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Abstract

Enormous uncertainties in unconstrained human motions lead to a funda-

mental challenge that many recognising algorithms have to face in prac-

tice: efficient and correct motion recognition is a demanding task, espe-

cially when human kinematic motions are subject to variations of execu-

tion in the spatial and temporal domains, heavily overlap with each other,

and are occluded. Due to the lack of a good solution to these problems,

many existing methods tend to be either effective but computationally in-

tensive or efficient but vulnerable to misclassification.

This thesis presents a novel inference engine for recognising occluded 3D

human motion assisted by the recognition context. First, uncertainties

are wrapped into a fuzzy membership function via a novel method called

Fuzzy Quantile Generation which employs metrics derived from the prob-

abilistic quantile function. Then, time-dependent and context-aware rules

are produced via a genetic programming to smooth the qualitative outputs

represented by fuzzy membership functions. Finally, occlusion in motion

recognition is taken care of by introducing new procedures for feature se-

lection and feature reconstruction.

Experimental results demonstrate the effectiveness of the proposed frame-

work on motion capture data from real boxers in terms of fuzzy mem-

bership generation, context-aware rule generation, and motion occlusion.

Future work might involve the extension of Fuzzy Quantile Generation in

order to automate the choice of a probability distribution, the enhancement

of temporal pattern recognition with probabilistic paradigms, the optimisa-

tion of the occlusion module, and the adaptation of the present framework

to different application domains.
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Chapter 1

Introduction

Human behaviour understanding can be defined as the recognition and description of

actions and activities from the observation of human motions. It is usually performed

by comparing observations to models inferred from examples. This process requires

learning algorithms that can perform under enormous uncertainties from complex hu-

man kinematic structures, occlusion and environmental factors. Research in motion

recognition first appeared in the mid nineties as a secondary topic mainly linked to

computer vision based experiments. The relatively recent advent of 3d motion cap-

ture technology and subsequent spread of view invariant representation models con-

tributed to its emergence as a field of research of its own more concerned with the

qualitative analysis of motion itself, than with the extraction of a human pose esti-

mation from videos or images. The rise of gesture based human interface devices in

the entertainment industry, the need for automated detection of abnormal behaviour in

security surveillance and health care, and the existence of a growing market for com-

puter assisted sport performance analysis are some of the catalysts that accelerate the

present growth of the field. However, due to the relative novelty of 3d motion cap-

ture technology, the creation of learning data sets for different types of motions is still

computationally expensive, labour intensive and costly. This situation creates a niche

for algorithms that can classify human motion in constrained scenarios and deal with

challenges such as learning samples of sub-optimal size, high dimensionality, noise,

imprecision, and incomplete data. The present work has been developed to address

these issues in theoretical terms while taking into account the substantial need to pro-

vide a feasible solution for related practical applications.
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1.1 Problem formulation

1.1 Problem formulation

A compact definition by Weinland (2008) presents an action as “a 4D event performed

by an agent in space and time” where space dimensions are the x,y and z axes. When

chained into sequences of body motions, these actions can form the building blocks

used to identify more complex behaviours. The recognition of 3D motions is a chal-

lenging task which requires the following problems to be addressed accurately.

1. A specific action has to be recognised independently from differences in execu-

tion in the spatial and temporal domains. The noise and imprecision in the space

domain call for an adapted representation system that can deal with overlapping

classes. The fact that an action can be performed at varying speeds also adds

the need to model motions as series of time invariant discrete events that are

chronologically related.

2. Motions should be recognised using learning samples of sub-optimal size. The

representation system must be able to cope with the scarcity of input data that

could result from 3D motion capture based experiments.

3. Prior knowledge is required to assist learning in a context-aware and time-sensitive

fashion. By taking into account previous motions and their time duration, the aim

is to smooth the qualitative output of the classifier by generating and applying

context-aware fuzzy-rules.

4. Partial occlusion is one of the bottlenecks for human motion recognition nowa-

days since it corrupts the input data. This means the system must be able to

classify motions from not just scarce, but also insufficient data.

In the context of this thesis, a novel method producing a standalone classifier has

been developed to deal with the first two problems. A second contribution has also

been added in order to address the third problem. Finally, a specific technique has

been devised to specifically answer to the fourth problem.

2



1.2 Contributions

1.2 Contributions

The contributions to the problem areas described in Section 1.1 are combined into

a motion classification framework. Notwithstanding the fact that the design and the

implementation of such a framework contains an element of novelty, these individ-

ual contributions take the shape of three distinct techniques that can be described as

follows:

1. A standalone classifier using Fuzzy Quantile Generation.

Fuzzy Quantile Generation (FQG) is a novel way to generate Fuzzy Membership

Functions (FMF) using metrics derived from the probabilistic quantile function.

This allows a Fuzzy Membership Function to directly map to the estimated prob-

ability distribution behind a data sample. This method demonstrates its effective-

ness on the classification of noisy, imprecise and complex motions while using

learning samples of sub-optimal size with motion capture data from real boxers.

FQG outperforms other time-invariant classifiers in a comparative study made

on the boxing data set.

2. A context-aware Strongly-Typed Genetic Programming filter.

The Strongly-Typed Genetic Programming (GP) engine produces time-dependent

and context-aware rules to smooth the qualitative outputs of the classifier as re-

quired by the third problem (the need for prior knowledge). Various factors such

as speed, previous and next movements, and best ranked membership scores are

taken into account to generate a complex and subtle network of conditional state-

ments that would otherwise be difficult to identify in an empirical fashion for a

human observer. Experimental results on the boxing motion capture data show

that the filter consistently improves the accuracy of the FQG classifier.

3. An occlusion module based on feature selection and reconstruction.

The feature selection mechanism introduces a new fuzzy similarity relation based

on Laplace distributions has been developed in the context of Fuzzy Rough Fea-

ture Selection (FRFS) to identify important joints in case of occlusion. The

feature reconstruction scheme proposes a novel way to reduce the uncertainty

3



1.2 Contributions

caused by occlusion by building plausible rotational data from hidden joints us-

ing Fuzzy Qualitative Euler Angles, a modified version of the Fuzzy Qualitative

Trigonometry representation system expounded in Liu & Coghill (2005) and Liu

(2008). Results show that the system correctly guesses around half of the ini-

tially intractable occluded data in the context of the boxing motion capture data

experiment.

The novelty of each of these three contributions can be justified with respect to the

relevant literature background as follows.

Regarding FQG, the absence of a way to map probability distributions to fuzzy

representation for the automated generation of FMF can be emphasized. While proba-

bilistic methods express degrees of belief in a non-compositional way, fuzzy set theory

described by Zadeh in Zadeh (2008) introduces degrees of truth which have the advan-

tage of allowing overlapping classes. Despite their differences, probability theory and

fuzzy logic can be seen as complementary as explained by Zadeh (1995) and Dubois &

Prade (2001). When facing the fundamental problem of Fuzzy Membership Function

generation from data, there seem to be no design methodology that allows the direct

mapping from a fuzzy representation to a probability distribution. One notable excep-

tion is possibility theory presented in Zadeh (1978) that allows the transformation of

probability distributions to possibility distributions. However, possibility theory does

not allow compositionality as argued by Dubois & Prade (2001). A practical mapping

from a Fuzzy Membership Function to a Normal Distribution is hinted at by Frantti

(2001) in the context of mobile network engineering. Unfortunately, this work has its

shortcomings as this a system does ignore motions which are over the extrema of the

range of the learning sample. One possible way to overcome this problem would be

to introduce a function that maps a degree of membership to the probability that val-

ues fall within a given cumulative probabilistic distribution. As a consequence, there

seems to be a theoretical possible gap that leaves open the advent of a method such as

FQG.

The suitability of a time-dependent and context-aware Genetic Programming filter

can be discussed by briefly reviewing existing fuzzy inference engines. In order to

improve the initial classification, a system that can generate fuzzy-rules that smooth

the qualitative output in a context-aware fashion needs to be built. These rules might

4



1.2 Contributions

combine very specific operators such as logical functions, measurements of speed, and

multiple input labels ranked as first, second or third best choices for a motion. No

initial prior knowledge about how motion can be smoothed is assumed. As the so-

lution to this very specific and demanding problem takes the shape of nested logical

structures of arbitrary complexity, standard approaches like the Takagi-Sugeno-Kang

(TSK) or Mamdani models become unsuitable. Mainstream inference methods such

as Fuzzy Neural Networks in Gobi & Pedrycz (2007) or standard Evolutionary Algo-

rithms presented by Yu et al. (2003), Bastian (2000) and Belarbi et al. (2005) might

also be difficult to reuse as the high dimensionality of the problem implies a signifi-

cant increase in the size of the training sample in the case of Neural Networks, while

the standard evolutionary approaches would struggle to generate syntactically correct

rules. There is therefore a possible niche for a specifically adapted variation of Genetic

Programming. For the purpose of this research, a Strongly-Typed Genetic Program-

ming open-source distribution was built (see Khoury (2009)).

Regarding the occlusion module, the usefulness of a new fuzzy similarity relation

can be explained in the context of Fuzzy Rough Feature Selection, while novel aspects

of the feature reconstruction method are emphasized in light of previous work linked

to Fuzzy Robot Kinematics. Firstly, regarding the feature selection scheme, Fuzzy

Rough Feature Selection (FRFS) introduced by Jensen & Shen (2007, 2009) is chosen

as an elegant solution that allows real-valued noisy data to be reduced without the need

of user supplied information. FRFS estimates the dependency between attributes by

measuring the similarity between two objects x and y for a feature a. The Gaussian,

Triangular, and Cornelis fuzzy similarity relations presented in Jensen & Shen (2007)

are the techniques used in FRFS. This situation supports the introduction of an im-

proved measure called the Laplace fuzzy similarity relation. Secondly, the novelty of

the feature reconstruction mechanism can be established by the fact that the majority

of the existing studies done on occlusion focus on object tracking in video sequences.

These approaches generally use Kalman Filter for tracking markers of interest that can

take the form of blobs in Gabriel et al. (2003), image features Utsumi & Ohya (1999),

or silhouette images Ueda et al. (2003) derived from video sequences. The use of

3d based representation can be found in Kakadiaris & Metaxas (2000) where a three-

dimensional pose of the subject’s upper and lower arms is recovered and computed in

order to create video animation sequences, and Utsumi & Ohya (1999) where a small

5



1.3 Outline of thesis

number of reliable image features is needed to estimate 3d hand postures with a Fourier

descriptor. In this study, 3d motion capture data are used to infer plausible 3 dimen-

sional rotations defined by Euler Angle combinations for each occluded joint. The

granularity of the search space is increased by using Fuzzy Qualitative Euler Angles,

a modified version of the Fuzzy Qualitative Templates representation system exposed

in Liu (2008) and Liu et al. (2008) that does not focus on end-effectors trajectories

and Denavit-Hartenberg kinematics structures as few joint are occluded. Hence, the

reconstruction of plausible rotational data from occluded joints based on a modified

version of Fuzzy Qualitative Templates presents an novel approach in the context of

3d motion.

1.3 Outline of thesis

The dissertation consists of five chapters. Chapter 2 introduces background infor-

mation regarding the representation systems and machine learning techniques in use.

Chapter 3 presents a motion recognition framework composed of three components:

the FQG layer, the context-aware filter, and the occlusion module. In chapter 4, the

performance of the framework is evaluated by putting to the test its different compo-

nents in several experiments. Chapter 5 concludes this study with future work pointed

out. The content of the thesis is outlined below.

Chapter 2 details background information regarding existing motion representation

systems and presents a survey of the state of the art machine learning techniques used

in behaviour understanding. Firstly, existing representation systems used to capture

human motion are introduced, and in light of the specific requirements of this study,

the subsequent modelling choices and assumptions are explained. Then, a review of

the state-of-the-art of machine learning techniques in use in this area of research is

conducted in order to identify potential shortcomings and locate a functional niche

that can be targeted by the presented framework.

Chapter 3 describes the framework by introducing the Fuzzy Quantile Generation

layer, the context-aware filter, and the occlusion module. Firstly, a detailed and formal

description of the Fuzzy Quantile Generation modelling process is first presented, as

6



1.3 Outline of thesis

well as an analysis of FQG flexibility as a machine learning technique. Secondly, the

Genetic Programming filter that smoothes the qualitative output using context-aware

fuzzy-rules is detailed. These rules might combine very specific operators such as

logical functions, measurements of speed, and multiple input labels ranked as first,

second or third best choices for a motion. Finally, occlusion being a de-facto standard

problem when dealing with the classification of real human motion data, two different

procedures are combined in order to deal with occlusion: feature selection and feature

reconstruction. The former deals with the optimisation of the feature selection phase

via the introduction of an improved measure of similarity. The latter is about the re-

construction of plausible rotational data from occluded joints using a modified version

of Fuzzy Robot Kinematics.

Chapter 4 shows experiments and results where the performance of the framework

is evaluated by putting to the test its different components. The challenges posed by the

nature of this dataset are, among others: biologically “noisy” data, cross-gait differen-

tials from one individual to another, and high dimensionality caused by the complexity

of the skeletal representation (57 degrees of freedom for nineteen joints). It is assumed

that being successful at the non-trivial exercise of classification of such complex data

might give the presented techniques stronger credentials as a contender in the field of

motion recognition. The motion recognition framework is therefore put to the test in

an experiment involving the classification of real natural 3d motion capture data in the

context of boxing. In the first part of this section, the experimental method and setup

are described. Secondly, the performance of FQG as a standalone learning paradigm

applicable to behaviour recognition is presented. Thirdly, experimental results of the

context-aware GP filter are shown. Finally, the feature selection and feature recon-

struction aspects of the occlusion module are evaluated.

Chapter 5 concludes the dissertation with an overview of the present framework,

leading to suggestions regarding future work. These involve modifying FQG in or-

der to automate and extend the choice of probability distributions, the enhancement

of temporal pattern recognition with probabilistic paradigms, the optimisation of the

occlusion module, and the adaptation of the present framework to different application

domains.
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Chapter 2

Background Research

2.1 Introduction

Intensive study has emphasized the emergence of motion recognition in the mid nineties

as a secondary topic mainly linked to computer vision experiments as seen in Cedras

& Shah (1995); Gavrila (1999); Hu et al. (2004a); Ju (1996); Mitra & Acharya (2007);

Moeslund et al. (2006); Moeslund & Granum (2001); Wang et al. (2003). The early

availability of video monitoring systems explains the preeminence of research focus-

ing on computer vision-based human motion capture. The subsequent advent around

1994 of affordable commercial magnetic and optical motion capture systems (at the

time, 40000 USD in average for a magnetic motion capture system) gave researchers

the ability to measure motions in 3-dimensional space with a precision unheard of. The

early availability of video monitoring systems and subsequent advent of motion cap-

ture systems contributes to explain why the relevant literature has added to its vision

based perspective focusing on areas such as initialisation, tracking and pose estimation

another point of interest: action recognition (see Figure 2.1). Initialisation describes

pre-processing problems such as the estimation of parameters linked to camera cali-

bration and appearance thresholds, the segmentation of the data into capture reference

images, the definition a model appropriate to represent a subject, and the setting an

initial pose. Tracking implies a way of segmenting the subject from the background

and finding correspondences between segments in consecutive frames. Pose estima-

tion uses some higher level knowledge of the domain to further process the output of

the system so that it ensures consistency with the existing representation model, i.e.

8



2.1 Introduction

Figure 2.1: The four different areas of research linked to human motion : initialisation,

tracking, pose estimation, and - the focus of this thesis - motion recognition.

refine poses based on the constraints of the human model. The motion recognition

process is becoming a field of research of its own more concerned with the qualitative

classification of motion itself, than with the extraction of human pose estimation from

videos or images. Figure 2.2 summarizes the compressive surveys by Moeslund et al.

(2006); Moeslund & Granum (2001) and presents a chronology from 1980 to 2006 that

shows the numbers of papers that focus on initialisation, tracking, pose estimation or

motion recognition. In 2006, motion recognition represents 25% of the relevant litera-

ture, and presents the second fastest growth after pose estimation when looking at the

linear trends. The fast development of motion recognition underlines a shift to a higher

level description of actions and interactions based on view-invariant perspective due to

the spread of 3d motion capture technology. One present downside of this technology

is that the creation of learning data sets for different types of motions is computation-

ally expensive, labour intensive and costly. This calls in a timely fashion for Machine

Learning methods that can classify motions from learning samples of reduced size.

This chapter aims at giving a general overview of related work. This is first

achieved by reviewing existing formats used to capture human motion, modelling

paradigms, and the resulting human skeletal representation chosen for this study. Sec-

ondly, a review of the state-of-the-art of the machine learning techniques in use in this

area of research is conducted. Thirdly, the novelty of this work is investigated with
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2.1 Introduction

Figure 2.2: Classification of 488 papers published between 1980 and 2006 by relevance

to initialisation, tracking, pose estimation and motion recognition . Linear trends are

indicated by dashed lines. The graph has been constructed from raw data available in

Moeslund et al. (2006); Moeslund & Granum (2001).
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2.2 Human skeletal representation

respect to potential gaps identified in the relevant literature background.

2.2 Human skeletal representation

Motion behaviour understanding is usually performed by comparing observations to

models inferred from examples. Before the inference process can take place, raw in-

formation has first to be adequately formatted for the purpose of the analysis and then

has to be captured in a semantically meaningful way via a model. Existing representa-

tion systems in use to model human motion are first introduced. In light of the specific

requirements of this experiment, motion capture systems available are reviewed and

some of the subsequent modelling choices and assumptions made in this study are

explained.

2.2.1 Human motion representations

Motion recognition representation paradigms can be broadly divided into two types:

template matching and state-spaces approaches.

2.2.1.1 Template matching

In template matching, observed values of the features that constitute a given motion

are converted into a pattern that is compared with other templates stored in a knowl-

edge base. Templates can simply encode static shapes with only spatial information

or they can be composite spatio-temporal representations that can describe not only

trajectories, but also speed, and acceleration. The most used templates are static poses,

optical flow, Motion-History Images, manifolds, mean poses, motion-history volumes

(MHV), and scale-space of Spatio-Temporal curves. Static poses templates presented

in Freeman et al. (1996), Haritaoglu et al. (2000) and Jojic et al. (2000) focus ex-

clusively on spatial information. Optical flow presented in Polana et al. (1994) and

Efros et al. (2003) is based on the motion-features of points constituting 2D meshes

of the subject in sequences of images (see Figure 2.3). Motion-History Images (MHI)

Bobick et al. (2001) detail images by using pixel intensities as a function of motion re-

cency (see Figure 2.4). Manifolds of recursively filtered images presented by Masoud

& Papanikolopoulos (2003), are groups of ordered images similar to MHI. Gonzalez
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2.2 Human skeletal representation

Figure 2.3: Image and corresponding 2D optical flow field of a footballer running in

Efros et al. (2003)

Figure 2.4: Motion-History Images of aerobic motions in Bobick et al. (2001)

(2004) expresses manifolds in Principal Component Analysis (PCA) space where key-

frames identify the most characteristic poses of an action. Rahman & Robles-kelly

(2006) model actions by computing the mean poses from different performances in

PCA space and in a normalized time scale. Motion-History Volumes (MHV) presented

in Weinland et al. (2005) are a view independent 3d version of MHI based on the vi-

sual hull of the subject (see Figure 2.5). The scale-space representation is based on

Spatio Temporal curves Allmen & Dyer (1990), trajectories Rangarajan et al. (1993)

or silhouettes Roh et al. (2006). It is a kernel-based approach that represent motions

as signals in hyperspace and is especially good at recognising cyclic behaviors. Spatio

Temporal volumes (STV) that have been proposed by Yilmaz & Shah (2005) contain

information of human silhouettes tracked along a normalized time scale and are treated

as solid objects for further comparison to other known objects in the database. A simi-

lar approach was proposed by Blank et al. (2005) (see Figure 2.6). The main advantage

of templates is their low computational complexity. However, they are sensitive to the

time variability of the performed actions, and therefore are more aimed to classify

simple actions.

12

Chapter1/Chapter1Figs/EPS/flow.eps
Chapter1/Chapter1Figs/EPS/aerobic.eps
Chapter1/Chapter1Figs/EPS/mt.eps


2.2 Human skeletal representation

Figure 2.5: View invariant Motion-History Volume representation in Weinland et al.

(2005)

Figure 2.6: Examples of spatio-temporal volumes: (left) representation of a tennis

move based on work by Yilmaz & Shah (2005) and (right) a striding motion by Blank

et al. (2005)

13

Chapter1/Chapter1Figs/EPS/mhv.eps
Chapter1/Chapter1Figs/EPS/stv.eps


2.2 Human skeletal representation

2.2.1.2 State space models

State-space models transform a motion as a dynamic ordered sequence of discrete

states. States are built from representations such as silhouettes, blobs displacements,

optical flow and body shape components, XTslices, and composite models where mo-

tion features of the subject are completed by contextual information. Human silhou-

ettes are used to build a view point dependent state-space approach in Yamato et al.

(1992). Translation and rotational speed of blobs representing body parts are used for

each state in Bregler (1997). Features of the optical flow are combined with elements

of the human body shape in PCA space extracted from multiple views in Ahmad &

Lee (2006). XTslices are space-time volumes presented in Ricquebourg & Bouthemy

(2000) and Rittscher et al. (2002) that represent motions with trajectory patterns. A

more complex approach by Ren & Xu (2002) and Ren et al. (2004), create states from

attributes such as motion-features and contextual information. These attributes are

weighted in order to optimise the recognition of specific actions. In order to differen-

tiate subtle motion changes with a view invariant 3D skeletal representation, and take

contextual information into account, the space state approach is chosen in conjunction

with an adapted raw input that takes the shape of 3D motion capture data. This leads

to a review of different motion capture devices.

2.2.2 Motion capture devices

The choice of a holistic (using a human figure as a whole) or non-holistic (focusing on

body parts) representation scheme depends on several factors such as the complexity of

the actions to be recognised, the level of detail and precision required to correctly iden-

tify such motions, and the level of focus between an individual action by a single actor

or interactions between multiple subjects. Considering that this study is applied to the

classification boxing motions, a non-holistic approach based on 3d motion capture is

chosen. 3d motion capture systems can be divided into marker-based and markerless

systems.
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2.2 Human skeletal representation

Figure 2.7: Optical (top left), mechanical (bottom left), inertial (middle), and magnetic

(right) motion capture systems

2.2.2.1 Marker based motion capture

Marker-based motion capture systems are widely used in the industry. Markers placed

all around the body in order to track the position of body parts during a motion. We can

distinguish mainly among optical, magnetic, mechanical and inertial mocap systems

(Figure 2.7).

In optical motion capture, several cameras placed all around the subject track the

displacements of reflective or luminous markers. This type of system is able to capture

extremely fast motions with the best accuracy. One potential problem might be occlu-

sion during a motion if there are not enough cameras or if there are several subjects.

Magnetic systems compute spatial coordinates and orientation from the variations of

the magnetic flux between orthogonal coils on both the transmitter and each of the re-

ceivers. This system has the advantage of ignoring occlusion, but it is highly sensitive

to interferences resulting from metal objects and electrical sources. Mechanical sys-

tems take the shape of articulated exoskeletons. Joints rotations can be tracked without

occlusion and spatial limits. Inertial systems are able to capture the positions, orienta-

tion and velocities of markers in large capture areas, also free-of-occlusion. The recent
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Figure 2.8: Nintendo Wiimote: Nintendo (2006)

Figure 2.9: iPhone: Apple (2007)

spread of portable devices including accelerometers in the video game industry (see the

console remote Wiimote in Figure 2.8), and the mobile market (see the Apple iPhone

in Figure 2.9), has made inertial motion sensing affordable in the context of Human

Computer Interaction.

2.2.2.2 Markerless motion capture

Recently, there have been remarkable advances in markerless motion capture which, in

the near future, may render marker-based systems obsolete for many HCI applications

due to their lower cost and easier use. In this approach, human movements are intended

to be captured directly from images obtained by cameras where each pixel in the image

not only has a standard colour value i.e. RGB, but also has a depth value. Depths of the
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Figure 2.10: Mixing stereo vision and time of flight: images and corresponding depth

maps in Zhu et al. (2008)

Figure 2.11: Kinect gesture based video game recognition system: Microsoft (2010)

observed scene can be achievable with new technologies that have recently emerged,

such as the stereo (Figure 2.10 presented in Birchfield & Tomasi (1996) and Time-of-

Flight cameras in May et al. (2006), or a combination of both as seen in Zhu et al.

(2008) (a similar approach seems to be taken by Microsoft in the context of the Mi-

crosoft Kinect project - see Figure 2.8).

Considering the high accuracy of optical motion capture and its capacity to capture

fast movement, this technique seems ideally suited for a boxing data set. A Vicon

optical motion capture system was used to capture the raw data (further details are

available regarding the equipment and setup used in section 4). The motion capture

data format and modelling representation now need to be defined.
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2.2 Human skeletal representation

2.2.3 Motion capture format and corresponding model

Several choices and assumptions are made. First, considering that, as argued by Favre

et al. (2006), motion capture data cannot give absolutely exact skeletal displacements

of joints due to soft tissues movements, it is considered sufficient to obtain an approx-

imation which would be good enough to characterize a motion. Secondly, the body

is simplified to nineteen main joints which is the standard number of joints used to

animate human representations. It is assumed that this number is sufficient to char-

acterize and understand the general motions of a human skeleton performing boxing

combinations. Finally, each joint having three degrees of freedom, the rotations are

represented by Euler ZXY angles characterized by three rotation angles (in order Z, X

and Y) given in degrees by the widely spread BVH motion capture format presented

in Thingvold (1999) and Meredith & Maddock (2000) in which a human skeleton is

formed of skeletal limbs linked by rotational joints (see figure 2.12 and 2.13).

In practice, for every frame, the raw observable data takes the shape of a nineteen-

by-three matrix describing ZXY Euler Angles for all nineteen joints in a simplified

human skeletal representation. In other words, multiple continuous variables between

0 and 360 characterize a stance at any time. The BVH format uses Euler angles to

quantify rotations of joints having three Degrees of Freedom. This system is not per-

fect (Gimbal Lock is a possible issue), but allows one to gather data easily when using

motion capture while keeping track of subcomponents such as the rotations of individ-

ual joints. Exposure to Gimbal Lock is reduced as the rotation angles of the skeleton

are first computed through Motion Builder using quaternions before being transformed

into Euler Angles approximations. Future work might involve keeping track of sub-

components of the rotations of individual joints in order to analyse and suggest cor-

rections to a motion. In this context, the Euler Angles representation system seems

acceptable because it is simple and intuitive enough to enable roll-yaw-pitch analysis

and facilitates the suggestion of qualitative corrections for a rotation. If quaternions

are not subject to Gimbal Lock, they are not as intuitive and lead to a greater multiplic-

ity of interpretation for one single rotation as they are in 4 dimensions. This increases

greatly the number of possible qualitative states for one rotation and would make the

suggestion of plausible rotations of occluded joints more difficult.
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Figure 2.12: Optical markers - spatial data used to compute the BVH representation

Fuzzy membership functions introduced by Zadeh (1986) can deal with impreci-

sion and overlapping classes, which make them ideal for the classification of such data.

Therefore, in this study, a motion is represented as state that is composed of a set of

57 Fuzzy membership functions that each express a membership score to an extended

range of fixed angular rotations (see Figure 2.14).

2.3 Machine learning techniques used in motion recog-

nition

The machine learning techniques used in motion recognition can be presented as be-

longing to nine categories as detailed in Figure 2.15: probabilistic graphical models,

Finite State Machine, Kalman filter and Sequential Monte Carlo methods, Kernel based

methods, connectionist approaches, syntactic techniques, and hybrid approaches in-

cluding soft computing. All the methods described in blue are pretty distinct and have

their own respective merits and shortcomings. This thesis work can be classified un-

der the “hybrid methods” category (coloured in black) which is a more recent area of
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Figure 2.13: BVH Motion Capture format encoding human skeletal representation into

rotational data - 19 joints with 3 degrees of freedom each

Figure 2.14: An overview of the modelling process: 3D motion capture input data

using fuzzy membership functions in order to derive a space state recognition
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2.3 Machine learning techniques used in motion recognition

Figure 2.15: Machine learning techniques used in motion recognition. This thesis work

is part of “Hybrid approaches” that combine some of the existing techniques shown in

blue on the graph.

research in constant expansion. It encompasses a wide range of combinations of es-

tablished techniques and sometimes various representation paradigms, created in order

to minimise known shortcomings. In this section, the different categories of machine

learning methods used for motion recognition are individually described and discussed.

2.3.1 Probabilistic graphical models

Probabilistic graphical models are the most widely spread paradigm. These graphs pro-

vide a compact representation of joint probability distributions where nodes represent

random variables, and arcs represent conditional dependencies. Probabilistic graphical

models can be directed (i.e. graphs where directional arcs can capture causality and

encode deterministic relationships), or undirected (i.e. a graph where two nodes are

conditionally independent if they are not directly connected).

Bayes Net Takahashi et al. (1994) uses a Bayesian network, that is to say a di-

rected acyclic graph where nodes represent variables, and edges represent conditional

dependencies. Probability functions associate a set of input value from a node’s parent

variables to the probability of the variable represented by the node. Bayes Net can be

used to compute the conditional probability of one node, given values assigned to the
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other nodes. This gives the posterior probability distribution of the classification node

given the values of other attributes. Bayes Net has been used for recognition of head

gestures by Lu et al. (2005), general motion understanding from video sequences by

Leventon & Freeman (1998), and similarly, has been used by Sidenbladh et al. (2002)

in conjunction with optical flow. Bayes Net is theoretically well equipped to deal with

classification problems in the sense that it maximizes the expected utility of choices

and its performance does not drop dramatically when models are slightly modified by

small alterations. Bayes Net can also handle incomplete data by taking into account

dependencies between variables. On the other hand, it builds networks which depend

greatly on the accuracy of a prior model of beliefs. Furthermore, the entire network has

to be computed to get the probability of any node, which is a NP-hard (nondetermin-

istic polynomial-time hard) problem. This results in Bayes Net to be computationally

expensive.

Hidden Markov Models (HMM) is a double stochastic process that associates an

underlying Markov chain with a finite number of states to a set of random functions.

As a generative model, it captures the joint probabilities of observations and corre-

sponding states. Being an established temporal classification technique, HMM has

found many application in areas like speech, handwriting and gesture recognition. It

is presently the most popular method in motion recognition, and has been applied

to various problems such as the recognition of human actions from time sequential

images of sport scenes Yamato et al. (1992), the identification of complex social in-

teractions based on two-handed actions Pentland et al. (1996) or from the analysis

of relative trajectories Oliver et al. (2000), and sign language recognition Starner &

Pentland (1997). HMM presents distinct advantages such as a solid statistical foun-

dation, efficiency, flexibility, generality (various knowledge sources can be combined

into a single HMM), and a capability for unsupervised learning from variable-length

sequences (there is no need to manually set gestures boundaries). However, in order to

remain tractable, HMM requires observations to be conditionally independent, which

does not scale well in real-world conditions where features are often linked by multi-

ple dependencies and interactions. Furthermore, HMM needs learning sample of quite

significant size to work efficiently, which is not ideal for 3D motion capture.

Conditional Random Fields (CRF) are introduced by Lafferty et al. (2001) as

“models for structured classification”. As opposed to generative models like in HMM,
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CRF produce discriminative models based on the best conditional probability over a

sequence of labels given specific observations. CRF have been recently applied to mo-

tion recognition by Sminchisescu et al. (2006) and are considered by Vail (2008) to

be well suited for activity recognition from sensor data. CRF facilitate the inference

of sequences of activities by modelling relationships between labels because, unlike

HMM, they do not rely on the assumption of independence of observations. However,

one limitation of CRF is that it cannot use hidden-state variables in order to capture

intermediate structures.

2.3.2 Finite state machine

Finite State Machine (FSM) is a method that models gestures as ordered sequences of

states where each state represents a prototype trajectory modelled as a set of points in

space and time.

Parameters determining the state transitions are built during training. The process

of recognition consists in feeding input data under the form of feature vectors rep-

resenting trajectories to the FSM in order to change the current state. A gesture is

recognized when a final state is reached. Davis & Shah (1994) used FSM to model

displacements of fingertips for hand gesture recognition. Bobick & Wilson (1997)

uses dynamic programming to compute the average combined membership to a fuzzy

state of the FSM. This approach is successfully tested on various input data such as 2D

movements from a mouse input device, hand motions measured by magnetic sensors,

and changing eigenvector projection coefficients computed from an image sequence.

Other studies by Yeasin & Chaudhuri (2000) and Hong et al. (2000) focus on the

recognition of symbolic hand gestures from video images.

A variation of FSM called Non-deterministic finite automaton (NFA) has properties

such as instantaneousness and pure-nondeterminism and allows to build large FSMs in

a piecewise and compact fashion. It is used by Wada & Matsuyama (2000) for the

demanding task of multi-object behaviour recognition. The two main shortcomings

FSM are their inherently synchronous nature (i.e. only one global state at any time),

and the state space explosion that occurs when facing intricate motions with numerous

variations distributed over a relatively high number of features.
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2.3.3 Kalman filter and sequential Monte Carlo methods

Although they are different paradigms, Kalman filter and Sequential Monte Carlo

methods are mostly used when motion recognition involves tracking and pose esti-

mation from noisy sensors data.

Kalman filter introduced by Welch & Bishop (1995) is a method that recursively

produces estimations of the true values from time based measurements containing ran-

dom variations. Estimated values and their uncertainty are computed in order to pro-

duce a weighted average that favors values with the least uncertainty. The resulting

filtered values have a better estimated uncertainty and tend to be closer to the true

values than the original measurements. The basic Kalman filter relies on the linear

assumption of a unimodal Gaussian density function to produce estimations. This can

become a limitation in the case of complex nonlinear systems.

Sequential Monte Carlo methods (SMC) such as particle filtering techniques use

a set of random samples or particles to represent the propagation of arbitrary proba-

bility densities over time. Particle filtering can focus in a stochastic way on proba-

ble regions of state-space, deal with non-Gaussian noise, and build multiple models

(when tracking multiple moving targets). However, this method generally exhibits a

high computational complexity (the number of particles needed increase drastically

with the dimension of the model) and might result in a loss of diversity in the solu-

tion space. Condensation algorithms (Conditional Density Propagation) Isard & Blake

(1996) propagate at each time step by representing the distribution of possible interpre-

tations as a set of random samples instead of a unimodal density function (such as the

Gaussian density function used in Kalman filter). Due to the fact that it is a mapping

to a parallel architecture, condensation can be very effective when dealing with the

representation of simultaneous alternative hypotheses. On the other hand, it does re-

quire a dynamic network with random communication patterns where decisions about

connections are unknown before run time. This can greatly affect the speed of the al-

gorithm. Other particle filters used in the context of motion recognition are described

by Arulampalam et al. (2002) and Kwok et al. (2003).

24



2.3 Machine learning techniques used in motion recognition

2.3.4 Kernel based methods

Kernel based methods such as Support Vector Machines (SVM) and Relevance Vector

Machines (RVM) are computationally efficient and give good results in high dimen-

sional space.

Support Vector Machine is a kernel based method that maps examples of different

categories to “points” or hyperplanes in a high dimensional space. This hyperplane-

based representation amplifies the differences between examples that belong to dif-

ferent categories. This gap called functional margin is maximized to be the largest

distance to the nearest training data points of any class. The wider and the clearer the

gap, the easier the separation that leads to the classification of new examples, and the

lower the generalisation error of the classifier. Finding the parameters that define the

hyperplane with the maximum margin is a non trivial optimisation problem. The most

popular algorithm used to train the SVM is the SMO algorithm that attempts to solve

this problem by scaling it down into 2-dimensional sub-units. Further details about

SMO can be found in Schölkopf et al. (1999) and Keerthi et al. (2001). SVM has been

used to recognize human actions from video samples by Schldt et al. (2004), and in

conjunction with optical flow by Danafar & Gheissari (2007). Mori et al. (2004) also

used SVM to discover remarkable motion features. Kapur et al. (2005) used it as a

comparison method in motion classification. Shawe-Taylor & Cristianini (2004) un-

derlined some advantages such as: “the absence of local minima, the sparseness of the

solution and the capacity control obtained by optimising the margin”. However, SVM

also presents extensive memory requirements, and a delicate and computationally ex-

pensive hyperparameter tuning process.

Relevance Vector Machines (RVM) has a kernel based functional form similar

to SVM, but uses Bayesian inference to provide probabilistic classification. In this

method, a set of probabilistic weights linked to hyperparameters are iteratively re-

fined using a learning process similar to Expectation Maximization (EM). While RVM

performances are similar to SVM, it achieves greater sparcity by using fewer kernel

functions. RVM are used by Oikonomopoulos & Pantic (2007) to recognise aerobic

exercises from image sequences and Guo & Qian (2006) for motor action recognition.

Compared to the SVM, the Bayesian formulation avoids the set of free parameters of

the SVM (that usually require cross-validation-based post-optimizations). However,
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2.3 Machine learning techniques used in motion recognition

as RVM use an Expectation Maximization learning method, there are at risk of local

minima, unlike the standard SMO-based algorithms employed by SVMs which are

guaranteed to find a global optimum.

2.3.5 Connectionist approaches

Different types of neural networks such as Multi-layer Perceptrons, Radial Basis Func-

tion networks, Time Delay Neural Network (TDNN), Self-Organizing Neural Net-

works, and Restricted Boltzmann Machines (RBM) are often used in the context of

motion recognition.

The Multi-layer Perceptrons presented in Rumelhart et al. (2002) is a feed-forward

artificial neural network model that uses at least three layers of nodes with nonlinear

activation functions based on Sigmoids. This is one of the most popular types of neural

networks, and it has been applied to many situations varying from activity recognition

from video surveillance in Jan et al. (2003) to hand gesture recognition in Symeoni-

dis (1996). The Radial Basis Function network presented by Bugmann (1998) can be

defined as a statistical feed-forward two-layer artificial neural network that uses Gaus-

sian radial basis functions as activation functions in its hidden units. Output units are

weighted sums of the hidden unit results. A non-linear input is approximated into a

linear output. This gives Radial Basis Networks the ability to model and approximate

efficiently complex functions. It has been used for real-time gesture recognition from

image sequences in the context of a human-computer interface system by Ng & Ran-

ganath (2000, 2002).

The Time Delay Neural Network (TDNN) receives input over several time steps

and is conceived to work with continuous data. Delay units are added to a general

static network, and some of the preceding values in a time-varying sequence are used

to predict the next value. As larger data sets become available, small groups of adjacent

neurons are transformed into single cells in the following neuron layer in order to

increase the granularity of the search space in the time domain. This divides time

series data into smaller chunks on which the network can be trained. TDNN has been

used by Yang & Ahuja (1998, 1999) to recognize gestures related to American Sign

Language (ASL). This method was also used for various other applications such as lip-
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reading Meier et al. (2000) and gestural control of music and sound Modler & Myatt

(2008).

Self-Organizing Neural Networks are used for unsupervised learning where unre-

stricted motions are defined as sequences of flow vectors capturing the positions and

velocities of the object in the image plane. In action recognition, Self Organizing Maps

and Competitive Networks are two popular approaches. A Kohonen Self-Organising

Map (SOM) defines a neural network that transforms the input space into a lower-

dimensional output space called a map. This map is obtained through a dimensional-

ity reduction process based on a neighbourhood function to preserves the topological

properties of the input space. Owens & Hunter (2000) applies SOM to find patterns

in the distribution of movements in order to determine whether a point on a trajectory

is normal or abnormal. Competitive networks presented by Johnson & Hogg (1996)

build statistical models of object trajectories by interconnecting two networks via a

layer of leaky neurons that have a decaying memory of previous activations. Sumpter

& Bulpitt (2000) improves this concept by introducing feedback to the second com-

petitive network. Hu et al. (2004b) also builds competitive neural network structures

with a smaller scale and a faster learning speed.

Restricted Boltzmann Machines (RBMs) are stochastic multi-layer neural networks

where layers are learned greedily and stacked to create a hierarchy of features in an

undirected graph. Taylor et al. (2006) uses them to model human motions such as

walking, crouching, sitting and running. The efficiency of neural networks being

greatly dependent on the completeness and quality of the training set, this type of

method is generally difficult to use with learning samples of sub-optimal size. Fur-

thermore, the model generated by a neural network of average complexity is by nature

very difficult to interpret when trying to identify relations of causality.

2.3.6 Syntactic techniques

Syntactic techniques use a grammar-based parser to recognize sequences of discrete

behaviours on top of a low level standard independent probabilistic temporal behaviour

detector. This grammatical approach has been studied mostly in the context of pattern

recognition from static images. Brand (1996) uses a simple non-probabilistic gram-

mar to recognize sequences of discrete behaviours. Ivanov & Bobick (2000) describe
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a probabilistic version of the syntactic approach applied to the classification of inter-

actions between multiple agents. The division of the recognition problem between a

low-level classifier that outputs temporal features and a stochastic context-free parser

presents advantages such as the extension of constraints on a longer time scale, the

disambiguation of uncertain low-level detection, and the inclusion of prior knowledge

about the structure of temporal behaviours in a given domain. The problem of this ap-

proach is that it does not solve the problem of how to build a set of intricate grammar

rules that can fit complex data.

2.3.7 Instance-based learning methods

Instance-based learning methods such as Nearest Neighbours classifiers or Dynamic

Time Warping in the temporal domain are popular in the field of motion recognition.

Nearest Neighbours based techniques generalise and classify by finding the most

similar instance (hence the “nearest neighbour”) and labelling the next unknown in-

stance with the same label as the known neighbour. One measures the Normalised Eu-

clidean distance to find the training sample closest to an existing test sample and then

integrate the latter into the same class. If several closest training instances are equally

distant to the same test sample, the object being assigned to the class most common

amongst its k nearest neighbors is classified by a majority vote. Learning is an encap-

sulation process during which training data are not generalised before the end, that is

to say at classification time (hence the “lazy learners” denomination). Nearest Neigh-

bours classifiers have the advantages of being fast and cope well with small learning

samples. K-nearest Neighbours were recently used by Kollorz et al. (2008) for gesture

recognition from time-of-flight cameras and by Kaâniche & Brémond (2009) uses for

motion classification from histograms descriptors.

Dynamic Time Warping (DTW) measures similarity between sequences indepen-

dently of variations in the speed of performance and changes such as accelerations or

decelerations. DTW warps sequences using time alignment and normalisation in order

to obtain a measure of their similarity which is independent of the non-linear variations

of the time dimension. DTW does not rely on the continuity of data sequences. It is

therefore particularly useful for matching sequences with missing data. It has been

often used in application domains such as human-computer interaction (HCI) systems
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in studies by Takahashi et al. (1994) and Corradini (2001) and sign language recog-

nition in Kuzmanic & Zanchi (2007). Although instance-based learning methods are

computationally very efficient, they generally do suffer from a high sensitivity to noise.

2.3.8 Classifiers based on voting strategies

Classifiers based on voting strategies such as HyperPipes and Voting Feature Inter-

val(VFI) have been used in the context of gesture recognition.

HyperPipes presented in Frank et al. (2005) is an algorithm that, for each class,

builds bounds for the attribute-values found in the examples belonging to this class.

Each hyperpipe contains the attribute-values found in the examples from the class it

was built to cover. A test example is classified by finding the hyperpipe that most

contains the instance. Hyperpipes has the advantages of speed, simplicity, and can

cope well with large numbers of attributes. Eisenstein & Davis (2004) attempted to

develop a human gesture classifier based on HyperPipes.

Voting Feature Interval(VFI) presented by Demiröz & Güvenir (1997), builds in-

tervals for each attribute inside each class. Class counts are recorded for each interval

on each attribute. The predicted class is the one with the highest count. Falco et al.

(2008) used VFI as a comparison in a benchmark test done in the context of gesture

recognition. Other studies by Kaâniche & Brémond (2010) and Zhang et al. (2009)

use other variations of such voting mechanisms. These techniques are extremely fast,

but their simplicity limits their accuracy when the interdependency between attributes

gets stronger.

2.3.9 Hybrid approaches and soft computing

There is a growing trend of hybrid approaches in motion recognition such as, among

others, multilayer perceptron and HMM in Bourlard & Wellekens (1990), K-Nearest

Neighbors Algorithm and naive Bayes in Ziaie et al. (2009), PCA and HMM in Coogan

et al. (2006), and Hidden Conditional Random Field in Wang et al. (2006) that com-

bines the ability of CRFs to use dependent input features and the ability of HMMs

to learn latent structure. More and more of the approaches described above are suc-

cessfully integrating concept of soft computing such as Fuzzy Set Theory. The work

described in this thesis fits into this category.
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Fuzzy C-means clustering has been used in Korde & Jondhale (2008) and combined

with HMM in Zhang & Naghdy (2005), or FSM in Verma & Dev (2009). Fuzzy neural

networks are popular and presented in studies such as in Juang & Ku (2005) and Su

(2000). Fuzzy decision tree in Fang et al. (2004) which is a mixture of “top-down” rule

based approach and fuzzy representation is also quite well represented. Combinations

of Finite State Automata with interval fuzzy logic in Callejas Bedregal et al. (2006)

or with fuzzy partitioning and HMM in Kim et al. (1996) are not uncommon either.

Methods mixing HMM and fuzzy neural networks are presented in Wang & Dai (2007)

or techniques merging Possibility distribution and Dynamic Programming in Benoit

et al. (2003) are some of the many new hybrid methods appearing in the field.

2.4 Discussion

The chronological emergence of motion recognition in the wider context of motion

capture systems underlines a shift to a higher level description of actions and inter-

actions based on view-invariant perspective due to the spread of 3d motion capture

technology. In this study, an optical motion capture system is used in conjunction with

the BVH motion capture format in order to quantify rotations of joints and provide raw

input data. A state-space modelling paradigm is then employed to represent a motion

as a discrete state that is composed of a set of 57 Fuzzy membership functions that each

express a membership score to an extended range of fixed angular rotations. A review

of the state-of-the-art of machine learning techniques shows that conventional meth-

ods such as probabilistic graphical models and neural networks need learning sample

of very significant size to work efficiently, which is not ideal for 3D motion capture.

Similarly, instance-based classifiers generally do suffer from a high sensitivity to noise,

which is a problem when dealing with the naturally imprecise data set. Methods such

as finite state machine, voting strategies and syntactic techniques are difficult to apply

to 3d motion capture data due to the complexity and high dimensionality of the prob-

lem. The same applies for Kernel-based methods because of the delicate and com-

putationally expensive hyperparameter tuning process. Hybrid approaches which are

based on clustering methods do present a specific problem in that they do not overlap

well with the sets of moves distinguished by human in the continuous spatio tempo-

ral domain. Furthermore, other hybrid techniques based on fuzzy neural networks or
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probabilistic graphical models still present significant constraints regarding the size of

the training set. Due to the novelty of the relatively recent availability of 3d motion

capture data sets, hybrid methods have yet to satisfy the very demanding and specific

constraints of this type of data in the context of the recognition of human activity. The

demand for such techniques is now great. As noted by Moeslund et al. (2006), there is

at present a quantitative explosion of various hybrid approaches in the field, triggered

by the need to address motion recognition problems at an unprecedented scale in areas

such as the entertainment industry, security surveillance and health care. This situation

confirms a new growing trend of hybrid Machine Learning methods that seek to fit into

a niche satisfying the following functional requirements: the ability to classify from

learning samples of sub-optimal size, a low sensitivity to noise, and simplicity regard-

ing the parameter tuning process. The motion classification framework presented in

this thesis is aiming a addressing these specific problems and is detailed in the next

chapter.
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Chapter 3

Motion recognition framework

3.1 Introduction

The presented framework aims at classifying 3D human motions while using learn-

ing samples of sub-optimal size and taking into account time, contextual information

and occlusion. As illustrated in Figure 3.1, a standalone time invariant classifier based

on Fuzzy Quantile Generation is built and connected to a post-processing filter that

deals with context sensitive/time variant information and a pre-processing module that

deals with occlusion. The standalone classifier at the heart of the system must be able

to integrate information from the occlusion module during the classification process,

while delivering a discrete output exploitable by the context-aware post-processing fil-

ter. The required level of coupling between the different components of the framework

is ensured by choosing a type of input/output that can be shared by all three modules,

i.e. the fuzzy membership scores of observed data to different known motions. The

occlusion module produces estimations of rotations for hidden joints that can be inte-

grated seamlessly in the classification process by correcting these fuzzy membership

scores, while the post-processing filter can use them as discrete inputs by ranking them.

Each of the detailed modules deals with specific problems of a different nature. The

occlusion module must deal with insufficient information, while the FQG classifier

has to face challenges linked to the nature of motion capture data: spatial and tem-

poral variations, cross-gait differentials from one individual to another, relatively high

dimensionality of the representation, and large number of learning samples of subopti-

mal size. Similarly, the post-processing filter must be able to generate rules processing
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3.1 Introduction

Figure 3.1: A block diagram of the motion classification framework

discrete qualitative input in a time dependent and context-aware fashion. As no initial

prior knowledge is assumed, the high dimensionality and specificity of the problem

might cause these rules to form nested logical structures of arbitrary complexity. In

this section, FQG as a standalone modelling method is first introduced. Secondly, the

context-aware post-processing filter is presented. Finally, the pre-processing module

that deals with occlusion is detailed.
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3.2 Fuzzy quantile generation

The novelty of FQG comes from the fact that it generates Fuzzy Membership Func-

tions by building a simple and efficient connective between probabilistic and fuzzy

paradigms that allows the classification of noisy, imprecise and complex motions while

using learning samples of sub-optimal size. A detailed and formal description of the

FQG modelling process is presented, and is then followed by a qualitative analysis of

its flexibility as a machine learning technique.

3.2.1 Building a connection between a fuzzy membership function

and a probability distribution

FQG is a method that builds and maps Fuzzy Membership Functions to probability

distributions. A practical mapping from a Fuzzy Membership Function to a Normal

Distribution is hinted at by Frantti (2001) in the context of mobile network engineering.

Unfortunately, this work has its shortcomings as this a system does ignore motions

which are over the extrema of the range of the learning sample. One solution to this

problem would be to introduce a function that maps a degree of membership to the

probability that values fall within a given cumulative probabilistic distribution. As a

consequence, FQG presents such a method in four steps. First, probabilistic and fuzzy

models in use must be identified. Secondly, the upper and lower bases of a Fuzzy

Membership Function are initially estimated. Thirdly, the FMF shape is modified in

order to follow a shift of the probability distribution inferred from the mean of the

learning sample. Finally, the resulting model is used to classify instances by evaluating

their membership scores.

3.2.1.1 Choosing the type of probability distribution and fuzzy membership func-

tion

Human motions are non-trivial to model because nobody moves exactly the same way,

and even the same person, when repeating the same motion, does not perform it in a

strictly identical fashion. Despite of this, we seem to be able to recognize a motion

when performed by different actors at various speeds and in very different conditions.
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From this observation, and the existence of the Central Limit Theorem, it is assumed

that motions and by extension joints rotations, are somehow distributed.

The proposed method does not automate the choice of a distribution, so it is left to

the user to decide which distribution best represents the domain the sample is extracted

from. The normal distribution being commonly encountered in practice is used exten-

sively throughout statistics as a simple model for complex phenomena. In the context

of this experiment, it is chosen as the most likely base case and is used as a proof of

concept. However, there are times when other distributions might offer a better alter-

native for different application domains. That is why others such as the Log-Normal,

Exponential, and Laplace distributions are presented as possible alternatives in order

to give a wider range of choices from a theoretical perspective. These can be used as

a starting point to later map more complex distributions with multiple modes such as

Beta and Sine distributions.

The Fuzzy Membership Function that maps to a distribution must be computation-

ally efficient and suitable for noisy data. Fuzzy membership functions introduced by

Zadeh (1986) can deal with imprecision and overlapping classes, which make them

ideal for the classification of such data. The trapezoidal fuzzy membership is chosen

here as a mean of representation primarily for its simplicity and efficiency with respect

to computability. It offers a bit more flexibility than a triangular membership function,

and set a membership score to a known move to 1 for an extended range of values.

This makes it more practical for this data set, as a motion can be characterized by a

range representing a set of fixed angular rotations. A standard trapezoid fuzzy-four-

tuple (a, b, �, �) which defines a function that returns a degree of membership in [0,1]

is defined in equation 3.1 and Figure 3.2.

�(x) =

⎧









⎨









⎩

0 x < a− �
�−1(x− a+ �) x ∈ [a− � a]
1 x ∈ [a b]
�−1(b+ � − x) x ∈ [b b+ �]
0 x > b+ �

(3.1)

Once specific types of probabilistic and fuzzy representations are defined as suit-

able to the application domain, they need to be connected via the FQG framework.

A simple connective is built between a Fuzzy Membership Function and a probabil-

ity distribution that is based on Inverse Cumulative Distribution Function or Quantile
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Figure 3.2: A trapezoid Fuzzy Membership Function

Function which is a standard probabilistic function ( see Warren (2000)). Intuitively,

FQG uses the quantile function to evaluate the shape of a Fuzzy Membership Function

using metrics expressed in numbers of standard deviations. The shape of the fuzzy

membership function is defined by:

∙ Seeing how the sample range fits a distribution and build a Fuzzy Membership

Function accordingly.

∙ Shifting the Fuzzy Membership Function so that the mean of the sample overlaps

with the true mean of the distribution.

Hence, the general shape of the Fuzzy Membership Function is defined and then ad-

justed in the next two steps.

3.2.1.2 Building the upper/lower base of the Fuzzy Membership Function

Let nmin and nmax be the minimum and maximum in number of standard deviations

covered by the Fuzzy Membership Function. Then, ∣nmax − nmin∣ quantifies in stan-

dard deviations the length of ∣(b+ �)− (a− �)∣ in the Fuzzy Membership Function

mapping the distribution. Let s ∈ [0, 1] be a parameter describing the proportion of the

population whose values are in the interval [a, b], with a and b being respectively the
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Figure 3.3: Influence of the s parameter (expressed in %) on the shape of the fuzzy

membership function mapping to a Normal distribution

min and max values of the learning sample. Let CDF−1(x) be the Quantile Function

also known as the Inverse Cumulative Distribution function of the applied distribution.

Let CDF−1(0.5) be the position of the median of the distribution. Then, a, the lowest

value of the learning sample, can be defined in term of the underlying distribution by

a = CDF−1(0.5 − (s/2)) and b, the highest value of the learning sample, can be de-

fined in term of the underlying distribution by b = CDF−1(0.5 + (s/2)). Also a− �

can be defined in term of the underlying distribution by a−� = nmin and b+� can be

defined in term of the underlying distribution by b+ � = nmax. Then, as illustrated in

Figure 3.3 and 3.4, initially, � and � are defined in term of the underlying distribution

by:
{

� = ∣CDF−1(0.5− (s/2))− nmin∣
� = ∣nmax − CDF−1(0.5 + (s/2))∣ (3.2)

Examples of a Normal, but also Laplace, Exponential and Log-Normal distribu-

tions are considered in Figure 3.4. For each of these distributions, the Quantile Func-

tion CDF−1 can be expressed as follows. In the case of a Normal distribution, of mean

� and standard deviation �, CDF−1 = {x : CDF−1(x∣�, �) = p} where:

p = F (x∣�, �) = 1

�
√
2�

∫ x

−∞

exp(
−(t− �)2

2�2
)dt (3.3)
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(a) Normal and Laplace (b) Exponential and Log-Normal

Figure 3.4: Building the upper/lower base of the FMF by mapping to selected distri-

butions with s = 0.7

The result, x, is the solution of the integral equation above where you supply the de-

sired probability, p. In the case of a Laplace distribution, of mean � and standard

deviation �:

CDF−1 =

{

x = �+ � ⋅ log(2p) if p ⩽ 0.5

x = �− � ⋅ log(2(1− p)) otherwise
(3.4)

In the case of an exponential distribution, of parameter �:

CDF−1(p, �) =
− ln(1− p)

�
(3.5)

In the case of a log-normal distribution, of mean parameter � and standard deviation

�:

CDF−1(p, �) = exp(�Φ−1(p)) (3.6)

where Φ is the quantile function of the normal distribution.

This analysis is valid for distributions with only one mode (the present work ex-

cludes saddle shaped distributions). The ratio between the upper part and the lower

part of the Fuzzy Membership Function being found, the initial characteristics of the

Fuzzy Membership Function are set. However this is done under the assumption that

the mean of the learning sample overlaps with the midpoint between its min and max

ranges. As this is rarely the case, the FMF needs to be re-evaluated in order to follow a

shift resulting from a discrepancy between the mean and the midpoint of the learning

sample.
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Figure 3.5: Displacing the mean of the learning sample shifts the distribution and

deforms the fuzzy membership function

3.2.1.3 Deforming the fuzzy membership function to follow a shift of distribu-

tion

The Central Limit Theorem states that sampling distributions drawn from a uniformly

distributed population will tend to form nearly perfect normal distribution when the

sample size is large enough. This guarantees that a mean based on a randomly chosen

sample of sufficiently large size will be remarkably close to the true mean of the pop-

ulation. Therefore, the mean of the “theoretical” underlying distribution is shifted to

overlap with the mean of the learning sample. The shape of the corresponding Fuzzy

Membership Function deformed in kind (see Figure 3.5). This shift of the distribution

�� is a ratio expressing how far the mean of the learning sample is from its midpoint

which represents the mean of the underlying distribution in number of standard devia-

tions. The FMF is deformed to follow the shift �� in different ways depending on the

type of distribution in use (see Figure 3.6. Let �0 be the initial mean of the distribu-

tion and �1 be the mean of the learning sample respectively expressed in number of

standard deviations by CDF−1(�0) and CDF−1(�1). Let a and b the extrema of the
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(a) Normal shift: �� = 0.83 (b) Laplace shift: �� = 0.79

(c) Exponential shift: �� = 0.89 (d) Log-Normal shift: �� = 0.89

Figure 3.6: Shifting distributions depending on �� (plain lines are the shifted distribu-

tions and parameter s = 0.7 )

learning sample such that: a = CDF−1(0.5− (s/2)), and b = CDF−1(0.5 + (s/2)).

Let �0, and �0 be the initial values of �, and � as defined in the previous step in

equation 3.2.

If the chosen distribution has only one mode and is central symmetric, then ��, and

the new values of � and � can be computed as follows:

⎧

⎨

⎩

�� = (CDF−1(�1)− a)/(b− a)
� = (1− ��)(�0 + �0)
� = (��)(�0 + �0)

(3.7)

In the case of right-skewed distributions of the type Exponential or Log-Normal,

��, and the new values of � and � can be computed as follows:

⎧

⎨

⎩

�� = (CDF−1(�1)− CDF−1(�0))/(b− CDF−1(�0))
� = �0 − (�� ⋅ �0)
� = �0 + (�� ⋅ �0)

(3.8)

Having presented a fuzzy membership function design methodology using metrics

based on the probabilistic quantile function, the next step is to use it for classification.
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3.2.1.4 Membership score evaluation

Instances of moves are classified by evaluating their membership scores to the Fuzzy

Membership Functions generated by FQG. A posture being defined by a set of 57 Euler

angles is modelled by 57 Fuzzy Membership Functions. Having no initial prior knowl-

edge about the eventual predominance of some of these joints, the overall membership

of a test instance to a known move is computed by calculating the average of all the 57

membership scores of the Euler Angles. This approach could probably be improved

in the near future by introducing weighted average for certain joints (for example, the

position of the elbow might be more important than the position of the knee when in

guard). A parameter t expresses the membership threshold to a move. In practice, all

frames with a membership score equal or greater than t are classified as belonging to

that move. The lower the value of t, the lower is the selectivity of the classifier, and the

higher the value of t, the more difficult it becomes for a move to be given a membership

score of 1. When the same frame has a high membership score for several fuzzy sets

representing different moves, an order of preference of these sets can be established by

comparing the Euclidean distance of the observed data to the centroid of each fuzzy

set. The existence of t allows the introduction of a convenient a-posteriori way to fine

tune parameters in order to tailor the precision of every model to the quantity of avail-

able learning data for each move. If results show that the relative size s of a learning

sample for given move was over-estimated, the membership scores mi can be re-scaled

by fine-tuning the thresholds ti linked to each move i, effectively “truncating” the up-

per part of the Fuzzy Membership Functions without having to recalculate the model

(see equation 3.9).

mi = (mi − ti) / (1− ti) (3.9)

3.2.2 Qualitative analysis: the flexibility of fuzzy quantile genera-

tion as a machine learning technique

Unlike methods such as PCA that sometimes lose crucial information in the process

of dimensionality reduction, Fuzzy Quantile Generation keeps the initial number of

dimensions when building the model. The method decomposes what would normally

be a Gaussian Mixture of a number x of m-dimensional Normal distributions into

x×m Fuzzy Membership Functions (see Figure 3.7). In this study, nineteen joints with
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3.2 Fuzzy quantile generation

Figure 3.7: Decoupling feature distributions - a comparison between FQG and Gaus-

sian Mixture

3 degrees of freedom each represent in total 57 continuous values expressing rotation

angles are modelled by 57 fuzzy membership functions. It can be observed that FQG

has the ability to decouple conditional feature distributions into m one-dimensional

set, but it is also able to link these features together by estimating a measure that

combines their memberships. Having no initial prior knowledge about the eventual

predominance of some features, the measure is chosen to simply be an average of the

membership scores of all Euler Angles. If this is not as fine grained as a network of

probability distributions, this is enough to make features interdependent and it can also

be made more complex by introducing weights depending on the importance of certain

joints. The flexibility of a machine learning method is generally determined by how

successfully it can be applied to different application domains. Empirically speaking,

making use of supervised machine learning techniques generally involves testing a

data sample with different parameter values in order to reach an optimal combination

leading to a maximized performance of the given system. Two of the contributing

factors to the degree of usability for such methods are the number of parameters in

use and the sensitivity the system exhibits to slight variations in parameters values.

In other words, if the classifier is parameter dependent like most machine learning

techniques, it is interesting to know the relationship between these parameters, and

42

Chapter3/Chapter3Figs/EPS/fqgilast4.eps


3.2 Fuzzy quantile generation

how do parameters variations influence the overall system performance. FQG is based

on two parameters which, combined with input data, produce a classification with a

certain degree of accuracy. The first parameter s̄ evaluates the “relative size” of the

sample. This ratio represents the average of different s values over m features as

defined in section 3.2.1.2 and expresses the proportion of the population whose value

is in the intervals defined by the learning sample. Intuitively, s̄ tells how much of the

population of correct moves the stances present in the learning sample represent. The

second parameter t expresses the membership threshold in use with the classifier as

described in section 3.2.1.4. A membership threshold of 0.95 means for example that

all frames which have a membership score greater than 95% to a move are identified

as belonging to this move. When classifying different types of movements for a given

specific accuracy, there seems to be an empirical relationship between the parameter

s̄ and the membership threshold t. This relation can be generalised into an equation

where a function g maps s̄ to the membership threshold t for a given accuracy such that:

g (s̄) = t . Figure 3.8 shows different plots of the function g mapping the parameter

s̄ on the x-axis to the threshold t on the y-axis using three different data sets. One

can observe that the slope of the function g is always negative. That is to say that for

any parameter s̄, ġ (s̄) < 0 . For a given accuracy, the threshold t seems to vary as a

function of s̄ following a general curve with an equation of the form:

t = � + 1/ (
 × log s̄) (3.10)

where � and 
 are constants linked to the dataset considered. In economics, the concept

of elasticity presented in Case & Fair (2003) is used to measure the responsiveness of a

function to changes in parameters in a relative way. In the context of machine learning,

this same concept can be reused to evaluate if the threshold t is s̄-elastic. It becomes

noticeable that the elasticity is poor when using a very high s̄ value (superior to 0.95).

The maximum elasticity is obtained when s̄ is between 40 and 95%. This means that in

this data set, the variations of the s̄ parameter are more likely to influence the threshold

t if s̄ is kept between 0.4 and 0.95. Regarding the relationship between accuracy and

parameters, the higher the value of s̄ is, the more likely the accuracy is to get lower.

This is expected as the sample is of limited size, over-estimating its relative-size will

damage the accuracy of the classifier. The loss in accuracy is determined as a function
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3.3 The context-aware genetic programming filter

Figure 3.8: Empirical relationship between two parameters: function mapping the

relative-size s̄ to the threshold t

Figure 3.9: Function mapping the loss of accuracy when over-estimating the parameter

s̄ when recognising a “Guard” stance

of the relative-size parameter s̄. When classifying a guard, the error is rising with over-

estimation of s̄ up to a maximum of 10% which is quite a small (see figure 3.9) error

rate for parameters that take extreme values.

3.3 The context-aware genetic programming filter

The standalone classifier labels frames by computing membership scores to known

motions. However, this classification is done frame by frame and is not time-based. It

does not take into account previous or following motions. In this context, it becomes

necessary to smooth the qualitative output using context-aware fuzzy-rules. These

rules might combine very specific operators such as logical functions, measurements

of speed, and ranked as first, second or third best choices for a motion.
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3.3 The context-aware genetic programming filter

No initial prior knowledge about how motion can be smoothed is assumed. Con-

sidering the fact that there is a relatively high number of input symbols (around 57),

standard approaches like the Takagi-Sugeno-Kang (TSK) or Mamdani models become

unsuitable because of the exponential growth of the number of rules. Similarly, the

high dimensionality and specificity of the problem where results might form nested

logical structures of arbitrary complexity make mainstream inference methods such

as Fuzzy Neural Networks in Gobi & Pedrycz (2007) or standard Evolutionary Algo-

rithms in Yu et al. (2003) and Belarbi et al. (2005) difficult to reuse in this context.

Genetic Programming (GP) is a branch of evolutionary computation described in Koza

(1992) that evolves programs represented as tree structures and can cut through vast

search spaces to suggest solutions that optimise a fitness function. In existing Genetic

Programming packages, the generation and recombination of individuals tend to focus

on producing random trees, and the mechanisms involved in the production of syn-

tactically correct individuals are generally limited due to computational and usability

problems. For the purpose of this research, a Strongly-Typed Genetic Programming

open-source distribution was built (see Khoury (2009) and appendix E) that allows

the user to easily evolve populations of trees with precise grammatical and structural

constraints.

3.3.1 Python Strongly Typed gEnetic Programming

PySTEP is a light Genetic Programming Application Programming Interface (API)

using the Python programming language that focuses on facilitating the creation of

building blocks and rules that define individuals during the evolutionary process. Al-

though this “Strongly-Typed” aspect defined its originality as an evolutionary tool and

defines specificities at the representational and algorithmic level, the general evolu-

tionary process corresponds to a classic Genetic Programming flowchart as shown in

Figure 3.10. The three distinctive features that characterise PySTEP are presented in

this section: firstly, the specific representation scheme; then syntactic ordered grammar

rule system; and finally, the modified operators.
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3.3 The context-aware genetic programming filter

Figure 3.10: Flowchart presenting executional steps for Genetic Programming - image

extracted from Koza (2007)
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3.3 The context-aware genetic programming filter

Figure 3.11: PySTEP representation of a basic tree in a nested list format - the first

element of a list or a nested list is always a head node

3.3.1.1 A specific representation scheme

PySTEP represents tree data structures as nested lists where the first element of a list

or a nested list is always a head node. A simple tree structure can be represented in

PySTEP as shown in Figure 3.11 where each letter represents a different node that

corresponds to an object in the Python programming language. In PySTEP, a node

object is a tuple, e.g. (0,2,’root’) that is composed of three elements. The first element

represents the type of node:

∙ 0 is a root branch, i.e. the first node at the very top of the tree.

∙ 1 is a branch node that is a function, i.e. it can take as children variables, con-

stant, terminal nodes, or other functions.

∙ 2 is an Automated Defined Function Defining Branch that is a value that maps

to a sub tree that can be reused as a terminal.

∙ 3 is a terminal node that is a variable.

∙ 4 is a terminal node that is a constant.

∙ 5 is an Automated Defined Function Leaf that is a sub tree that can be reused as

a terminal.

The second element is the arity of the node , i.e. the number of children. The third

element is the name or unique identifier of the Node that refers to a specific operation
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3.3 The context-aware genetic programming filter

Table 3.1: Nested lists and corresponding mappings of tree depth structure.

Nested lists Corresponding mappings of depth structure.

[1, 2, 3, 4, 5, 6, 7, 8, 9] [([0], 9)]

[1, [2, 3], 4, 5, 6, 7, 8, 9] [([0], 8), ([1], 2)]

[1, [2, 3, 7], 4, 5, 6, 7, 8, 9] [([0], 8), ([1], 3)]

[1, [2, 3, 7], 4, [5, [6, [7, 8, 9]]]] [([0], 4), ([1], 3), ([3], 2), ([3, 1], 2), ([3, 1, 1], 3)]

implemented in the programming language, e.g. (1, 2,′ +′) is a function branch node

with two children and unique identifier ’+’ that corresponds to the addition operation

implemented as a function in the programming language. So, following this way of

coding nodes, a basic equation like x × (x2 + x) could be represented by the fol-

lowing nested list: [(0,1,’root’),[(1,2,’*’), (3,0,’x’), [(1,2,’+’), [(1,1,’square’), (3,0,’x’)],

(3,0,’x’)]]].

There is no function included in the object-nodes to iterate through the tree, unlike

other genetic programming based tree data structures. This is intended in order to keep

the nodes-objects composing trees as light-weight as possible, so that the resulting

memory space occupied by trees stays minimum. This simplifies the storage of popu-

lations of tens of thousands of trees of significant depth in one data base by lowering

unreasonable space requirements. The downside is that a mechanism is needed to cope

with the absence of node iterator functions in order to identify the indices of nodes at a

given level of depth (this type of operation is used constantly during crossover or sex-

ual recombination operations). In order to keep the representation relatively compact,

a list of tuples containing integer numbers presenting the numbers of nodes per sub list

by depth is generated while avoiding computationally expensive recursive tree parsing.

The first element of each tuple contains information about the depth and position of

a head node, while the second contains the number of elements. This occupies some

storage space, but not as much as a heavily object oriented node. Examples of such

structures are visible in Table 3.1.

During evolution, each individual is stored in a data base with the following ele-

ments: individual identifier number, nested list representing the tree data structure, list

containing the depth structure of the tree, integer value expressing the tree final depth,

Boolean value expressing if the fitness of the individual has been evaluated, and the
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3.3 The context-aware genetic programming filter

fitness score of the individual as computed from the fitness function.

3.3.1.2 A grammar rule system using ordered function and terminal sets

The grammar rules used to define the construction are defined by nested tuples where

each member is represented by a function set (i.e. the set of branch nodes) and a termi-

nal set (i.e. the set of leaf nodes). The order of terminal and function sets for children

node can be pre-determined in order to build ordered structures i.e. an ’If’ node must

always precede ’Then’ nodes. Every child of every node in the tree has a list of pos-

sible function nodes and terminal nodes. A given node will be described as a list of

tuples where each tuple contains the function and terminal set for a child. e.g. a ’dot’

node expressing a dot product will have two children, each one belong to a specific set.

The first child must be chosen from specific function and terminal sets and the second

child must be chosen from different sets. So a ’dot’ product node will be described

by: [(FunctionSet1,TerminalSet1),(FunctionSet2,TerminalSet2)]. When using the GP

in the context of polynomial regression, a polynomial of the type: x3 + x2 + cos(x)

can be generated by using one variable x and the following mathematical operators:

′+′,′−′,′neg′,′∗′,′square′,′cos′,′sin′. The PySTEP rules used to generate such poly-

nomial will take the form of a list of nodes names with corresponding function and

terminal sets as shown in the very brief commented Python code below in table 3.2.

This representation allows ordered input to be given to function, which might give

different results depending on the input combination. This feature is quite unique in

Genetic Programming and makes the PySTEP evolutionary package competitive.

3.3.1.3 The modified generation and manipulation of trees

Conventional processes used to generate trees in Genetic Programming are also present

in PySTEP. The tree building algorithms follow the standard Half, Full, and Ramped

half-and-half procedures explained in Koza (1992) with one alteration: when a random

function or terminal nodes is selected to build a tree structure, it has to be guaranteed

compatible with its direct parent node.

Genetic Programming operators used to manipulate trees such as crossover, muta-

tion, and reproduction also exist in PySTEP, but are modified in the case of crossover
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3.3 The context-aware genetic programming filter

Table 3.2: Example of PySTEP rules generating syntactically correct polynomials

1: funcSet ⇐ [(1, 2,′ +′), (1, 2,′ ∗′), (1, 1,′ square′), (1, 2,′ −′), (1, 1,′ cos′),

(1, 1,′ sin′), (1, 1,′ neg′)] {default function set applicable for branches nodes}
2: termSet ⇐ [(3, 0,′ x′)]{default terminal set applicable for leaf nodes}
3: ′root′ ⇐ [(funcSet, termSet)]{a root node can have one child from either the

default function or terminal sets}
4: ′+′ ⇐ [(funcSet, termSet), (funcSet, termSet)]{these nodes can have two

children from either the default function or terminal sets}
5: ′∗′ ⇐ [(funcSet, termSet), (funcSet, termSet)]

6: ′−′ ⇐ [(funcSet, termSet), (funcSet, termSet)]

7: ′square′ ⇐ [(3, 0,′ x′)]{default terminal set applicable for leaf nodes}
8: ′neg′ ⇐ [([(1, 2,′ +′), (1, 2,′ ∗′), (1, 2,′ −′), (1, 1,′ cos′), (1, 1,′ sin′)], termSet)]

{these nodes can have two children from either a specific function set or a default

terminal set}
9: ′cos′ ⇐ [([(1, 2,′ +′), (1, 2,′ ∗′), (1, 2,′ −′), (1, 1,′ sin′), (1, 1,′ neg′)], termSet)]

10: ′sin′ ⇐ [([(1, 2,′ +′), (1, 2,′ ∗′), (1, 2,′ −′), (1, 1,′ cos′), (1, 1,′ neg′)], termSet)]

and mutation. In mutation, a single individual is selected based on fitness. At a ran-

domly chosen mutation point, the subtree rooted at that point is replaced by the same

modified process used for tree generation. The crossover or sexual recombination op-

eration combine features from two parents which are trees of different shapes in order

to produce two distinctive offsprings. This operator used generally around 90% of the

time during evolutionary runs has been heavily modified in PySTEP. Making the new

offsprings compliant with the syntactic rules defining a tree is delicate and computa-

tionally expensive because the parts of the parent trees which are swapped in order to

produce an offspring are not always grammatically compatible between themselves.

This incompatibility has to be a) detected by analysing the syntactic validity of the

new tree, and b) corrected in order to generate potentially useful solutions. Depend-

ing on the complexity of the rules, this problem cannot always be solved with great

speed. A balance is struck between valid syntax and fast computation by setting the

following rule: once the system has tried 100 times without success to produce a rules-

compliant tree using crossover, the unfit offsprings are substituted with a mutated tree.

In order to facilitate the correction process, a mapping of function branches that can be
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3.3 The context-aware genetic programming filter

swapped between parents is established. The PySTEP crossover operator is detailed in

the pseudocode in table 3.3.

3.3.2 Genetic programming settings in the context of the frame-

work

Figure 3.12 shows a typical input obtained from the FQG classifier when identifying

a sequence of Jab-Cross combinations separated by Guard positions. The first, second

and third best membership scores corresponding to the three best estimated labels for

each frame are used as multiple inputs by the GP filter. These membership scores are

rescaled following the procedure detailed in section 3.2.1.4. On the right part of the

figure, each frame is coloured corresponding to the move with the highest membership

score (e.g. blue for jab, black for guard, orange for cross). These sequences of guards

separated by jab-cross combinations are identified mostly correctly as the correspond-

ing colours appear in the right order: black separating patches of blue and orange. The

classification is not perfect, as some isolated frames are showing unexpected colours,

e.g. some frames that should be orange (cross) are coloured in red (right hook). The

context aware filter aims at improving these results by changing these misclassified

anomalies. The GP system evolves logic rules (see Figure 3.13) that transform the

qualitative output of each frame. The GP terminal and function sets are detailed as

follows in Table 3.4 and the corresponding Python code that captures the syntactic con-

straints is visible in E. Some operators return the groups of frames that are identical

for a given duration, e.g. is short expresses a duration of less than 5 frames. Other

operators return the groups of frames that belong to the first , second and third best

membership scores of a motion e.g. membership 2(left hook) return groups of frames

with the second best membership score for a motion as a left hook. Others return the

groups of frames that have specific previous motions e.g. left 2( guard,jab) returns

groups of frames preceded in order by a guard and then a jab motion. Logical opera-

tors are present (e.g. and, or, not). Logical structures of the type If Then Replace X by

Y use the previous operators to identify groups of frames and replace their best motion

membership score by a different one, e.g. If (membership 2(guard))Then Replace (jab)

by (Cross). One individual or tree consists of four interconnected If Then Replace X by

Y rules. The GP parameters are:
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Table 3.3: pseudo code of the PySTEP crossover operator

1: let CDeptℎP1
be a random depth in first parent tree.

2: let CDeptℎP2
a random depth in second parent tree such that (depth of parent1-

CDeptℎP1
) + CDeptℎP2

⩽ maxDeptℎ

3: randomly choose crossover nodes among those located at depth CDeptℎP1
and

CDeptℎP2
in both parents

4: find the subtrees fragmentP1 and fragmentP2 associated with respective

crossover nodes in each parent

5: get the parent nodes of each subtree

6: for each branch node in fragmentP1 and in fragmentP2 do

7: if not present in the list of authorized branches nodes of its parent node then

8: unauthorized branches nodes - set boolean values to false for each fragment

9: if swapping branch nodes between fragments is permitted then

10: for for each unauthorized branches node do

11: try to swap branch nodes between fragments by following the list of

authorised crossover swaps.

12: if all swaps successful then

13: return modified fragments and set boolean values to true

14: else

15: return unmodified fragments and set boolean values to false

16: end if

17: end for

18: end if

19: end if

20: end for

21: for terminal node in fragmentP1 and in fragmentP2 do

22: if not present in the list of authorized terminal nodes of its parent node then

23: set boolean values to false

24: end if

25: end for

26: produce two offsprings that aggregates parents with modified fragments

27: return the offsprings resulting from the crossover with boolean values indicative

of their structural compliance
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Figure 3.12: Example of a sequence of Jab-Cross combinations separated by Guard

positions. The three labels with the highest membership scores are used as inputs for

each frame by the filter.
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Table 3.4: Grammar rules detailing possible function and terminal children nodes for

each parent node.

Parent Nodes Associated Children Nodes

Function nodes Terminal Nodes

Root If Then Replace X by Y Empty

If Then Replace X by Y Membership 1 Is Short
Membership 2 Is Medium
Membership 3 Is long
Left 1 Mvt Type 1
Left 2 Mvt Type 2
Left 3 Mvt Type 3
Right 1 Mvt Type 4
Right 2 Mvt Type 5
Right 3 Mvt Type 6
And Mvt Type 7
Or
Not

Membership 1 Empty Mvt Type 1
Membership 2 Mvt Type 2
Membership 3 Mvt Type 3
Left 1 Mvt Type 4
Left 2 Mvt Type 5
Left 3 Mvt Type 6
Right 1 Mvt Type 7
Right 2
Right 3

And Membership 1 Is Short
Or Membership 2 Is Medium

Membership 3 Is long
Left 1
Left 2
Left 3
Right 1
Right 2
Right 3
And
Or
Not

Not Membership 1 Is Short
Membership 2 Is Medium
Membership 3 Is long
Left 1
Left 2
Left 3
Right 1
Right 2
Right 3
And
Or
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Figure 3.13: A Typical set of Rules Generated by PySTEP

∙ A population size of 1000 individuals, with a maximum number of 400 genera-

tions per evaluation.

∙ Tournament selection of size seven and selection probability 0.8.

∙ The probabilities of crossover, mutation, and reproduction are respectively 0.5,

0.49 and 0.01.

The fitness function simply sums the number of frames that have a different qualitative

output from the frames present in a “perfect” sequence as defined by a human observer.

So if n is the total number of frames observed, Δ is one unit that expresses a difference

of classification on one frame between FQG and the human observer, then the fitness

F is such that:

F =
n

∑

r=1

Δr (3.11)

The Koza operators such as the tree building “ramped half and half” algorithm, and

operators such as crossover, mutation are all modified with a Strongly-Typed flavour.

In practice, this means that the structure of all the individuals generated will be defined

by a set of rules. These rules associate for each parent node an ordered set of children

nodes. Each parent node maps to a list of possible children nodes which can be either

function nodes or terminal nodes. The performance of the context-aware GP filter is

evaluated in section 4.3.
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3.4 Dealing with partial or occluded data

3.4 Dealing with partial or occluded data

Occlusion is a standard problem when dealing with the classification of real human

motion data. In order to successfully classify a motion which has missing observable

features, one needs to deal with the uncertainty introduced by the occluded data. Two

different procedures are combined in order to deal with occlusion: feature selection and

feature reconstruction. The former deals with the optimisation of the feature selection

phase via the introduction of an improved measure of similarity. The latter is about

the reconstruction of plausible rotational data from occluded joints using a modified

version of Fuzzy Robot Kinematics.

3.4.1 Reducing uncertainty using fuzzy rough feature selection

A survey by Radzikowska & Kerre (2002) presents many possible attribute selection

techniques for discrete data. For the purpose of this work, Fuzzy Rough Feature Selec-

tion (FRFS) introduced by Jensen & Shen (2007, 2009) is chosen as it seems to offer

good performances compared to other techniques and allows real-valued noisy data to

be reduced without the need of user supplied information. When working with FRFS,

one notices that the quality of the results relies on the estimation of dependency degrees

between attributes which itself is based on the measure of how similar two objects x

and y can be for a feature a. That is to say, the fuzzy similarity relation between two

objects for a given attribute can determine the efficiency of the whole attribute selection

process. In this work, fuzzy rough feature selection is first introduced. Then, several

fuzzy similarity relations are presented and compared to the fuzzy Laplace Similarity

relation. Comparison is done by looking at the accuracy of a Naive Bayesian classifier

over several datasets. It is important to know which joints are the most relevant to dif-

ferentiate motions. Reducing the features to a reduct subset with minimal information

loss (according to rough set theory) as described by Jensen & Shen (2009) provides a

way to estimate which joints are the most important. If none of these essential joints

are occluded, the uncertainty of the classification can be lowered. The importance of

these joints when computing a distance between membership scores of motions can

be taken into account. Fuzzy Rough Feature Selection is based on fuzzy lower and

upper approximations �RP
(x) and �RP

(x) as defined in Jensen & Shen (2007), where
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a T-transitive fuzzy similarity relation approximates a fuzzy concept X.

�RP
(x) = inf

y∈U
I(�RP

(x, y), �X(y)) (3.12)

�RP
(x) = sup

y∈U
T (�RP

(x, y), �X(y)) (3.13)

Here, I is a fuzzy implicator and T a t-norm. RP is the fuzzy similarity relation

induced by the subset of features P .

�RP
(x, y) =

∩

a∈P

{�Ra(x, y)} (3.14)

where �Ra(x, y) expresses the degree to which objects x and y are similar for a feature

a. The fuzzy positive region can be defined as:

�POSRP (Q)
(x) = sup

X∈U/Q

�RPX(x) (3.15)

The resulting degree of dependency is:


′P (Q) =

∑

x∈U �POSRP (Q)(x)

∣U∣ (3.16)

Core features Jensen & Shen (2007) may be determined by considering the change

in dependency of the full set of conditional features when individual attributes are

removed:

Core(ℂ) =
{

a ∈ ℂ∣
′
ℂ−{a}(Q) < 
′

ℂ
(Q)

}

(3.17)

The degree of similarity �Ra(x, y) can be expressed by different fuzzy similarity

relations. Depending on which relation is used, a different subset of attributes will

be selected, influencing in turn directly the performance of a classifier. The Gaus-

sian (equation 3.18) and the Triangular-2 (equation 3.19) Fuzzy Similarity Relations

shown in Figure 3.14 are used extensively Jensen & Shen (2007) by default in FRFS.

�Ra
(x, y) = exp(−(a(x)− a(y))2

2�a
2

) (3.18)

�Ra
(x, y) = max(min(

(a(y)− (a(x)− �a))

(a(x)− (a(x)− �a))
,

((a(x) + �a)− a(y))

((a(x) + �a)− a(x))
), 0) (3.19)
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(a) Gaussian (b) Triangle-2

(c) Laplace for � = 0.5 (d) Laplace for � = 0.25

Figure 3.14: Gaussian, triangle-2 and Laplace fuzzy similarity relations

The Fuzzy Laplace Similarity relation (see Figure 3.14) can be expressed in func-

tion of two parameters: the location parameter of the Laplace Distribution �0 and the

scale parameter �. Equation 3.20 shows the general case while equation 3.21 repre-

sents the most used case when �0 = 0 and � = 0.5.

�Ra
= min

⎛

⎝

⎡

⎣

exp
(

−∣∣a(x)−a(y)∣−�0∣
�

)

2�

⎤

⎦ , 1

⎞

⎠ (3.20)

�Ra
= min(exp(−2 ⋅ ∣a(x)− a(y)∣), 1) (3.21)

It is worth noticing that, in this case, the Laplace similarity seems to combine

the large base of the Gaussian similarity relation with the tight pick of the triangle-2

relation (see Figure 3.14). This specific shape can be modified when changing �. The

performance of Laplace similarity is compared with Gaussian and triangle-2 fuzzy

similarity relations in section 4.4.1.
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3.4 Dealing with partial or occluded data

3.4.2 Reconstructing plausible rotational data from occluded joints

using fuzzy robot kinematics

The novelty of the feature reconstruction mechanism can be established by the fact

that the majority of the existing studies done on occlusion focus on object tracking in

video sequences. These approaches generally use Kalman Filter for tracking mark-

ers of interest that can take the form of blobs in Gabriel et al. (2003), image features

Utsumi & Ohya (1999), or silhouette images Ueda et al. (2003) derived from video

sequences. The use of 3d based representation can be found in Kakadiaris & Metaxas

(2000) where a three-dimensional pose of the subject’s upper and lower arms is recov-

ered and computed in order to create video animation sequences, and Utsumi & Ohya

(1999) where a small number of reliable image features is needed to estimate 3d hand

postures with a Fourier descriptor. Many possible Euler Angles combinations can de-

fine one given rotation. In order to reduce the search space, its granularity is increased

by using Fuzzy Qualitative Euler Angles. This work is based on the Fuzzy Qualita-

tive Trigonometry representation system exposed in Liu (2008) and Liu et al. (2008).

It does not include Fuzzy Qualitative Denavit-Hartenberg kinematics structure as we

consider here cases where one joint is occluded. First, this method by which possible

fuzzy qualitative states representing plausible rotations are inferred is explained. Sec-

ondly, the way of ranking possible solutions using existing and reconstructed rotational

data is detailed.

The skeletal representation is normalised, so the distances to the occluded joints are

known. This means that the position of the occluded joint lies along a circle of centre

O defined by these distances (see figure 3.15 for an example of occluded elbow joint).

This circle is divided in n = 16 possible spheres where each sphere represent the

volume of a possible position. Considering 8 different cameras placed evenly placed

around the stick-figure at belt height, the occlusion of all the spheres is reconstructed

in 3d for all 8 points of views. Only spheres which are occluded by other limbs are

considered as possible joints positions. This significantly reduces the search space.

The coordinates of the centre of each occluded sphere are extracted. For each centre,

one crisp joint position is extracted and then converted into all possible corresponding

Fuzzy Qualitative Euler Angles, giving a limited number of plausible suggestions for

the Euler Angles of the hidden joint. This conversion of one Crisp Euler Angle rotation
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3.4 Dealing with partial or occluded data

Figure 3.15: Possible qualitative locations for an occluded elbow joint

into the set of all equivalent fuzzy qualitative Euler angles is done via a pre-computed

mapping table. Let the unit circle be divided into n = 16 fuzzy qualitative angles (fig-

ure 3.16). Each of the 3 fuzzy qualitative Euler Angle expressing a rotation will have

n possible discrete states. Therefore, there exist n!/(n− 3)! possible fuzzy qualitative

Euler Angles combinations, that is to say 3360 combinations. Each combination will

correspond to a resulting fuzzy qualitative surface on the unit sphere (see figure 3.16)

defined as follows.

First, the area of membership 1. After rotation RZ around the Z axis, it is defined

by the segment P1RZ
= [RZ2, RZ3]. Let RY i∘RZi be the ordered function composition

that designates combined rotations RZ and RY around the Z and Y axes. Let RXi ∘
RY i ∘RZi be the ordered function composition that designates combined rotations RX

RZ and RY around the X, Z and Y axes . The area of membership 1 after rotation RZ

and RY is described by the polygon P1ZY with vertices (RY 2 ∘RZ2, RY 3 ∘RZ2, RY 2 ∘
RZ3, RY 3 ∘RZ3). The area of membership 1 after rotation RX RZ and RY is : the area
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3.4 Dealing with partial or occluded data

Figure 3.16: From the Fuzzy Qualitative Circle To Fuzzy Qualitative Euler Angles

Positions

described by the polygon P1ZY X with vertices:

(RX2 ∘RY 2 ∘RZ2, RX2 ∘RY 3 ∘RZ2, RX2 ∘RY 2 ∘RZ3,

RX2 ∘RY 3 ∘RZ3, RX3 ∘RY 2 ∘RZ2, RX3 ∘RY 3 ∘RZ2,

RX3 ∘RY 2 ∘RZ3, RX3 ∘RY 3 ∘RZ3)

Secondly, the area of membership smaller than 1. After rotation RZ , it is defined

by the segment [RZ1, RZ4]− [RZ2, RZ3]. The area of membership smaller than 1 after

rotation RZ and RY is described by the difference of polygons defined with vertices

(RY 1 ∘ RZ1, RY 1 ∘ RZ4, RY 4 ∘ RZ1, RY 4 ∘ RZ4) − P1ZY . The area of membership

smaller than 1 after rotation RX RZ and RY is : the area described by difference of

polygons with vertices:

(RX1 ∘RY 1 ∘RZ1, RX1 ∘RY 1 ∘RZ4, RX1 ∘RY 4 ∘RZ1,

RX1 ∘RY 4 ∘RZ4, RX4 ∘RY 1 ∘RZ1, RX4 ∘RY 1 ∘RZ4,

RX4 ∘RY 4 ∘RZ1, RX4 ∘RY 4 ∘RZ4)− P1ZY X

A mapping of all possible Qualitative Euler transformations to surfaces defined by

an Icosahedron based polygon is then done (see figure 3.17). A unit sphere is tes-

sellated into triangle of similar areas using a regular Icosahedron where each initial

triangle is divided into 3 equilateral sub-triangles. As the sphere is divided into 60
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3.4 Dealing with partial or occluded data

Figure 3.17: Mapping vertices of all possible Qualitative Euler transformations to tri-

angles of an Icosahedron-based polygon

equal areas, there should be a mapping of minimum roughly 3360/60 = 56 Euler

combinations per triangular area (assuming one triangle covers in average one fuzzy

qualitative surface). In practice, one triangle covers an average of 3 qualitative sur-

faces, so 56 ⋅ 3 = 168 Euler combinations can be expected per triangle.

When dealing with insufficient data, one generally has to first make the best of

the precious little information available in order to then venture into making educated

guesses. This idea is translated by implementing the ranking strategy in two steps.

First, an initial evaluation is conducted from the available (or non-occluded) data. An

overall average of the membership scores of visible joints to Fuzzy Membership Func-

tions that model the rotations of corresponding joints in known stances is produced.

Let j = 1, .., 19 be one of the 19 joints and Mi with i = 1, .., 6 be one of the six pos-

sible moves: Guard, Jab, Cross, Left Hook, Right Hook, and Lower Left Hook. Let

SjMi
be the membership score of a non-occluded joint j to a trapezoid Fuzzy Mem-

bership Function that models the rotation of that joint for a known move Mi. We end

up with a set of six average membership scores: ⟨SM1 , SM2 , SM3 , SM4 , SM5 , SM6⟩. If

there is very little occlusion, the information from visible joints conveys more cer-

tainty. Inversely, if there are many occluded joints, the information from these visible
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3.4 Dealing with partial or occluded data

joints conveys a much greater uncertainty. If most of the joints (around 80%) are

non-occluded, then the average membership scores of the visible joints is the most im-

portant information, while the plausible rotations estimated for the occluded joints is

just here to give possible interpretations. In the inverse situation where 80% of joints

would be occluded, the plausible estimations of rotations would have more weight on

the classification. In this experiment, as around 80% the joints are visible at any given

time, the move with the highest average membership scores from non-occluded joints

tends to reflect the most likely estimation. Therefore, the best move from visible data

satisfies the constraint: MV1st = max ⟨SM1 , SM2 , SM3 , SM4 , SM5 , SM6⟩. In this case,

solutions generated by plausible joints are simply here to confirm or infirm this initial

assessment. In the second step, for every occluded joint, plausible fuzzy qualitative

Euler Angles are ranked by geometrical distance to the Fuzzy Membership Functions

of known moves. The three closest moves are selected and ranked as possible solu-

tions: ⟨MO1st ,MO2nd
,MO3rd

⟩. If one of the most plausible solutions from occluded

joints corresponds to the move estimated as most likely from visible data, the system

confirms that the occluded frame can be classified as the latter. In other words, if:

MV1st ∈ ⟨MO1st ,MO2nd
,MO3rd

⟩ then MV1st is considered the most plausible sugges-

tion for the occluded frame. A case study using an occluded data sample is conducted

as a proof of concept in section 4.4.2.
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3.5 Summary

3.5 Summary

This thesis presents a novel inference engine that aims at classifying occluded 3d

human motion assisted by the recognition context. First, uncertainties are wrapped

into a fuzzy membership function via a novel method called fuzzy quantile generation

which employs metrics derived from the probabilistic quantile function. Then, time-

dependent and context-aware rules are produced via genetic programming to smooth

the qualitative outputs represented by fuzzy membership functions. Finally, occlusion

in motion recognition is taken care of by introducing new procedures for feature se-

lection and feature reconstruction. The three components of this framework therefore

address the problems stated in section 1.1, i.e. the recognition of actions indepen-

dently from differences in execution in the spatial and temporal domains with learning

samples of sub-optimal size, the generation and application of prior knowledge in a

context-aware and time-sensitive fashion, and the need to deal with insufficient data.
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Chapter 4

Experiments and results

4.1 Introduction

The aim of this chapter is to evaluate the framework presented in chapter 3 by putting

to the test its different components with experiments and results. The challenges posed

by the nature of the motion capture boxing dataset are, among others: biologically

“noisy” data, cross-gait differentials from one individual to another, and high dimen-

sionality caused by the complexity of the skeletal representation (57 degrees of free-

dom). It is assumed that being successful at the non-trivial exercise of classification

of such complex data might give the presented techniques stronger credentials as a

contender in the field of motion recognition. The motion recognition framework is

therefore put to the test in an experiment involving the classification of real natural 3d

motion capture data in the context of boxing. Boxing motions present the advantage of

being well defined and involve a challenging degree of precision for spatio-temporal

recognition. They are also relatively static and can therefore accommodate a motion

capture studio of reduced surface. Finally, they can easily be reused in application

domains linked to security surveillance. On the other hand, 3d boxing motion capture

data can be quite challenging regarding the experimental design due to potential prob-

lems such as possible physical or psychological changes taking place through time,

subjects with abnormal gaits, and instrumentation inconsistencies. In the first part of

this section, the experimental method and setup are described. Secondly, the perfor-

mance of FQG as a standalone learning paradigm applicable to behaviour recognition
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4.2 Experimental setup: recognizing boxing motion captures

is presented. The effectiveness of this method is demonstrated through the classifica-

tion of motion capture data from real boxers and a comparative study. Thirdly, experi-

mental results of the context-aware GP filter show that the filter consistently improves

the accuracy of the FQG classifier. Finally, an evaluation of the feature selection and

feature reconstruction aspects of the occlusion module shows that a) the Laplace fuzzy

similarity relation outperforms other measures consistently, and b) the feature recon-

struction mechanism allows the system to estimate correctly a significant portion the

initially intractable occluded data present in the boxing experiment.

4.2 Experimental setup: recognizing boxing motion cap-

tures

The description of the experiment starts with a review of the equipment and apparatus.

Then, an examination of the modalities in use for the selection of participants follows.

Finally, the methods and procedures employed in this experiment are detailed step by

step.

4.2.1 Apparatus

The motion capture data are obtained from a Vicon Motion Capture Studio with eight

infra-red cameras. Each motion capture suits is set with a total of 49 optical passive

reflective markers and recordings are sampled at the speed of 120 frames per second.

The motion recognition is implemented in MATLAB on a standard PC with 2 Gigs of

RAM. An additional MATLAB toolbox presented in Lawrence (2007) is also used for

extracting Euler Angles from BVH files. The relative positions of the cameras and the

subject are shown in figure 4.1.

Three male subjects, aged between 18 and 21, of light to medium-average size

(167cm to 178cm) and weight (59 to 79kgs), all practicing boxing in competition at

the national level. None of them presented any abnormal gait. Optical Markers were

placed in a similar way on each subject to ensure a consistent motion capture (see

Figure 4.2 and 4.3).
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4.2 Experimental setup: recognizing boxing motion captures

Figure 4.1: 3D motion capture studio - floor plan

4.2.2 Procedure

Participants selected at the national championship level are asked to perform modern

boxing moves on their own, in a preordained and controlled fashion. The motion cap-

ture data is obtained from several subjects performing each boxing combination four

times. There are twenty-one different boxing combinations, each separated by a guard

stance. These are performed at two different speeds (medium-slow and medium fast).

The boxing combinations are ordered sets of basic boxing stances. There are in total

nine precisely defined basic stances: Guard, Jab, Lower Jab, Cross, Lower Cross, Left

Hook, Right Hook, Lower Left Hook, Right Uppercut. The level of precision needed

to identify such motions is non-negligible. These are well-known boxing stances and

are accurately described for a right handed boxer - they should be reversed for a left-

handed one - in Cokes (1980) as follows:

∙ Guard : a defensive position where the boxer stands with the legs shoulder-width

apart and the hands in front in order to protect the head from incoming punches.

∙ Jab : a quick, straight punch thrown with the lead hand from the guard position.

The jab is accompanied by a small, clockwise rotation of the torso and hips,

while the fist rotates 90 degrees, becoming horizontal upon impact.
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4.2 Experimental setup: recognizing boxing motion captures

Figure 4.2: Optical markers placement - front view

Figure 4.3: Optical markers placement - back view
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4.2 Experimental setup: recognizing boxing motion captures

∙ Lower Jab : similar to a jab in a crouching stance.

∙ Cross : a powerful, straight punch thrown with the rear hand. For additional

power, the torso and hips are rotated counter-clockwise as the cross is thrown.

∙ Lower Cross : similar to a cross in a crouching stance.

∙ Right Hook : a semi-circular punch thrown with the lead hand to the side of the

opponent’s head. The torso and hips are rotated clockwise. The lead foot pivots

clockwise too, turning the left heel outwards.

∙ Left Hook : similar to a Right Hook, but done with the rear hand.

∙ Lower Left Hook : similar to a Left Hook in a crouching stance.

∙ Right Uppercut : a vertical, rising punch thrown with the rear hand.

The table 4.1 gives an overview of the different combinations of boxing moves recorded

in the same order by all participants. These sequences involve complex movements

fusing into each other. After cleaning the data and eliminating faulty execution of

Lower Jab, Lower Right Hook and Right Uppercut in some instances, combinations 5,

8, 9, 18, 19 and 20 were discarded, and the following six moves were retained: Guard,

Jab, Cross, Left Hook, Right Hook, Lower Left Hook. A leaflet and an informed con-

sent form for participants approved by Portsmouth University Ethics Review Board are

attached in appendix D. As explained in these documents, the participant goes through

the following steps:

∙ on arrival, after a 10 minutes long introduction, the participant is briefed on the

experiment and given consent and information forms to read and sign.

∙ putting the suit and captors on : 10 min

∙ set up and calibration : 1 hour

∙ data capture of different motions spread over 20 minutes.

∙ changing and leaving.
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Table 4.1: Combinations of boxing moves recorded (repeated 4 times each)

Comb Detail of moves

Comb 1 (Guard - Jab)×4 Guard

Comb 2 (Guard - Cross)×4 Guard

Comb 3 (Guard - Lower Cross)×4 Guard

Comb 4 (Guard - Right Hook)×4 Guard

Comb 5 (Guard - Lower Right Hook)×4 Guard

Comb 6 (Guard - Left Hook)×4 Guard

Comb 7 (Guard - Lower Left Hook)×4 Guard

Comb 8 (Guard - Right Uppercut)×4 Guard

Comb 9 (Guard - Left Uppercut)×4 Guard

Comb 10 (Guard - Jab - Cross)×4 Guard

Comb 11 (Guard - Left Hook - Cross)×4 Guard

Comb 12 (Guard - Lower Jab - Cross)×4 Guard

Comb 13 (Guard - Jab - Right Hook)×4 Guard

Comb 14 (Guard - Jab - Cross - Left Hook)×4 Guard

Comb 15 (Guard - Jab - Cross - Lower Left Hook)×4 Guard

Comb 16 (Guard - Cross - Jab - Lower Cross)×4 Guard

Comb 17 (Guard - Cross - Left Hook - Right Uppercut)×4 Guard

Comb 18 (Guard - Jab - Cross - Left Uppercut - Right Uppercut)×4 G.

Comb 19 (Guard - Jab - Right Uppercut - Left Hook - Right Hook)×4 G.

Comb 20 (Guard - Cross - Left Hook - Right Uppercut - Left Hook)×4 G.
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4.2 Experimental setup: recognizing boxing motion captures

The main validity threats are maturation (during the experimental period, physical

or psychological change takes place), extraneous variables (i.e. subjects with abnor-

mal gaits) and instrumentation inconsistency (possible occlusion problems or sensing

errors during motion capture). Regarding the problem of maturation, every motion is

repeated four times, and every participant can rest in between each combination in or-

der to minimize fatigue. Participants are selected at the national championship level.

They all have a high stamina minimizing disturbances due to fatigue. To reduce extra-

neous variables, subjects with abnormal gaits are discarded, and the sample is relatively

homogeneous (male subjects of similar age and average build). Optical Markers are

placed in a similar way on each subject to ensure a consistent motion capture. In-

strumentation and representation inconsistency are reduced by using motion-capture

post-processing software. The Vicon software package is used to “clean” the data.

A set of fuzzy membership functions corresponding to a specific stance is extracted

from various samples. First, all three participants are employed to learn and to test how

well the system recognizes the stances. Then, an evaluation is conducted to see how

the system copes to learn from only two participants, and test how well it recognizes

stances from a third different participant. Analysis is initially focused on classifying

only one move and then to six moves at the same time. The inputs for each given time

frame are the six membership scores of each known move. These membership scores

are re-scaled as indicated in section 3.

4.2.3 Fuzzy quantile generation classifier evaluation

An initial review of FQG performance as a standalone classifier is conducted using

Receiver Operating Characteristic (ROC) analysis. It is followed by a more complex

comparative exercise between FQG and sixteen other machine learning techniques in-

volving the recognition of multiple moves from the same 3d motion capture boxing

data set.
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4.2.4 Initial analysis of accuracy using receiver operating charac-

teristic

The classifier is evaluated by comparing its performance to a human observer. One

expert identifies “Guard” frames of membership 1 and of membership 0 (non-guard

frames). The number of false positives (frames identified by the expert as non-guards,

but identified by the classifiers as guards) and false negatives (frames identified by an

expert as guards, but classified as non-guards by the system) are taken into account.

ROC analysis is used to plot the true positive rates versus the false positive rates as a

function of different membership thresholds. The data are partitioned into sub-samples

and tests are run using K-fold cross-validation. The k results from the folds are aver-

aged to produce a single estimation. We present results for a 3-fold cross-validation

where one third of the data is used for learning while the rest is used for testing as

shown in figure 4.4. The testing samples represent about 107000 unidentified frames.

In one evaluation case, all participants are used for learning and testing. This means

there is a greater similarity between the learning and the test samples, as the gait dif-

ferences are reduced. In a second situation, two participants are used for learning and

a third different one for testing. This poses a greater challenge as there are stronger

gait differences.

As seen in the ROC figure 4.4, the optimum accuracy of the classifier is 0.95 if the

same participants are used for learning and testing, or 0.88 when different participants

are used for learning and testing. Crisp evaluation (the accuracy obtained for detecting

frames of “Guard” membership only equal to 1.0) gives inferior results: 0.906 in the

first case and 0.506 in the second case. This gain is especially noticeable when the

learning and the testing data present less similarity. Accuracy is defined as:

accuracy =
tp+ tn

tp+ fp+ fn+ tn
(4.1)

where tp represents true positive rate, tn true negative rate, fp false positive rate, and

fn false negative rate.

The system can recognize a Guard stance with an average accuracy of 88.68%

when using half of the data for learning and the other half for testing, on all three par-

ticipants. Some of these movements have very few learning examples available. In

72



4.2 Experimental setup: recognizing boxing motion captures

Figure 4.4: 3-Fold Cross-Validation ROC Analysis of the Guard Classifier

this case, the threshold is fine-tuned by decreasing it to compensate for the data spar-

sity. It is worth noticing that this system is not a binary but a fuzzy classifier. The

threshold value will therefore stay between 0 and 1, which might give the illusion of

an “unfinished” ROC curve if the learning and test samples are similar enough (see

Figure 4.4 where the membership-one point start with a high True Positive rate be-

cause we learn from and test with the same boxers). The ROC curves show that, the

fuzzy classifier performs better than its crisp counterpart (the one that only identifies

Guards of membership threshold equal to 1). It has been observed that a high thresh-

old value is needed to obtain good results. If the threshold is inferior to a membership

degree of 0.8, we obtain a maximum True Positive Rate (most of known guards are

correctly identified) and a minimum false Negative rate (nearly all known non-guard

are identified as guards).

The time complexity for recognizing n stances is of the order O(n). It takes in

average 16.05 ms on laptop running non-optimized Matlab code to create a template
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4.2 Experimental setup: recognizing boxing motion captures

and evaluate a frame membership score for one stance. This system could potentially

be optimized and implemented for real-time motion recognition applications. These

initial results (appendix F[6,8]) lead to a comparative work between FQG and other

techniques.

4.2.5 Comparing fuzzy quantile generation with other classifiers

Initial comparison was started with a time-dependent Hidden Markov Model (HMM)

classifier. However, due to the particularities of the boxing data set, artificially cre-

ated classes representing boxing stances could not be obtained via standard clustering

methods and would otherwise give singular matrices with HMM. Another fact was

that HMM seemed to need considerably larger learning samples to be able to perform.

It was then decided to focus the study on a comparison between FQG and sixteen

time-invariant classification algorithms aiming at recognising boxing stances. These

classifiers take exactly the same input data as FQG in order to provide a fair com-

parison. All these algorithms are implemented using the WEKA Machine Learning

package presented in Frank et al. (2005) and Hall et al. (2009). They represent diverse

paradigms that can be roughly classified into seven types: Bayes, Function based,

Nearest Neighbours, Tree based, Rule based, Neural Networks, and Miscellaneous

(see detailed classification in appendix B). Several of these techniques correspond to

some of the methods used for motion recognition presented in section 2.3. Bayes Net

and Naive Bayes fit into the Probabilistic graphical models category. Similarly, Radial

Basis Function networks and Multilayer Perceptrons are part of the connectionist ap-

proach. SMO can be classified as a kernel based method, while Hyperpipes and Voting

Feature Intervals are part of the voting strategies paradigm. IB1 is an instance based

classifier, and Fuzzy Nearest Neighbours and Fuzzy Rough Nearest Neighbours can fit

into hybrid methods. The WEKA classifiers are used with parameters based on default

settings. In order to keep the comparison relatively fair, FQG parameter s described

in 3.2.1.2 was set by default to 0.7 through the whole comparative experiment. While

some of these classifiers might perform substantially better with deeply optimised pa-

rameters, the purpose of this study, is not to focus on their optimization but is rather

to give a comparison ground with FQG and commonly-used techniques representing
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Table 4.2: Common terms used in binary classification

Condition

True False

Test Outcome
Positive TP FP Precision

Negative TN FN Negative

Predictive

Value

Sensitivity

or Recall

Specificity Accuracy

different paradigms on the same boxing 3d Motion Capture data sample. These algo-

rithms display high computational efficiency and are used in state of the art research.

It is difficult to generalise comparisons between machine learning methods due to the

particulars of the topology of the search space of each application domain. However, it

is possible to offer a comprehensive and indicative study (appendix F[3]) that does not

necessarily have to deal in absolutes to say if a method performs roughly at the same

level of efficiency as the best methods available.

4.2.6 Results of comparative study

Classifiers performances can be evaluated in different ways. Accuracy, precision, neg-

ative predictive value, recall, specificity, F-Score, and Matthews correlation coefficient

will be used to allow a detailed analysis on the performance of FQG. Each measure

is formally defined and its results discussed. Table 4.2 gives a quick overview of

mainstream measures detailing certain aspect of a classifier performance.

These measures, as well as F-score and Matthews correlation coefficient are defined

and applied to compare FQG performance with sixteen other classifiers.

4.2.6.1 Accuracy

Accuracy is mathematically defined in equation 4.1 and can be defined as the pro-

portion of true results (both true positives and true negatives) in the population. It is

the most used empirical measure in the area of machine learning classifiers. at a first
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glance (see figure 4.5), results seem quite encouraging as FQG shows the best average

accuracy of 90% over sixteen high performance machine learning classifying methods

(figure 4.5). This difference in accuracy with FQG is significant at the level 0.05 on

a two-tailed t-test for fifteen of these methods at the exception of Bayes Net (86%)

which performs similarly and does not show a significant difference, even at the level

0.20. So far, if exclusively focusing on the accuracy, FQG and Bayes Net seem to

Figure 4.5: Comparison of accuracy between FQG and 14 other classifiers

be in first position, while the next three best methods are: SimpleCart(81%), Fuzzy

Rough K-Nearest neighbours (79%) and Naive Bayes (78%). Beside FQG, the most

accurate methods belong broadly to Bayes, decision trees and Fuzzy Rough Nearest

Neighbours types. The worst performances belong to rule based classifiers - Conjunc-

tive Rule (60%) and Decision Table (58%). They present a loss of accuracy of nearly

10% compared to the next best classifier. This gap could be explained by the diffi-

culty for the bottom-up design to generate the sheer quantity of rules that could deal

with real numbers in a noisy and biologically imprecise data set. An interesting fact

is that a decision tree based method like minimal cost-complexity pruning performs

so well (third position) and so much better than its direct “relative” J48 (9th position
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4.2 Experimental setup: recognizing boxing motion captures

with 75% accuracy). If both algorithms are using a relatively successful top-down ap-

proach, the CART algorithm is using Gini impurity, while, on the other side J48 is

using Information Gain. In this experimental context the former seems to perform bet-

ter than the latter. Similarly, there seem to be a significant difference of performance

between Fuzzy K-Nearest Neighbour and Fuzzy Rough K-Nearest Neighbour (at the

level 0.05). The former seems to have a lower accuracy than the latter, as it does not

benefit from the added power of fuzzy rough representation. The difference between

Bayes and Naive Bayes is significant at the level 0.05. There also seem to be a dif-

ference of accuracy between RBF Network (75%) and Multilayer Perceptron(70%),

but a t-test between the two does not give it much significance. When using accuracy

alone, results seem to be in favour of FQG and Bayes Net. However, using only ac-

curacy to measure the performance of the FQG classifier would only show a part of

the whole picture. The accuracy paradox for predictive analytics states that predictive

models with a given level of accuracy may have greater predictive power than models

with higher accuracy. It may be better to avoid the accuracy metric in favour of other

metrics such as precision and recall. Sokolova et al. (2006) also underline the fact that,

for example, accuracy, does not distinguish between the numbers of correct labels of

different classes while other measures such as sensitivity and specificity do. Further

analysis could tell which one of the two performs the best, and might explain why

these types of classifiers perform better on this type of data set.

4.2.6.2 Precision

Precision or Positive Predictive Value (see equation 4.2)is the proportion of the true

positives against all the positive results (both true positives and false positives). i.e. In

the case of determining which patients are afflicted by a disease, it could be equated to

the proportion of patients with positive test results who are correctly diagnosed.

Precision =
TruePositives

TruePositives+ FalsePositives
(4.2)

Regarding the average Precision or Positive Predictive Value (see figure 4.6), FQG

seems to be performing poorly (11th position for 90%). On the other hand, Bayes

Net (98%), SimpleCart (97%), Fuzzy Rough K-Nearest neighbours (95%) and Naive

Bayes (94%) stay in top position. The difference of average precision with FQG is
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significant at the level 0.05 on a two-tailed t-test for all these methods. One noticeable

fact is that there seem to be a plateau at (90%) where no less than four different meth-

ods (FQG, IB1, SMO, and Fuzzy K-Nearest Neighbour share) share the same average

precision. The difference of performance between Fuzzy K-Nearest Neighbour and

Fuzzy Rough K-Nearest Neighbour is significant (at the level 0.05). The differences

between respectively CART and J48, Bayes and Naive Bayes, and RBF Network and

Multilayer Perceptron are less significant (only at the level 0.2). The worst perfor-

mances still belong to rule based classifiers - Conjunctive Rule (86%) and Decision

Table (72%). This measure of exactness or fidelity indicates that every result retrieved

Figure 4.6: Comparison of precision between FQG and 14 other classifiers

by a FQG search was relevant with a comparatively low probability of 90%, but says

nothing about completeness (whether all relevant instances were retrieved). This is

why an analysis of Recall is required.

4.2.6.3 Recall

Recall or sensitivity or True Positive Rate (equation 4.3) measures the proportion

of actual positives which are correctly identified as such e.g. The percentage of sick
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people who are identified as having the condition. It is closely related to the concept

of type I error concerning false positives.

Recall =
TruePositives

TruePositives+ FalseNegatives
(4.3)

FQG shows the best average recall of 89% over the sixteen other classifiers (figure

4.5). This difference in recall with FQG is significant at the level 0.05 on a two-tailed

t-test for all other methods. Bayes Net (75%), SimpleCart (64%), Fuzzy Rough K-

Nearest neighbours (60%) and Naive Bayes (59%) are still the next best classifiers.

There is a noticeable gap of 14% between FQG and the second best classifier. This

would indicate that the strong point of FQG is completeness. The difference of perfor-

mance between Fuzzy K-Nearest Neighbour and Fuzzy Rough K-Nearest Neighbour

is significant (at the level 0.05). The differences between respectively CART and J48,

and RBF Network and Multilayer Perceptron are not tested as significant. The dif-

ference between Bayes and Naive Bayes is significant at the level 0.06. As usual, on

this dataset, the worst performances belong to rule based classifiers - Conjunctive Rule

(27%) and Decision Table (24%).

Figure 4.7: Comparison of recall between FQG and 14 other classifiers
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As for accuracy and precision, CART(3rd position with 64% accuracy) has a much

better recall than its direct “relative” J48 (8th position with 55% accuracy). Having

examined precision and recall, it might be interesting to look at a weighted average of

these measure, that is to say the F-score.

4.2.6.4 F-measure

F-Measure or balanced F-Score(equation 4.4) is a measure that combines Precision

and Recall. It is the harmonic mean of precision and recall.

F − score =
Precision ⋅Recall

Precision+Recall
(4.4)

FQG shows the best average F-score of 90% over the sixteen other classifiers (figure

4.5). This difference in F-score with FQG is significant at the level 0.05 on a two-tailed

Figure 4.8: Comparison of F-measure between FQG and 14 other classifiers

t-test for all of these methods. The next four best classifiers are Bayes Net (85%), Sim-

pleCart (77%), Fuzzy Rough K-Nearest neighbours (74%) and Naive Bayes (73%).

These results confirm the overall dominance of FQG so far. The differences of perfor-

mance between Fuzzy K-Nearest Neighbour and Fuzzy Rough K-Nearest Neighbour
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are significant at the level 0.05. The differences between Bayes and Naive Bayes and

between CART and J48 are only significant at the level 0.2. The difference between

RBF Network and Multilayer Perceptron is not significant. Previous results suggested

that the lowest performance of FQG was in estimation of the Positive Predictive Value.

Therefore, it seems like a sensible course of action to expect a higher success on the

Negative Predictive value.

4.2.6.5 Negative predictive value

The negative predictive value (equation 4.5) is the proportion of instances correctly

described as not part of a class.

NegativePredictiveV alue =
TrueNegatives

TrueNegatives+ FalseNegatives
(4.5)

FQG shows the best average F-score of 89% over the sixteen other classifiers (figure

4.5). This difference in NPV with FQG is significant at the level 0.05 on a two-tailed

Figure 4.9: Comparison of NPV between FQG and 14 other classifiers

t-test for all of these methods. The next four best classifiers are Bayes Net (79%), Sim-

pleCart (73%), Fuzzy Rough K-Nearest neighbours (71%) and Naive Bayes (70%).

The difference of performance between Fuzzy K-Nearest Neighbour and Fuzzy Rough
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K-Nearest Neighbour is significant at the level 0.05. The differences between CART

and J48, and between Bayes and Naive Bayes are less significant(p = 0.2). The differ-

ence between RBF Network and Multilayer Perceptron is not significant.

4.2.6.6 Specificity

Specificity or True Negative Rate(equation 4.6) measures the proportion of negatives

which are correctly identified (e.g. the percentage of healthy people who are identi-

fied as not having the condition). It is closely related to the concept of type II error

concerning false negatives.

Specificity =
TrueNegatives

FalsePositives+ TrueNegatives
(4.6)

FQG seems to have the second lowest average specificity (90%) (figure 4.5). This

Figure 4.10: Comparison of specificity between FQG and 14 other classifiers

difference in specificity with FQG is significant at the level 0.05 on a two-tailed t-test

with the only other worst method: Decision Table (89%). The difference with the next

three better classifiers: Logistic (93%), Multilayer Perceptron (93%) and Voting Fea-

ture Interval (93%) is significant at the level 0.2. The difference between FQG and

all remaining classifiers is not significant at the 0.2 level. The five best classifiers are
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SimpleCart (98%), Bayes Net(98%), Fuzzy Rough K-Nearest neighbours (97%) Hy-

perpipes (96%), and Conjunctive Rule (96%). The differences of performance between

Fuzzy K-Nearest Neighbour and Fuzzy Rough K-Nearest Neighbour , between CART

and J48, between RBF Network and Multilayer Perceptron, and between Bayes and

Naive Bayes are not significant. It is quite interesting to note that the results seem to

conform less than to the other measures. Hyperpipes gets the 4th best result, showing

that this method might possibly have a rather good specificity. Also, Conjunctive Rule,

unlike Decision Table which is last as usual, finds itself in 5th best position. However,

due to the low level of confidence of most measurements concerning specificity, these

observations are more speculative than informative. To give a final overview of FQG

performance, the Matthews Correlation Coefficient is used.

4.2.6.7 Matthews correlation coefficient

The Matthews correlation coefficient (equation 4.7) is used in machine learning as

a measure of the quality of binary (two-class) classifications. It takes into account

true and false positives and negatives and is generally regarded as a balanced measure

which can be used even if the classes are of very different sizes. The MCC is in essence

a correlation coefficient between the observed and predicted binary classifications; it

returns a value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0

an average random prediction and -1 an inverse prediction. The statistic is also known

as the phi coefficient.

MCC =
TP ⋅ TN − FP ⋅ FN

√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(4.7)

FQG shows the best average MCC of 79% over the sixteen other classifiers (figure

4.5). This difference in MCC with FQG is significant at the level 0.05 on a two-tailed

t-test for all of these methods at the exception of Bayes Net which does not show a

significant difference, even at the level 0.20. The next four best classifiers are Bayes

Net (75%), SimpleCart (66%), Fuzzy Rough K-Nearest neighbours (61%) and Naive

Bayes (60%). The differences of performance between Fuzzy K-Nearest Neighbour

and Fuzzy Rough K-Nearest Neighbour and between Bayes and Naive Bayes are sig-

nificant at the level 0.05. The difference between CART and J48 is less significant

(p = 0.2). The difference between RBF Network and Multilayer Perceptron is not
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significant. As in the previous measures, the worst performances belong to rule based

classifiers - Conjunctive Rule (29%) and Decision Table (21%).

Figure 4.11: Comparison of MCC between FQG and 14 other classifiers

Regarding present results, a careful examination in light of these different measures

will help to uncover and explain some of FQG strong points and weaknesses compared

to other classifiers.

4.2.7 Discussion

The linear time and space complexity of FQG is comparable to those of VFI and Hy-

perpipes while most of the other methods presented here tend to exhibit a time and

space complexity of polynomial order at best, which put FQG in an advantageous po-

sition. There are differences between the performances of some of the classifiers that

belong to similar paradigms. If these differences do not give direct information about

FQG, they help to spot which strategies are the most successful ones when dealing

with this data set. Indirectly, this provides information about the difficulties that FQG

overcomes when it outperforms such methods. The levels of significance of the dif-
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ferences of performance between the Nearest Neighbours classifiers are expressed in

table 4.3 and 4.4.

Table 4.3: T-test levels of significance for the measured differences between IB1 and

fuzzy k-nearest neighbour

Measure p value

Accuracy 0.09189

Precision 0.05237

Recall 0.17786

F-Measure 0.05244

Specificity 0.88637

NPV 0.06204

MCC 0.11711

Table 4.4: T-test levels of significance for the measured differences between fuzzy

k-nearest neighbour and fuzzy k-rough nearest neighbour

Measure p value

Accuracy 0.01285

Precision 0.04840

Recall 0.04314

F-Measure 0.00714

Specificity 0.94560

NPV 0.01988

MCC 0.02011

Although the difference is not significant for Specificity, results show that, among

the Nearest Neighbours classifiers, the Fuzzy K-Rough Nearest Neighbour classifier

performs best, followed by respectively Fuzzy K-Nearest Neighbour and IB1. The

downside of a simple approach like IB1 is the lack of robustness . The high de-

gree of local sensitivity makes this nearest neighbour classifier highly susceptible to

noise in the training data. One of the drawbacks of IB1 might be that, while assign-

ing class membership values (i.e., the weights that represent the likelihood of different

secondary structure types), atypical vectors and true representatives of the classes are
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given equal importance. Secondly, once the class has been assigned to a vector, there

is no indication of the strength (significance) of membership to indicate how much

the vector belongs to a particular class. Fuzzy K-Nearest Neighbours performs better

due to the fact that when determining the class of the current object, the algorithm is

capable of taking into consideration the ambiguous nature of the neighbours if any.

The algorithm has been designed such that these ambiguous neighbours do not play a

crucial role in the classification of the current object. Another advantage is that objects

are assigned a membership value in each class rather than binary decision of the type

“belongs to” or “does not belong to”. The advantage of such assignment is that these

membership values act as strength or confidence with which the current object belongs

to a particular class. Fuzzy K-Nearest Neighbour, as argued in Sarkar (2000) might

have problems to deal adequately with insufficient knowledge. In particular, when ev-

ery training pattern is far removed from the test object, and hence there are no suitable

neighbours, the algorithm is still forced to make clear-cut predictions. Fuzzy Rough

K-Nearest Neighbour constructs a lower and upper approximation of each decision

class, and then computes the membership of the test objects to these approximations.

This ability to assume and deal with insufficient knowledge explains the gain of per-

formance. The fact that FQG outperforms these methods indicates that it is able to

successfully emulate some of their advantages, namely three. First, the ability to gen-

eralise a model from similar samples (by mapping a distribution to the known learning

samples). Secondly, the ability to deal with “fuzzy uncertainty” caused by overlapping

classes. And thirdly, the ability to deal with partial knowledge (FQG has a parameter

that capture that concept when expressing the degree of incompleteness of the learning

sample). This last trait is not the same thing as being able to deal with insufficient

information, but it allows one to deal with sufficient but sparse data.

Overall the significance of the difference of performance between Bayes Net and

Naive Bayes is expressed in table 4.5. Results show that Bayesian Nets generally

perform significantly better than Naive Bayes. This can be explained by Bayesian

Nets ability to give conditional probability distribution of the classification node given

values of other attributes. Although FQG has an ability similar to Naive Bayes to

decouple conditional feature distributions into n one-dimensional sets, it is also able

to link these features together when estimating an average or weighted average that

combines the memberships of all these features. This is not as fine grained as a network
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Table 4.5: T-test levels of significance for the measured differences between Bayes net

and naive Bayes

Measure p value

Accuracy 0.03265

Precision 0.12371

Recall 0.05983

F-Measure 0.11863

Specificity 0.76990

NPV 0.10226

MCC 0.02356

of probability distributions, but this is enough to make features interdependent. So, in a

way, FQG might be emulating these particular properties of Bayesian based classifiers.

Overall the significance of the difference of performance between CART and J48 is

expressed in table 4.6. Results show that CART generally performs significantly better

Table 4.6: T-test levels of significance for the measured differences between CART

and J48

Measure p value

Accuracy 0.17309

Precision 0.18356

Recall 0.31903

F-Measure 0.11761

Specificity 0.79407

NPV 0.30539

MCC 0.15650

than J48. This could be explained by the fact that the CART algorithm is using Gini

impurity, while, on the other side J48 is using Information Gain. Raileanu & Stoffel

(2004) analyzed the difference of the frequency of agreement/disagreement between

Gini Index function and Information Gain on decision points. This difference has been

found to be only in 2%. This explains why most empirical studies conjectured that

there is no significant difference between the two criteria. As this difference seems to
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have a significant impact on the classifiers efficiency on this particular data set, one can

only hypothesize that the data have quite specific and unusual properties that remain

to be defined in further work.

Overall the difference of performance between RBF network and multilayer per-

ceptron is not significant as shown in table 4.7. This suggests that, in the context of

Table 4.7: T-test levels of significance for the measured differences between RBF Net-

work and multilayer perceptron

Measure p value

Accuracy 0.86449

Precision 0.18998

Recall 0.91163

F-Measure 0.43333

Specificity 0.36763

NPV 0.96124

MCC 0.86238

this experiment, Multilayer Perceptron RBF Network exhibit roughly similar perfor-

mances.

There seem to be several distinct advantages to using fuzzy quantile generation at

the core of this framework. If the experimental setup of this study implies that BVH

human skeletal representation is obtained via pre-processing of the data from cameras,

fuzzy quantile generation as a machine learning technique, can be applied directly to

input data without pre-processing. A simple list of examples that associate discrete

class values to real numbers is enough to learn a model and perform a classification.

Also, there is no need to apply discretisation, dimensionality reduction, or time seg-

mentation to the data. Learning samples can also use artificially created classes that

could not be obtained via standard clustering methods and would otherwise give singu-

lar matrices when using methods such as HMM. Finally models can be obtained from

very few examples, and parameters can be set to tailor the precision of every model to

the quantity of available data.
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4.3 Case study for context aware classification

The accuracy of FQG for individual frames has been measured and has shown satisfy-

ing results. The next step is to look at the accuracy of the classifier regarding frames

depending on their relative positions. The “context-aware” accuracy (as opposed to the

“short-sighted” accuracy of an individual frame) of FQG is compared to a mixture of

FQG and Genetic Programming(see Figure 4.12) over five different moves (Jab, Cross,

Right Hook, Left Hook, and Lower Left Hook) performed by each one of all three in-

dividuals (data are 3-fold validated). The data set is spread over 32 files representing

a total of 22938 frames that are known instances of these five moves. Results show

the accuracy when the same individuals are used for learning and testing and when the

individuals used for learning are different from the individuals used for testing. A set

Figure 4.12: Comparing “context-aware” accuracy: FQG versus FQG+GP

of rules is generated using Genetic Programming from learning samples. These rules

are then used to filter the output of FQG over test samples. A t-test confirms with 95%

confidence that the mixture of FQG and Genetic Programming performs significantly

better than FQG alone, even with as little as four rules in total. Although the models

performed well when the individual concerned formed part of the training group, the

classifier performance worsened significantly when they were removed. Despite this

phenomenon in line with previous findings Yamato et al. (1992) Darby et al. (2007),

it is worth noticing that the association of FQG and GP still shows consistently better

results than FQG on its own (appendix F[3,5]), while keeping the ability of FQG to

learn from small data sets without pre-processing.
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4.4 Occlusion module evaluation

Feature selection and feature reconstruction as presented in this chapter are being

tested in experiments involving the recognition of stances from occluded data. The

purpose is not to show any sort of pre-eminence of the present system to other existing

methods, but rather to demonstrate a “proof of concept” regarding the ability of FQG

to be extended to deal with occlusion.

4.4.1 Feature selection evaluation

The performance of Laplace similarity is compared with Gaussian and triangle-2 fuzzy

similarity relations. Each Fuzzy Similarity relation is measured by taking into account

both the reduction of the number of attributes and the resulting accuracy of a Naive

Bayesian Classifier. Compression is measured with the ratio of attributes selected the

total number of attributes. Accuracy is obtained with the average over a 10 fold eval-

uation of the accuracy of the Bayesian classifier. Results are obtained with a boxing

motion sample coming from 3d motion capture data (figure 4.8). Additional results

using different datasets from the UCI machine learning repository are available in ap-

pendix C. A version of the WEKA data-mining package from Hall et al. (2009) mod-

Table 4.8: Accuracy and compression of Laplace, gaussian and triangular-2 fuzzy sim-

ilarity relations

Dataset Similarity Classifier accuracy Features selected

Boxing sample

Laplace 88.54% 23.08%

Gaussian 97.04% 38.46%

Triangular-2 93.70% 30.77%

ified by Jensen & Shen (2008) in order to include Fuzzy Rough Feature Selection was

employed to compute these results (appendix F[2]). For all datasets, Fuzzy Laplace

Similarity displays the highest compression rate for the first to second best accuracy.

When combining both compression and accuracy by evaluating the percentage of ac-

curacy gained per attribute, it becomes possible to compare the performance of each

measure of similarity (figure 4.13). In all cases, when looking at the ratio of compres-

sion over accuracy, the Fuzzy Laplace Similarity relation systematically outperforms
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the Gaussian and the Triangular-2 relations. These results are promising and the au-

thors intend to use the Laplace similarity relation in the context of attribute selection

when developing the occluded human motion classification framework. In the case of

Figure 4.13: Comparing accuracy per attribute for Laplace, gaussian and triangular-2

similarity relations

the motion capture boxing sample, Triangular 2 similarity gave a smaller reduct set

(with 3 numbered features 45, 48, 56) than Gaussian similarity (with 4 features 7, 44,

45, 48 - see table 4.9). They both gave reduct sets with similar dataset consistency

around 0.91. Laplace similarity gave the smallest subset of all with only 2 attributes

3, 31 and a data consistency around 0.95. All these ended up with an acceptable ac-

curacy when classifying the motions. Triangular-2 selects the head right shoulder and

right elbow rotations to differentiate boxing motions. Gaussian selects the left knee,

right shoulder, and right elbow to differentiate motions. Interestingly, Laplace similar-

ity uses the left shoulder and the hip to differentiate boxing motions. This is actually

closer to what boxing experts watch as they take into account not only the upper body

movements but also the hips rotations. Results show that the Fuzzy Laplace Similar-

ity relation outperforms other known fuzzy similarity relations such as Gaussian and

Triangular-2 measures in the context of Fuzzy Rough Feature Selection. This new

fuzzy similarity relation is integrated into the framework in order to identify joints es-

sential to the classification of motions. In this data set, these are found to be shoulders

and hip. The FRFS algorithm would estimate uncertainty around respectively 0.95 if

all these essential joint are occluded, 0.316 if only one of them is occluded, and 0.05

if none is occluded - we only consider left or right shoulders as the hips are always

visible in this data set. The case when only one of them is occluded is of interest as it

91

Chapter4/Chapter4Figs/EPS/laplace101.eps


4.4 Occlusion module evaluation

Table 4.9: Numbered key features of joint Euler angles identified by fuzzy rough fea-

ture Selection (gaussian: ∗, triangular-2: ∙, Laplace: ∘)

Joint Name Euler Z Euler X Euler Y

ROOT Hips 1 2 3 ∘
JOINT LeftHip 4 5 6

JOINT LeftKnee 7 ∗ 8 9

JOINT LeftAnkle 10 11 12

JOINT RightHip 13 14 15

JOINT RightKnee 16 17 18

JOINT RightAnkle 19 20 21

JOINT Chest 22 23 24

JOINT Chest2 25 26 27

JOINT LeftCollar 28 29 30

JOINT LeftShoulder 31 ∘ 32 33

JOINT LeftElbow 34 35 36

JOINT LeftWrist 37 38 39

JOINT RightCollar 40 41 42

JOINT RightShoulder 43 44∗ 45∗∙
JOINT RightElbow 46 47 48∗∙
JOINT RightWrist 49 50 51

JOINT Neck 52 53 54

JOINT Head 55 56 ∙ 57
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Table 4.10: Classification of motions with one occluded shoulder joint

Joint Nb Frames Correct Guesses Rates %

Right Shoulder 3389 2604 76.83%

Left Shoulder 3096 2343 75.67%

Total 6490 4947 76.22%

appears about 60% of the time in the present boxing motions data samples. If the Euler

Angles rotations of these joints can be accurately reconstructed, it becomes possible to

reduce uncertainty and suggest plausible end results for the classification.

4.4.2 Case study for feature reconstruction

The ability to suggest correct plausible moves from occluded data is evaluated on

samples with simulated occlusion from 8 different points of views. Occlusion is re-

constructed using Matlab by computing which joints are masked by a 3 dimensional

mesh composed of cylinders representing the limbs and portions of the human body.

This multiplies by 8 the size of the data set. The process of generation of these oc-

cluded data is computationally expensive and slow. Therefore, considering the time

constraints, one sample of reasonable complexity is used for testing: a combination of

guards and jabs. A binary mask expressing the state of occlusion for all 19 joints is

produced at every frame. It seems that in more than half of the cases (58.35% of all

the frames when combining the two samples), only one of the essential joints that were

previously determined through feature selection is occluded. In more than 99% of the

cases, this is a shoulder joint. This represents a data set of around 6490 frames with one

shoulder joint occluded. As shown in table 4.10, the most plausible rotation chosen for

occluded shoulder joints are leading to the correct classification of the moves for 4947

of these 6490 frames. That is to say that, when looking at one participant performing

moves from different points of views, on cases when one shoulder joint is occluded

(in 58% of all frames), the classifier suggests the correct moves 76.2% of the time

(appendix F[4]). The occluded data classification is likely to improve when applying

the GP filter. This experiment shows that FQG can be extended to deal with occlusion

reasonably well. Initially all occluded data would be intractable. After using the sys-

tem described above on the given sample, around 44% of all the occlusions scenarios
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are correctly guessed. One drawback of this approach is that it is computationally ex-

pensive. The number of Fuzzy Qualitative Angles generated to express one plausible

rotation often exceeds 160. Having 3 plausible rotations for one occluded joint is not

rare. The system has to compute geometrical distances to seven Fuzzy Membership

Functions of known moves, that is to say 3× 160× 7 = 3360 operations. Then, it has

to sort all these in order to find the three closest moves suggested by all these plausible

rotations. These numerous operations have to be computed for one frame of average

occlusion complexity. This suggests that future improvements are needed in order to

apply this occluded motion recognition process in near real-time conditions.

4.5 Summary

Initial results show that when put to the test with a boxing data set presenting chal-

lenges such as real biologically “noisy” data, cross-gait differentials from one individ-

ual to another, relatively high dimensionality (with a skeletal representation that has 57

degrees of freedom) and learning samples of suboptimal size, the FQG based classifier

outperforms sixteen other known machine learning techniques. Further results also

show that the context-aware filter improves FQG performance consistently, and that

the framework can deal successfuly with occluded data. Experimental results there-

fore demonstrate the effectiveness of the proposed inference engine for 3d occluded

human motion recognition.
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Chapter 5

Conclusions

5.1 Overview

The recognition of 3D human motions is a challenging task that requires view-invariant

actions to be recognised a) independently from differences in execution in the spatial

and temporal domains resulting in overlapping classes, b) by using learning samples

of sub-optimal size, c) in a context-aware and time-sensitive fashion, and d) despite

occlusion. A review of related techniques confirms a new growing trend of hybrid

Machine Learning methods that seek to fit into a niche satisfying the following func-

tional requirements: the ability to classify from learning samples of sub-optimal size,

a low sensitivity to noise, and simplicity regarding the parameter tuning process. This

thesis has addressed the above issues with three contributions that can be described

as follows. First, a standalone classifier using Fuzzy Quantile Generation, a novel

method that generates Fuzzy Membership Functions using metrics derived from the

probabilistic quantile function. This method has demonstrated its effectiveness on the

classification of noisy, imprecise and complex motions while using learning samples

of sub-optimal size with motion capture data from real boxers. Fuzzy Quantile Gen-

eration outperforms other time-invariant classifiers in a comparative study made on

the boxing data set. Secondly, a genetic programming based filter is developed to pro-

duce time-dependent and context-aware rules to smooth the qualitative outputs of fuzzy

quantile generation. Various factors such as speed, previous and next movements, and

best ranked membership scores are taken into account to generate a complex and sub-

tle network of conditional statements that would otherwise be difficult to identify in
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an empirical fashion for a human observer. Experimental results on the boxing mo-

tion capture data show that the filter consistently improves the accuracy of the Fuzzy

Quantile Generation classifier. Thirdly, the occlusion module based on feature selec-

tion and reconstruction. The new Laplace fuzzy similarity relation developed in the

context of Fuzzy Rough Feature Selection to identify important joints in case of occlu-

sion is shown to outperform other measures consistently over four different standard

benchmarking datasets from the University of California, Irvine (UCI) Machine Learn-

ing Repository and on the boxing motion capture sample. The feature reconstruction

mechanism reduces the uncertainty caused by occlusion by suggesting plausible rota-

tional data from hidden joints. This work uses Fuzzy Qualitative Euler Angles, a mod-

ified version of the Fuzzy Qualitative Trigonometry representation system exposed in

Liu & Coghill (2005) and Liu (2008). Results show that the system correctly guesses

44% of the initially intractable occluded data in the boxing experiment.

The motion recognition framework has demonstrated its effectiveness on motion

capture data from real boxers in terms of fuzzy membership generation, context-aware

rule generation, and motion occlusion. It is worth noting that the motion capture data

presents challenges for classification problem in general: real biologically “noisy”

data, cross-gait differentials from one individual to another, relatively high dimen-

sionality of a skeletal representation that has 57 degrees of freedom, and large number

of learning samples of suboptimal size.

5.2 Conclusion

The theoretical significance of the motion recognition framework can be explained in

light of the following considerations.

First, the successful combined application of the contributions detailed above to

the demanding problem of 3d motion capture data classification validates the presented

work and confirms the potential of this framework as an effective contender in the field

of motion recognition. The suitability of this methodology is reinforced by the fact

that at present, there is a growing need for techniques that can deal with view-invariant

based representations.
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Secondly, the methodological impact of Fuzzy Quantile Generation lies in bridging

fuzzy set theory to probability theory through a modelling paradigm that leads to prac-

tical results. The direct mapping from membership function to probability distribution

allows the framework to deal efficiently with problems such as the spatio-temporal

variations resulting in overlapping classes, the scarcity of learning samples and the

simplicity of parameter tuning.

Thirdly, the extension of Genetic Programming with strongly-typed mechanisms

and its successful application to the problem of motion classification demonstrate the

suitability of this evolutionary paradigm for the novel application problem of 3D mo-

tion capture classification.

Finally, the effective handling of occlusion from motion capture data independently

from image based representations contributes to the novelty and the validity of the

feature selection/reconstruction approach in the context of motion classification.

The motion classification methodology exposed in this thesis can potentially im-

pact the area of behaviour understanding, but there is still room for further improve-

ment, and possible extensions to different application domains can be considered as

explained in the next section.

5.3 Future work

There are a number of improvements as well as substantial additions that could be

made to the work that has been discussed. Future work might involve modifying Fuzzy

Quantile Generation in order to automate and extend the choice of a probability distri-

bution, enhancing temporal pattern recognition with probabilistic paradigms, optimis-

ing the occlusion module, and adapting the present framework to different application

domains.
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5.3.1 Automating and extending the choice of a probability distri-

butions

The proposed method does not automate the choices of the type of Fuzzy Membership

Function and associated type of probability distributions which best represent the do-

main the sample is extracted from. This analysis is valid for distributions with only one

mode. However, there are times when multi-modal distributions might offer a better

alternative for different application domains. In order to map a membership to such

a distribution, either the aggregation of trapezoidal fuzzy membership functions or

the creation of a different type of composite membership function would be required.

Although the automated generation of a Fuzzy Membership Function would still use

metrics based on the quantile function, some of the mapping mechanisms would need

to be accordingly adjusted. This would require not only a delicate refinement of the

method, but also new experiments involving data samples that reflect such multinomial

distributions.

5.3.2 Enhancing temporal pattern recognition by adding proba-

bilistic paradigms

While the association of Fuzzy Quantile Generation and Genetic Programming shows

consistently better results than Fuzzy Quantile Generation on its own, it can be argued

that the choice of genetic programming generates very specialised solutions bound to

a local optimum in some cases. Considering the omnipresence of probabilistic meth-

ods in the context of the context-aware temporal classification, filtering the qualitative

outputs of Fuzzy Quantile Generation by using methods such as Bayes Net, or Hid-

den Markov Models might be a good way to enhance the temporal pattern recogni-

tion of the framework. The succession of time-ordered discrete values resulting from

Fuzzy Quantile Generation can be used as inputs for the nodes of such representations.

Putting aside the time constraints intensified by the complications induced by the na-

ture of the boxing data set, building another additional layer of discrete data based on

the outputs of the Fuzzy Quantile Generation classifier, and integrating the resulting

model seamlessly in the training and testing process would be the next logical step.
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5.3.3 Optimise the occlusion module

One drawback of the presented occluded motion reconstruction approach is that it gen-

erates plausible rotations in a computationally expensive way. The number of Fuzzy

Qualitative Angles generated to express one plausible rotation is high and the system

has to compute geometrical distances to all of these and then rank them. These nu-

merous operations have to be computed frame by frame and future improvements are

needed in order to apply this occluded motion recognition process in near real-time

conditions. One possible approach might be to use a pruning strategy based on prob-

abilistic knowledge by limiting the generation not just to plausible, but also to most

expected rotations inferred from a knowledge base that would take into account previ-

ous states of rotation. Considering the inherent complexity of the data, building such a

sizable knowledge base and using it for the real-time inference of occluded data might

make a very useful and challenging prospect.

5.3.4 Adaptation of the present framework to different application

domains

Finally, considering the flexibility of the present framework, extensions to similar ap-

plication domains such as surveillance, elderly health care, and Human-Computer In-

teraction are under consideration. Independently from the initial focus on human mo-

tion recognition, Fuzzy Qualitative Generation is reusable in the more general context

of automated Fuzzy Membership Function generation. This is especially true as fuzzy

quantile generation as a machine learning technique, can be applied directly to real

valued data associated with discrete class values in order to learn a model and perform

a classification.
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Appendix A

Acronyms

API Application Programming Interface

BVH Biovision Hierarchy file format

CRF Conditional Random Fields

DTW Dynamic Time Warping

CART Classification and Regression Trees

FLR Fuzzy Lattice Reasoning classifier

FMF Fuzzy Membership Function

FQG Fuzzy Quantile Generation

FRFS Fuzzy Rough Feature Selection

FSM Finite State Machine

GP Genetic Programming

HMM Hidden Markov Models

IB1 Instance-Based learning for k = 1

MCC Matthews Correlation Coefficient

MHI Motion-History Images

MHV Motion-History Volumes

RBM Restricted Boltzmann Machines

ROC Receiver Operating Characteristic

RVM Relevance Vector Machines

SMC Sequential Monte Carlo

117



SMO Sequential Minimal Optimization

STV Spatio Temporal Volumes

SVM Support Vector Machines

PCA Principal Component Analysis

PySTEP Python Strongly Typed gEnetic Programming

TDNN Time Delay Neural Network

TSK Takagi-Sugeno-Kang

UCI University of California - Irvine

VFI Voting Feature Interval

WEKA Waikato Environment for Knowledge Analysis
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Appendix B

The Waikato Environment for

Knowledge Analysis classifiers

The classifiers implemented using the WEKA Machine Learning package presented

in Frank et al. (2005) and Hall et al. (2009) represent diverse paradigms that can be

roughly classified into seven types: Bayes, Function based, Nearest Neighbours, Tree

based, Rule based, and Miscellaneous. They are used “as is” from the Weka library

using mostly default settings.

B.1 Bayesian methods

The Bayesian methods used in this comparative work are Naive Bayes and Bayes Net

classifiers.

Naive bayes presented by John & Langley (1995) makes use of Bayes’ theorem to

predict which class an example most likely belongs to. Wu et al. (2009) and Ka-

pur et al. (2005) have been using it for comparative purpose in the domain of gesture

recognition. It is said to be “naı̈ve” because it assumes that all the attributes charac-

terizing a class are independent from each other. It chooses the class that maximizes

the likelihood of the feature assignments for one example. Naive Bayes classifiers
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B.1 Bayesian methods

exhibit useful properties: firstly, parameters such as means and variances can be esti-

mated with a small amount of training data. Secondly, the assumption of independence

between variables limits the amount of computation required. The reason being that

there is no need to find the entire covariance matrix when only the variances of the

variables for each class are required. Thirdly the absence of connective logic between

features distributions for each class simplifies the representation to independent one-

dimensional distributions. The size of the data set does not need to be exponentially

scaled with the number of features, which gives Naive Bayes a certain resilience to the

curse of dimensionality. Lastly, Naive Bayes displays a good robustness, especially

when dealing with models presenting a reduced coupling between variables.

Bayes net presented by Cooper & Herskovits (1991, 1992) uses a Bayesian network,

that is to say a directed acyclic graph where nodes represent variables, and edges rep-

resent conditional dependencies. Unconnected nodes represent conditionally indepen-

dent variables. Probability functions associate a set of input value from a node’s parent

variables to the probability of the variable represented by the node. Bayes Net can

be used to compute the conditional probability of one node, given values assigned to

the other nodes. This gives the posterior probability distribution of the classification

node given the values of other attributes. Bayes Net has been used for recognition of

head gestures by Lu et al. (2005), general motion understanding from video sequences

by Leventon & Freeman (1998), and similarly, has been used by Sidenbladh et al.

(2002) in conjunction with optical flow. Bayes Nets are theoretically well equipped to

deal with classification problems in the sens that they maximize the expected utility of

choices. They inherit as well Naive Bayes’ robustness and their performances do not

drop dramatically when models are slightly modified by small alterations. Since they

take into account dependencies between variables, they can also handle incomplete

data. On the other hand, they can also present distinct disadvantages. The validity of

the network is generally highly dependent on accuracy of the prior model of beliefs.

Furthermore, the whole network has to be computed to get the probability of any node,

which is known to be a NP-hard (nondeterministic polynomial-time hard) problem.

This can sometimes result in Bayes Net to be computationally expensive.
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B.2 Function based classifiers

B.2 Function based classifiers

FQG is compared to two function based classifiers: Support Vector Machine(SVM)

and Logistic Regression.

Support vector machine presented by Boser et al. (1992) is trained using Sequen-

tial Minimal Optimization or SMO. Support Vector Machine is a kernel based method

that maps examples of different categories to “points” or hyperplanes in a high dimen-

sional space. This hyperplane-based representation amplifies the differences between

examples that belong to different categories. This gap called functional margin is max-

imized to be the largest distance to the nearest training data points of any class. The

wider and the clearer the gap, the easier the separation that leads to the classification

of new examples, and the lower the generalisation error of the classifier. Finding the

parameters that define the hyperplane with the maximum margin is a non trivial opti-

misation problem. The SMO algorithm used here to train the SVM classifier attempts

to solve this problem by scaling it down into 2-dimensional sub-units. Further details

about SMO can be found in Schölkopf et al. (1999) and Keerthi et al. (2001). SVM

has been used to recognize human actions from video samples by Schldt et al. (2004),

and in conjunction with optical flow by Danafar & Gheissari (2007). Mori et al. (2004)

also used SVM to discover remarkable motion features. Kapur et al. (2005) used it as

a comparison method in motion classification. The use of kernels makes SVM com-

putationally efficient as it does not have to represent explicitly the feature vectors.

Shawe-Taylor & Cristianini (2004) underlined some advantages such as: “ the absence

of local minima, the sparseness of the solution and the capacity control obtained by

optimising the margin”.

Logistic regression builds a multinomial logistic regression model, that is to say a

function that describes the relationships between independent variables and multiple

classes in term of probabilities. Data are fitted to a logistic curve using a variant of

Multiple Linear Regression called a Ridge Estimator presented by le Cessie & van

Houwelingen (1992). Logistic regression was used by Kapur et al. (2005) for clas-

sifying emotions from 3d gestures. Logistic regression is quite robust as it does not

need independent variables to be normally distributed, or to have an equal variance in
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B.3 Nearest neighbour classifiers

each group. Dependant and independent variables do not have to be linked by a linear

relationship. One known drawback of this technique is that it generally requires more

data than standard regression to give stable and meaningful results.

B.3 Nearest neighbour classifiers

.

The IB1 Nearest Neighbour, Fuzzy K-Nearest Neighbour, and Fuzzy Rough K-Nearest

Neighbour classifiers are used for comparison.

IB1 Nearest-neighbour is the simplest instance-based learning algorithm. The WEKA

implementation is based on a paper by Aha et al. (1991). In the case of IB1, learning

to generalise and classify is a matter of finding the most similar instance (hence the

“nearest neighbour”) and labeling the next unknown instance with the same label as

the known neighbour. One measures the Normalised Euclidean distance to find the

training sample closest to an existing test sample and then integrate the latter into the

same class. If several closest training instances are equally distant to the same test

sample, the first one is selected. Learning is an encapsulation process during which

training data are not generalised before the end, which is to say at classification time.

That is why such instance-based classifiers are referred to as “lazy learners”. IB1 is a

simpler case of the K-Nearest Neighbour scenario for k = 1(in K-Nearest Neighbour,

the object being assigned to the class most common amongst its k nearest neighbours is

classified by a majority vote). IB1 has the advantage of simplicity, and is able to cope

with little information (missing values are tolerated). One downside is its sensitivity

to noise, which can sometimes impair its robustness. IB1 was used for comparison in

human gesture recognition by Falco et al. (2008).

Fuzzy k-nearest neighbours introduced in Keller et al. (1985) extends the K-Nearest

Neighbour algorithm by adding features from Fuzzy Set Theory. One direct conse-

quence is that objects can present partial memberships to different classes. Another is

that one can take into account the relative importance (closeness) of each neighbour
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B.4 Rule learners classifiers

with respect to the test instance. This is a substantial improvement regarding the capac-

ity to deal with noise compared to the standard Nearest Neighbour approach. However,

a study by Sarkar (2000) showed that this fuzzy approach encounters difficulties when

confronted to insufficient knowledge. In the training samples are really too different

from the test samples, there might not be any suitable “neighbours”. In this case, the

system will still have to make artificial predictions as the sum of all membership de-

grees to different classes must always be equal to 1. Fuzzy K-Nearest Neighbour was

used as a comparison classifier for benchmark evaluation in human motion recognition

by Yasin & Khan (2008).

Fuzzy-rough k-nearest neighbour introduced by Jensen & Cornelis (2008), it ex-

tends Fuzzy K-Nearest Neighbour by adding features from Rough Set Theory. The

first step of the algorithm consists in building lower and upper approximations for

each decision class from the information provided by the nearest neighbours of a test

object. The second step of the algorithm computes membership scores of the test ob-

ject to these approximations using a Gaussian fuzzy similarity relation. The obtained

Fuzzy-Rough ownership function allows to handle both fuzzy uncertainty (caused by

overlapping classes) and rough uncertainty (caused by insufficient knowledge). This

method has not been used yet in motion recognition; however, considering the partic-

ularity of the application domain, it might make for an interesting comparison ground.

B.4 Rule learners classifiers

This can be roughly described as a “bottom-up” approach. It first separates the solution

space by generating localised rules that cover subsets the training examples. These

rules are then iteratively added to each other until the whole training set has been

captured. Two methods belonging to rule learner classifiers are used in this study:

Conjunctive Rule and Decision table. While these methods are not associated with

motion recognition, they might provide clues regarding the data set

Conjunctive rule. The WEKA implementation produces rules that allow the classi-

fication of the entire data set. The rules capture sets of conditions that define the most
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B.5 Decision tree based classifiers

represented classes in the data set. Each rule is composed of an antecedent and a con-

sequent. The antecedent is constructed using Information Gain in order to select the

most appropriate values for the features defining a distribution of resulting class labels

(or consequent). The Information Gain of one antecedent can be computed by looking

at the weighted average of the entropies of both the data covered and the data ignored

by the rule. The generated rule is pruned using Reduced Error Pruning (REP) in which

the weighted average of the accuracy rates is used for classification.

Decision table presented by Kohavi (1995) builds a matrix that maps all possible

conditional values for independent attributes to all possible outputs (class labels). In

order to reduce the model to a smaller and condensed table, a voting system is intro-

duced in order to prune the attributes that introduce little or no change and that are

considered irrelevant to the classification.

B.5 Decision tree based classifiers

This can be described as a “top-down” approach which recursively divides general

rules into conjunctions of more precise rules fitting the subsets of examples. The di-

vision occurs as long as some of the rules live negative examples. The final result is

a set of specialised rules which map to positive examples only. The J48 and CART

classifiers are used as comparison methods.

J48 is a WEKA implementation of the known C4.5 algorithm presented in Quin-

lan (1993). It is used in Kapur et al. (2005) as comparison in the context of motion

recognition. J48 implements a greedy technique using Information Gain (based on

the concept of Entropy) in order to determine the most predictive attributes, and cre-

ate decision points in the tree over the value of each one of these attributes. Numeric

attributes can be dealt with using thresholds for the decision splits. This process can

sometimes lead to create decision-trees of great length and complexity. This is why

the algorithm implements pruning mechanisms based on error minimisation. Overall,

this technique generates readable solutions, is robust to noise and generally presents a
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B.6 Neural network based classifiers

good accuracy. Drawbacks can occur such as duplications of sub-trees, or the inability

to deal with first-order logic(it cannot refer to several different objects in one test).

CART or minimal cost-complexity pruning is presented by Breiman et al. (1984).

The CART algorithm build trees in a similar fashion as C4.5, except that it is using

Gini Impurity instead of Information Gain to find the most predictive attributes. Like

the entropy function, this measure is essentially a way to measure vector sparseness.

It is maximised if all classes are evenly distributed and minimum when all instances

belong to one class.

B.6 Neural network based classifiers

The Multi-Layer Perceptron, and Radial Basis Function network are used for compar-

ison.

Radial basis function network presented by Bugmann (1998) is used for gesture

recognition by Ng & Ranganath (2002) and Ng & Ranganath (2000). It can be de-

fined as a statistical feed-forward two-layer artificial neural network that uses Gaus-

sian radial basis functions as activation functions in their hidden units. Output units

are weighted sums of the hidden units’ results. A non-linear input is approximated into

a linear output. This gives Radial Basis Networks the ability to model and approximate

efficiently complex functions.

Multi-layer perceptron presented in Rumelhart et al. (2002) is used in video surveil-

lance activity recognition Jan et al. (2003), hand gesture recognition Symeonidis (1996),

and as comparison method in motion recognition by Kapur et al. (2005). This is one of

the most popular types of neural networks. A Multilayer Perceptron is a feed-forward

artificial neural network model uses at least three layers of nodes with nonlinear acti-

vation functions based on Sigmoids.
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B.7 Miscellenous classifiers

These algorithms are not necessary used in motion recognition. However, they provide

different paradigms known for their simplicity. They can be used as an additional and

exploratory comparison ground for the data set.

HyperPipes presented by Frank et al. (2005) is an algorithm that, for each class,

builds bounds for the attribute-values found in the examples belonging to this class.

Each hyperpipe contains each attribute-value found in the examples from the class it

was built to cover. A test example is classified by finding the hyperpipe that most

contains the instance. Hyperpipes has the advantages of speed, simplicity, and can

cope well with large numbers of attributes. Eisenstein & Davis (2004) attempted to

develop a human gesture classifier based on HyperPipes.

Voting Feature Intervals (VFI) presented by Demiröz & Güvenir (1997), builds

intervals for each attribute inside each class. Class counts are recorded for each interval

on each attribute. The predicted class is the one with the highest count. The WEKA

implementation uses an attribute weighting scheme where higher weights have a higher

confidence expressed as a measure of entropy.

Fuzzy Lattice Reasoning Classifier (FLR) introduced by Athanasiadis et al. (2003),

induces rules of increasing diagonal sizes from the training data. The size of the maxi-

mum number of rules induced is set by a threshold that expresses the degree of granu-

larity of learning. The size of an individual rule is inversely proportional to the number

of rules needed to cover the training data. Each rule maps a fuzzy lattice to a class

label. There is a mechanism that joints the lattice rules pointing to the same class that

are sufficiently similar and formulates corresponding generalised rules of higher size

triggered by a fuzzy degree of activation.

126



Appendix C

Comparing Laplace and other

similarity measures over several

datasets

Comparison of Laplace, gaussian and triangular-2 fuzzy similarity relations in the con-

text of Fuzzy Rough Feature Selection over four standard datasets from the UCI Ma-

chine Learning Repository.
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Table C.1: Accuracy and compression of Laplace, gaussian and triangular-2 fuzzy

similarity relations

Dataset Similarity Classifier accuracy Features selected

SPECTF

Laplace 88.71% 6.82%

Gaussian 75.27% 43.18%

Triangular-2 82.26% 15.91%

German-credit

Laplace 60.16% 29.17%

Gaussian 84.88% 83.33%

Triangular-2 64.46% 54.17%

Heart Statlog

Laplace 77.13% 10.53%

Gaussian 83.62% 21.05%

Triangular-2 79.18% 14.04%

CMC

Laplace 50.34% 77.78%

Gaussian 51.22% 88.89%

Triangular-2 51.22% 88.89%

Boxing sample

Laplace 88.54% 23.08%

Gaussian 97.04% 38.46%

Triangular-2 93.70% 30.77%
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Figure C.1: Comparing accuracy per attribute for Laplace, gaussian and triangular-2

similarity relations on different datasets
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Appendix D

Experimental design: consent form

and leaflet

INFORMED CONSENT FORM FOR PARTICIPANTS

Probabilistic Template-Based Learning Methods for

Continuous Human Motion Matching and Its Application

Investigator: Mehdi Khoury

1. The Purpose of this Research

The purpose of this research is, by the use of existing 3D human motion track-

ing and recognition tools, to gather kinetic data on sport practitioners, and then

produce qualitative templates that allow computers to generalise these motions

to recognizable behaviours. These templates could later be reused anonymously

as target models in an application domain such as computer assisted coaching.
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2. Procedures

The room contains sensors and data processing devices that can capture your

motion. Infrared sensitive cameras will be directed towards you while you are

moving. You are being asked to wear a suit and a set of reflectors, and to per-

form specific motions such as a walk, a slow run, a jab, a cross, a hook, and

an uppercut for a duration of few seconds. This is not strictly speaking a video

recording as only the movements of the reflectors are recorded, and no details

identifying individual features such as the face are captured. The information is

kept as a relatively anonymous kinetic pattern that takes the shape of a moving

”stick-figure” skeleton model of the subject. We would like you to use a chang-

ing room in order to fit a suit. The technical staff will then help to place reflectors

at keys points such as articulations, and guide you through simple standing posi-

tions and motions in order to calibrate the system. As a participant in this study,

you are requested to perform the following duties:

(a) Carefully read this informed consent form and then sign it if you agree to

participate.

(b) Wear a suit with a set of sensors.

(c) Receive instructions and move accordingly while wearing the suit.

3. Risks and Discomforts

There are no particular risks associated with this experiment, assuming standard

motions and demonstration of basic boxing positions are within the range of ex-

pertise of the subjects. If executing motions while wearing the suit and the reflec-

tors becomes a source of discomfort, feel free to point this out and immediately

remove them. All of the data gathering equipment is inspected and configured
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by the Department of Creative Technologies so that it does not present a hazard.

4. Benefits to You

You will be paid a gratuity for your participation, and if interested, you can be

given a video file of the three-dimensional reconstruction of your performance,

and get more information on computer assisted coaching systems. There are no

other known direct benefits to you. No promises or guarantee of benefits other

than those listed in this informed consent form have been made to encourage you

to participate. You may however enjoy discovering more about motion capture

technologies, and it is likely that your participation in this experiment will help

provide a better understanding of how computers can capture and identify human

motion and how computer based sport coaching systems might be developed.

5. Extent of Anonymity and Confidentiality

The information gathered in this experiment will be treated with confidential-

ity. It will be used for research purposes only, and only by qualified researchers.

Your name and other identifiers will be removed from the overall data set and

in any resulting publications. As indicated, a ”skeletal” representation will be

recorded while you are moving. The record does not include personal identifica-

tion features. The record will be treated with confidentiality and kept secure. It

will be shared only with other qualified researchers, and not published except as

noted in the following paragraph. If at a later time we wish to use the recorded

motion for other than research purposes, say, for public education, or if we wish

to publish (for research or for other purposes) we will only do so after making

sure that the study does not identify you either directly or indirectly . Your data

will be pooled with that of at least five other participants. (The expected number
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of participants is likely to be between five and ten.)

6. Compensation

You will receive a gratuity for participating in this experiment. You will be

paid 20. It is possible that a data gathering equipment malfunction may occur

during some portion of your participation. If this should occur, we may have to

temporarily suspend the experiment for few minutes to service the data gathering

equipment. You may then be asked to extend your participation for a reasonably

brief amount of time. If you choose to do so, you will not be paid an additional

amount for this delay.

7. Freedom to Withdraw

As a participant in this research, you are free to withdraw at any time without

penalty. If you choose to withdraw, you will be compensated in accordance with

the terms in Section VI. of this document.

8. Approval of This Research

Before this experiment begins, the research must be approved by the Faculty

Research Ethics Committee for research involving human subjects at University

of Portsmouth. You should know these approvals have been obtained.

9. Participant’s Permission

I have read and understood this informed consent form and conditions of my

participation. I have had all my questions answered. I hereby acknowledge the

above and give my voluntary consent to participate. If I participate, I understand

that I may withdraw at any time without penalty. I agree to abide by the rules of

this project.
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Participant’s Signature................... Date ................

Should I have any questions about this research or its conduct, I may contact:

Mehdi Khoury, Research Investigator

Institute of Industrial Research, Burnaby Building, University of Portsmouth,

Burnaby Road, Portsmouth, PO1 3QL
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Figure D.1: Leaflet distributed to potential participants
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Appendix E

The Python Strongly Typed gEnetic

Programming open source package

The PySTEP or Python Strongly Typed gEnetic Programming Open Source pack-

age has been specifically developed for the purpose of building a context-aware Ge-

netic Programming filter in the context of this study. It is available for download on

Sourceforge (see Khoury (2009)) at http://sourceforge.net/projects/pystep/. The pyS-

TEP website is shown in picture E.1. Figures E.2 and E.3 present in a chronological

fashion the project web traffic and download history for all files related to pySTEP

from March 2009 to July 2010. All the PySTEP grammar rules that control the syntax

of trees in the context of the boxing motion capture experiments are presented in the

Python code below.

1 i f T e r m i n a l S e t = [ ( 4 , 0 , ’ i s s h o r t ’ ) , ( 4 , 0 , ’ i s medium ’ ) , ( 4 , 0 , ’ i s l o n g ’ ) ]

2 t r e e R u l e s ={

3 ’ r o o t ’ : [ ( [ ( 2 , 3 , ’ i f t h e n r e p l a c e ’ ) ] , [ ] ) , ( [ ( 2 , 3 , ’ i f t h e n r e p l a c e ’ )

] , [ ] ) , ( [ ( 2 , 3 , ’ i f t h e n r e p l a c e ’ ) ] , [ ] ) , ( [ ( 2 , 3 , ’ i f t h e n r e p l a c e ’ )

] , [ ] ) ] ,
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4 ’ i f t h e n r e p l a c e ’ : [ ( [ ( 1 , 1 , ’ membership 1 ’ ) , ( 1 , 1 , ’ membership 2 ’ )

, ( 1 , 1 , ’ membership 3 ’ ) ,∖

5 ( 1 , 1 , ’ l e f t 1 ’ ) , ( 1 , 2 , ’ l e f t 2 ’ ) , ( 1 , 3 , ’ l e f t 3 ’ ) ,∖

6 ( 1 , 1 , ’ r i g h t 1 ’ ) , ( 1 , 2 , ’ r i g h t 2 ’ ) , ( 1 , 3 , ’ r i g h t 3 ’ ) ,∖

7 ( 1 , 2 , ’ and ’ ) , ( 1 , 2 , ’ o r ’ ) , ( 1 , 1 , ’ n o t ’ ) ] , i f T e r m i n a l S e t ) ∖

8 , ( [ ] , s e t m v t s ) , ( [ ] , s e t m v t s ) ] ,

9 ’ membership 1 ’ : [ ( [ ] , s e t m v t s ) ] ,

10 ’ membership 2 ’ : [ ( [ ] , s e t m v t s ) ] ,

11 ’ membership 3 ’ : [ ( [ ] , s e t m v t s ) ] ,

12 ’ l e f t 1 ’ : [ ( [ ] , s e t m v t s ) ] ,

13 ’ l e f t 2 ’ : [ ( [ ] , s e t m v t s ) , ( [ ] , s e t m v t s ) ] ,

14 ’ l e f t 3 ’ : [ ( [ ] , s e t m v t s ) , ( [ ] , s e t m v t s ) , ( [ ] , s e t m v t s ) ] ,

15 ’ r i g h t 1 ’ : [ ( [ ] , s e t m v t s ) ] ,

16 ’ r i g h t 2 ’ : [ ( [ ] , s e t m v t s ) , ( [ ] , s e t m v t s ) ] ,

17 ’ r i g h t 3 ’ : [ ( [ ] , s e t m v t s ) , ( [ ] , s e t m v t s ) , ( [ ] , s e t m v t s ) ] ,

18 ’ and ’ : [ ( [ ( 1 , 1 , ’ membership 1 ’ ) , ( 1 , 1 , ’ membership 2 ’ ) , ( 1 , 1 , ’

membership 3 ’ ) ,∖

19 ( 1 , 1 , ’ l e f t 1 ’ ) , ( 1 , 2 , ’ l e f t 2 ’ ) , ( 1 , 3 , ’ l e f t 3 ’ ) ,∖

20 ( 1 , 1 , ’ r i g h t 1 ’ ) , ( 1 , 2 , ’ r i g h t 2 ’ ) , ( 1 , 3 , ’ r i g h t 3 ’ ) ,∖

21 ( 1 , 2 , ’ and ’ ) , ( 1 , 2 , ’ o r ’ ) , ( 1 , 1 , ’ n o t ’ ) ] , i f T e r m i n a l S e t ) ,∖

22 ( [ ( 1 , 1 , ’ membership 1 ’ ) , ( 1 , 1 , ’ membership 2 ’ ) , ( 1 , 1 , ’ membership 3 ’

) ,∖

23 ( 1 , 1 , ’ l e f t 1 ’ ) , ( 1 , 2 , ’ l e f t 2 ’ ) , ( 1 , 3 , ’ l e f t 3 ’ ) ,∖

24 ( 1 , 1 , ’ r i g h t 1 ’ ) , ( 1 , 2 , ’ r i g h t 2 ’ ) , ( 1 , 3 , ’ r i g h t 3 ’ ) ,∖

25 ( 1 , 2 , ’ and ’ ) , ( 1 , 2 , ’ o r ’ ) , ( 1 , 1 , ’ n o t ’ ) ] , i f T e r m i n a l S e t ) ] ,

26 ’ o r ’ : [ ( [ ( 1 , 1 , ’ membership 1 ’ ) , ( 1 , 1 , ’ membership 2 ’ ) , ( 1 , 1 , ’

membership 3 ’ ) ,∖

27 ( 1 , 1 , ’ l e f t 1 ’ ) , ( 1 , 2 , ’ l e f t 2 ’ ) , ( 1 , 3 , ’ l e f t 3 ’ ) ,∖

28 ( 1 , 1 , ’ r i g h t 1 ’ ) , ( 1 , 2 , ’ r i g h t 2 ’ ) , ( 1 , 3 , ’ r i g h t 3 ’ ) ,∖

29 ( 1 , 2 , ’ and ’ ) , ( 1 , 2 , ’ o r ’ ) , ( 1 , 1 , ’ n o t ’ ) ] , i f T e r m i n a l S e t ) ,∖
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30 ( [ ( 1 , 1 , ’ membership 1 ’ ) , ( 1 , 1 , ’ membership 2 ’ ) , ( 1 , 1 , ’ membership 3 ’

) ,∖

31 ( 1 , 1 , ’ l e f t 1 ’ ) , ( 1 , 2 , ’ l e f t 2 ’ ) , ( 1 , 3 , ’ l e f t 3 ’ ) ,∖

32 ( 1 , 1 , ’ r i g h t 1 ’ ) , ( 1 , 2 , ’ r i g h t 2 ’ ) , ( 1 , 3 , ’ r i g h t 3 ’ ) ,∖

33 ( 1 , 2 , ’ and ’ ) , ( 1 , 2 , ’ o r ’ ) , ( 1 , 1 , ’ n o t ’ ) ] , i f T e r m i n a l S e t ) ] ,

34 ’ n o t ’ : [ ( [ ( 1 , 1 , ’ membership 1 ’ ) , ( 1 , 1 , ’ membership 2 ’ ) , ( 1 , 1 , ’

membership 3 ’ ) ,∖

35 ( 1 , 1 , ’ l e f t 1 ’ ) , ( 1 , 2 , ’ l e f t 2 ’ ) , ( 1 , 3 , ’ l e f t 3 ’ ) ,∖

36 ( 1 , 1 , ’ r i g h t 1 ’ ) , ( 1 , 2 , ’ r i g h t 2 ’ ) , ( 1 , 3 , ’ r i g h t 3 ’ ) ,∖

37 ( 1 , 2 , ’ and ’ ) , ( 1 , 2 , ’ o r ’ ) ] , i f T e r m i n a l S e t ) ] ,

38 }
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Figure E.1: pySTEP website
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Figure E.2: pySTEP web traffic

Figure E.3: pySTEP download history

140

pystepwebtraffic.eps
pystepdownloads.eps


Appendix F

Publications

∙ Book Chapter

1 Khoury, M. and Liu, H. Using Fuzzy Gaussian Inference and Genetic Pro-

gramming to Classify 3D Human Motions, Robot Intelligence: An Ad-

vanced Knowledge Processing Approach, Springer, pp 95-116, 2009, In

Liu, Gu, Howlett and Liu (Eds.),

∙ Conferences/workshops papers

2 Khoury, M. and Kubota N. and Liu, H. (in print) Optimizing Feature Se-

lection Using Laplace Similarity in Occluded Human Motion Recognition,

Proceedings of IEEE World Automation Congress, International Forum on

Multimedia and Image Processing, 2010

3 Khoury, M. and Liu, H. (in print) Recognizing 3D Human Motions using

Fuzzy Quantile Inference, Proceedings of Second International Conference

on Intelligent Robotics and Applications - ICIRA, 2010
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4 Khoury, M. and Liu, H. (in print) Extending Evolutionary Fuzzy Quali-

tative Inference to Classify Partially Occluded Human Motions, Proceed-

ings IEEE International Conference on Fuzzy Systems, World Congress on

Computational Intelligence, Spain, 2010

5 Khoury, M. and Liu, H. Boxing Motions Classification through Combining

Fuzzy Gaussian Inference with a Context-Aware Rule-Based System, Pro-

ceedings IEEE International Conference on Fuzzy Systems, pp 842-847,

Jeju island, Korea, 2009

6 Khoury, M. and Liu, H. Fuzzy Qualitative Gaussian Inference: Finding

Hidden Probability Distributions using Fuzzy Membership Functions, Pro-

ceedings IEEE Workshop on Robotic Intelligence in Informationally Struc-

tured Space, pp 12-18, Nashville, USA, 2009

7 Khoury, M. and Liu, H. Classifying 3d human motions by mixing fuzzy

gaussian inference with genetic programming, Proceedings of Second In-

ternational Conference on Intelligent Robotics and Applications - Lecture

Notes in Artificial Intelligence, Springer, Volume 5928, pp 55-56, 2009

8 Khoury, M. and Liu, H. Mapping Fuzzy Membership Functions to Normal

Distributions to Understand Boxing Motions, Proceedings UK National

Workshop on Computational Intelligence, pp 1-6, Sept 10-12, Leicester,

UK, 2008

∙ Submitted Work (Journal Article)

9 Khoury, M. and Liu H. , Inferencing Constrained 3D Human Motion, IEEE

Transactions on Fuzzy Systems.
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