13 research outputs found

    Rejuvenating C++ Programs through Demacrofictation

    Get PDF
    As we migrate software to new versions of programming languages, we would like to improve the style of its design and implementation by replacing brittle idioms and abstractions with the more robust features of the language and its libraries. This process is called source code rejuvenation. In this context, we are interested in replacing C preprocessor macros in C++ programs with C++11 declarations. The kinds of problems engendered by the C preprocessor are many and well known. Because the C preprocessor operates on the token stream independently from the host language’s syntax, its extensive use can lead to hard-to-debug semantic errors. In C++11, the use of generalized constant expressions, type deduction, perfect forwarding, lambda expressions, and alias templates eliminate the need for many previous preprocessor-based idioms and solutions. Additionally, these features can be used to replace macros from legacy code providing better type safety and reducing software-maintenance efforts. In order to remove the macros, we have established a correspondence between different kinds of macros and the C++11 declarations to which they could be trans- formed. We have also developed a set of tools to automate the task of demacrofying C++ programs. One of the tools suggest a one-to-one mapping between a macro and its corresponding C++11 declaration. Other tools assist in carrying out iterative application of refactorings into a software build and generating rejuvenated programs. We have applied the tools to seven C++ libraries to assess the extent to which these libraries might be improved by demacrofication. Results indicate that between 52% and 98% of potentially refactorable macros could be transformed into C++11 declarations

    Towards Improving Interface Modularity in Legacy Java Software through Automated Refactoring

    Full text link
    The skeletal implementation pattern is a software design pattern consisting of defining an abstract class that provides a partial interface implementation. However, since Java allows only single class inheritance, if implementers decide to extend a skeletal implementation, they will not be allowed to extend any other class. Also, discovering the skeletal implementation may require a global analysis. Java 8 enhanced interfaces alleviate these problems by allowing interfaces to contain (default) method implementations, which implementers inherit. Java classes are then free to extend a different class, and a separate abstract class is no longer needed; developers considering implementing an interface need only examine the interface itself. We argue that both these benefits improve software modularity, and discuss our ongoing work in developing an automated refactoring tool that would assist developers in taking advantage of the enhanced interface feature for their legacy Java software

    The Love/Hate Relationship with the C Preprocessor: An Interview Study

    Get PDF
    The C preprocessor has received strong criticism in academia, among others regarding separation of concerns, error proneness, and code obfuscation, but is widely used in practice. Many (mostly academic) alternatives to the preprocessor exist, but have not been adopted in practice. Since developers continue to use the preprocessor despite all criticism and research, we ask how practitioners perceive the C preprocessor. We performed interviews with 40 developers, used grounded theory to analyze the data, and cross-validated the results with data from a survey among 202 developers, repository mining, and results from previous studies. In particular, we investigated four research questions related to why the preprocessor is still widely used in practice, common problems, alternatives, and the impact of undisciplined annotations. Our study shows that developers are aware of the criticism the C preprocessor receives, but use it nonetheless, mainly for portability and variability. Many developers indicate that they regularly face preprocessor-related problems and preprocessor-related bugs. The majority of our interviewees do not see any current C-native technologies that can entirely replace the C preprocessor. However, developers tend to mitigate problems with guidelines, even though those guidelines are not enforced consistently. We report the key insights gained from our study and discuss implications for practitioners and researchers on how to better use the C preprocessor to minimize its negative impact

    Automated Refactoring of Legacy Java Software to Default Methods

    Full text link
    Java 8 default methods, which allow interfaces to contain (instance) method implementations, are useful for the skeletal implementation software design pattern. However, it is not easy to transform existing software to exploit default methods as it requires analyzing complex type hierarchies, resolving multiple implementation inheritance issues, reconciling differences between class and interface methods, and analyzing tie-breakers (dispatch precedence) with overriding class methods to preserve type-correctness and confirm semantics preservation. In this paper, we present an efficient, fully-automated, type constraint-based refactoring approach that assists developers in taking advantage of enhanced interfaces for their legacy Java software. The approach features an extensive rule set that covers various corner-cases where default methods cannot be used. To demonstrate applicability, we implemented our approach as an Eclipse plug-in and applied it to 19 real-world Java projects, as well as submitted pull requests to popular GitHub repositories. The indication is that it is useful in migrating skeletal implementation methods to interfaces as default methods, sheds light onto the pattern’s usage, and provides insight to language designers on how this new construct applies to existing software

    Automated Refactoring of Legacy Java Software to Enumerated Types

    Full text link
    Modern Java languages introduce several new features that offer significant improvements over older Java technology. In this article we consider the new enum construct, which provides language support for enumerated types. Prior to recent Java languages, programmers needed to employ various patterns (e.g., the weak enum pattern) to compensate for the absence of enumerated types in Java. Unfortunately, these compensation patterns lack several highly-desirable properties of the enum construct, most notably, type safety. We present a novel fully-automated approach for transforming legacy Java code to use the new enumeration construct. This semantics-preserving approach increases type safety, produces code that is easier to comprehend, removes unnecessary complexity, and eliminates brittleness problems due to separate compilation. At the core of the proposed approach is an interprocedural type inferencing algorithm which tracks the flow of enumerated values. The algorithm was implemented as an open source, publicly available Eclipse plug-in and evaluated experimentally on 17 large Java benchmarks. Our results indicate that analysis cost is practical and the algorithm can successfully refactor a substantial number of fields to enumerated types. This work is a significant step towards providing automated tool support for migrating legacy Java software to modern Java technologies

    30 Years of Software Refactoring Research:A Systematic Literature Review

    Full text link
    Due to the growing complexity of software systems, there has been a dramatic increase and industry demand for tools and techniques on software refactoring in the last ten years, defined traditionally as a set of program transformations intended to improve the system design while preserving the behavior. Refactoring studies are expanded beyond code-level restructuring to be applied at different levels (architecture, model, requirements, etc.), adopted in many domains beyond the object-oriented paradigm (cloud computing, mobile, web, etc.), used in industrial settings and considered objectives beyond improving the design to include other non-functional requirements (e.g., improve performance, security, etc.). Thus, challenges to be addressed by refactoring work are, nowadays, beyond code transformation to include, but not limited to, scheduling the opportune time to carry refactoring, recommendations of specific refactoring activities, detection of refactoring opportunities, and testing the correctness of applied refactorings. Therefore, the refactoring research efforts are fragmented over several research communities, various domains, and objectives. To structure the field and existing research results, this paper provides a systematic literature review and analyzes the results of 3183 research papers on refactoring covering the last three decades to offer the most scalable and comprehensive literature review of existing refactoring research studies. Based on this survey, we created a taxonomy to classify the existing research, identified research trends, and highlighted gaps in the literature and avenues for further research.Comment: 23 page

    30 Years of Software Refactoring Research: A Systematic Literature Review

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155872/4/30YRefactoring.pd

    An approach to safely evolve preprocessor-based C program families.

    Get PDF
    Desde os anos 70, o pré-processador C é amplamente utilizado na prática para adaptar sistemas para diferentes plataformas e cenários de aplicação. Na academia, no entanto, o pré-processador tem recebido fortes críticas desde o início dos anos 90. Os pesquisadores têm criticado a sua falta de modularidade, a sua propensão para introduzir erros sutis e sua ofuscação do código fonte. Para entender melhor os problemas de usar o pré-processador C,considerando a percepção dos desenvolvedores, realizamos 40 entrevistas e uma pesquisa entre 202 desenvolvedores. Descobrimos que os desenvolvedores lidam com três problemas comuns na prática: erros relacionados à configuração, testes combinatórios e compreensão do código. Os desenvolvedores agravam estes problemas ao usar diretivas não disciplinadas, as quais não respeitam a estrutura sintática do código. Para evoluir famílias de programas de forma segura, foram propostas duas estratégias para a detecção de erros relacionados à configuração e um conjunto de 14 refatoramentos para remover diretivas não disciplinadas. Para lidar melhor com a grande quantidade de configurações do código fonte, a primeira estratégia considera todo o conjunto de configurações do código fonte e a segunda estratégia utiliza amostragem. Para propor um algoritmo de amostragem adequado, foram comparados 10 algoritmos com relação ao esforço (número de configurações para testar) e capacidade de detecção de erros (número de erros detectados nas configurações da amostra). Com base nos resultados deste estudo, foi proposto um algoritmo de amostragem. Estudos empíricos foram realizados usando 40 sistemas C do mundo real. Detectamos 128 erros relacionados à configuração, enviamos 43 correções para erros ainda não corrigidos e os desenvolvedores aceitaram 65% das correções. Os resultados de nossa pesquisa mostram que a maioria dos desenvolvedores preferem usar a versão refatorada,ou seja,disciplinada do código fonte,ao invés do código original com as diretivas não disciplinadas. Além disso,os desenvolvedores aceitaram 21 (75%) das 28 sugestões enviadas para transformar diretivas não disciplinadas em disciplinadas. Nossa pesquisa apresenta resultados úteis para desenvolvedores de código C durante suas tarefas de desenvolvimento, contribuindo para minimizar o número de erros relacionados à configuração, melhorar a compreensão e a manutenção do código fonte e orientar os desenvolvedores para realizar testes combinatórios.Since the 70s, the C preprocessor is still widely used in practice in a numbers of projects, including Apache,Linux ,and Libssh, totail or systems to different platforms and application scenarios. In academia,however, the preprocess or has received strong critic is msinceatl east the early 90s. Researchers have criticized its lack of separation of concerns, its proneness to introduce subtle errors, and its obfuscation of the source code. To better understand the problems of using the C preprocessor, taking the perception of developers into account, we conducted 40 interviewsandasurveyamong 202 developers. We found that developers deal with three common problems in practice: configuration-related bugs, combinatorial testing, and code comprehension. Developers aggravate these problems when using undisciplined directives (i.e., bad smells regarding preprocessor use), which are preprocessor directives thatdo notrespect thesyntactic structureof thesource code. To safely evolve preprocessor based program families, we proposed strategies to detect configuration-relatedbugs and bad smells, and a set of 14 refactorings to remove bad smells. To better deal with exponential configuration spaces, our strategies uses variability-aware analysis that considers the entire set of possible configurations, and sampling, which allows to reuse C tools that consider only one configuration at a time to detect bugs. To propose a suitable sampling algorithm, we compared 10 algorithms with respect to effort (i.e., number of configurations to test) andbug-detection capabilities (i.e.,numberofbugs detected in the sampled configurations). Based on the results, we proposed a sampling algorithm with an useful balance between effort and bug-detection capability. We performed empirical studies using a corpus of 40 C real-world systems. We detected 128 configuration-related bugs, submitted 43 patches to fix bugs not fixed yet, and developers accepted 65% of the patches. The results of our survey show that most developers prefer to use the refactored (i.e., disciplined) version of the code instead of the original code with undisciplined directives. Furthermore, developers accepted 21 (75%) out of 28 patches submitted to refactor undisciplined into disciplined directives. Our work presents useful findings for C developers during their development tasks, contributing to minimize the chances of introducing configuration-related bugs and bad smells, improve code comprehension, and guide developers to perform combinatorial testing

    Erstellung und Evaluation eines Verfahrens zur Messung von Redundanz anhand von Tokenzerlegung

    Get PDF
    Die vorliegende Arbeit beschäftigt sich mit der Frage, wie verschiedene Arten von Redundanz gemessen werden können und wie sich die Entfernung dieser Redundanzen auf die Größe des Quellcodes auswirkt. Des Weiteren wird untersucht, inwieweit verschiedene Programmierkonzepte und Features einen Einfluss auf Redundanzminderung besitzen. Zu diesem Zweck wird zunächst eine Literaturstudie durchgeführt. Weiterhin wird eine Definition von intrinsischer Redundanz eingeführt. Zudem werden verschiedene Messverfahren analysiert und darauf basierend wird ein Verfahren zur Messung von Redundanz anhand der Tokenzerlegung erstellt. Für die Untersuchung der Redundanz des Quellcodes sowie die Auswirkung der Verwendung von Programmierkonzepten und Features auf die Redundanz, wird ein Experiment anhand eines mehrteiligen Code Korpus mit funktional identischen Code Paaren durchgeführt. Zunächst wird dazu die bereinigte Tokenanzahl der Code Fragmente gemessen, ohne dass ein bestimmtes Konstrukt verwendet wurde. Diese Messwerte werden dann mit den Messwerten der Code Fragmente verglichen, in denen das betreffende Konstrukt angewendet wird. Es hat sich dabei gezeigt, dass es bestimmte Sprachkonstrukte gibt, die eine redundanzmindernde Wirkung besitzen. Für verschiedene Konstrukte zeigte sich außerdem, dass ihre Verwendung erst ab einer bestimmten Anzahl oder Größe der zu ersetzenden Code Fragmente, eine redundanzmindernde Wirkung aufweist
    corecore