6 research outputs found

    Exact simulation of normal tempered stable processes of OU type with applications

    Get PDF
    We study the Ornstein-Uhlenbeck process having a symmetric normal tempered stable stationary law and represent its transition distribution in terms of the sum of independent laws. In addition, we write the background driving Levy process as the sum of two independent Levy components. Accordingly, we can design two alternate algorithms for the simulation of the skeleton of the Ornstein-Uhlenbeck process. The solution based on the transition law turns out to be faster since it is based on a lower number of computational steps, as confirmed by extensive numerical experiments. We also calculate the characteristic function of the transition density which is instrumental for the application of the FFT-based method of Carr and Madan (J Comput Finance 2:61-73, 1999) to the pricing of a strip of call options written on markets whose price evolution is modeled by such an Ornstein-Uhlenbeck dynamics. This setting is indeed common for spot prices in the energy field. Finally, we show how to extend the range of applications to future markets.Peer reviewe

    Fast simulation of tempered stable Ornstein-Uhlenbeck processes

    Get PDF
    Constructing Levy-driven Ornstein-Uhlenbeck processes is a task closely related to the notion of self-decomposability. In particular, their transition laws are linked to the properties of what will be hereafter called the a-remainder of their self-decomposable stationary laws. In the present study we fully characterize the Levy triplet of these a-remainders and we provide a general framework to deduce the transition laws of the finite variation Ornstein-Uhlenbeck processes associated with tempered stable distributions. We focus finally on the subclass of the exponentially-modulated tempered stable laws and we derive the algorithms for an exact generation of the skeleton of Ornstein-Uhlenbeck processes related to such distributions, with the further advantage of adopting procedures which are tens of times faster than those already available in the existing literature.Peer reviewe

    Point process simulation of generalised inverse Gaussian processes and estimation of the Jaeger integral

    Get PDF
    In this paper novel simulation methods are provided for the generalised inverse Gaussian (GIG) L\'{e}vy process. Such processes are intractable for simulation except in certain special edge cases, since the L\'{e}vy density associated with the GIG process is expressed as an integral involving certain Bessel Functions, known as the Jaeger integral in diffusive transport applications. We here show for the first time how to solve the problem indirectly, using generalised shot-noise methods to simulate the underlying point processes and constructing an auxiliary variables approach that avoids any direct calculation of the integrals involved. The resulting augmented bivariate process is still intractable and so we propose a novel thinning method based on upper bounds on the intractable integrand. Moreover our approach leads to lower and upper bounds on the Jaeger integral itself, which may be compared with other approximation methods. The shot noise method involves a truncated infinite series of decreasing random variables, and as such is approximate, although the series are found to be rapidly convergent in most cases. We note that the GIG process is the required Brownian motion subordinator for the generalised hyperbolic (GH) L\'{e}vy process and so our simulation approach will straightforwardly extend also to the simulation of these intractable proceses. Our new methods will find application in forward simulation of processes of GIG and GH type, in financial and engineering data, for example, as well as inference for states and parameters of stochastic processes driven by GIG and GH L\'{e}vy processes

    Simulation of the drawdown and its duration in LĂ©vy models via stick-breaking Gaussian approximation

    Get PDF
    We develop a computational method for expected functionals of the drawdown and its duration in exponential Lévy models. It is based on a novel simulation algorithm for the joint law of the state, supremum and time the supremum is attained of the Gaussian approximation for a general Lévy process. We bound the bias for various locally Lipschitz and discontinuous payoffs arising in applications and analyse the computational complexities of the corresponding Monte Carlo and multilevel Monte Carlo estimators. Monte Carlo methods for Lévy processes (using Gaussian approximation) have been analysed for Lipschitz payoffs, in which case the computational complexity of our algorithm is up to two orders of magnitude smaller when the jump activity is high. At the core of our approach are bounds on certain Wasserstein distances, obtained via the novel stick-breaking Gaussian (SBG) coupling between a Lévy process and its Gaussian approximation. Numerical performance, based on the implementation in Cázares and Mijatović (SBG approximation. GitHub repository. Available online at https://github.com/jorgeignaciogc/SBG.jl (2020)), exhibits a good agreement with our theoretical bounds. Numerical evidence suggests that our algorithm remains stable and accurate when estimating Greeks for barrier options and outperforms the “obvious” algorithm for finite-jump-activity Lévy processes
    corecore