noise, 
but will be more susceptive to generate internal heat and cause temperature drive problems. 
A 350Ω gage is generally accepted as the fair choice for most applications but the 120Ω 
option may be necessary to build a sensitive enough system.  
 
On the matter of size: It must be kept in view that the outside diameter size constraint is 
20mm. This is not a strictly enforced requirement though, because the sensor will still be 
small relative to most requirements in envisaged applications if kept within 30mm. The 
sensitivity of the sensor will increase for larger diaphragms because larger size provides 
volume to build a higher pressure potential generating system. Using a larger diaphragm 
may be tempting, but it increases sensor size as well. One constraint of using a strain-gage is 
the limited sizes they are available in. 
 
 
6.5 Strain-gaged diaphragm conclusions 
 
1) The output available from a strain-gage is governed only by the maximum strain 

available. These two variables are linearly dependent.  
2) A diaphragm may be designed for a certain output for any value of pressure, however 

small. The diaphragm will simply be thinner to account for this. Consequences of a 
thinner diaphragm are manufacturability problems and high diaphragm stresses. One 
other caveat on an exceptionally thin diaphragm is that the strain-gage gluing may be 
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difficult, especially if roughing of the surface finish is required. The added stiffness of the 
strain-gage may also have to be taken into account. 

3) The material stiffness must be minimized to a) make a diaphragm of a more readily 
manufacturable thickness and b) limit the diaphragm deflection and thereby limiting 
flow pressure loss.  

4) Diaphragm stress will be less for low stiffness materials, which makes the softer 
materials also feasible for use in a diaphragm. For very low stiffness materials, the added 
stiffness of the installed strain-gage may have to be taken into account. 

5) The constraints caused by available strain-gage sizes and the required diaphragm strain 
to operate these gages places a lower limit on the volumetric deflection of the diaphragm 
and therefore also the flow for a specific channel width. 

 
The plain circular diaphragm may also be applied in other pressure transducer concepts. 
Capacitive sensing is common in pressure transducers, but is not covered in this document 
in favour of the piezo electric transducer. Capacitive sensing is widely associated with 
servoed sensors since the plates used for sensing can also be applied as actuators of the 
sensitive element. This concept can be further developed when a servoed sensor option is 
considered. 
 
 
6.6 Piezo-electric pressure transducer 
 
6.6.1 Piezo-electric characteristics 
 
The constraints placed on the designer by strain-gaged diaphragm diameter and deflection 
may prove to be too limiting. Great bandwidth losses are experienced with strain-gaged 
diaphragms where the ratio of channel width to diaphragm diameter drops below 10 
percent. Another limitation of strain-gages is the sizes they are available in. This makes the 
application of a strain-gaged diaphragm limited to macro scale channels. Generally, small 
sensors will require much stiffer pressure transducers to limit flow, thus making the use of 
small channels possible and reducing the size of the sensor. 
 
The piezo-electric pressure transducer has the following main pros: 
 

• High stiffness. 
• Good sensitivity. 

 
and cons 
 

• More complex design. The diaphragm has to be braced against the piezo-crystal for 
force transference. 

• Higher manufacturing accuracies are required. 
• Higher cost. 
• Piezo-electric transducers have no DC response. This is the most important drawback 

because the MFCAA sensor is inclined toward low frequency application due to the 
long narrow channels that places an upper limit on bandwidth. Using a piezo-electric 
transducer places an extra trade-off into the optimization challenge. 

 
The piezo pressure transducer functions on the basis of a piezo crystal that generates charge 
proportional to strain. Many crystals ranging from quartz to ordinary sugar exhibits this 
phenomenon. The main trade-off made in deciding on piezo material is between output and 
temperature stability. Quartz is stable with low output while Rochelle salt provides high 
output, but has to be protected from moisture and temperatures above 45°C.  The applied 
strain can be of any type (thickness, shear or even transverse strain) but since the crystal only 
generates charge it has to be connected parallel to a shunting capacitor. A very high 
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impedance circuit amplifies the capacitor voltage (to limit charge leakage). The impedance of 
this circuit will always be finite, so charge leakage will always occur. For this reason, piezo-
transducers are best suited to inputs of high frequency that require no DC response.  
 
This can be illustrated by the following example: The stiffness afforded by the crystal when 
used in compression or tension is: 
 
 
 
where Ap is the stressed area, Ep is Young’s modulus for the crystal and Lp is the unstressed 
length of the crystal. The reaction force generated by the crystal is thus:  
 
 
 
with x the crystal deflection under force Fp. The piezo element and its equivalent circuit may 
be illustrated as in figure 6.5: The crystal generates a charge directly proportional to the 
applied force: 
 
 
or proportional to imposed deflection (equation 6.25). Equation 6.26 becomes: 
 
 
 
Differentiating equation 6.27 results in: 
 
 
 
 
 

 
       Figure 6.5: Transducer equivalent circuit of piezoelectric element. 

 
From figure 6.5: 
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In the frequency domain equation 6.30 becomes: 
 
 
 
 
The time constant τ is equal to the product RC of the circuit and C

KK s = . The steady state 
response is for the transducer is zero. The resonance frequency is set by the stiffness of the 
transducer and inertia of the system while the low cut-off frequency in Hertz is: 
 
  
 
 
Increasing RC (the time constant) will decrease the cut-off frequency, but increasing C also 
decreases nominal output sensitivity. Increasing the capacitance of the feedback capacitor 
(and of the wiring) unfortunately also increases the noise in the amplifier, see Purdy (1979).  
 
With regards to the piezo sensor output, some assumptions are made in its modeling: 
 

1) The piezo element is assumed only to output charge due to its thickness change 
deformation (also called the longitudinal or d33 direction): The top and bottom of the 
crystal is bonded to the piezo support and to the diaphragm respectively, and is 
therefore not wetted by the working fluid. The diaphragm reacts the differential 
pressure upon it (in shear and bending) against the crystal, which causes a thickness 
change in the crystal. The thickness change causes a corresponding transverse change 
(also called the d31 mode) according to Poisson’s ratio. Thickening of the crystal will 
cause transverse contraction and thinning of the crystal will cause transverse 
expansion. The crystal however will also deform due to direct fluid pressure on its 
circumference where it is exposed to the fluid. When the sensor experiences an 
increase in pressure (in which case the other side of the diaphragm will experience a 
drop in pressure) the diaphragm will act to lengthen the piezo film in the d33 
direction, causing transverse contraction. The increased direct circumferential fluid 
pressure will assist this transverse contraction and increase the sensor output. The 
opposite occurs when the sensor experiences a drop in pressure, in which case the 
direct fluid pressure also assists the sensor output. The direct fluid pressure causing 
this change is not amplified by the diaphragm area however but does add to sensor 
output. The extra output is extremely small however, and should only contribute 
about 4% of the output for a mμ100 thick film if the transverse degree of freedom is 
entirely free to deform. Since the piezo film is bonded on its top to the piezo support 
and on its bottom to the diaphragm, any transverse change is reacted in shear across 
the bonded surface. Therefore the crystal cannot be assumed free in the transverse 
direction and the small d31 contribution thereby ignored. For thicker piezo sensors, 
this assumption may need to be revised and the transverse output included. 

2) The measurement chamber is assumed rigid. The pressure chamber has to be made 
from a finite stiffness material like all other systems in the sensor. Flow entering the 
measurement chamber will deflect the diaphragm, compress the measurement 
chamber diameter fluid and expand the measurement chamber itself. In this 
document the flow is assumed to compress the chamber fluid and deflect the 
diaphragm. Due to the low stiffness of the diaphragm relative to the envisaged 
stiffness of the measurement chamber this assumption is reasonable, but can be 
improved upon when the measurement chamber is designed. 

 
6.6.2 Piezo electric signal conditioning 
 
Amplification of the transducer output may be done with voltage- or charge-amplification. 
The more popular of these is the charge amplifier because of the independence of its low 
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frequency response on the transducer parameters. Within limits, the system performance is 
only dependent on the feedback resistance and capacitance of the amplifier. Figure 6.6 shows 
a schematic of a charge amplifier installation.  
 

 
            Figure 6.6: Piezo transducer with charge amplifier. 

 
The output voltage of the amplifier is then: 
 
 
  
 
This does not imply that DC response is possible. The feedback resistor Rf must be added to 
prevent drift and saturation of the operational amplifier by its input bias currents. The 
addition of the feedback amplifier reintroduces the Rf Cf circuit high-pass characteristic, so 
DC response is still not attained. The frequency response caused by the charge amplifier 
starts off with a 20dB/decade slope. At dBf 3−  the response reaches 71% of the nominal scale 
factor level of sK  where it levels off. The true response will also contain resonant structural 
frequencies beyond the nominal scale factor, but these are not reflected by equation 6.32. 
This resonance are not of much consequence for the MFCAA because of the high frequencies 
they occur at. 
 
 
6.7 Noise of charge amplifier 
 
Noise is still to be covered, and this is only done for the charge-amplifier coupled with the 
piezo crystal. Noise in the strain-gage is omitted because the perceived potential for this is 
limited.  
 
For a treatment of noise in amplifiers in general, see the Analog Devices technical notes on 
the subject by Kester et al. Noise is of utmost importance in the design of the sensor and is 
considered in detail when the electronics of the system is designed. As background to the 
decisions made and the results obtained in this document, the sources and character of noise 
in the sensor is covered. The results of chapter 8 must be seen as illustrative against this 
background. A larger scale factor for example will only be beneficial to resolution and drift if 
the signal/noise ratio increases. Charge amplifier noise can be subdivided into “white” 
noise, with a flat spectrum and low frequency “1/f” noise (also known as pink noise or 
flicker noise) that increases with the inverse of frequency.  
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In this document the impact of noise is indirectly expressed as the sensor resolution. 
Resolution is defined as the smallest increment of change in angular acceleration that can be 
determined from a change in sensor output voltage. As a lower limit of the noise, the 
inescapable sources of noise are used which are all white in nature. Other sources of noise do 
exist, and is more often than not the dominating noise. The MFCAA is a very low frequency 
application by electronic standards, which makes 1/f the probable dominating type of noise. 
Interference noise is not covered in this chapter because it is inherent to the actual electronic 
layout, which is beyond the scope of this document. Interference noise is also manageable by 
proper layout, component selection and filtering as opposed to white noise, which is 
inescapable. Flicker noise is also dependent on frequency (therefore filterable) and depends 
greatly on resistor construction. 
 
 
6.7.1 Charge amplifier white noise 
 
The white noise of the charge amplifier in combination with the transducer comes from three 
irreducible sources (see Hamamatsu technical notes). All are expressed in HzVrms / , 
therefore the rms noise level of the sensor depends on the bandwidth (or rather “bandpass” 
frequencies of interest):  
 

1) Thermal noise of the first stage Field Effect Transistor (FET) is proportional to the 
square root of temperature:  

 
 
 

 
where K is the Boltzmann constant, gm is the transconductance of the first-stage FET, 
and T is the absolute temperature in Kelvin. Usually a first stage FET is chosen with a 
relatively large transconductance (which is equivalent to the FET gain) while the FET 
input capacitance is matched with the detector capacitance. 

 
2) Shot noise caused by the gate current of the first stage FET and dark current of the 

piezo crystal. Shot noise is caused by the fundamental discrete nature of current; the 
flow of current is not absolutely smooth and causes statistical fluctuations in true 
current. The shot noise in the charge amplifier is: 

 
 

 
where q is one electron charge, GI  is the gate leakage current of the first-stage FET, 

DI is the dark current of the piezo crystal. The dark current of a sensor can vary from 
values in the order of electrons/second to μAmps. FETs with gate leakages of 1pA 
are available. 

 
3) Thermal noise caused by resistances in the circuit. This is also known as Johnson 

noise and is unavoidable at non-zero absolute temperatures. Johnson noise sets a 
lower limit on the noise voltage in any detector. All resistances in the circuit will 
generate thermal noise but in a charge amplifier the feedback resistor is the natural 
main culprit. The Johnson noise is expressed by: 

 
 

 
The variables are the same as in equation 6.35 except for fR , which is the feedback 
resistance. 
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The total charge amplifier white noise in mean squared complex representation then 
becomes: 
 
 
 
 
 
where inC is the input capacitance to the charge amplifier. Multiplying equation 6.38 by ej ωt 
and taking the real part yields the actual mean squared noise voltage:  
 
 
 
 
 
The amplitude of equation 6.39 is of real interest to the resolution, while the integral of 

equation 6.39 causes sensor drift. The term ⎟
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C1  is known as the noise gain. The input 

capacitance of the charge amplifier is the capacitance of the piezo-film in parallel with the 
input capacitance of the first stage FET. The piezo film capacitance is proportional to the 
active electrode area and inversely proportional to the film thickness. As an example, an 
AMP DT-1 standard piezo film’s specific capacitance is 1.0889 x 10-10 F/m. The input stage 
FET input capacitance is generally matched with the piezo film capacitance. Due to the small 
size of the piezo film, the charge amplifier input capacitance used will probably be less than 
2pF, which brings noise gain down significantly. 
 
The shot noise and resistive thermal noise is independent of input capacitance, but decreases 
with the square of frequency and feedback capacitance. Both a high feedback capacitance 
and high feedback resistance is beneficial for low noise. Of course it’s only the resistance that 
will be maximized in order to achieve low piezo leakage. The capacitance will be a low value 
to reach high sensor scale factor. From the envisaged parameters in the charge amplifier, the 
expected white noise will be low relative to flicker noise. 
 
 
6.7.2 Charge amplifier flicker noise  
 
Flicker noise is expected to dominate in the MFCAA application due to the low frequencies 
applied.  Flicker noise is the result of fluctuations in resistance generating an additional noise 
voltage. This noise depends on the resistive material used and in particularly the end-cap 
connections of resistors. For an op-amp, the frequency at which the 1/f noise spectral density 
equals the white noise rms (root mean squared) level is known as the 1/f corner frequency. 
Higher quality amps have lower corner frequencies; hence this parameter is fixed by the 
selection of the op-amp. High accuracy bipolar op-amps reach corner frequencies of less than 
1Hz. Frequency dependent noise (like 1/f noise) can be filtered out and is by default filtered 
to some extent by the low frequency cut-off of a piezo transducer. The Hamamatsu H4083 
charge amplifier has the noise spectrum shown in figure 6.7. 
 
The noise spectrum of the H4083 is used as a benchmark to calculate sensor resolution. The 
charge amplifier will definitely be operated below 1 kHz, hence a constant spectrum of 

HzV /1 μ is taken as the reference noise spectrum. All quoted values of resolution in 

chapter 8 are therefore referenced to HzV /1 μ . 
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         Figure 6.7: Hamamatsu H4083 charge amplifier noise spectrum. 

 
 
6.8 Strain of piezo-diaphragm combination  
 
With the addition of the piezo-film, the stiffness contributed by the diaphragm becomes 
somewhat secondary in importance. Contrary to the diaphragm, the piezo-film is a very stiff 
body, being as thin as 9μm with a Young’s modulus of higher than 100 GPa. The diaphragm 
will be supported at its center by the piezo-film, and fixed at its perimeter. The addition of 
the piezo-film will thus not only change the diaphragm deflection magnitude but also the 
deflection shape. This influences the volumetric deflection and the induced flow 
significantly.   
 
The area that the generated differential pressure is applied to is decreased because the piezo-
film has to be supported with a pillar, though only on the one side of the diaphragm.  The 
pillar area will match the stressed piezo film area. The decreased available diaphragm area 
will have a negative effect on the sensor scale factor. 
 
 
6.8.1 Fixed-fixed annular diaphragm 
 
The diaphragm is assumed to be rigidly bonded to the piezo-film and its supportive 
structure, which is also assumed to be rigid. No moments are therefore present in the 
diaphragm where it is bonded to the piezo-film and the deflection shape does not have any 
curvature in this region either.  If (for the moment) it is assumed that pressure is only 
transmitted to the annular diaphragm, the following relations are applicable. The pressure 
transmitted opposite the piezo sensor’s bonded area will be accounted for in section 6.8.4. 
 
These assumptions coupled with a flexible diaphragm (of steel less than about 100μm thick) 
closely resembles an annular diaphragm that is fixed at its inner and outer diameters. For 
this assumption to apply, the great majority of the deflection must reside within the 
diaphragm and not the piezo-film support. This assumption will apply for thin pliant 
diaphragms mounted on very stiff supportive structure. The deflection shape diaphragm 
with such a boundary support is shown in figure 6.8.  
 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  WWoollffaaaarrddtt,,  HH  JJ      ((22000077))  
  



 

 86

Figure 6.8: Deflection shape of an annular diaphragm fixed at both its edges. The piezo 
crystal is shown supported on the inside 20% of the diaphragm diameter. 
 
The shape in figure 6.8 is of course greatly exaggerated in favor of the deflection direction 
due to normalization. In a real diaphragm the deflection will be about 6 orders smaller than 
the diameter. The constraints enforced on the diaphragm will cause shear forces in the 
diaphragm at both the inner and outer diameter. The shear forces add up to balance the 
applied forces due to the applied pressure and is therefore proportional to the diaphragm 
area and applied pressure: 
 
 
where Qa and Qb is the shear force on the outer and inner diameter respectively (in N/m), a is 
the outer radius of the diaphragm and b the inner radius. Qa and Qb is found in Young and 
Budynas after substitution to be: 
 
 
 
 
 
 
 
Qa and Qb is plotted in figure 6.9. As the inner diameter increases relative to the outer 
diameter the total shear decreases and becomes zero when the radii are equal. This is clear 
since the diaphragm area is zero for this case. The fraction of the total shear attributed to the 
inner edge also increases as its radius increases up to where it equals the outer shear (when a 
= b, even though both are zero at this point).  Qb is an edge-distributed force that adds up to 
the force experienced by the piezo crystal, and should thus be as large as possible to 
maximize scale factor. This maximum is seen in figure 6.9 to occur when the inner diameter 
is 34.6% of the outer diameter. At this diametrical ratio, the inner diaphragm edge carries 
37% of the shear, which is 88% of the total shear that would be present if no diaphragm area 
were lost to the piezo support.  
 
Another important assertion can be made from equations 6.40 and 6.41. The shear 
experienced by the diaphragm’s edges is independent of the diaphragm thickness. This 
means that the diaphragm can be made thicker (and so limit flow in the sensor channels) 
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without compromising sensor scale factor. This is unfortunately only true within limits. If the 
diaphragm is made thick enough, the stiffness it contributes will start to dominate and the 
deflection shape under pressure will not resemble that of figure 6.8. For a very thick 
diaphragm with a relatively limp center support, the portion of the shear allocated to the 
inner diameter will start to vanish because the diaphragm carries the shear internally. The 
design of the piezo support is therefore important, which includes the stiffness of the 
material used for the support. 
 

Figure 6.9: Shear forces on an annular diaphragm fixed on both edges. 
 
The b/a ratio of 34.6% represents the optimal potential for force generation at the piezo-film. 
But this does not mean that a significant force is generated at the inner diaphragm; this 
depends on the relative stiffness of the diaphragm to its center support.   
 
 
6.8.2 Fixed-guided annular diaphragm 
 
If the majority of the deflection resides within the piezo support, the deflection shape will 
resemble that of figure 6.10, which shows an annular diaphragm with a guided inner 
diameter instead of a fixed one while the outer diaphragm remains fixed. As in 6.8.1 only the 
effect of the annular pressure on the diaphragm itself is considered. 
 
The solution of the deflection shape is: 
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Figure 6.10: Deflection shape of an annular diaphragm fixed at the outer edge and guided at 
the inner edge. The piezo-crystal is shown supported on the inside 20% of the diaphragm 
diameter.  
 
The solution for the deflection of the diaphragm is unfortunately not as elegant as the plain 
circular diaphragm in equation 6.3. In this scenario there exists no shear at the inner edge 
(only a moment, which causes the bending) since the edge can freely move vertically. This 
scenario would apply if no stiffness is contributed by the piezo support, and is thus at the 
other extreme from figure 6.8. Even with only a guided inner edge, the annular diaphragm is 
still significantly stiffer than a circular diaphragm. Figure 6.11 shows the relative deflection 
under the same net force for the two cases (i.e. the lost area of an annular diaphragm is 
accounted for). As the inner edge diameter approaches that of the outer edge, the deflection 
of the annular diaphragm tends to zero, which implies infinite stiffness. At the scale factor-
ideal b/a ratio of 34.6%, the annular diaphragm is 2.5 times as stiff as the plain diaphragm 
based on maximum deflection. 
 
 
6.8.3 Fixed annular diaphragm with finite inside edge stiffness 
 
The diaphragm in the sensor will operate with a finite thickness piezo film supported with 
finite stiffness. Hence the real diaphragm will operate between the cases of figure 6.8 and 
6.10 dependent on the relative stiffness of the diaphragm and the piezo-film support. 
 
These two scenarios have to be married into a reasonable model of the true diaphragm. The 
stiffness contributed by a round piezo film is: 
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Figure 6.11: Relative stiffness of an annular inner edge guided to a plain diaphragm. 
 
Similarly, the stiffness provided by the column supporting the piezo film is: 
 
 
 
 
 
The total stiffness resulting from these two separate entities is: 
 
 
 
 
 
For a pillar deflection of by the deflection attributable to the piezo film is: 
 
 
 
 
 
As in the case of the plain circular diaphragm, the annular diaphragm deflection shape has to 
be integrated into a volumetric deflection to make it of any use inside a simulation. The 
integration of the annular diaphragm deflection shape is quite a formidable task if done 
analytically. The describing equation is a massive polynomial with an integrand spread 
between elevation to various powers as well as natural logarithms. These functions were 
rather integrated numerically and a relation was found between the maximum diaphragm 
deflection and the volume required to make the diaphragm reach that deflection. The result 
is a case-specific formula, which is limited to a single a/b. To get a general formula out of the 
numerical integration, the volumes and deflections could also be fitted to the diaphragm 
constants. Curve fitting unfortunately has inherent errors.  
 
A general formula is not required for simulation of the diaphragm because the designer is 
only interested in diaphragms that maximize scale factor and dynamic performance. An a/b 
ratio of 2.8916 is used for maximum scale factor, and the diaphragm outer diameter is varied 
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to attain the required bandwidth. A scale factor maximized at an a/b of 2.8916 again assumes 
rigid piezo support (as in figure 6.8). This assumption is reasonable for the true diaphragm 
since this is the diaphragm support type pursued in the design. Finite support stiffness only 
affects the true a/b for maximum scale factor and not the accuracy of strain relations for the 
assumed a/b. 
 
If a fixed ratio of a/b is used, the ratio of diaphragm deflection to volume becomes a constant 
for both diaphragms. Furthermore, the location of maximum deflection of a fixed-fixed 
annular diaphragm also becomes a fixed ratio of the outer diameter. The results of the 
numeric integration for a diaphragm with an a/b of 2.8916, accurate to 5 significant numbers 
are: 
 
Table 6.1: Annular diaphragm relations when a/b = 2.8916. 
DIAPHRAGM CASE AND VARIABLE 
CALCULATED 

RESULT 

Volumetric deflection of fixed-guided 
annular diaphragm vs. deflection 

2 1.5305  ayVol bfgfg =  

Center deflection of fixed-guided annular 
diaphragm vs. pressure 

( )
3

24 10.065556

tE
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y
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=  

Position of maximum deflection in fixed-
fixed diaphragm 5235.1max

ar yy =
=

 

Volumetric deflection of fixed-fixed 
annular diaphragm vs. deflection 

2
max4627.1 ayVol ffff =  

Ratio of fixed-fixed to fixed-guided 
volumetric deflection for identical 
diaphragm and pressure 

839.11=
ff

fg

Vol
Vol

 

Support force generated by fixed-fixed 
diaphragm vs. volume deflected 4

297.13
a

Vol
F ff

bff =  

Support force generated by fixed-fixed 
diaphragm vs. pressure applied 

qaFbff 0.47194=  

 
The formulae in table 6.1 is now used to derive relations of the true diaphragm, which is 
somewhere between the fixed-fixed and fixed-guided support cases. Note that the two 
diaphragms are still very much linear in all the relations obtained. This will again only apply 
for deflection below one half of the diaphragm thickness. The annular diaphragm meets the 
deflection linearity condition more easily (as opposed to the plain diaphragm) because the 
addition of the diaphragm support allows thicker diaphragms to be used. An assumption is 
now made that the support reaction generated by the diaphragm linearly diminishes to zero 
from the fixed-fixed to fixed-guided case, or that: 
 
 
 
 
where by is the inner edge diaphragm deflection and bF the piezo support force. The 
subscript ff denotes the fixed-fixed diaphragm case, while fg denotes the fixed-guided case. 
The force in the support is also: 
 
 
 
Solving equations 6.47 and 6.48 simultaneously for the diaphragm inner edge deflection 
yields: 
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The results of table 6.1 are substituted into equation 6.49 to yield: 
 
 
 
 
 
 
Equation 6.50 is used directly in the sensor model to calculate the feedback pressure 
resulting from a diaphragm support deflection. The two terms in the denominator are the 
stiffness contributed by the support and diaphragm respectively. The relative stiffness of the 
diaphragm and its support is therefore: 
 
 
 
 
If the relative stiffness as defined in equation 6.51 is infinite, the fixed-fixed case applies and 
when it is zero, the fixed guided case applies. The last relation required to complete the 
model of the diaphragm is its volume displacement to deflection relation. The volume 
relations in table 6.1 is substituted into equation 6.49 to yield: 
 
 
 
 
 
While the deflection due to pressure is dependant on the diaphragm stiffness, the deflection 
due to volume is not. This is because a volume displacement implies a specific deformation 
on the diaphragm. 
 
6.8.4 Pressure contribution opposite the piezo bonded area 
 
Previous equations assume that the differential pressure experienced by the diaphragm is 
only exerted on the annular area of the diaphragm beyond where the piezo sensor ends. This 
assumption is accurate when a piezo sensor and support is used on each side of the 
diaphragm. Only one piezo sensor will however be used in order to utilize the extra pressure 
area on the diaphragm area opposite the piezo support. 
 
To account for the pressure on the opposite side of the piezo, the effect of this pressure is 
now derived separately. The equivalent stiffness of the diaphragm-piezo sensor-support 
combination is derived when the only input is the pressure on the diaphragm circular area 
smaller than the annular inner diameter. The pressure exerted on this area is shown in red in 
figure 6.12. 
 
Because the piezo sensor negates its own side of the pressure, only half of the differential 
pressure is exerted on the piezo bonded region. The stiffness of the diaphragm to this 
pressure (in the absence of a piezo support) can be found from Young (2002) to be: 
 
 
 
 
 
Taking the diaphragm stiffness in parallel with the pillar stiffness yields: 
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Figure 6.12: Schematic of diaphragm showing how pressure is applied in a piezo-type 
pressure sensor. 
 
And the deflection the pillar experiences due to this pressure is: 
 
 
 
 
While the linearity assumption holds, this deflection is added to that resulting from the 
annular pressure. The contribution of this pressure is however generally small (about 10%), 
being roughly proportional to the fraction of the diaphragm covered by the piezo sensor. 
 
 
6.9 Pressure transducer conclusions 
 
The piezo-based transducer is a much stiffer alternative to the plain diaphragm, but 
introduces an unwanted transient response whereas the plain diaphragm has a flat 
frequency response. The use of a strain-gauged diaphragm is deemed less feasible than the 
piezo version for channels of a micro scale: The fluid volume required filling readily 
measured diaphragm deflections will require high flow if practical bandwidth is to be 
achieved. Larger sensors may make the ratio of channel width to diaphragm diameter more 
suitable for the use of the strain-gage concept. Many other pressure transducer concepts may 
also be viable for use in the sensor; the piezo-based transducer serves as a benchmark and a 
means of finding the potential of the sensor. 
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Chapter 7 
 
Experimental verification of pressure theory 
 
 
7.1 Introduction 
 
In preceding chapters it has been shown that the sensor is diverse in the theory applied to its 
design. This document focuses only on the theory that lies central to the design function. At 
the heart of the design of the sensor lies the channel array, wherein most of the theory 
relevant to the sensor’s design is concentrated. The channel array is a dynamic system in 
every sense: application of angular acceleration to the channels result in the generation of an 
unsteady differential pressure. This unsteady pressure differential results in unsteady flow. 
The starting flow would have been unsteady even if there were constant pressure, so the 
flow is unsteady not only due to the unsteady pressure, but is inherently so.  
 
The flow response to pressure is approximately first order though, which is a non-oscillatory 
response. The most pronounced effect of the first order flow response is a large frequency 
response performance loss in the sensor as a whole. This is a price paid in favour of high 
sensor scale factor and is well characterized, partly by the clear limit set by the parabolic 
steady flow relation of Hagen and Poiseuille. The steady flow relations are analytically exact 
and have also been verified by experiment for diverse channel types and wall roughness. 
Experimentation on steady flow would be unnecessary, although experimentation on the 
transients of flow may prove useful.  
 
The unsteady nature of the pressure generation is not as well understood as the flow. With 
stiff diaphragms, the pressure is very much oscillatory in nature due to reflections caused by 
the finite length of the channel and the theoretically negligible inherent damping of the 
pressure wave at low frequencies. This pressure oscillation is undesirable as it causes 
pressure noise in the order of magnitude of the pressures being measured. This is truer for 
inputs with high frequency output content, like step- or impulse inputs. If the differential 
pressure oscillations do not damp out, the sensor would have a noise floor many times that 
caused by electrical interference. Therefore, measures have to be taken to obtain a damping 
that is favourable for sensor operation. Due to these risks, the decision was taken to verify 
pressure generation experimentally. 
 
The objectives of the experiment are: 
 

1) Verification of the pressure generation theory. This includes pressure potential theory 
and pressure propagation theory. 

2) Characterize the damping of a real system to approximate the damping to be 
expected in the sensor channels. 

3) Explore possibilities for the addition of extra damping to the channels, and in 
particular the effect of free gas in the channels. 

4) Explore the characteristics of the generated differential pressure by measuring the 
gage pressure at the two channel ends separately.  

5) Confirm the ability of the fluid column to reject linear acceleration influence. 
 

Due to the low volumetric deflections of contemporary pressure sensors, compressibility 
effects are isolated and the flow theory is not verified by this experiment. Even when 
significant air is contained in the channels, the compression of the air causes very small flow. 
This closely approximates the rigid body ends of the discrete model in figure 3.3.  
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7.2 Experiment apparatus 
 

Figure 7.1: The experimental set-up. 
 
Figure 7.1 shows the entire experimental set-up including the data recording equipment. A 
scaled-up version of a channel array was used to measure the pressure propagation 
properties. 
 
The test hardware comprised of the following items: 
 

1) Two separate PCB-mounted IC Sensors Model 1220 pressure sensors with analogue 
output is used. The two pressures are measured separately to better characterize the 
saturation of pressure drop on the low-pressure end. The available pressure range on 
each sensor is 100kPa and absolute pressure down to vacuum is measurable. 

2) The channel array is built up out of pneumatic tubing of 3mm inner-diameter. This 
will make flow effects negligible since the flow diameter is large relative to the 
displacement volume of the pressure sensor. 

3) Approximately 20m of tubing is reeled around a 200mm diameter spool that results 
in high pressures that are more conveniently measured than those in the envisaged 
sensor. Another 1.5m tube is reeled around the 20m tubing to verify effect of tube 
length and channel symmetry on the pressure. 

4) A rate table is used as motive power to impose the required angular accelerations 
onto the spool. All signals and power were sent via the rate-table’s slip rings. 

5) A Hewlett Packard 3325B function generator was used when harmonic input was 
required to the rate-table. 

6) A Humphrey LA45-0135-01, 20G linear accelerometer is placed on the end of a swing-
beam to measure angular acceleration. Only one accelerometer was used, so the 
accelerometer could only measure angular acceleration that is centered on the spool. 

7) The rate table’s internal speed feedback is also available for processing. This signal is 
differentiated to obtain an angular acceleration measurement supplementary to that 
measured directly by the beam-mounted accelerometer. 
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8) DC power supplied to the sensors was provided with one dual supply for the sensor 
board and a separate single-supply for the accelerometer. 

9) The pressure sensors are not compatible with water, so a buffer is needed to isolate 
the sensor from the water column. Hydraulic oil (Shell Tellus T15) is used for this 
purpose. 

10) Diesel and water (but not mercury) is used as the working fluid, for the reason of 
safety. The loss of fluid density (and therefore scale factor) is compensated by the 
large tube length, and good motive power, which can provide high acceleration 
input. 

 
Another disadvantage of using water and not mercury (besides the loss in density) is the 
difference in vapor pressure of the two fluids. The vapor pressure of mercury at 20°C is 
1.1x10-3 Pa as opposed to the 2.337 kPa of water. When the fluid pressure drops below the 
vapor pressure, the liquid boils causing vapor bubbles in the channels. Bubbles in the fluid 
column damage the continuity in the fluid column and make the pressure propagation 
theory used here quite inapplicable. The use of water therefore limits the absolute pressure at 
the low-pressure end of the fluid column to a minimum of 2.337 kPa at 20°C.  
 
Two measures exist to remedy this problem: 
 

1) Pressurization of the fluid to avoid fluid evaporation. The range of the pressure 
sensor firstly limits the pressure in the channels. The next limit is the strength of the 
tube walls, which will start yielding at about 10 bar gage pressure. The same pump 
used to fill the tubing with the working fluid can be used to pre-pressurize the fluid. 
The pressure limit on the sensors unfortunately eliminates the pressurization option 
in this experiment. 

2) Cooling of the water is also a means of lowering its vapor pressure. A constant fluid 
temperature is important for this experiment because the bulk modulus of water 
shifts appreciably with temperature. The whole system, including the rate table will 
therefore have to be cooled to a constant temperature if this option is taken. Care 
must also be taken not to freeze the water since this will also negate fluid column 
function. 

 
Figure 7.2 shows a schematic layout of the experimental method. Some of these items are 
annotated in a close up photograph of the spool set-up in figure 7.3. The rate table is 
controlled to provide a constant rate of rotation (as the name implies). For this purpose, the 
table has a speed-based closed loop system operating from a tachometer for feedback. The 
table is also useful to effect accelerations that have good repeatability up to maximum of 
approximately 480rad/s2 (27500°/ s2). The table cannot realistically reproduce the customary 
test signals like step- or ramp-inputs, which means that the simulated indicial response is not 
of much use in verifying the theory’s validity. Fortunately the system can be simulated for 
any acceleration input, the only requirement is that the true input is measured so that 
similarity is satisfied. The only drawback of not having a step or impulse input available 
(besides convenience) is that finite slope inputs do not excite the system as forcefully as those 
of infinite input acceleration slope. This means that not as many natural frequencies are 
excited by the input acceleration, and that system specific characteristics will be harder to 
identify. The “finger print” of the system is clearer with infinite slope acceleration inputs. In 
operation though, the sensor will not experience infinite jerk (time differential of 
acceleration) and even if it did, the higher frequency pressures would damp out very 
rapidly. This seems to make the necessity for fluid column characterization in such detail 
somewhat superfluous, but by neglecting this, the question of accuracy of the higher natural 
frequencies will be left unverified even if they are of less importance. The current 
measurement system however does not have the accuracy or bandwidth to measure these 
modes in any event. 
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       Figure 7.2: Schematic of experimental procedure. 
 

 
Figure 7.3: The rate table-top with spool, PCB mounted pressure sensors and wound    
tubing. The linear accelerometer is also shown at the end of the swing beam. 
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In order to test the whole frequency response, an infinite jerk input is required (like an 
acceleration step input). An acceleration step input is problematic to create because the 
inherent inductance of an electric motor limits the speed of change in current through the 
windings. This in turn imposes a minimum time for a change in torque, and so places an 
upper limit on the jerk imposed on the table by its motor. The maintenance of the angular 
acceleration step input will also be problematic after a certain time because of the maximum 
speed of the rate table motor. Another input that contains theoretically infinite rate is the 
impulse. A velocity impulse is maybe more practically realizable and can be approximated 
by a rigid collision although this also problematic, since an absolutely rigid material does not 
exist. If the swing-beam hits a stationary object it will deflect and undergo energy loss due to 
its inherent damping, thus making infinite jerk impossible. A compromise has to be made 
with the realities of nature and deal with large values of jerk and not infinite ones. For this 
experiment, only the rate table’s acceleration was used as input (up to 480rad/s2). The 
acceleration caused by the table can be indirectly adjusted to the desired level by changing 
the set rotation rate and letting the table accelerate from rest to the set speed. 
 
 
7.2.1 Data recording equipment 
 
All signals were sent single-ended via the slip rings of the rate table to an interface box. The 
signals are then fed differentially to a PC-based logging system. All data was sampled at 
2kHz and recorded on PC hard disk with interface software written in Labview®. 
 
 
7.3 Experimental corrections 
 
7.3.1 Spiral shape corrections  
 
The tubing used in the experiment is wound in radial levels – as one would wind a fishing 
line on its reel. This contrasts with the envisaged channel array that contains interconnected 
spirals on separate longitudinal levels. The difference between the two is the acceleration 
field experienced by the channel. The sensor channel experiences a field that increases along 
the channel for one wafer and decreases for the next wafer. If an Archimedes spiral is used 
throughout, a linear increase and decrease versus length along the channel results. This 
culminates in a deterministic triangular shaped acceleration field along the whole fluid 
column. This acceleration field will cause a symmetric pressure change on the two ends of 
the channels if an even number of wafers is used. The tubing installed in the experiment 
behaves more like a single wafer as it contains only one spiral from a radius of 100mm up to 
120mm. The gage pressure generated will always be more at the tube end placed at the 
larger diameter. If a linearly increasing spiral is assumed, the tube end at 100mm will 
generate 100/220 = 45.45% of the total pressure and must therefore be multiplied by 1.1 to 
equalize the output. The tube end at 120mm will produce 55.45% and must be multiplied by 
0.917 to obtain a symmetric output.   
 
 
7.3.2 Centripetal acceleration correction  
 
The MFCAA measures acceleration by transducing pressure in the center of the sensor. No 
centripetal acceleration effects are present across the diaphragm plane to influence 
differential pressure. The experiment unfortunately does not use an internal sensor, so 
centripetal acceleration has a significant effect. Provision is made to place the pressure 
sensors as close as possible to the tube ends to minimize centripetal acceleration effects, but a 
correction on the measured data is still necessary.  
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The centripetal acceleration experienced in an object rotating at constant speed ω , at a radius 
r from the center of rotation is:  
 
 
If an arbitrary shaped fluid-filled channel rotates with its two ends at 1r  and 2r with 21 rr < , 
then the pressure differential between the two points is: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The sensors are placed at lower radii than the two tube ends so the centripetally generated 
pressure is always added to the measured pressure to find the pressure at the spiral ends. 
Equation 7.2 requires accurate speed information to be implemented successfully; the 
internal tachometer of the rate table serves this purpose. 
 
Equation 7.2 furthermore assumes constant speed input, hence the dynamic effects of 
centripetal acceleration is neglected. Placement of the pressure measuring PCB as close as 
possible to the tube spiral outputs minimizes the influence of centripetally generated 
pressures and makes calculation of dynamic influence unnecessary. 
 
 
7.4 Experiment assembly 
 
An important requirement of the fluid column is that no air bubbles are present inside the 
tubing. The tube wall is quite prone to the forming of bubbles when it fills with fluid. An air 
free tube is assured by circulating fluid through the whole system until all bubbles are 
pumped out. For this to succeed, the flow has to be high enough to entrain any bubbles. 
Inside a long tube this can be troublesome due to the high pressure required to sustain high 
flow (especially with the viscous liquids used). For a single layer of translucent tubing, a 
visual inspection would suffice to confirm the absence of air. In a long tube that is reeled in 
multiple layers no visual inspection for bubbles can be done, hence the measured data has to 
confirm fluid column continuity. Measuring the pressures at the tube ends separately aids in 
doing this. Section 7.4.1 shows the effect of free air on the measured pressures. 
 
A further complication for the removal of air is that the pressure sensor cannot be bled to 
remove internal gas. The air inside the sensor is removed firstly by injecting as much as 
possible liquid deep into the sensor with a syringe. A filling tube containing more oil is now 
fitted on the sensor and the pressure on the tube open end dropped to below atmospheric. 
The air left inside the sensor expands due to the pressure drop and partially exits the sensor. 
The pressure in the tube is now suddenly increased to atmospheric level, which makes the 
expanded bubble inside the sensor break up, sending smaller bubbles up the tube. Doing this 
repeatedly helps remove air from the sensor. The sensor is known to be air free when the oil 
level in the filling sensor only changes by the internal sensor volumetric displacement when 
the open-end pressure is decreased.  
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If a boundary between two unmixable and discernable fluids exists (like oil and colored 
water) a quick test can be done to confirm the absence of gas in the system. In an air free 
tube, high angular accelerations in both directions should cause negligible movement of the 
fluid interface. High angular inputs can also coax the last air out of the sensor. 
 
 
7.4.1 Impact of free air in channels 
 
After the pressure corrections of section 7.3 are implemented, the outputs of the two pressure 
sensors should be symmetric. Symmetry of data is the foremost measure of the quality of the 
fluid column. The main culprits that cause an asymmetric output are free air in the fluid 
column and fluid column boiling. If the pressures at the sensors remain above the fluid 
vapor pressure, an asymmetric output implies the presence of free gas. An asymmetric 
output is shown in figure 7.4. The effect of the free air can clearly be seen on the symmetry. 
Not only the magnitudes are affected, but also the wave shapes.  
 

Figure 7.4: Typical asymmetric pressure output due to free gas in inertial  
fluid. The two column end pressures are measured separately. 
 
Figure 7.5 combines the two gage outputs of figure 7.4 into a differential output and plots the 
output of an air free system for comparison. The system parameters are identical except that 
the one fluid column contains approximately 20ml air and the other none. At the start of the 
impulse, the two graphs are seen to follow the same path. The graphs diverge at the first 
crest, where the air-containing system forms a plateau while the air-free system does not. 
The compression of the air blunts the wave crests and causes an increased oscillatory motion 
in the channels. This seems contrary to what was expected in the theory, where a gas-filled 
accumulator was in fact proposed to add damping to the system. The increased oscillatory 
motion of the air-containing column in figure 7.5 is caused by the high compressibility of air 
coupled with a low flow system. If the channels had a smaller diameter so that significant 
flow is caused by the compression of air, the air-containing column would exhibit higher 
damping. 
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Figure 7.5: Comparison between air-free and air-containing fluid-column outputs. 
 
 
7.4.2 Impact of radial offset 
 
An important feature of an angular accelerometer is the rejection of linear acceleration 
inputs. Linear acceleration must have no influence whatsoever on the generated pressure. To 
test whether this is the case, the fluid column spool was placed increasingly offset to the 
center of the rate table (up to 209mm) in repeated test runs with the same fluid and the same 
angular acceleration imposed each time. No difference in measured pressures was recorded 
in the tests except minimal offsets (of 9% and lower) caused by centripetally generated 
pressures and variations in the angular inertia of the spool due to its offset on the rate table.   
 
 
7.5 Results 
 
Two tubing systems were tested. A 20m tube wound at a diameter varying between 0.2m - 
0.24m and a shorter 1.5m tube wound at 0.24m. The shorter tube fills faster and the higher 
flow rate helps attain an air free fluid column. 
 
The theoretical prediction is based on a 51 DOF model one-dimensional column as discussed 
in chapter 3. The measured acceleration input is slightly filtered with a zero phase digital 
filter, as the acceleration signal was noisier than the pressure signal. The physical properties 
of the tubing and working fluid are used to make an approximation of the modified bulk 
modulus to be used in the fluid column model. The system properties are: 
 
Pressure potential (1.5 m tube): 0.174 Pas2 /rad  
Pressure potential (19.73 m tube): 2.17 Pas2 /rad 
Diesel bulk modulus at 20°C: 1500 - 1600 MPa 
Diesel density 0.854 kg/m3 

Polyurethane tubing Young’s modulus: 0.05 - 0.2 GPa 
Tube inner diameter: 2.9mm 
Tube wall thickness: 0.7 mm 
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The wound tubing is only positively anchored at its ends. Vulcanized silicon is used 
elsewhere on the tube for support. The anchoring constant c is expected to be close to the 
constant used for longitudinal constrainment. From equation 3.27: 
 
 
 
The expected modified bulk modulus for the tubing parameters quoted above is expected to 
fall between 13 and 51MPa. The other parameter that cannot be fixed with certainty before 
the start of the experiment is the fluid column damping. These variables are selected 
according to the best fit of the data, and should be within the limits calculated above. A 
series of data is fit only on the highest acceleration input test and then fixed for other tests 
with the same system.  
 
Symmetry of the data is also evaluated for all experiments conducted and printed on the 
graphs. The symmetry is calculated on a comparison of the maximum pressure variation of 
the two sensors. The tests completed were all without free air present, so only tests with 
symmetries higher than 95% are used.  
 
 
7.5.1 Short tube experimental results 
 
All data is presented with the ideal pressure response plotted with the measured and 
predicted data. The ideal pressure response refers to the pressure yielded by an 
incompressible fluid inside a rigid tube. This imaginary pressure is directly proportional to 
the applied angular acceleration and is included as reference. The real pressure response will 
equal the ideal response in the steady state.  
 
The fit parameters on all theoretical predictions in this section are: 
Inter-mass damping: 0% of critical 
Shear damping: 21% of critical 
Modified bulk modulus: 29.73 MPa 
 

Figure 7.6: Test result in 1.5m long tube for acceleration to 200 °/s from rest in 50ms. 
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Figure 7.7: Test result in 1.5m long tube for acceleration to 600 °/s from rest in 60 ms. 
 

Figure 7.8: Test result in 1.5m long tube for acceleration to 900 °/s from rest in 50 ms. 
 
 
7.5.2 Long tube experiment results 
 
The fit parameters on all theoretical predictions in this section are: 
 
Inter-mass damping: 2.4% of critical 
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Shear damping: 41% of critical 
Modified bulk modulus: 25.15 MPa 
 

Figure 7.9: Test result in 20m long tube for acceleration to 200 °/s from rest in 50 ms. 
 
 

Figure 7.10: Test result in 20m long tube for acceleration to 300 °/s from rest in 60 ms. 
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Figure 7.11: Test result in 1.5m long tube for acceleration to 450 °/s from rest in 70 ms. 
 
 
7.6 Experimental observations 
 
The fit is satisfactory with all constants within expected limits. Only the first two modes of 
wave motion are evident in the tests. In particular, the following is found: 
 

1) The long tube bulk modulus is lower than the short tube. This is due to the large 
lengths of unconstrained tubing on the spool, which decreases the wave speed. 

2) Shear damping dominates both sets of data. The fit only requires minute inter-mass 
damping, even with the long tubing. The wave damping predicted by Lord Rayleigh 
(see section 3.5.3) is clearly supplemented by other damping. The total level of 
damping increases with tube length, although not linearly. Not enough tube lengths 
were tested to obtain a better relation. 

3) The short tube data fits better for lower acceleration inputs but the high acceleration 
result is still satisfactory. The low pressures generated sometimes exhibit a slightly 
jagged shape due to noise, especially in figures 7.6 and 7.8. The worst fit is obtained 
in figure 7.8. The reason for this may be attributed to the highly dynamic nature of 
this input, which causes non-linear damping or other effects not modeled by the 
MDOF pressure propagation model. 

4) The predictions fit the 20m tests very well. The prime reason for this is the large 
pressures generated, which make the measurement errors less evident. 

5) Tests performed with water show similar damping values to diesel. The lower 
viscosity of water cannot have an affect because negligible flow is present. The test 
done here therefore represents mostly the damping offered by the tubing material 
and is as such a lower limit. 

6) The extrapolated damping at tube lengths approaching zero is 19% of critical. This 
damping cannot be attributed either to flow losses or channel wall damping because 
both of these loss types require tube length to have an effect. 
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7.7 Experiment conclusions 
 

1) The fluid column model proposed in chapter 3 is an adequate model to use for 
predictions of fluid column characteristics in a micro-fluidic channel simulation. The 
experiment is not extensive enough to provide detailed information of the nature of 
pressure wave damping in the channels.  

2) Free air in the fluid column will only add damping to the pressure wave if its 
presence causes significant flow. For a system with large channels the presence of free 
air adds oscillatory character to the wave. 

3) The spiral rejects linear acceleration. The risk for cross-coupling in the MFCAA is 
therefore small. 
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Chapter 8 
 
Sensor modeling and optimization 
 
 
8.1 Introduction 
 
This chapter integrates the mathematical models into a single model to simulate the 
functioning of the angular acceleration sensor. The aim of the sensor simulation is to 
synthesize all the work done on pressure generation and flow pressure loss in the channels 
into an analyzable unit for which optimization can be performed. After a complete sensor 
model is available the sensor characterization is first done for the 0Hz angular acceleration 
input case in order to find sensor scale factor and then the sensor dynamic characteristics are 
simulated. Lastly, the simulation parameters are optimized within practical limits (and 
assumptions made herein) to find a sensor design suitable for some known applications.  
 
The aims of this chapter are: 
 

1) Integration of sensor theory into a model that can accurately predict sensor 
performance. 

2) Characterize the sensor constants qualitatively to gain an understanding of the 
mechanisms at work inside it. 

3) Determine sensor potential by doing a sensor optimization for several existing 
applications and predict sensor performance for these scenarios. 

 
8.2 Sensor simulation 
 
The aim of the dynamic simulation is to determine holistically the effects of the variables 
governing the operation of the sensor. For the simulation of any unsteady influence in the 
sensor, a full dynamic simulation is required. The dynamic model of the sensor was built in 
Matlab® Simulink®. Figure 8.1 shows the highest level of the model. 
 

 
       Figure 8.1: The sensor model top level. 
 
The sensor as a whole is a single input/output system, like every other system in its 
composition. Angular acceleration is input to the sensor and a signal is the output, which 
may be conditioned or not. The sensor may also be assisted by a feedback system, in which 
case the negative of the output is fed back and compensated, before being applied to a sensor 
actuating system. The whole dynamical sensor system comprises of the following elements: 
 

1) The environment of the sensor, which gives the desired acceleration input but also 
undesirable effects like temperature fluctuations, noise vibration and electromagnetic 
interference. 
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2) Sensor channels that constrain the fluid in a fashion that is favorable to maximum 
pressure generation at the pressure transducer. (This is covered in detail in chapters 
2, 3 and 4, while its experimental verification is in chapter 7) 

3) Sensor pressure transducer, which transforms the pressure generated in the sensor 
into an electrical signal for further processing. A simple system would consist of a 
strain-gaged diaphragm, although a stiffer system may be required in the form a 
piezo electrical transducer. (This is covered in chapter 6) 

4) Output signal amplifier. Only the transducer charge amplifier is covered herein, but 
the sensor will probably contain more than one amplification stage. 

 
The sensor model architecture is shown in figure 8.2. The subjects from previous chapters are 
included herein. Table 8.1 more specifically refers to the input/output relation governed, 
and what theory is used in which block. The systems in table 8.1 are all of the LTI variety. 
The model contains a trim block at the output to create normalized Bode plots and step 
responses according to the 0dB levels dictated by the sensor steady state performance, or 
scale factor (covered in section 8.4).  
 
Table 8.1: Equation references for blocks used in sensor model. 
Model Block Input Output Formula used 
Spiral-Helix 
channels 

Angular 
acceleration 
(rad/s2) 

Pressure (Pa) Multi-DOF state space model. 
Section 3.5.6 

Unsteady flow 
calculation 

Pressure (Pa) Volume Flow 
(m3/s) 

Equation 5.22 

Transducer 
stiffness 

Transducer 
deflection (m) 

Feedback 
pressure (Pa) 

Equation 6.3 (plain) 
Equation 6.50 (piezo) 
Equation 6.55 (piezo) 

Transducer 
Volumetric 
deflection 

Volume flow 
(m3) 

Transducer 
deflection (m) 

Equation 6.13 (plain) 
Equation 6.52 (piezo) 

Strain-gage 
output 
 

Transducer 
deflection (m) 

Bridge output 
(V) 

Equation 6.19 

Charge amp. 
output 

Transducer 
deflection (m) 

Charge amp. 
Output (V) 

Equation 6.34 

 
8.2.1 Pressure to flow interaction modeling  
 
At the heart of the sensor model lays the interaction of pressure generation to flow. The 
combination accurately approximates flow resulting from an applied acceleration (including 
flow losses) into the transfer function. Different approaches are available: 
 
Cascaded pressure to flow architecture 
 
The use of the state space method is convenient for the fast modeling of a high DOF system 
such as the fluid column. It does have a drawback though. The state space representation is 
best used as an LTI description of a system. This means that the matrices describing the 
system are fixed. No information can be fed from outside the system except the inputs 
defined inside the input matrix. This divorces the pressure propagation model from the flow 
model. The energy loss caused by flow cannot be fed back from the flow model after coding 
of the pressure model; the correct damping has to be entered beforehand as a constant. Such 
a model is simple and fast to simulate but may neglect the finer characteristics of the flow 
interaction with pressure propagation. The architecture of such a model is shown in figure 
8.2. The model functions by means of addition of all pressure effects, and then calculating 
channel flow based on the net differential pressure on the diaphragm. Besides speed of 
calculation, this model is elegant in its implicit separation of the workings inside the sensor. 
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This enables the designer to easily tap into any signal (be it pressure, flow or deflection etc.) 
and so better identify the inter-dependence of the subsystems. 
 
 

 
Figure 8.2: Sensor internal systems model architecture with cascaded pressure-to-flow loss 
model. 

 
Chamber pressure is approximated to ascertain the fraction of the volume flow entering the 
measurement chamber that is lost due to fluid compressibility and the direct fluid pressure 
experienced by the diaphragm and piezo sensor.  The measurement chamber is a large 
diameter cavity relative to the channels and the flow speed inside it can realistically be 
neglected. For zero flow (and neglecting gravity) the pressure will be constant everywhere 
inside the measurement chamber on one side of the diaphragm. The effect of gravity is 
negligible since it cannot generate differential pressure. Hence the pressure applied to the 
pressure transducer approximates the chamber pressure. According to Newton’s third law, 
the pressure fed back from the pressure transducer equals the pressure applied to the 
diaphragm in the steady state, hence it follows that the feedback pressure is a good 
approximation of the chamber pressure. Taking the feedback pressure directly from the 
feedback leg unfortunately results in an algebraic loop that has to be solved with Newton’s 
method, and this severely hampers solver performance. For this reason, a chamber pressure 
block is included to output a value identical to the pressure fed back to the adder. For time-
based simulation, the system is solved with a Runge-Kutta or Dormand-Prince fixed step 
differential equation solver. Variable step methods (like Bogacki-Shampine) may improve 
solver performance, but is less robust in complex simulations. 
 
Discrete flow architecture 
 
Another option for the modeling of flow interaction on pressure generation is to furnish each 
fluid column degree of freedom in the state-space model with its own flow model. This is 
similar to doing a time-marching CFD analysis with compressibility effects included. The 
only difference is that the finite element system is modeled in one dimension only and has 
vastly shorter calculation time. 
 
The subsystems are all unified in this model’s architecture. A schematic of this model is 
shown in figure 8.3 The chamber compressibility spring is a lumped stiffness from the 
diaphragm and chamber fluid compressibility. The fluid column is modeled the same as 
before except that each fluid element receives its own flow loss model in addition to the 
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customary Coulomb damping. Figure 8.3 models the sensor up to the transducer stiffness. 
The only element to be added to complete the sensor model is the transducer’s deflection-to-
signal transfer function. For the discrete flow model to be implemented an ordinary 
differential equation of the flow loss is required and is not implemented in the simulation 
used for optimization. 
 

 
    Figure 8.3: Unified model of sensor with finite element flow loss model. 
 
 
8.3 Desired measurement system characteristics 
 
The desired sensor characteristics is required in order for an optimization to commence 
because the MFCAA performance characteristics is at this stage an uncharted map of many 
variables. Having a general requirement narrows the number of methods of attack down 
significantly. The desired system performance is synonymous with the application, but the 
aim of a measurement system can be one of two classes according to Wright (1994): 
 

1) Frequency reproducing measurement systems: This typically covers measurement 
systems that gather data for spectral density analyses. To reproduce the frequency 
content of a signal the system must have a) a flat amplitude response and b) a linear 
Input/Output (IO) relationship. 

 
2) Wave shape reproducing measurement systems: To reproduce the waveshape is a 

more challenging task which adds a third requirement on the first two, namely that 
the system must have a linear phase response. 

 
This totals three requirements of 1) flat magnitude response 2) IO linearity 3) linear phase 
response for a wave shape reproducing system. As a feedback sensor, the matter of IO 
linearity gains more priority but the other two can never fall by the wayside for any sensor. 
 
These three characteristics are no mean feat to achieve. Even in fixed laboratory installations 
or pure electronic systems like amplifiers some compromises have to be made. Due to the 
varied types of transfer functions at work inside the MFCAA, the sensor has many 
idiosyncrasies and the three response requirements mean that an excellent match of all the 
sensor transfer functions has to be made. Simulation in a trial and error method to find this 
match will squander time, and the result will be dubious. The optimal solution has to be 
sought in a structured manner. The Optimization Toolbox ® by Matlab® is used to achieve 
this. 
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8.4 Sensor steady state characterization 
 
In the design of the angular accelerometer, steady state characteristics of the sensor are 
obtainable without any simulation needed. Sensor scale factor, for example can be calculated 
without consideration of the dynamics of the system. In the case of the strain-gaged 
diaphragm, the sensor scale factor is easily found by taking all steady state gains of the 
system into account. 
 
8.4.1 Strain-gaged diaphragm sensor scale factor 
 
Multiplying all the steady state gains in figure 8.2 (via table 8.1) for the strain-gaged 
diaphragm sensor yields: 
 

 
 
 
 
This shows the parameters influencing strain-gaged sensor’s scale factor. As is almost always 
the case, equation 8.1 is a variable tradeoff. No variable can be adjusted to give greater scale 
factor without paying a price for it elsewhere in terms of dynamic performance or size of the 
sensor. The two variables hang and R0 (the diaphragm outer diameter) have a mutually 
exclusive effect on another in equation 8.1. If hang is increased, R0 has to decrease or the sensor 
will increase in size. Since most designs will have an upper limit for the sensor size, the 
mutual dependence of hang on R0 for fixed sensor size is important. Optimum scale factor 
would be obtained where the product 2

0Rhang is maximized. Figure 8.4 relates this 
dependence if assumed that all sensor volume not assigned to the measurement chamber is 
utilized by the spiral and shows that as far as sensor scale factor is concerned, the chamber 
diameter should be 74% of the maximum spiral diameter. At this ratio the spiral efficiency is 
also very high, so the only possible justification to use another ratio would be dynamic 
performance. Of course, a larger chamber diameter as well as a longer spiral adversely 
affects sensor dynamic performance.  
 

Figure 8.4: The effect of measurement chamber diameter on sensor scale factor.  
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The factor in equation 8.1 showing the influence of the channel pressure potential is angh . A 

plot of angh for channel widths below 500μm is shown in figure 8.5. For a fixed wafer annular 
area, the obtained pressure potential may also be described by equation 8.3. 
 
 
 
 
where b is the channel width. The increase in scale factor for smaller channel widths is 
clearly substantial.  
 
 

Figure 8.5: Gross steady state pressure generated for channels of square shape with widths 
smaller than 250 microns. 
 
The relation displayed in figure 8.5 only realizes if the thickness of the wafers is adjusted to 
conform to the decreasing channel depth, and the number of wafers accordingly increased to 
construct a wafer stack of equal height. Differential pressures above 200kPa (at sea level) can 
only be linearly generated if boiling of the low-pressure fluid is prevented, by means of pre-
pressurization. 
 
Pressure in the region of two atmospheres seems ideal for measurement, even if a low 
accuracy pressure measurement technique is used. Unfortunately these are steady state 
pressures. The time required to fill the pressure transducer’s volumetric deflection with a 
channel smaller than 100μm is not trivial. After taking the dynamics of the system into 
account, this rose-tinted picture may be expected to change. This is done in following 
sections. 
 
 
8.4.2 Piezo sensor scale factor 
 
The piezo-crystal sensor scale factor cannot be calculated by simply multiplying DC gains 
because a piezo-crystal has no DC response. Piezo scale factor is defined as peak output over 
peak input in the nominal scale factor range. The nominal scale factor range is above the RC 
cutoff point of the transducer and below the first resonance caused by the piezo-crystal’s 

)2.8(2b
consthang =
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interaction with its support structure. The scale factor in the nominal piezo-crystal operating 
region is: 
 

 
 
 
 
The first quotient in the block brackets represents the contribution of the annular differential 
pressure, while the second quotient in the block brackets represents the contribution of the 
pressure directly opposite the piezo sensor (as discussed in section 6.8.3). The nominal scale 
factor of the piezo transducer assumes that the appropriate frequency and magnitude effect 
is felt at the crystal and not only at the sensor input. This cannot be assumed lightly: the fluid 
column, channel flow and transducer stiffness all have dynamic effects on the input which 
now also have to be accounted for. This is the justification for a simulation to be written. The 
fact that a piezo-transducer has no steady state response forces the designer to account for all 
dynamic effects in order to obtain the true scale factor. The flat magnitude frequency band of 
the sensor magnitude response may not be the same as the flat magnitude response of the 
piezo crystal; the sensor as a whole is what matters. Printing the whole sensor transfer 
function on a page is unfortunately not feasible: just the fluid column transfer function alone 
for this simulation is a daunting Laplace rational function (depending on the number of 
DOFs included). Equation 8.3 is a suitable representation of the scale factor since it sets a 0dB 
baseline for normalization and relates all the important constants contributing toward the 
scale factor. 
 
The scale factor dependence on chamber diameter does not hold quite as true for the piezo-
based sensor because another 2

0R  is contained in the denominator. The contribution from the 
piezo support is also expressed by equation 8.3. The piezo film will in general be a very thin 
element, which causes it to be very stiff relative to its support. Where this is the case, the 
piezo film contribution to pillark  will be negligible (see equation 6.45).  
 
 
8.5 Sensor parameter assumptions 
 
The sensor’s successful application depends on whether the pressure wave resulting from an 
angular acceleration disturbance can be damped out at the diaphragm. Characterization of 
the sensor is only sensible for such cases. Experiments done in polyurethane tubing has 
shown that considerable passive damping is present, proportional to the tube length, even in 
the absence of flow. For true control of the pressure wave damping, the sensor will have to 
be servoed. It comes as little surprise then that the current primary fluid-based angular 
accelerometer, the Fluid Rotor Angular Accelerometer (FRAA) patented by Statham 
(Hartzell, 1985) is also servoed, and that it is sensor damping that is controlled. The FRAA is 
still in use today. The damping problem in the MFCAA is more severe than the fluid rotor 
variant, because of the length of the fluid column, which might place significant resonances 
within the frequency of interest. The damping in a silicon-based channel will still be 
proportional to the fluid column length but probably smaller than that of the polyurethane 
tested in the experiment.  
 
The following assumptions are made regarding the channels and wafer sensor's parameters: 
 

1) The planform shape is assumed to be Archimedes’s spiral. For fine spirals, the other 
spiral types approach the characteristics of an Archimedes spiral. The simulation 
allows the use of any spiral mentioned in chapter 4. 

2) The channel cross section is assumed to be square. This is in alignment with a shape 
that can be readily micromachined or microformed. 
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3) The depth of the channel is assumed to be two thirds of the wafer thickness. 
4) The wafer stack height is 20mm with diameter also of 20mm. This places the MFCAA 

size in the same region as other MEMS sensors 
5) The wafer stack annulus inside diameter is a variable input to the optimization. The 

stack outside diameter is 20mm.  
6) A chamber of 14.8mm is used for the strain-gaged sensor, which in accordance with 

figure 8.4. This chamber diameter bypasses the value system and may not have 
desired dynamic performance. The choice of another diameter diaphragm also 
depends on the available gage size. 

7) A measurement chamber as small as 1mm is allowed for the piezo based sensor. 
MEMS methods will therefore not only be employed in the fabrication of the 
channels, but also the transducer. 

8) The fluid column contained in the channels is assumed to have at least 28 degrees of 
freedom. Less than 20 should be sufficient for most cases, and yet, processor 
performance is still satisfactory with a 55 DOF system. The challenge is that for long 
channels with high DOFs, the state-space system tends to become badly balanced. A 
routine ensuring the stability of the state space matrices are used to ascertain the 
maximum number of DOFs possible for a specific length channel. For long 
channeling this routine may bring the number of DOFs down to 23. 

9) The working fluid is mercury. 
10) For the optimization exercise a minimum shear damping of 10% of critical is used 

plus 1% per metre of channel length. No inter-mass damping is included. On further 
investigation of the nature of the damping inside silicon an improvement can be 
made on this damping assumption. 

11) The piezo-crystal used in the transducer is a mμ100  thick PZT5 (Lead Zirconate 
Titanate) with a piezoelectric charge constant of 374 pC/N in the d33 mode, 171 pC/N 
in the d31 mode and a Young’s modulus of 85 GPa. High charge constant crystals (like 
Rochelle salt) may pose problems of poor tolerance to temperature or humidity. 

12) The envisaged sensor is currently expected to be prototyped in silicon. Glass is also 
an option for the fabrication of microfluidic channels but with a Young’s modulus of 
48-83 GPa, it falls short of the stiffness of 168 GPa offered by polycrystalline silicon. 
Metal electroforming (using nickel) may reach in excess of 190 GPa. 

 
 
8.6 Sensor dynamic characterization simulations 
 
This section aims to describe the impact of the important trade-off variables on sensor 
dynamic performance. An optimum solution is not the objective here but rather a qualitative 
view on the most important sensor attributes. 
 
8.6.1 Strain-gaged diaphragm dynamic characteristics 
 
In chapter 6 the potential in polymers for use in diaphragms is mentioned as well as 
skepticism on strain-gage suitability for the sensor. Are the polymer diaphragms stiff enough 
though? A bode plot for a polymer diaphragm strain-gage is shown in figure 8.6.  
 
The variables assumed here are: 
Diaphragm thickness: 1.2mm (still using linear thin plate theory) 
Diaphragm diameter: 14.8mm – not much smaller is feasible, due to the area required by a 
commercially available strain-gage. 
Strain-gage resistance: 350Ω 
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Figure 8.6: Bode plot for strain-gage equipped sensor with a thick polymer diaphragm. 
 
The DC response is a big advantage of the strain-gage sensor, but the bandwidths attained 
are not of much use in many known applications. Bandwidths are low even with the large 
channel widths used. The problem is that the large volumetric diaphragm deflection takes 
too long to fill by the channel flow.  This low performance is probably a disqualifier of the 
concept in the short term. More sensitive strain-gages like the piezo-resistive varieties are of 
course candidates to solve the problem. These gages again have their own drawbacks of 
which the greatest is poor temperature stability.  
 
The optimization and characterization is continued only for the piezo-crystal. The possibility 
of using a strain-gage may be revisited if a smaller diameter transducer can be constructed or 
if higher scale factor gage is available. The plain circular diaphragm theory can also be used 
to investigate other transducer concepts further. 
 
8.6.2 Piezo-based dynamic sensor characteristics 
 
The piezo-based sensor offers greater promise than the strain-gaged sensor for performance 
in both scale factor and bandwidth. The piezo pressure sensor can be miniaturized into a 
very stiff transducer that leaves space for larger channels and so reach both higher scale 
factor and better dynamic performance. Most pressure transducer parameters were selected 
in chapter 6. The only parameter still to be selected is the diaphragm diameter. This 
parameter has large impact on all aspects of sensor performance because a smaller 
transducer possesses greater stiffness, but transmits smaller forces to the piezo-crystal. 
Miniaturization of the piezo-crystal poses an important challenge for the fulfillment of the 
potential of the MFCAA.  
 
The parameters of diaphragm diameter (or transducer diameter), channel width and 
diaphragm thickness are the parameters that need to be selected in a trade-off exercise. In 
cases where the pressure transducer becomes very small and all other available space is used 
for the channel helix, the channel inside diameter will be at low efficiency radii. In this case 
the objective of maximum flow potential might make the helix inside diameter another 
variable to be optimized since it would no longer necessarily coincide with the diaphragm 
outer diameter.  
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All other parameters are directly dependent on these three parameters or are separately 
selectable, which are: 
 

1) Sensor size: Constrained by available space in the envisaged application, this has 
large impact on sensor performance. 

2) Piezo support parameters: These are mainly dependent on the measurement 
chamber diameter, except for the support length, which is always as short as 
manufacturable to attain stiffness.  

3) Piezo-film: Due to its low thickness, the piezo material is selected for its charge 
generation properties more than stiffness or another criterion. 

4) Charge amplifier parameters: The feedback capacitance is minimised for scale factor, 
while the resistance is maximised to achieve reasonable lower cut-off. Extreme 
resistance values, like the ones preferred here has a noise implication that must be 
managed by shielding of the feedback resistance, as well as filtering. 

 
Before the sensor is optimised, the effect of the main trade-off variables is illustrated. The 
effect channel size has on all performance aspects of the sensor is key to its design. To 
promote illustration and understanding, the other variables in the study are assumed to be 
the following constants. 
 

• The diaphragm diameter is set at 4mm, which equals the channel helix inside 
diameter. 

• Diaphragm thickness is fixed at 500μm.  
 
As may be expected, a smaller channel has a constricting effect on the sensor. The most 
pronounced result of varying channel widths is the sensor's bandwidth and damping. The 
plot in figure 8.7 was made for relatively large channels, which makes the piezo-crystal’s 
nominal scale factor more apparent above the piezo cut-off frequency of 3Hz. The immense 
damping-effect that small channel width has on the sensor is also clear from figure 8.7. In 
large enough channels, the system has an oscillatory nature. The absence of DC response is 
evident since all the step responses decay to zero (not shown). 
 
The effect of the piezo crystal’s decaying output is made obvious by a low charge amplifier 
feedback resistance (of 10GΩ). The effect can be seen on the magnitude response as a fading 
low frequency output and on the phase plot as an apparent lead at low frequency. The 
remedy for both these phenomena is a large charge amplifier time constant (i.e. product Rf 

Cf). 
 
The capacitance also has scale factor impact and is included into the trade-off. The resistance 
on the other hand is generally made as large as practicable, because the capacitance needs to 
be kept low for the sake of scale factor (which is not influenced by resistance). A prime 
motivation for the design of extremely high resistors is in fact the use of the piezoelectric 
transducer. In recent years processes have been developed (see Schweber 2001) that can 
produce resistors of 10TΩ (10x1012 Ω). In following optimization calculations a resistance 
value of 1TΩ is assumed. When a capacitance of 0.5pF is combined with this resistor, a cut-
off frequency of 318mHz results. Lower cut-off frequencies are feasible by using larger 
capacitance at the expense of scale factor. The loss of DC response is therefore not a 
disqualifier of the piezo-electric transducer even if a low frequency design is envisaged. 
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Figure 8.7: Bode plot showing the effect of increasing channel width from 400μm to 1mm in 
equal increments. Higher bandwidths correspond to larger channel width. 
 
The response beyond the piezo lower cut-off and below the first resonance resembles a 
second order system closely. The fluid column resonances may be expected to make their 
appearance at higher frequencies, but it seems that the system could be approximated by a 
second order system, in the frequency range of interest at least. This is unfortunately not so. 
Figure 8.8 shows a plot with the same parameters except that the diaphragm diameter is 
halved to 2mm. The response now exhibits a damped resonance before the main resonance. 
The large impact that the smaller diaphragm has on the bandwidth is clear, the resonance 
frequencies have increased more than ten times while the diaphragm diameter has only 
halved. The transducer stiffness increases sharply when the diaphragm diameter is 
decreased. 
 
The one and only resonance in figure 8.7 is a flow/diaphragm interaction mode, as is the 
second resonance in figure 8.8. This flow resonance frequency has increased in figure 8.8 
(because of the smaller diaphragm) to lie beyond the first fluid column resonance, which 
forms the first peak of the figure 8.8 responses. The clearest indication of the flow resonance 
is the 180° phase drop at this frequency. This phase drop also applies for the flow resonance 
of figure 8.8 except that the proximity of the fluid column modes superimposes a waved 
phase response on the phase drop. The fluid column resonant frequencies cause ever-
decreasing magnitude and phase fluctuations as frequency increases. 
 
Figure 8.9 shows a bode plot on logarithmic axes with a 2mm diaphragm diameter that is 
500μm thick. The 400-700μm plots are identical to those of figure 8.7. The log scale gives a 
more complete view of the Bode magnitude response. The response starts off with a 20dB 
per decade slope caused by the contribution of the piezo transducer. The response then 
reaches its apex with the flow response resonance and drops down before the fluid column 
resonances start. Only 45 of the infinite number of fluid column resonances are shown in 
figure 8.9.  In a true plot the resonances would be visible all along the –80db per decade 
slope in ever-decreasing magnitudes. Each of the 45 resonances each represent one DOF, 
hence the discrete model contains 44 masses in the fluid column model. The other DOF is the 
housing. The damping effect of decreasing channel width is clearly illustrated. At 100μm the 
large damping eliminates any sign of resonance. The position of the flow resonance depends 
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mainly on the diaphragm stiffness and fluid column cross-section area. The first fluid 
column resonance position depends on the wave speed in the working fluid and the length 
of the fluid column. In a sensor with a long enough channel, the cascade of fluid column 
resonances may start at lower frequencies than the flow resonance (as in the case in figure 
8.8). 
 

Figure 8.8: Bode plot showing the effect of increasing channel width from 400μm to 1mm in 
equal increments with a 2mm diaphragm. 
 
 

Figure 8.9: Bode plot showing the effect of increasing channel width from 100μm to 700μm in 
equal increments. 
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8.7 Sensor optimization 
 
Preceding sections in this chapter serve to give the designer an illustration of the effect of 
adjusting sensor parameters within critical areas. To the objective of optimizing the sensor 
this is unfortunately of limited value. The interdependency of all the adjusted parameters is 
covered to a very limited extent by making a constant assumption for all parameters besides 
the one being adjusted. A true representation of the effect of changing all adjustable 
parameters is so multidimensional that it far surpasses the capabilities of visualization on a 
single illustration. This necessitates the use of an optimization algorithm to systematically 
seek out an optimum solution within the boundaries set for the sensor parameters.  
 
Put in a more general way, optimization is the process of seeking of a set of system 
governing parameters,  
 
 
which is in some way perceived to be optimal. The perception of the optimal solution is 
entirely according to the preference of the designer and his/her set of set of priorities (or 
value system). A simple representation of this set of priorities is a cost function, which is: 
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33

2
22

1
11

pn
nn

ppp ywywywyw ++=  

 
with w the weight assigned to each system output y. The power p of each output is positive to 
signify proportionality and negative for inverse proportionality. The powers may be any real 
number but the weights are only positive real numbers. The objective of the optimization 
algorithm is to find the parameters x that minimize the cost function. A system may have 
any number of outputs. The selection of important outputs is also the onus of the designer.  
 
For the sensor, the following outputs were selected for entering into the cost function: 
 

1) Sensor scale factor: The ability to reach high scale factor is one envisaged advantage 
of the MFCAA. 

2) Step input overshoot: A common step input criterion, which is mostly dependent on 
damping. 

3) Step response speed: For step responses, the 90% rise time is often used as a measure 
of the system step response speed. 

4) Steady state error after one second: For sensors with very low bandwidth the sensor 
may not even reach steady state after one second. The response after one second is 
taken as steady state regardless of whether steady state has been reached or not 
because a sensor of such slow response will not qualify for use in any event. 

5) Bode magnitude resonance peak: A consequence of the second order response 
contributed by flow interaction with the diaphragm. This peak is independent of 
those caused by the fluid column. A resonance peak inside the used frequency range 
of below 1dB may be satisfactory, but as small as possible is preferable. 

6) Bode magnitude –3dB bandwidth: The standard measure of sensor bandwidth. 
7) Magnitude at half of –3dB bandwidth: A measure of the flatness of the magnitude 

response. For a purely second order system this would be redundant but the MFCAA 
sometimes exhibits a drop in magnitude before rising for the resonant peak. An 
example of this is shown in figure 8.8. 

8) Bode phase -90° bandwidth: Phase bandwidth is a variable commonly neglected in 
favor of magnitude bandwidth. 

9) Phase at half of -90° bandwidth: A measure of the flatness of the phase response. 
 

]..................[ 321 nxxxxx =

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  WWoollffaaaarrddtt,,  HH  JJ      ((22000077))  
  



  

 119

These criteria are portrayed in figure 8.10. The main difference between the strain-gaged 
diaphragm and the piezo-electric sensor is also shown. This difference is much less noted 
(and even negligible) for sufficiently high charge amplifier feedback resistances. Selected 
criteria are used in the cost function and a designer-selected weight is applied to each. This 
simplifies the objective function (entire sensor simulation) to output a single variable, 
namely the “cost”. The objective function output is now minimized by the optimization 
routine to find an optimum result. 
 

 
          Figure 8.10: Typical performance criteria for a sensor. Blue  
          denotes sensors with DC response and red for sensors without  
          DC response. 

 
The optimization routine starts from user-selected initial conditions and converges to a 
solution if it exists. The routine used here is the Kuhn-Tucker line search method. Figure 8.11 
shows a schematic of the method followed to optimize the sensor with the use of a cost-
function and the Kuhn-Tucker line search method. All optimization runs completed have the 
nominal sensor scale factor printed on the Bode diagram. The scale factor is referred from the 
zero dB level and is based on the piezo-crystal nominal scale factor. The printed scale factor 
is only illustrative of what scale factor is attained at the quoted charge amplifier feedback 
capacitance and resistance. The sensor resolution is still very dependent on the noise floor 
caused by various internal and external sources. The trade-off of the charge amplifier 
variables versus noise is still to be performed as part of the detail electronic design. Noise is 
though not beyond a significant measure of control and is also addressed by other passive 
measures like screening and filtering during the design.  
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                Figure 8.11: Schematic of optimization method. 
 
 
8.7.1 Optimization constraints 
 
The optimization inputs have to be constrained because all the simulation inputs represent 
real characteristics and as such are always a positive real numbers with an upper and lower 
bound. This complicates the optimization method somewhat because the routine requires a 
sufficient margin within to calculate a finite difference approximation of a derivative. The 
bounds therefore have to be widened somewhat for the sake of the routine, and results have 
to be checked for feasibility. The optimization was commenced for a sensor outside diameter 
and sensor height fixed at 20mm unless mentioned otherwise. Other limits as noted in table 
8.2 were also imposed on the optimization routine. 
 
The sensor simulation results in an elaborate function with many minima when a cost 
function is applied. These multiple minima degrade the quality of the optimization result 
because the routine tends to find only a local minimum and not the global minimum inside 
the optimization constraints. Various initial conditions therefore have to be tested to 
ascertain the quality of a result. Using an optimization routine exclusively for a design like 
this removes designer authority. Some fine-tuning of a response is therefore usually done 
around the obtained “optimum” result when a promising response is found. 
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Table 8.2: Constraints of optimization exercise 
OPTIMIZATION 
CONSTRAINTS 

Lower bound Upper bound 

Charge amp feedback 
capacitance 

0.5 pF 100 μF 

Channel width 50 μm 1 mm 
Diaphragm thickness 50 μm 1 mm 
Diaphragm diameter 1mm 9mm 

 
 
8.7.2 High bandwidth application results 
 
The bulk of inertial applications require a bandwidth up to approximately 50 Hz. For missile 
applications this requirement can reach 100Hz. Current MEMS vibrating structure 
gyroscopes perform in the 50Hz region. The design in this section aims to reach 50Hz 
bandwidth with the best possible scale factor and frequency shape. Figures 8.12 to 8.14 use a 
0.5pF feedback capacitance and 1TΩ resistance, which results in a 0.318Hz cut-off. 
 
This can be approached in two ways regarding the response shape. Figure 8.12 and 8.13 
illustrates the two options. Figure 8.12 shows a response that increases monotonically inside 
the usable frequency range. The sensor usable frequency range is defined as the frequencies 
where the output of a harmonically excited sensor stays within 29% of the input. This is 
approximately between +2.2dB and –3dB. These limits are marked off on figure 8.13 and 
8.15. By this definition, the bandwidth attained in figure 8.12 is 52Hz and in figure 8.13 it is 
30Hz. The scale factor attained in figure 8.13 is far superior to that of figure 8.12, but the 
response is of lower quality almost reaching 2dB at 12Hz.  
 
The phase response is also of higher quality in figure 8.12 showing barely any lag (5°) at 50 
Hz, whereas considerable lag of 200° applies in figure 8.13 at the bandwidth frequency. The 
use of a frequency range where the flow resonance is the lowest frequency peak is therefore 
preferable unless in cases where scale factor is of utmost importance. One way of improving 
the frequency response of figure 8.13 is by means of feedback inside the sensor to improve 
the response. The HzV /1μ reference resolution is 2/6 sradμ  for figure 18.12, which equals 

24 /10x44.3 so− . With a scale factor of radmVs /1178 2 , a noise level of Vμ118 can be 
tolerated to rival the 10-4 rad/s2 accuracy of current angular accelerometers.  
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Figure 8.12: A monotone response design inside the usable frequency range for a 20∅ x 
20mm sensor. 
 
The effect of sensor diameter on sensor performance is expected to be large, but how large? 
Figure 8.14 shows a sensor also designed to measure up to 50Hz (like in figure 8.12) but the 
sensor diameter has been doubled to 40mm. The frequency response is seen to be almost 
identical to figure 8.12 up to 50Hz, while the scale factor has tripled to 3.5Vs2/rad. By also 
doubling the sensor height the scale factor can be quadrupled. The effect of sensor height is 
therefore not as dramatic as sensor diameter. 
 

 
Figure 8.13: Design across the first two resonances for a 20∅ x 20mm sensor. The +2.2 dB and 
–3dB ticks represent the magnitude bandwidth limits. 
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Figure 8.14: Response of 40∅ x 20mm sensor, designed for a bandwidth of 50Hz. 
 
 
8.7.3 Low bandwidth application results 
 
Low frequency applications exist mainly in the satellite industry. Telescopes and 
gradiometers make angular acceleration measurements in the region of 1Hz. The main 
limitation in using a piezo-based sensor for low frequencies is the cutoff frequency. A large 
feedback resistance and capacitance helps a lot to decrease the cutoff but a large capacitance 
decreases the sensor scale factor (see equation 8.2). A low frequency design leaves room for 
finer channeling and a larger diaphragm to attain scale factor but puts pressure on the 
capacitance to be increased, which again decreases scale factor. Higher resistance would 
solve the problem partially, but at 1TΩ the limit of achievable resistance is quite close. These 
limitations have the effect that low frequency designs do not excel quite as well as expected 
at high scale factor. Of course, the same capacitance used for a high bandwidth design can be 
inserted into a low-bandwidth design, but this causes proportionally large loss of the useful 
sensor frequency range. In the following simulation, the feedback capacitance is increased to 
5pF, which decreases the cutoff frequency to 0.03Hz.  
 
An example of a low-bandwidth design is shown in figure 8.15. This design again uses a 20∅ 
x 20mm size sensor. Although the bandwidth is only 10Hz, the quality of response is high 
with a peak of only 0.66dB. The phase response also exhibits good linearity. A high 
resolution even better than that of figure 8.14 is obtained, even though the scale factor has 
less than halved. This is due to the bandwidth of the sensor that has reduced. A smaller 
frequency of interest lowers the rms noise level and allows higher resolution. 
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Figure 8.15: Low frequency sensor design using 5pF charge amplifier feedback capacitance 
with a 20∅ x 20mm  sensor. The +2.2 dB and –3dB ticks represent the bandwidth limits. 
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Chapter 9 
 
Conclusions 
 
 
Theory has been developed for the design and simulation of the microfluidic channel 
angular accelerometer. The proposed sensor consists of a central differential pressure 
transducer fed by a channel system in the shape of a spiral-helix. The sensor's objective is to 
have superior angular acceleration scale factor in one sensitive axis with good cross-axis 
rejection capabilities. 
 
The natural phenomena relevant to the functioning of the sensor are: 
 

1) Pressure generated by the angular acceleration due to inertia of the working fluid: A 
discrete multi degree of freedom model is used in a state-space formulation to 
simulate pressure generation and propagation. The model is stiffness-corrected to 
have similar wave propagation characteristics to a real fluid column. The number of 
masses in the model is limited by computational power and matrix stability during 
eigenvalue calculation. Stability is improved by diagonalization of characteristic 
matrices and the number of DOFs is continually set to the maximum by monitoring 
matrices for stability in all simulations performed. The minimum number of modes 
included in the model is sufficient for simulation past the most optimistic range of 
operation for the sensor. 

2) Flow inside the sensor channels caused by deflection of the pressure transducer: A 
first order transfer function is fitted on analytical unsteady flow theory. The transfer 
function is general to any size channel with large bending radii and accepts arbitrary 
pressure input. The transfer function is a good (though not exact) fit of the 
Newtonian laminar incompressible flow found inside the channels, and is 
customizable according to degree of flow development that is required. Since the 
sensor is expected to operate in a generally underdeveloped state of flow, the transfer 
function is fitted to the lowest Fourier number amenable to a first order response.  

3) Deflection of the pressure transducer: A strain-gage based transducer and piezo-
based transducer has been studied. The strain-gage pressure transducer uses a 
pressure rosette strain-gage bonded to a plain circular diaphragm. The strain gauge 
transducer does not show much promise for application inside the sensor. The main 
reason for this is the high volumetric deflection necessary for its use and the 
associated loss in sensor bandwidth. A piezo-based pressure transducer has greater 
potential. The piezo-based pressure transducer’s diaphragm is modeled as a 
combination of an annular diaphragm fixed on all edges and a fixed outer-edge 
annular diaphragm that is guided on the inside edge, depending on the piezo 
support stiffness. The piezo crystal is modeled with a charge amplifier providing 
sensor output. Charge amplifier noise is not modeled directly, but sensor output is 
referenced against expected noise levels for sensor resolution approximation. 

 
Various channel shapes have been studied to advance manufacturability of the sensor 
channels. The effect of the different channel schemes has been found to be minimal for 
channels of expected dimensional ratios.  
 
Experimental verification was successfully performed on the pressure generation and 
propagation model by using a 200mm spool wound with 3mm fluid-filled polyurethane 
tubing. Tube lengths of 20m and 1.5m were evaluated with diesel and water as inertial 
fluids. The experiment also confirmed the high cross-axis rejection of the MFCAA and 
highlighted the risk and effect of free air inside the fluid column.  
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The theory was synthesized into a simulation of the entire sensor, which comprises of 
cascaded models of the various systems inside the sensor. Channel flow area and diaphragm 
diameter was shown the most important variables in the sensor's mechanical design both in 
terms of scale factor and bandwidth. The sensor contains one resonance associated with flow 
–diaphragm interaction. The frequency of this resonance depends mainly on the ratio of flow 
area to diaphragm area. Other resonances in the sensor are caused by the various fluid 
column modes; their frequencies depend mainly on the wave speed in the fluid and the fluid 
column length. A Kuhn-Tucker optimization routine was performed on the design variable, 
which pointed out feasible domains in the design variables. Multiple minima in the cost 
function of the sensor hampered the search of an absolute optimum in the design variables, 
but by doing various resetting of the initial conditions, satisfactory designs were found. 
 
From the simulations done, the MFCAA shows potential to be a novel single-axis, solid-state 
angular accelerometer in the MEMS scale. The sensor should improve considerably on 
current MEMS technology in the area of scale factor and stability and fill a performance gap 
that currently exists in miniature angular accelerometry. The simulated achievable sensor 
scale factor is very high even in high bandwidth designs. For a 50Hz sensor (which is a 
common industry requirement) a scale factor of /radmVs1178 2  is simulated as feasible if a 
low noise charge amplifier can be constructed with 0.5pF feedback capacitance and 1TΩ 
feedback resistance (resulting in a 0.318Hz low frequency cut-off). This claim can though 
only be verified by a prototype. Scale factor can be further improved by tuning of the 
resonances to fall within the bandwidth of the sensor for a frequency response quality 
compromise. The sensor offers a great size advantage on current non-MEMS high-accuracy 
angular accelerometers, being comparable to contemporary MEMS gyroscope designs. The 
channels used for a 20ΦX20 sensor is not extraordinarily small and should be readily 
micromachinable. The main miniaturization challenge expected is the pressure transducer 
with a diameter of as low as 1.8 mm. 
 
The sensor offers the following advantages: 
 

1) High angular acceleration scale factor and resolution. 
2) Low cross-coupled sensitivity. 
3) Low angular velocity sensitivity. 
4) Small size and mass. Dimensions in the range of the British Aerospace Systems SiRRS 

rate gyro is expected. This compares favorably with other angular devices.  
5) Very high reliability. 
6) High shock resistance.  
7) The expected MEMS features are quite large by 2005 standards and should be easy to 

micromachine. The aspect ratio of the channels is also low, which should simplify the 
manufacturing process. Laser ablation should be the most viable option for rapid 
prototyping of the sensor channels. 

8) The sensor design is versatile and can be applied to a wide range of frequency 
applications. 

 
and the following drawbacks: 
 

1) Approximately 20 to 80 wafers may be used in the construction of the microfluidic 
channel system depending on the diameter of the diaphragm. This compounds the 
cost, and decreases the mass-manufacturability somewhat. This contrasts with the 
advantages gained by contemporary MEMS products. 

2) Miniaturization of the sensor size has a noted negative effect on the scale factor.  
3) The sensor currently has no DC response. Further investigation may provide other 

means of attaining DC response with different pressure transducer concepts. 
4) The sensor uses mercury, a hazardous substance. 
5) Internal mechanics requires a method to allow for thermal expansion of working 

fluid. 
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6) Sensor assembly will be a much more involved process than other existing MEMS 
sensors. 

 
 

Recommendations on further work 
 
The sensor simulation can be improved upon in the following respects: 
 

1) A complete and realistic noise model of the sensor noise must still be constructed. 
This is the main shortcoming of the simulations done in this document, which leaves 
sensor performance parameters like resolution and drift still to be determined. This 
may only be feasible when the electronics layout has been conceptualized. 

2) A single integrated state space model of the whole sensor will improve on the fluid 
column wave damping assumptions made above. 

3) The modeling of the minor flow losses is completely neglected in this document. A 
CFD model used in a time marching scheme may be considered if high computing 
power is available. 

4) The diaphragm theory may be expanded to the non-linear regime. The advantage to 
be gained by doing this is limited since the sensor linearity also degrades on such 
large diaphragm deflections. 

5) A more general formulation of the piezo-based pressure sensor may be advantageous 
to investigate the effect other piezo to diaphragm size ratios on the sensor 
performance. 

6) The sensor is modeled as an open-loop device. The addition of a feedback system in 
the sensor is still to be investigated and simulated. 

 
With a view to a prototype, the following work is still to be done: 
 

1) Sensor design for manufacturing. Wafer fabrication and bonding, pressure transducer 
fabrication and sensor assembly are matters addressed under this heading. 

2) Electronics design. The bulk of the design is still to be completed. This document 
covers mainly the mechanical aspects of the sensor. 

3) Sensor packaging is not addressed at all in this document. The main issues still to be 
dealt with here are interfacing, sensor protection and noise sensitivity.
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Appendix A 
 
A.1 Pressure wave speed constants 
 
Pressure wave speed constant per channel unit length (Φ/L, unit m-1) versus number 
of masses in fluid column model. (See section 3.6.1) 
 

Number of 
masses 
(N-1) 

Wave speed constant/m 
 (Φ/L) 

Number of 
masses 
(N-1) 

Wave speed constant/m 
 (Φ/L) 

2 0.450158158 74 0.013512499 
4 0.24362384 76 0.013156958 
6 0.164769322 78 0.012819646 
8 0.124198356 80 0.012499197 

10 0.099589274 82 0.012194376 
12 0.083095555 84 0.011904068 
14 0.071278799 86 0.01162726 
16 0.06239965 88 0.011363033 
18 0.055485069 90 0.011110547 
20 0.049948612 92 0.010869037 
22 0.045415935 94 0.010637803 
24 0.041636925 96 0.010416202 
26 0.038438145 98 0.010203645 
28 0.035695555 100 0.009999589 
30 0.033318105 102 0.009803534 
32 0.031237452 104 0.009615019 
34 0.029401303 106 0.009433617 
36 0.027768964 108 0.009258933 
38 0.026308296 110 0.0090906 
40 0.024993575 112 0.008928279 
42 0.023803974 114 0.008771652 
44 0.022722445 116 0.008620426 
46 0.021734906 118 0.008474326 
48 0.020829615 120 0.008333095 
50 0.01999671 122 0.008196495 
52 0.019227845 124 0.0080643 
54 0.018515907 126 0.007936302 
56 0.017854801 128 0.007812304 
58 0.017239272 130 0.007692121 
60 0.016664763 132 0.007575579 
62 0.016127307 134 0.007462516 
64 0.015623431 136 0.007352778 
66 0.015150085 138 0.00724622 
68 0.014704575 140 0.007142707 
70 0.014284515 142 0.00704211 
72 0.013887787 144 0.006944307 
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Number of masses 

(N-1) 

       
       Sound constant/m 

 (Φ/L) 
146 0.006849183 
148 0.00675663 
150 0.006666545 
152 0.00657883 
154 0.006493394 
156 0.006410148 
158 0.00632901 
160 0.0062499 
162 0.006172743 
164 0.006097468 
166 0.006024006 
168 0.005952294 
170 0.005882269 
172 0.005813873 
174 0.005747048 
176 0.005681743 
178 0.005617905 
180 0.005555485 
182 0.005494437 
184 0.005434717 
186 0.00537628 
188 0.005319087 
190 0.005263098 
192 0.005208275 
194 0.005154583 
196 0.005101986 
198 0.005050452 
200 0.004999949 
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