1,443 research outputs found

    On Ramsey properties of classes with forbidden trees

    Get PDF
    Let F be a set of relational trees and let Forbh(F) be the class of all structures that admit no homomorphism from any tree in F; all this happens over a fixed finite relational signature σ\sigma. There is a natural way to expand Forbh(F) by unary relations to an amalgamation class. This expanded class, enhanced with a linear ordering, has the Ramsey property.Comment: Keywords: forbidden substructure; amalgamation; Ramsey class; partite method v2: changed definition of expanded class; v3: final versio

    Some relational structures with polynomial growth and their associated algebras II: Finite generation

    Get PDF
    The profile of a relational structure RR is the function φR\varphi_R which counts for every integer nn the number, possibly infinite, φR(n)\varphi_R(n) of substructures of RR induced on the nn-element subsets, isomorphic substructures being identified. If φR\varphi_R takes only finite values, this is the Hilbert function of a graded algebra associated with RR, the age algebra A(R)A(R), introduced by P.~J.~Cameron. In a previous paper, we studied the relationship between the properties of a relational structure and those of their algebra, particularly when the relational structure RR admits a finite monomorphic decomposition. This setting still encompasses well-studied graded commutative algebras like invariant rings of finite permutation groups, or the rings of quasi-symmetric polynomials. In this paper, we investigate how far the well know algebraic properties of those rings extend to age algebras. The main result is a combinatorial characterization of when the age algebra is finitely generated. In the special case of tournaments, we show that the age algebra is finitely generated if and only if the profile is bounded. We explore the Cohen-Macaulay property in the special case of invariants of permutation groupoids. Finally, we exhibit sufficient conditions on the relational structure that make naturally the age algebra into a Hopf algebra.Comment: 27 pages; submitte

    The random graph

    Full text link
    Erd\H{o}s and R\'{e}nyi showed the paradoxical result that there is a unique (and highly symmetric) countably infinite random graph. This graph, and its automorphism group, form the subject of the present survey.Comment: Revised chapter for new edition of book "The Mathematics of Paul Erd\H{o}s

    Cores of Countably Categorical Structures

    Full text link
    A relational structure is a core, if all its endomorphisms are embeddings. This notion is important for computational complexity classification of constraint satisfaction problems. It is a fundamental fact that every finite structure has a core, i.e., has an endomorphism such that the structure induced by its image is a core; moreover, the core is unique up to isomorphism. Weprove that every \omega -categorical structure has a core. Moreover, every \omega-categorical structure is homomorphically equivalent to a model-complete core, which is unique up to isomorphism, and which is finite or \omega -categorical. We discuss consequences for constraint satisfaction with \omega -categorical templates

    Reachability analysis of first-order definable pushdown systems

    Get PDF
    We study pushdown systems where control states, stack alphabet, and transition relation, instead of being finite, are first-order definable in a fixed countably-infinite structure. We show that the reachability analysis can be addressed with the well-known saturation technique for the wide class of oligomorphic structures. Moreover, for the more restrictive homogeneous structures, we are able to give concrete complexity upper bounds. We show ample applicability of our technique by presenting several concrete examples of homogeneous structures, subsuming, with optimal complexity, known results from the literature. We show that infinitely many such examples of homogeneous structures can be obtained with the classical wreath product construction.Comment: to appear in CSL'1
    • …
    corecore