
REJUVENATING C++ PROGRAMS THROUGH DEMACROFICATION

A Thesis

by

ADITYA KUMAR

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Bjarne Stroustrup
Committee Members, Gabriel Dos Reis

Guergana Petrova
Department Head, Duncan M. (Hank) Walker

December 2012

Major Subject: Computer Science

Copyright 2012 Aditya Kumar

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/13643121?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

As we migrate software to new versions of programming languages, we would like

to improve the style of its design and implementation by replacing brittle idioms

and abstractions with the more robust features of the language and its libraries.

This process is called source code rejuvenation. In this context, we are interested in

replacing C preprocessor macros in C++ programs with C++11 declarations.

The kinds of problems engendered by the C preprocessor are many and well

known. Because the C preprocessor operates on the token stream independently

from the host language’s syntax, its extensive use can lead to hard-to-debug seman-

tic errors. In C++11, the use of generalized constant expressions, type deduction,

perfect forwarding, lambda expressions, and alias templates eliminate the need for

many previous preprocessor-based idioms and solutions. Additionally, these features

can be used to replace macros from legacy code providing better type safety and

reducing software-maintenance efforts.

In order to remove the macros, we have established a correspondence between

different kinds of macros and the C++11 declarations to which they could be trans-

formed. We have also developed a set of tools to automate the task of demacrofying

C++ programs. One of the tools suggest a one-to-one mapping between a macro

and its corresponding C++11 declaration. Other tools assist in carrying out iter-

ative application of refactorings into a software build and generating rejuvenated

programs. We have applied the tools to seven C++ libraries to assess the extent to

which these libraries might be improved by demacrofication. Results indicate that

between 52% and 98% of potentially refactorable macros could be transformed into

C++11 declarations.

ii

ACKNOWLEDGEMENTS

First of all I would like to thank my advisor Dr. Bjarne Stroustrup for giving me

this opportunity to do research under his guidance. He introduced to me the tech-

niques of replacing macros with C++ declarations and provided suitable guidance to

help me pursue this line of research. Of significant importance is the financial sup-

port by “Fujitsu Laboratories of America”, that helped me devote sufficient time to

complete this research in time. I would like to thank rest of my committee members,

Dr. Gabriel Dos Reis and Dr. Guergana Petrova, for providing invaluable feedback

and supporting me through out my research work.

Right from the day one, I got the help of Andrew Sutton. This thesis work would

not have been possible without his support. My style of programming and technical

writing continues to be influenced by his. He also proofread and helped me organize

this thesis work. I would like to continue to collaborate with him in the future.

I owe special thanks to Dr. Lawrence Rauchwerger for teaching the course on

Compiler Design which has significant impact on the design of tools during my re-

search work. I would like to thank other faculty and staff members of Computer

Science department for making it a great place to pursue research. I would also like

to thank Abe, Michael and Yuriy for their help.

Most importantly, I would like to thank my family members – Mummy, Papa,

Suryansh, Lala and Nandini – who are so close no matter how far, for their uncon-

ditional love and support.

Finally, I would like to thank God for making me fortunate enough to work with

great people around me.

iii

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

TABLE OF CONTENTS . iv

LIST OF FIGURES . viii

LIST OF TABLES . ix

1. INTRODUCTION . 1

1.1 Motivation . 2

1.2 Research overview and contributions 5

1.3 Summary . 7

2. RELATED WORK . 9

2.1 Surveys of preprocessor usage . 10

2.2 Refactoring macros . 13

2.3 Macro languages . 17

2.4 Summary . 19

3. CLASSIFYING MACROS . 21

3.1 Basic terms related to preprocessor directives 21

3.2 Classification of macros . 24

3.3 Classification criteria . 26

3.3.1 Syntactic nature of the macro bodies 26

3.3.2 Presence of free variables in the macro bodies 28

3.3.3 Contents of conditional directives 29

3.4 Classification results . 30

3.5 Macro classification . 31

iv

3.5.1 Empty macro . 32

3.5.2 Expressions alias . 32

3.5.3 Type alias . 34

3.5.4 Parameterized expression . 34

3.5.5 Parameterized type alias . 35

3.6 Summary . 36

4. ANALYSIS OF MACROS . 37

4.1 Dependency analysis . 37

4.2 Using C preprocessor conditionals to isolate program text 40

4.3 Summary . 43

5. MAPPING MACROS TO C++ DECLARATIONS 44

5.1 Object-like macros . 46

5.2 Function-like macros . 49

5.3 Special cases . 57

5.3.1 Function within a function . 57

5.3.2 Macros used to create dynamic scoping 59

5.3.3 Macro referencing variables in a different scope 60

5.3.4 Problems with the const-ness of function 63

5.4 Examples . 64

5.5 Summary . 71

6. IMPLEMENTATION . 72

6.1 Design of the cpp2cxx framework . 72

6.1.1 cpp2cxx-suggest . 74

6.1.2 cpp2cxx-validate . 77

6.1.3 cpp2cxx-finalize . 79

6.2 Performance measures . 80

6.2.1 Time complexity . 80

6.2.2 Space complexity . 83

v

6.3 Summary . 83

7. RESULTS AND EVALUATION . 84

7.1 Automatic demacrofication . 84

7.2 Single system case study . 85

7.2.1 Macros as local functions . 86

7.2.2 Macros involving member variables 86

7.3 Automatic demacrofication with validation 88

7.4 Limitations . 90

7.4.1 Incorrect type inference . 90

7.4.2 Macros defining string literals 91

7.4.3 Macros defined from the command line 91

7.4.4 Macros modifying control flow of a program 91

7.4.5 Replacing partial macros . 92

7.4.6 Parsing macro bodies . 92

7.4.7 Moving the translated declaration in same file 92

7.4.8 Moving the translated declaration in between files 93

7.4.9 Analysis of dependent macros 93

7.4.10 Dependent macros not in topological order 93

7.4.11 Formatting . 94

7.4.12 Scope of macros . 94

7.4.13 Nested macros at the use site 95

7.5 Summary . 95

8. CONCLUSION AND FUTURE WORK 96

REFERENCES . 98

A. ALTERNATIVES TO COMMON C PREPROCESSOR IDIOMS 104

A.1 Facility to organize source code in separate files 104

A.2 Code generation . 104

A.3 Ability to generate tokens . 105

vi

A.4 Higher order functional-programming 106

A.5 Managing portability and configuration using conditionals 108

B. ALGORITHMS . 109

vii

LIST OF FIGURES

FIGURE Page

1.1 Possible macro substitutions vs. legal substitutions. 2

1.2 The demacrofication process. 6

4.1 Macro dependency graph of the CEL macro. 38

4.2 Abstract representation of preprocessor conditionals. 42

5.1 Decision process for macro translation. 45

6.1 The cpp2cxx framework. 73

6.2 The cpp2cxx-suggest framework. 74

6.3 The cpp2cxx-validate framework. 78

B.1 Algorithm to carry out the translation of macro. 110

viii

LIST OF TABLES

TABLE Page

3.1 Classification of macros . 31

5.1 Possible transformations for different program elements 46

6.1 Time taken to run tools . 81

7.1 Results after running the cpp2cxx-suggest tool 85

7.2 Results after validation . 89

ix

1. INTRODUCTION

As we migrate software to new versions of programming languages, we would like

to improve the style of its design and implementation by replacing brittle idioms and

abstractions with the more robust features of the language and its libraries. Using

new language features and libraries we can improve readability (hence maintainabil-

ity), reliability, and performance. We refer to this kind of program modification as

source code rejuvenation [1]: a one-time modification to source code that replaces

deprecated language and library features, and programming idioms with modern

code.

In this context, we are interested in replacing C preprocessor macros with new

features and idioms in the C++11 programming language. The presence of C pre-

processor macros presents many obstacles for C/C++ programmers and software

maintenance tools [2–4]. Because the C preprocessor operates on the token stream

independently from the host language’s syntax, its extensive use can result in a

number of unintended consequences. Bugs resulting from these conflicts can lead

to hard-to-debug semantic errors. Program analysis tools (e.g., debuggers, profilers

and other cross-reference tools) are faced with the non-trivial task of maintaining

mappings between abstractions in non-preprocessed code with those in the eventual

translation unit [5].

In the C-family of languages there has been an effort to limit the use of unstruc-

tured preprocessor constructs. Java has none, C# limits preprocessing to conditional

configuration, D replaces common preprocessor uses with different kinds of declara-

tions (e.g., version), and most modern C++ coding standards ban “clever” or ad

hoc usage of the C preprocessor [2, 6–8]. In C++, the number of reasonable uses

1

Figure 1.1: A comparative view of possible macro substitutions vs. legal substitu-
tions.

of the C preprocessor decreases with every major revision of the language. By us-

ing C++11 features like generalized constant expressions, type deduction, perfect

forwarding, lambda expressions, and alias templates [9], we can avoid using many

previous macro-based idioms and solutions. Additionally, these new features can be

used to replace macros from legacy code providing better type safety and reducing

software-maintenance efforts. We develop techniques and tools to replace macros

with C++11 declarations using these features.

1.1 Motivation

Macros are sources of errors because their substitutions are not subject to the

execution model of C/C++ [3, 10]. The substitution of macros takes place at the

token level, meaning the compiler does not have any knowledge of the abstraction

they provide within the program. Even if macros have been correctly used in the

program, there is always a chance of their misuse in future because their substitution

cannot be precisely explained with the help of language grammar (Figure-1.1).

In the case of software where the macro usage and its caveats are undocumented

2

is specially error prone. In such a case bugs may arise in the future if programmers

with little experience with the software try to modify the source code affected by

macros. For example:

#define MAX(X,Y) (((X)>(Y))?(X):(Y))

This archetypal macro usage works perfectly fine until it is invoked with ar-

guments having side-effects; it will then duplicate the side-effect and could cause

unexpected program behavior. For example:

int i = 0, j=1;

int k = MAX(i++,j++);

//compiler sees int k = (((i++)>(j++))?(i++):(j++));

There are several other macro pitfalls which is why most coding standards ban

“clever” or ad hoc usage of the C preprocessor [2, 6–8]. Spuler et al. and Ernst

et al. present several macro pitfalls in their study. Spuler et al. consider a macro

usage as erroneous if it is neither used to imitate function calls nor used as symbolic

constants [11]. Ernst et al. provide a broader definition of erroneous macros. They

consider a macro usage as erroneous “... if its functionality could be achieved by a

C function, but, in some contexts, the macro behaves differently than that function

would.” [3].

After studying the use cases of more than thirty five thousand macros in programs

spanning over 1.5 million lines of code (see Table-3.1 on p. 31), and their pitfalls

we conclude that it is best to avoid using them unless it is absolutely required.

Stroustrup says, “The first rule about macros is: Don’t use them if you don’t have

to. Almost every macro demonstrates a flaw in the programming language, in the

program or in the programmer.” [12].

The presence of C preprocessor macros in C++ programs also affects the capa-

3

bilities of program analysis tools [4]. There are three different ways by which the

tools deal with the C preprocessor. They may ignore the preprocessor, operate on

preprocessed code, or transmit the C preprocessor information in the parse tree [3].

Tools that ignore the preprocessor can only be used to obtain approximate infor-

mation about the program. For example: pattern matching tools in the text-editors

like, vim and emacs are preprocessor agnostic. Those operating on preprocessed

program are also enfeebled by the fact that they cannot interpret preprocessor ab-

stractions in the final program; compilers and debuggers come under this category.

They can only reason about one particular preprocessed version of the program with

specific settings (with respect to macro definitions and conditional compilation).

Lastly, the tools which permit source code analysis in presence of macros are

useful for maintaining and evolving C++ programs. These tools maintain a mapping

between non-preprocessed code and preprocessed code in order to reason about the

abstractions provided by macros in the program. Some tools in this category provide

refactoring on preprocessor directives [13–15], others detect potential errors due to

macro usage [5, 11, 16]. Although these tools provide facilities that make reasoning

about the program easier in the presence of macros, they do not remove macros; this

keeps the programs with macro usage susceptible to bugs in future.

Effectively, program analysis tools which could assist programmers in removing

or suggesting alternative idioms to macros, are lacking. In fact, the techniques to

minimize macro usage exists mostly in text-books and style guides [2, 6–8]. This is

because it is not possible, in principle, to reason about macros with guarantees. Using

syntax based macros, in principle, can provide facilities similar to C preprocessor

along with syntactic safety [17,18]. However, this approach is only academic because

the migration from C preprocessor to a syntax-based macro language is impractical

for overly popular programming languages like C and C++.

4

Therefore, it is important that macro usage be minimized from C++ programs.

By replacing macros with C++11 declarations, the behavior of the program im-

proves because language abstractions make information explicit—to programmers,

compilers, and other program analysis tools—that remains obscure with macro us-

age. Further, program analysis tools are able to assist users in carrying out software

maintenance tasks with better guarantees and additional transformations because

macro usage limits the capabilities of these tools infer certain properties from pro-

grams [4, 15,19–21].

It should be noted that replacing macros with language declarations improves

the maintainability of programs. It helps in adaptive maintenance [22]; since

the future uses of macros (defined in the program) do not have a well defined scope

(Figure-1.1), thus, removing them prevents future bugs due to the misuse of de-

fined macros. It also helps in preventive maintenance [22] because removing

the macros with language constructs increases the type-information which simplifies

program comprehension for programmers and tools.

In the next section we describe our approach to cope with the C preprocessor

macros and to what extent we were able to remove macros from C++ programs.

1.2 Research overview and contributions

This research work is an initiative to develop tools to replace a large number

of macros from C++ programs in an automatic/assisted way. We attempt to cope

with the macros in C++ programs by elevating macro definitions to equivalent C++

declarations. We define the term demacrofication as a process of removing macros

from C++ programs by replacing them with corresponding C++11 declarations and

leaving the program in a valid state (Figure-1.2).

A high level overview of demacrofication is shown in Figure-1.2. The process

5

begins with an initial version of the source code, which contains macros, and ends

with a final version in which macros have been replaced by C++11 declarations.

Original
Source code

Intermediate
source code

suggest Final
Source code

finalize

validate

Figure 1.2: The demacrofication process.

There are three phases of demacrofication:

1. Identify the complete set of macros that can feasibly be replaced with C++11

declarations.

2. Refine that set to only those transformations that produce valid builds.

3. Produce a final, working version of the program.

The process is similar to how a programmer might manually perform this task:

find a macro, replace it with a declaration, and rebuild the program to ensure that

the change does not break the build.

In order to remove the macros, we have established a correspondence between

different kinds of macros and the C++11 declarations to which they could be trans-

formed. We have also developed a set of tools to automate the task of demacrofying

C++ programs. One of the tools suggest a one-to-one mapping between a macro

and its corresponding C++11 declaration. Other tools assist in carrying out iter-

ative application of refactorings into a software build and generating rejuvenated

programs. We have applied the tools to seven C++ libraries to assess the extent to

which these libraries might be improved by demacrofication. Results indicate that

between 68% and 98% of potentially refactorable macros could be transformed into

C++11 declarations.

The following are major contributions of this research:

6

• A novel categorization of macros based on completeness and dependence of

replacement text, and how they relate to C++11 expressions.

• An automated decision process to identify macros which could potentially be

replaced, and a one-to-one mapping between potentially replaceable macros

and corresponding C++ declarations.

• Tools to suggest possible transformations and assist in automating the source

code rejuvenation process. The cpp2cxx framework is a working prototype

that assists in carrying out the task of demacrofication [23].

• Experimental results to validate and justify the effectiveness of our approach.

1.3 Summary

In this chapter we discussed why macros are not as necessary in C++ programs

as they are in C programs. We described how extensive macro usage deteriorates

the type safety and limits the software maintainability of programs, and motivated

the need to remove the macros from C++ programs. We pointed out why it is not

feasible to adopt other macro based languages and hence, justified the worthiness of

our work. We gave an overview of the process of demacrofication and the tools we

developed to assist programmers demacrofy legacy C++ programs. We highlighted

major contributions of our work and the usefulness of demacrofication tools in evolv-

ing legacy C++ programs. We explained that demacrofication of programs is also

helpful from the perspective of software engineering.

In the next Chapter-2, we digress a little to get an idea of the approaches proposed

to cope with the preprocessor directives in the past. The literature survey establishes

the fact that coping with C preprocessor macros has been a non-trivial task. We

explain why previous approaches are insufficient to provide a feasible alternative to

7

macro usage on a case by case basis. In Chapter-3 we describe the categorization

of macros, and in Chapter-4 we present a couple of analyses which helps refine the

selection of potentially demacrofiable macros. The concepts developed in Chapters 3

and 4 are used in formulating mappings between macros and C++11 declarations in

Chapter-5. After that we introduce the cpp2cxx framework that we developed to

carry out the task of demacrofication in Chapter-6. The extent to which macros were

removed as a result of applying our demacrofication tools is presented in Chapter-7

and we conclude in Chapter-8.

8

2. RELATED WORK

There have been many studies of the use of C preprocessor in C and C++ pro-

grams. In C++, the number of reasonable uses of the C preprocessor decreases with

every major revision of the language. In C++11, the introduction of generalized

constant expressions, type deduction, perfect forwarding, lambda expressions, and

alias templates eliminate the need for many previous macro-based idioms and solu-

tions. However Sutton et al. speculated that it would not be possible to completely

eliminate macro usage [24]. The literatures that address the issues related to macros

and C preprocessor in general, can be classified into three broad categories.

1. Surveys of C preprocessor usage: In this category we include the research works

which focus on studying the practical usage of macros in C/C++ programs.

The studies include finding patterns in the usage of macros and conditionals,

erroneous macros, different alternatives that can be used instead of macros.

Relevant papers are [3, 24,25].

2. Refactoring Macros: Some research works focus on building refactoring browsers

for macro based languages. The refactoring browsers emulate the C prepro-

cessor in order to facilitate the desired refactorings. They study problems

encountered, during various refactorings, due to the presence of macros e.g.,

variable renaming etc. Relevant papers are [14–16,26].

3. Macro Languages: In order to address macro pitfalls, some researches advocate

the usage of syntax macros in C/C++. This would make the macro language

more powerful and would make the representation of macros in the Abstract

Syntax Tree (AST) possible. Relevant papers are [17, 18, 27]. The idea of

9

replacing the C preprocessor with a syntax macro based language has a ma-

jor drawback that it requires the modifications in the language grammar to

represent macros in the AST.

We now study several research works in each category and associate their work

in the current context. We specifically focus on different approaches taken to remove

macro pitfalls.

2.1 Surveys of preprocessor usage

Ernst et al. analyzed the preprocessor usage among a large number of contem-

porary software [3]. They were one of the first to examine practical programs to

determine the obstacles to program understanding in the presence of C preprocessor.

They identified common macro pitfalls. Based on their analysis they found patterns

in the usage of macro bodies and characterized macros into 28 different categories.

The taxonomies of macro bodies were based on three broad parameters.

1. Structure of macros in terms of the C language grammar.

2. Frequency of macro usage.

3. Context of macro usage.

The results in paper suggests that 42% of all the macros had replacement texts

which were constants, 33% were expressions, 5.1% were statements and 2.1% were

types. If we can find a one to one correspondence between the macro bodies and C++

declarations then it would be possible to translate around 80% of macros into valid

C++ constructs. This is an approximate figure because macros bodies may reference

free variables, create dynamic scopes, have out of order dependencies. However, these

results were very important to motivate our effort to eliminate macro usage.

10

Mennie and Clarke specified that the problems encountered while refactoring

C/C++ programs are due to the intermixing of two independent languages (C/C++

and C preprocessor) in a program [25]. The idea presented in the paper was to

replace macros with equivalent language constructs. Their work was similar in spirit,

although we have a much higher conversion ratio. They classified the macros into

about two dozen categories based on the styles of macro usage. Our approach towards

the classification is different from theirs, that during the classification process, we

are only interested in the kinds of macros that could eventually be replaced.

The paper argued that even when macros are mostly used for simple tasks it is

non trivial to get rid of them because of different language scoping rules and lack

of strong typing for the macros. It seems there are more reasons, such as pass by

name semantics for function-like macros, facility of lexical manipulation of tokens,

and lack of rules for linear ordering between definition and usage.

One of the important speculations of this paper was the case when a macro is

used for more than one type. They speculated that some transformation could be

done using C++ templates. Although they might not have anticipated C++11 [9]

features like generalized constant expressions and rvalue-references. Our refactoring

for function-like macros is template based and uses type inference facility of C++11

(i.e., auto and decltype).

Since the macros obey different scoping rules it might be possible that, after

demacrofication, the macro invocation points are no longer in the scope of the trans-

formed macro. Mennie et al. discussed about where to place the translated con-

structs [25]. Should it be placed at the original place of definition? should it be

placed near to the first usage, or should it be placed at the point of least common

ancestor (LCA)? Each approach has its advantages and drawbacks. They do not try

to migrate the transformed macro unless it is required, for example:

11

float circumference()

{

#define R 10;

#define PI 3.14

return 2*PI*R;

}

float area()

{ return PI*R*R; }

To figure out the placement of declaration to be migrated, they constructed a

block dependency graph. Briefly, the idea was to look at the first usage and trace

backwards in the file where the migrated declaration can be legally placed. In the

results that they present for the Vim , their approach required significant number of

movements but very few in Nethack . After the macro has been moved to a preceding

location with respect to the original definition, it has to be checked whether there are

any name conflicts. One drawback of this approach is that, if there are significant

number of movements, the organization the code will differ considerable from the

original.

Our approach is slightly different from theirs. First, we do not move macros to

a preceding location in the case of overlapping scope. However, there are situations

where it is required to migrate the declaration to a different location. For example,

when there is a function-like macro which is defined inside a function, our method of

demacrofication requires the transformed construct to be placed at a place where the

scope of all the variables inside its body intersects. Another situation would be when

a macro accesses a member variable of class and is defined outside the scope of the

class. Here also it is not possible to get the type information and access privileges

12

to a member variable of class if the transformed construct is kept outside the scope

of a class.

Mennie et al. also present issues related to the migration of transformed declara-

tion to appropriate locations. One of the issues relates to the placement of comments

when a macro is moved. We try to address the issue to some extent. During the

parsing process the comments which are within the body of macro are kept as part

of the replacement text and are written as a part of the demacrofied construct. This

is a general observation that comments related a macro tend to be within the body

of the macro, so even the movement of demacrofied constructs has little effect on the

maintainability aspects of a software.

One of the most important usages of C preprocessor is to achieve portability

across various platforms. Sutton et al. describe techniques for building portable

software by examining three heavily ported and widely used C++ libraries. QtGUI

Toolkit, ACE, and Boost C++ libraries [24]. It identifies techniques that are used

to achieve portability like: use of logical namespaces, replaceable and parameterized

inclusions, macro-level compiler abstractions. They predicted that C preprocessor

usage would become increasingly important as new language features are added to C

and C++ programming languages. That means issues related to macro-pitfalls will

continue to increase in future. Our work aims to achieve the opposite. We want to

remove as many macros from source code as possible. However, to remove macros

that are used for portability and configuration remains an open problem.

2.2 Refactoring macros

Padioleau [14] represents another school of thought to get rid of preprocessor

pitfalls. He advocated the idea that preprocessor directives be directly represented

in the Abstract Syntax Tree of C/C++ programs. But since a macro body can, in

13

principle, represent anything from an incomplete C/C++ expression to a full C/C++

program, he tried to address the issue by extending the grammar of the language

by introducing fresh tokens. He implemented a front end (Yacfe) which represented

preprocessor directives along with other C/C++ language constructs in one parse

tree.

His approach has significant advantages from the programmer’s point of view.

First, it does not add new language features or operators. That means a programmer

does not have to learn any new feature to write the program. The second advantage

is that representing conditionals in the parse tree facilitates variability analysis by

the refactoring browsers. This would help cross platform refactoring support for

refactoring browsers using Yacfe. He analyzed and presented the results of parsing

of around 16 large open source projects with a very high success rate.

The paper of Saebjornsen et al. focused on detecting errors in the usage of

preprocessors by analyzing consistency in their usage [16]. They hypothesized that

inconsistent macros usage is a strong indicator of macro errors. And the results that

they present seem to support their claims. They described two general approaches

to counter the errors related to preprocessors. First was developing an alternative

language to C preprocessor. However, this is not feasible as there is a large amount

of C/C++ legacy code that uses the C preprocessor. The second approach was to

design analysis tools to detect incorrect preprocessor usage. Their second approach

has three alternatives which are similar to the approaches given by [3] which are (a)

ignoring the preprocessor, (b) analyzing the preprocessed code and (c) attempting

to emulate the preprocessor. They worked on the last alternative of the second

approach i.e., emulating the C preprocessor.

To detect inconsistencies in the preprocessor usage their tool generated expression

trees of the arguments of all the macro invocations of a function-like macro [16].

14

And then the expression trees were normalized. Thereafter, any inconsistency in

the structure of expression trees was a determinant of erroneous macro usage. It

seems intuitive that the approach should indeed work. The only limitation was that

it focused on a very specialized source of error of a macro usage. Even though it

detected errors with a large success rate, this is a small percentage of errors that

are possible when macros are used to their full potential [3]. Also, the paper talks

about function-like macros to a great length which is a very small percentage of total

macro usage in general. Nevertheless this concept can be implemented in refactoring

browsers to determine error related to function-like macros.

Kastner et al. presented a variability aware framework to parse code with condi-

tional compilation [28]. The framework used SAT solvers during lexing and parsing

to effectively reason about features and their relationship. The variability aware lexer

was used to construct parsers that produce AST with variability for un-preprocessed

code. This helped in detecting syntax errors as well as variability aware type check-

ing.

Spinellis presented algorithms to automatically analyze and remove identifier in-

stances in text-macro based languages [26]. One of the important contributions of

this paper was that it addressed the operation of renaming an identifier even when

the identifier is generated as a result of token-concatenation by the preprocessor.

He used the concept of token equivalence class to determine lexical equivalence and

partial lexical equivalence of tokens to facilitate renaming identifiers.

To efficiently determine the impact of a change in a specific macro definition is

difficult. Vidács et al. presented a technique to compute this [29]. They used slicing

to compute macro slices and construct a macro dependency graph (MDG). They

provided an effective way to perform impact analysis of macros but did not give

experimental results to validate their concepts.

15

This thesis of Vidács addressed the problems related to refactoring of preproces-

sor based language particularly C/C++ [30]. It provided a model of preprocessor

language elements and their relationships. The idea was to build a meta-model

Columbus Schema (a C++ schema for various re-engineering and reverse engineer-

ing tasks such as creating UML class diagrams and calculating metrics [31]) which

played a key role in fact extraction and representation process. He treated C pre-

processor as a separate language. Refactoring was carried out at model level which

was followed by the validation stage where each macro invocation point could be

examined to validate the refactoring. The model-driven approach allowed one to

carry out refactoring at the model level, including verifying the preconditions. The

refactoring framework could be used to add a parameter to the macro identifier of

object-like and function-like (including variadic) macros.

The work of Gravley et al. explained one aspect of a broader problem of object

recovery by finding set of macros used to define constants and combined them into

groups of enum types [32]. They tried to re-engineer legacy code into object oriented

language by getting rid of macros. Their work intersects with our work on the issue

of eliminating macro usage. However, our approach is completely different and is

able to eliminate a high percentage of macro usage.

Garrido et al. studied the challenges that come during the refactoring of C

programs because of the presence of C preprocessor directives [10]. They presented

a set of execution rules that would preserve correctness after refactoring. They

also addressed the computational complexity of program analysis, in the presence of

conditionals, by representing the them as nodes in the AST.

Marian Vittek designed XRefactory which provides renaming-refactorings for

C/C++ programs even in the presence of macros which exploits linguistic capabili-

ties of C preprocessor [15]. However, not all refactorings were possible in the presence

16

of macros. Even though the tool provides facilities to make reasoning about the pro-

gram easier, it does not replace the macros. That simply means that all bad things

that may happen due to the presence of macros in a program will happen (Murphy’s

law).

2.3 Macro languages

Weise and Crew [17] presented one of the earlier works to address the issues

related to macro pitfalls. They derived inspiration from lisp programming language

[33] which has powerful syntax macros since early 1960’s. Their work is important

from the historical perspective since it brought to light the researches – carried out

in 1960’s and 1970’s – supporting the use of syntactic macros to solve the software

portability problems. In addition to supporting the same idea this paper proposed

an extended version of syntax macros to be implemented in C. The idea was to

make the C preprocessor more powerful and make it a part of the C language itself;

meaning thereby to enforce parser to do type analysis on the macros as well. This

would ensure the correctness of macros according to the grammar of the language.

They introduced a set of operators, meta-declaration for syntax macros, and back-

quote operator for declaring code-template which returned an AST. Further, they

demonstrated how dynamic binding and exception handling could be done using

syntax macros. It seems this paper went a little too far in addressing issues related

to C preprocessor without considering if the solution was practically feasible or not.

The work of Willink and Muchnick [18] can be said to be an extension of the

work done by Weise and Crew [17]. It emphasized the fact that having a powerful

preprocessor would mitigate the sources of errors due to the usage of text based macro

language like C preprocessor. They introduced a Flexible Object Generator (FOG)

as an alternative to the C preprocessor. The FOG had powerful syntax macros

17

which provided an extensible meta-level facilities. They introduced new syntax,

two extra lexical operators in a framework where meta-variables replaced object-like

macros, meta-function replaced function-like macros, and meta-statements replaced

conditionals. They preserved the concatenation and stringification operations. They

identified the fact that auto keyword was almost obsolete in C++ so they tried to

reuse the auto keyword in numerous ways to declare meta-functionality like: using

outside of a function before the return type, before meta-level if statement to support

conditional compilation. For example:

auto double WEIRD_NUMBER = 70;

//expression is a meta-type

auto expression subtract(expression a, expression b)

{

//the $ symbol is used for substituting

//the value of meta-variables

$a - $b;

}

Willink and Muchnick also presented a meta-compilation model for C++ pro-

grams. The model had a meta-compilation stage before the compilation and it inte-

grated well with the compilation stage. They presented a comparative advantage of

their approaches as compared to the Weise’s [17]. One significant advantage is that

it required fewer modifications of the C++ programming language as compared to

Weise’s work. It would be desirable for C++ to have such features because but with

minimum number of changes required to achieve them.

The work of McCloskey and Brewer advocated usage of syntactic macros as an al-

ternative to the existing C preprocessor and presented an AST based macro language

18

called as ASTEC [27]. ASTEC provided all the functionalities that C preproces-

sor provides but lacked support for C++. Their work is better than the previous

two proposals advocating the usage of syntactic macros because they kept in view

following three important features:

1. Backward compatibility with C programs

2. Expressibility of all C preprocessor idioms

3. Non-expressibility of potential errors involving side-effects and precedence.

They supported variability analysis [28] by preserving both the branches of con-

ditionals in the syntax tree. The ideas presented in the paper bolstered the claims

of [17] and [18] that syntax macros are necessary to get rid of preprocessor errors.

They even provided one time semi-automatic translation to ASTEC which elim-

inated macro pitfalls. The drawback is that the migration from C preprocessor to

ASTEC would be impractical for a popular language like C.

Favre describe a new language APP which had the same semantics as C prepro-

cessor [34]. He gave a formal definition of preprocessor to help tool builders reason

about preprocessors by providing a neat framework. The main limitation of this

paper is that the grammar is not well formed, thus limited in scope.

2.4 Summary

The surveys papers (Section-2.1) presented problems related to macros and C

preprocessor in general and motivated further research to cope with them. As a

result, several style guides and literatures suggest using language constructs, instead

of macros, to provide abstractions in C++ [2,6–8].

To assist programmers and maintainers in coping with macros various refactoring

browsers provide useful refactorings for macro-based languages (Section-2.2). How-

19

ever, it does not solve the underlying problem. Our approach replaces macros with

C++11 declarations which have precise meaning with respect to the language spec-

ifications unlike macros which are set of lexical substitutions.

Finally, the idea of having a syntax based macro language seems promising be-

cause it provides a nearly complete and type-safe alternative to C preprocessor

(Section-2.3). But the approaches appear to be academic because it would be impos-

sible to replace C preprocessor in general for overly popular programming languages

like C and C++.

After analyzing various approaches taken to cope with the macros, our idea of

replacing macros with language construct—automatically and assisted—provides the

most feasible approach to cope with the macros in programs written in C++ and

the programs to be migrated from C to C++.

20

3. CLASSIFYING MACROS

In this chapter we first give a brief description of the terms related to C pre-

processor directives which are relevant in the context of this thesis. Further details

related to the terminologies associated with preprocessor directives can be found

in [9, 35, 36]. Then we provide a novel categorization of macros to help select the

ones which could potentially be replaced by C++ declarations.

3.1 Basic terms related to preprocessor directives

We use the term identifier for a macro name and replacement text or re-

placement list or macro body for the fragment of code that replaces the macro

during preprocessing. As a result a macro directive can be represented as:

#define identifier replacement-text

1. Function-like macros (parametric macros):

The macros which are used like a function call are called function like macros.

They take the arguments much like C/C++ function do. For example:

#define ABS(x) ((x) >= 0 ? (x):-(x))

One significant difference between a function-like macro and C/C++ style func-

tion call is that a function like macro without the pair of parenthesis are left

unprocessed by the preprocessor while the function name in C/C++ style func-

tion are treated as function pointers [35].

2. Object-like macros:

It is an identifier which gets replaced by a set of tokens known as replacement

text/list. The set of tokens can be empty (see cat-7) in which case the macro

21

substitution has no effect. Commonly, they are used to give symbolic name to

constants. For example:

#define MAX 100000

In this example, MAX is a object-like macro which gets replaced with 100000 at

every use site where it is invoked.

3. Conditionals:

A conditional preprocessor directive behaves similar to an if-else statement.

Altogether there are six conditional directives:

#if

#elif

#else

#ifdef

#ifndef

#endif

The conditional directive directs the preprocessor to evaluate the condition

for truth value and, depending upon the condition is true or false, a piece of

code can be included/excluded from the program. One of the common uses is

their use as include guards to avoid multiple inclusions of the header files in a

translation unit. For example:

#ifndef MYHEADERFILE_H

#define MYHEADERFILE_H

// headerfile contents

#endif // MYHEADERFILE_H

22

The conditionals are also used in various ways to manage portability and con-

figuration of software [24].

4. undef:

This is used to un-define a macro. It means that the scope of macro ends when

it is un-defined and hence no longer visible in the code occurring (lexically)

after the undef directive. For example:

#define X 10

int i = X;

#undef X

int j = X; //error!

In this example the last line would result in a compilation error stating that

the variable X is not declared in the scope of the declaration of the last line.

5. Predefined macros:

These are object-like macros predefined as environment variables etc., in the

sense that they can be directly used without defining them in the program.

They are of three kinds (standard, common and system specific). For example:

__FILE__, __LINE__, __cplusplus

For a more detailed explanation of predefined macros see [9, 35,36].

6. Multiline macros:

The syntax of C preprocessor macro allows it to be written in a single line

[9]. But sometimes, the replacement text is too long or consists of multiple

statements; writing it in a single line would deteriorate its readability. So

23

the replacement text can be split in multiple lines with the help of a line-

continuation (\) token. Such macros for which the replacement text spans

multiple lines with the help of line-continuation token are called multiline .

They can be object-like or function-like. For example:

#define OCTAL_CASES ’0’: case ’1’: case ’2’: \

case ’3’: case ’4’: case ’5’: case ’6’: case ’7’

#define decompose(a0, a1) {\

int b0, c; \

c = a0 ^ a1; \

b0 = (a0 << 24); \

a0 ^= c ^ b0; }

7. Empty Macros:

A macro with no replacement text is called an empty macro. Ernst Et al. [3]

termed such macro as null-defined . Since null has a specified meaning in

C++, it would be more appropriate to use another name and hence the term

empty macro. These kinds of macros are mainly used for configuration or

used as boolean constant in conditional directives [24]. For example:

#define MY_HEADERFILE_H

3.2 Classification of macros

There are two types of macros: object-like and function-like . But when we

study macro usage in programs, we find that it is not sufficient for program analysis

tools to stick to just these two classifications. Since the macros get substituted with

the replacement text, it is imperative for any program analysis tool to analyze the

24

replacement text and collect useful information about the context of macro usage

and reason about program in a better way.

The downside is that, the C preprocessor performs lexical substitutions with no

knowledge of the programming language due to which it is not possible, in principle,

to reason about macros with guarantees. However, the programs are written with re-

spect to some context, and hence, most of the time the replacement text reflects the

language semantics. Obviously, there are some cases where it is not at all possible to

make any reason about the replacement text in isolation. Therefore, it is reasonable

to say that the replacement text of most of the macros have relevant semantic infor-

mation. We justify this hypothesis when we present the results of our classification

of more than 35,000 macros defined across seven different C++ libraries (Table-3.1

on p. 31).

There have been attempts to classify different use cases of macros which helps

reason about their properties with respect to the program. Ernst et al. categorized

the replacement text of macros into 28 different categories. They analyzed 26 differ-

ent packages comprising of around 1.4 million lines of code [3]. Their classification

was based on three parameters. First, structures the macros represent in terms of

the C language grammar; Second, frequency of macro usage; and Third, the context

of macro usage. Mennie et al. classified macros into about two dozen categories [25].

Their taxonomy was inspired by the styles of macro usage in the software they used

for their case study. In both the classifications, many of the macro categories have

no direct correspondence with C or C++ declarations. For example, there is no way

Ernst et al.’s “syntactic” and “not C code” categories, and Mennie et al.’s “token

pasting” and “literal expressions” could be expressed in terms of C/C++ language

grammar.

Since we aim to replace macros with C++ declarations, we have a somewhat

25

restricted view of these taxonomies. In particular, we are only interested in the kinds

of macros that could eventually be replaced. To achieve this, the following parameters

serve as the classification criteria for the macros. Based on these parameters we

can decide a couple of things like: whether to transform a macro or not, if the

transformation could be carried out directly or it would require further analysis.

1. Syntactic nature of the macro bodies.

2. Presence of free variables in the macro bodies.

3. Contents of conditional directives.

We illustrate each classification criteria in detail in the next section.

3.3 Classification criteria

3.3.1 Syntactic nature of the macro bodies

The syntactic nature of a macro’s replacement text is helpful in finding out

whether it can be expressed as an abstraction in the C++ programming language.

Since macros obey lexical semantics, it is possible to express a macro as a set of

tokens which do not have any meaning in isolation as far as the grammar of pro-

gramming language is concerned. Based on this criteria the replacement text of a

macro can be classified into two categories.

If the replacement text of a macro cannot be expressed as abstraction in C then

we call that macro as partial . These types of macros are sometimes used to make

the code look more readable, concatenate or stringify tokens etc. For example:

//specifying the linkage type

#define C_MODE_START extern "C" {

#define C_MODE_END }

26

//modifying the style of coding

#define IF if (

#define THEN)

//concatenation operator

#define CONCAT(a,b) a##b

Conversely, if the replacement text of the macro can be expressed as abstraction

in C; then we call that macro as complete . For example:

//expression

#define SUM(A, B) ((A)+(B))

//compound expression

#define TWO_CALLS do { First(); Second(); }while(0)

//cast expression

#define TYPE_CHAR (char*)

Note that in the case of macro like TWO_CALLS which emulates a compound state-

ment, we relax the requirement for a terminating semicolon. This definition of a

complete macro involves an assumption that macro-dependencies are not taken

into account. Taking macro-dependencies into consideration would make it impos-

sible to make such a reasoning because C preprocessor allows token pasting etc.

Therefore, based on the definition, a complete macro could be a type-expression,

value-expression, declaration, or statement. If we consider the way the Pivot [37]

represents expressions, complete macros correspond to complete C++ AST frag-

ments.

27

3.3.2 Presence of free variables in the macro bodies

It becomes easy to reason about a macro when its replacement text does not

refer to free variables. When a macro has no dependencies it is not affected by

changes to program outside its definition. This classification establishes a guarantee

that helps in deciding whether dependency analysis should be performed or not.

There are two kinds of macros based on this criteria. A dependent macro contains

previously (system/user) defined macros or C++ keywords or any other identifier

not in its scope. In other words, dependent macros contain unbounded variables.

For example:

// __GNUC__ and __cplusplus are predefined macros

#define __GNUG__ (__GNUC__&&__cplusplus)

//MAX and MIN defined outside the scope of DIFF

#define DIFF((A),(B)) (MAX((A),(B)) - MIN((A),(B)))

//contains char - a keyword

#define TYPE_CHAR (char*)

One can argue that why C++ keywords are determinants of dependency. It

should be noted that since preprocessing is the first stage of compilation, so a pro-

grammer can redefine a keyword to something else and, as a result, it would change

the complete meaning of the re-defined keyword (with respect to the programming

language under consideration). One of the classifications of Mennie et al. i.e., key-

word redefinition, supports this argument [25].

On the other hand, a closed macro does not contains previously (system/user)

defined macros or C++ keywords or any other identifier not in its scope. In other

28

words, closed macros only contain bounded variables. Obviously, this is the opposite

of dependent macros. For example:

//integer literal

#define ARCHITECTURE 32

//string literal

#define DEVICE "COMPUTER"

//empty macros

#define MYFILE_H

//A and B are bounded

#define MIN(A,B) (((A)<(B))?(A):(B))

//a and b are in the scope of CONCAT

#define CONCAT(A,B) A##B

3.3.3 Contents of conditional directives

Macros are also used to control the conditional compilation of program text.

Ernst et al. claim that 6.5% of all macros are used in conditional directives [3],

although the numbers reported by Sutton for C++ Libraries appear to be much

higher (although not specifically reported) [24]. We say that any macro appearing

in a conditional or include directive is configurational . For example:

#ifndef MY_HEADERFILE_H

#define MY_HEADERFILE_H

...

#endif

29

#if defined(MACRO1) && defined(MACRO2)

//...

#endif

The macros MY_HEADERFILE_H, MACRO1 and MACRO2 are categorized as configura-

tional. Configurational macros are never transformed. Replacing a configurational

macro with a C++ declaration would make it invisible to the preprocessor, thus

guaranteeing a broken build.

A macro that is not configurational is non-configurational . configurational

macros may or may not be empty (Section-3.1).

3.4 Classification results

The three classification criteria described are orthogonal to each other. By com-

bining the first two classification criteria one can have macros that are complete-

dependent, complete-closed, partial-dependent and, partial-closed . The

complete-closed macros are easier to replace than those of other categories. In

many cases they can be replaced even without looking at their use cases. The macros

which are complete-dependent , calls for further analysis (dependency, scope etc.).

Based on the analysis results, some of these can also be transformed as described

later. The classification of macros based on the classification criteria is presented in

Table-3.1

In all the libraries except Cryptopp, majority of macros are complete-closed,

meaning it is possible to replace a large percentage of macros from the program.

The results in this table also support our claim made earlier in this chapter that

majority of the macros have relevant semantic information.

30

Table 3.1: Classification of macros

Preserved Complete

Package Name KSLOC Total Empty Partial Closed Dependent
(NCNB) 1 Macros Macros Macros

Cryotopp-5.6.1 55 1020 164 240 142 474
p7zip-9.20.1 96 1098 284 119 660 35
scintilla-3.0.4 66 2694 52 15 2588 39
poco-1.4.3p1 144 2564 889 305 857 513
facebook-hiphop2 687 8159 1099 3092 2822 1146
wxWidgets-2.9.3 741 19262 2483 1923 11223 3633
ACE-6.0.6 151 5969 3227 613 1587 542

1 NCNB = Non-Comment, Non-Blank (C/C++ files only) [38];
2 git-5325f9a25ed380f687864f6e1f6d7b88185d108e (Aug-17, 2012)

3.5 Macro classification

In order to provide a one-to-one mapping between macros and C++11 declara-

tions we categorize macros by leveraging classification criteria described above and

additionally how those macros might be represented as elements of a C++ program.

To facilitate the mapping of macros to C++11 declarations, we consider the pro-

gramming elements of C++ abstractly, in terms of IPR [37]. IPR is a complete,

efficient, and hierarchical representation of the C++ language. In contrast to a typi-

cal compiler’s AST, IPR represents only the internal elements of the language, not its

external syntax. In IPR, nearly every kind program element is an expression; names,

literals, types, and statements are different kinds of expressions. A declaration is a

kind of statement, examples of which include classes, functions, and variables.

The reason for using IPR as a reference model in this context is that it provides

a framework for classifying different kinds of expressions that might be found in the

replacement text of macros. We do not actually use IPR as a physical artifact in

our implementation. Our classification of macros with program elements is simply

motivated by IPR’s design.

31

For example, the SUM macro given as an example previously, (see-3.3.1), can

easily be represented as a binary ‘+’ expression whose arguments are parenthesis

expressions, each of which contains name (also an expression in IPR).

Obviously, there are macros that map to syntax that cannot be represented as

a C++ node in IPR; these are the partial macros described before. Macros whose

replacement text includes token pasting, stringification, code snippets, and built-in

macros (e.g., __FILE__) are not represented in our classification because they are not

C++.

We classify the macros into following five different categories.

3.5.1 Empty macro

An empty macro is one whose replacement text is an empty token sequence. For

example:

#define ASSERT(expr)

This ASSERT macro expands to an empty sequence of tokens, effectively removing

expr from the translation. We consider empty macros to be complete, since they can

be represented as an empty statement. Obviously, the macros is also closed. While

empty macros are generally used for configuration, they are occasionally used to

“no-op” expressions for some configurations. Removing assertions for release builds

is a common practice.

3.5.2 Expressions alias

An expression alias is a macro whose replacement text can be recognized as a

C++ expression (but not a declaration or a type). The macro may be dependent

or closed . The macros with no free variables (i.e., closed) will expand to literals.

The notion of literal types is new in C++11 and includes scalar types, reference

32

types, and classes that can be constexpr initialized. For example:

//complete-closed

#define PI 3.14

#define SEVEN 3 + 4

#define FILENAME "header.h"

//complete-dependent

#define PRINT printf

#define SUM a + b

#define self this

Note that the string "header.h" has literal type because its type, const char* is

considered a scalar type.

The replacement text of PRINT, SUM and self contain free variables, or identifiers

that are not declared as macro parameters. Also, note that other classification

schemes would have labeled the self macro as something other than an expression

because it provides a keyword alias [3,25]. However, this is also expression, referring

to an implicit argument of member functions. The fact that the expression is named

by a keyword is immaterial.

One can easily determine if a macro’s replacement text has literal type when it is

closed. To determine whether a dependent macro expands to literals is non-trivial

because of following reasons.

1. It macro may refer to a macro which generates tokens.

2. Its dependencies may span across multiple files.

3. It may have cyclic dependencies.

33

4. The dependencies may refer to program variables in which case it requires

traversing the parse tree of the program.

There are often cases, where identifiers referenced in expression aliases are defined

by other macros. For example:

#define PI 3.14

#define RADIUS 10

#define AREA_CIRCLE PI * RADIUS * RADIUS

In this example the macro AREA_CIRCLE depends upon macros PI and RADIUS.

This special case is interesting because it is possible to transform these macros with

additional information obtained through simple analysis (see Section-4.1).

3.5.3 Type alias

A type alias is an object-like macro whose replacement text can be recognized as

a C++ type expressions. For example:

#define INT_VEC vector<int>

#define UINT unsigned int

#define UINT_PTR UINT*

According to the classification criteria (see-3.3.2), type aliases are dependent

and each of these declarations represents a valid type expression, which can easily

be modeled as a C++11 alias declaration.

3.5.4 Parameterized expression

A parameterized expression is a function-like macro that expands to an expression

or a statement. The replacement text can be closed or dependent. For example:

//complete-closed

#define MIN(A, B) ((A) < (B) ? (A) : (B))

34

#define ASSIGN(A, B) { B = A; }

//complete-dependent

#define SUM(A, B, I) ((A)+(B)) + c[I]

#define DIFF(A, B) (MAX((A),(B))-MIN((A),(B)))

The MIN macro is typical of inline functions written using the C preprocessor.

This classification of macros is used by both Ernst et al. [3] and Mennie et al. [25].

The ASSIGN macro is somewhat different. Although it is a parameterized com-

pound statement, it does not compute a value. It performs an operation (assign-

ment), resulting in a side effect. This is replaced by an inline function, but one

needs to be sure that any such argument B is passed by reference which is difficult

to implement without extensive front end support from compiler or similar tools.

The SUM macro has c as a dependent name, which might refer to a non-local

variable. The DIFF macro has MIN and MAX as dependent names.

3.5.5 Parameterized type alias

A function-like macro whose replacement text can be recognized as type expres-

sion is a parameterized type alias. For example:

#define PTR_TYPE(T) T*

#define ValueType(I) typename value_type<I>::type;

The last example is taken from Elements of Programming where such macros are

used to implement type functions related to concepts [39]. This is a case where macros

are being used to implement “cutting edge” ideas about principled generic program-

ming. Fortunately, there is an equivalent C++11 declaration (alias templates) that

allows us to avoid macros with this style of programming (see Chapter-5).

35

As with non-parameterized type aliases, dependency is not generally an issue

because macros of this sort can be transformed to alias templates, a new feature in

C++11.

3.6 Summary

The classification of macros based on the properties of replacement text is im-

portant in the current perspective. It gives an insight into what kind of abstraction

a macro is meant to provide. This insight helps in identifying appropriate C++

declaration for each macro (that correspond to complete C++ program fragments).

We introduced some terminologies related to C preprocessor directives which are

be useful in understanding the concepts illustrated. We used two important concepts

to arrive at the five categories described above. First, a macro can be object-like or

function like. Second, in C++ an expression can be a value-expression or a type-

expression. Making empty macro as a separate category encompasses the trivial

case since empty tokens do not construct a valid expression (value or type). The

three properties of completeness, dependence and configuration helps in deciding

whether a transformation could be possible for a macro definition. We describe the

application of our classifications in Chapter-5, the one after the next in which we

explain different analyses that should be performed on macros.

36

4. ANALYSIS OF MACROS

In addition to classification of the macros there are other informations required

in case of macros which have dependencies and in case of macros which are defined

within conditionals. Both the situations produce a sort of context dependency among

macros. Performing a full fledged context sensitive (preprocessor) analysis is non-

trivial because it requires tracking all the macro definitions inside the program, in all

the included header files, those introduced by the compilers and, those introduced

by the build system. However, simple heuristics implemented in our tools give useful

results. To serve the purpose we perform following two analysis:

4.1 Dependency analysis

The C preprocessor does not follow the usual “declare-before-use” program struc-

ture of C and C++. A macro can be referenced (by another macro) before it is de-

fined. Consider the following program. The CEL macro converts a Fahrenheit value

to Celsius value.

#define SLOPE (5.0 / 9.0)

#define CEL(T) SLOPE * (T - THRESH)

#define THRESH 32.0

The macro THRESH is referenced before it is defined. The macro is only looked up

when an expansion of CEL is requested, so it will become a valid use. Contrast that

with a corresponding C++ program:

double SLOPE = 5.0 / 9.0;

double CEL(double T) {

return SLOPE * (T - THRESH); //Error!

}

37

CEL

SLOPE THRES

Figure 4.1: Macro dependency graph of the CEL macro.

double THRESH = 32.0;

In the equivalent C++ program, THRESH is not in scope when it is referenced in

the body of the CEL function.

Solving this refactoring problem turns out to be a straightforward application of

dependency analysis [40]. We can construct a directed macro dependency graph in

which each vertex represents a defined macro, and an edge (u, v) represents the use of

v by the definition of u. The macro dependency graph corresponding to the program

above is shown in Figure-4.1. A correct ordering of definitions can be generated by

topologically sorting the graph (Algorithm-1).

This is not a hypothetical problem. For example, in the wxWidgets-2.9.1

library, we find instances of macros which are not defined in topological order [41].

For example, in file include/wx/defs.h (assuming the current directory is the root

directory of wxWidgets-2.9.1)

// file: include/wx/defs.h:960

#define wxINT64_MIN (wxLL(-9223372036854775807)-1)

// file: include/wx/defs.h:1054:

#define wxLL(x) wxCONCAT(x, wxLongLongSuffix)

To facilitate dependency analysis, we associate each macro identifier with a de-

pendency list that contains all the free variables (Section-3.3.2) present in its replace-

38

ment text. According to our classification of macros these macros are dependent

(Section-3.3.2). In the previous example the dependency list of SLOPE and THRESH

will be empty while that of CEL(T) will have SLOPE and THRESH. Note that the argu-

ment T of CEL(T) will not be in the dependency list as it is not a free variable. After

the dependency list is built, the tool topologically sorts the dependency lists and

compare them with the lexical order. If there is a mismatch in the topological order

and lexical order between two macro identifiers, it means the macros are defined out

of order. In that case they are not considered as potentially refactorable candidates

and appropriate warning message is reported.

Continuing the example of the previous set of macros (i.e., SLOPE, CEL, and

THRESH), the lexical and topological orders are:

//lexical order

SLOPE, CEL, THRESH

//topological orders

CEL, SLOPE, THRESH

CEL, THRESH, SLOPE

We index the lexical order and the reverse topological order of the macros so as

to compare their relative positions in both the sequences.

//indexed lexical order

0 SLOPE

1 CEL

2 THRESH

//indexed reverse topological order

0 SLOPE

39

1 THRESH

2 CEL

We compare relative positions of macros in both the sequences by comparing their

indices. If the lexical order is after the (reverse) topological order i.e, if lexical index

of a macro is greater than its reverse topological index then the macro is declared

out of order. As we can see, the index of the lexical order macro THRESH i.e, 2 is

greater than its index in the reverse topological order i.e., 1.

We described one possible implementation of finding out the out of order defini-

tions based on the dependency list. It would vary if the dependency list is constructed

in a way such that the edges are in opposite direction. A special case where macros

are self referenced should be taken care of separately.

The cpp2cxx-suggest tool performs dependency analysis of macros by con-

structing the dependency graph where edges point in the direction opposite to the

one illustrated here. That approach is efficient because there is no need to reverse

the topologically sorted graph. Appropriate warning message is displayed for out-of-

order definitions and all the inter-dependent macros are preserved. Reordering would

not be difficult within the tool, but experience with other tools, such as Rose [42] has

been that many programmers strongly object to reordering, so we want to experiment

further before fully automating that step. For example, if macro dependencies span

multiple files or are lexically distant in the same file, then automated re-orderings

make such comparisons difficult to make or reason about.

4.2 Using C preprocessor conditionals to isolate program text

Since conditionals can be used to enclose/isolate a piece of code, having a unified

representation of conditionals (and macros) with the language declarations enables

analysis of configuration and porting. It is not possible to perform such analysis in

40

isolation. It also help users isolate program-text within each conditional, one at a

time, for analysis. We construct an abstract tree (e.g., Figure-4.2) where its depth

is equal to the nesting depth of the conditionals and the breadth at any level is

equal to the number of conditionals at that depth. This representation can depict

complete translation unit from the perspective of conditionals and help in selectively

transforming macros. For example, using this representation, the user can disable

demacrofication for all macros within a particular conditional block.

If the following conditionals to be analyzed, our representation of preprocessor

conditionals can be depicted as in Figure-4.2.

/*...*/

#if defined(MACRO11)

//...

ifdef MACRO21

//...

endif

//...

#elif defined(MACRO12)

//...

#endif

//...

#ifndef MACRO13

//...

#endif

/*...*/

As we can see in Figure-4.2, the nesting depth is two which is the height of the

tree. Also, the breadth of the tree is five at the first level which is equal to the

41

Translation Unit
 Global macros,

 macros not within conditionals,
 C++ source code (if-any)

(depth=1)
 if-line

 program-text (if-any)

(depth=1)
 elif-line

 program-text (if-any)

(depth=1)
 endif-line

(depth=1)
 ifndef-line

 program-text (if-any)

(depth=1)
 endif-line

(depth=2)
 ifdef-line

 program-text (if-any)

(depth=2)
 endif-line

Figure 4.2: Abstract representation of preprocessor conditionals.

number of singly nested conditional directives.

The representation reflects the grammar of preprocessor conditionals [9]. A sim-

ilar representation was presented by Garrido et al. [10, 13] although theirs serve a

different purpose. Our representation is different from theirs in the sense that we

assign nodes only to the conditional directives other than the root node. Their rep-

resentation assigns separate nodes to language declarations. On the other hand, we

put the declarations in the nearest preceding (if-block) node. The logic of putting

declarations within conditionals in the nearest preceding conditional block is that

if the conditional evaluates to true then the code to be analyzed is immediately

present, and if the conditional evaluates to false then skipping the node skips the

enclosed code as well. In their representation if the conditional evaluates to false,

would require traversing an extra node in the tree.

Our representation has a couple of advantages during preprocessor analysis and

translation:

1. During traversal of this tree, macros which are configurational can be eas-

ily determined and appropriate flag can be set to disqualify them from being

transformed in subsequent stages.

2. Suppose there are macros within conditionals used for porting the software

42

and the user does not want to refactor them or suppose the user is performing

source code rejuvenation [1] and wants to incorporate macro translations in-

crementally (e.g., for separation of concerns); then traversing the tree provides

appropriate controls to achieve all these goals.

4.3 Summary

In this chapter we discussed the dependency analysis of dependent macros and the

representation of program from the perspective of C preprocessor conditionals. The

dependency analysis helps in finding out if a dependent macro could be transformed

correctly into corresponding C++ declaration. Its application is made clearer in

the next chapter. The abstract tree depicting the preprocessor conditionals are

implemented in our framework and can be used to exercise available controls as

illustrated before.

43

5. MAPPING MACROS TO C++ DECLARATIONS

In Chapter-3 we discussed the categorization of macros which was designed

to discover how macro-bodies relate to C++ program fragments. We saw how

complete macros relate to complete program fragments (e.g., parameterized/non-

parameterized value/type expressions). The results of classification as shown in

Table-3.1 also suggest that majority of the macros have relevant semantic informa-

tion. In Chapter-4, we discussed the technique of identifying out-of-order definitions

of dependent macros. Based on the classifications and the results of dependency

analysis we can decide whether a macro could be transformed or not. The basic

process by which this decision is made is shown in Figure-5.1 1.

As illustrated in the Figure-5.1, first of all it is checked if a macro is referenced

in any conditional directive, in any of the program files of the software. Any macro

referenced in conditionals (configurational macros) cannot be transformed as ex-

plained previously (Section-3.3.3). Then the replacement text is parsed to check if

the macro body is a complete expression or not. The (expression) parser also col-

lects several information based on a set of heuristics (such as whether a replacement

text has constructs that would modify the control flow of the program, whether there

are dependencies etc.). Based on the information collected by the parser, the macro

is categorized. The macros which do not have a viable categorization according to

our classification scheme are preserved. Others are subjected to dependency analysis

if they are dependent. The macros which pass the dependency analysis (macros for

which dependencies are in-order) and the closed macros are subsequently designated

as candidates to be transformed into C++11 declaration.

1A step by step algorithm for this decision process is given in Algorithm-2

44

macro

configuration?

preserve transform

yes

syntax?

no

partial

classification exists?

classify

dependencies?

closeddependency analysis

dependentno

yes

fail pass

Figure 5.1: The decision process to determine if a macro should be replaced with a
C++11 declaration.

45

From a broad perspective, the replacement text of a macro (which are trans-

formable) will expand to an expression, a statement, or a declaration. Correspond-

ing to each program element the transformations ought to change. Table-5.1 shows

possible replacements for each program element. When the replacement text is an

expression, we should elevate the macro definition to a variable or a function decla-

ration. Since the macros with replacement text as statement(s) are meant to behave

like inline function, we should replace such macros with a (inlined) function decla-

ration. Lastly, if the macro is used for code-generation (i.e., the macro expands to

a declaration), a straightforward transformation is non-trivial. Possibly, templates

can be of help in some cases (Appendix-A) although this last transformation has not

been implemented in the cpp2cxx framework.

Table 5.1: Possible transformations for different program elements

Macro replacement text Possible transformation of macro

//Expression

#define PI 3.14

//Declaration

constexpr double PI = 3.14;

//Statement

#define F(A,B) \

if(A > B) A = B

//Declaration

template<typename T>

void F(T& A, const T& B)

{

if (A>B) A=B;

}

//Declaration

#define DECL(T) class Node##T { \

T* ptr; \

};

//Templates

template<typename T>

class Node {

T* ptr;

};

In this section, we present how different kinds of macros can be replaced with

corresponding C++11 declarations.

5.1 Object-like macros

Consider a general object-like macro:

46

#define A X

where X is a value expression with a type (say T). Here, if we can find out the

type of the replacement text (i.e., the type of value expression X in this case) at

compile time, this macro can be directly replaced by an assignment expression in the

following manner.

T A = X;

If the replacement text does not have any dependencies, this transformation would

work without making any modifications at the use site. For example, an object-like

macro which is complete-closed :

#define MAX 10000

An equivalent C++ statement that represents similar semantics would be:

T MAX = 10000;

Where, T is the type of literal (10000). T can be determined in a couple of ways.

First, using a program analysis tool we can find the type of literal (as unsigned int)

and substitute it for T. This approach is complicated and requires analyses of use

cases as well (if the macro has dependencies). The second approach would be to

use the type inference facility of C++11. In C++11, we can deduce the type of a

declared variable (lvalue) from its initializer at compile time. In this case the type

of the MAX will be determined by the compiler based on the type of literal 10000, if

we specify the type of MAX as auto [9]. So the equivalent C++11 declaration for the

macro MAX is:

auto MAX = 10000;

The second approach is simpler to implement than the first one because the

compiler deduces the type and we just need to specify the declaration. In this

47

case one might argue that after this transformation the variable MAX may become

mutable. In order to guarantee that the variable is a compile time constant, we can

make the declaration a generalized constant expression by prefixing the auto with

constexpr keyword [9] - another feature introduced in C++11. So the declaration

finally becomes:

constexpr auto MAX = 10000;

It is possible to translate complete-closed object-like macros, without man-

ual analysis in most of the cases. Transforming complete-dependent object-like

macros requires further analysis. For example:

#define KR word64(K)<<32

Here, unless and until we deduce the type of word64(K), and K, we cannot success-

fully transform KR. Moreover, we have to perform dependency analysis to determine

whether the declaration of word64(K), and K precede the definition of KR or not.

If word64(K), and K are not macros, then integrating our tool with a compiler can

help gain valuable information about them and aid in translation. In a special case

where the free variables inside a macro are also macros we can proceed with the

transformation just after doing dependency analysis (Algorithm-2). For example:

#define PI 3.14

//dependent identifier PI is also a macro

#define TWO_PI 2*PI

As the macro dependency (PI) of TWO_PI can be transformed, it means the type

of the macro can be determined. And that would be a sufficient condition to proceed

with the transformation of TWO_PI.

If the replacement text is a statement then the macro behaves like an inlined

function and can be replaced with one. However, there are a couple of issues. First,

48

if the macro is defined inside a function then replacing it with a function declaration

would be illegal according to the grammar of the language. Second, if the macro is

used to create dynamic scope (the macro references a variable which is defined in a

future scope [3], means only finding an equivalent transformation will not solve the

complete problem. We must figure out where to place the translated declaration such

that the (dependent) variables referenced (if any) by the macro become visible [25].

As a result we have to make appropriate transformations depending upon the use

case as described later.

5.2 Function-like macros

To express a function-like macro as a C++ abstraction we have to find if there is

an equivalent function declaration for it. The basic approach to transform function-

like macros remains similar i.e., how to infer the type of replacement text and then

express the function-like macro as a declaration. Consider a general function-like

macro:

#define F(a1, a2) X

where X is a value expression with a type T, and the arguments to the function i.e.,

a1 and a2, have types say T1 and T2 respectively. Then we can write an equivalent

C++ function-like this:

T F(T1 a1,T2 a2){

return X;

}

If we consider this function declaration as a viable transformation, all we need to

do is find out T, T1, and T2. Similar to the approach taken in the transformation of

object-like macros, we use C++11 facilities to generate a function declaration such

that the unknowns are determined by the compiler itself. Using a function template

49

can help infer the types of T1 and T2. Because macro arguments are untyped, we

must allow (conceivably) expressions of any type to be used as arguments to the

function. Templates are capable of providing this level of flexibility.

To determine T, we have to use a late-binding syntax of function declaration.

Combining both the concepts we have a function declaration with correct semantics.

template <typename T1, typename T2>

inline auto F(T1&& a1, T2&& a2) -> decltype(X) {

return X;

}

The result of the function uses the new late-binding syntax for function return

types. The result type, given as decltype(X), is the deduced type of the expression

X. Without the ability to deduce the type of the resulting expression, an automated,

generic replacement would not be possible. We would have to investigate all possible

uses of the macro in order to determine an appropriate result.

The function arguments a1 and a2 are passed by forwarding into the function

body. Forwarding means that the actual type of the instantiated function parameter

will be determined by the type of the function argument. Consider a possible use of

the replaced function F:

int x = 0;

F(2, x);

Because a1 and a2 are passed by forwarding, results of deduced template argu-

ment types are modified by the function arguments. The argument type deduced for

T1 will be int because 2 is a literal having type int. The argument type deduced

for T2 will be int& because x is an lvalue (it refers to a non-const variable). In other

words, the following version of F is called:

50

auto F(int a1, int& a2) -> decltype(X)

There are two reasons why perfect forwarding is so well-suited to this task. First,

we cannot detect the presence of side effects in the replacement text of a macro. If

an argument is modified, then it needs to be passed by lvalue reference. Second,

we cannot know how macros are used in the program without substantial cooper-

ation from a compiler front end. We do not know if arguments are intended to be

passed by value, reference, or constant expression. Perfect forwarding allows us to

defer decisions about parameter passing by adapting to the usage at the call site.

Consider a simplified use-case of a macro defined in facebook-hiphop library in the

file $PROJECT_HOME/src/runtime/base/macros.h [43], where PROJECT_HOME is the root

directory of the library.

#include<string>

//macro

//#define NAMSTR(nam, str) nam

//C++11 declaration

template<typename T1, typename T2>

inline auto NAMSTR(T1&& nam, T2&& str) -> decltype(nam)

{ return nam; }

int main()

{

std::string nam = "name";

std::string* ptr = &NAMSTR(nam, "SKIP");

return 0;

}

51

Here, the compiler reports error when perfect forwarding is not used, because

taking the address of temporary (the returned variable) is not allowed.

Finally, the use of inlining helps ensure that the performance will be no worse

than using the original macro. As a concrete example of the refactoring, consider

the archetypal inline function macro:

#define MIN(X,Y) ((X) < (Y) ? (X) : (Y))

Using the concepts just described, this macro can be replaced by the following

function template.

template <typename T1, typename T2>

inline auto MIN(T1&& X, T2&& Y)->decltype(((X) < (Y) ? (X) : (Y)))

{

return ((X) < (Y) ? (X) : (Y));

}

Although an automated replacement can be used exactly like the original, we

have introduced some additional complexity into the definition that we would like to

remove: the extra parentheses, the deduced result type, the use of perfect forwarding.

The demacrofier working in tandem with a compiler should be capable of fully

replacing the macro with a function declared in the traditional style.

There are several things to note in this transformation:

1. The function has been inlined to get the same efficiency as with a macro sub-

stitution.

2. The argument of decltype is the same as the expression following the return

keyword. This way it is very simple to carry out the transformation automati-

cally.

52

3. There is a little overhead in terms of lines of code. But that can also be

minimized once the tool works in tandem with a compiler or other program

analysis front end tools. The compiler, can analyze the transformed decla-

ration to provide the type of the function which can be collected and stored.

Then, in the subsequent pass of source code generation, the trailing-return-type

style of function definition can be replaced with a traditional-style of function

definition.

Clearly, this transformation eliminates one of the macro-pitfalls i.e. duplication

of side-effects [35] that has been attributed to these kinds of macros. This transfor-

mation has the advantage that we can do this with a tool and, more importantly, in

a lot of cases this doesn’t require any change in the code at the use site. Consider a

different example where the function-like macro has no argument.

#define fun() FXY(1,200,3)

In this example there are no arguments to the parameterized macro. As a result,

the equivalent function declaration will not be templated. The only thing required

to be declared is the return type which is evaluated by the compiler while parsing

a function declaration with trailing-return type. So the suggested transformation in

this case is:

inline auto fun()->decltype(FXY(1,200,3))

{

return FXY(1,200,3);

}

Another variation would be when the return type is known and the argument

types need to be determined. For a complete-closed function-like macro which

has multiple statements, we have a transformation as a function returning void.

53

#define decompose(a0, a1) {\

int b0, c; \

c = a0 ^ a1; \

b0 = (a0 << 24); \

a0 ^= c ^ b0; }

Here the parameter a0 may be passed by reference while a1 may be passed by

value. During transformation we pass both the parameters by rvalue-reference [9].

Passing by rvalue-reference has the advantage that it can capture the temporaries as

well. So we transform the above macro into the following function declaration:

template<typename T1, typename T2>

void decompose(T1 && a0, T2&& a1) { \

int b0, c; \

c = a0 ^ a1; \

b0 = (a0 << 24); \

a0 ^= c ^ b0; }

This method of transformation is same as the previous one except that now the

return type of function definition is known i.e., void. Again, perfect forwarding is

used to ensure that the parameter passing style matches the one used at the call site.

If the replacement text is dependent, then we must consider the source of the

non-local identifiers. For example, consider the DIFF macro:

#define DIFF(A,B) (MAX((A),(B))-MIN((A),(B)))

Here, MIN and MAX are dependent names. If we know that those names are auto-

matically replaceable macros, then DIFF will also be automatically replaceable.

However, if the macro has dependent names that are not macros, then automatic

transformation might not be possible depending upon the nature of the dependence.

54

For example:

#define Acc(a, b)

{ a += f(b); }

In this example. a and b are passed as arguments whereas f is a dependency.

Before doing any modification we will have to ascertain certain facts about f and

the context in which Acc is called. To do so, we would need information from the

compiler.

If f is a function or class type (i.e., f(b) invokes a constructor), then we can

proceed in the usual fashion.

template <typename T1, typename T2>

void Acc(T1&& a, T2&& b)

{

a += f(b);

}

The signature could be improved by examining the arguments accepted by f. For

example, if f only takes its argument by value, then the function argument b could

also be passed by value. If f is polymorphic, taking const and non-const arguments,

then the forwarding approach is more appropriate.

If f is a local function object or lambda expression in the context in which Acc

is called, then we would have to transform Acc into a lambda function or function

object.

We can even transform macros where the replacement text is a C++ statement.

Such macros behave just like inline functions with return type as void. In general, if

we assume that the replacement text is a statement, in that case the transformation

would be:

55

//object-like

#define A X

//equivalent function declaration

void A()

{ X }

//function-like

#define F(a1, a2) X

//equivalent function declaration

template<typename T1, typename T2>

void F(T1 && a1, T2 && a2)

{ X }

Of course, in the case of object-like macros (e.g., A) the macro invocation at the

use site has to be modified as a function call. The templated function declaration

uses the same perfect forwarding as in the previous examples. Since X is a statement,

we have to parse the replacement text to find out if the statement is already enclosed

within braces or not and place extra braces if required.

If the macro is closed, or the macro references global variables (defined before it),

this transformation would be correct. Otherwise, if the macro references a variable

defined in a different scope, we have to resort to a another transformation described

as a special case in the next section.

56

5.3 Special cases

5.3.1 Function within a function

A possible variation in the declaration of a function-like macro is when it is

defined within a function body. For example:

template<typename T>

void f(T const& t)

{

int S[] = {1, 2, 3, 3, 4, 5};

#define S0(X) S[X]

#define SHIFT(X) X<<t

int x=0, c=1;

c = S0(x);

x = SHIFT(c);

}

Using the previous technique to transform macros S0 and SHIFT will fail because

C++ does not allow a function definition inside of a function. C++11 provides

lambda function declaration that can be defined inside the body of a function [9].

However, there are a couple of analyses which should be performed in order to do

this transformation.

First, the lambda function declaration should have complete information about

the parameters (arguments) as well as the variables used inside its body. The type

of the parameters can be determined by using decltype (provides automatic type

deduction of an expression at compile time [9]) whereas the list of free-variables used

inside its body is captured in the closure. However, it is not correct to capture all the

parameters by reference or by value as clarified in the following example. Incorrect

57

analysis in this stage could result in undefined program behavior.

Second, it is possible that macros are defined before the variables they reference

in their replacement text. In that case the placement of the new declaration has

to be decided. One of the methods to determine the location of the transformed

declaration has been discussed by Mennie et al. based on finding the least common

ancestor of each macro invocation [25]. Here, the placement must respect both the

declaration of captured local variables and the arguments used to deduce the type of

X. Additionally, that if macros are invoked multiple times in the same scope but with

different variables, then deducing the type of parameters becomes difficult. After the

analysis following transformations are done:

template<typename T>

void f(T const& t)

{

//#define S0(X) S[X]

//#define SHIFT(X) X<<t

int S[] = {1, 2, 3, 3, 4, 5};

int x=0, c=1;

auto S0 = [&S](decltype(x) X) { return S[X]; };

c = S0(x);

auto SHIFT = [t](decltype(c) X) { return X<<t; };

x = SHIFT(c);

}

58

The lambda function declaration of macro S0 has S in the closure. The variable

S should be captured by reference if it is modified inside the body of the lambda

function or if we do not want to pass a copy to the lambda function. The declaration

deduces the type of parameter X by inferring the type of value x passed as an argument

at the use-site. Similarly, the declaration of SHIFT captures t by value (since t is

passed by const-ref, it cannot be captured by reference). As in the previous case the

type of parameter X is determined by inferring the type of value (c) used to invoke

the declaration.

The current version of the demacrofier can only refactor simple use cases like

that of macro S0. It cannot determine whether to capture the variables by reference

or by value. By default, it generates a lambda function which captures all the

dependencies by reference. Further, if an argument passed to the lambda function is

used as lvalue then the argument has to be passed by reference. This has not been

implemented and manual assistance is required to generate correct code in this case.

It also cannot perform placement analysis and places the generated declaration just

before the first macro-invocation.

5.3.2 Macros used to create dynamic scoping

Consider a situation when a dependent macro is invoked multiple times in a

function and the variables referenced in the replacement text of macro are mutated

in between points of invocation. This is typical for macros used to create dynamic

scope. Consider a simple example to illustrate the idea:

int f()

{

#define TWICE 2*a

int a = 1;

59

int first = TWICE;

a++;

int second = TWICE;

return 0;

}

One possible solution to transmit the changes inside of the transformed declara-

tion is to capture the free variables, in the replacement text, by reference (either as

closure or as an argument of function declaration).

int f()

{

//#define TWICE 2*a

int a = 1;

auto TWICE = [&a](){ return 2*a; };

int first = TWICE();

a++;

int second = TWICE();

return 0;

}

As we can see, the dependency (i.e., a) is captured by reference in the closure.

The approach is similar to the previous example except that at the use-site, the

(macro) invocation has to be modified as a function call.

5.3.3 Macro referencing variables in a different scope

There are instances of dependent macros where the free variables used inside

the body of macros are member variables of a class or struct. Consider a simple

example to illustrate the idea:

60

class temp{

public:

//

int get_temp_kel();

int get_temp_fah();

private:

int temp_cel;

};

#define TEMP_KEL 273+temp_cel

int temp::get_temp_kel()

{ return TEMP_KEL; }

In this case, the transformation will result in a compilation error because the

macro TEMP_KEL accesses the member variable temp_cel of class temp. For object-like

macros it is easier to put the transformed declaration inside the function body just

before the first use site.

int temp::get_temp_kel()

{

//#define TEMP_KEL 273+temp_cel

constexpr auto TEMP_KEL = 273+temp_cel;

return TEMP_KEL;

}

If the macro is invoked inside multiple functions, using this approach, we will

have to put the translated declaration in all the functions.

61

In a slightly different situation when replacement text of function-like macro ac-

cesses the member variable of a class, we can have two possible solutions. Extending

the previous example for a function-like macro, we may have the following situation:

#define TEMP_FAH() temp_cel*9/5 + 32

int temp::get_temp_fah()

{ return TEMP_FAH(); }

One alternative is to translate the function-like macro as a function-declaration

and then make that a member function of the class whose variable(s) it accesses. For

example:

class temp

{

public:

//...

int get_temp_kel();

int get_temp_fah();

private:

int temp_cel;

//put this after the member variable declarations

public:

auto TEMP_FAH()-> decltype(temp_cel*9/5 + 32)

{ return temp_cel*9/5 + 32; }

};

62

//#define TEMP_FAH() temp_cel*9/5 + 32

int temp::get_temp_fah()

{ return TEMP_FAH(); }

This approach is elegant but requires processing of multiple files because, gener-

ally, C++ programs have declarations in a header (dot H) file and the implementa-

tions are in a source (dot C) file. It should be noted that the new function has to be

placed lexically after all the member variables of the class have been defined, other-

wise if a member variable is referenced in the decltype, it will result in a compilation

error.

Another approach is to translate the function-like macro as a lambda function

declaration and then place it inside all the functions which invoke it. For example:

int temp::get_temp_fah()

{

auto TEMP_FAH = [&temp_cel](){ return temp_cel*9/5 + 32; };

return TEMP_FAH();

}

In general, this approach would require changes to a single file if all the function

declarations which invoke the macro are in one file.

5.3.4 Problems with the const-ness of function

There is a case when a function-like macro is invoked from a const-function [12].

According to our transformation methods, the function-like macro gets transformed

into a non-const function. Subsequently, during the compilation we get an error

message because the transformed function is not a const-function but is called from

within a const-function. If the function-like macro actually could behave like a const-

63

function then there is no problem and we can (manually) make the transformed

declaration a const-function declaration. Otherwise we have to revert back and

preserve the macro.

5.4 Examples

Here we will take up a few examples from each kind of macro as per our clas-

sification to clarify the approach taken to translate macros into equivalent C++11

declarations. The transformation based on our classification provides a one-to-one

mapping between a macro and its corresponding C++11 declaration. This way it

helps in automating the task of generating equivalent declarations.

1. Empty Macros: The replacement text of an empty macro expands to empty

token. If we know that the macro is non-configurational, we could replace an

empty macro with a void, nullary function that has no function body.

//original

#define EMPTY

//replacement

void EMPTY() { }

Unfortunately, this approach requires modification of the use site —the ex-

pansion of the macro would need to be modified from EMPTY to EMPTY(). We

could find no situations where applying such a transformation would result in

an improvement in the program, so we did not implement it. We only include

it here to be thorough.

2. Expression Alias: When the replacement text does not depend upon free vari-

ables, i.e., the macro is complete-closed object-like.

//original

64

#define SEVEN 3+4

//replacement

constexpr auto SEVEN = 3+4;

The constexpr specifier tells the compiler that the variable MAX is required to

be evaluated at compile time. In other words, constants replaced by const-

expr objects will be “folded” at compile time, just as they would have been if

they were integer constant expressions. This is true of any constexpr-declared

variable; C++11 has a much expanded definition of literal types; it includes

floating point values (as shown here), classes that can be constexpr initialized,

and arrays of such objects.

In many cases, the type of declared variable is obvious, and can be written

explicitly; here, an ideal refactoring should use unsigned int instead of auto.

This assignment of concrete type information improves the readers understand-

ing of the program. Because our parser does not currently type-check the ex-

pressions that it recognizes, we default to using auto as the type specifier for

the resulting definitions.

If the replacement text is dependent, then we must analyze the dependencies

in order to determine if there is a viable replacement (Algorithm-2).

#define R 10

#define PI 3.14

#define AREA_CIRCLE PI * R * R

The definition of AREA_CIRCLE depends on the identifiers PI and R. Here, we

have seen that both PI and R are previously defined macros, and we know that

both can be replaced by constexpr variables. That is a sufficient condition

65

for automatically replacing AREA_CIRCLE with a constexpr declaration. For

example:

constexpr auto R = 10;

constexpr auto PI = 3.14;

constexpr auto AREA_CIRCLE = PI * R * R;

Here, the use of auto in the definition of AREA_CIRCE is warranted. PI and R

have different types, and the result of the expression involving those values is

determined by the promotion rules of the C++ language (which it is clearly

double) in this case.

Note that if the order of definitions was such that the replacement would pro-

duce a compiler error, we choose to preserve the original macros. Definition

reordering is best done in an assisted manner.

A more difficult problem arises when the dependent identifiers are declared

variables and not macros. For example:

#define SUM a + b

void summer()

{

int a = 1, b=2;

int c = SUM;

a++;b++;

int d = SUM;

}

This kind of usage of macro to create dynamic scope [3] complicates the anal-

ysis, but once we get the information about the context of usage it becomes

66

easier to transform the macros. There is a viable transformation that can

be applied to remove the macro, but its automated application would require

information from a C++ front end about the variables referenced by the ex-

panded macro and the relative locations of the variable declarations, the macro

definition, and the use of the macro. Knowing all of this, we could replace SUM

with a lambda function.

void summer()

{

int a = 1, b=2;

auto SUM = [&a, &b]() { return a + b; };

int c = SUM();

a++;b++;

int d = SUM();

}

Here, SUM is declared as a lambda function that captures its non-local arguments

by reference. Applying the transformation also requires modification at the call

site. We need to invoke SUM as a function call since it no longer expands to a

sequence of tokens.

If SUM is used in multiple functions, we may not choose this particular replace-

ment since it would lead to unnecessary duplication of code (i.e., clones). We

should then choose to refactor the generated lambda expressions as a single

function or function object. The demacrofier is capable of generating the

replacement declaration, but it cannot calculate where the declaration should

be placed in the resulting code; the tool emits a note giving the transformed

macro, and suggesting the context in which it might be placed.

67

The placement of lambda function declaration is crucial in this process. In the

above case deciding the location was rather easy because the complete function

body is a single scope. In the situations when the macro invocation occurs

within nested scope for example, if the macro is referenced in a compound

statement (e.g., if, switch), we will have to apply the concepts suggested by

Mennie et al. [25]. As of now the demacrofier does not support such analysis.

So this transformation was done manually.

Consider the following example where transformation is possible, but should

be guided by the programmer. Consider the macro definition that refers to a

function.

#define PRINT printf

This macro can be rewritten as a declaration.

auto PRINT = printf;

An automated transformation is possible only if printf is known to name a

function declaration or some other global declaration. In other words, the

transformation relies on compiler knowledge. The type of the declarator de-

pends on the declaration. While the declaration above is suitable for functions,

an alias to a global variable would most likely need a reference. Declarations

of this sort are not declared constexpr because we do not want them to be

evaluated at compile time.

3. Type Alias: We can also substitute type alias macros by equivalent using

declarations. For example:

//original

#define BYTE char

68

//replacement

using BYTE = char;

We prefer to using declarations to typedefs because a) the syntax more clearly

delineates the new type name from the aliased type expression, and b) using

declarations can be parameterized over type arguments [9]. We can use that

fact to support replace parameterized type aliases and be consistent in the use

of declarative style.

Determining whether a macro is a type alias requires a type expression parser

which is not yet implemented in the tool.

4. Parametrized Expression: When there are no dependencies the transformation

is straightforward for function-like macros.

//original

#define DIFF(A,B) ((A)-(B))

//replacement

template<typename T1, typename T2>

auto decltype DIFF(T1 A, T2 B)->decltype(((A)-(B)))

{

return ((A)-(B));

}

When there are dependencies, first dependency analysis is performed. After

that, we can replace the function-like macro with a function declaration like we

did in the previous example. Performing dependency analysis on free-variables

which are not macros is non-trivial. Currently the demacrofier relies on

the validation phase (Chapter-6) to testify the correctness of the following

transformation.

69

//original

#define TX(A,B) { B = transform(A); }

//replacement

template<typename T1, typename T2>

void TX(T1 && A, T2 && B)

{

B = transform(A);

}

As explained earlier in special cases (Section-5.3), if a parameterized macro is

defined inside of a function then we can replace it with a lambda function.

5. Parametrized Type Alias: The transformation of parameterized type aliases,

like their non-parameterized versions, is straightforward.

//original

#define Ptr(T) T*

//replacement

template <typename T>

using Ptr = T*;

Here, the macro argument T is taken as a template argument in the resulting

alias template. The transformation also requires refactoring at the use site of

such macros, replacing expressions like Ptr(int) with Ptr<int>. It is conceiv-

able, that macro arguments in such declarations are used in ways other than

type parameters. However, our experiments found no such occurrences. The

transformation for parameterized type aliases has not been implemented yet.

70

5.5 Summary

In this chapter, we illustrated possible transformations of macros. We described

how concepts developed in the previous chapters (related to classification and anal-

yses of macros) can be useful in automating the process of demacrofication by pro-

viding a one-to-one mapping between different categories of macros and their corre-

sponding C++11 declarations.

In the following chapter we describe the implementation of these concepts and

complexity of the demacrofication process.

71

6. IMPLEMENTATION

The high level process of demacrofication is shown in Figure-1.2. The process

begins with an initial version of the source code, which contains macros, and ends

with a final version in which macros have been replaced by C++11 declarations.

There are three phases of translation:

1. identify the complete set of macros that can feasibly be replaced with C++11

declarations,

2. refine that set to only those transformations that produce valid builds, and

3. produce a final, working version of the program.

The cpp2cxx framework helps to automate each phase of the demacrofication

process (Figure-6.1). First we illustrate the design of the cpp2cxx framework and

then we analyze the overall complexity of the demacrofication process using the tools.

6.1 Design of the cpp2cxx framework

The first step of the demacrofication process i.e., identifying the set of viable re-

placements, is carried out by the cpp2cxx-suggest tool. The tool identifies macros

that can be replaced and generates a corresponding C++11 declaration.

The second phase is implemented in the cpp2cxx-validate tool. This pro-

gram takes the complete set of configured transformations and attempts to deter-

mine which subset result in valid transformations. The program searches for a valid

configuration by iteratively re-building the software for each computed candidate

suggested by the cpp2cxx-suggest tool (Figure-6.2).

72

Original Source Code

ConfigFile.cfg

File paths,
configuration settings

Modified build-configuration

add compiler
flags etc.

cpp2cxx-finalize

cpp2cxx-suggest

Intermediate files

cpp2cxx-validate

Defined.h

Final Source Code

meta files

cleanup

Figure 6.1: The cpp2cxx framework.

73

The third and final phase is carried out by the cpp2cxx-finalize program. The

program generates the final version of the source code by removing the conditional di-

rectives from each transformation, selecting a C++ declaration if the transformation

succeeded in the second phase or the original macro if it failed.

Now we illustrate the implementation and functionalities of each tool in the

cpp2cxx framework.

6.1.1 cpp2cxx-suggest

This tool (Figure-6.2) is written in C++ using Boost libraries and [44], the Clang

front end [45] and the GNU C++11 compiler [46]. It has been designed to be con-

figurable and can be customized for each software just by modifying the parameters

in a configuration file ConfigFile.cfg. It contains the names and paths of all the

files to be processed, the names and paths of all the files to be generated, and several

configuration settings to suit the user’s requirements.

ConfigFile.cfg
(File paths, configuration settings)

Overseer

1

Output file

File manager

2 8

Parser

4

Code generator

6

9

3 5 7

Figure 6.2: The cpp2cxx-suggest framework. The numbers show the sequence in
which each module gets involved during the translation of a file.

The output of the cpp2cxx-suggest tool is an intermediate version of the source

74

code in which each transformation is guarded by a conditional directive with the help

of a “control-switch”. For example, if the tool found a macro defining the value of

PI, the resulting intermediate would contain:

//file name : file.cpp

//USE_PI_filecpp_3_9 (unique macro switch for PI)

#if defined(__cplusplus) && defined(__GXX_EXPERIMENTAL_CXX0X__) && \

defined(USE_PI_filecpp_3_9)

//C++11 declaration

auto PI = 3.14;

#else

//original macro

#define PI 3.14

#endif

The flags __cplusplus and __GXX_EXPERIMENTAL_CXX0X__ are used to guarantee

that the switch is enabled only when a C++ compiler (g++ in this case) is compiling

with support for C++11. This is necessary because we are using the C++11 features.

Note that the set of transformations formulated to carry out the translation

works for most macros. However, the method cannot be applied uniformly to all

the macros because of three factors. First, The mapping from (untyped) macros

to (typed) language declarations cannot be, in principle, guaranteed to be unique.

75

Second, the limited front-end support from the compilers, and the fact that our tool

analyses one file at a time causes some of the translations to fail. Finally, a macro

may always have future uses not captured by the tool and not validated by the

available set of uses in the program (Figure-1.1).

It generates statistical information about the macros as per our classification cri-

teria 3. It also produces useful warning messages like: macro identifiers with lower

case, or with leading underscores, list of macros which uses concatenation/stringifi-

cation operators. Independently of our transformation tools and plans for automatic

code rejuvenation, the messages produced are useful for discovering and manually

correcting undesirable behaviors and eliminating maintenance problems. Macro use

in large programs is usually ill understood and maintainers therefore often dare not

touch macros. By using this tool, all uses can be examined.

The tool is composed of four modules (Figure-6.2):

6.1.1.1 Overseer

It is the central point of communication for other modules. It collects configu-

ration settings, and transfers specific settings, and controls to each module of the

tool.

6.1.1.2 File manager

It is responsible for input/output (I/O) operations. It associates standard I/O

stream (std::istream, std::ostream) objects with source files. These I/O streams are

used by the rest of the modules to perform I/O operations.

6.1.1.3 Parser

The Parser module reads a source file, parses it for the C preprocessor directives,

analyzes dependencies and collects relevant information for subsequent analyses.

76

6.1.1.4 Code generator

The Code generator reads the source file and decides whether a macro should be

refactored based on the information collected by the Parser. It rewrites the contents

of the source file with the macro translations included. In order to facilitate iterative

refactoring of macros (by the cpp2cxx-validate tool), each generated translation

is wrapped in a conditional that would allow it to be enabled or disabled.

6.1.2 cpp2cxx-validate

In order to evaluate the correctness of the source to source translation, we de-

signed the cpp2cxx-validate (Figure-6.3) tool. It is written in Python [47]. It

rebuilds the library for each macro, that was translated by the cpp2cxx-suggest

tool. If the build fails for any macro then it removes that macro from the list of

macros to be refactored by the cpp2cxx-finalize tool. The reason for building

incrementally is that some macros may impact definitions in many different files.

A special header file, Defined.h contains the current list of refactorings successfully

introduced for each build.

When this tool completes its execution —it can take several hours depending on

the number of macros, size of the library, and the computing resource available for

this iterative process— the header file Defined.h contains the list of all the macros

that can be replaced by C++11 declarations.

Before using the tool, the user needs to understand the build system of the

software at hand. After that, the compiler flags in the build system must be modified

to ensure that the C++ compiler compiles in C++11 mode and it defines the macros

in the header file Defined.h while compiling. If we take the example of gcc [46], the

modification would be like:

CXX_FLAGS += -std=c++0x -imacros Defined.h

77

exit
Define the macro-switch

 to Defined.h

successful?

build

Start

done?

Remove macro-switch definition
 from Defined.h

No

Yes

Yes No

Figure 6.3: The cpp2cxx-validate framework.

78

By default, the tool issues a single build command (i.e., make) to the console; this

should be modified depending upon the software and the platform.

6.1.3 cpp2cxx-finalize

Once a set of macros that would preserve the build is generated by the cpp2cxx-

validate tool, changes can be made into the original source code to get rejuve-

nated program. Thecpp2cxx-finalize tool takes original files and the list of macro-

switches (from file Defined.h), and generates rejuvenated C++11 programs. Cur-

rently this tool uses the same back-end as the cpp2cxx-suggest tool as well as

the config-file ConfigFile.cfg. More functionalities will be added to this tool by

integrating it with the Pivot (a source-code analysis infrastructure [37]).

79

6.2 Performance measures

Before demacrofying a program, it is important to have an understanding of the

total resources that would be required to generate the finally rejuvenated program.

A general overview – of the amount of time and space that would be required to

complete the demacrofication process – is presented here.

6.2.1 Time complexity

The time complexity of demacrofication depends upon the total number of macros

and how macros are referenced in the program.

Each tool in the cpp2cxx framework handles one macro at a time so, for a given

program, the time complexity is directly proportional to the total number of macros.

The way macros are referenced in the program also affects the total time to

complete the demacrofication process. As an example consider a macro defined in a

header (dot H) file and the header file is included by some source (dot C) files. Since

the validation algorithm (Figure-6.3) iteratively introduces one macro at a time into

the program, the build system will compile every source file that includes that header

file.

If a macro is included in multiple files then all the files would be build (compile

+ link) and the time taken will vary accordingly.

If the program is written in such a way that the files have less inter-dependencies

(w.r.t. macro definitions and invocations), then for each iteration few files would be

compiled and hence, less average time would be taken for translation and validation.

The total time taken while running the cpp2cxx tools is shown in Table-6.1.

Since only four of the seven libraries were finally rejuvenated, the last column does

not have entries for the remaining three. From the table we can see that validation

is essentially the bottleneck. The time taken to run the cpp2cxx-suggest and

80

cpp2cxx-finalize tool increases with the size of the source code. Similar trend is

more or less followed while running the cpp2cxx-validate tool, except for scintilla

library where the time taken is same as that of p7zip library even though p7zip is

1.5 times the size of scintilla. We attribute this to a couple of factors. First is the

total number of macros. As we can see that scintilla library has around 2.5 times the

macros in p7zip library. The second factor is interdependency among macros and

program files. In scintilla library there is a file Scintilla.h which has more than

900 macros; and that file is included by 111 (out of 128) files. That means each time

a macro-switch (for the Scintilla.h header) was introduced for validation, all the

111 files would be recompiled. As a result, it took around 6 hours to complete the

validation.

Table 6.1: Time taken to run tools

(Single thread of execution within Ubuntu-12.04 operating system on Lenovo X220)

cpp2cxx-suggest/
Package Name KSLOC Total cpp2cxx-finalize cpp2cxx-validate2

(NCNB) 1 Macros (approx-minutes) (approx-hours)

Cryotopp-5.6.1 55 1020 15 2
p7zip-9.20.1 96 1098 15 6
scintilla-3.0.4 66 2694 15 6
poco-1.4.3p1 144 2564 30 -
facebook-hiphop-php-git 544 4951 60 9*24
wxWidgets-2.9.3 741 19262 120 -
ACE-6.0.6 151 5969 30 -

1 NCNB = Non-Comment, Non-Blank; 2 Excluding the time to configure the build system

Since the validation requires recompilation of the package (at least of the depen-

dent files) for each transformation, cpp2cxx-validate tool takes maximum time

during the demacrofication. We would like to improve the efficiency of validation

phase. This calls for developing better algorithms to introduce suggestions into the

system. There are a couple of suggestions that we would like to discuss here.

First, we can make informed decisions to introduce suggestions into the programs.

81

If we assume that a large number of macros can successfully be transformed, then we

can introduce the suggestions in a ‘greedy’ manner and gradually accumulate the set

of successful transformations. So we can introduce all the suggestions, if that fails we

introduce half of them leaving the other half, and continue this until we find a set of

successful transformations. After that we repeat this algorithm to all the remaining

suggestions. Using this approach, the best case (where large number of macros are

transformable) will have much faster (logarithmic) convergence. However, the worst

case (where all the suggestions are incorrect) will have 2∗n (where n = total number

of macros) time complexity. As we shall see in the experimental results (Table-7.2

on p. 89), that we can safely assume that most suggestions are correct.

Second, we can improve the worst case of first approach by using the experimental

results that (almost) all of the object-like macros will be transformed successfully.

So we can apply the first approach on the set of object-like macros to identify the

set of successful suggestions. And for remaining function-like macros (which are less

than 15%), we can do the linear way because the suggestions of function-like macros

have higher failure rate (Section-7.3).

There are other practical issues that should be considered during the process. It is

required of the programmer to understand the build system properly; a small mistake

in the settings, configuration etc., would generate a wrong code and then everything

has to be redone. It happened the first time during the demacrofication of scintilla

library, when the Makefile was not configured properly because the -std=c++0x

-imacros Defined.h flag was not appended to the CXX_FLAGS in the Makefile during

the validation. Due to this the validation result was 100%. After careful verification,

the mistake was found and the experiment was repeated. In that way it took double

the time.

82

6.2.2 Space complexity

The cpp2cxx-translate tool generates an intermediate file for each program file

that is processed. It also generates a few temporary files having one entry per macro.

As a result the translation process requires an extra space approximately equal to

the total size of the program files (Section-6.1.1).

The validator tool cpp2cxx-validate , copies the translated files into the project

directory and starts off with the validation with the help of intermediate files. At the

end of the validation, it copies the original files to the project directory (if configured),

otherwise the user has to copy the original files to the project directory. So a backup

of the program files is also required (Section-6.1.2).

Finally, the cpp2cxx-finalize tool generates rejuvenated program files corre-

sponding to each file that is processed, in a separate directory. As a result it also

requires an extra space approximately equal to the total size of the program files

(Section-6.1.1).

Summing the total space requirements, the total space required is approximately

equal to three times the size of the source code plus the total size of the object-files

that is created during the build process.

6.3 Summary

In this chapter we gave an overview of the cpp2cxx framework. We have hosted

the source files along with user guide online on Github [23]. We also analyzed the

complexity involved in the process of demacrofication which is useful in gauging the

resources required to carry out source code rejuvenation through demacrofication.

83

7. RESULTS AND EVALUATION

The framework was used to evaluate the demacrofication process in three differ-

ent experiments. The first experiment assessed the extent to which a C++ program

might be improved through the removal of macros using the transformations de-

scribed previously. In the second experiment, each macro of an existing library (i.e.,

Cryotopp) was studied so as to get a better picture of performing source code reju-

venation through demacrofication. The aim of this study was to fully identify use

cases for demacrofication and problems demacrofying real-world code. The last ex-

periment was to perform fully automated rejuvenation of two C++ libraries in order

to determine the viability and practicality of such a task.

7.1 Automatic demacrofication

In the first experiment the cpp2cxx-suggest tool was applied to seven C++

libraries comprising over 1.5 million lines of non-comment, non-blank code. The

purpose of the experiment was to estimate the number of macros that might possibly

be refactored, either automatically or assisted by the programmer. This experiment

measures the extent to which the program might be improved (made more secure

and maintainable) through demacrofication.

The demacrofier is applied to each file in the package. Files including non-C/non-

C++ code (e.g., lex/yacc files) were excluded from the test. The results of the

demacrofication were not compiled to test if the transformation would preserve the

build. This experiment only estimates the extent of transformability.

From the Table-7.1 it is clear that we can remove a significant number of macros

which are neither empty nor partial. Hypothetically, all macros in the closed and

dependent category can be replaced using one of the transformations described in

84

Table 7.1: Results after running the cpp2cxx-suggest tool

Preserved Complete

Package Name Total Empty Partial Closed Dependent Actually
Macros Macros Macros Demacrofied 1

Cryotopp-5.6.1 1020 164 240 142 474 322 (52.3%)
p7zip-9.20.1 1098 284 119 660 35 656 (94.3%)
scintilla-3.0.4 2694 52 15 2588 39 2595 (98.7%)
poco-1.4.3p1 2564 889 305 857 513 987 (72.0%)
facebook-hiphop 8159 1099 3092 2822 1146 3305 (83.2%)
wxWidgets-2.9.3 19262 2483 1923 11223 3633 12593 (84.7%)
ACE-6.0.6 5969 3227 613 1587 542 1455 (68.3%)

1 As a percentage of closed + dependent

Chapter-5. The results, however, are not quite 100% for these cases because of a cou-

ple of issues. Definition ordering issues prevent automatic refactoring, as do macros

that would be refactored as lambda functions. Also, there is no type-expression

parser in the current version of the demacrofier which prevented the suggest tool to

provide alternatives for type-aliases and parameterized type aliases .

7.2 Single system case study

Although the classification criteria and demacrofication process are sufficient to

identify potentially demacrofiable macros from the syntactical point of view, there

are other factors which come to play due to different scoping rules of C preprocessor

and C++. It became clear during this experiment when each macro of a library

(Cryptopp-5.6.1) was studied in its original form as well as demacrofied form. This

experiment helped find out different practical uses of macros. It also helped improve

the rejuvenation tools by understanding the interaction between preprocessor and

other C++ declarations.

During the study, two different kinds of use cases were found which the tool could

not handle. These were later incorporated into the automated demacrofication tool

(although with limited support).

85

7.2.1 Macros as local functions

As discussed during in the Section-5.3, when a function like macro is defined inside

a function definition then replacing the macro with a function declaration would

result in compiler error, instead a lambda function declaration would be suitable.

There were several instances where function-like macros were being defined inside

a function.

7.2.2 Macros involving member variables

There were instances of dependent macros where free variables used inside the

replacement text were member variables of a class (Section-5.3.3). For example:

class temp {

public:

int kelvin() const;

int fahrenheit() const;

private:

int cel;

};

#define TEMP_KEL 273 + cel

#define TEMP_FAR cel * 9 / 5 + 32

int temp::kelvin() const

{ return TEMP_KEL; }

int temp:: fahrenheit() const

{ return TEMP_FAR; }

86

Here demacrofication will result in a compilation error because it is not possible

to create a global lambda function that captures references to non-static member

variables of a class. Even if we could, those members are private. Mennie et al. [25]

suggest that the macro replacement be placed inside a function that used the macro:

int temp::get_temp_kel()

{

constexpr auto TEMP_KEL = 273 + cel;

return TEMP_KEL;

}

If the macro is invoked inside multiple functions, this would lead to a replication of

the macro replacement. This would be harmful to maintenance, so a better approach

would be to introduce a new, inline member function with the correct semantics.

Although we found and characterized only two problems of this nature, it is

almost certain that there are more. We plan to continue identifying and addressing

macro/code usage problems as we build and support our tools.

In addition to these problems, we also found a large number of macros that

included control flow statements (return, goto, etc.), possibly nested to some level.

Trying to transform these into functions would break the control flow of the original

program.

All told, we were able to refactor about 48.6% of the non-empty macros in the

library. This is about half of what was predicted from our initial application of the

cpp2cxx-suggest tool. We only modified 15 macros; the remainder were not readily

replaced with declarations. This took less than a day to complete.

Mileage will vary for each project since every project generally has its own style

of macro use. The macros in Crypto++ were largely computational in nature and

tended to include program fragments that could not be fully represented as C++

87

program elements.

7.3 Automatic demacrofication with validation

The third experiment was conducted to evaluate the correctness of the source

to source translation. After the demacrofication the libraries cannot be assumed to

compile. So the macros which were transformed incorrectly has to be preserved. To

validate the transformation the cpp2cxx-validate tool was designed that would

transform a library, one macro at a time, attempting to rebuild the entire system

after each transformation. The build process was designed to be incremental because

some macros might impact definitions in many different files. The working of the

validator script is described in chapter on implementation (Chapter-6).

In order to iteratively refactor macros, each generated macro was wrapped in a

conditional (this is done by the cpp2cxx-suggest tool) that would allow it to be

enabled or disabled. For example:

// file name is "file.cpp"

#if defined(__cplusplus) && \

defined(__GXX_EXPERIMENTAL_CXX0X__) && \

defined(USE_PI_filecpp_3_8)

auto PI = 3.14;

#else

#define PI 3.14

#endif

The unique macro switch for the macro PI is USE_PI_filecpp_3_8. A special

header file, Defined.h contains the current list of macros introduced for each build.

Since the validation takes a significant amount of time, the validation was per-

formed only for two libraries (i.e., p7zip and Scintilla). Table-7.2 lists the total

88

number of macros that were finally introduced into the respective libraries as com-

pared to the total number of macros that were potentially refactorable as explained

in Table-7.1

Table 7.2: Results after validation

Package Name Total Potentially Finally
Macros Refactorable Validated 1

Cryptopp-5.6.1 1020 616 179 (29.0%)
p7zip-9.20.1 1098 695 606 (87.2%)
scintilla-3.0.4 2694 2627 2585 (98.4%)
facebook-hiphop 8159 3968 2588 (65.2%)
1 Percentage listed w.r.t. potentially refactorable macros

From the results in Table-7.2 it is clear that some transformations could not

preserve the build. This happened due to various reasons like: the tool works on a

per-file basis so its knowledge is limited to single file—it is hard to gauge the impact

of a local change to a larger build. Also, it is more likely for function-like macros

to fail the transformation than object-like macros. The reason for this is simply due

to the complexity involved in parsing the replacement text of function-like macros

without extensive support from compiler front end.

Interestingly, the numbers here are much greater than those reported for the

manual work on the Crypto++ library. We attribute this to the different styles of

macros. Crypto++ has 566 function-like macros and a large number of them are used

to generate code and higher order programming. For example, in file serpentp.h, 18

macros take function-name as argument like the one given below:

#define beforeS0(f) f(0,a,b,c,d,e)

Also, out of 566 function-like macros, 468 are dependent, which justifies why it

has least conversion ratio.

89

7.4 Limitations

The process of mapping from (untyped) macros to (typed) language declarations

cannot be, in principle, guaranteed to be unique. Although the results are impressive,

there are several obstacles to demacrofy 100% macros. Some of them arise due to the

difference in the execution model of C/C++ and substitutions of the C preprocessor,

such as pass by name semantics for function-like macros, facility of lexical manipula-

tion of tokens, lack of rules for linear ordering between definition and usage, different

language scoping rules and lack of strong typing for the macros. Others arise because

the tool does not have a type expression parser and freely available compiler front

ends do not have a very good support for analyzing macros. Following is a list of

known limitations of cpp2cxx-suggest tool.

7.4.1 Incorrect type inference

The use of auto and the decltype in ways illustrated might assign type to the

macro which may not be what was desired. It might happen that the type inferred

by auto or decltype be the subtype/supertype of the intended type. For example:

//#define MAX 100

auto MAX = 100;

Here the type of MAX inferred will be int but while using it as a macro the

programmer might have intended its use as a unsigned integer unsigned int. For

example:

unsigned int temp = 10;

//comparing unsigned and signed integers

if(temp > MAX)

temp = MAX;

90

For these kinds of errors, further analysis of variables interacting with the macros

at the point of invocation is needed.

7.4.2 Macros defining string literals

As we know that in C++ programs adjacent string literals are concatenated.

When a macro is defined as a string literals and it is invoked adjacent to another

string literal, both the string literals get concatenated. However, after translation of

macro into a declaration, the ‘variable’ representing the string literal will be of type

const char* and it won’t concatenate with another string literal. For example:

//#define CRYPTOPP_BLOCKING_RNG_FILENAME "/dev/srandom"

constexpr auto CRYPTOPP_BLOCKING_RNG_FILENAME = "/dev/srandom";

//usage

m_fd = open(CRYPTOPP_BLOCKING_RNG_FILENAME, O_RDONLY);

if (m_fd == -1)

throw OS_RNG_Err("open " CRYPTOPP_BLOCKING_RNG_FILENAME); //error!

7.4.3 Macros defined from the command line

The tool does not have any idea about the macros which are defined from the

command line. Due to lack of information about those kinds of macro there is nothing

that the tool can do.

7.4.4 Macros modifying control flow of a program

The macros having return, goto etc. which modifies the control flow of the

program were not considered for transformation in the current implementation. It

might be possible to do those transformations when our tool works in tandem with

Pivot [37] or other refactoring browsers. For example:

91

#define VALIDATE(X, THRES) if(X>=THRES) return

#define COND_JUMP(X, THRES, LABEL) if(X>=THRES) goto LABEL

7.4.5 Replacing partial macros

The macros with operations which do not have any equivalent in C++ e.g.,

stringification, concatenation and variadic macros could not be replaced. Using tem-

plate meta-programming methods and other workarounds are useful in some of the

cases as illustrated in Appendix-A.

7.4.6 Parsing macro bodies

It is non-trivial to implement a robust type/value expression parser for an in-

dustrial strength language like C++. Another problem is that macro-replacement

text is just a set of tokens and cannot be just fetched to existing compiler-front

end like clang, even though it provides a lot of front end support. Due to these

limitations a simple value-expression parser was implemented to parse through the

macro body to make sure the replacement text is actually an expression. There

is a lot of approximation along with several heuristics to collect useful information

which would aid subsequent stages of cpp2cxx-suggest tool in providing better

suggestions (Figure-6.2).

7.4.7 Moving the translated declaration in same file

Similar difficulties arise even when the translated declaration is to be moved at

a location where all the free-variables referenced in the macro body is visible. It

involves finding a least common ancestor (LCA) of all the macro invocations and

placing the translated declaration at that point. Automating this process would be

possible once the demacrofier is integrated with a compiler front end.

92

7.4.8 Moving the translated declaration in between files

When a macro body references a member variable of a class or a struct (Section-

5.3.3) there is a possible transformation which requires the translated declaration

to be moved to the file where the class is declared. Implementing this facility

would require the knowledge of multiple files (or a translation unit) along with other

details; in fact it would be like implementing a complete front end to support such

transformations.

7.4.9 Analysis of dependent macros

Whenever the dependent tokens within the replacement texts are predefined

macros, it becomes difficult to perform further analysis in an automatic way. Fur-

ther, in the case of partial macros is is not possible to find any suitable method of

demacrofication. For example:

#define SYMBOL_EXPORT __attribute__((dllexport))

#define MOVE_NAMESPACE boost::interprocess

There are macros which contains __FILE__ and __LINE__ macros, which has to be

preserved because transforming them would change the abstraction they are meant

to provide.

7.4.10 Dependent macros not in topological order

During the dependency analysis of macro bodies, if a set of dependent macros are

not in topological order, then all the interdependent macros were preserved without

modification. Reordering would not be difficult within the tool, but experience with

other tools, such as Rose [42] has been that many programmers strongly object to

reordering, that is why this facility has been deferred until later.

93

7.4.11 Formatting

Although the tool does not play with the formatting of program in general. The

tokenizer, BOOST.Wave, that does not keep the line-continuation (i.e. backslash new-

line) at the iterator level. This modifies the formatting of source file at all the places

where line-continuation tokens are used. Recently they added the facility to keep

this token but the support is only for SLex lexer module [48]. For example, consider

the following macro definition:

#define Funtion(x) X + \

Y

Tokenizing the macro definition, and reproducing the macro definition eats up

the line-continuation token and results in the following output.

#define Funtion(x) X + Y

When the rejuvenated code is generated, a macro is replaced with equivalent

C++ declaration, which does not have same amount of text (or tokens) as that of

macro definition; due to this the line-numbers of the each program fragment would

change.

7.4.12 Scope of macros

The scoping rules for macros are different from those of C++ declarations. After

demacrofication, the scope of declaration will obey C++ rules and may not be what

the user wanted.

Another issue comes when a macro has been #undefined; the macro is not visible

beyond that point so shouldn’t the declaration. But after demacrofication, the scope

of the demacrofied-variable may reach beyond the point where it was #undefined. The

scope may even end before the point where the macro was #undefined. Programmer

94

intervention is required in this case.

7.4.13 Nested macros at the use site

Invocation of nested (function-like) macros is ignored due to involved complexity

in parsing.

#define X 100

#define Y 200

#define F(A,B) ((A)+(B))

#define G(A,B) ((A)-(B))

int z = F(X,Y);

int x = F(10,15);

//the tool logs use case of F, X and Y

int y = F(X+Y,100);

//nested function-like macro invocations are not logged

int m = G(F(X,Y), X);

7.5 Summary

In this chapter we presented the experimental results collected as a result of

applying cpp2cxx tools to different C++ libraries. We believe that the results are

promising and justifies that this approach is correct and feasible. That said, there

is a lot of improvement required in the implementation of cpp2cxx framework. We

will continue to improve upon the concepts implemented in the tools and add new

ones once we get proper supports from a compiler front end.

95

8. CONCLUSION AND FUTURE WORK

We presented several approaches that can be used to demacrofy C++ programs

by replacing macro definitions with C++11 declarations. We evaluated aspects of

our approach and implementation in a number of different ways. The results of

the evaluation convince us that C++ programs can be effectively demacrofied, often

using straightforward and simple mapping. The resulting program will have improved

behavior and type information (Section-1.1). There are, however, cases where the

user is required to make an informed decision about how a macro should be replaced.

We believe that the efficacy of the automated approach would be greatly improved if

our tools had full knowledge of the C++ program structure through better compiler

front end support.

In the future, we plan to further investigate the integration of a compiler front

end to supply the information needed to improve our mappings and decision-making

capabilities. In particular, the ability to know about C++ declarations will make it

possible to automatically refactor a larger class of macros and improve our ability to

place the transformed results.

In the performance measures we saw that the bottleneck in the demacrofication

process is the validation step (Section-6.1). We would like to improve upon the

algorithm which introduces macros during the validation phase so that total time

taken could be minimized.

During the transformation of function-like macros, the syntax of generated func-

tion declarations (i.e., with trailing return type) is not traditional. As a next step

after the demacrofication, we would like to rewrite the syntax of generated declara-

tions to make them idiomatic. This is possible since the declarations are now C++,

96

their definitions as well as uses can be analyzed with the help of static analysis tools.

We plan to integrate the cpp2cxx framework with IPR to perform such source to

source program analyses and transformations [37]. Integrating with IPR would also

help in analyzing the macro invocations because, after demacrofication, they turn

into function calls.

97

REFERENCES

[1] P. Pirkelbauer, D. Dechev, and B. Stroustrup, “Source Code Rejuvenation is

not Refactoring,” SOFSEM 2010: Theory and Practice of Computer Science,

pp. 639–650, 2010.

[2] B. Stroustrup, The design and evolution of C++, vol. 1, Addison-Wesley

Reading, Boston, MA, 1994.

[3] M.D. Ernst, G.J. Badros, and D. Notkin, “An empirical analysis of C prepro-

cessor use,” Software Engineering, IEEE Transactions on, vol. 28, no. 12, pp.

1146–1170, 2002.

[4] T. Mens and T. Tourwé, “A survey of software refactoring,” Software Engi-

neering, IEEE Transactions on, vol. 30, no. 2, pp. 126–139, 2004.

[5] G.J. Badros and D. Notkin, “A framework for preprocessor-aware C source code

analyses,” Software Practice and Experience, vol. 30, no. 8, pp. 907–924, 2000.

[6] B. Weinberger, C. Silverstein, G. Eitzmann, M. Mentovai, and T. Landray,

“Google C++ style guide,” http://google-styleguide.googlecode.com/

svn/trunk/cppguide.xml, 2012.

[7] R. Seacord, Secure Coding in C and C++, Addison-Wesley Professional, Boston,

MA, 2005.

[8] B. Stroustrup, K. Carroll, and L.M. Aero, “C++ in safety-critical applications:

The JSF++ coding standard,” http://www.stroustrup.com/JSF-AV-rules.

pdf, 2005.

98

http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
http://www.stroustrup.com/JSF-AV-rules.pdf
http://www.stroustrup.com/JSF-AV-rules.pdf

[9] C++ Standards Committee, P. Becker, et al., “Programming languages-c++

(final committee draft). C++ standards committee paper wg21/n3092= j16/10-

0082,” http://www.open-std.org/jtc1/sc22/wg21/, 2012.

[10] A. Garrido and R. Johnson, “Challenges of refactoring C programs,” in Pro-

ceedings of the international workshop on Principles of software evolution. ACM,

2002, pp. 6–14.

[11] ASM Sajeev and DA Spuler, “Static detection of preprocessor macro errors

in c,” Tech. Rep., Technical Report JCU-CS-92/7, Department of Computer

Science, James Cook University, 1992.

[12] B. Stroustrup and Safari Tech Books Online, The C++ programming language,

vol. 3, Addison-Wesley Reading, Boston, MA, 1997.

[13] Alejandra Garrido, “Program refactoring in the presence of preprocessor direc-

tives,” Ph.D. dissertation, University of Illinois at Urbana-Champaign, Cham-

paign, IL, USA, 2005, AAI3199001.

[14] Y. Padioleau, “Parsing C/C++ code without pre-processing,” in Compiler

Construction. Springer, 2009, pp. 109–125.

[15] M. Vittek, “Refactoring browser with preprocessor,” in Software Maintenance

and Reengineering, 2003. Proceedings. Seventh European Conference on. IEEE,

2003, pp. 101–110.

[16] A. Saebjoernsen, L. Jiang, D. Quinlan, and Z. Su, “Static Validation of C

Preprocessor Macros,” in Proceedings of the 2009 IEEE/ACM International

Conference on Automated Software Engineering. IEEE Computer Society, 2009,

pp. 149–160.

99

http://www.open-std.org/jtc1/sc22/wg21/

[17] D. Weise and R. Crew, “Programmable syntax macros,” in ACM SIGPLAN

Notices. ACM, 1993, vol. 28, pp. 156–165.

[18] E.D. Willink and V.B. Muchnick, “Object-oriented preprocessor fit for C++,”

in Software, IEE Proceedings-. IET, 2000, vol. 147, pp. 49–58.

[19] CDT Eclipse, “Eclipse C/C++ Development Tooling-CDT,” http://www.

eclipse.org/cdt/, 2012.

[20] D. Waddington and B. Yao, “High-fidelity C/C++ code transformation,” Sci-

ence of Computer Programming, vol. 68, no. 2, pp. 64–78, 2007.

[21] Devexpress, “Refactor for C++,” http://documentation.devexpress.com/

#RefactorCPP/CustomDocument2669, 2012.

[22] ISO, “International standard - iso/iec 14764 ieee std 14764-2006 software en-

gineering #2013; software life cycle processes #2013; maintenance,” ISO/IEC

14764:2006 (E) IEEE Std 14764-2006 Revision of IEEE Std 1219-1998), pp.

1–46, 2006.

[23] Aditya Kumar, “cpp2cxx framework,” https://github.com/hiraditya/

cpp2cxx/, 2012.

[24] A. Sutton and J.I. Maletic, “How we manage portability and configuration

with the C preprocessor,” in Software Maintenance, 2007. ICSM 2007. IEEE

International Conference on. IEEE, 2007, pp. 275–284.

[25] C.A. Mennie and C.L.A. Clarke, “Giving meaning to macros,” in Program Com-

prehension, 2004. Proceedings. 12th IEEE International Workshop on. IEEE,

2004, pp. 79–85.

100

http://www.eclipse.org/cdt/
http://www.eclipse.org/cdt/
http://documentation.devexpress.com/#RefactorCPP/CustomDocument2669
http://documentation.devexpress.com/#RefactorCPP/CustomDocument2669
https://github.com/hiraditya/cpp2cxx/
https://github.com/hiraditya/cpp2cxx/

[26] D. Spinellis, “Global analysis and transformations in preprocessed languages,”

Software Engineering, IEEE Transactions on, vol. 29, no. 11, pp. 1019–1030,

2003.

[27] B. McCloskey and E. Brewer, “ASTEC: a new approach to refactoring C,”

ACM SIGSOFT Software Engineering Notes, vol. 30, no. 5, pp. 21–30, 2005.

[28] C. Kästner, P.G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and T. Berger,

“Variability-aware parsing in the presence of lexical macros and conditional

compilation,” in Proceedings of the 2011 ACM international conference on

Object oriented programming systems languages and applications. ACM, 2011,

pp. 805–824.

[29] L. Vidács, Á. Beszédes, and R. Ferenc, “Macro impact analysis using macro

slicing,” in Proceedings of ICSOFT 2007, Second International Conference on

Software and Data Technologies, 2007, pp. 230–235.

[30] László Vidács, “Software maintenance methods for preprocessed languages,”

Ph.D. dissertation, University of Szeged, Szeged, Hungary, 2009.

[31] C. Riva, M. Przybilski, and K. Koskimies, “Environment for Software As-

sessment,” in Proceedings of the Workshop on Object-Oriented Technology.

Springer-Verlag, 1999, p. 74.

[32] J.M. Gravley and A. Lakhotia, “Identifying enumeration types modeled with

symbolic constants,” in Reverse Engineering, 1996., Proceedings of the Third

Working Conference on. IEEE, 1996, pp. 227–236.

[33] G.L. Steele, Common LISP: the language, Digital Press, Burlington, MA, 1990.

101

[34] J.M. Favre, “CPP denotational semantics,” in Source Code Analysis and Ma-

nipulation, 2003. Proceedings. Third IEEE International Workshop on. IEEE,

2003, pp. 22–31.

[35] R. Stallman and Z. Weinberg, “The C preprocessor. GNU Online documenta-

tion,” http://gcc.gnu.org/onlinedocs/gcc-4.6.2/cpp.pdf, 2012.

[36] Microsoft, “C preprocessor online documentation,” http://msdn.microsoft.

com/en-us/library/79yewefw.aspx, 2012.

[37] B. Stroustrup and G. Dos Reis, “The Pivot: A brief overview,” https://

parasol.tamu.edu/pivot, 2012.

[38] Al Danial, “CLOC,” http://cloc.sourceforge.net, 2012.

[39] A.A. Stepanov and P. McJones, Elements of programming, Addison-Wesley

Professional, Boston, MA, 2009.

[40] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein,

Introduction to Algorithms, Second Edition, The MIT Press and McGraw-Hill

Book Company, New York, 2001.

[41] J. Smart, R. Roebling, et al., “wxWidgets–cross-platform GUI library,” http:

//www.wxwidgets.org/, 2012.

[42] D. Quinlan, “Rose: Compiler support for object-oriented frameworks,” Parallel

Processing Letters, vol. 10, no. 2/3, pp. 215–226, 2000.

[43] Facebook, “HipHop for PHP,” https://github.com/facebook/hiphop-php/,

2012.

[44] Boost, “Boost C++ Libraries,” http://www.boost.org/, 2012.

102

http://gcc.gnu.org/onlinedocs/gcc-4.6.2/cpp.pdf
http://msdn.microsoft.com/en-us/library/79yewefw.aspx
http://msdn.microsoft.com/en-us/library/79yewefw.aspx
https://parasol.tamu.edu/pivot
https://parasol.tamu.edu/pivot
http://cloc.sourceforge.net
http://www.wxwidgets.org/
http://www.wxwidgets.org/
https://github.com/facebook/hiphop-php/
http://www.boost.org/

[45] Chris Lattner, “clang: a C language family frontend for LLVM,” http://clang.

llvm.org, 2012.

[46] GCC, “GCC, the GNU Compiler Collection,” http://gcc.gnu.org, 2012.

[47] J. Python, “Python Programming Language,” Python (programming language)

1 CPython 13 Python Software Foundation 15, p. 1, 2009.

[48] Hartmut Kaiser, “Boost.Wave V2.3,” http://www.boost.org/doc/libs/1_

49_0/libs/wave/ChangeLog, 2012.

[49] Daveed Vandevoorde, “Modules in C++ (Revision 2). C++ standards com-

mittee paper N1778= 05-0038,” http://www.open-std.org/jtc1/sc22/wg21/

docs/papers/2005/n1778.pdf, 2012.

[50] W. Bright, H. Sutter, and A. Alexandrescu, “Proposal: static if declaration.

C++ standards committee paper N3329= 12-0019,” http://www.open-std.

org/jtc1/sc22/WG21/docs/papers/2012/n3329.pdf, 2012.

103

http://clang.llvm.org
http://clang.llvm.org
http://gcc.gnu.org
http://www.boost.org/doc/libs/1_49_0/libs/wave/ChangeLog
http://www.boost.org/doc/libs/1_49_0/libs/wave/ChangeLog
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1778.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1778.pdf
http://www.open-std.org/jtc1/sc22/WG21/docs/papers/2012/n3329.pdf
http://www.open-std.org/jtc1/sc22/WG21/docs/papers/2012/n3329.pdf

APPENDIX A. ALTERNATIVES TO COMMON C PREPROCESSOR IDIOMS

Although macros are deprecated by most coding standards and style guides [2,

6–8], they are used quite often by C++ programmers (see Table-3.1). The fact is

that even when C++ provides numerous facilities to avoid macro usage [2], it is not

sufficient enough to remove all use cases of C preprocessor macros. Ernst et al. [3]

comment that a “disciplined use of the preprocessor can reduce programmer effort

and improve portability, performance, or readability”. Although performance is not

a problem when we are talking about C++, which has several facilities to improve

efficiency like function inlining, pass arguments to a function by reference etc., the

following facilities provided by the C preprocessor either cannot be expressed in C++

or expressed with complicated workarounds.

A.1 Facility to organize source code in separate files

A C++ program can be organized across separate files using the #include direc-

tive. However, there is a proposal to have modules in C++ which would have similar

facilities [49].

A.2 Code generation

The C preprocessor has a simple semantic model as it is just a textual substitu-

tion. Using text based substitution before the compilation phase helps in generating

similar declarations. The argument expressions (in function like macros) are not eval-

uated which can help pass function name, type name etc., as arguments to function

like macro. For example:

#define LIST_NODE(name, type)\

struct name {\

104

struct type *data;\

}\

LIST_NODE(int_struct, int);

LIST_NODE(float_struct, float);

LIST_NODE(char_struct, char);

Similar abstractions can be provided using templates.

//alternative method

template<typename type>

struct list{

struct type data;

};

//use cases

list<int*> int_struct;

list<float*> float_struct;

list<char*> char_struct;

A.3 Ability to generate tokens

The stringification (#) and the concatenation (##) operators allow programmer

to generate tokens which reduces programmers effort in writing repeated code. It

also helps in writing good error/warning messages. For example:

#define STRUCT_NAME(name) name##2##link

#define ERROR_IF(EXP) \

do { if (EXP) \

fprintf (stderr, "Error: \%u," #EXP "\n", __LINE__); } \

105

while (0)\

Since C++ does not have these operators, there is no straightforward method

to express STRUCT_NAME. To replace ERROR_IF we can use other methods to handle

errors such as static_assert for compile time errors and exception handling for run

time errors.

A.4 Higher order functional-programming

One can exploit the lexical substitution mechanism of C preprocessor to provide

higher-order functional programming abstractions. For example:

#define FUN(a,b) a((b)str)

int g(void* a)

{

//...

return -1;

}

int f()

{

char* str = "abcde";

FUN(g,void*);

}

#define MAKE_MAP(TYPE, RTYPE)\

RTYPE* map_##TYPE (TYPE[n] array, int n, RTYPE(*f)(TYPE)) {\

RTYPE* result = (RTYPE*)malloc(sizeof(RTYPE)*n);\

for(int i = 0; i < n; i++) {\

106

result[i]=f(array[i]);\

}\

return result;}\

Similar abstractions can be provided using templates in the following way.

//alternative method

template<typename Ta, typename Tb, typename Tc>

void FUN(Ta a, Tc c)

{

a((Tb)c);

}

int g(void* a)

{

//...

return -1;

}

int f()

{

char* str = "abcde";

typedef int(*fp)(void*);

FUN<fp,void*,char*>(g, str);

}

//alternative method

template<typename TYPE, typename RTYPE, unsigned int n>

107

RTYPE* map(TYPE array[], RTYPE(*f)(TYPE))

{

RTYPE* result = (RTYPE*)malloc(sizeof(RTYPE)*n);

for(int i = 0; i < n; i++) {

result[i]=f(array[i]);

}

return result;

}

A.5 Managing portability and configuration using conditionals

Conditional directives are used to incorporate variable configurations and settings

in C++ programs. They are also used to manage portability of programs. Sutton

et al. present a detailed analysis of how some of the widely ported C++ libraries

manage portability and configuration [24]. There is a proposal to include static if

in C++ [50] which might be used to eliminate this traditional use of C preprocessor.

108

APPENDIX B. ALGORITHMS

Algorithm 1: Determine out-of-order macros

1: Generate dependency list for all the macros.
2: Topologically sort the dependency list of all macros.
3: Compare the position of each macro with the position of macros in its

dependency list.
4: If the macro references another macro defined later than itself, then mark the

macro definition as ‘out-of-order’.

Algorithm 2: Decide if a C++11 declaration exists for a macro definition

if macro = configurational then

Preserve;

else

if macro.syntax = partial then

Preserve;

else

if classification exists then

if There are dependencies then

Perform dependency analysis;

if There are out-of-order dependencies then

Preserve;

else

Suggest Transformation;

else

Suggest transformation;

else

Preserve;

109

parse the token

preprocessor directive
 with macro declaration?

preserve

done?

insert the declaration
 into program and

 remove from the ready queue

exit

put the translated
declaration into

 the program

insert the
 translated declaration

 into ready queue

generate equivalent
 C++11 declaration and

 enclose within conditionals

to be relocated?

no

yes

demacrofiable?

no yes

no yes

is it a location
 to place a

translated declaration?

yes

no

multiple definitions?

no
translate multiply
 defined macros?

yes

no

yes

no

yes

Figure B.1: Algorithm to carry out the translation of macro once relevant information
is collected by the parser in the cpp2cxx-suggest tool.

110

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Motivation
	Research overview and contributions
	Summary

	RELATED WORK
	Surveys of preprocessor usage
	Refactoring macros
	Macro languages
	Summary

	CLASSIFYING MACROS
	Basic terms related to preprocessor directives
	Classification of macros
	Classification criteria
	Syntactic nature of the macro bodies
	Presence of free variables in the macro bodies
	Contents of conditional directives

	Classification results
	Macro classification
	Empty macro
	Expressions alias
	Type alias
	Parameterized expression
	Parameterized type alias

	Summary

	ANALYSIS OF MACROS
	Dependency analysis
	Using C preprocessor conditionals to isolate program text
	Summary

	MAPPING MACROS TO C++ DECLARATIONS
	Object-like macros
	Function-like macros
	Special cases
	Function within a function
	Macros used to create dynamic scoping
	Macro referencing variables in a different scope
	Problems with the const-ness of function

	Examples
	Summary

	IMPLEMENTATION
	Design of the cpp2cxx framework
	cpp2cxx-suggest
	cpp2cxx-validate
	cpp2cxx-finalize

	Performance measures
	Time complexity
	Space complexity

	Summary

	RESULTS AND EVALUATION
	Automatic demacrofication
	Single system case study
	Macros as local functions
	Macros involving member variables

	Automatic demacrofication with validation
	Limitations
	Incorrect type inference
	Macros defining string literals
	Macros defined from the command line
	Macros modifying control flow of a program
	Replacing partial macros
	Parsing macro bodies
	Moving the translated declaration in same file
	Moving the translated declaration in between files
	Analysis of dependent macros
	Dependent macros not in topological order
	Formatting
	Scope of macros
	Nested macros at the use site

	Summary

	CONCLUSION AND FUTURE WORK

	REFERENCES
	ALTERNATIVES TO COMMON C PREPROCESSOR IDIOMS
	Facility to organize source code in separate files
	Code generation
	Ability to generate tokens
	Higher order functional-programming
	Managing portability and configuration using conditionals

	ALGORITHMS

