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Recent graphics processing units (GPUs) have emerged as a promising

platform for general purpose computing and have been shown to be very effi-

cient in executing parallel applications with regular control and memory access

behavior. Current GPU architectures primarily adopt the single-instruction

multiple-thread (SIMT) programming model that balances programmability

and hardware efficiency. With SIMT, the programmer writes application code

to be executed by scalar threads and each thread is supported with conditional

branch and fine-grained load/store instruction for ease of programming. At

the same time, the hardware and software collaboratively enable the grouping

of scalar threads to be executed in a vectorized single-instruction multiple-

data (SIMD) in-order pipeline, simplifying hardware design. As GPUs gain

momentum in being utilized in various application domains, these throughput

processors will increasingly demand more efficient execution of irregular appli-

cations. Current GPUs, however, suffer from reduced thread-level parallelism,
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underutilization of compute resources, inefficient on-chip caching, and waste

in off-chip memory bandwidth utilization for highly irregular programs with

divergent control and memory accesses.

In this dissertation, I develop techniques that enable simple, robust,

and highly effective performance optimizations for SIMT-based throughput

processor architectures such that they can better manage irregularity. I first

identify that previously suggested optimizations to the divergent control flow

problem suffers from the following limitations: 1) serialized execution of di-

verging paths, 2) lack of robustness across regular/irregular codes, and 3) lim-

ited applicability. Based on such observations, I propose and evaluate three

novel mechanisms that resolve the aforementioned issues, providing significant

performance improvements while minimizing implementation overhead.

In the second half of the dissertation, I observe that conventional coarse-

grained memory hierarchy designs do not take into account the massively

multi-threaded nature of GPUs, which leads to substantial waste in off-chip

memory bandwidth utilization. I design and evaluate a locality-aware memory

hierarchy for throughput processors, which retains the advantages of coarse-

grained accesses for spatially and temporally local programs while permit-

ting selective fine-grained access to memory. By adaptively adjusting the ac-

cess granularity, memory bandwidth and energy consumption are reduced for

data with low spatial/temporal locality without wasting control overheads or

prefetching potential for data with high spatial locality.
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Chapter 1

Introduction

Throughput processors, notably represented by recent graphics pro-

cessing units (GPUs), have emerged as a promising platform for achieving

high performance for various workloads. In order to balance hardware and

execution efficiency with programmability and dynamic application control

flow, state-of-the-art GPU architectures use the single-instruction multiple-

thread (SIMT) execution model. The SIMT model allows GPUs to utilize

efficient single-instruction multiple-data (SIMD) hardware while presenting a

simple parallel abstraction to the programmer. With SIMT, the programmer

writes codes to be executed by scalar threads but the hardware and software

are designed to collaboratively execute groups of scalar threads in vectorized

SIMD pipelines (or lanes). Compared to traditional vector/SIMD machines,

the SIMT model simplifies mapping parallel applications to SIMD hardware

thanks to the native support for per-thread load/store instructions as well

as conditional branches. This dissertation focuses on throughput processors

based on SIMT-based GPU architectures.

1



1.1 Throughput Processors and Irregularity

There has been a growing trend of utilizing GPUs as throughput com-

pute engines for high-performance computing (HPC). Thanks to their high

computational throughput and memory bandwidth, GPUs have proven effec-

tive for exploiting data parallelism in programs operating on large data arrays

with well-structured memory accesses [1, 2]. A large body of programs falls

in this category of structured control and memory access behavior (e.g., some

matrix manipulations [3], bioinformatics [4], computational finance [5], fluid

dynamics [6] and others) and their GPU implementations are known to be

much faster than their parallel CPU versions; primarily because of these algo-

rithms’ regular control flow and memory access patterns [7]. As such, GPUs

are widely adopted for accelerating HPC applications, which is highlighted by

the fact that in 2013, 54 of the Top500 list of world’s most powerful super-

computers are powered by GPUs [8].

Many application domains, however, are primarily based on algorithms

that operate on irregular data structures, such as graphs, trees, linked-lists,

hash-tables and others. These include applications such as data mining [9],

social networks [10], optimization theory [11], n-body simulation [12], and

meshing [13]. Due to their complex control flow and irregular memory access

patterns, porting these applications to run efficiently on GPUs is much more

challenging than regular programs. While recent literature have studied sev-

eral efficient GPU implementation of such irregular algorithms, the achieved

computational efficiency is far from optimal [14, 15, 16]. Graph algorithms,
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for instance, are fundamental building blocks for many parallel applications

but still perform poorly on GPUs, typically suffering from low SIMD utiliza-

tion and performance [17, 18, 19]. Given the importance of such applications,

efficient handling of program irregularity is vital for the continued success of

GPUs as throughput computing platforms.

1.2 SIMT Challenges upon Irregularity

While the SIMT model enhances programmability, the following factors

pose challenges in achieving peak performance for highly irregular applications.

Conditional Branch Support. SIMT enables each scalar thread to follow

an independent flow of control, despite utilizing vector pipelines for execution.

When control flow causes threads within the same group to diverge and take

different control flow paths, the underlying SIMD hardware can only partially

activate the vector lanes of a single path at a time due to the structural hazard

of SIMD. Such hazards are commonly referred to as control divergence in the

literature, and current GPUs adopt a stack-based reconvergence model (either

in hardware or in software) for control flow management. This model partitions

the thread group into subgroups that share the same control flow, having only

a single subgroup execute at a time while masking out those in different control

flows. While the stack model is simple and guarantees correct execution, the

serialized execution of basic blocks restricts available thread-level parallelism
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and leads to sub-optimal utilization of SIMD lanes for highly irregular control

flow, leading to poor performance.

Fine-grained Memory Accesses. The native support for per-thread mem-

ory access allows a grouping of scalar threads to exhibit fine-grained scatter-

gather characteristics. When a group of threads exhibits regular memory

access patterns, the cost of memory access is amortized by coalescing them

into its minimum number of transactions. For highly irregular applications,

however, groups of threads exhibit diverging memory access behavior (e.g.,

low spatial locality in terms of the memory address each thread is accessing)

which causes higher pressure on the memory hierarchy. Such behavior, com-

bined with the massive multithreading nature of GPUs, limits on-chip cache

space available within a given timeframe. This exacerbates caching inefficien-

cies and leads to very low reuse of cache blocks with poor locality. Little

research has been conducted on this important problem so far, however, and

prior work mainly resorts to a memory hierarchy design that is unaware of

these locality characteristics. I observe that this lack of locality consideration

in memory systems leads to significant waste in off-chip memory bandwidth

utilization and degrades energy-efficiency. The growing interest of accelerating

irregular codes, however, necessitates GPUs to manage such memory accesses

more effectively.
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1.3 Thesis Statement

Future throughput processors will increasingly demand more efficient

execution of irregular applications as they gain momentum for general pur-

pose computing. Current throughput processors, however, suffer from reduced

thread-level parallelism, underutilization of compute resources, and waste in

off-chip bandwidth utilization for highly irregular applications. My thesis

demonstrates that future throughput processors can be designed to perform

better in executing irregular applications by utilizing thread-level parallelism

within/across executing paths, while judiciously coordinating access granular-

ity across the memory hierarchy.

1.4 Contributions

The goal of my thesis is to explore mechanisms that allow GPUs to

better manage irreguarity such that they can truly be considered for “gen-

eral purpose” computing. The first part of this dissertation provides a thor-

ough analysis on the cause of control divergence and identifies that previously

suggested optimizations to the divergence problem suffer from the following

limitations: 1) serialized execution of diverging paths, 2) lack of robustness

across regular/irregular codes, and 3) limited applicability. Based on these

observations, I propose and evaluate three novel mechanisms that resolve the

aforementioned issues, providing performance-efficient optimizations to GPU

control divergence. In the second half of the thesis, I observe that conventional

memory hierarchy designs are ill-suited for handling irregular GPU memory
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accesses as they sub-optimally utilize on-chip caches as well as off-chip band-

width. I therefore propose a memory hierarchy design that can efficiently

handle irregular memory access patterns in throughput processors such that

overall performance as well as energy-efficiency is substantially improved. To

summarize the most important contributions of this dissertation:

1. Execution path serialization at divergent branches is a significant chal-

lenge of control divergence as it reduces available thread-level parallelism

exposed to the thread scheduler. I propose the dual-path execution model

to alleviate the path serialization problem. The proposed mechanism

requires only small changes to the GPU microarchitecture while sub-

stantially enhancing thread-level parallelism by allowing the taken and

not-taken paths to be executed in an interleaved manner [20]. Unlike

previously proposed solutions to the serialization problem [21], the dual-

path execution model requires no heuristics, no compiler support, and is

robust to changes in architectural parameters.

2. Another significant issue with control divergence is underutilization of

compute resources. Recent research has demonstrated that by dynami-

cally compacting multiple unmasked threads into a single SIMD group,

average compute resource utilization and performance can be improved [22,

23, 24]. Such compaction-based GPU architectures, however, force all

candidate threads to synchronize on all conditional branches, effectively

generating a hardware-induced compaction-barrier. I observe that such
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synchronization overhead is enforced even when an application does not

diverge at all, leading to degraded performance even compared to base-

line without compaction. To alleviate the unnecessary synchronization

overhead, this thesis proposes compaction adequacy prediction, which

only stalls those threads that are likely to benefit from compaction, while

allowing others to bypass compaction and continue executing [25] in or-

der to minimize synchronization.

3. Although prediction of compaction adequacy reduces unnecessary syn-

chronization overhead, the number of applications that practically ben-

efit from compaction is still limited to highly divergent applications. As

studied in this thesis, however, for a wide range of applications, there

are still unexploited opportunities for compaction. Current GPUs stat-

ically assign a fixed SIMD lane for each thread based on its thread-ID

in a round-robin manner to simplify the structure of the register file.

My work demonstrates that such round-robin mapping limits the po-

tential compactability of branching points because control divergence

is often exhibited in an aligned/clustered manner on particular SIMD

lanes. Based on the insights of the analysis, this work proposes SIMD

lane permutation, which improves compactability of branches by permut-

ing the home SIMD lanes of threads [26]. While being able to maintain

the register file efficiency, SIMD lane permutation substantially reduces

the alignement of active threads to lanes and evenly distributes them

across all SIMD lanes, significantly improving branch compactability.
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4. In addition to the control divergence problem, inefficient utilization of

caches and off-chip bandwidth is another key concern for current GPU

architectures. The second part of my dissertation shows that irregular

memory accesses, combined with massive multithreading, often result in

low temporal/spatial reuse of cache blocks because the per-thread cache

capacity is small in GPUs. Current GPU memory hierarchies, however,

adopt coarse-grained memory accesses that always request missed cache

blocks in full block-wide granularity. I observe that such coarse-grained

memory accesses waste off-chip bandwidth and limit the energy-efficiency

of current GPUs for irregular applications by over-fetching unnecessary

data. I propose the locality-aware memory hierarchy [27] that retains the

advantages of coarse-grained accesses for spatially and temporally local

programs while permitting selective fine-grained access to memory. By

adaptively adjusting the access granularity, the memory bandwidth and

energy consumption can be substantially reduced for data with low spa-

tial/temporal locality while not wasting control overheads or prefetching

potential for data with high spatial locality.

1.5 Dissertation Organization

The remainder of this dissertation is organized as follows: Chapter 2

reviews necessary background information for understanding contemporary

GPU architectures as well as its programming model. Chapter 3 proposes the

dual-path execution model as means to enhance thread-level parallelism and
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Chapter 4 develops a set of mechanisms to improve SIMD resource utiliza-

tion. Chapter 5 discusses the limits of conventional memory hierarchy designs

and proposes a locality-aware memory hierarchy. Chapter 6 discusses future

research directions and Chapter 7 concludes the dissertation.
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Chapter 2

Background

This chapter provides basic background information for understanding

contemporary GPU architectures and their programming model. We start

by briefly reviewing the SIMT programming model in Section 2.1 and the

baseline GPU processor architecture in Section 2.2. We then describe the the

overall system memory hierarchy in Section 2.3, followed by summarizing the

state-of-the-art GPU control flow management schemes in Section 2.4.

2.1 The SIMT Programming Model

The GPU programming model is based on the single-program multiple-

data concept where a single program (commonly referred to as a kernel) is

executed by all the threads that the programmer spawns – the programmer

writes code to be executed by scalar threads, each of which can follow any

control flow as well as referencing arbitrary memory addresses. Such exe-

cution model is commonly referred to as SIMT and is the most dominant

GPU programming and execution model in contemporary GPU architectures

(e.g., CUDA [28] and OpenCL [29], supported by GPUs from NVIDIA [30],

AMD [31], and Intel [32]).
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Figure 2.1: Example thread-hierarchy in CUDA programs.

With these programming models, the programmer groups the threads

into a thread-block (referred to as “cooperative thread arrays” (CTAs) by

CUDA and “workgroups” by OpenCL), which is the finest grouping of scalar

threads exposed to the programmer. In the actual hardware level, however,

each thread-block is decomposed into a finer granularity called warps by CUDA

and wavefronts by OpenCL. In CUDA, for instance, each GPU core schedules

the instruction to be executed in a warp of 32 threads (wavefront of 64 threads

in OpenCL), yet such SIMD grouping of warps is not explicitly exposed to

the programmer [28]. The number of threads that constitute a thread-block

is an application parameter, and a thread-block typically consists of enough

threads to form multiple warps. In general, the SIMT model simplifies map-

ping parallel application to SIMD hardware thanks to the hardware and soft-

ware support for collaboratively executing groups of threads in the vectorized

SIMD pipelines.

In the rest of this thesis, we will mainly use the terminologies defined

in CUDA [28]. Figure 2.1 is an example of a thread hierarchy typically present

in CUDA programs.
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Figure 2.2: High-level overview of the baseline GPU architecture.

2.2 Throughput Processor Architecture

Current GPUs, such as NVIDIA’s Tesla [1] or AMD’s graphics core next

(GCN) [33] architecture, consist of multiple GPU cores (referred to as stream-

ing multiprocessors (SMs) by NVIDIA), where each core contains a number of

parallel execution lanes that operate in a SIMD fashion: a single instruction

is issued to each of the parallel SIMD lanes and that instruction is executed

across the lanes simultaneously. Each core also contains an on-chip SRAM

array which is divided to be used as an L1 data cache and a local scratchpad.

SIMD lanes are simple in-order pipelines that are optimized for energy-

efficiency, hence sophisticated microarchitectural components (e.g., branch

predictors, hardware prefetchers, etc . . .) that enhance instruction-level paral-

lelism (ILP) do not exist. Rather, GPUs are optimized to leverage thread-level

parallelism (TLP) as means to tolerate long-latency operations (e.g., cache

misses, transcendental operations, etc . . .). Such latency tolerance is achieved

by managing a massive number of concurrent threads and allowing them to

interleave in a fine-grained manner. Hence, GPU cores contain a large register
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Figure 2.3: (Ir)regular memory access behavior and the resulting memory
transactions generated by the address coalescer.

file [34] in order to support the large number of concurrent threads, thereby

achieving high computational throughput. The number of concurrently exe-

cutable thread-blocks (and therefore the number of warps/threads) within a

GPU core is determined by the number of registers and local scratchpad that

each scalar thread requires. The thread scheduler selects one warp per cycle

to issue an instruction to all the SIMD lanes within the GPU core. Figure 2.2

is an overview of the baseline processor architecture we assume in this thesis.

2.3 System Memory Hierarchy

SIMT Memory Access Behavior. As discussed in Chapter 1, the SIMT

execution model provides fine-grained load/store instructions in a per-thread

granularity. This means that a single warp (which consists of 32 scalar threads)
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can potentially reference 32 distinct memory regions. In order to save memory

access bandwidth, each GPU core contains a hardware address coalescer [28]

that compacts spatially local accesses into the minimum number of memory

transactions possible. For well-structured, regular memory accesses that are

confined within a fixed cache block granularity (Figure 2.3(a)), the hardware

coalescer issues a single memory transaction, amortizing the cost of servicing

all the scalar threads’ request. Warps that exhibit irregular memory access

patterns, however, cannot be coalesced and generate multiple cache accesses

(Figure 2.3(b))1. Such divergent memory accesses (also known as memory

divergence) cause high cache port contention and put much higher pressure on

the overall memory hierarchy, often degrading performance.

Coarse-Grained Memory Hierarchy. GPU manufacturers do not reveal

deep microarchitectural details of their memory system, so previous litera-

ture [24, 35, 20, 36, 37] assumes a GPU memory hierarchy optimized for

coarse-grained (CG) memory accesses (Figure 2.4). Following memory coa-

lescing, the GPU core requests data (which can be as small as 32 bytes but

also up to 128 bytes) from the L1 data cache, where each cache block is sized

as 128 bytes. Such 128 bytes cache block design is chosen to accommodate the

maximum data request size generated by the GPU core, and a cache miss at

L1 will invoke a cache-block wide fill request to the shared L2 cache (which is

1The CUDA programming model designates that each warp can invoke one or more 32
to 128 bytes data requests, depending on how many threads are active and how divergent
the memory access behavior is.
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Figure 2.4: Baseline CG-only memory hierarchy. ABUS designates the con-
trol/address bus whereas DBUS represents the data bus. Each miss at the
cache level invokes a cache block-wide fill request to the lower level of the
hierarchy.

the last level cache (LLC) with 128 bytes cache block). If the last level cache

misses, the corresponding memory channel will receive the LLC block granu-

larity fill request, and the memory scheduler communicates with the off-chip

DRAM to deliver the missed data. Note that the width of the data bus for

each memory channel is 64 bits (Figure 2.4), as in Fermi (GF110, [38]), Kepler

(GK110, [30]), and SouthernIslands [39], making a 64 bytes minimum-access

granularity (8-bursts, 64 bits per burst) with GDDR5 DRAM [40]. To deliver

the 128 bytes of data to the LLC, therefore, the memory scheduler issues two

consecutive read commands to the off-chip DRAM. Figure 2.5 is a high-level

overview of the baseline memory hierarchy, having a uniform interface to the

processor with a large (coarse) minimum access granularity of cache block size.

While well-structured, regular applications can effectively utilize the

baseline CG memory system, not all applications can be re-factored to exhibit

regular control and memory access patterns. Many emerging applications
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Figure 2.5: High-level overview of the baseline GPU memory hierarchy.

therefore suffer from inefficient utilization of off-chip bandwidth under such

baseline configuration and we elaborate on this problem in Chapter 5.

2.4 Stack-Based Reconvergence

While the SIMT execution model enables very efficient hardware, it

requires a mechanism to allow each thread to follow its own thread of control,

even though only a single uniform operation can be issued across all threads

in the same warp. In order to allow independent branching, hardware must

provide two mechanisms. The first mechanism ensures that only threads that

are on the active path, and therefore share the same program counter (PC),

can execute and commit results. This can be done by associating an active
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mask with each SIMD instruction that executes. Threads that are in the

executing SIMD instruction but not on the active control path are masked out

and do not commit results. The mask may either be computed dynamically

by comparing the explicit PC of each thread with the PC determined for the

active path, or alternatively, the mask may be explicitly stored along with

information about the control paths. The GPU in Intel’s Sandy Bridge [32]

stores an explicit PC for each thread while GPUs from AMD and NVIDIA

currently associate a mask with each path [30, 31].

The second mechanism determines which single path, of potentially

many control paths, is active and is executing the current SIMD instruction.

The technique for choosing the active path used by current GPUs is stack-based

reconvergence, which is detailed below.

Control Divergence. A significant challenge with the SIMT model is main-

taining high utilization of the SIMD resources when the control flow of different

threads within a single warp diverges. There are two main reasons why SIMD

utilization decreases with such control divergence (also referred to as branch

divergence). The first is that masked operations needlessly consume resources.

This problem has been the focus of a number of recent research projects, with

the main idea being that threads from multiple warps can be combined to

reduce the fraction of masked operations [23, 22, 24, 25]. We further elaborate

on this problem in Chapter 4.
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Figure 2.6: Example control flow graph. Each warp is assumed to consist of
4 threads and ones and zeros in the control flow graph designate the active
and inactive threads in each basic block. The stack-based reconvergence model
traverse through the control flow graph in a sequential manner, executing each
basic block one at a time (detailed in Section 3.1.1).

The second reason is that execution of concurrent control paths is se-

rialized with every divergence potentially decreasing parallelism. Therefore,

care must be taken to allow them to reconverge with one another. In current

GPUs, all threads that reach a specific diverged branch reconverge at the im-

mediate post-dominator instruction of that branch [41]. The post-dominator

(PDOM) instruction is the first instruction in the static control flow that is

guaranteed to be on both diverged paths [22]. For example, in Figure 2.6, the

PDOM of the divergent branch at the end of basic block A (BRB−C) is the

instruction that starts basic block G. Similarly, the PDOM of BRD−E at the

end of basic block C is the instruction starting basic block F .
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Reconverging Diverged Paths using the Stack Model. An elegant

way to implement PDOM reconvergence is to treat control flow execution as

a stack. Each time control diverges, both the taken and not taken paths are

pushed onto a stack (in arbitrary order) and the path at the new top of stack is

executed. When the control path reaches its reconvergence point, the entry is

popped off of the stack and execution now follows the alternate direction of the

diverging branch. This amounts to a serial depth-first traversal of the control

flow graph. Note that only a single path is executed at any given time, which

is the path that is logically at the top of the stack. There are multiple ways to

implement the stack model, including both explicit hardware structures and

implicit traversal with software directives [42, 43]. This dissertation assumes

the stack model in the context of an explicit hardware approach, which we dis-

cuss in-depth in Section 3.1.1. According to prior publications, this hardware

approach is used in NVIDIA GPUs [43].
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Chapter 3

Improving SIMT Thread-Level Parallelism

This chapter reviews previously studied SIMT control flow management

schemes and provides an in-depth analysis on their limitations. Then, the

dual-path execution model [20] is introduced as a simple yet highly effective

alternative for SIMT control flow. The proposed mechanism only requires

small changes to the baseline reconvergence stack model, maintains the same

SIMD efficiency, and yet is able to increase available thread-level parallelism

and performance.

3.1 Previous SIMT Control-Flow Mechanisms

This section summarizes two representative SIMT control flow man-

agement schemes, namely the single-path execution model and dynamic warp

subdivision. We first discuss the single-path execution model which is the

SIMT control management scheme widely adopted in contemporary GPU ar-

chitectures (Section 3.1.1). We then explore dynamic warp subdivision in

Section 3.1.2, a recently proposed research project that tackles the execution

path serialization issue of the baseline model.
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3.1.1 Single-Path Execution Model

Current GPU architectures balance the high efficiency of SIMD execu-

tion with programmability and dynamic control. As discussed in Section 2.4,

allowing each logical thread to follow independent flow of control under SIMD

hardware leads to control divergence – when control flow causes threads within

the same warp to diverge and take different control flow paths. This is cur-

rently handled by utilizing a reconvergence predicate stack, which partially

serializes execution. The reconvergence stack tracks the program counter (PC)

associated with each control flow path, which threads are active at each path

(the active mask of the path), and at what PC should a path reconverge (RPC)

with its predecessor in the control flow graph [22]. The stack contains the in-

formation on the control flow of all threads within a warp, hence each warp

has its own stack. Figure 3.1 depicts the per-warp reconvergence stack and its

operation on the example control flow shown in Figure 2.6. We describe this

example in detail below.

When a warp first starts executing, the stack is initialized with a single

entry: the PC points to the first instructions of the kernel (first instruction

of block A), the active mask is full, and the RPC (reconvergence PC) is set

to the end of the kernel. When a warp executes a conditional branch, the

predicate values for both the taken and non-taken paths (left and right paths)

are computed. If control diverges with some threads following the taken path

and others the non-taken path, the stack is updated to include the newly

formed paths (Figure 3.1(b)). First, the PC field of the current top of the stack
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Figure 3.1: High-level operation of the baseline single-path execution model,
when executing the control flow graph in Figure 2.6. The ones/zeros inside
the active mask field designate the active threads in that block. Bubbles in (g)
represent idle execution resources (masked lanes or zero ready warps available
for scheduling in the GPU core).

(TOS) is modified to the PC value of the reconvergence point, because when

execution returns to this path, it would be at the point where the execution

reconverges (start of block G in the example). The RPC value is explicitly

communicated from software and is computed with a straightforward compiler
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analysis [41]. Second, the PC of the right path (block C), the corresponding

active mask, and the RPC (block G) is pushed onto the stack. Third, the

information on the left path (block B) is similarly pushed onto the stack.

Finally, execution moves to the left path, which is now at the TOS. Note

that only a single path per warp, the one at the TOS, can be scheduled for

execution. For this reason we refer to this baseline architecture as the single-

path execution (SPE) model throughout this thesis.

When the current PC of a warp matches the RPC field value at that

warp’s TOS, the entry at the TOS is popped off (Figure 3.1(c)). At this point,

the new TOS corresponds to the right path of the branch and the warp starts

executing block C. As the warp encounters another divergent branch at the

end of block C, the stack is once again updated with the left and right paths

of blocks D and E (Figure 3.1(d)). Note how the stack elegantly handles the

nested branch and how the active masks for the paths through blocks D and

E are each a subset of the active mask of block C. When both left and right

paths of block D and E finish execution and their corresponding stack entries

are popped out, the TOS points to block F and control flow is reconverged

back to the path that started at block C (Figure 3.1(e)) – the active mask is

set correctly now that the nested branch reconverged. Similarly, when block

F finishes execution and the PC equals the reconvergence PC (block G), the

stack is again popped out and execution continues along a single path with a

full active mask (Figure 3.1(f)).
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This example points out the two main deficiencies of the SPE model.

First, SIMD utilization decreases every time control flow diverges. SIMD

utilization has recently been the focus of active research (e.g., [23, 22, 24, 25])

and this thesis proposes multiple optimizations on this topic in Chapter 4.

Second, execution is serialized such that only a single path is followed until it

completes and reconverges (Figure 3.1(g)). The SPE model works well for most

applications because of the abundant parallelism exposed through multiple

warps within thread-blocks. However, for some applications, the restriction of

following only a single path does degrade performance. Meng et al. proposed

dynamic warp subdivision (DWS) [21], which selectively deviates from the

reconvergence stack execution model, to overcome the serialization issue. We

detail the intuition behind DWS in the next subsection as we use it as a

comparison point in our evaluation of the proposed dual-path execution (DPE)

model. More recently, Brunie et al. [44] proposed a mechanism that is able to

increase intra-warp parallelism, but relies on significant modifications to the

underlying GPU architecture described above. Because it targets a different

baseline design, we discuss this technique in Section 3.4.6 and qualitatively

compare it with DPE.

3.1.2 Dynamic Warp Subdivision

Dynamic warp subdivision (DWS) was proposed to allow warps to in-

terleave the scheduling of instructions from concurrently executable paths [21].

The basic idea of DWS is to treat both the left and right paths of a divergent
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(a) When BRB-C is executed, the associate post-dominator of block G is 

examined for eligibility of subdivision: because the number of instructions 

in block G (which is 3) is larger than the subdivision threshold determined 

by heuristics, the warp is not subdivided and uses the stack to serialize 

execution of block B and C, rather than using the WST for interleaving the 

warp-splits. WST remains blank accordingly.

(b) BRD-E, on the other hand, has a post-dominator (block F) smaller than 

the threshold which allows the warp to be subdivided: the WST is therefore 

updated with both block D and E, once warp diverges at BRD-E. Note that 

WST's RPC field is updated to path G (rather than path F which is BRD-E's 

post-dominator), which equals the RPC field value at the TOS.

(c) Warp-splits registered in WST continue execution until their PC matches 

its RPC field: compared to SPE which will have these two paths reconverge 

at block F, DWS allows the two warp-splits to continue execution beyond 

block F because its RPC field is saved as block G. Once warp-splits arrive 

path G, the two entries in WST are invalidated, and the reconvergence stack 

is used to execute path G.

(d) Execution flow using DWS with subdivision threshold of 2.
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Figure 3.2: High-level operation of DWS with a subdivision threshold of 2. We
assume the same control flow graph in Figure 2.6. Note that all basic blocks
are assumed of having exactly three instructions, with the exception of block
F that contains only a single instruction.
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branch as independently schedulable units, or warp-splits, such that diverg-

ing path serialization is avoided and intra-warp latency tolerance is achieved.1

With DWS, a divergent branch may either utilize the baseline single-path stack

mechanism (Figure 3.2(a)), or instead, ignore the stack and utilize an addi-

tional hardware structure, the warp-split table (WST), that is used to track

the independently-schedulable warp-splits (Figure 3.2(b)). Nested branches

within a split warp cause further splits. As with the stack, this successively

degrades SIMD efficiency. Unlike the stack, split warps are dynamically and

concurrently scheduled and may not reconverge as early as the post-dominator.

To prevent very low SIMD lane utilization, DWS uses a combination

of three techniques. First, the WST also contains a reconvergence PC like the

stack. This RPC, however, is not the PDOM of the diverging branch, but

rather the PDOM of the last entry in the stack. Because the stack cannot be

used to track warp-splits, further subdivisions also use this same RPC value

and miss many opportunities for reconvergence. This decision increases paral-

lelism and potential latency hiding at the expense of reduced SIMD utilization

(the stack could have reconverged nested branches whereas the WST cannot).

Second, to reduce the impact of late reconvergence and recursive subdivision,

DWS attempts to dynamically and opportunistically recombine warp-splits

when two splits happen to reach the same PC. Unlike the PDOM reconver-

1Meng et al. [21] also propose to subdivide warps upon memory divergence, which is
orthogonal to subdivision at control divergence. My thesis primarily focuses on control
divergence subdivision, although we briefly discuss how memory divergence subdivision can
be incorporated into the dual-path execution model in Section 3.4.
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gence stack mechanism, this opportunistic merging is not guaranteed and may

never occur, as illustrated with block F executing twice in Figure 3.2(c–d).

Therefore, third, DWS also relies on a heuristic for determining whether to

split a warp in the first place: a warp is subdivided only if the divergent

branch’s immediate post-dominator is followed up by a short basic block of no

more than N instructions. Meng et al. suggest that this subdivision threshold

(N) should be 50 instructions [21], which we refer to as DWS50.

As I demonstrate in my thesis, DWS cannot consistently balance in-

creased parallelism and SIMD utilization and often degrades performance when

compared to the baseline SPE. The threshold heuristic is sensitive, with small

values of N often preventing splits and not increasing thread-level parallelism

(TLP) significantly, while high values of N split too aggressively and exhibit

low SIMD utilization. Furthermore, the WST adds complexity and the com-

piler may need to change heuristics based on the specific parameters of the

hardware and application. In contrast, dual-path execution is very robust;

it does not degrade performance compared to the baseline and outperforms

DWS in all but one experiment despite DWS exposing greater parallelism.

3.1.3 Limitation of Previous Models

As discussed in previous subsections, both SPE and DWS are able to

address only one aspect of the control divergence issue while overlooking the

other. SPE uses simple hardware and an elegant execution model to maximize

SIMD utilization with structured control flow, but always serializes execution
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with only a single path schedulable at any given time. DWS can interleave the

scheduling of multiple paths and increase TLP, but this sacrifices SIMD lane

utilization. The dual-path execution (DPE) model, on the other hand, always

matches the utilization and SIMD efficiency of the baseline SPE while still

enhancing TLP in some cases. DPE keeps the elegant reconvergence stack

model and the hardware requires only small modifications to utilize up to

two interleaved paths. The following section describes the microarchitectural

aspects of DPE, followed by a detailed evaluation and discussion.

3.2 Dual-Path Execution Model

This work is motivated by the key observation that previous architec-

tures either rely on stack-based reconvergence and restrict parallelism to a

single path at any given time, or that stack-based reconvergence is abandoned

leading to much more complex implementations and possible degradation of

SIMD efficiency (with DWS). My approach maintains the simplicity and ef-

fectiveness of stack-based reconvergence but exposes greater parallelism to

the scheduler. With DPE, the execution of up to two separate paths can be

interleaved, while reconvergence is identical to the baseline stack-based recon-

vergence. Support for DPE is only required in a small number of components

within the GPU microarchitecture and requires no support from software.

Specifically, the stack itself is enhanced to provide up to two concurrent paths

for execution, the scoreboard is modified to track dependencies of two concur-

rent paths and to correctly handle divergence and reconvergence, and the warp

28



scheduler is extended to handle up to two schedulable objects per warp. The

details of the DPE microarchitecture is explained below and we use a running

example of the control flow in Figure 2.6 corresponding to the code shown in

Figure 3.5.

3.2.1 Dual-Path Stack Structure

DPE extends the hardware stack used in many current GPUs to sup-

port two concurrent paths of execution. The idea is that instead of pushing

the taken and fall-through paths onto the stack one after the other, in effect

serializing their execution, the two paths are maintained in parallel. A stack

entry of the dual-path stack architecture thus consists of three data elements:

a) PC and active mask value of the left path (PathL), b) PC and active mask

value of the right path (PathR), and c) the RPC (reconvergence PC) of the

two paths. We use the generic names left and right because there is no reason

to restrict the mapping of taken and non-taken paths to the fields of the stack.

Note that there is no need to duplicate the RPC field within an entry because

PathL and PathR of a divergent branch have a common reconvergence point.

Besides the data fields that constitute a stack entry, the other components of

the control flow hardware, such as the logic for computing active masks and

managing the stack, are virtually identical to those used in the baseline stack

architecture. The dual-path stack architecture exposes the two paths for exe-

cution on a divergent branch and can improve performance when this added
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(g) Execution flow using the dual-path stack model.

E

Figure 3.3: High-level operation of dual-path execution model. Figure assumes
the same control flow graph and assumptions in Figure 3.2.

parallelism is necessary. Figure 3.3 illustrates the high-level operation of DPE,

which is described below for the cases of divergence and reconvergence.

30



Handling Divergence. A warp starts executing on one of the paths, for

example the left path, with a full active mask, the PC set to the first instruction

in the kernel and the RPC set to the last instruction (PathL in Figure 3.3(a)).

The warp then executes in identical way to the baseline single-path stack until

a divergent branch executes. When the warp executes a divergent branch,

the dual-path stack architecture pushes a single entry onto the stack, which

represents both sides of the branch, rather than pushing two distinct entries as

done with the baseline SPE. The PC field of the block that diverged is set to the

RPC of both the left and right paths (block G in Figure 3.3(b)), because this

is the instruction that should execute when control returns to this path. Then,

the active mask and PC of PathL, as well as the same information for PathR are

pushed onto the stack, along with their common RPC and updating the TOS

(Figure 3.3(b)). Because it contains the information for both paths, the single

TOS entry enables the warp scheduler to interleave the scheduling of active

threads at both paths as depicted in Figure 3.3(g). If both paths are active

at the time of divergence, the one to diverge (block C in Figure 3.3(b)) first

pushes an entry onto the stack, and in effect, suspends the other path (block B

in Figure 3.3(c)) until control returns to this stack entry (Figure 3.3(e)). Note

that the runtime information required to update the stack entries is exactly

the same as in the baseline single-path stack model.

Handling Reconvergence. When either one of the basic blocks at the TOS

arrives at the reconvergence point and its PC matches the RPC, the block is
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execution model. Each scoreboard reflects the status after executing the first
load instruction in path A of Figure 3.5

invalidated (block D in Figure 3.3(d)). Because the right path is still active,

though, the entry is not yet popped off of the stack. Once both paths arrive at

the RPC, the stack is popped and control is returned to the next stack entry

(Figure 3.3(e–f)).

3.2.2 Scoreboard

Recent GPUs from NVIDIA, such as Fermi [38], allow threads within

the same warp to be issued back to back using a per warp scoreboard to track

data dependencies. One possible implementation of the scoreboard ([45]) is a

content-addressable-memory (CAM) structure that is indexed with a register

number and a warp ID and returns whether that register is pending write-back
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for that warp (Figure 3.4(a)). When an instruction is decoded, the source and

destination registers are searched in the scoreboard and only instructions with

no RAW/WAW hazards are considered for scheduling. Once an instruction

is scheduled for execution, the scoreboard is updated to show the instruc-

tion’s destination register as pending. When the register is written back, the

scoreboard is updated and the pending bit is cleared. To support multiple

concurrent paths per warp, the scoreboard must be modified to track the reg-

ister status of both the right and left paths of each warp independently while

still correctly handling divergence and reconvergence when dependencies are

crossed from one path to the other.

DPE accomplishes this with two modifications to the scoreboard. First,

we extend the scoreboard to track the left and right path separately (Fig-

ure 3.4(b)). This, in essence, doubles the scoreboard so that the two paths

can execute concurrently with no interference. Second, we add a shadow bit

to each scoreboard entry, which is used to ensure correct execution when di-

verging and reconverging. To explain how the shadow bits are used, we first

introduce the issues with divergence and reconvergence. There are four sce-

narios that must be considered (Figure 3.5):

1. Unresolved pending writes before divergence (e.g., r0 on path A) should

be visible to the other path (e.g., r0 on path C) after divergence, and

further, both paths need to know when r0 is written back. Ignoring either

aspect will lead to either incorrect execution or deadlock. If a register
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Left Path

// Path A

load r0, MEM[~];

// Warp diverges!

if( ){ // Path B

load r1, MEM[~];

}

// Warp diverges!

if( ){ // Path D

add r4, r1, r3;

}

else{ // Path E

sub r4 <- 

}

// Path F

… 

load r7

// Path G

add r8, r1, r7;

Example code

// Path A

load r0, MEM[~];

if( ){ // Path B

load r1, MEM[~];

}

else{ // Path C

add r5, r0, r2;

…
if( ){ // Path D

add r4, r1, r3;

}

else{ // Path E

sub r4, r1, r3;

}

// Path F

… 
load r7, MEM[~];

}

// Path G

add r8, r1, r7;

Right Path

// Path A

load r0 <- MEM[~];

// Warp diverges!

else{ // Path C

add r5, r0, r2;

…
// Warp diverges!

else{ // Path E

sub r4, r1, r3;

}

// Path F

… 
load r7, MEM[~];

}

// Path G

add r1 <- r8, r7;

Divergence

Divergence

Reconvergence

Reconvergence

- Code segments placed horizontally are paths scheduled 

simultaneously.

- Code segments are placed vertically in execution order.

Figure 3.5: Data dependencies across different execution paths (control flow
of Figure 2.6)

that is not yet ready is used, an incorrect result may be generated.

Conversely, if a register is assumed pending and is never marked as

ready, execution will deadlock.

2. Unresolved pending writes before reconvergence (e.g., r7 on path F )

should be visible to the other path (r7 at path G) after reconvergence.

3. If a register number is the destination register of an instruction past a

divergence point, then this register should not be confused with the same

register number on the other path. Treating this as a false dependency
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left path, can therefore see 
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Figure 3.6: Example of how the proposed scoreboard handles data dependen-
cies across different paths in Figure 3.5.

between the paths may hurt performance but does not violate correctness

(e.g., r1 on path B is a different register than r1 on paths D/E).
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4. Similarly to the case above, if the register number on two different paths

is a destination in both paths concurrently, then writes to this register

number from the two paths should not be confused with one another.

Thus, enforcing a false dependency is a poor design option because it

will lead to the two paths being serialized as one path waits to issue

until after the other path writes back.

Maintaining separate left and right scoreboards addresses the fourth

scenario listed above and allows two independent paths to operate in parallel,

but on its own cannot handle cross-path dependencies resulting from diver-

gence and reconvergence. The proposed scoreboard design handles the first

three cases conservatively by treating a pending write from before a divergence

or reconvergence as pending on both paths after divergence/reconvergence,

regardless of which path it originated in. This guarantees that no true depen-

dency will be violated. To achieve this behavior, when a path diverges, the

pending bits of its scoreboard are copied to its shadow bits. When querying

the scoreboard for a register in one path, the shadow bits in the other path

are also examined. If either the path’s scoreboard or the shadow in the other

scoreboard indicate a pending write, the path stalls (Figure 3.4(b)). In our

example, this mechanism ensures that path C correctly waits for the pending

write of r0 from path A (Figure 3.6(a–b)). Upon a writeback, both the shadow

and pending bits of the original scoreboard of the instruction are cleared,

freeing instructions on both paths to schedule (Figure 3.6(c)). This requires

propagating a single additional bit down the pipeline to indicate whether a
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writeback is to the left or right scoreboards. A similar procedure is followed

for reconvergence to guarantee correct cross-path dependencies, as shown with

the dependency on r7 from path F to path G (Figure 3.6(d)).

At the same time, our design does not create dependencies between

concurrent left and right paths. For example, after the divergence of BRD−E,

the shadow bits for r4 are not set, and thus, r4 is tracked independently in the

left and right scoreboards. While this mechanism ensures correct execution

and avoids serialization as described above, it may introduce false dependencies

that partially stall execution. For example, the write to r1 on path B is

unrelated to the reads of r1 on paths C and D. The shadow bit for r1 on the left

scoreboard is set when the paths diverge at BRD−E, which unnecessarily stalls

the execution of blocks D and E. On the other hand, this false dependency

also ensures that r1 generated in path B is written back before the dependent

instruction in path G executes (Figure 3.6(d)).

While a much more sophisticated scoreboard structure that can fil-

ter out such false dependencies can be designed, our experiments indicate it

will provide little benefit of a maximum 1% performance improvement (Sec-

tion 3.3.3.4). The cost of a non-conservative scoreboard, on the other hand,

would be high because it would require more information to propagate in the

pipeline and additional logic to decide when and when not to wait. The pro-

posed scoreboard is simple in both design and operation.
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3.2.3 Warp Scheduler.

In the baseline SPE architecture, the warp scheduler chooses which of

the ready-to-execute warps should be issued in the next cycle. Because of

the large number of warps and execution units, some GPUs utilize multiple

parallel schedulers with each scheduler responsible for a fixed subset of the

total warps and also a subset of the execution lanes [38, 30]. For example,

NVIDIA’s Fermi GPU has two warp schedulers within each GPU core; one

scheduler for even-numbered warps and the other for odd-numbered warps

with each scheduler responsible for scheduling an instruction for 16 of the

32 lanes within the core [38]. DPE can expose up to twice the number of

schedulable units as each warp can have both a left and a right path at the

same time. This thesis assumes that the scheduler can be extended to support

this greater parallelism by simply doubling the number of entries. Because

each warp has two entries, a single additional selection level to choose which

of the two entries competes with other ready warps is all that is required from

the logic perspective.

In addition to this expanded scheduler that has twice as many schedu-

lable entries, we also experiment with a constrained warp scheduler that main-

tains the same number of entries as SPE. In this constrained configuration,

each warp is allocated a single entry and only one path, which is determined

in the previous cycle, can be considered for scheduling at any time. In order

to not lose scheduling opportunities when only one path is available, or when

only one path is ready, we do not alternate between the paths on every cy-
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cle. Instead, we rotate which path will be available for scheduling whenever

the current schedulable path encounters a cache miss or executes another long

latency operation (e.g. a transcendental function).

3.2.4 Summary of the Benefits of DPE

As described above, the dual-path execution model extends current

GPU designs with greater parallelism at very low cost. It requires no change

to the underlying execution model and does not sacrifice SIMD efficiency. The

extension to the stack itself is simple and only requires small modifications to

existing structures. The warp scheduler also requires only a straightforward

extension to support the greater level of parallelism exposed. The most sig-

nificant change is to the scoreboard, and we show how to extend the baseline

scoreboard to support two paths in a cost-effective manner. While the pro-

posed solution amounts to replicating the scoreboard structure, it does not

add significant complexity because the left and right scoreboard do not di-

rectly interact and the critical path of the dependency-tracking mechanism

is only extended by a multiplexer to select the pending or shadow bits and

the OR-gate shown in Figure 3.4(b). Section 3.3.3.5 provides a qualitative

discussion on the implementation overheads of DPE and its energy-efficiency.

In the following sections we demonstrate the advantages of the extra

parallelism over single-path execution, as well as added robustness and perfor-

mance compared to DWS.
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3.3 Evaluation

This section describes the evaluation methodology, followed by a de-

tailed evaluation of the DPE model. We explore DPE’s impact on TLP, re-

source utilization, number of idle cycles, overall performance, sensitivity to

key parameters, and implementation overheads. All average values are based

on harmonic means.

3.3.1 Methodology

We model the microarchitectural components of dual-path execution

using GPGPU-Sim [46, 47], which is a detailed cycle-based performance simu-

lator of a general purpose GPU architecture supporting CUDA version 3.1 and

its PTX ISA. In addition to the baseline scoreboard provided as a default with

GPGPU-Sim, we model the conservative scoreboard and the warp scheduler

that can schedule both the left and right paths arbitrarily. We also imple-

mented an optimistic scoreboard that does not add any false dependencies

and a constrained warp scheduler that alternates between the left and right

path of each warp (all four mechanisms described in Section 3.2). DWS with

PC-based reconvergence has been implemented and simulated as described in

Section 3.1.2 and by Meng et al. [21]. We do not constrain DWS resources

and model its warp scheduler and scoreboard as perfect; i.e., there are enough

scoreboard resources to track an arbitrary number of warp splits, no false de-

pendencies are introduced, and any number of warp splits can be scheduled

together with no restriction. Because DWS is sensitive to the heuristic guiding
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Table 3.1: Simulator configuration for DPE evaluation.

Number of GPU cores 15
Threads per GPU core 1536
Threads per warp 32
SIMD lane width 32
Registers per GPU core 32768
Shared memory per GPU core 48KB
Number of warp schedulers 2
Warp scheduling policy Oldest warp first [35]
L1 cache (size/associativity/block size) 16KB/4-way/128B
L2 cache (size/associativity/block size) 768KB/8-way/128B
Memory bandwidth 177.6 GB/s
Memory controller Out-of-order (FR-FCFS)

subdivision, we simulated DWS with a range of subdivision threshold values.

In general, the simulator is configured to be similar to NVIDIA’s Fermi archi-

tecture using the configuration file provided with GPGPU-Sim [48]. The key

parameters used are summarized in Table 3.1 and we explicitly mention when

deviating from these parameters for sensitivity analysis.

3.3.2 Benchmarks

DPE has been studied with 27 benchmarks from Rodinia [14], Par-

boil [49], CUDA-SDK [3], the benchmarks provided with GPGPU-Sim [47],

a number of applications from CUDA Zone [2] that can be simulated with

GPGPU-Sim, and MCML [50]. The benchmarks studied are ones whose ker-

nel can execute to completion on GPGPU-Sim. We report the results of the

first 5 iterations of the kernel of MCML (each iteration results in instructions

per cycle (IPC) with near zero variation among different iterations) due to its

long simulation time. Note that this section summarizes the detailed results
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Table 3.2: Benchmarks studied for DPE evaluation.

Interleavable
Abbreviation Description #Instr. Ref.
LUD LU Decomposition 39M [14]
QSort Quick Sort 60M [2]
Stencil 3D Stencil Operation 115M [49]
RAY Ray Tracing 250M [47]
LPS Laplace Solver 72M [47]
MUMpp MUMmerGPU++ 148M [51]
MCML Monte Carlo for ML Media 303B [50]

Non-interleavable
Abbreviation Description #Instr. Ref.
DXTC DXT Compression 18B [3]
BFS Breadth-First Search 16M [47]
PathFind Path Finder 639M [14]
NW Needleman-Wunsch 51M [14]
HOTSPOT Hot-Spot 110M [14]
BFS2 Breadth-First Search 2 26M [14]
BACKP Back Propagation 190M [14]

for the 14 benchmarks shown in Table 3.2, because other benchmarks exe-

cute in an identical way with SPE, DPE, and DWS, as represented by DXTC

and BACKP. The reason for the identical behavior is that the structure of

the control flow in these kernels does not expose any added parallelism with

DPE and that the heuristic that guides DWS always results in no warp splits.

Within the 14 benchmarks we discuss, half do not benefit from DPE because

the branch structure does not result in distinct left and right paths that can

be interleaved (categorized as non-interleavable in Table 3.2). We discuss this

further in the next section. Note that these benchmarks are impacted by DWS

and we evaluate their behavior with DWS.
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< Code snippet from the kernel of BFS benchmark >

int tid = blockIdx.x*MAX_THREADS_PER_BLOCK + threadIdx.x;

// Block A 

if( tid<no_of_nodes && g_graph_mask[tid] ) // BRB-E
{

// Block B

… 

// End of Path B

if(!g_graph_visited[id]) // BRC-D
{

// Block C

… 
}

// Block D

}

// Block E

A

B

C

D

E

< Corresponding control flow graph >

  Example Code) Branch with only the true path active on divergence.

(a) Non-interleavable branches.

< Code snippet from the kernel of LUD benchmark >

// Block A

if(threadIdx.x < BLOCK_SIZE){ // BRB-C
// Block B

idx = threadIdx.x;

array_offset = offset*matrix_dim+offset;

for (i=0; i < BLOCK_SIZE/2; i++){ … }

… 
}

else{

// Block C

idx = threadIdx.x-BLOCK_SIZE;

array_offset =(offset+BLOCK_SIZE/2)*matrix_dim+offset;

for (i=BLOCK_SIZE/2; i < BLOCK_SIZE; i++){ … }

… 
}

// Block D

< Corresponding control flow graph >

  Example Code) Branch with both true/false path active on divergence.

A

CB

D

(b) Interleavable branches.

Figure 3.7: Example of (non-)interleavable branches.
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3.3.3 Results and Analysis

3.3.3.1 TLP and SIMD Lane Utilization

The goal of DPE is to increase the parallelism available to the warp

scheduler by allowing both the taken and non-taken paths of a branch to be in-

terleaved. Not all divergent branches, however, are interleavable because many

branches have only an if clause with no else. With such branches, the recon-

vergence point and the fall-through point are the same and the non-taken

path is empty. BFS, for instance, is known to be highly irregular (average

SIMD lane utilization of only 32%) with significant portion of its branches

diverging. All its divergent branches, however, are ones with only if and

no else clause (Figure 3.7(a)), which leads to all threads in PathR arriving

at the reconvergence point immediately: threads branching into block E at

BRB−E and ones branching into block D at BRC−D all have their next PC

equal to RPC upon divergence and are deactivated until threads in the other

path reconverge. We refer to such divergent branches as non-interleavable,

and to branches that result in both non-empty left and right paths as inter-

leavable (Figure 3.7). A benchmark often contains a mix of interleavable and

non-interleavable branches, and only the interleavable ones have potential for

interleaving with DPE. I therefore define AvgPath (Equation 3.1) to quantify

each benchmark’s potential for interleaving, where N is the total number of

warp instructions issued throughout the execution of the kernel and NumPathi

is the total number of concurrently schedulable paths available at the top of the

stack when the i-th warp is issued.
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AvgPath =

∑N
i=1 NumPathi

N
(3.1)

SPE, which can only schedule the single path at the TOS, always has

NumPathi equal to 1, and hence, has Avgpath = 1 for all benchmarks. DPE,

on the other hand, has Avgpath > 1 for interleavable benchmarks, as NumPathi

equals 2 when an interleavable branch, which generates both PathL and PathR

at the TOS, is executed. Note that AvgPath is 1 with DPE as well when all the

divergent branches within the benchmark are non-interleavable. When DWS is

used, NumPathi equals 1 when the warp is scheduled in non-subdivided mode

as it uses the conventional stack to serialize execution. When a warp is subdi-

vided, however, NumPathi is equal to the total number of valid entries (hence

the number of valid warp-splits) in the WST. Accordingly, non-interleavable

benchmarks can have an AvgPath value larger than 1 when DWS is used.

Figure 3.8 shows AvgPath for all 14 benchmarks with three different

subdivision thresholds, with DWS10 being the most conservative about subdi-

viding warps and DWS100 the most aggressive. Overall, both DPE and DWS

are able to achieve significant increases in AvgPath value across the interleav-

able benchmarks (an average increase of 20% and 71% for DPE and DWS100,

respectively), thereby exposing more TLP for the warp scheduler. DWS100 and

DWS50 expose significantly more TLP than DPE and also increase TLP for

non-interleavable benchmarks. As discussed in Section 3.2, the improvement

in TLP with DWS comes at the cost of decreased SIMD utilization. Fig-

ure 3.9 summarizes the average SIMD lane utilization achieved across these
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(a) Interleavable benchmarks.
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(b) Non-interleavable benchmarks.

Figure 3.8: Average number of concurrently schedulable paths per warp.

benchmarks. While, as expected, DPE shows no loss in SIMD lane utiliza-

tion across all benchmarks, DWS sacrifices a large fraction of SIMD utiliza-

tion in many cases. With the exception of LUD, QSort, MCML, DXTC, and

BACKP, DWS50 and DWS100 reduce SIMD efficiency by a large amount for

all benchmarks: an average 48.1%/48.5% loss for interleavable benchmarks

and 18.6%/27.1% loss for non-interleavable ones, respectively. This implies

that subdivision was performed far too aggressively, sacrificing efficiency for

increased TLP. In other words, DWS50 and DWS100’s high AvgPath is obtained

at the cost of having basic blocks that would have been executed once (when

using the reconvergence stack of SPE or DPE) to instead execute as many

warp-splits. DWS10 loses less SIMD efficiency because it splits fewer warps,

46



0% 

20% 

40% 

60% 

80% 

100% 

LUD QSort Stencil RAY LPS MUMpp MCML H-Mean 

S
I
M
D
 
L
a
n
e
 

U
t
i
l
i
z
a
t
i
o
n
 

SPE 

DPE 

DWS(10) 

DWS(50) 

DWS(100) 

(a) Interleavable benchmarks.

0% 

20% 

40% 

60% 

80% 

100% 

DXTC BFS PathFind NW HOTSPOT BFS2 BACKP H-Mean 

S
I
M
D
 
L
a
n
e
 

U
t
i
l
i
z
a
t
i
o
n
 

SPE 

DPE 

DWS(10) 

DWS(50) 

DWS(100) 

(b) Non-interleavable benchmarks.

Figure 3.9: SIMD lane utilization of SPE/DPE/DWS.

but SIMD utilization is still significantly decreased (24.6% on average overall)

and the conservative heuristic fails to improve TLP in some cases.

3.3.3.2 Idle Cycles and Impact on the Memory System

Figure 3.10 illustrates the impact the different schemes have on the

number of idle cycles and L1/L2 cache misses. Overall, DPE can reduce the

number of idle cycles by an average of 11% for interleavable benchmarks while

matching SPE with non-interleavable ones. The only exception is MUMpp

where the interleaving of diverging paths disrupts the access pattern to the L1

cache and increases the number of misses by 2% and idle cycles by 4%.

DWS, in general, can decrease idle cycles because it significantly in-

creases AvgPath to enable better interleaving. However, the significantly lower
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(a) Number of idle cycles accumulated throughout all GPU cores.
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(b) Number of L1 misses.
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(c) Number of L2 misses.

Figure 3.10: Changes in idle cycles and L1/L2 cache misses when using differ-
ent mechanisms (all normalized to SPE).

SIMD utilization achieved with DWS, makes a comparison of idle cycles be-

tween DWS and DPE meaningless. While the GPU executes instructions on

more cycles, additional cycles are required to execute the many warp-splits of

DWS. LUD and QSort can be directly compared because they have similar

SIMD utilization with DWS and DPE, and also have similar total idle cycles.
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Counter intuitively, RAY, LPS, PathFind, and HOTSPOT, which have

significant improvements of TLP with DWS, suffer from many more idle cycles

compared to SPE. The reason for this behavior is that the many interleaved

warp-splits present a memory access pattern that performs poorly with the

cache hierarchy. As shown in Figure 3.10(b–c), these four benchmarks have

increased miss rates in both L1 and L2. The added TLP is not sufficient

to counter-weigh the added memory latency. Stencil and MUMpp also suffer

from worse caching with DWS, but have high-enough TLP to still reduce the

number of idle cycles.

3.3.3.3 Overall Performance

Figure 3.11 shows the overall performance of DPE compared to that of

SPE and DWS. Except for MUMpp, whose IPC is degraded by 3%, due to its

increased L1 miss rate, DPE provides an improvement in performance across

all the interleavable workloads (12.7% on average) while never degrading the

performance of non-interleavable ones.

DWS is able to obtain significant IPC improvement for LUD and QSort

(30.7%/12.2% increase over SPE and 2.4%/1.2% over DPE when using DWS50),

thanks to the significant increase in AvgPath while maintaining similar SIMD

lane utilization. The other 12 benchmarks, however, fail to balance AvgPath

and SIMD lane utilization and either suffer from degraded performance due

to excessive subdivision or do not subdivide at all despite having potential for

interleaving (MCML). It is interesting to observe that despite large increase in
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(a) Speedup over SPE among interleavable benchmarks.
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(b) Speedup over SPE among non-interleavable benchmarks.

Figure 3.11: Performance of the DPE model compared to SPE and DWS (all
normalized to SPE).

AvgPath achieved with DWS, the significant loss in SIMD lane utilization al-

ways outweighed the benefits of increased interleaving. This is mainly because

the increase in AvgPath (and hence increased interleaving capability) is only

beneficial upto the point where there exists any latency to hide, after which

the loss in SIMD lane utilization is too severe. GPUs are designed to tolerate

high latency, so this is, in fact, expected behavior.

3.3.3.4 Sensitivity Study

Figure 3.12(a–b) shows the speedup of DPE over SPE for the 7 inter-

leavable benchmarks with different cache sizes. With smaller cache, we could

expect a higher need for hiding latencies because of the larger fraction of long-
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(c) Performance sensitivity when warp scheduler has limited context resources (normalized to
SPE).

Figure 3.12: Performance sensitivity to cache size and warp scheduler visibility.

latency memory operations. Overall, the relative IPC improvement remains

stable within ±4% when varying the size of the L2 cache and ±2% for L1

cache size variation, with the exception of Stencil. When the L1 cache is re-

duced to 4KB, Stencil becomes much more memory bound, which results in

a significant increase of idle time. In this case, while DPE can still reduces
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idle cycles by the same absolute number of cycles, the relative improvement is

smaller because the overall execution time is so large.

As discussed in Section 3.2, DPE with a more constrained scheduler and

with a scoreboard that does not introduce false dependencies is also evaluated.

The more aggressive scoreboard improved performance by at most 1%. DPE

(Constrained) in Figure 3.12(c) can only track a single path’s context per

warp so the schedulable path is rotated (between PathL and PathR after a

long-latency instruction executes). Overall, speedup is reduced from 12.7% to

9.9% for the constrained mode of the warp scheduler.

3.3.3.5 Implementation and Energy-Efficiency of DPE

As discussed in Section 3.2, implementing DPE requires modifications

to the reconvergence stack, scoreboard, and the scheduler, as well as a min-

imal extension to propagate a single bit to indicate whether an instruction

originated from the left or the right path. Each stack entry with DPE requires

160 bits to store the PC and mask of each path (32 bits each per path and

the single RPC (32 bits)). While this is more bits per entry compared to the

SPE stack, which requires 96 bits, fewer stack entries are needed to represent

the same number of paths. The maximum stack depth observed with the 14

benchmarks we evaluated in detail was 11 with SPE and 7 with DPE, with

a very similar overall size of structure. We therefore estimate that the DPE

stack has negligible overheads compared to SPE.
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The DPE scoreboard requires independent left and right scoreboards,

the addition of the single shadow bit to each entry, and logic for setting the

shadow bits and selecting whether the pending or shadow bit should be used

when querying. The additional logic is very simple and should have minimal

overhead. The extra shadow bit accounts for 7−14% of the scoreboard storage,

depending on the maximum number of registers per thread, which increased

from 64 to 256 between NVIDIA’s Fermi [38] and Kepler [30] GPUs. Main-

taining the information for the two paths roughly doubles the cost of the score-

board in area and power. While the scoreboard is significantly more expensive,

such overhead is also a necessary component for DWS that seeks multi-path

execution. The warp scheduler hardware also roughly doubles in size because

decoded instructions from both left and right paths require instruction-buffer

storage. Like the scoreboard, the scheduler is amortized across all lanes. Note

that previous studies [52, 53] estimate the majority of intra-core power be-

ing consumed by the large register file (26% of intra-core power in GTX480,

the baseline GPU architecture of this study), integer/floating-point execution

units (38%), and SIMD pipelines (22%). The authors of the recently intro-

duced GPUWattch [53], for instance, estimate the power overhead of the score-

board to be negligible and omit its power due to its insignificance. These prior

studies corroborate our estimation and we conclude that the energy-overhead

of DPE to be negligible.
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3.4 Discussion

This subsection summarizes some key discussion points that are related

with the proposed design. We start by discussing four possible extensions to

the DPE microarchitecture, fostering future research based on the intuition of

DPE. We then discuss DPE’s impact on programmability and conclude this

subsection with a qualitative comparison against a recently proposed research

project that is closely related with DPE.

3.4.1 Path-Forwarding

DPE exposes two paths for scheduling when the TOS entry has both a

left and a right path. When one of these two paths reconverges and the other

is still active, only a single path is available for scheduling. However, in some

cases an independent path, which can be concurrently scheduled with the cur-

rent active path, may exist in entries below the TOS. In the example shown

in Figure 3.3(d), interleaving block B and block E does not break correctness,

but is not done because block B is not at the TOS. A possible optimization

of DPE to such issue is to forward the information from a lower stack entry

up (including its RPC) when a slot at the TOS is available. The details of

how this forwarding can be achieved with reasonable logic circuits is omitted,

because the evaluation of such path-forwarding technique indicates a small

overall potential for improvement; whenever the TOS entry contains only a

single available, we exhaustively traverse down the stack and expose an inter-

leavable path, if available, to the scheduler. We observed a maximum of < 2%
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performance improvement on the 7 interleavable benchmarks. The interleav-

able benchmarks tended to have a shallow stack and balanced branches, which

limits the opportunities for forwarding. While proven ineffective in the studied

benchmarks, path-forwarding will provide significant benefits when the taken

and non-taken paths are not balanced with one path executing significantly

longer than the other.

3.4.2 Multi-Path Execution Model

This study limits extending each stack entry to accomodate two paths

simultaneously, because the bi-path (if and else) nature of branches smoothly

fits with the stack model with minimum implementation overhead (Section 3.2).

Having the stack track multiple paths at the TOS, however, can be done and

may be interesting to explore. As mentioned in Section 3.4.1, there can be

several cases where the DPE model still limits available TLP (e.g., one of the

paths at the TOS is currently invalid but stack entries underneath the TOS

still contain interleavable paths invisible to the warp scheduler). Extending the

stack model to accomodate multiple paths at the TOS requires mechanisms

to (a) have the warp scheduler constantly check multiple interleavable path

information, and (b) have the scoreboard resolve multiple cross-path data

dependency issues. Supporting the first issue requires searching/traversing

through the stack entries underneath the TOS, which can be non-trivial when

multiple stack entries exist (e.g., maximum stack depth observed was 11 with

SPE and 7 with DPE). Resolving the second issue can also be non-trivial,
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given the scoreboard changes that are required for DPE’s dual-path data de-

pendency tracking (Section 3.2.2). Note that the path-forwarding technique

in Section 3.4.1 provided less than 2% benefit across the 7 interleavable bench-

marks, alluding to very limited potential benefits of using more than two paths.

Due to the limited potential and significant increase in complexity, we do not

explore this mechanism further in this dissertation.

3.4.3 DPE for Memory Divergence

While DWS increases TLP when branches diverge, an important benefit

it can provide is to increase memory-level parallelism when some threads in a

warp experience a cache miss while others hit in the cache. When such a case

occurs, the warp can be split into two groups of threads: those that completed

the load and continue to execute and those that must wait for main memory

to supply the value. DPE hardware can also be used to increase TLP in such

cases by utilizing the left and right slots for the mask of those threads that

completed the loads and those that did not. DPE is not as flexible as DWS

because the stack must still correctly reflect control flow reconvergence, which

means the memory-split warp must wait at the first divergent branch or when

the RPC is reached. The evaluation and optimization of this use of DPE is

left for future work.
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3.4.4 DPE with a Software-Managed Reconvergence Stack

The baseline GPU architecture uses an explicit hardware reconvergence

stack, which maintains the PC, mask, and RPC. One alternative architecture

is to maintain only the PC and mask in hardware and control when entries

are pushed and popped with explicit software instructions [42]. Applying

DPE to this design is straightforward. The only change needed is that a pop

instruction only actually pop the stack if the other path is not active; if both

paths are active, the first pop instruction disables its path and the second

pops the stack. Some current GPUs, such as the GPU of the Intel Sandy

Bridge Processor [32], have an entirely implicit stack. Hardware maintains an

explicit PC for each thread and dynamically computes predicate masks based

on a software-managed warp-wide PC. To support DPE, two warp-wide PCs

are required and the details of what the software algorithm required to do so

might be is left for future work.

3.4.5 Impact on Programmability

For divergent control flow with both if and else clauses (Figure 3.7),

the number of cycles where SPE unnecessarily throttles available TLP (among

those that are ideally available) linearly increases as the number of instruc-

tions within both paths gets larger. Programmers that try to highly tune the

kernel for maximal SIMD efficiency should hence be aware of SPE character-

istics. This is because large if /else clauses lead to significant reduction in

available TLP, which could limit scheduling opportunities. One key advantage
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of DPE is that programmer does not need to worry about such a reduction

in TLP, as the underlying microarchitecture will automatically expose the in-

terleavable path information to the thread scheduler. Given that the current

SIMT execution model requires programmers to deeply understand the GPU

microarchitecture in order to maximize efficiency, support such as that of DPE

allows the programmer to worry about one less thing.

3.4.6 Alternative to Stack-Based Reconvergence Model

In addition to DWS, the dual-instruction multiple-thread (DIMT) ex-

ecution model has recently been presented [44, 54]. DIMT can issue two dif-

ferent instructions to the SIMD pipeline at the same time by expanding the

instruction broadcast network, the register file structure, and others. Brunie et

al. [44] explored the microarchitectural aspects of adopting the DIMT concept

to GPU architectures. Their DIMT-based architecture is conceptually similar

to DPE in that a maximum of two concurrent paths are chosen for scheduling.

Also like DPE, the scoreboard and scheduler are enhanced to track the larger

number of schedulable units. Unlike DPE, DIMT does not work with the stack

model. Instead, the more complex model of thread frontiers [55] serves as the

baseline architecture. Support for thread frontiers requires significant changes

to the hardware, including explicit tracking of per-thread PCs, new instruc-

tions, compiler support, and a hardware-managed heap structure that takes

the place of the simple reconvergence stack. In addition, DIMT introduces a

complex scoreboard design with significant additional storage, and new logic
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functionality. While thread frontiers have advantages over the stack model for

applications that make heavy use of unstructured control flow, they do present

a more complex design point. Note that thread frontiers do not change the

execution of structured control flow, which DPE primarily focuses on. DPE,

in contrast, integrates smoothly with current execution models and designs

and extends the reconvergence stack rather than replacing it. DPE is the first

microarchitecture that is able to utilize intra-warp parallelism of this type with

a reconvergence stack. DWS uses the stack only until warps are split and then

abandons the design until a warp is merged again, and DIMT assumes the

heap-based threads frontier model. In fact, Brunie et al. [44] explicitly state

that a motivation for adopting thread frontiers in their design is that intra-

warp TLP is very challenging with the stack model. This dissertation shows

that intra-warp parallelism can still be achieved while maintaining the simple,

elegant stack model without substantial modifications to the GPU processor

architecture.

3.5 Summary

In this chapter we explored the potential for utilizing the intra-warp

parallelism resulting from diverging structured control flow to improve SIMD

efficiency and overall performance. DPE is the first mechanism that maintains

the elegant control flow execution of the GPU reconvergence stack, yet is able

to exploit intra-warp parallelism. Unlike prior approaches to this issue, DPE

does not require an extensive redesign of the microarchitectural components,
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and instead extends the stack to support two concurrent execution paths. The

scoreboard and scheduler must also be enhanced, and we show how this can

be done relying mostly on replicating current structures rather than adopting

a completely new model. This chapter demonstrates that the combination

of these spot-enhancements can provide significant efficiency and performance

benefits and never degrades performance compared to the baseline GPU archi-

tecture. The maximum speedup across the studied benchmarks is 32% with

an average of 12.7%. The potential improvements to our design with more

aggressive and less constrained hardware are also discussed. My dissertation

does not evaluate these in detail because the potential high cost and complex-

ity of these modifications yields little performance improvement. The reason is

that, with DPE, the additional latency hiding capability is already significant,

and additional minor increases are insignificant, improving performance by no

more than an additional 2%.
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Chapter 4

Enhancing Compute Resource Utilization

So far, we have discussed restrictions on available thread-level paral-

lelism due to SIMT control divergence and how DPE is able to alleviate such

inefficiency. Another significant challenge with control divergence is the un-

derutilization of SIMD units. This chapter first reviews a previously proposed

research project, thread-block compaction1, which seeks to improve SIMT com-

pute resource utilization upon irregular control flow. The advantages as well as

the limitations of this technique are thoroughly analyzed and are followed by

a description of two novel optimizations to thread-block compaction, namely

compaction-adequacy prediction [25] and SIMD lane permutation [26].

4.1 Thread-Block Compaction for Irregularity

As discussed in previous chapters, the SIMT model enables each thread

to maintain its own logical control flow. The hardware generated active bit-

masks (predicates), designate whether a thread is active or not, allowing inde-

pendent branching for each thread. Because threads that are masked out do

1In this chapter, we use the term thread-block and concurrent thread array (CTA) inter-
changeably.
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Figure 4.1: Example showing how a control flow graph (a) is executed without
compaction (b) and with compaction (c). Each CTA contains 3 warps of 4
threads each. The numbers represent the thread-IDs that are executing in a
basic block, while “–” denotes masked-out threads.

not commit the results of their computation, only threads that are active actu-

ally execute the instruction; thus enabling SIMT, however, partially serializes

execution on a divergent branch as the true and false path must be executed

one after another with those threads on the non-active path being masked out

(shown as “bubbles” in some SIMD lanes in Figure 4.1). Accordingly, each

divergence reduces SIMD lane utilization because more threads are masked

out from execution.

4.1.1 Irregular Control Flow and SIMD Underutilization

The stack-based reconvergence model, as described in Chapter 2, can

alleviate the resource underutilization by having the threads from the true
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and false path reconverge at the immediate post-dominator [22, 41] (the first

instruction of basic block F and G in Figure 4.1(a)) in the control flow graph.

Figure 4.1(b) provides a high-level overview of how warps are scheduled when

executing the control flow graph of Figure 4.1(a) without thread-block com-

paction (No TBC ), which is identical to the baseline SPE model2 as discussed

in Chapter 3. While the divergent branches at the end of block A and C re-

duce SIMD lane occupancy, the inefficiency is minimized by reconverging the

diverged paths at the immediate post-dominator (block F and G).

4.1.2 Thread-Block Compaction

Although the baseline stack-based reconvergence model correctly han-

dles even nested divergent branches, each divergence reduces the number of

active threads and increases the number of wasted execution slots. Several

mechanisms have been proposed to mitigate the magnitude of waste, includ-

ing those that seek to dynamically combine active threads from multiple warps

and schedule them with better SIMD efficiency [22, 23, 24]. Among these,

compaction-based architectures [23, 24] have been actively studied and we

detail the intuition behind compaction below.

The basic idea of improving utilization through compaction is to con-

sider multiple warps, up to the entire thread-block (or concurrent thread-arracy

(CTA)), as a single unit when a branch diverges and reconverges. Instead of

2In this chapter, we refer to the baseline SPE model as No TBC to clearly differentiate
it from TBC.
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allowing each warp to be serially executed, threads executing in a common

basic block dynamically form new warps to minimize masked execution slots.

Thread-block compaction (TBC) [23]3, for instance, considers the entire CTA

as a single unit when a branch diverges. TBC considers the active mask of

the entire CTA and dynamically compacts it at all diverging paths (true/false

paths) and reconvergence points. To maintain hardware efficiency, compaction

is activated while maintaining the fixed association of each thread to its home

SIMD lane. The two threads executing in Figure 4.1–path B (thread-ID = 7

and A), for instance, can be compacted into a single warp; as both threads

are executing in different SIMD lanes, SIMD lane utilization is improved. The

active threads executing in path C, however, are not compactable as thread-

ID 0, 4, and 8 are all aligned in the leftmost lane, preventing compaction.

Compaction is performed by a set of priority encoders that leverage the CTA-

wide active bitmask to identify the minimum number of warps to execute the

active threads. The microarchitectural components of TBC is detailed in Sec-

tion 4.1.3. When the number of active warps generated through compaction

(NWTBC) is smaller than the number of warps needed to execute without

compaction (NWNoTBC), SIMD lane utilization is improved (e.g., path B in

Figure 4.1(c)).

3Fung and Aamodt proposed TBC as an optimization to their previously suggested
technique, dynamic warp formation (DWF) [22]. TBC resolves several limitations of DWF,
so the proposed ideas in my dissertation are directly compared against TBC.
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4.1.3 TBC Microarchitecture

The TBC mechanism is a low cost and elegant mechanism to dynam-

ically reform warps. The basic idea of improving utilization in TBC is to

consider the entire CTA as a single unit when a branch diverges. TBC con-

siders the active mask of the entire CTA and compacts it, when possible, into

a smaller number of warps with fewer masked threads. This is done by chang-

ing the reconvergence stack architecture from one stack per warp to a single

stack for the entire CTA (Figure 4.2). This single stack is used to determine

the point when the active masks of the true and false path are fully known in

order to apply maximal compaction. TBC, in effect, uses its stack structure to

introduce a barrier after each branch so that the compaction unit has access

to the entire active mask of the CTA. This hardware-induced barrier is meant

to enable performance gains but is not needed for correctness. A similar ap-

proach was suggested by Narasiman et al. [24], except that the granularity for

compaction is a fixed long warp, which is decoupled from the CTA size, and

that unconditional branches do not stall and do not wait for the entire CTA

to reach the jump point. In Section 4.4, my proposed ideas are compared with

TBC, as well as an optimized version of TBC (TBC+) that does not stall on

either unconditional branches (as in [24]) or on conditional branches that are

guaranteed not to diverge. Such non-divergent branches are identified by the

CUDA compiler (marked with a .uni qualifier in PTX [56]).

Although a single active mask is maintained per CTA, warps are still

scheduled independently by the warp scheduler based on available resources
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- CTAn  : CTA with CTA-ID n

- BRx-y : PC value of a branch instruction that diverges into path x and y
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(a) Initial stack status of the 

CTA-wide reconvergence stack. All 

three warps are active with a full 

bitmask.
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(c) Likewise, when W1 arrive at the 

end of basic block A (BRB-C), the 

corresponding path information is 

updated to the active mask field.
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(d) After W2 arrives at BRB-C, no 

warps are available to execute at 

path A, so execution transitions to 

basic block B.
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(e) Compaction unit uses CTA-wide 

bitmask at path B to combine 

thread-ID 7 and A into a single 

warp. TOS now points to path B.
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(f) Stack entry at TOS is popped 

out when the compacted warp at 

basic block B arrives at the end of 

path B.

- Path XY  : Y-th instruction in basic block X

- Warp Wn : Warp with Warp-ID n

Figure 4.2: TBC microarchitecture and its high-level operation. Figure as-
sumes the same control flow graph in Figure 4.1, except that each basic block
consists of two instructions.

and operands. Unlike SPE, however, the single entry for the entire CTA

implies that all active threads across all warps are all executing instructions

66



from within a single basic block. All active (unmasked) threads execute the

same sequence of instructions until they reach another branch, at which point

they must wait for all warps to reach the branch to allow another compaction,

or until they reach a reconvergence point. To achieve this, hardware needs to

know when all active warps have reached a branch or are ready to reconverge.

Both branching and reconvergence can only occur after all active warps have

synchronized.

Accordingly, in addition to the PC, active mask, and reconvergence

PC fields, each entry of TBC’s stack also includes a counter for determining

the number of active warps in the current control flow path (WCnt). When

the TOS is changed, the new TOS entry’s WCnt is initialized to the number

of compacted warps associated with the entry (Figure 4.2(a,e,f)), which is

equivalent to the minimum number of warps that are executing along that

basic block. Each time a warp executes a branch or reaches a reconvergence

point, WCnt of the TOS is decremented (Figure 4.2(b–d)). When WCnt

reaches zero, all active warps have reached the end of the basic block and

executed the branch instruction or reached the reconvergence point. The first

time a branch diverges, new entries are added to the stack for the false and

true paths (Figure 4.2(b)). Note that the TOS is not changed because the

entire CTA advances through the control flow graph in unison. The true and

false active masks for the warp that just executed the branch are then added to

the new entries. Each additional warp that executes the branch incrementally

updates its masks as well. When WCnt becomes zero, the next basic block can
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Figure 4.3: Example showing how the priority encoders compact the CTA-
wide bitmask (at basic block C of Figure 4.1) into three warps (NWTBC =
3). Although we explicitly use the thread-IDs to illustrate the bitmask, the
actual hardware uses single bits. Note that threads with thread-ID 0, 4, and 8
always execute in the leftmost SIMD lane, as each thread’s home SIMD lane
is statically determined using their thread-IDs. Compaction is ineffective in
the above example as NWTBC equals NWNoTBC .

execute, at which point the TOS is updated to point to the true path of the

branch and the CTA-wide active mask is ready for compaction (Figure 4.2(e)).

Compaction is performed by the warp compaction unit (WCU), which

is shown in Figure 4.3. The WCU receives the CTA-wide active mask, when

WCnt becomes zero. The WCU then uses a set of priority encoders to identify

the minimum number of warps required to execute the active mask while

maintaining the fixed association of each thread to its SIMD lane. This is

necessary to avoid high-overhead changes to the register file [57, 22, 23, 24],

and allows active threads to be compacted into a common warp as long as

they are executing in different SIMD lanes. The output of the WCU is a new

set of active masks and the number of warps needed to execute them. This
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information is then used for the new TOS entry to continue execution. The

context information of how the original threads are associated with the newly

compacted warps, the thread-ID mapping, and the individual warp PC values

are stored and maintained by the warp scheduler as detailed by Fung and

Aamodt [23].

4.1.4 Limitation of TBC

When the WCU successfully compacts the CTA-wide active mask into

fewer warps than would have executed with baseline SPE, performance is likely

to improve as illustrated in Figure 4.1. Although TBC introduces more syn-

chronization points and forces all warps within a CTA to execute in the same

basic block, when there are warps available for scheduling from its own CTA or

from other CTAs, the synchronization overhead can be effectively hidden. As

we show in Section 4.4.2, however, in many cases compaction does not result in

reducing the number of warps and parallelism is often limited. In other words,

previous compaction mechanisms are often an overkill as control divergence

most commonly occur in a non-compactable manner, especially for workloads

that rarely experience divergence. Yet, because they provide no means to

differentiate compaction-ineffective branches, the hardware logic units associ-

ated with compaction (such as the WCU) are always activated for all branching

points – which in turn consume power unnecessarily for compaction-ineffective

branches. In the following section, the proposed compaction-adequacy predic-
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0 /* - Excerpted from __global__ void bpnn_layerforwarrd_CUDA( ) kernel of BACKP.

1  - float input_cuda[ ] designates a global memory region */

2

3 int by = blockIdx.y;

4 int tx = threadIdx.x;

5 int ty = threadIdx.y;

6

7 __shared__ float input_node[HEIGHT];

8

9 if ( tx == 0 ) // Conditional branch that is divergent but compaction-ineffective

10 input_node[ty] = input_cuda[index_in];

11

12 __syncthreads();

13

14 …
15 for ( i = 1; i < __log2f(HEIGHT) ; i++ ){  

16 …
17 // Loop-end branch: Conditional branch that is non-divergent

18 }

 Example) Code that contains two potentially divergent branches.

Figure 4.4: Example source code containing conditional branches that are
either non-divergent or divergent but compaction-ineffective. BACKP is part
of the Rodinia benchmark suite [14].

tor microarchitecture is described that alleviates this unnecessary synchro-

nization problem.

4.2 Compaction-Adequacy Prediction

4.2.1 Motivation and Key Insights

This work is motivated by the key observation that not all branch in-

structions are likely to benefit from compaction because conditional branches

often follow patterns that are repeated between warps. For example, many

applications operate on a large loop that processes target arrays, but depend-

ing on the number of threads/warps accessing the array the elements at the

edges/corners are treated differently. Some of these are handled by adding

if -statements inside the main loop body, which are conditional but typically
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(a) The loop-end branch on line 17 (non-divergent) of Figure 4.4.
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(b) The divergent yet compaction-ineffective branch on line 9 of Figure 4.4.

Figure 4.5: Control flow graphs of compaction-ineffective branches.

non-compactable. Also, a common software optimization is to construct ker-

nels such that all threads in any given warp branch in the same way, which

effectively eliminates branch divergence, even though the conditional branch

is still dynamically determined. A simple example is a loop-end branch, which

is conditional but is most typically evaluated to be the same across all threads

(line 17 of Figure 4.4 and Figure 4.5(a)). In other cases, conditionals are

not well optimized or some threads are intentionally masked to reduce mem-

ory traffic. In such cases, a divergent branch may diverge in a similar way

across all warps, which renders compaction ineffective. An example of a con-
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ditional branch that diverges but is compaction-ineffective is shown in line 9

of Figure 4.4 and in Figure 4.5(b). Several of the benchmarks we evaluate

(BITONIC, REDUCT, LPS, BACKP, FDTD3D, 3DFD, and QSRDM) en-

counter a significant number of branches that cause divergence in a regular

pattern across warps and as a result cannot be compacted; the number of

warps before and after compaction is the same.

As we discuss in Section 4.4, attempting an ineffective compaction can

potentially reduce performance, especially when a kernel contains a significant

number branches that are mostly compaction-ineffective. In order to collect

candidates for compaction, previous mechanisms stall all threads in the CTA

until the last thread reaches the branch point. At that time, compaction

occurs and the newly compacted warps can be scheduled. This compaction-

induced barrier introduces synchronization overhead, which cannot always be

hidden. While the benefits of compaction usually outweigh the overhead of

synchronization when successful, that is not the case when compaction is inef-

fective. When unsuccessful, compaction merely result in shuffling the threads

between warps which can potentially cause memory divergence (Figure 4.6)

with no benefits in SIMD utilization and worsening power efficiency through

needlessly activated compaction units. The goal of CAPRI is to overcome this

inefficiency by stalling only those warps that have a high likelihood of bene-

fiting from compaction. Warps that are not likely to gain from compaction

are bypassed so that they can continue execution beyond the branch while

maintaining their static warp structure.
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Active Warps

W1 4567

W0 01--  Address Xn

  Address Xn+1

Cache

: Cache-hit

Active Warps

W1 45--

W0 0167  Address Xn

  Address Xn+1

Cache

: Cache-miss

(a) Total number of warps stalled: one 

(Without compaction)

(b) Total number of warps stalled: two 

(With compaction)

Figure 4.6: Example of a non-compactable warp that leads to memory diver-
gence after compaction.

This goal is achieved by adopting a compaction-adequacy predictor

(CAPRI) [25], which uses the active mask of a warp, just after a branch point,

and its adequacy history to predict whether a warp should wait for compaction

or continue to execute, ignoring potential compaction opportunities. The ade-

quacy history is the history of successes or failures of compaction with respect

to a particular branch. To predict compaction-adequacy, CAPRI follows a

design similar to a simple single-level branch predictor [58]. CAPRI uses a

prediction table that tracks adequacy history using prediction bits, which are

updated based on a dynamically computed compaction-adequacy of condi-

tional branches. Compaction-adequacy is computed, regardless of whether

compaction was applied to the warps or not, because warps that did not stall

for compaction could have benefited from compaction.

CAPRI consists of three main components: the compaction-adequacy

prediction table (CAPT) that tracks adequacy history, the decision logic that

determines whether to delay a warp for compaction, and the WCU which

includes a logic unit that determine the compaction-effectiveness of a branch.
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(b) Execution flow using TBC mechanism. 
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(c) Execution flow when using the proposed CAPRI mechanism
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Figure 4.7: (a) Example control flow graph and its corresponding execution
flow when (b) TBC or (c) CAPRI is used. Each basic block consists of two
instructions and each CTA consists of 12 threads, 4 threads per warp.

Figure 4.7 is used as an example to illustrate how TBC and CAPRI execute the

control flow graph in Figure 4.7(a), which contains a non-divergent branch and

a branch that is divergent but compaction-ineffective. Notice that with TBC,

each branch instruction introduces a barrier, which in the example leads to

three idle cycles because the barrier restricts the parallelism available to hide

memory latency (Figure 4.7(b)). With CAPRI, on the other hand, warps that

encounter branches that are compaction-inadequate do not wait and no barrier

is introduced, effectively reducing the number of idle cycles to one. In general,

CAPRI enables greater scheduling flexibility and better latency hiding, which

improves performance (Figure 4.7(c)). We will refer back to this example when

explaining CAPRI’s components and operation below.
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4.2.2 CAPRI Microarchitecture

Compaction-Adequacy Prediction Table. The CAPT is implemented

with a fully-associative (potentially set-associative) tagged structure used to

track adequacy history for branches (Figure 4.8). Each CAPT entry consists

of a tag that identifies a particular branch using the PC of the branch in-

struction (BADDR), one or more adequacy history bits, and a valid bit. As

we show later, the maximum number of CAPT entries necessary in all the

evaluated benchmarks is 24, and in practice, a 8-entry CAPT was capable of

achieving 97% of the benefits provided by an infinite CAPT among the bench-

marks that were sensitive to the number of entries. Note that because of its

small size, we maintain a separate CAPT for each GPU core. We experiment

with several configurations of the history bits of each CAPT entry: a 2-bit

saturating counter, a single bit indicating the last seen compaction-adequacy

behavior, and a single sticky bit that is set once a warp diverged upon a branch

instruction.

Decision Logic. There are three possible outcomes when a warp executes

a branch. The first is that the warp did not diverge and there is no benefit to

stalling. Therefore CAPRI’s policy is to skip checking the CAPT and simply

allow a non-divergent warp to continue executing. This scenario is shown in

Figure 4.8(a). Even without prediction, the fact that non-divergent warps are

not stalled already provides an advantage over previously proposed compaction

schemes, but is not the main contribution of CAPRI.
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considered for generating compacted warps.
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(b) W2 arrives at PC=BRB-C and is stalled upon divergence. WCnt of path A is decremented 

by one and UMask remains at (011) because the active mask for W2 needs to be considered 

for compaction.
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(c) WCnt becomes zero as W1 arrives at PC=BRB-C. The CTA-wide active masks at TOS is 

forwarded to WCU and compaction is initiated. Note that W0's active mask is not 

considered for compaction as UMask is (011).
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(d) WCU generates two warps and increments WCnt by two. As the Predictor evaluates 

PC=BRB-C to be compaction-ineffective, the history bit is reset. UMask is initialized 

back to (111).
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Figure 4.8: Example CAPRI execution (1b-Latest) of the control flow graph
of Figure 4.7.

The second possible outcome is that the warp diverged and that the

CAPT has no information about the divergent branch (Figure 4.8(b)). In this

case, the branch is conservatively assumed to be an adequate candidate for

compaction. The CAPT is updated to include this branch and the history

is initialized to an “adequate” state. At this point, the CAPT has infor-
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mation about the branch, which indicates that future warps should wait for

compaction as well.

The third possible outcome is that the warp diverged and the corre-

sponding branch is already registered in the CAPT. In such a case, the history

bits of the CAPT are used to decide whether to stall the warp or to bypass

compaction (Figure 4.8(c)). Accordingly, all warps that diverge from this CTA

will follow the same CAPRI decision because the CAPT is only updated once

the WCU evaluates compaction effectiveness and because history is main-

tained per branch as discussed below. Note that, as a design optimization,

warps that have bypassed compaction are not permitted to execute more than

a single basic block away from one another.

WCU, CAPT, and Reconvergence Stack Management. Regardless of

whether the warps have been stalled or not, in order to evaluate the compaction

effectiveness of a branch, the CTA-wide active mask at the TOS is always

forwarded to the WCU when WCnt is zero. This is because warps that were

predicted as compaction inadequate and did not wait for compaction could

have, in fact, benefited from compaction. We follow the WCU design described

by Fung and Aamodt [23] and only make one minor change: warps that did

not wait for compaction are marked as bypassed using a single bit per warp

(collectively referred to as the update-mask (UMask) in Figure 4.8). The WCU

does not consider the active masks of the bypassed warps when compacting the

warps, but the logic unit that derives the compaction effectiveness (Predictor
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Figure 4.9: Evaluating the compaction-adequacy of the branch entering basic
block B from Figure 4.7(a).

in Figure 4.9) still processes the corresponding active masks. An example of

this is shown in Figure 4.8(c) to (d) and Figure 4.9.

The predictor, which evaluates compaction-adequacy inside the WCU,

is simpler than the logic used to form compacted warps – it just counts the

number of warps that the WCU would have output had all warps waited for

compaction. Figure 4.9 shows this predictor logic that counts the number of

active threads associated with each SIMD lane. The maximum number of

threads is equal to the minimum number of required warps. If this minimum

is equal to the number of active warps, no benefit is provided even though

the warps were stalled. In such a case, this branch would not be adequately

compacted and we update the CAPT to reflect that. If, on the other hand, the

number of post-compaction warps is smaller, the CAPT is updated to indicate

adequacy so that the warps would wait for compaction in future iterations.
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I experiment with multiple history bit configurations: 2-bit saturating

counter, 1-bit latest adequacy result, and 1-bit sticky adequacy. Figure 4.8

shows how the 1-bit latest history configuration (1b-Latest, 1bL) is updated

to reflect the most recent adequacy result from the WCU. The 2-bit coun-

ters work in a similar manner, incrementing and decrementing the counter

when the WCU evaluates a branch to have been effectively and ineffectively

compacted, respectively. The 1-bit sticky configuration (1b-Sticky, 1bS) is

the most conservative scheme. It sets the history bit to adequate when the

warp that executed a branch diverges and the bit remains set until the kernel

completes.

4.2.3 Summary of the Benefits of CAPRI

Previously proposed compaction mechanisms [22, 23, 24] fall short be-

cause they introduce excessive synchronization, even when compaction pro-

vides no benefits. Section 4.4.2 quantitatively demonstrates that a large frac-

tion of conditional branches cannot benefit from compaction because they hap-

pen not to diverge much or because their divergence pattern is not amenable

to compaction. CAPRI helps to overcome this fundamental deficiency of com-

paction and provides superior performance improvements when improvements

are possible. At the same time, by correctly identifying the lack of compaction-

adequacy, CAPRI matches the performance of the baseline No TBC to within

±2%, substantially improving the robustness of compaction across a wide

range of applications. As detailed later in this chapter, the implementation
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overhead is trivial with each CAPT consuming less than 10mW (less than

0.3% of the 2.7W consumed by each GPU core in the Quadro FX5800 [53])4

in all the applications that have been studied.

4.3 SIMD Lane Permutation

Section 4.2 described the proposed CAPRI microarchitecture that can

significantly remedy the deficiencies of TBC. While CAPRI improves the ro-

bustness of compaction, I observe that there are still unexploited opportunities

for compaction which CAPRI is not able to address. We start by discussing

the limitations of CAPRI-enabled compaction and then describe the proposed

SIMD lane permutation mechanism.

4.3.1 Current Compaction Limitations

While CAPRI is useful for alleviating the synchronization overhead of

compaction, thus avoiding performance loss, it does not improve SIMD re-

source utilization compared to TBC. Figure 4.10 shows the average SIMD

lane utilization (SIMDutil) of several benchmarks in Table 4.2, which exhibit

branch divergence, using each of three configurations: baseline without com-

paction (No TBC ), TBC, and ideal compaction (TBCideal). With ideal com-

paction, threads can change SIMD lanes for optimal compaction. Changing

SIMD lanes is not practical because of the required interconnect in the register

4Leng et al. [53] estimate that 48.1% of the Quadro FX5800’s 171W power is consumed
by the 30 GPU cores. We therefore assume each GPU core consumes 2.7W.
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Figure 4.10: Average SIMD lane utilization of divergent benchmarks (18
among 20 that are listed in Table 4.2), without compaction (No TBC), with
a current branch compaction technique (TBC), and with ideal compaction
(TBCideal). SIMD lane utilization is defined as the fraction of SIMD lanes
occupied (active) when a warp is executing. In order to isolate the effect of
idle cycles, we only average the SIMD lane utilization of issued warps with at
least a single thread active.

file [57, 22, 23, 24], but TBCideal provides an upper bound on any compaction

within a CTA.

Overall, 11 of the 18 benchmarks show noticeable improvement in

SIMDutil with ideal compaction (another 3 have improvement of less than

2%). Interestingly, while all applications with low SIMDutil can benefit from

compaction, even some applications with relatively high SIMDutil show sig-

nificant potential (e.g., LPS, BACKP, AOSSORT, FDTD3D, SORTNW, and

3DFD). It is also important to note that TBC is unable to approach the full

potential of compaction for any of the benchmarks. Furthermore, some of the

high-SIMDutil benchmarks actually benefit more from the current TBC imple-

mentation than some with low SIMDutil. FDTD3D, for instance, shows a 17%

benefit compared to just 13% exhibited by LPS.
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While a benchmark’s absolute SIMDutil is certainly correlated with its

compactability, it is not the sole factor that determines it. Rather, how the

divergence manifests among warps is more critical because only threads that

have diverged to the same path and do not share a common home SIMD lane

can be compacted together (Figure 4.3). Previous compaction-mechanisms [23,

24, 25] are therefore only effective on divergent branches that do not cause

active threads to align with a few common SIMD lanes (which we refer to as

aligned divergence in the rest of this thesis). For example, the three active

threads in Figure 4.3 are fully aligned at the leftmost SIMD lane. As a result,

compaction provides no benefit and NWTBC and NWNoTBC both equal 3.

Such aligned branches are fairly common, as we demonstrate in the rest of

this chapter.

4.3.2 Aligned Divergence

What fundamentally decides the control flow of each thread is how

the branch predicate is evaluated. Aligned divergence is a phenomenon where

threads with a common home SIMD lane have their predicate condition re-

solved the same way, causing active threads to be concentrated on a subset

of the SIMD lanes. I observe that such alignment is rarely exhibited when

the predicate depends on input data arrays. In such data-dependent branches

(D-branches), different threads most likely reference different values thereby

resolving the predicate differently (Figure 4.11(a)). The divergence behavior

of branches with a predicate condition that does not depend on a data array
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0 // Code snippet from the kernel of BFS benchmark 

1 // g_graph_visited and g_graph_edges are data array parameters.

2

3 int tid = blockIdx.x*MAX_THREADS_PER_BLOCK + threadIdx.x; 

4

5 …

6 int id = g_graph_edges[…];
7 if( !g_graph_visited[id] )

8 {

9 …
10 }

 Code #1) Branch depending on data arrays - (i)

(a) Threads that load a data array value (g graph visited) of zero execute the true path. The
branch at line 7 is therefore data-dependent.

0 // Code snippet from the kernel of SORTNW benchmark 

1 // s_key[ ] and s_val[ ] are data array parameters.

2

3 uint ddd = dir & ((threadIdx.x&(size/2)) != 0);

4 …
5 Comparator(s_key[~], s_val[~], s_key[~], s_val[~], ddd);

6 …
7 __device__ inline void Comparator(uint& keyA, keyB, uint dir ){

8 if( (keyA>keyB) == dir ){ … };
9 }

 Code #2) Branch depending on data arrays - (ii)

(b) The intermediate variable (ddd), which is tainted by a programmatic value, is combined
with values from data arrays (s key, s val) to calculate the predicate. As the data values
referenced by each thread are likely different, the branch at line 8 is data-dependent.

Figure 4.11: Example kernel codes containing D-branches.

value (this thesis refer to such non-data array values as programmatic values)

is substantially different from the behavior of D-branches.

A programmatic value is viewed the same way across the threads. The

indices for the CTA-ID (blockIdx), width and height of a CTA (blockDim),

and scalar input parameters of a CUDA kernel (e.g., imageW in Figure 4.12(b)),
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0 // Code snippet from the kernel of BITONIC benchmark 

1

2 const unsigned int tid = threadIdx.x;

3 …
4 for (unsigned int k = 2; k <= NUM; k *= 2){

5 for (unsigned int j = k/2; j>0; j/=2){ 

6 unsigned int ixj = tid ^ j;

7 if( ixj > tid ) {

8 if( (tid & k)==0 ){…} else {…}
9 }

10 __syncthreads();

11 }

12 }

 Code #3) Branch dependent on a programmatic value - (i)

(a) The index value of a thread-ID (tid) solely determines whether the true path (if ) or the
false path (else) is taken. Hence, the branches at line 7 and 8 are programmatic.

0 // Code snippet from the kernel of Mandelbrot benchmark 

1 // imageW and imageH are scalar input parameters of the kernel

2

3 const int ix = blockDim.x * blockX + threadIdx.x;

4 const int iy = blockDim.y * blockY + threadIdx.y;

5 …
6 if( (ix < imageW) && (iy < imageH) )

7 {

8 …
9 }

 Code #4) Branch dependent on programmatic values - (ii)

(b) An intermediate variable (ix, iy), which is tainted by programmatic values, is combined
with another programmatic value (imageW, imageH ) from a scalar input parameter of the
kernel. The branch at line 6 is therefore programmatic.

Figure 4.12: Example kernel codes containing P-branches.

are all seen as constant values to all the threads within a CTA and are there-

fore programmatic values. In addition, the indexing value components of the

thread-ID (e.g., threadIdx.x, threadIdx.y) are a virtual constant to the

threads sharing the same index value (Figure 4.12(a)), and are also program-

84



matic. Compared to D-branches, branches depending on programmatic values

(P-branches) are likely to be aligned because the (programmatic) values being

used for resolving predicates are the same among threads (e.g., threads within

the same warp or ones sharing a common home SIMD lane). Although P-

branches that cause only partial alignment (Figure 4.13(c)) can be compacted

as-is, this chapter shows that such cases are relatively rare compared to P-

branches causing full alignment and preventing compaction (Figure 4.13(a,b)).

It is worth mentioning that a branch condition depending on both pro-

grammatic and data value (Figure 4.11(b)) behaves as a D-branch; this is

because the data each thread is referencing will likely cause the predicate to

be evaluated differently, regardless of the programmatic value. In Section 4.3.3

and Section 4.4.3.1, we categorize divergent branches into P-/D-branches and

quantitatively verify our observations.

4.3.3 Programmatic Branches and Compactability

Figure 4.14 and Figure 4.15 summarizes the overall behavior of branch

divergence and compactability of the studied benchmarks. First, Figure 4.14(a)

shows a breakdown of all dynamically executed branches based on their diver-

gence and potential compactability. The divergent branches are further cate-

gorized as P-/D-branches based on a taint analysis of the predicates of branch

instructions using GPUOcelot [59] in Figure 4.14(b) (taint analysis is detailed

in Section 4.4.1). In addition, we evaluate TBCideal and TBC’s compaction

rate across the divergent P-/D-branches in order to compare what fraction
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Figure 4.13: Active warp status for programmatic-value dependent control
flow. Wn designates the warp with warp-ID n.

of the potential compaction opportunities are actually utilized (Figure 4.15).

We define compaction rate as the fraction of compactable paths among all
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(a) Breakdown of all dynamically executed conditional branches into: (i) non-divergent
branches (ND), (ii) divergent branches with no potential compactability (D/NC), and (iii)
divergent branches with potential compactability (D/C); potentially-compactable branches
are those that can be compacted with TBCideal.
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(b) Breakdown of divergent branches (D/NC and D/C in (a)) into P-branches and D-branches.

Figure 4.14: Categorization of branches based on control divergence, com-
pactability, and P-/D-branch types.

the (CTA-wide) paths generated from divergent branches (true/false) in an

application.

To quantify our results, we evaluate the number of warps for each path

when applying compaction with TBC or ideally. We use NWNoTBC to refer

to the number of warps in a CTA without compaction applied, NWTBC for

the number of warps after compaction, and NWideal for the minimum num-

ber of warps possible with any compaction mechanism. The lower bound on
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Figure 4.15: Compaction rate of P-branches and D-branches using TBCideal

and TBC. Note that because all divergent branches of DWTHARR, BINOM,
and CONVSEP are never compactable (D/NC), the corresponding TBCideal

compaction rates are zero.

compaction is simply the minimum number of warps needed to execute the

number of threads in each path of the CTA:

NWideal = dNumActiveCTA

SIMDwidth

e (4.1)

where, NumActiveCTA refers to the total number of threads active at the di-

verging path across the CTA and SIMDwidth designates the width of the SIMD

pipeline. When NWideal and NWTBC (number of warps after compaction with

TBC) for a path are both smaller than the number of warps without com-

paction (NWNoTBC), then the path can be compacted as-is with TBC. When

NWNoTBC and NWTBC are equal and NWideal is smaller, a path is potentially

compactable but cannot be compacted as-is with TBC (Figure 4.13(a)). When
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the values of NWideal and NWNoTBC are the same, a path has neither potential

nor actual compactability (Figure 4.13(b)).

By definition, benchmarks with a nonzero TBC compaction rate in

either P-/D-branches (Figure 4.14(c)) exhibit improvements in SIMDutil with

TBC. As expected, all 9 benchmarks containing any D-branches exhibit nonzero

TBC compaction rates for this branch type, and we confirm our intuition that

previous compaction mechanisms work relatively well for D-branches. How-

ever, in 13 of the 15 benchmarks containing P-branches, no compaction occurs

at all, as seen by their zero P-branch TBC compaction rate in Figure 4.15.

Of these 13 benchmarks, only 5 have no potential for compaction (zero com-

paction with TBCideal). The other 8 benchmarks (BITONIC, REDUCT, LPS,

BACKP, AOSSORT, FDTD3D, 3DFD, and QSRDM) show that substantial

opportunity for improving SIMDutil is untapped with TBC and other current

compaction techniques because a thread’s home SIMD lane is fixed. My goal

is to tackle such P-branches and enable new compaction opportunities using

SIMD lane permutation, which is described in the following section.

4.3.4 Motivation and Key Insights

SIMD lane permutation (SLP) [26] is based on the insight that if the

home SIMD lanes of threads are permuted from their sequentially-assigned

locations, the alignment of threads can be eliminated in many cases. The

permutation is applied to each thread when a warp is launched, before it

starts executing, and is then fixed until the warp completes execution. This
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(e) Flip warps with

odd WID, (NWTBC = 2)

(Compacted)

Active Threads

W0 0---

W1 -4--

W2 --8-

W3 ---C

Active Threads

W0 048C

W1 ----

W2 ----

W3 ----

(Permuted)

(f) XOR all warps 

by WID, (NWTBC = 1)

(Compacted)

(FLIP_odd) (WID)

Active Threads

W0 0---

W1 --4-

W2 -8--

W3 ---C

Active Threads

W0 084C

W1 ----

W2 ----

W3 ----

(Permuted)

(g) XOR all warps by bit-

reverse of WID, (NWTBC = 1)

(Compacted)

Active Threads

W0 --0-

W1 4---

W2 --8-

W3 -C--

Active Threads

W0 4C0-

W1 --8-

W2 ----

W3 ----

(Permuted)

(h) XOR all warps by a 

random value, (NWTBC = 2)

(Compacted)

(Rev_WID) (Random)

Figure 4.16: Examples of various SIMD lane permutation mechanisms that
alter the alignment of active threads to lanes.
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improves compactability while maintaining the cost-efficiency of the baseline

compaction mechanism and SIMT architecture5.

Permuting the home SIMD lane of each thread requires changing how

each thread-ID is mapped to a SIMD lane. Figure 4.16 illustrates some exam-

ple permutations and their associated mapping, including the ones discussed

in prior work [44, 22]. Because these mapping functions can be calculated

statically using only the thread-IDs and warp size, the compaction-hardware

requires no modification. While older NVIDIA GPUs mandated that threads

access memory in sequence to enable memory coalescing and minimize memory

transactions, AMD GPUs and recent NVIDIA GPUs (starting with NVIDIA

Compute Capability 2.0) can coalesce any collection of addresses within a warp

into the minimum possible number of transactions [28]. Thus, thread order

within a warp does not impact performance and SLP can be incorporated

smoothly without disrupting memory access behavior.

Note that SLP can impact legacy codes that are highly optimized by ex-

pert programmers, leveraging undocumented behavior of SIMT programming.

For instance, if two threads within a warp write to the same memory loca-

tion, it is undefined which thread will succeed under the CUDA programming

model [28]. In practice, for a given hardware implementation, it is predictable

5Fung et al. [22] conducted a preliminary study on the potential of permutation for
better compaction. The authors adopted a simple permutation to mitigate lane conflicts
for compaction on BITONIC (Table 4.2), but this thesis demonstrates cases where this
permutation falls short.
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0 // Code snippet from the kernel of BACKP benchmark 

1 // CTA is a (8 × 16) 2-D array of threads.

2

3 int tx = threadIdx.x;

4 int ty = threadIdx.y;

5 …
6 for (int i=1; i<=__log2f(HEIGHT); i++){

7 int power_two = __powf(2,i);

8

9 if( ty % power_two == 0 ) {…}

10 …
11 }

 Code #5) Programmatic branch causing only the 1
st
 half of the warp active

Figure 4.17: Code snippet from BACKP benchmark that exhibits program-
matic divergence. The resulting aligned divergence is illustrated in Fig-
ure 4.18(a).

and consistent which expert programmers utilize to tune the kernel. We detail

SLP’s impact on programmability in Section 4.5.2.

4.3.5 Pitfalls of a Random Permutation

While the permutations in Figure 4.16(b)-(h) can all break the align-

ment of active lanes in some cases, their effectiveness in increasing compactabil-

ity can vary substantially because some permutations are only optimal for

certain divergence patterns. Odd Even [22], for example, works most effec-

tively for the alignment pattern shown in Figure 4.18(b), but provides no

benefit when active threads are grouped together as in Figure 4.18(a) (ac-

tive/active, inactive/inactive). Another permutation, such as XOR-ing only
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0Lane-ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0,0TID 1,0 2,0 3,0 4,0 5,0 6,0 7,0 0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1

0,2TID 1,2 2,2 3,2 4,2 5,2 6,2 7,2 0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3

0,4TID 1,4 2,4 3,4 4,4 5,4 6,4 7,4 0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5

0,6TID 1,6 2,6 3,6 4,6 5,6 6,6 7,6 0,7 1,7 2,7 3,7 4,7 5,7 6,7 7,7

For W0

For W1

For W2

For W3

0,8TID 1,8 2,8 3,8 4,8 5,8 6,8 7,8 0,9 1,9 2,9 3,9 4,9 5,9 6,9 7,9

0,ATID 1,A 2,A 3,A 4,A 5,A 6,A 7,A 0,B 1,B 2,B 3,B 4,B 5,B 6,B 7,B

0,CTID 1,C 2,C 3,C 4,C 5,C 6,C 7,C 0,D 1,D 2,D 3,D 4,D 5,D 6,D 7,D

0,ETID 1,E 2,E 3,E 4,E 5,E 6,E 7,E 0,F 1,F 2,F 3,F 4,F 5,F 6,F 7,F

For W4

For W5

For W6

For W7

* Each CTA is a (8 × 16) array of threads.

* Lane-ID = (threadIdx.y*8 + threadIdx.x) % (SIMDwidth)

* SIMDwidth and warp size are both 16.

Threads that are active when 'power_two' is '2'

0Lane-ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0,0TID 1,0 2,0 3,0 4,0 5,0 6,0 7,0 0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1

0,2TID 1,2 2,2 3,2 4,2 5,2 6,2 7,2 0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3

0,4TID 1,4 2,4 3,4 4,4 5,4 6,4 7,4 0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5

0,6TID 1,6 2,6 3,6 4,6 5,6 6,6 7,6 0,7 1,7 2,7 3,7 4,7 5,7 6,7 7,7

For W0

For W1

For W2

For W3

0,8TID 1,8 2,8 3,8 4,8 5,8 6,8 7,8 0,9 1,9 2,9 3,9 4,9 5,9 6,9 7,9

0,ATID 1,A 2,A 3,A 4,A 5,A 6,A 7,A 0,B 1,B 2,B 3,B 4,B 5,B 6,B 7,B

0,CTID 1,C 2,C 3,C 4,C 5,C 6,C 7,C 0,D 1,D 2,D 3,D 4,D 5,D 6,D 7,D

0,ETID 1,E 2,E 3,E 4,E 5,E 6,E 7,E 0,F 1,F 2,F 3,F 4,F 5,F 6,F 7,F

For W4

For W5

For W6

For W7

Threads that are active when 'power_two' is '4'

0,4 1,4 2,4 3,4 4,4 5,4 6,4 7,4

0,8 1,8 2,8 3,8 4,8 5,8 6,8 7,8

0,C 1,C 2,C 3,C 4,C 5,C 6,C 7,C

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0
0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2
0,4 1,4 2,4 3,4 4,4 5,4 6,4 7,4
0,6 1,6 2,6 3,6 4,6 5,6 6,6 7,6

0,8 1,8 2,8 3,8 4,8 5,8 6,8 7,8
0,A 1,A 2,A 3,A 4,A 5,A 6,A 7,A
0,C 1,C 2,C 3,C 4,C 5,C 6,C 7,C
0,E 1,E 2,E 3,E 4,E 5,E 6,E 7,E

(a) Active threads with value-dependent lane alignment, corresponding to the branch
at line 9 of Figure 4.17 (dependent on power two).

0Lane-ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0TID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16TID 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32TID 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48TID 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

For W0

For W1

For W2

For W3

Threads that are active when '(j == 1)', having ((ixj > tid) == true)

* Each CTA is a (64 × 1) array of threads.

* Lane-ID = (threadIdx.x) % (SIMDwidth)

0 2 4 6 8 10 12 14
16 18 20 22 24 26 28 30
32 34 36 38 40 42 44 46
48 50 52 54 56 58 60 62

(b) Active threads with programmatic lane alignment, corresponding to line 7 of
Figure 4.12(a)

Figure 4.18: Examples of aligned divergence patterns in Figure 4.19(b–c).

the odd-ID warps with
(
SIMDwidth

2

)
, on the other hand, will perfectly compact

all the threads in Figure 4.18(a), but none for Figure 4.18(b).

Incorporating randomness in the permutation function (e.g., Random,

WID, and Rev WID in Figure 4.16(f–h)) intuitively seem more effective in
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redistributing clustered threads. However, such random permutations do not

perform well when a large fraction of the threads are active across the CTA. For

example, consider a case where half the threads in each warp are active – unless

the active threads are permuted exactly to the other half of the (vacant) lanes,

compaction will fail. Figure 4.18 shows an example of a P-branch causing half

of the threads in a CTA to be active. This behavior is exhibited in applications

such as BITONIC, QSRDM, MDBROT, and others. While such a divergence

pattern can occur from an under-optimized kernel, it can also be generated

by the nature of the algorithm itself. Note that Odd Even and Rev WID

both only effectively compact one of the two example patterns but not both

(Figure 4.19). In general, I observe that previously discussed permutation

functions fall short of ideal and are not robust because they are based on

empirical observations of a subset of divergence patterns.

4.3.6 Balanced Permutation

Based on the previous discussion, this chapter presents a robust per-

mutation mechanism. An important insight is that the permutation to be

applied should distribute active threads across the SIMD lanes in a balanced

manner because aligned divergence from P-branches frequently exhibits highly

skewed distributions of active lanes. Balanced is designed such that for any

CTA (with fewer than SIMDwidth warps) each physical lane only has a single

instance of each logical thread location within a warp. Among all previously

discussed permutation mechanisms [22, 44], this characteristic is unique to
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{

0
Lane-ID

000

XOR-000 0

XOR-111 7

XOR-001 1

XOR-110 6

1

001

1

6

0

7

2

010

2

5

3

4

3

011

3

4

2

5

4

100

4

3

5

2

5

101

5

2

4

3

6

110

6

1

7

0

7

111

7
0

6
1

(Function of Permutation)

For W0

For W1

For W2

For W3

XOR-010 2

XOR-101 5

XOR-011 3

XOR-100 4

3

4

2

5

0

7

1

6

1

6

0

7

6

1

7

0

7

0

6

1

4

3

5

2

5
2

4
3

For W4

For W5

For W6

For W7

: Maintain as-is

: Flip end-to-end

: Permute even-odd lanes

: Swap half and XOR-010

: Swap within each half warp

: Swap half and XOR-001

: Flip within each half

: Swap 1
st
 half with 2

nd
 half

Repeat above…  

Permuted lanes are always 

perfectly balanced within 

each physical lane.

X O R - e d  v a l u e s  t o 

even/odd-ID warp pairs, 

when XOR-ed with each 

other are always equal 

t o  a  f u l l - m a s k  w i t h 

bitlength log2(SIMDwidth), 

which is 111 in this 

example.

All odd-ID warps are XOR-ed  

with values larger than the 

( S I M D w i d t h / 2 ) ,  w h i c h 

effectively swaps the 1
st
 

half of the lanes with the 

2
nd
 half. 

(a) Proposed (Balanced) Algorithm (assuming WarpSize and SIMDwidth of 8).

(b) Example control flow where (Rev_WID) does not compact well.

(TBC)

Active Threads

W0 0-2-4-6-

W1 8-A-C-E-

W2 G-I-K-M-

W3 O-Q-S-U-

Active Threads

W0 0-2-4-6-

W1 -8-A-C-E

W2 G-I-K-M-

W3 -O-Q-S-U

Active Threads

W0 0-2-4-6-

W1 C-E-8-A-

W2 I-G-M-K-

W3 U-S-Q-O-

Active Threads

W0 0-2-4-6-

W1 -E-C-A-8

W2 -G-I-K-M

W3 U-S-Q-O-

(Odd_Even) (Rev_WID) (Balanced)

(c) Example control flow where (Odd_Even) does not compact well.

(TBC)

Active Threads

W0 0123----

W1 89AB----

W2 GHIJ----

W3 OPQR----

Active Threads

W0 0123----

W1 98BA----

W2 GHIJ----

W3 PORQ----

Active Threads

W0 0123----

W1 ----89AB

W2 IJGH----

W3 ----QROP

Active Threads

W0 0123----

W1 ----BA98

W2 HGJI----

W3 ----QROP

(Odd_Even) (Rev_WID) (Balanced)

Figure 4.19: Proposed Balanced permutation.

Balanced and provides its robustness. Intuitively, threads within warps with

an even warp-ID (WID) are only permuted within each half-warp (each warp

uses a different XOR mask). Every even-ID warp is paired with an odd-ID

warp that uses a complementary mask and ensures that threads are shuffled
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to the second half of each warp. The permutation algorithm is to XOR the

logical thread location with a mask that is computed differently for each warp

using the warp-ID (WID). The Balanced permutation masks are computed for

even warp-IDs using the formula in Equation 4.2. The masks for odd warp-IDs

are a bit-wise inverse of their even warp-ID pairs.

XORevenWID =
evenWID

2
(4.2)

Figure 4.19 illustrates the functionality of SLP with the proposed Bal-

anced permutation algorithm. Without SLP, lane-ID 0 is always assigned to

physical lane 0, for example. With Balanced, on the other hand, each phys-

ical lane only has a single instance of each lane-ID. This vertical balance is

unique to the carefully-designed Balanced permutation and is clearly shown

in the highlighted physical lane 7 in Figure 4.19. Figure 4.19 also illustrates

the overall construction of Balanced. Randomized permutations only achieve

this balance on average, while any individual CTA is likely to be somewhat

imbalanced. This imbalance is greater on average for CTAs that have a small

number of warps. Balanced works well even for these CTAs, because of the

even/odd complementary masks it uses.

This chapter presents a detailed quantitative evaluation of various per-

mutations in Section 4.4.3, but in summary, Balanced is very robust and is

either the most effective permutation, or is within 99.4% of the best permu-

tation in all our experiments. Because Balanced tends to outperform other
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permutations, is within a small fraction of the best permutation in the rare

cases it is not already the best, and rarely degrades performance, I argue that

Balanced should always be applied when allocating a new warp on compaction-

based GPU architectures.

4.3.7 Summary of the Benefits of SLP

Previous SIMT compaction mechanisms, even with CAPRI enabled,

fall short because of their limited applicability. As we explore in Section 4.4.3,

the way threads are associated with SIMD lanes causes aligned divergence

patterns that prevent compaction, which mainly originates from non-data de-

pendent, programmatic branches. Although diverging paths from these pro-

grammatic branches do not compact well as-is, there is substantial opportunity

if the fixed association of threads to lanes can be relaxed. The proposed SLP

expands the applicability of compaction by reducing, and even eliminating,

aligned divergence. SLP permutes the mapping of logical thread locations to

physical SIMD lanes when a warp is launched. This breaks aligned divergence

patterns resulting from conditionals that depend only on programmatic values.

The novel and robust Balanced permutation technique enables significant im-

provements in compacting programmatic branches, widening the applicability

of compaction.
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Table 4.1: Simulator configuration for CAPRI/SLP evaluation.

Number of GPU cores 30
Threads per GPU core 1024
Threads per warp 32
SIMD lane width 32
Registers per GPU core 16384
Shared memory per GPU core 32KB
Warp scheduling policy Two-level round-robin [24]
L1 Cache (size/associativity/block size) 32KB/8-way/64B
L2 Cache (size/associativity/block size) 1024KB/64-way/64B
Memory bandwidth 102.4 GB/s
Memory controller Out-of-order (FR-FCFS)

4.4 Evaluation

This section first describes the evaluation methodology followed by a

detailed evaluation of CAPRI (Section 4.4.2) and SLP (Section 4.4.3).

4.4.1 Methodology

The microarchitectural components of CAPRI and SLP are modeled

using GPGPU-Sim [47], a detailed cycle-level performance simulator of a “gen-

eral purpose” GPU architecture. TBC as well as TBC+ (a version of TBC

that does not stall warps from branches that cannot diverge as indicated by

the compiler) are also implemented. We configure the simulator to closely

match NVIDIA’s Quadro FX5800 as detailed in the GPGPU-Sim manual (see

Table 4.1). The two-level round-robin warp scheduling policy [24] is used for

issuing warps to execute. This scheme divides all active warps within a GPU

core into multiple groups of warps and chooses which group to preferentially
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0 … 
1 mov %r2, %tid.x // %r2 is tainted by a programmatic value

2 setp.eq %p1, %r2, 0 // Predicate register %p1 tainted from %r2

3 @%p1 bra [JUMP_1] // Branch depends on programmatic value

4 ld.param %r3, [g_data] // Pointer to a data array is loaded to %r3

5 add %r4, %r2, %r3 // %r4 contains the address to load from 

5 ld.global %r5, [%r4] // %r5 is tainted by data array value

6 setp.gt %p6, %r5, 1 // Predicate register %p6 tainted from %r5

7 @%p6 bra [JUMP_2] // Branch depends on data value

8 mov %r2, 100 // Taint is cleared by an immediate value

9 … 

Pseudo PTX Program) Taint analysis

* tid.x : x-index value of a thread-ID 

* g_data : data array allocated at global memory

Figure 4.20: Pseudo PTX code explaining the taint analysis methodology.

schedule in a round-robin manner. The warps in the currently prioritized

group maintain the highest scheduling priority until all of that group’s warps

are stalled; in which case the next group is prioritized in scheduling. This

study configures the number of warps within a prioritized group to match the

number of warps that compose a single CTA.

CAPRI. We use a 32-entry CAPT with a 1-bit latest history configuration

for our default CAPRI configuration. As mentioned in Section 4.2.2, a 2-bit

saturating counter and a 1-bit sticky adequacy configuration are also evaluated

and we explicitly note when using different parameters to evaluate CAPRI

sensitivity.

SLP. The effectiveness of SLP is evaluated using a combination of GPUO-

celot [59] and GPGPU-Sim. GPUOcelot is an open source compiler infrastruc-
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ture supporting NVIDIA’s PTX version 3.0; we use its PTX emulator to clas-

sify divergent branches into P-/D-branches using taint analysis (Figure 4.20).

We also leverage the CTA-wide active mask information in GPUOcelot to

analyze compaction rate (Section 4.4.3.1) and SIMDutil.

Benchmarks. CAPRI and SLP have been studied with 40 benchmarks from

CUDA-SDK [3], Rodinia [14], and those provided with GPGPU-Sim [47, 51,

60, 61, 62, 63]. Of these 40 benchmarks, 18 exhibit branch divergence (the

other 22 have SIMDutil of over 99%), and 8 exhibit increased idle cycles due

to the synchronization overhead of TBC. This chapter therefore primarily fo-

cuses on the 8 benchmarks when discussing the benefits of CAPRI and the

18 benchmarks for SLP evaluations6. The benchmarks are summarized in

Table 4.2.

4.4.2 CAPRI Results and Analysis

This section provides a detailed evaluation of CAPRI including the

quality of the predictions, its impact on SIMD lane utilization and idle cycles,

the performance improvements it provides, parameter sensitivity, and imple-

mentation cost.

6Note that GPGPU-Sim does not support some runtime APIs, such as OpenGL, which
are supported by GPUOcelot. We therefore only report the performance results of the 8
out of 18 benchmarks that GPGPU-Sim can simulate without modification. All CUDA
applications were compiled as-is and with the parameters provided with GPGPU-Sim and
GPUOcelot.
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Table 4.2: Benchmarks studied for CAPRI/SLP evaluation.

Abbreviation Description #Instr. Ref.
LPS 3D laplace solver 985K [47]
BFS Breadth first search 256K [47]

MUM MUMmerGPU 2.7M [47]
LIB LIBOR monte carlo 1B [47]

BACKP Back propagation 1M [14]
PFLT Particle filter 4B [14]

BITONIC Bitonic sort 2K [3]
REDUCT Reduction (Kernel 0) 44K [3]
MDBROT Mandelbrot 8.3M [3]

DXTC DXT compression 955K [3]
AOSSORT AOS sorting 39K [3]
FDTD3D FDTD stencil on 3D 71M [3]
SORTNW Sorting network 2M [3]
EIGENVL Eigen-value 6.7M [3]

3DFD Finite diff. comp. 3D 29K [3]
DWTHARR Harr wavelets 2K [3]

QSRDM Quasirandom generator 3.1M [3]
BINOM Binomial options 176K [3]

CONVSEP Separable convolution 204K [3]
SOBFLT Sobel filter 575K [3]

4.4.2.1 Prediction Quality

CAPRI predicts whether the warps in a given branch should stall and

synchronize to attempt compaction or whether they should continue to exe-

cute without compaction. CAPRI can thus correctly or incorrectly predict to

stall or to bypass. Figure 4.21 shows the quality of the predictions by cat-

egorizing each prediction as correctly predicting to bypass and not wait for

compaction (Bypass/Bypass), correctly predicting to stall and wait for com-

paction (Stall/Stall), incorrectly predicting to bypass while compaction would

have been effective (Bypass/Stall), and incorrectly predicting to wait when
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compaction is ineffective (Stall/Bypass). We determine which category each

prediction falls into in the following way. For each branch, we perform an ex-

haustive search of all potential compactions and identify the minimum number

of warps required to achieve maximal compaction for each dynamic branch.

We then count how many warps were bypassed and how many waited at each

specific dynamic branch.

Baseline without compaction (No TBC ) and TBC “predict” that all

warps should always bypass or always stall, respectively. TBC, for exam-

ple, only generates correct Stall/Stall or, incorrect, Stall/Bypass decisions.

Because most branches are not adequate candidates for compaction (recall ex-

amples in Section 4.2), most decisions made by TBC are to incorrectly stall a

warp when it should have just continued to execute without waiting for com-

paction. TBC makes the smallest fraction of correct decisions between all the

schemes. In fact, TBC has near-zero accuracy with non-divergent workloads,

which explains why it degrades performance in some cases. No TBC makes

the opposite decisions to TBC, either correct Bypass/Bypass or incorrect By-

pass/Stall. No TBC makes near-perfect decisions for non-divergent workloads.

In the divergent cases, No TBC still makes correct decisions for roughly 50%

of warps. It is interesting to observe that No TBC has near perfect accuracy

in LPS, BACKP, and DWTHARR, while TBC and TBC+ make nearly no

correct predictions. These three benchmarks exhibit branch divergence, but

compaction is ineffective (see also Section 4.4.2.2).

102



0% 

25% 

50% 

75% 

100% 

N
o
_
T
B
C
 

T
B
C
 

T
B
C
+
 

C
A
P
R
I
(
1
b
S
)
 

C
A
P
R
I
(
1
b
L
)
 

N
o
_
T
B
C
 

T
B
C
 

T
B
C
+
 

C
A
P
R
I
(
1
b
S
)
 

C
A
P
R
I
(
1
b
L
)
 

N
o
_
T
B
C
 

T
B
C
 

T
B
C
+
 

C
A
P
R
I
(
1
b
S
)
 

C
A
P
R
I
(
1
b
L
)
 

N
o
_
T
B
C
 

T
B
C
 

T
B
C
+
 

C
A
P
R
I
(
1
b
S
)
 

C
A
P
R
I
(
1
b
L
)
 

BFS MUM LPS BACKP 

P
r
e
d
i
c
t
i
o
n
 
Q
u
a
l
i
t
y
 

Stall/Bypass Bypass/Stall Stall/Stall Bypass/Bypass 

(a) Divergent benchmarks
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(b) Non-divergent benchmarks

Figure 4.21: Prediction and stall/bypass decision quality. Each bar rep-
resents the fraction of warps that were correctly bypassed or stalled (By-
pass/Bypass or Stalled/Stalled), and incorrectly bypassed or stalled (By-
pass/Stall or Stall/Bypass). In this section, we categorize benchmarks as
being divergent when its average SIMD lane utilization is below 90% and non-
divergent otherwise.

Unlike TBC, TBC+ decides to bypass warps at branch points when

it is statically known that no divergence can occur. There is only a small

number of these branches, however, and over 80% of the decisions made by

TBC+ are still incorrect. CAPRI, on the other hand, makes high-quality

decisions in nearly all cases. CAPRI accurately predicts 99% and 87% of the
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warps ideal behavior on non-divergent and divergent benchmarks, respectively.

BFS and MUM have a highly irregular divergence pattern that is hard to pre-

dict. CAPRI still achieves an average of 61% and 75% accuracy using the

1b-Sticky and 1b-Latest history bit configurations, respectively. As expected,

1b-Sticky has overall lower accuracy, but makes more correct Stall/Stall pre-

dictions because of its bias, compared to 1b-Latest that may incorrectly react

to anomalous dynamic behavior. Performance with 1b-Latest is higher, in-

dicating that predictions should not be biased towards stalling. The correct

decisions made in these three benchmarks result in highly-effective compaction

(see Section 4.4.2.2). As a result, the number of dynamic warps is much smaller

after compaction than in the baseline No TBC , which is why the fraction of

stall decisions is relatively low even though No TBC has a large fraction of

incorrect Bypass/Stall decisions.

In addition to the configurations discussed above, a 2-bit saturating

counter based predictor was also studied. Accuracy and performance improved

marginally, by less than 1%, and the results have been omitted for brevity.

4.4.2.2 SIMD Lane Utilization and Idle Cycles

Figure 4.22(a) and (b) show the impact of compaction on SIMD lane

utilization and the number of idle cycles. Overall, TBC and TBC+ signif-

icantly improve SIMD lane utilization, by up to a factor of 2 for BFS and

MUM. CAPRI is able to correctly predict beneficial compaction and matches

the SIMD utilization improvements of TBC, to within 100% and 98.8% for
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(a) SIMD lane utilization.
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(b) Normalized idle cycles accumulated across all GPU cores.

Figure 4.22: SIMD lane utilization and (normalized) idle cycle count.

the two history configurations: The 1b-Sticky history stalls a larger number

of threads but achieves marginally better compaction than with a 1b-Latest

configuration.

TBC does not achieve improvements for all other benchmarks, even

for LPS and BACKP that have significant divergence. This indicates that

compaction is ineffective and will not improve performance, while stalling

warps may degrade performance. On average, TBC increases idle cycles by

an average 72% across the 8 applications. By avoiding stalls on unconditional

branches, TBC+ introduces fewer idle cycle, but still has 63% more idle cycles

than the baseline No TBC on average. While CAPRI matches the gains of
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Figure 4.23: Performance of CAPRI compared to TBC and TBC+.

TBC, it does much better with respect to idle cycles. By not stalling most

warps that do not benefit from compaction, CAPRI does not increase idle

cycles by more than 40% for any application and incurs an average of only

7% and 5% increase for the 1b-Sticky and 1b-Latest history configurations re-

spectively. Based on these results we expect 1b-Sticky to outperform all other

schemes because it is nearly optimal in terms of compaction gains and has the

smallest increase of idle cycles.

4.4.2.3 Overall Performance

Figure 4.23 shows the performance of CAPRI relative to that of No TBC ,

TBC, and TBC+. CAPRI outperforms TBC and TBC+ on all benchmarks

because it generally correctly distinguishes between warps that can benefit

from compaction and those that only suffer unnecessary synchronization de-

lays. Concerning divergent workloads, CAPRI with 1b-Latest performs 14.9%

and 7.6% on average (harmonic mean) better than No TBC and TBC+, re-

spectively. As expected, the 1b-Sticky configuration does not perform as well

as 1b-Latest, but still outperforms No TBC and TBC+. In terms of non-
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(a) L1 misses.
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(b) L2 misses.

Figure 4.24: Changes in L1 and L2 miss count from compaction, normalized
to No TBC . CAPRI is configured with 1b-Latest.

divergent benchmarks, CAPRI dynamically evaluates non-compactability and

allows warps to bypass compaction barriers, thereby minimizing performance

loss. Note that TBC and TBC+ degrade the performance of the 6 benchmarks,

excluding BFS and MUM, because of the excessive synchronization overheads

with no gains in SIMD lane utilization. For non-divergent workloads, ac-

cordingly, TBC and TBC+ suffer an average of 12% and 11% performance

degradation respectively.

4.4.2.4 Impact on the Memory System

Compacting warps involves rearranging threads from the CTA. Because

different groups of threads execute concurrently compared to program order

and the baseline No TBC , it is possible that the application memory behavior

107



0.8 
0.9 

1 
1.1 
1.2 
1.3 
1.4 

BFS MUM LPS H-Mean 

S
p
e
e
d
u
p
 

TBC+ 32-Entries 16-Entries 8-Entries 4-Entries 2-Entries 

Figure 4.25: Performance of CAPRI (1b-Latest) with variable CAPT size.

changes as well. Figure 4.24 shows the relative number of first- and second-level

cache misses for TBC+ and CAPRI normalized to No TBC . TBC+ signifi-

cantly increases the number of L1 misses for certain applications such as BFS,

MUM, BACKP, and DWTHARR. The reason for this change in non-divergent

applications is that the WCU rearranges threads even when compaction is in-

effective (number of warps is not reduced), which can aggravate memory di-

vergence and increase cache miss rate (see Figure 4.6). CAPRI, on the other

hand, does much better than TBC+. CAPRI correctly predicts the lack of

compaction-effectiveness for many branches, including nearly all branches in

the non-divergent workloads. As a result, misses do not increase for these

workloads and are reduced (compared to TBC+) for the highly-divergent ap-

plications. Note that for BFS and MUM, which exhibit noticeable increase in

L1 cache misses, performance is actually most improved because of the large

benefits from increased SIMD utilization through compaction. Even though L1

misses have increased, the missing working sets at L1 are still mostly resident

at shared L2 caches, maintaining L2 caching efficiency and memory traffic.
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Table 4.3: CAPRI area overheads.

Number of NAND gate counts required for CAPT
2-entry 4-entry 8-entry 16-entry 32-entry
733.56 1432.63 2840.43 6005.44 12338.07

4.4.2.5 Sensitivity Studies

Figure 4.25 shows the normalized IPC achieved when varying the num-

ber of CAPT entries on a subset of the divergent benchmarks. We only discuss

those benchmarks for which the number of entries has noticeable impact. All

other benchmarks achieved at least 98.3% of the IPC of an unlimited CAPT

with just 4 entries – mainly because non-divergent branches are naturally by-

passed with CAPRI’s algorithm. MUM has the most sensitivity to the number

of entries used. This application achieves over 95% of the IPC benefits of an

unbounded CAPT with just 4 entries and 86% with a 2-entry CAPT. All

results use LRU replacement and a fully-associative organization.

4.4.2.6 Implementation and Energy-Efficiency of CAPRI

Fung and Aamodt [23] evaluated the overhead of TBC and showed

it to be less than 1mm2 for an entire chip (500mm2) in 65nm technology.

In addition to this small area, CAPRI requires area for the CAPT and for

adequacy evaluation in the WCU. The adequacy evaluator (predictor) added

to the WCU can be implemented using simple logic for counting the number

of ones in each SIMD lane, which represent an active thread in that lane.

This logic is significantly simpler than the compaction logic itself and should
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add negligible area to the WCU. As previously discussed, an 8-entry CAPT is

sufficient to attain near-maximal performance improvement. Regardless, we

quantify the implementation and energy overhead of a 32-entry CAPRI below.

The key microarchitectural components of CAPRI have been imple-

mented using Verilog HDL [64], and Table 4.3 shows the implementation over-

head of CAPT in terms of its overall gate count. The Synopsys Design Com-

piler and a 45nm high performance CMOS standard cell frontend library are

used to synthesize the HDL codes into the gate level netlist. To evaluate en-

ergy, a trace of each benchmark’s read/write accesses to the CAPT has been

extracted from a single GPU core on a cycle-by-cycle basis using GPGPU-

Sim. The switching activity of the CAPT is determined by running the traces

through Synopsys Primetime-PX for power analysis. Overall, CAPRI with a

32-entry CAPT requires only 12K NAND gates and consumes less than 10mW,

per GPU core. The implementation overhead of CAPRI is therefore expected

to be negligible both in area and power.

4.4.3 SLP Results and Analysis

This section evaluates SLP (on top of CAPRI) in terms of the enhance-

ments in compactability, SIMD lane utilization, and performance. TBC is as-

sumed as the baseline compaction mechanism when discussing compactability

(Section 4.4.3.1) and SIMD lane utilization (Section 4.4.3.2), so that all com-

pactable branches are considered. For performance evaluations (Section 4.4.3.3),

on the other hand, TBC is augmented with CAPRI as it consistently outper-
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Figure 4.26: Compaction rate per branch type with different permutations.

forms TBC in terms of execution time, but skips some compaction opportuni-

ties by design.

4.4.3.1 Compactability

Figure 4.26 shows the compaction rate of P-branches and D-branches

achieved with different permutations (including baseline TBC) across the 18

divergent benchmarks. Looking at P-branches first, 10 of the 15 benchmarks
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contain compactable P-branches (see Section 4.3.3). Despite their heuristic

nature, all but one of the permutations significantly improve P-branch com-

pactability over the 3.2% compaction rate possible without SLP; SLP with

Odd Even cannot compact FDTD3D and 3DFD. However, only SLP with the

carefully designed Balanced permutation comes close to ideal compaction for

P-branches, averaging a compaction rate of 71.5% (98% of the ideal 72.7%

average compaction rate). Balanced precisely matches Ideal in 7 of the 10

benchmarks. In FDTD and MDBROT, Balanced is within 1.1% of ideal.

SOBFLT is the only benchmark in which Balanced failed to to achieve near-

ideal compaction rate (38.7% compared to 50.9%). Balanced was still within

1% of the best permutation (FLIP odd) even on this benchmark. In contrast,

the previously proposed permutations, Odd Even and Rev WID, only achieve

an average of 28.9% and 52.8% compaction rate respectively (compared to the

ideal 72.7% compaction rate). Odd Even only works for a very specific pattern

and is not robust across the applications. Randomized permutations do not

perform well when there is a large fraction of active threads, which is further

discussed below.

Figure 4.27 shows a breakdown of the compactability of P-branches de-

pending on the fraction of threads that are active in the CTA after the branch

point. The randomized Rev WID [44] permutation is more effective than the

naive Odd Even, but Rev WID still misses significant opportunities for com-

paction when half or more of threads are active (e.g., in BITONIC, REDUCT,

MDBROT, AOSSORT and QSRDM). In fact, Rev WID even performs worse
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Figure 4.27: Breakdown of P-branch compaction rate by fraction of active
threads across the CTA at the branch point. (XX YY ZZ) designates whether
a branch is compacted or not (XX ) for a particular fraction range of active
threads in that path (YY ≤ ActiveThreads < ZZ ). Note that the full 100%
bar is equivalent to the Ideal bar in Figure 4.26. OdEv, RWID, BALN refers
to Odd Even, Rev WID, and Balanced respectively.

than Odd Even for REDUCT and AOSSORT. Balanced does well even in these

challenging cases, missing few or zero opportunities for compaction (small to

insignificant yellow, orange, and red portions in the figure).

Of the 18 benchmarks with divergent branches, 9 have divergent D-

branches. As expected, baseline TBC does much better compacting D-branches

than P-branches and has an average compaction rate of 42.5% compared to

the ideal average of 64.4%. While the average compactability with the baseline

TBC is reasonable overall, it is quite poor in 5 of the 9 benchmarks (BITONIC,

MDBROT, AOSSORT, SORTNW, and SOBFLT), with an average of just
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35.3%. SLP significantly improves compaction in these 5 benchmarks. Bal-

anced provides the most improvement and shows its robustness by averaging

59.3% (86% of the ideal 68.5% average compaction in these 5 benchmarks).

In fact, Balanced always achieve more than 97.9% of the best permutation

in all benchmarks except DXTC. DXTC compacts best with no permutations

because the active threads in DXTC are exhibited in groups of clusters, but

the groups themselves are randomly scattered across the CTA which makes

SLP less effective. As with P-branches, Odd Even was the worst performer

and even trailed the average of baseline TBC.

Figure 4.28 shows the compactability breakdown depending on fraction

of active threads for D-branches. While the benefits are not as pronounced

as with P-branches, Balanced again demonstrates that random permutations

are a poor choice when a large fraction of threads are active. Note that with

D-branches, SLP does slightly impair compactability in a few cases, but all are

within 1% of baseline TBC. One possible optimization to prevent degrading

baseline is to utilize compiler-support; SLP is disabled when the percentage of

D-branches is above a threshold.

4.4.3.2 SIMD Lane Utilization

The definition of compaction rate ignores the magnitude of compaction

and focuses solely on whether any reduction in the number of warps was

achieved. In contrast, SIMDutil ignores how often compaction was success-

ful and instead represents the overall magnitude of compaction. As shown
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Figure 4.28: Breakdown of D-branch compaction rate by fraction of active
threads in a path across the CTA.

in Figure 4.29, for instance, although there are multiple permutation methods

that achieve the full compaction rate for BITONIC, REDUCT, FDTD3D, and

3DFD, the resulting SIMDutil using these permutations is highly variable and

only Balanced offers consistently high improvements.

Balanced most effectively reduces the number of warps overall, with av-

erage increases of 11.3% over the No TBC baseline and 7.1% (max 34%) over

TBC without SLP. Balanced is also either the permutation with the highest

SIMDutil (in 7 benchmarks) or within 99.4% of the best performing permuta-

tion in the other benchmarks. Odd Even provides the smallest benefits, but

still increases SIMDutil by 6% and 2.1% (max 18%) compared to No TBC and

TBC respectively. Rev WID [44] does better than Odd Even with an aver-
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Figure 4.29: Average SIMD lane utilization with different permutations. Note
that scale of the bottom chart above is 80− 100%.

age 8.8% and 4.8% increase over No TBC and TBC respectively. However,

Rev WID lacks robustness and significantly trails the best performing permu-

tation by up to 14.3% (e.g., for BITONIC, REDUCT, AOSSORT, QSRDM).

Among the 5 benchmarks that experienced a lowered compaction rate for their

D-branches with SLP compared to baseline, all also experience a decrease in

SIMDutil for a some SLP permutations but of less than 0.1%.

4.4.3.3 Overall Performance

Figure 4.30 shows the performance of those 8 benchmarks that can be

executed as-is in GPGPU-Sim. TBC is augmented with the 1b-Latest con-
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Figure 4.30: Speedup of compaction with different permutations over no-
compaction.

figuration of CAPRI (Section 4.4) and the SLP mechanisms are implemented

on top of CAPRI. Balanced provides the highest average IPC increase, out-

performing baseline by 11.6% and CAPRI by 7% (both harmonic means).

Balanced also exhibits the maximum speedup observed, improving BITONIC

by 25.6% and BACKP by 15.2%. It is also the best performing SLP per-

mutation on 4 of the 8 benchmarks and is always within 98.9% of the best

permutation. In contrast, the second-best permutation, FLIP odd, achieves

an average speedup of 5% over CAPRI and in worst case achieves only 90.5%

of the best performing SLP. While being effective for compacting BFS and

MUM, TBC fails to utilize the P-branches for the other 6 benchmarks and

performs worst among all compaction mechanisms.

Because SLP degrades the compaction rate and SIMDutil of MUM,

BFS, DXTC, and EIGENVL, performance for these benchmarks are decreased.

Balanced and FLIP odd showed the least degradation in performance (0.3%

and 0.4% degradation compared to CAPRI without SLP, respectively). Ro-
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tate odd 1 caused the greatest average IPC degradation for these benchmarks

(1.1%), but overall, even this permutation improved performance by 2.1%

(harmonic mean). Although we do not evaluate the performance of the other

10 benchmarks, we expect the strong correlation between SIMDutil and per-

formance to apply to them as well.

4.4.3.4 Impact on the Memory System

Compaction involves dynamically rearranging threads from different

warps and scheduling them together at the same time. While SLP itself does

not disturb the memory coalescing capability (as discussed in Section 4.3.4),

the dynamic formation of warps through compaction can degrade memory

access behavior compared to a pipeline that does not compact at all. Among

the evaluated benchmarks, those exhibiting a substantial increase in SIMDutil

and performance did show a noticeable increase in L1 misses, with an average

increase of 6.9% and a maximum increase of 27% (BFS, as in Figure 4.24).

Although L1 misses were more frequent than without compaction, the impact

on L2 misses and memory traffic is negligible (1.3% average increase). These

results are in line with the observations from prior work [23, 24, 25]. Because

the benefits of compaction usually outweigh the increase in L1 traffic, overall

performance is increased, as previously demonstrated.
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4.4.3.5 Implementation and Energy-Efficiency of SLP

Enabling SLP on top of TBC requires storage for the permutation table

and a small amount of logic for permuting the home SIMD lanes. The storage

requirements for Balanced is just 5 bits for each of the 32 unique XOR masks,

totaling 160 bits per GPU core.

The required logic is just a handful of XOR gates per lane. In addition,

a single control bit is needed to allow a programmer to disable SLP for a kernel

to maintain backward compatibility for codes that rely on the undocumented

behavior of a single arbitration order between logical threads within a warp.

Given that a 32-entry CAPT (1088-bits storage) consumes less than 10mW,

the area/power overhead of SLP is expected to be trivial.

4.5 Discussion

This section summarizes some key discussion points that are related

to compaction-based architectures. We start by presenting prior work that is

closely related with the proposed schemes and discuss the impact of CAPRI

and SLP on programmability, followed by possible future extensions of CAPRI

and SLP.

4.5.1 Software-Based Permutation

Zhang et al. [65] proposed reference redirection, which is a software only

technique that attempts to provide an alternative to hardware compaction.

Reference redirection statically rearranges threads with similar control flow
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into a common warp to mitigate the impact of control divergence. This soft-

ware technique often incurs significant overhead for two main reasons. First,

rearranging the threads has a runtime component that must be amortized over

long-running threads and kernels. Second, the new thread groups can degrade

memory coalescing behavior for the entire duration of the kernel. The key

difference from hardware compaction is that reference redirection is static for

the entire kernel, whereas compaction only dynamically rearranges threads in

those basic blocks where it is effective. Thus, while reference redirection can

degrade the memory performance of the entire kernel, hardware compaction

executes identically to baseline SPE in basic blocks that do not diverge. A

direct comparison between reference redirection [65] and SLP is beyond the

scope of this dissertation.

4.5.2 Impact on Programmability

Despite its superiority in programmability and hardware efficiency, the

SIMT model does require the programmer to possess deep understanding of the

underlying GPU microarchitecture for maximum efficiency. Given that the ac-

tual granularity of thread execution is warps and not CTAs (which is the finest

granularity of thread grouping exposed to the programmer, see Section 2.1),

it is extremely difficult for a typical programmer to maximize SIMD efficiency

(and thus overall throughput) unless he or she is fully aware of the warp-based

execution model (e.g., the programmer should carefully write the program

so that all of intra-warp threads follow similar control flow). By adopting
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the CTA-oriented exection model of TBC, CAPRI, and SLP, the underlying

microarchitecture will automatically squash out unused lanes and maximize

SIMD lane utilization through compaction, as long as the programmer enforce

intra-CTA threads to traverse through similar controls. This substantially im-

proves programmability of a normal programmer because the notion of warps

is less of a concern under the CTA-based model.

As mentioned in Section 4.3.4, however, some expert programmers of

current GPUs occasionally rely on undocumented behavior for optimization

and tuning. SLP may break applications that rely on the fact that in current

GPU implementations the same logical thread location within a warp always

wins arbitration when resource conflicts between threads in a warp occur. To

preserve this arbitration behavior, which may be very desirable in some cases,

(1) the programmer can explicitly disable SLP on a particular kernel, or (2)

the logical ordering of the threads can be re-permuted to the original sequence

prior to arbitration. The latter can be done trivially given the static and

deterministic algorithm of SLP. Note that compaction itself already breaks

this particular undocumented behavior.

4.5.3 Cost-Effective Implementation of CAPRI

While in Section 4.4.2.6 we concluded that the power overhead of

CAPRI is negligible, an even simpler implementation of CAPRI is feasible.

The key idea of such cost-effective CAPRI is to simply count the number of

threads that are active when executing any branch instruction and only en-
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force compaction when the number of active threads is smaller after branch

divergence. In other words, all conditional but non-divergent branching points

can naturally allow warps to bypass the compaction barrier (e.g., number of

threads active before/after branching point will always be 32) and only those

that are divergent will enforce synchronization. Such an implementation be-

haves the same as the 1-bit sticky adequacy configuration (Section 4.2.2) with-

out the need for a fully-associative CAPT.

4.5.4 DPE with Compaction

Compaction-based GPU architectures can be augmented with the DPE

model (Chapter 3) by naturally extending the CTA-wide reconvergence stack

to accommodate both left/right paths of a divergent branch. Because com-

paction trades off SIMD utilization with thread-level parallelism (e.g., the more

effective compaction works, the less number of warps to schedule), augmenting

compaction with the DPE model may provide further benefits by enhancing

path parallelism. However, all the applications we studied that exhibit diver-

gence (Table 4.2) contain zero or very few interleavable branches and therefore

DPE has no impact.

4.6 Summary

In this chapter I argue that previously proposed mechanisms to miti-

gate the negative impact of control divergence fall short because they introduce

excessive synchronization, even when compaction provides no benefit. My dis-
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sertation demonstrates that a large fraction of conditional branches cannot

benefit from compaction because they happen not to diverge much or be-

cause their divergence pattern is not amenable to compaction. To overcome

the fundamental deficiency of decreased performance from unnecessary syn-

chronization, a dynamic hardware predictor that predicts whether a branch

point is likely to adequately benefit from compaction has been proposed and

evaluated. When the prediction is positive, all divergent warps that execute

the branch will stall and wait for compaction. If the adequacy prediction is

negative, compaction is bypassed and synchronization is avoided.

Prior compaction techniques provide benefit for highly-divergent ap-

plications but degrade performance in some cases (by up to 19%). The pro-

posed CAPRI mechanism provides superior performance improvements when

improvements are possible. At the same time, by correctly identifying lack

of compaction-adequacy, CAPRI matches the performance of the baseline

No TBC to within ±2%. With very small area overhead, CAPRI is able

to improve performance by up to an average 7% (max 11%) on top of TBC on

divergent workloads and avoid TBC’s 10% average (max 19%) performance

degradation in non-divergent cases.

In addition to the excessive synchronization overhead, the limited ap-

plicability of compaction is also a key concern. This chapter explains and

quantitatively demonstrates that in many cases, the way threads are associ-

ated with SIMD lanes causes aligned divergence patterns that prevent com-

paction. The detailed analysis reveals that such alignment mainly originates
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from non-data dependent, programmatic branches. Although diverging paths

from these programmatic branches do not compact well as-is (an average of

3.2% compaction rate), there is substantial opportunity (72.7% compaction

rate) if the fixed association of threads to lanes can be relaxed. Importantly,

such programmatic branches are common in applications with irregular control

(11 of the 18 benchmarks we evaluate).

I propose and evaluate SLP, which expands the applicability of com-

paction by reducing, and even eliminating, aligned divergence. SLP permutes

the mapping of logical thread locations to physical SIMD lanes when a warp

is launched. This breaks aligned divergence patterns resulting from condition-

als that depend only on programmatic values. A novel and robust Balanced

permutation technique has been proposed, which enables an average of 71.5%

of programmatic branches to be compacted – 98% of the ideal 72.7%. As a re-

sult, SLP with Balanced achieves the highest SIMDutil and performance of all

compaction and permutation mechanisms across the 18 benchmarks we study.

Because the permutation scheme has minimal hardware overhead and

does not directly impact any component other than determining the associa-

tion of threads and lanes, I argue that it should become the default architecture

for GPUs that utilize thread compaction.
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Chapter 5

A Locality-Aware Memory Hierarchy

The previous chapters discussed the problem of SIMT control diver-

gence and the mechanisms I developed to address these inefficiencies. In addi-

tion to control divergence, however, memory divergence due to irregular mem-

ory accesses is another key concern for throughput processors. This chapter

demonstrates that memory divergence, coupled with the massive multithread-

ing of throughput processors, results in highly inefficient caching and substan-

tial waste in off-chip memory bandwidth utilization. I propose a locality-aware

memory hierarchy [27] to remedy such inefficiency by adaptively adjusting the

data fetching granularity from the off-chip memory, achieving better perfor-

mance as well as better energy-efficiency.

5.1 Conventional Memory System Designs and Data
Locality

This section reviews some key characteristics of the baseline coarse-

grained (CG) memory system (Section 2.3) and its pros and cons in a through-

put computing environment.
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5.1.1 Coarse-Grained Memory Hierarchy

The CG memory system enables throughput processors to exploit pro-

grams with high spatial locality, increasing peak memory bandwidth and de-

creasing control overheads. Regularly structured, compute-intensive applica-

tions can readily utilize the high peak memory bandwidth and ample compu-

tational resources of GPUs to great effect. However, not all applications can be

re-factored to exhibit regular control flow and memory access patterns. In fact,

many emerging GPU applications suffer from inefficient utilization of off-chip

bandwidth and compute resources [14, 66, 16]. Recent research has primarily

focused on overcoming irregularity by improving SIMD resource utilization and

latency tolerance [22, 67, 21, 23, 24, 25, 35, 20, 36, 26, 68, 37], but the mem-

ory bandwidth bottleneck still remains a significant issue in future throughput

computing [69]. Despite the significance of achieving high utilization of ex-

pensive off-chip bandwidth, this issue has received little research attention.

As a result, previous research assumes a memory system optimized for CG

accesses, regardless of the architectural nature of throughput processors and

application characteristics. My work provides an architectural optimization

to throughput processors such that they can manage irregular memory access

patterns more effectively.

5.1.2 Limitation of Coarse-Grained Memory Systems

Limited Per-Thread Cache Capacity. CPUs have traditionally employed

a small number of threads that share a large on-chip cache hierarchy, which
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Table 5.1: Per thread cache capacity of state-of-the-art CPUs and GPU.

Intel IBM Oracle NVIDIA
Core i7-4960X [70] Power7 [71] UltraSparc T3 [72] Kepler GK110 [30]

32 KB L1 32 KB L1 8 KB L1 48 KB L1
2 threads/core 4 threads/core 8 threads/core 2, 048 threads/core
16 KB/thread 8 KB/thread 1 KB/thread 24 B/thread

allows a significant fraction of the working set to be captured inside the cache.

GPUs, on the other hand, utilize a very large number of concurrent threads to

achieve high latency tolerance, but this limits the per thread cache capacity

available on chip. This difference between CPUs and GPUs is summarized in

Table 5.1, which illustrates the orders of magnitude smaller per thread cache

space allocated within each GPU core. As detailed below, such limited on-chip

capacity per thread leads to high cache contention and significantly constrains

the average lifetime of cache blocks.

Temporal/Spatial Locality of GPU Applications. Figure 5.1 shows

the distribution of repeated accesses across all cache blocks in the baseline

memory system. Twelve of the 20 benchmarks suffer from poor cache block

reuse because of low temporal locality and high on-chip storage contention.

As a result, more than 50% of the L2 cache blocks are never reused before

eviction.

Note that GPU cores do not always request data in full cache block

granularity (e.g., the baseline cache block size of 128 bytes). For highly irregu-

lar memory accesses, it is common that the requested data size is smaller than
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Figure 5.1: The distribution of repeated accesses to cache blocks in the L1
(top) and L2 (bottom) caches (using a CG-only memory hierarchy). Black
regions represent zero reused cache blocks.

the cache block width; a request can be as small as 32 bytes in CUDA (see

Section 2.3). Because of the low temporal locality, cache blocks that are filled

in response to partial-block requests frequently exhibit poor spatial locality as

well; the data that was filled but not explicitly requested is never used. Fig-

ure 5.2 shows the spatial utilization of L1/L2 cache blocks throughout their

lifetime; each cache block is logically divided into four distinct regions (or sec-

tors) with each region containing 32 bytes of data (consecutive byte addresses).

We count how many distinct regions have actually been referenced before a

block gets evicted. While some applications (e.g., SPROD, MCARLO, FWT,

etc) utilize most of the fetched data, thereby maximizing the benefits of CG

memory accesses, others (e.g., IIX, SSSP, etc . . .) over-fetch memory sectors,

inefficiently utilizing the CG-only memory hierarchy.
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Figure 5.2: The number of sectors referenced in L1 (top) and L2 (bottom)
cache blocks using a CG-only memory hierarchy. Each 128 bytes cache block
is logically divided into four 32 bytes sectors (equivalent to the smallest data
request generated by GPU cores). Dark blue regions, representing those that
have only a single sector referenced, exhibit only 25% of spatial utilization
whereas red regions represent 100% utilization.

Waste in Off-Chip Memory Bandwidth Utilization. In general, regu-

larly structured programs with high spatial and temporal locality use most or

all of the sectors within each cache block, effectively utilizing the CG memory

accesses of the baseline GPU memory hierarchy. The massively multithreaded

nature of GPUs, however, allows little cache capacity per thread, resulting in

high cache miss rates and reducing the amount of temporal locality that can be

exploited for certain applications. Such behavior, combined with the CG-only

memory hierarchy, significantly over-fetches off-chip data for irregular appli-

cations, wasting memory bandwidth, on-chip storage, and DRAM power. The

goal of this work is to minimize the amount of useless data fetching from the
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off-chip DRAM, thereby maximizing the bandwidth utilization and improving

both performance and energy-efficiency.

5.2 Designing a Locality-Aware Memory System

This section presents the first memory hierarchy design that can ef-

ficiently handle fine-grained irregular memory access patterns and scatter-

gather programs in modern GPU architectures. I propose a reactive and

efficient memory system that is locality-aware, such that it can cater to the

behavior of irregular GPU programs. Prior work has used the dynamic es-

timation of spatial data locality for selective fine-grained (FG) memory ac-

cesses (e.g., fetching data smaller than cache block granularity) in control-

intensive, general-purpose chip multi-processor environments [73, 74]. While

these techniques are successfully deployed for CPUs, they fall short for mas-

sively multithreaded throughput-oriented GPUs because many emerging GPU

applications with irregular control/memory accesses exhibit very low tempo-

ral locality and caching efficiency. I propose the locality-aware memory hi-

erarchy (LAMAR) to provide the ability to tune the memory access granu-

larity for GPUs with small implementation overhead. This section first dis-

cusses the possibility of statically making CG/FG decisions (guided by a pro-

filer/autotuner) to best match the memory access granularity with application

characteristics. A scalable, low-cost hardware predictor is then presented,

which adaptively adjusts the memory access granularity without programmer

or runtime system intervention.
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In general, LAMAR maintains the advantages of CG accesses for pro-

grams with high spatial and temporal locality, while selective FG accesses

reduce over-fetching and enable more efficient off-chip bandwidth utilization.

By using multiple granularity memory accesses in a manner appropriate for

the GPU memory hierarchy, LAMAR improves the efficiency of a wide range of

GPU applications, significantly improving memory bandwidth, energy-efficiency,

and overall performance. Also, the implementation of LAMAR is kept trans-

parent to the user and without major changes to the underlying microarchi-

tecture, easing its adoption into future GPU systems.

5.2.1 Fine-Grained Data Management

Coarse-grained accesses can be useful, as they reduce miss rates and

amortize control costs for spatially and temporally local requests. In the ab-

sence of high locality, FG memory accesses avoid unnecessary data transfers,

save power, and improve system performance. This section introduces some

key microarchitectural structures that enable the FG management and storage

of data.

Sub-ranked Memory. A conventional GPU memory system uses multiple

DRAM chips organized in a rank to provide coarse-grained accesses to memory

(Section 2.3, Figure 2.4). In order to exploit the benefits of FG accesses for

irregular workloads, LAMAR must reduce the minimum access granularity to

off-chip memory. To do so, LAMAR leverages a sub-ranked memory system
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to non-intrusively allow fine-grained memory requests. The sub-ranked mem-

ory system adopted by LAMAR is inspired by many prior works, including

HP’s MC-DIMM (multi-core dual in-line memory module) [75, 76], Rambus’s

micro-threading [77] and threaded memory module [78], the mini-rank mem-

ory system [79], and Convey’s S/G DIMM (scatter/gather dual in-line memory

module) [80]. In a sub-ranked DIMM, peripheral circuitry is used to divert

memory command signals to a sub-rank of DRAM chips without changing

the DRAM structure itself. Figure 5.3 shows the sub-ranked memory system

used for LAMAR, which provides a minimum access granularity of 32 bytes,

equivalent to the smallest data request generated by a GPU core [28]. Because

LAMAR provides an adaptive access granularity to suit program needs, CG

memory requests are also allowed. Note that each CG access in LAMAR re-

quires the memory scheduler to issue multiple 32 bytes data requests, which

places more pressure on the address/command bus than the baseline configu-

ration without sub-ranking [73]. The command signaling bandwidth is there-

fore doubled in order to fully utilize the off-chip data bandwidth. Increas-

ing command bandwidth is a matter of system optimization and is already

being deployed in commercial high-end systems such as Black Widow [81],

FB-DIMM [82], S/G DIMM [80], and others.

Fine-Grained Cache Architecture. Fine-grained memory accesses re-

quire some cache changes to maintain FG information in the on-chip memory

hierarchy. LAMAR utilizes a simple sector cache [83] to enable the on-chip
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Figure 5.3: A memory system with two sub-ranks, providing a 32 byte (32b
× 8-bursts) minimum access granularity. When used with a sector cache, the
size of each sector is 32 bytes.

management and storage of FG data. The sector cache partitions each cache

block into sectors, each with its own validity meta-data; this allows for data

to be managed at a granularity finer than a cache block. Figure 5.3 illustrates

how data are partitioned and stored into a sectored cache block. The sector

cache used for LAMAR partitions each cache block into four 32 bytes sectors.

5.2.2 High-Level Overview of LAMAR

LAMAR uses a sector cache (both L1 and L2) and a sub-ranked mem-

ory system1 in order to demonstrate the full benefits of our proposed scheme

(Figure 5.4). The width of each sector, as well as the minimum access gran-

ularity of the sub-ranked memory system, is equivalent to the smallest data

1We also explore the implications of LAMAR with minimum changes to the GPU ar-
chitecture by only using a sectored L1/L2 cache without a sub-ranked memory system, the
result of which is detailed in Section 5.3.2.5.

133



Interconnection Network

L2$

Memory 

Channel

… 

GDU

Processor

L1$GDU

Processor

L1$GDU

Processor

L1$GDU

… 
Processor

L1$GDU

Processor

L1$GDU

Processor

L1$GDU

L2$

Memory 

Channel

GDUL2$

Memory 

Channel

GDU

… 

Sub-Ranked Memory System

Figure 5.4: The proposed LAMAR GPU architecture. Each on-chip cache
is sectored and is augmented with a GDU; off-chip memory is sub-ranked in
order to allow fine-grained accesses.

request size generated by the address coalescing unit within the GPU core,

which in current generation of GPUs is 32 bytes2. Each cache is augmented

with a granularity decision unit (GDU) that determines the access granularity

of each cache miss. In the baseline CG-only memory system, all cache misses

are requested at a cache block granularity, whereas LAMAR uses the GDU to

determine which access granularity best suits the application.

2Enabling a minimum access granularity smaller than 32 bytes requires restructuring the
address coalescer in the GPU core. In this dissertation, I leverage the current GPU core
architecture as-is to demonstrate the benefits of LAMAR while minimizing the changes to
the current GPU architecture.
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Statically-Driven GDU. LAMAR provides the programmer the option

to tune the access granularity by statically designating whether to fetch all

program data at a coarse or fine granularity. This decision may be guided by

profilers/autotuners and is sent to the runtime system to update each GDU

(e.g., through compiler options, APIs, etc.). Skilled programmers can therefore

configure the GDU as appropriate to the application’s needs, achieving optimal

bandwidth utilization and energy-efficiency. As detailed in Section 5.3.2, we

find the average number of sectors referenced within a cache block (Table 5.4,

Avgsec ) to be a good metric for characterizing a program’s access granularity.

Dynamically Adaptive GDU. Despite the advantages of a statically-

driven GDU, identifying and specifying the optimal access granularity requires

both extra effort from the programmer and system support. To this end, I pro-

pose a hardware-only mechanism that dynamically derives the optimal access

granularity at runtime, achieving comparable benefits of the statically-driven

GDU in a robust manner across all studied applications.

Previous Work. Previous work exploits adaptive granularity memory ac-

cesses in a multi-core processor [74] using a spatial-pattern predictor [84, 85]

(SPP) in place of the GDU. Spatial pattern prediction uses a pattern history

table (PHT) to collect and predict likely-to-be-used sectors upon a cache miss.

Each cache block in an SPP-based system is augmented with a set of used bits

that designate whether a given sector has been referenced or not. When a
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cache block is evicted, the corresponding used bit information is committed to

the PHT. Future misses to each block query the PHT to determine which sec-

tors are likely to be referenced in the future, allowing targeted sector fetches.

Details of the microarchitectural aspects of the SPP can be found in [74, 85].

While spatial pattern prediction has been effectively employed in multi-

cores, Section 5.3 quantitatively demonstrates why the SPP is not cost-effective

in a massively multithreaded GPU environment. As pointed out in previous

literature [35, 86], many GPU applications do not cache well and suffer from

high cache miss rates and low block reuse. Such low caching efficiency occurs

both due to streaming data accesses and also because the threads contend for

cache resources and constrain the effective on-chip storage available to each

thread. While massive multithreading enables GPUs to be highly latency

tolerant, it comes at the cost of poor cache performance, which, combined

with the CG-only memory system, wastes memory bandwidth and can limit

system energy-efficiency.

The SPP is not as effective for multi-granularity access in GPUs as it

is in CMPs because the high cache turnover rate and low cache block reuse

of GPUs significantly lowers the ability of the SPP to learn dynamic behav-

ior. While the SPP accurately estimates the spatial locality of data, it is not

robust in the presence of low temporal locality (Figure 5.1) and poor cache

performance as discussed in Section 5.3.2.1.
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5.2.3 Bi-modal Granularity Predictor

In general, I observe that the SPP fails to provide robust prediction

quality and high energy-efficiency to a wide range of GPU applications. While

a more sophisticated prediction algorithm could potentially enhance the ef-

fectiveness of SPP, the complexity and high area overhead of a modified SPP

will not scale to a many-core environment. I propose a simple, lightweight bi-

modal granularity predictor (BGP) that is much more suitable for throughput-

oriented architectures.

Key Idea and Observation. The main inefficiency of spatial pattern pre-

diction is that the spatial locality information tracked by the PHT is useless

for cache blocks with low temporal locality. With this in mind, the proposed

BGP microarchitecture is structured such that it estimates both the temporal

and spatial locality of missed cache blocks and determines whether to fetch

all of the sectors within the cache block (CG-mode) or only the sectors that

are requested (FG-mode). The key observation behind BGP is that for cache

blocks with poor temporal locality, it is sufficient to fetch only the sectors that

are actually requested (on-demand) because the other sectors will most likely

not be referenced during their lifetime (e.g., cache blocks with zero reuse in

Figure 5.1). Meanwhile, blocks with both high temporal and spatial local-

ity make effective use of coarse-grained accesses, such that a simple bi-modal

prediction is sufficient to greatly improve memory system performance and

efficiency.
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Figure 5.5: A microarchitectural overview of the proposed dual bit-array bloom
filter. Note that A, B and C in (a, b) are distinct values. All insertions into
the bloom filter are applied to both bit-arrays (a), except during the initial idle
period of Bit-array1 (c). To minimize the false positive rate, each bit-array
is cleared after N insertions at which point the active bit-array (determined
by SEL in (b)) is swapped. This dual bit-array microarchitecture allows the
bloom filter to retain at least a

(
N
2

)
insertion history from the newly active

bit-array, avoiding periods where it contains zero history.

Microarchitecture. The lightweight BGP microarchitecture dynamically

estimates if each missed cache block has enough locality to warrant a coarse-

grained fetch. The storage of BGP is implemented using a bloom filter [87] to

minimize the cost of tracking the multitude of cache blocks in the system. A
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bloom filter is a space-efficient probabilistic data structure that is used to test

whether an element is a member of a set. It consists of a bit-array with m-bits

and n-hash functions. An element is inserted (Figure 5.5(a)) into the set by

calculating n different hashes of the element and setting the corresponding bits

of the bit-array. Testing if an element belongs to the set is done by feeding it

to the n hash functions and checking if all the corresponding bit positions are

1s (Figure 5.5(b)). If any of the queried bits is 0, the element is definitely not a

member of the set (true negative) while all 1s indicates either that the element

actually was inserted to the set (true positive) or that there are collisions with

other elements of the set (false positive). The false positive rate of a bloom

filter is determined by the number and type of hash functions chosen and the

size of the bit-array. For the purpose of the BGP , a bloom filter is used to track

the set of evicted blocks having low (or high) locality, using their respective

block address as the inserted element.

In order to temporally degrade old insertions and maintain a certain

amount of locality history, the locality predictor is implemented using a dual

bit-array microarchitecture as detailed in Figure 5.5. This dual bit-array bloom

filter uses two temporally overlapped bit-arrays that are periodically cleared

and swapped in order to eliminate interference due to stale locality data. This

structure has several implementation advantages. First, the dual bit-array

bloom filter allows for the removal of aging elements in an application ap-

propriate manner without resorting to more expensive bloom filter variants

(such as a counting filter [88]). Also, the rolling history of the dual bit-array
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Figure 5.6: The prediction algorithm of the BGP . SKEWinsert is evaluated
every thousand cache block evictions (NUMevict).

naturally captures temporal locality information. Finally, because the dual

bit-array structure periodically resets, it allows us to tailor the default in-

sertion/prediction mode (CG or FG) to dynamic phase behavior in order to

reduce the false positive rate, as described below.
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Prediction Mechanism. Figure 5.6 summarizes how the bi-modal granu-

larity predictor operates and when and how evicted blocks are inserted into

the bloom filter. The BGP contains a default prediction (CG or FG) that

determines what kind of evicted blocks are inserted into the filter (and the cor-

responding prediction upon a query to the filter). The CG/FG fetch decision

is made by querying the bloom filter with the missed block’s address—upon a

miss, the querying cache block has the opposite locality characteristics to the

blocks inserted into the bloom filter, so BGP grants the default prediction.

For those queries that hit in the bloom filter, the BGP predicts the opposite

of the default prediction (Figure 5.6(a)).

The BGP uses the number of sectors accessed as means to approximate

the locality of a cache block, rather than the number of accesses to the cache

blocks, for simplicity in design. When a cache block is evicted, the associated

sector used-bit information is examined to estimate the block’s locality—if

the number of sectors accessed is below a pre-determined threshold (THFG),

that block is estimated as having low locality and high locality otherwise (Fig-

ure 5.6(b)). This locality estimate is compared with the BGP ’s current default

prediction in order to determine whether the eviction should be inserted into

the filter.

When the percentage of evicted cache blocks inserted into the bloom

filter (SKEWinsert) is high, each filter will be filled quickly and the BGP will

track little temporal history (Figure 5.5(c)). Inspired by the intuition of agree

predictors [89], the BGP rotates the default prediction whenever SKEWinsert
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Table 5.2: Configuration parameters of BGP microarchitecture.

Bit-array size 2K bit per bit-array (4K bit per BGP)
Refresh period Every 512 insertions
# of hash functions 6
Hash function Byte-sliced XOR [90]
THFG 2 sectors
SKEWthres 0.7

is higher than a pre-determined threshold (SKEWthres) in order to avoid the

bloom filter from being rapidly saturated by an overwhelming number of inser-

tions (Figure 5.6(c)). Table 5.2 summarizes the microarchitectural parameters

used for the baseline BGP configuration. The BGP bloom filter hash func-

tions are inexpensively implemented in hardware by byte-slicing each evicted

address and XOR-ing the slices together [90]. Overall, the prediction accuracy

of BGP is shown to be relatively insensitive to these parameters, unless the

bit-array size is less than 2K bits or the refresh period is less than a quarter

of the bit-array size.

5.2.4 Summary of the Benefits of BGP

The benefits of the proposed BGP are twofold. First, by granting FG

accesses for only those accesses that have past history of low temporal locality,

applications with good caching behavior (e.g., most of the sectors are utilized)

or those with a working set fitting well in the cache (e.g., low miss rates and

thus low evictions within a timeframe) are guaranteed to fetch data in CG-

mode, maintaining the benefits of the CG-only memory system. Second, the

bloom filter based BGP provides a cost-effective mechanism to determine the
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Table 5.3: Simulator configuration for LAMAR evaluation.

Number of GPU cores 15
Threads per GPU core 1536
Threads per warp 32
SIMD lane width 32
Registers per GPU core 32768
Shared memory per GPU core 48KB
Warp scheduling policy Oldest warp first [23]
L1 cache (size/associativity/block size) 16KB/4-way/128B
L2 cache (size/associativity/block size) 768KB/16-way/128B
Memory bandwidth 179.2 GB/s
Memory controller Out-of-order (FR-FCFS)

access granularity, as opposed to SPP-based schemes that require a separate

PHT and complex control/update logic.

5.3 Evaluation

This section presents the evaluation methodology, followed by a detailed

evaluation of LAMAR.

5.3.1 Methodology

Simulation Model. LAMAR is modeled using GPGPU-Sim [47, 46], a

cycle-level performance simulator of a general purpose GPU architecture that

supports CUDA 3.1 and its PTX ISA. The memory hierarchy of GPGPU-

Sim is augmented with sectored L1/L2 caches and DrSim [91, 92], a detailed

DRAM simulator that supports sub-ranked memory systems.

The DRAM model is configured to adhere to the GDDR5 specifica-

tion [40], except for the bank-grouping effects (which are projected to be elim-
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inated in future GDDR products [40, 93]). To demonstrate how the BGP is

affected by limited hardware resources (e.g., dual 2K bit-arrays), the SPP and

BGP with unrealistically large histories (1M-entries) are also simulated; these

impractical designs are denoted by SPP and BGPinf henceforth.

In general, the GPU simulator is configured to be similar to NVIDIA’s

GTX480 [38] using the configuration file provided with GPGPU-Sim [48]. Key

microarchitectural parameters of the baseline configuration are summarized in

Table 5.3; we explicitly mention when deviating from these parameters for the

sensitivity studies in Section 5.3.2.5.

DRAM Power Model. This work uses the detailed power model developed

by Micron [94] and the DRAM physical parameters have been referenced from

a Hynix GDDR5 specification [40]. Our power model is summarized in Equa-

tion 5.1, and includes the background power, refresh power (PREF ), activation

& precharge power (PACT PRE), read power (PRD) and write power (PWR).

The background power includes precharge standby power (PPRE STBY ) and

active standby power (PACT STBY ). Read and write power includes the power

consumed by the DRAM bank (PRD BANK) and by the IO pins (PRD IO).

PGDDR5 = PPRE STBY + PACT STBY︸ ︷︷ ︸
Background Power

+PREF + PACT PRE

+PRD BANK + PRD IO︸ ︷︷ ︸
PRD

+PWR BANK + PWR IO︸ ︷︷ ︸
PWR

(5.1)
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GPU Processor Power Modeling. This study is concerned primarily with

the performance and efficiency of the memory hierarchy. To evaluate how

LAMAR affects the overall system energy-efficiency, however, we model the

GPU processor power using the analytical IPC-based power model suggested

by Ahn et al. [75]. The peak power consumption of each GPU core is extracted

using GPUWattch [53]. The leakage power of the system (including GPU

processors and DRAM) is estimated to be 59W. The peak dynamic power

consumption per GPU core is estimated to be 9.5W, out of which 2.3W are

constant power that does not scale with IPC. Such simple IPC-based power

modeling offers > 90% agreement with GPUWattch and is used to estimate

the overall system efficiency in Section 5.3.2.4.

Benchmarks. LAMAR is evaluated with 32 benchmarks from Rodinia [14],

CUDA-SDK [3], MapReduce [66], LonestarGPU [16], and the benchmarks pro-

vided with GPGPU-Sim [47]. This chapter focuses on the 20 applications that

exhibit noticeable differences across different schemes for brevity (Table 5.4).

All benchmarks are simulated to completion, with the exception of SSSP, SP,

PVC, SCLST, and FWT; due to the long simulation time of these applica-

tions, we execute them only up to the point where IPC is saturated with small

variation among different iterations of the kernel. The 20 chosen benchmarks

are categorized as either being FG-leaning or CG-leaning based on the aver-

age number of sectors accessed within all L1/L2 cache blocks (Figure 5.2) —
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Table 5.4: Benchmarks studied for LAMAR evaluation. Avgsec refers to the
average number of sectors accessed across all cache blocks.

Abbreviation Description #Instr. Avgsec Ref.
IIX Inverted index 1.8B 1.09 [66]

SSSP Shortest paths 1.5B 1.24 [16]
BFS1 Breadth first search 3B 1.25 [16]

SP Survey propagation 1.3B 1.28 [16]
SSC Similarity score 4.9B 1.46 [66]

BFS2 Breadth first search 469M 1.48 [14]
MUM MUMmerGPU 149M 1.49 [63]
NW Needleman-Wunsch 220M 1.67 [14]
PVC Page view count 5.4B 1.75 [66]
WP Weather prediction 365M 2.00 [47]
MST Min. spanning tree 5B 2.39 [16]
RAY Ray-tracing 750M 3.29 [47]

SCLST Streamcluster 4.1B 3.41 [14]
BACKP Back propagation 196M 3.62 [14]

NN Neural network 78M 3.65 [47]
SRAD Structured grid 8.5B 3.88 [14]

LAVAMD N-body 22B 3.89 [14]
SPROD Scalar-product 25M 3.99 [3]

MCARLO Monte-carlo 1B 3.99 [3]
FWT Fast-walsh-transform 3.9B 4.00 [3]

applications that average more than two sectors accessed per cache block are

categorized as CG-leaning (and FG-leaning otherwise).

5.3.2 LAMAR Results and Analysis

This section evaluates LAMAR, considering its impact on off-chip traf-

fic, cache efficiency, the improvements that LAMAR brings about in overall

performance and energy-efficiency, and its implementation overhead. We also

discuss the variation of off-chip traffic to key microarchitectural parameters

as a sensitivity study. Five different GPU memory hierarchy designs are an-
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Figure 5.7: The number of sectors read into the L1 caches, categorized based
on prediction quality (normalized to the FG-only scheme).

alyzed: CG-only, FG-only, SPP, BGPinf and BGP , which are denoted by

C/F/S/I/B, respectively, in all figures throughout this section. A LAMAR

configuration based on static GDU decisions is equivalent to the best of CG-

only and FG-only for each application. Note that the same dataset for both

the profiling and measurement run are used. All average values are based on

harmonic means.

5.3.2.1 Prediction Quality, Traffic, and Caching

The GDU of LAMAR determines whether a cache block should be

fetched in CG or in FG mode. It can therefore predict to: 1) correctly fetch

sectors that are actually referenced (PRED REF ), 2) incorrectly fetch sectors

that are not referenced (PRED NREF ), and 3) incorrectly not fetch sectors

that are referenced later (NPRED REF ). We therefore categorize each fetched
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Figure 5.8: The number of sectors read into the L2 caches, categorized based
on prediction quality (normalized to the FG-only scheme).
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Figure 5.9: Byte traffic to DRAM (both read/write) normalized by 1) the
number of instructions (left axis) and 2) by the traffic/instr. of the CG-only
scheme (right axis).

sector as either being fetched on-demand from the upper level (DEMAND) or
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based on prediction (Figure 5.7 and Figure 5.8)3. The overall read/write traf-

fic and the associated cache miss rates are depicted in Figure 5.9, Figure 5.10,

and Figure 5.11. Overall, the FG-only scheme has the smallest off-chip traffic

thanks to its conservative fetch decision. This reduced traffic, however, comes

at the cost of a significant portion of sectors being NPRED REF with in-

creased miss rates for some applications. NN, for instance, has 65%/54% of its

L1/L2 sectors being fetched NPRED REF . Because these sectors would have

been pre-fetched had the initial access been predicted as CG-fetches, mem-

ory access behavior and caching efficiency are degraded, potentially leading to

performance penalties for certain applications (see Section 5.3.2.2 for details).

CG-leaning applications generally contain less overfetched data (even with the

CG-only scheme), with only 13%/3% more sectors fetched to L1/L2 compared

to the FG-only scheme. For FG-leaning benchmarks, however, CG-only falls

short by having 171% and 93% more L1/L2 read-in traffic than FG-only, most

of which is due to the large number of mispredicted PRED NREF sectors.

Unlike CG-/FG-only schemes, dynamically-driven LAMAR is able to

balance the benefits of both CG and FG accesses. All three LAMAR predic-

tors reduce off-chip traffic significantly without degrading the memory access

behavior of CG-leaning applications. SPP is the least effective mechanism

among the three, having 60%/72% more L1/L2 read-in sectors than FG-only,

3Note that sectors requested from the L1 to L2 cache are interpreted as DEMAND sectors
from L2’s perspective, even though these sectors can be PRED REF , PRED NREF , and
NPRED REF from the L1’s point of view.
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Figure 5.10: Changes in L1 cache miss rates with LAMAR.

whereas BGPinf and BGP have 20%/22% and 37%/47% more, respectively,

thanks to the GPU-context appropriate prediction algorithm (Section 5.2.3).

In general, the CG-only scheme falls short by significantly overfetching

data for FG-leaning applications while the FG-only scheme disrupts the mem-

ory access behavior of several benchmarks, despite its advantage in reducing

off-chip traffic. A static GDU configuartion, preferrably matching applica-

tion characteristics (e.g., Avgsec provided by the profiler/autotuner), typically

performs best in terms of overall bandwidth utilization, maximizing energy-

efficiency. While less effective than the best-performing CG-/FG-only scheme

for each application, dynamically-driven LAMAR approximates the character-

istics of the static GDU schemes, balancing the benefits of CG-fetches while

reducing traffic when feasible. Compared to BGP , SPP-based prediction lacks

robustness and fails to effectively reduce off-chip traffic for SSSP, BFS1, SP,
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Figure 5.11: Changes in L2 cache miss rates with LAMAR.
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Figure 5.12: Normalized speedup. BGP(I) and BGP(B) represent BGPinf and
BGP .

MUM and NW. However, SPP is still advantageous compared to a static mem-

ory hierarchy.
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5.3.2.2 Overall Performance

Figure 5.12 shows the overall speedup from adopting LAMAR mem-

ory schemes. In general, all LAMAR predictors provide significant benefit

over the conventional CG-only memory system while executing FG-leaning

applications thanks to more efficient utilization of the off-chip bandwidth,

demonstrating a maximum 49% boost and an average 12–14% improvement

in performance. Note that applications with low average byte traffic (Fig-

ure 5.9) are still able to gain good performance improvements with LAMAR

(e.g., PVC, SSC). Depending on the application characteristics and memory

access behavior, there can be significantly high memory access intensity within

a short time window (in which LAMAR can help resolve the performance bot-

tleneck at the memory channels) even though the absolute volume of data sent

through the memory channel is low on average.

LAMAR predictors also provide comparable performance to the CG-

only scheme in executing CG-leaning applications—the biggest degradation is

for MST (whose L1 caching efficiency is disrupted by LAMAR, lowering the

IPC by 13% with BGPinf ). The static FG-only scheme adversely impacts

5 of the CG-leaning benchmarks, ranging from 4% (SPROD) to 22% (MST)

performance degradation.

5.3.2.3 Impact on DRAM Power Efficiency

Correctly predicted FG-fetches reduce the number of read and write

commands issued to DRAM. However, CG-fetches have the advantage of lever-
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Figure 5.13: A breakdown of DRAM power (Watt, left axis) and the corre-
sponding Perf/Watt (normalized to CG-only, right axis).

aging DRAM bank row locality by only having to open the corresponding bank

row once. This is not the case for mispredicted FG-fetches (NPRED REF ),

which require re-opening the bank row at a later time and lead to addi-

tional activate/precharge (ACT/PRE) commands. Figure 5.13 illustrates how

the reduction in off-chip traffic correlates with DRAM power consumption.

Overall, the benefit of reduced read/write commands outweighs the over-

head of increased ACT/PRE commands. For FG-leaning applications, FG-

only achieves the largest average power reduction of 19% (max 42%) while

SPP/BGPinf/BGP obtain an average 1%/13%/8% reduction (max 16%/39%/33%),

respectively. Despite its low implementation cost, BGP is competitive with

BGPinf and outweighs SPP both in power reduction as well as Performance/Watt

(Perf/Watt), with an average 27% increase in Perf/Watt while SPP and

BGPinf achieve an average 16%/34% improvement, respectively.
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For CG-leaning applications, all LAMAR predictors perform compa-

rable to the CG-only scheme whereas FG-only suffers from an average 5%

degradation in Perf/Watt (maximum 20% degradation).

5.3.2.4 System-Level Power Efficiency

The system-level efficiency of different memory schemes is evaluated by

combining the DRAM power model (Section 5.3.2.3) with the IPC-based GPU

processor power model (Section 5.3.1). Recent literature [53, 34] estimates that

the memory system consumes approximately 5 to 45% of the overall GPU

power, depending on the application. LAMAR mainly improves the energy-

efficiency of the memory hierarchy, so the overall improvement in Perf/Watt is

less pronounced than its DRAM counterpart. Among FG-leaning applications,

BGPinf and BGP obtain an average 18% and 17% improvement in Perf/Watt ,

respectively. SPP helps the least among LAMAR predictors with an average

13% improvement in Perf/Watt . The FG-only mechanism, while achieving

the highest average Perf/Watt improvement (19%), struggles in executing CG-

leaning applications and significantly degrades Perf/Watt for MST, NN, and

SRAD.

5.3.2.5 Sensitivity Study

This section summarizes LAMAR’s sensitivity to key parameters. For

conciseness, we primarily focus on the reduction in off-chip byte traffic for FG-

leaning applications since this is where LAMAR gains most of its benefits.
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Figure 5.14: The system power consumption (Watt, left axis) and the corre-
sponding Perf/Watt (normalized to CG-only, right axis). Note that the range
of the upper plot is 0.8–1.8, whereas it is only 0.7–1.2 for the bottom plot.

Cache Capacity. As shown in Figure 5.15(a), DRAM traffic is generally

reduced with larger on-chip caches (and vice versa for smaller caches) thanks

to better caching efficiency. The benefits of LAMAR are still maintained across

all FG-leaning applications and the relative reduction in traffic (compared to

each configuration’s CG-only scheme) is more pronounced with smaller caches

(e.g., IIX, BFS1, SSC, BFS2, WP). BGP , for instance, exhibits an average

37%/33%/17% reduction in traffic with the three cache size configurations.

Cache Block Size. With a larger 256 bytes L2 cache block (256B), the

baseline CG-only scheme is likely to overfetch even more off-chip sectors and

to suffer from severe bandwidth under-utilization. Such behavior is illustrated

in Figure 5.15(b) where a 256B configuration of CG-only uses an average 96%
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(a) Sensitivity of LAMAR to reduced (0.25 times) and increased (8 times) L1/L2 capacity.
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(b) Sensitivity of LAMAR to L2 cache block size. The overall L2 cache capacity is maintained
equal to the baseline.
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(c) Sensitivity of LAMAR to the minimum access granularity (32 bytes/64 bytes). Note that
the L1/L2 cache capacity and cache block size are maintained equal to the baseline.

Figure 5.15: Sensitivity of off-chip traffic when varying (a) cache capacity, (b)
L2 block size, and (c) minimum access granularity. The left axis represents
the off-chip traffic of five configurations, normalized to each configuration’s
CG-only scheme. The right axis is used to compare the traffic of each config-
uration’s CG-only scheme (CG-normalized) and is normalized to baseline.

more memory traffic than the baseline. The benefits of LAMAR, accordingly,

are much more evident under the 256B configuration, where BGP reduces off-
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chip traffic by an average of 58% compared to the 33% reduction using the

baseline cache block size.

Larger Sector Size. To demonstrate the benefits of LAMAR with minimal

changes to the GPU system, the proposed mechanisms without a sub-ranked

off-chip memory system are also studied. A conventional GDDR5-based mem-

ory system provides a minimum access granularity of 64 bytes (Figure 2.4), so

we evaluate LAMAR with a 64 bytes sector size and minimum access granular-

ity. As depicted in Figure 5.15(c), the benefit of LAMAR is reduced from an

average 33% traffic reduction to 20% with BGP due to the lack of sub-ranking

and less fine control of data fetching granularity.

Thread-Level Parallelism. Recent literature [86, 35] shows that through-

put processors make poor use of data caches, due to the high cache access in-

tensity and the resulting low per-thread cache capacity. To this end, previous

work makes the warp scheduler cache conscious [35] such that the number of

warps able to access the cache are dynamically reduced if the cache is thrashing

(hence throttling thread-level parallelism [TLP] available at the GPU core).

Such cache-conscious warp scheduling (CCWS) is therefore only effective when

the application is both cache-sensitive and is thrashing. While LAMAR fo-

cuses on wasted transfers due to granularity mismatches in the system and is

orthogonal to CCWS, we nonetheless evaluate the effectiveness of LAMAR on

top of this technique. Since CCWS is effectively a dynamic mechanism that
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Figure 5.16: Sensitivity of LAMAR to available TLP. We experiment by sweep-
ing through the number of schedulable CTAs within a GPU core from one
(min) to its maximum allowable number (max ) – which is limited by avail-
able hardware resources. The speedup with the optimal number of CTAs is
reported as opt. The figure shows the IPC normalized to the CG-only scheme
with opt TLP. Only three applications (IIX, MUM, SCLST) benefit from TLP
throttling, meaning that, the best performance is generally achieved with the
maximum level of TLP. Such common-case application behavior is represented
by SSC whose performance is degraded with reduced TLP.

approximates the statically chosen optimal level of TLP, we experiment with

LAMAR on top of CCWS as detailed in Figure 5.16. As depicted, three of the

20 applications we study (IIX, MUM, SCLST) benefit from TLP throttling

and LAMAR remains effective in the presence of TLP tuning.

Miscellaneous. As mentioned in Section 5.2.3, the prediction quality of the

baseline BGP microarchitecture is relatively robust with bit-array sizes larger

than 2K bits. Performance is improved from 2% to 7% with a 4K bit-array,

but saturates when going above 4K bits. Changing THFG and SKEWthres

(Figure 5.6) also affects off-chip traffic and performance, but overall trends

remain similar to the analysis discussed throughout this section (so long as

SKEWthres is above 0.7 and THFG is less than three sectors).
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5.3.2.6 Implementation Overhead

LAMAR is implemented using a sector cache and a sub-ranked memory

system, the overheads of which are well established in previous literature [75,

76, 77, 78, 79, 80]. In addition, each cache partition is augmented with a GDU.

Static GDU configurations require no additional hardware, but necessitate

profiler/autotuner support to provide recommended granularity information.

Further exploration of identifying the optimal granularity at compile time is

left for future work.

For dynamic GDU schemes, the proposed BGP microarchitecture (us-

ing a dual bit-array bloom filter) requires: (1) 4K bits of storage per GDU,

(2) 6 sets of XOR logic gates for the hash functions, and (3) control logic to

insert/test the membership of the bloom filter (Table 5.2). Given that the

32-entry prediction table used for CAPRI consumes less than 10mW, despite

its fully-associative structure with 1088 bits of storage (Section 4.4.2.6), we

estimate that each GDU consumes less than 40mW.

5.4 Discussion

This section presents several discussion points related to LAMAR.

5.4.1 LAMAR on Future Memory Technologies

In order to be concrete and to allow a detailed evaluation, this work

leverages GDDR5 as the main memory technology. Future GPUs, however,

may use evolving memory interface standards that utilize 3D packaging tech-
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nology, such as the Hybrid Memory Cube (HMC) [95] or High-Bandwidth Mem-

ory (HBM) [96]. Although these interfaces are likely to offer much higher

bandwidth than GDDR5, GPU arithmetic performance will increase as well,

and effectively utilizing memory throughput will remain critical to performance

and efficiency. In fact, capacity-to-bandwidth ratio is likely to increase with

the use of HMC packages—this implies that bandwidth utilization will increase

in importance, amplifying the potential benefits of LAMAR. The proposed ac-

cess granularity for these interfaces is also similar to that of GDDR5 devices

today, with HMC proposing an access granularity of 32− 256 bytes and with

HBM likely to use a 32 bytes granularity similar to the WideIO standard [97].

Thus, the opportunity and policies we propose for LAMAR should generally

apply equally well.

With 3D packaging, it is likely that the memory controller will be par-

titioned between the processor and the DRAM die stacks: scheduling is likely

to remain close to the processor, where knowledge of priorities and requests

is readily available, while implementation of the DRAM access protocol will

be relegated to the controller within each stack [95]. This partitioning will re-

quire a re-design of how LAMAR controls the memory modules (owing to the

fact that sub-ranks are essentially internalized and hidden within each stack).

Because scheduling is still delegated to the processor, LAMAR will have to be

modified to account for sending the appropriate request packets to maximize

transfer efficiency. Exploring LAMAR under such designs is left for future

work.
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5.4.2 Error Correction

Current GPUs support error correction with error correcting codes

(ECC). While the details of the memory protection schemes in industry are

not publicly known, one way of flexibly supporting error correction without

dedicated DRAM chips is through virtualized ECC [98]. The approach taken

by LAMAR is amenable to such error correction, in a similar manner to prior

work [74, 99].

5.4.3 Alternative FG Cache Management

LAMAR uses a simple sector cache to manage FG data in the on-chip

cache hierarchy, as our current study focuses on the efficient management of

off-chip data for irregular GPU applications. However, alternative FG cache

management schemes exist, such as the decoupled sectored cache [100], pool-

of-sectors cache [101], or the spatio/temporal cache [102]. Such more advanced

cache architectures could be adopted to increase the effective capacity of the

cache for irregular applications. Some irregular applications are very sensitive

to the (typically limited) on-chip storage capacity, such that these alternative

caches could significantly increase performance.

5.4.4 Other Dynamic Bloom Filter Mechanisms

The BGP incorporates two temporally-separated bloom filters to sup-

port the aging of membership data and to allow space-efficient operation with

a dynamic stream of accesses. The temporal aging of bloom filter entries for
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dynamic data has been addressed by Deng and Rafiei [103] by associating a

slowly degrading count with each storage cell. However, this design makes

inefficient use of storage and is unlikely to perform competitively with the

BGP . The concept of maintaining and swapping two temporally-separated

bloom filters has been previously employed in software for filtering dynamic

data [104, 105, 106]. BGP is the first application of such a scheme to memory

access granularity prediction in hardware and is unique in its implementation

and default prediction inverting algorithm. Yoon [107] recently proposed an

alternate two-buffer algorithm for filtering dynamic data that could provide

modest accuracy benefits for the BGP .

5.4.5 Impact on Programmability

Maximizing off-chip memory bandwidth utilization necessitates that

the programmer carefully align/confine the intra-warp, per-thread memory

access to within a single cache block, so that memory divergence is minimized

and memory access overhead is amortized across the warp. As discussed in

Section 4.5.2, requiring programmers to understand and consider such low level

microarchitectural characteristics substantially hampers programmer produc-

tivity. LAMAR allows programmers to be less concerned about such low level

details as the bi-modal granularity predictor will automatically, and trans-

parently evaluate the memory access granularity and seek to minimize waste

in bandwidth utilization when fine-grained requests are made. Such support

improves the programmability of the SIMT execution model.
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5.5 Summary

The increasing popularity of general-purpose GPU programming and

the growing irregularity of some throughput-oriented programs necessitate a

fine-grained GPU memory system. Meanwhile, the continuing need for the

high-performance acceleration of regular, well structured programs and graph-

ical workloads makes coarse-grained memory accesses compulsory as well. I

propose LAMAR, an adaptive and reactive hardware-only memory scheme

for GPUs and throughput-oriented processors that achieves superior efficiency

across a range of general-purpose GPU applications. By dynamically pre-

dicting the temporal and spatial locality of memory accesses, LAMAR miti-

gates the deficiencies of static-granularity memory systems and prior mixed-

granularity memory schemes for control-intensive CPUs. In addition, the hard-

ware required for LAMAR is simple and non-intrusive enough to be readily

implemented in a many-core GPU and its adoption requires no programmer

intervention. Results show that LAMAR provides an average 14% increase in

performance (max 49%), 33% reduction in average off-chip traffic (max 64%),

and an average 17% improvement in system-level energy-efficiency (max 47%).
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Chapter 6

Future Research Directions

The previous chapters discussed the irregularity of SIMT control and

memory accesses, their implication in a massively multi-threaded computing

environment, and how the mechanisms I developed address these challenges

in a cost-effective manner. There are, however, still several opportunities for

future investigation that can extend the topics discussed in this dissertation.

This chapter provides discussion points that will motivate such future research

work.

6.1 A QoS-Aware Throughput Processor Architecture

Motivation. As proven in chip-multiprocessor (CMP) systems [108, 109],

granting different (or equal) levels of access priority to shared resources is vi-

tal for maximizing overall system throughput. In contrast to CMPs, through-

put processors execute a massive number of, essentially identical instances

(threads) of a single program. As a result, the QoS each thread obtains has

been ignored by academia until very recently; previous literature discussing a

(GPU-style) throughput processor mostly assumes that all threads have equal

access priority to the shared resources (e.g., warp scheduler, on-chip caches,
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interconnection network, DRAM). Due to the significant number of concur-

rently executing threads, however, such equal sharing of resources results in

threads potentially interfering with one another, degrading performance. As

detailed in Section 5.1.2, the on-chip data caches, for example, are likely to

suffer from thrashing when a large number of threads with irregular mem-

ory access characteristics concurrently fight over the limited cache capacity.

Because the likelihood of thrashing is correlated with the number of threads

timesharing the data cache, it is fundamentally challenging for throughput

processors to enable all threads to effectively use the cache. Recent work

by Rogers et al. [35] proposed a warp scheduling mechanism that throttles

the execution of a subset of threads, such that cache contention is alleviated.

Kayiran et al. [110] introduced a similar approach that adaptively throttles

the number of CTAs that can execute. While these proposals provide good in-

sights on the importance of QoS adjustment across different threads, they leave

other system resources underutilized, such as thread issue bandwidth, inter-

connection bandwidth, and memory bandwidth. Also, given that throughput

processors leverage abundant TLP as a way of achieving high latency toler-

ance, such throttling of thread execution is only effective when the benefit

of higher caching efficiency outweighs the reduction in latency tolerance (as

detailed in Section 5.3.2.5).

Proposed Approach. State-of-the-art warp scheduling mechanisms [24, 35,

36] already adopt a priority-based scheduling policy where a subset of warps
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receive preferential scheduling decisions compared to other warps – which is

intended to overlap off-chip memory transactions and maximize memory-level

parallelism. I argue that threads that are temporally prioritized in one com-

ponent (e.g., warp scheduler, on-chip caches) should also receive higher QoS

across the entire system architecture (e.g., interconnection, DRAM accesses,

etc). A QoS-aware/-adaptive throughput processor architecture seeks to ac-

celerate and better localize the servicing of computation and memory requests

from prioritized threads (warps/thread-blocks). By providing high QoS to a

subset of concurrently executing threads, those that are prioritized are given

the illusion that they solely have access to the entire set of shared resources, al-

leviating interference with the other threads. The key insight is that the overall

architecture is driven in a way that minimizes the resident-time (time to com-

plete execution) of prioritized threads, even if it inevitably leads to throttling

the progress of deprioritized threads. Once prioritized threads complete, previ-

ously deprioritized threads receive higher QoS. In essence, prioritized threads

are accelerated while resident deprioritized threads provide latency tolerance

for maximal efficiency.

Note that achieving the above goal is difficult with a local, static QoS

policy (e.g., round-robin warp scheduling [24, 36], equal access-priority to the

cache, shared interconnection channel, first-row, first-come/first-serve (FR-

FCFS) [111] policy in DRAM schdeuling). The FR-FCFS based DRAM sched-

uler, for instance, also dilutes the collaborative QoS-approach as illustrated in

Figure 6.1(c). Here, prioritized accesses are not given higher QoS because
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Figure 6.1: Example showing the importance of coordinating prioritized (P )
memory accesses in relation with the deprioritized (D) accesses. Figure as-
sumes the warp scheduler prioritizes scheduling from oldest thread-blocks (e.g.,
memory accesses from CTAID=0). Note that the D-accesses are serviced ear-
lier than the P -accesses with the (c) FR-FCFS policy. The (d) FP -FRFCFS
policy can prioritize the P -accesses at the cost of opening one additional row.

FR-FCFS favors opened-row accesses and do not differentiate between prior-

itized/deprioritized accesses. I envison that a QoS-aware DRAM scheduler

can be developed to have the scheduler take into account the different ac-

cess priorities among prioritized/deprioritized accesses. By having prioritized
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memory accesses given higher scheduling priority than the open-row accesses

(Figure 6.1(d)), the progression rate of prioritized threads can be acceler-

ated even further. Example scheduling policies that are QoS-aware include 1)

FRFP-FCFS (among the FR, first-prioritized), 2) FP-FRFCFS (among the

FP, FR), and 3) some variation of the above that is dynamically adjusted

based on different phases of the program.

Designing and evaluating the aforementioned QoS-aware throughput

processor architecture is beyond the scope of this dissertation. In order to

demonstrate the potential of a QoS-aware throughput processor architecture,

this section provides a case study on a priority-based cache allocation (PCA)

scheme, which incorporates the notion of QoS on throughput processor cache

hierarchies.

6.2 Case Study: Priority-Based Cache Allocation

As mentioned before, prior work proposed variants of TLP throttling

to reduce cache contention and improve performance. However, throttling

approaches can either fail to reduce the thread working set enough to make

best use of the shared on-chip resources or underutilize register file thread

contexts and off-chip memory bandwidth.

6.2.1 Motivation and Key Insights.

The key objective of PCA is to improve cache hit rates and block

reuse, but also utilize other shared resouces more effectively by minimizing
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the amount of TLP throttling. PCA categorizes threads into three categories:

(a) those that can execute and allocate space inside the on-chip cache (pri-

oritized threads), (b) those that can execute but cannot allocate space on-

chip (deprioritized threads, which will bypass the cache fill process), and (c)

those that are completely throttled and cannot execute (throttled threads).

Because deprioritized threads are not allowed to allocate cache blocks, the

working set of the prioritized threads is less interfered, minimizing cache pol-

lution. At the same time, deprioritized threads are still able to execute (but at

slower rate compared to prioritized threads), enabling better utilization of sys-

tem shared resources and overcoming the deficiencies of total thread-throttling

schemes [35, 110].

6.2.2 PCA Implementation.

Categorizing threads into the aforementioned three types is achieved

by handing out tokens. Tokens represent priority across the cache hierar-

chy and indicate privilege to allocate space inside the on-chip cache. When

the warp scheduler issues threads to execute, a subset of the active threads

(warps) receives the tokens and those threads are prioritized while others are

deprioritized, or throttled. There exists a huge design space in terms of deter-

mining the types of tokens, the optimal number of available tokens, the token

assignment/release policy, the cache block allocation/eviction policy, etc . . ..

This case study therefore assumes the following in order to sketch one possible

implementation of the PCA scheme while highlighting its potential.
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Token Types. The example implementation of PCA assumes that the to-

kens are only used for (de)prioritizing cache accesses at the L1 cache, which is

one of the most constrained resources on chip (Table 5.1). Cache accesses at

the shared last-level L2 caches are handled identically as in the baseline cache

model, regardless of the access priority determined by (L1-only) tokens. Note

that other token variations are also possible and will be interesting to explore

(discussed in Section 6.2.4).

Token Count. This study assumes that the number of tokens available

within each GPU core (which will be handed out by the warp scheduler) are

statically designated on a per-kernel basis, either by the programmer or by

an autotuner/profiler. In Section 6.2.3, we exhaustively simulate all possible

combination of tokens and report the results under the best performing token

count. The number of threads that will be throttled from execution will also be

determined similarly, the methodology of which is detailed in Section 6.2.3.3

(Figure 6.3).

Token Assignment Policy. The baseline warp scheduling policy we adopt

is greedy-then-oldest (GTO) [35] where the most recently scheduled warp (the

warp that gets greedily prioritized over others) and then the oldest warps

receive the highest priority. This study observes that tightly coupling the

token assignment policy with the warp scheduling mechanism provides high

performance as it tends to better localize and accelerate the prioritized warps
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execution rate. This case study therefore configures the PCA token assign-

ment policy as assigning N tokens to the N oldest warps. Having the token

assignment policy configured identically to the GTO warp scheduler performed

worse than assigning tokens to the oldest warps; this is mainly because com-

pared to the oldest warps, the most recently scheduled warp tends to be less

deterministic, so greedily prioritizing the most recently scheduled warp tends

to disrupt locality.

Token Release Policy. A prioritized warp retains the token until it termi-

nates execution. Once the prioritized warp terminates, the next oldest warp

(which currently does not hold a token) is assigned the token. This is in order

to correlate the warp scheduling policy with the token assignment and release

policy, as the chosen warp scheduling policy already prioritizes oldest warps

until termination.

Cache Block Allocation Policy. Cache accesses of prioritized warps are

always guaranteed to allocate space such that their working sets are cache

resident. Non-token holders, on the other hand, can only allocate space if there

exists a vacant slot within the corresponding cache set. If all the cache blocks

within the cache set are fully occupied by prioritized warps, then the cache

fill-process is bypassed in order to avoid evicting prioritized cache blocks. Fill-

bypassed memory requests still allocate miss-status holding register (MSHR)

entries [112] in order to guarantee the baseline weak memory consistency model

of current GPU architectures [28].
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Table 6.1: Simulator configuration for PCA evaluation.

Number of GPU cores 15
Threads per GPU core 1536
Threads per warp 32
SIMD lane width 32
Registers per GPU core 32768
Shared memory per GPU core 48KB
Warp scheduling policy Greedy-then-oldest [35]
L1 cache (size/associativity/block size) 16KB/4-way/128B
L2 cache (size/associativity/block size) 768KB/16-way/128B
Memory bandwidth 177.6 GB/s
Memory controller Out-of-order (FR-FCFS)

Cache Block Eviction Policy. Similar to the allocation policy, this study

assumes that possessing a token indicates a warp has permission to initiate

cache block eviction whereas non-token holders are not allowed to perform

replacements, unless the victim block is allocated by a deprioritized access.

6.2.3 PCA Evaluation and Analysis

This section presents the simulation methodology followed by a detailed

evaluation of PCA.

6.2.3.1 Methodology

PCA has been modeled using GPGPU-Sim [46, 47] and the overall GPU

architecture has been configured similar to NVIDIA’s GTX480 [38] using the

configuration file provided with GPGPU-Sim [48]. Key microarchitectural

parameters of the baseline configuration are summarized in Table 6.1.
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Table 6.2: Benchmarks studied for PCA evaluation.

Abbreviation Description #Instr. Ref.
B+Tree B+ Tree 645M [14]
BACKP Back propagation 190M [14]

BFS Breadth first search 2.8B [16]
CoMD Molecular Dynamics 6.3B [113]

GAUSSIAN Gaussian elimination 230M [14]
HOTSPOT Hotspot 550M [14]
HTWALL Heartwall 8.8B [14]
KMEANS K-means 719M [35]

LUD LU decomposition 302M [14]
MYOCYTE Myocyte 1.2M [14]

NW Needleman-Wunsch 207M [14]
PFINDER Pathfinder 649M [14]

PFLT Particle-filter 118M [14]
SCLUSTER Streamcluster 343M [14]

SRAD SRAD 2.4B [14]
SSSP Single-source shortest paths 696M [14]

6.2.3.2 Benchmarks

PCA is evaluated with applications from Rodinia [14], LonestarGPU [16],

and CoMD [113] (Table 6.2). All applications have been executed to comple-

tion, with the exception of SSSP; due to long simulation periods, SSSP is ex-

ecuted only up to the point where overall IPC exhibits small variation among

different iterations of the kernel. Among the 16 applications in Table 6.2, four

of them (BFS, CoMD, KMEANS, and SSSP) were shown to exhibit better per-

formance with a larger cache. The reason for such varying cache-sensitivity is

twofold: (a) the application’s dataset is either streaming or exhibits low cache

block reuse even with an ideal large cache (Figure 6.2(c)), or (b) the baseline

cache hierarchy can capture the working set relatively well such that better
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Figure 6.2: The distribution of repeated accesses to cache blocks in the (a)
L1 cache, (b) L2 cache, and (c) an ideal L1 cache with infinite capacity (no
evictions once cached on-chip).

caching efficiency provides little benefit. This case study therefore focuses on

the four highly cache-sensitive applications to highlight the benefits of PCA.
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Figure 6.3: Normalized IPC while limiting the number of CTAs available for
scheduling. Numbers next to the names of each benchmark represent max-
imum number of CTAs able to be allocated within each GPU core. Each
benchmark has therefore been executed with having one to maximum CTAs
available for scheduling.

6.2.3.3 TLP Sensitivity

As discussed in Section 5.3.2.5, previous TLP throttling mechanisms [35,

110] seek to dynamically approximate the statically chosen optimal level of

TLP within each GPU core. In order to compare the benefits of PCA with

such total TLP-throttling mechanism, the four cache-sensitive benchmarks are

executed with varying levels of available TLP. Figure 6.3 shows how the overall

performance varies with different number of CTAs able to be executed within

a GPU core. For some applications (CoMD and KMEANS), running with

the maximum TLP that the hardware can support does not result in the best

throughput. CoMD, for instance, performs best with only 3 of 8 CTAs en-

abled. The performance of other applications (BFS and SSSP), on the other

hand, does not improve with TLP throttling because the reduction in latency

tolerance outweighs the benefits of better caching efficiency (e.g., best perfor-

mance is achieved with maximum TLP). Based on these results, we refer to

the baseline GPU executed with maximum feasible CTAs as Max-CTA. GPUs

175



0 
0.2 
0.4 
0.6 
0.8 
1 

1.2 
1.4 
1.6 

M
a
x
-
C
T
A
 

O
p
t
-
C
T
A
 

1
 

2
 

4
 

6
 

M
a
x
-
C
T
A
 

O
p
t
-
C
T
A
 

1
 

2
 

4
 

6
 

M
a
x
-
C
T
A
 

O
p
t
-
C
T
A
 

1
 

2
 

4
 

6
 

M
a
x
-
C
T
A
 

O
p
t
-
C
T
A
 

1
 

2
 

4
 

6
 

M
a
x
-
C
T
A
 

O
p
t
-
C
T
A
 

1
 

2
 

4
 

6
 

Base PCA Base PCA Base PCA Base PCA Base PCA 

CoMD KMEANS BFS SSSP H-Mean 

S
p
e
e
d
u
p
 

Figure 6.4: Speedup with PCA. Max-CTA designates execution with maximum
number of active CTAs. Opt-CTA represents statically throttled version with
optimal number of active CTAs (which leads to best performance) determined
by Figure 6.3. 1/2/4/6 represents number of tokens available for each warp
scheduler. Note that each GPU core contains two warp schedulers [38, 46], so
the number of available tokens within a core are 2/4/8/12.

configured with the optimal number of available CTAs (using Figure 6.3, for

best performance) will be referred to as Opt-CTA and is used as baseline to

compare against PCA. In addition, the optimal number of CTAs to throt-

tle for Opt-CTA will also be leveraged by PCA to determine the number of

throttled threads. The prioritized/deprioritized threads will be determined by

the programmer-specified token counts which is determined by exhaustively

sweeping through all possible token counts as detailed below.

6.2.3.4 Overall Performance

This section evaluates the effectiveness of PCA in terms of performance

improvements (compared to Opt-CTA). Overall, PCA with two tokens provides

the highest average (harmonic means) speedup with 14% enhancements but

the optimal token count varies depending on application characteristics (Fig-
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ure 6.4). CoMD, BFS, and SSSP achieve 10%, 8%, and 9% performance im-

provement respectively, and KMEANS exhibits the highest benefits with 39%

speedup. Note that PCA provides further benefits to BFS and SSSP, which

do not benefit much from total TLP-throttling techniques [35, 110]. BFS and

SSSP are sensitive to TLP reduction (Figure 6.3), so total TLP-throttling tech-

niques fail to provide means to reduce cache contention. PCA, on the other

hand, is able to provide maximum TLP to the warp scheduler while still being

able to reduce cache contention and enhance bandwidth utilization thanks to

the token-based caching mechanism. The improvements in caching efficiency,

cache block reuse, and off-chip bandwidth utilization are detailed below.

6.2.3.5 Memory Access Efficiency

Caching Efficiency. Figure 6.5 and Figure 6.6 show the impact on cache

miss rates as well as the average block reuse at L1/L2 caches. Comparing

the results with Figure 6.4, in many cases the best performance does not

necessarily correspond to the lowest miss rates nor the highest average block

reuse. For instance, BFS and SSSP exhibit best performance with 4 tokens,

but the highest average reuse is observed with only a single token assigned per

warp scheduler. A small number of tokens means only a handful of warps can

preserve its working set on chip (preventing other warps from allocating their

working sets), which may not be optimal from the overall system perspective.

Such a trend is exhibited by most of the benchmarks where having only a single

177



0% 

20% 

40% 

60% 

80% 

100% 

M
a
x
-
C
T
A
 

O
p
t
-
C
T
A
 

1
 

2
 

4
 

6
 

M
a
x
-
C
T
A
 

O
p
t
-
C
T
A
 

1
 

2
 

4
 

6
 

M
a
x
-
C
T
A
 

O
p
t
-
C
T
A
 

1
 

2
 

4
 

6
 

M
a
x
-
C
T
A
 

O
p
t
-
C
T
A
 

1
 

2
 

4
 

6
 

Base PCA Base PCA Base PCA Base PCA 

CoMD KMEANS BFS SSSP 

L
1
 
M
i
s
s
 
R
a
t
e
s
 

(a) L1 miss rate.
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(b) L2 miss rate.

Figure 6.5: Changes in L1/L2 cache miss rates with PCA.

token available leads to noticeable increase in L1 cache miss rates, despite

substantial improvements in average block reuse.

Overall, when the number of tokens available is optimally chosen, the

caching efficiency and average block reuse are balanced, leading to best per-

formance.
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(a) Average L1 cache block reuse.
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(b) Average L2 cache block reuse.

Figure 6.6: Changes in average L1/L2 cache block reuse with PCA.

Memory Bandwidth Utilization. Figure 6.7 shows the off-chip band-

width utilization across different schemes. Because Opt-CTA generally reduces

the number of threads to maximize shared resource utilization (except for BFS

and SSSP where Opt-CTA is identical to Max-CTA), DRAM bandwidth utiliza-

tion is noticeably reduced for CoMD and KMEANS (120% and 180% reduc-

tion). PCA on the other hand is able to significantly improve off-chip band-

width utilization by 30% on average and a maximum of 103% for KMEANS.

The improved bandwidth utilization is due to the non-token holders being able

to make forward progress, which Opt-CTA completely throttles from execution.
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Figure 6.7: Changes in off-chip bandwidth utilization with PCA.

Such behavior, coupled with the previously discussed better caching efficiency,

enables higher performance with PCA.

6.2.4 Discussion and Future Extensions

We have so far explored the potential benefits of a statically configured

PCA under a throughput processor environment. This section summarizes

some possible future extensions.

Dynamic PCA. Static PCA is an effective tool for expert programmers

to tune the performance of GPU applications. By trying out different num-

ber of tokens, programmers can optimally configure an application for higher

throughput. Finding the best number of tokens, however, requires the pro-

grammer to thoroughly understand the GPU microarchitecture. It is hence

desirable for the programmer to be provided with a dynamic PCA mechanism

where the optimal number of tokens is derived at runtime without programmer

intervention. One possible way of implementing the dynamic PCA is to ex-

180



ploit the many-core nature of throughput processors: each GPU core tries out

a different number of tokens and the global predictor examines which token

configuration best suits application needs. Such global voting mechanism has

been successfully deployed by Lee and Kim [114]. Exploration of such dynamic

PCA scheme is left for future work.

Token Types. While this case study explores PCA with L1-only token con-

figurations, other token variations are also possible: (a) L2-tokens, which will

be assigned to warps mutually exclusive to the L1 token holders, (b) DRAM-

tokens, which will be assigned to warps not assigned with L1/L2-tokens, and

some combination of the above. Exploring such token variations in the context

of PCA are left for future work.

Token Assignment/Release Policies. Current implementation of PCA

hands out tokens to the oldest warps and is never shared nor transferred to

other warps until termination. Such unfairness-oriented token assignment and

release policy may not be desirable if an application were to contain differ-

ent program phases (e.g., prioritized threads require on-chip cache space only

during the initial phase of the program, which can prevent other deprioritized

threads from using it). It will therefore be interesting to study different token

assignment and release mechanisms that dynamically predict and adapt to the

program phase behavior, such that on-chip caches are best utilized.
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6.3 Summary

This chapter discussed potential future works and extensions that are

relevant to the key theme of my dissertation. I proposed and discussed a QoS-

aware throughput processor architecture that can potentially better manage

the contention at shared resources. We explored a priority-based cache al-

location scheme as a case study to highlight the potential benefits and the

importance of QoS-awareness in a throughput computing environment. Fu-

ture work is to extend the intuition provided by this case study across the

whole system stack.
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Chapter 7

Conclusions

As throughput processors, and specifically GPUs, gain momentum in

being widely used for general purpose computing, efficient execution of irreg-

ular applications will be vital for their continued success. This dissertation

presents and evaluates multiple performance optimization schemes for GPUs

so that they can better manage irregularity. In the presence of SIMT control

and memory access irregularity, I demonstrate that my proposed mechanisms

can substantially improve thread-level parallelism, compute resource utiliza-

tion, and off-chip memory bandwidth utilization in a cost-effective manner.

The key intuition behind the proposed mechanisms are: (a) exploiting

thread-level parallelism within and across execution paths and (b) judiciously

coordinating memory access granularity across the memory hierarchy. By

adopting my proposed ideas, I believe throughput processors can manage ir-

reguarity much more effectively, such that they can truly be considered for

“general purpose” computing. Below is a summary of the key contributions

of my dissertation.

Dual-Path Execution Model. I propose and evaluate the dual-path exe-

cution model in Chapter 3 to alleviate the SIMT path serialization problem.
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The proposed mechanism can enhance thread-level parallelism by allowing the

true and false paths of a divergent branch to be executed in an interleaved

manner. Unlike previous proposals to this problem, my dual-path execution

model requires no additional compiler support, requires minimal hardware ex-

tensions, yet is robust to changes in key microarchitectural parameters.

Compaction-Adequacy Prediction and SIMD Lane Permutation. In

Chapter 4, I propose compaction-adequacy prediction and SIMD lane per-

mutation as means to enhance the robustness and applicability of previous

compaction-based throughput processor architectures. Previously studied so-

lutions to the SIMD resource underutilization problem enforce needless syn-

chronization of threads for dynamic formation of warps while only being appli-

cable across a limited set of applications. My proposed ideas can intelligently

filter out such redundant barrier overheads while enabling compaction to be

effective across a much wider range of applications.

Locality-Aware Memory Hierarchy. Chapter 5 discussed the limitations

of a coarse-grained memory hierarchy in a throughput computing environment.

I observe that irregular memory accesses, combined with massive multithread-

ing, often result in low temporal/spatial reuse of cache blocks due to the limited

per thread cache capacity. I propose a locality-aware memory hierarchy that

retains the advantages of coarse-grained accesses for high spatial/temporal

data sets while minimizing useless overfetching by selective fine-grained ac-

cesses. By adaptively adjusting memory fetching granularity, the proposed
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architecture can significantly reduce off-chip traffic and improve performance

as well as energy-efficiency.
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