106 research outputs found

    Multigranulation Super-Trust Model for Attribute Reduction

    Get PDF
    IEEE As big data often contains a significant amount of uncertain, unstructured and imprecise data that are structurally complex and incomplete, traditional attribute reduction methods are less effective when applied to large-scale incomplete information systems to extract knowledge. Multigranular computing provides a powerful tool for use in big data analysis conducted at different levels of information granularity. In this paper, we present a novel multigranulation super-trust fuzzy-rough set-based attribute reduction (MSFAR) algorithm to support the formation of hierarchies of information granules of higher types and higher orders, which addresses newly emerging data mining problems in big data analysis. First, a multigranulation super-trust model based on the valued tolerance relation is constructed to identify the fuzzy similarity of the changing knowledge granularity with multimodality attributes. Second, an ensemble consensus compensatory scheme is adopted to calculate the multigranular trust degree based on the reputation at different granularities to create reasonable subproblems with different granulation levels. Third, an equilibrium method of multigranular-coevolution is employed to ensure a wide range of balancing of exploration and exploitation and can classify super elitists’ preferences and detect noncooperative behaviors with a global convergence ability and high search accuracy. The experimental results demonstrate that the MSFAR algorithm achieves a high performance in addressing uncertain and fuzzy attribute reduction problems with a large number of multigranularity variables

    Uncertainty Management of Intelligent Feature Selection in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSN) are envisioned to revolutionize the paradigm of monitoring complex real-world systems at a very high resolution. However, the deployment of a large number of unattended sensor nodes in hostile environments, frequent changes of environment dynamics, and severe resource constraints pose uncertainties and limit the potential use of WSN in complex real-world applications. Although uncertainty management in Artificial Intelligence (AI) is well developed and well investigated, its implications in wireless sensor environments are inadequately addressed. This dissertation addresses uncertainty management issues of spatio-temporal patterns generated from sensor data. It provides a framework for characterizing spatio-temporal pattern in WSN. Using rough set theory and temporal reasoning a novel formalism has been developed to characterize and quantify the uncertainties in predicting spatio-temporal patterns from sensor data. This research also uncovers the trade-off among the uncertainty measures, which can be used to develop a multi-objective optimization model for real-time decision making in sensor data aggregation and samplin

    Combining rough and fuzzy sets for feature selection

    Get PDF

    EXPLOITING HIGHER ORDER UNCERTAINTY IN IMAGE ANALYSIS

    Get PDF
    Soft computing is a group of methodologies that works synergistically to provide flexible information processing capability for handling real-life ambiguous situations. Its aim is to exploit the tolerance for imprecision, uncertainty, approximate reasoning, and partial truth in order to achieve tractability, robustness, and low-cost solutions. Soft computing methodologies (involving fuzzy sets, neural networks, genetic algorithms, and rough sets) have been successfully employed in various image processing tasks including image segmentation, enhancement and classification, both individually or in combination with other soft computing techniques. The reason of such success has its motivation in the fact that soft computing techniques provide a powerful tools to describe uncertainty, naturally embedded in images, which can be exploited in various image processing tasks. The main contribution of this thesis is to present tools for handling uncertainty by means of a rough-fuzzy framework for exploiting feature level uncertainty. The first contribution is the definition of a general framework based on the hybridization of rough and fuzzy sets, along with a new operator called RF-product, as an effective solution to some problems in image analysis. The second and third contributions are devoted to prove the effectiveness of the proposed framework, by presenting a compression method based on vector quantization and its compression capabilities and an HSV color image segmentation technique

    A fuzzy probabilistic inference methodology for constrained 3D human motion classification

    Get PDF
    Enormous uncertainties in unconstrained human motions lead to a fundamental challenge that many recognising algorithms have to face in practice: efficient and correct motion recognition is a demanding task, especially when human kinematic motions are subject to variations of execution in the spatial and temporal domains, heavily overlap with each other,and are occluded. Due to the lack of a good solution to these problems, many existing methods tend to be either effective but computationally intensive or efficient but vulnerable to misclassification. This thesis presents a novel inference engine for recognising occluded 3D human motion assisted by the recognition context. First, uncertainties are wrapped into a fuzzy membership function via a novel method called Fuzzy Quantile Generation which employs metrics derived from the probabilistic quantile function. Then, time-dependent and context-aware rules are produced via a genetic programming to smooth the qualitative outputs represented by fuzzy membership functions. Finally, occlusion in motion recognition is taken care of by introducing new procedures for feature selection and feature reconstruction. Experimental results demonstrate the effectiveness of the proposed framework on motion capture data from real boxers in terms of fuzzy membership generation, context-aware rule generation, and motion occlusion. Future work might involve the extension of Fuzzy Quantile Generation in order to automate the choice of a probability distribution, the enhancement of temporal pattern recognition with probabilistic paradigms, the optimisation of the occlusion module, and the adaptation of the present framework to different application domains.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    e-Sanctuary: open multi-physics framework for modelling wildfire urban evacuation

    Get PDF
    The number of evacuees worldwide during wildfire keep rising, year after year. Fire evacuations at the wildland-urban interfaces (WUI) pose a serious challenge to fire and emergency services and are a global issue affecting thousands of communities around the world. But to date, there is a lack of comprehensive tools able to inform, train or aid the evacuation response and the decision making in case of wildfire. The present work describes a novel framework for modelling wildfire urban evacuations. The framework is based on multi-physics simulations that can quantify the evacuation performance. The work argues that an integrated approached requires considering and integrating all three important components of WUI evacuation, namely: fire spread, pedestrian movement, and traffic movement. The report includes a systematic review of each model component, and the key features needed for the integration into a comprehensive toolkit
    • …
    corecore